Sample records for pressure waveform analysis

  1. Beat-to-Beat Blood Pressure Monitor

    NASA Technical Reports Server (NTRS)

    Lee, Yong Jin

    2012-01-01

    This device provides non-invasive beat-to-beat blood pressure measurements and can be worn over the upper arm for prolonged durations. Phase and waveform analyses are performed on filtered proximal and distal photoplethysmographic (PPG) waveforms obtained from the brachial artery. The phase analysis is used primarily for the computation of the mean arterial pressure, while the waveform analysis is used primarily to obtain the pulse pressure. Real-time compliance estimate is used to refine both the mean arterial and pulse pressures to provide the beat-to-beat blood pressure measurement. This wearable physiological monitor can be used to continuously observe the beat-to-beat blood pressure (B3P). It can be used to monitor the effect of prolonged exposures to reduced gravitational environments and the effectiveness of various countermeasures. A number of researchers have used pulse wave velocity (PWV) of blood in the arteries to infer the beat-to-beat blood pressure. There has been documentation of relative success, but a device that is able to provide the required accuracy and repeatability has not yet been developed. It has been demonstrated that an accurate and repeatable blood pressure measurement can be obtained by measuring the phase change (e.g., phase velocity), amplitude change, and distortion of the PPG waveforms along the brachial artery. The approach is based on comparing the full PPG waveform between two points along the artery rather than measuring the time-of-flight. Minimizing the measurement separation and confining the measurement area to a single, well-defined artery allows the waveform to retain the general shape between the two measurement points. This allows signal processing of waveforms to determine the phase and amplitude changes.

  2. Signal Analysis and Waveform Reconstruction of Shock Waves Generated by Underwater Electrical Wire Explosions with Piezoelectric Pressure Probes.

    PubMed

    Zhou, Haibin; Zhang, Yongmin; Han, Ruoyu; Jing, Yan; Wu, Jiawei; Liu, Qiaojue; Ding, Weidong; Qiu, Aici

    2016-04-22

    Underwater shock waves (SWs) generated by underwater electrical wire explosions (UEWEs) have been widely studied and applied. Precise measurement of this kind of SWs is important, but very difficult to accomplish due to their high peak pressure, steep rising edge and very short pulse width (on the order of tens of μs). This paper aims to analyze the signals obtained by two kinds of commercial piezoelectric pressure probes, and reconstruct the correct pressure waveform from the distorted one measured by the pressure probes. It is found that both PCB138 and Müller-plate probes can be used to measure the relative SW pressure value because of their good uniformities and linearities, but none of them can obtain precise SW waveforms. In order to approach to the real SW signal better, we propose a new multi-exponential pressure waveform model, which has considered the faster pressure decay at the early stage and the slower pressure decay in longer times. Based on this model and the energy conservation law, the pressure waveform obtained by the PCB138 probe has been reconstructed, and the reconstruction accuracy has been verified by the signals obtained by the Müller-plate probe. Reconstruction results show that the measured SW peak pressures are smaller than the real signal. The waveform reconstruction method is both reasonable and reliable.

  3. Signal Analysis and Waveform Reconstruction of Shock Waves Generated by Underwater Electrical Wire Explosions with Piezoelectric Pressure Probes

    PubMed Central

    Zhou, Haibin; Zhang, Yongmin; Han, Ruoyu; Jing, Yan; Wu, Jiawei; Liu, Qiaojue; Ding, Weidong; Qiu, Aici

    2016-01-01

    Underwater shock waves (SWs) generated by underwater electrical wire explosions (UEWEs) have been widely studied and applied. Precise measurement of this kind of SWs is important, but very difficult to accomplish due to their high peak pressure, steep rising edge and very short pulse width (on the order of tens of μs). This paper aims to analyze the signals obtained by two kinds of commercial piezoelectric pressure probes, and reconstruct the correct pressure waveform from the distorted one measured by the pressure probes. It is found that both PCB138 and Müller-plate probes can be used to measure the relative SW pressure value because of their good uniformities and linearities, but none of them can obtain precise SW waveforms. In order to approach to the real SW signal better, we propose a new multi-exponential pressure waveform model, which has considered the faster pressure decay at the early stage and the slower pressure decay in longer times. Based on this model and the energy conservation law, the pressure waveform obtained by the PCB138 probe has been reconstructed, and the reconstruction accuracy has been verified by the signals obtained by the Müller-plate probe. Reconstruction results show that the measured SW peak pressures are smaller than the real signal. The waveform reconstruction method is both reasonable and reliable. PMID:27110789

  4. Beat-to-Beat Blood Pressure Monitor

    NASA Technical Reports Server (NTRS)

    Lee, Yong Jin

    2012-01-01

    This device provides non-invasive beat-to-beat blood pressure measurements and can be worn over the upper arm for prolonged durations. Phase and waveform analyses are performed on filtered proximal and distal photoplethysmographic (PPG) waveforms obtained from the brachial artery. The phase analysis is used primarily for the computation of the mean arterial pressure, while the waveform analysis is used primarily to obtain the pulse pressure. Real-time compliance estimate is used to refine both the mean arterial and pulse pressures to provide the beat-to-beat blood pressure measurement. This wearable physiological monitor can be used to continuously observe the beat-to-beat blood pressure (B3P). It can be used to monitor the effect of prolonged exposures to reduced gravitational environments and the effectiveness of various countermeasures. A number of researchers have used pulse wave velocity (PWV) of blood in the arteries to infer the beat-to-beat blood pressure. There has been documentation of relative success, but a device that is able to provide the required accuracy and repeatability has not yet been developed. It has been demonstrated that an accurate and repeatable blood pressure measurement can be obtained by measuring the phase change (e.g., phase velocity), amplitude change, and distortion of the PPG waveforms along the brachial artery. The approach is based on comparing the full PPG waveform between two points along the artery rather than measuring the time-of-flight. Minimizing the measurement separation and confining the measurement area to a single, well-defined artery allows the waveform to retain the general shape between the two measurement points. This allows signal processing of waveforms to determine the phase and amplitude changes. Photoplethysmography, which measures changes in arterial blood volume, is commonly used to obtain heart rate and blood oxygen saturation. The digitized PPG signals are used as inputs into the beat-to-beat blood pressure measurement algorithm.

  5. Characteristics of time-varying intracranial pressure on blood flow through cerebral artery: A fluid-structure interaction approach.

    PubMed

    Syed, Hasson; Unnikrishnan, Vinu U; Olcmen, Semih

    2016-02-01

    Elevated intracranial pressure is a major contributor to morbidity and mortality in severe head injuries. Wall shear stresses in the artery can be affected by increased intracranial pressures and may lead to the formation of cerebral aneurysms. Earlier research on cerebral arteries and aneurysms involves using constant mean intracranial pressure values. Recent advancements in intracranial pressure monitoring techniques have led to measurement of the intracranial pressure waveform. By incorporating a time-varying intracranial pressure waveform in place of constant intracranial pressures in the analysis of cerebral arteries helps in understanding their effects on arterial deformation and wall shear stress. To date, such a robust computational study on the effect of increasing intracranial pressures on the cerebral arterial wall has not been attempted to the best of our knowledge. In this work, fully coupled fluid-structure interaction simulations are carried out to investigate the effect of the variation in intracranial pressure waveforms on the cerebral arterial wall. Three different time-varying intracranial pressure waveforms and three constant intracranial pressure profiles acting on the cerebral arterial wall are analyzed and compared with specified inlet velocity and outlet pressure conditions. It has been found that the arterial wall experiences deformation depending on the time-varying intracranial pressure waveforms, while the wall shear stress changes at peak systole for all the intracranial pressure profiles. © IMechE 2015.

  6. Ventilation-Induced Modulation of Pulse Oximeter Waveforms: A Method for the Assessment of Early Changes in Intravascular Volume During Spinal Fusion Surgery in Pediatric Patients.

    PubMed

    Alian, Aymen A; Atteya, Gourg; Gaal, Dorothy; Golembeski, Thomas; Smith, Brian G; Dai, Feng; Silverman, David G; Shelley, Kirk

    2016-08-01

    Scoliosis surgery is often associated with substantial blood loss, requiring fluid resuscitation and blood transfusions. In adults, dynamic preload indices have been shown to be more reliable for guiding fluid resuscitation, but these indices have not been useful in children undergoing surgery. The aim of this study was to introduce frequency-analyzed photoplethysmogram (PPG) and arterial pressure waveform variables and to study the ability of these parameters to detect early bleeding in children during surgery. We studied 20 children undergoing spinal fusion. Electrocardiogram, arterial pressure, finger pulse oximetry (finger PPG), and airway pressure waveforms were analyzed using time domain and frequency domain methods of analysis. Frequency domain analysis consisted of calculating the amplitude density of PPG and arterial pressure waveforms at the respiratory and cardiac frequencies using Fourier analysis. This generated 2 measurements: The first is related to slow mean arterial pressure modulation induced by ventilation (also known as DC modulation when referring to the PPG), and the second corresponds to pulse pressure modulation (AC modulation or changes in the amplitude of pulse oximeter plethysmograph when referring to the PPG). Both PPG and arterial pressure measurements were divided by their respective cardiac pulse amplitude to generate DC% and AC% (normalized values). Standard hemodynamic data were also recorded. Data at baseline and after bleeding (estimated blood loss about 9% of blood volume) were presented as median and interquartile range and compared using Wilcoxon signed-rank tests; a Bonferroni-corrected P value <0.05 was considered statistically significant. There were significant increases in PPG DC% (median [interquartile range] = 359% [210 to 541], P = 0.002), PPG AC% (160% [87 to 251], P = 0.003), and arterial DC% (44% [19 to 84], P = 0.012) modulations, respectively, whereas arterial AC% modulations showed nonsignificant increase (41% [1 to 85], P = 0.12). The change in PPG DC% was significantly higher than that in PPG AC%, arterial DC%, arterial AC%, and systolic blood pressure with P values of 0.008, 0.002, 0.003, and 0.002, respectively. Only systolic blood pressure showed significant changes (11% [4 to 21], P = 0.003) between bleeding phase and baseline. Finger PPG and arterial waveform parameters (using frequency analysis) can track changes in blood volume during the bleeding phase, suggesting the potential for a noninvasive monitor for tracking changes in blood volume in pediatric patients. PPG waveform baseline modulation (PPG DC%) was more sensitive to changes in venous blood volume when compared with respiration-induced modulation seen in the arterial pressure waveform.

  7. Computer model analysis of the radial artery pressure waveform.

    PubMed

    Schwid, H A; Taylor, L A; Smith, N T

    1987-10-01

    Simultaneous measurements of aortic and radial artery pressures are reviewed, and a model of the cardiovascular system is presented. The model is based on resonant networks for the aorta and axillo-brachial-radial arterial system. The model chosen is a simple one, in order to make interpretation of the observed relationships clear. Despite its simplicity, the model produces realistic aortic and radial artery pressure waveforms. It demonstrates that the resonant properties of the arterial wall significantly alter the pressure waveform as it is propagated from the aorta to the radial artery. Although the mean and end-diastolic radial pressures are usually accurate estimates of the corresponding aortic pressures, the systolic pressure at the radial artery is often much higher than that of the aorta due to overshoot caused by the resonant behavior of the radial artery. The radial artery dicrotic notch is predominantly dependent on the axillo-brachial-radial arterial wall properties, rather than on the aortic valve or peripheral resistance. Hence the use of the radial artery dicrotic notch as an estimate of end systole is unreliable. The rate of systolic upstroke, dP/dt, of the radial artery waveform is a function of many factors, making it difficult to interpret. The radial artery waveform usually provides accurate estimates for mean and diastolic aortic pressures; for all other measurements it is an inadequate substitute for the aortic pressure waveform. In the presence of low forearm peripheral resistance the mean radial artery pressure may significantly underestimate the mean aortic pressure, as explained by a voltage divider model.

  8. Beyond HRV: attractor reconstruction using the entire cardiovascular waveform data for novel feature extraction.

    PubMed

    Aston, Philip J; Christie, Mark I; Huang, Ying H; Nandi, Manasi

    2018-03-01

    Advances in monitoring technology allow blood pressure waveforms to be collected at sampling frequencies of 250-1000 Hz for long time periods. However, much of the raw data are under-analysed. Heart rate variability (HRV) methods, in which beat-to-beat interval lengths are extracted and analysed, have been extensively studied. However, this approach discards the majority of the raw data. Our aim is to detect changes in the shape of the waveform in long streams of blood pressure data. Our approach involves extracting key features from large complex data sets by generating a reconstructed attractor in a three-dimensional phase space using delay coordinates from a window of the entire raw waveform data. The naturally occurring baseline variation is removed by projecting the attractor onto a plane from which new quantitative measures are obtained. The time window is moved through the data to give a collection of signals which relate to various aspects of the waveform shape. This approach enables visualisation and quantification of changes in the waveform shape and has been applied to blood pressure data collected from conscious unrestrained mice and to human blood pressure data. The interpretation of the attractor measures is aided by the analysis of simple artificial waveforms. We have developed and analysed a new method for analysing blood pressure data that uses all of the waveform data and hence can detect changes in the waveform shape that HRV methods cannot, which is confirmed with an example, and hence our method goes 'beyond HRV'.

  9. Beyond HRV: attractor reconstruction using the entire cardiovascular waveform data for novel feature extraction

    PubMed Central

    Aston, Philip J; Christie, Mark I; Huang, Ying H; Nandi, Manasi

    2018-01-01

    Abstract Advances in monitoring technology allow blood pressure waveforms to be collected at sampling frequencies of 250–1000 Hz for long time periods. However, much of the raw data are under-analysed. Heart rate variability (HRV) methods, in which beat-to-beat interval lengths are extracted and analysed, have been extensively studied. However, this approach discards the majority of the raw data. Objective: Our aim is to detect changes in the shape of the waveform in long streams of blood pressure data. Approach: Our approach involves extracting key features from large complex data sets by generating a reconstructed attractor in a three-dimensional phase space using delay coordinates from a window of the entire raw waveform data. The naturally occurring baseline variation is removed by projecting the attractor onto a plane from which new quantitative measures are obtained. The time window is moved through the data to give a collection of signals which relate to various aspects of the waveform shape. Main results: This approach enables visualisation and quantification of changes in the waveform shape and has been applied to blood pressure data collected from conscious unrestrained mice and to human blood pressure data. The interpretation of the attractor measures is aided by the analysis of simple artificial waveforms. Significance: We have developed and analysed a new method for analysing blood pressure data that uses all of the waveform data and hence can detect changes in the waveform shape that HRV methods cannot, which is confirmed with an example, and hence our method goes ‘beyond HRV’. PMID:29350622

  10. Use of paravascular admittance waveforms to monitor relative change in arterial blood pressure

    NASA Astrophysics Data System (ADS)

    Zielinski, Todd M.; Hettrick, Doug; Cho, Yong

    2010-04-01

    Non-invasive methods to monitor ambulatory blood pressure often have limitations that can affect measurement accuracy and patient adherence [1]. Minimally invasive measurement of a relative blood pressure surrogate with an implantable device may provide a useful chronic diagnostic and monitoring tool. We assessed a technique that uses electrocardiogram and paravascular admittance waveform morphology analysis to one, measure a time duration (vascular tone index, VTI in milliseconds) change from the electrocardiogram R-wave to admittance waveform peak and two, measure the admittance waveform minimum, maximum and magnitude as indicators of change in arterial compliance/distensibility or pulse pressure secondary to change in afterload. Methods: Five anesthetized domestic pigs (32 ± 4.2 kg) were used to study the effects of phenylephrine (1-5 ug/kg/min) on femoral artery pressure and admittance waveform morphology measured with a quadrapolar electrode array catheter placed next to the femoral artery to assess the relative change in arterial compliance due to change in peripheral vascular tone. Results: Statistical difference was observed (p < 0.05) comparing baseline VTI to phenylephrine VTI (246 ± .05 ms to 320 ± .07 ms) and baseline admittance waveform maximum to phenylephrine admittance waveform maximum (0.0148 ± .002 siemens to 0.0151 ± .002 siemens). Conclusion: Chronic minimally invasive admittance measurement techniques that monitor relative change in blood pressure may be suitable for implantable devices to detect progression of cardiovascular disease such as hypertension.

  11. Computational assessment of model-based wave separation using a database of virtual subjects.

    PubMed

    Hametner, Bernhard; Schneider, Magdalena; Parragh, Stephanie; Wassertheurer, Siegfried

    2017-11-07

    The quantification of arterial wave reflection is an important area of interest in arterial pulse wave analysis. It can be achieved by wave separation analysis (WSA) if both the aortic pressure waveform and the aortic flow waveform are known. For better applicability, several mathematical models have been established to estimate aortic flow solely based on pressure waveforms. The aim of this study is to investigate and verify the model-based wave separation of the ARCSolver method on virtual pulse wave measurements. The study is based on an open access virtual database generated via simulations. Seven cardiac and arterial parameters were varied within physiological healthy ranges, leading to a total of 3325 virtual healthy subjects. For assessing the model-based ARCSolver method computationally, this method was used to perform WSA based on the aortic root pressure waveforms of the virtual patients. Asa reference, the values of WSA using both the pressure and flow waveforms provided by the virtual database were taken. The investigated parameters showed a good overall agreement between the model-based method and the reference. Mean differences and standard deviations were -0.05±0.02AU for characteristic impedance, -3.93±1.79mmHg for forward pressure amplitude, 1.37±1.56mmHg for backward pressure amplitude and 12.42±4.88% for reflection magnitude. The results indicate that the mathematical blood flow model of the ARCSolver method is a feasible surrogate for a measured flow waveform and provides a reasonable way to assess arterial wave reflection non-invasively in healthy subjects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Use of the Kalman Filter for Aortic Pressure Waveform Noise Reduction

    PubMed Central

    Lu, Hsiang-Wei; Wu, Chung-Che; Aliyazicioglu, Zekeriya; Kang, James S.

    2017-01-01

    Clinical applications that require extraction and interpretation of physiological signals or waveforms are susceptible to corruption by noise or artifacts. Real-time hemodynamic monitoring systems are important for clinicians to assess the hemodynamic stability of surgical or intensive care patients by interpreting hemodynamic parameters generated by an analysis of aortic blood pressure (ABP) waveform measurements. Since hemodynamic parameter estimation algorithms often detect events and features from measured ABP waveforms to generate hemodynamic parameters, noise and artifacts integrated into ABP waveforms can severely distort the interpretation of hemodynamic parameters by hemodynamic algorithms. In this article, we propose the use of the Kalman filter and the 4-element Windkessel model with static parameters, arterial compliance C, peripheral resistance R, aortic impedance r, and the inertia of blood L, to represent aortic circulation for generating accurate estimations of ABP waveforms through noise and artifact reduction. Results show the Kalman filter could very effectively eliminate noise and generate a good estimation from the noisy ABP waveform based on the past state history. The power spectrum of the measured ABP waveform and the synthesized ABP waveform shows two similar harmonic frequencies. PMID:28611850

  13. Partial discharge detection and analysis in low pressure environments

    NASA Astrophysics Data System (ADS)

    Liu, Xin

    Typical aerospace vehicles (aircraft and spacecraft) experience a wide range of operating pressures during ascending and returning to earth. Compared to the sea-level atmospheric pressure (760 Torr), the pressure at about 60 km altitude is 2 Torr. The performance of the electric power system components of the aerospace vehicles must remain reliable even under such sub-atmospheric operating conditions. It is well known that the dielectric strength of gaseous insulators, while the electrode arrangement remains unchanged, is pressure dependent. Therefore, characterization of the performance and behavior of the electrical insulation in flight vehicles in low-pressure environments is extremely important. Partial discharge testing is one of the practical methods for evaluating the integrity of electrical insulation in aerospace vehicles. This dissertation describes partial discharge (PD) measurements performed mainly with 60 Hz ac energization in air, argon and helium, for pressures between 2 and 760 Torr. Two main electrode arrangements were used. One was a needle-plane electrode arrangement with a Teflon insulating barrier. The other one was a twisted pair of insulated conductors taken from a standard aircraft wiring harness. The measurement results are presented in terms of typical PD current pulse waveforms and waveform analysis for both main electrode arrangements. The evaluation criteria are the waveform polarity, magnitude, shape, rise time, and phase angle (temporal location) relative to the source voltage. Two-variable histograms and statistical averages of the PD parameters are presented. The PD physical mechanisms are analyzed. For PD pattern recognition, both statistical methods (such as discharge parameter dot pattern representation, discharge parameter phase distribution, statistical operator calculations, and PD fingerprint development) and wavelet transform applications are investigated. The main conclusions of the dissertation include: (1) The PD current pulse waveforms are dependent on the pressure. (2) The rise time of the waveform is another effective PD current pulse characteristic indicator. (3) PD fingerprint patterns that are already available for atmospheric pressure (760 Torr) conditions are inadequate for the evaluation of PD pulses at low pressures. (4) Various wavelet transform techniques can be used effectively for PD pulse signal denoising purposes, and for PD pulse waveform transient feature recognition.

  14. Assessing the blood pressure waveform of the carotid artery using an ultrasound image processing method

    PubMed Central

    Fatouraee, Nasser; Saberi, Hazhir

    2017-01-01

    Purpose The aim of this study was to introduce and implement a noninvasive method to derive the carotid artery pressure waveform directly by processing diagnostic sonograms of the carotid artery. Methods Ultrasound image sequences of 20 healthy male subjects (age, 36±9 years) were recorded during three cardiac cycles. The internal diameter and blood velocity waveforms were extracted from consecutive sonograms over the cardiac cycles by using custom analysis programs written in MATLAB. Finally, the application of a mathematical equation resulted in time changes of the arterial pressure. The resulting pressures were calibrated using the mean and the diastolic pressure of the radial artery. Results A good correlation was found between the mean carotid blood pressure obtained from the ultrasound image processing and the mean radial blood pressure obtained using a standard digital sphygmomanometer (R=0.91). The mean absolute difference between the carotid calibrated pulse pressures and those measured clinically was -1.333±6.548 mm Hg. Conclusion The results of this study suggest that consecutive sonograms of the carotid artery can be used for estimating a blood pressure waveform. We believe that our results promote a noninvasive technique for clinical applications that overcomes the reproducibility problems of common carotid artery tonometry with technical and anatomical causes. PMID:27776401

  15. Longitudinal changes in late systolic cardiac load and serum NT-proBNP levels in healthy middle-aged Japanese men.

    PubMed

    Tomiyama, Hirofumi; Nishikimi, Toshio; Matsumoto, Chisa; Kimura, Kazutaka; Odaira, Mari; Shiina, Kazuki; Yamashina, Akira

    2015-04-01

    We determined whether any significant association exists between change in late systolic cardiac load with time, estimated by radial pressure waveform analysis, and development of cardiac hemodynamic stress in individuals with preserved cardiac function. Brachial-ankle pulse wave velocity, radial augmentation index (rAI), first peak of the radial pressure waveform (SP1), systolic and pulse pressure at the second peak of the radial pressure waveform (SP2 and PP2), and serum levels of N-terminal fragment B-type natriuretic peptide (NT-proBNP) were measured at the start (first examination) and at the end (second examination) of this 3-year study in healthy Japanese men (n = 1,851). A stepwise multivariate linear regression analysis demonstrated that among the parameters of radial pressure waveform analysis and markers of arterial stiffness analyzed, only PP2 was significantly associated with serum NT-proBNP levels in study participants at both the first and second examinations. Furthermore, among the parameters analyzed, only change in PP2 was significantly correlated with the change in serum NT-proBNP levels during the study period (beta = 0.131, P < 0.001). Sustained late systolic cardiac load might be a more significant determinant of the development of cardiac hemodynamic stress than sustained early systolic cardiac load or arterial stiffening in individuals with preserved cardiac function. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Physiologic Waveform Analysis for Early Detection of Hemorrhage during Transport and Higher Echelon Medical Care of Combat Casualties

    DTIC Science & Technology

    2014-03-01

    waveforms that are easier to measure than ABP (e.g., pulse oximeter waveforms); (3) a NIH SBIR Phase I proposal with Retia Medical to develop automated...the training dataset. Integrating the technique with non-invasive pulse transit time (PTT) was most effective. The integrated technique specifically...the peripheral ABP waveforms in the training dataset. These techniques included the rudimentary mean ABP technique, the classic pulse pressure times

  17. Single pulse analysis of intracranial pressure for a hydrocephalus implant.

    PubMed

    Elixmann, I M; Hansinger, J; Goffin, C; Antes, S; Radermacher, K; Leonhardt, S

    2012-01-01

    The intracranial pressure (ICP) waveform contains important diagnostic information. Changes in ICP are associated with changes of the pulse waveform. This change has explicitly been observed in 13 infusion tests by analyzing 100 Hz ICP data. An algorithm is proposed which automatically extracts the pulse waves and categorizes them into predefined patterns. A developed algorithm determined 88 %±8 % (mean ±SD) of all classified pulse waves correctly on predefined patterns. This algorithm has low computational cost and is independent of a pressure drift in the sensor by using only the relationship between special waveform characteristics. Hence, it could be implemented on a microcontroller of a future electromechanic hydrocephalus shunt system to control the drainage of cerebrospinal fluid (CSF).

  18. Unsteady blade pressures on a propfan at takeoff: Euler analysis and flight data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.

    1991-01-01

    The unsteady blade pressures due to the operation of the propfan at an angle to the direction of the mean flow are obtained by solving the unsteady three dimensional Euler equations. The configuration considered is the eight bladed SR7L propfan at takeoff conditions and the inflow angles considered are 6.3 deg, 8.3 deg, 11.3 deg. The predicted blade pressure waveforms are compared with inflight measurements. At the inboard radial station (r/R = 0.68) the phase of the predicted waveforms show reasonable agreement with the measurements while the amplitudes are over predicted in the leading edge region of the blade. At the outboard radial station (r/R = 0.95), the predicted amplitudes of the waveforms on the pressure surface are in good agreement with flight data for all inflow angles. The measured (installed propfan) waveforms show a relative phase lag compared to the computed (propfan alone) waveforms. The phase lag depends on the axial location of the transducer and the surface of the blade. On the suction surface, in addition to the relative phase lag, the measurements show distortion (widening and steepening) of the waveforms. The extent of distortion increases with increase in inflow angle. This distortion seems to be due to viscous separation effects which depend on the azimuthal location of the blade and the axial location of the transducer.

  19. Arterial waveform parameters in a large, population-based sample of adults: relationships with ethnicity and lifestyle factors.

    PubMed

    Sluyter, J D; Hughes, A D; Thom, S A McG; Lowe, A; Camargo, C A; Hametner, B; Wassertheurer, S; Parker, K H; Scragg, R K R

    2017-05-01

    Little is known about how aortic waveform parameters vary with ethnicity and lifestyle factors. We investigated these issues in a large, population-based sample. We carried out a cross-sectional analysis of 4798 men and women, aged 50-84 years from Auckland, New Zealand. Participants were 3961 European, 321 Pacific, 266 Maori and 250 South Asian people. We assessed modifiable lifestyle factors via questionnaires, and measured body mass index (BMI) and brachial blood pressure (BP). Suprasystolic oscillometry was used to derive aortic pressure, from which several haemodynamic parameters were calculated. Heavy alcohol consumption and BMI were positively related to most waveform parameters. Current smokers had higher levels of aortic augmentation index than non-smokers (difference=3.7%, P<0.0001). Aortic waveform parameters, controlling for demographics, antihypertensives, diabetes and cardiovascular disease (CVD), were higher in non-Europeans than in Europeans. Further adjustment for brachial BP or lifestyle factors (particularly BMI) reduced many differences but several remained. Despite even further adjustment for mean arterial pressure, pulse rate, height and total:high-density lipoprotein cholesterol, compared with Europeans, South Asians had higher levels of all measured aortic waveform parameters (for example, for backward pressure amplitude: β=1.5 mm Hg; P<0.0001), whereas Pacific people had 9% higher log e (excess pressure integral) (P<0.0001). In conclusion, aortic waveform parameters varied with ethnicity in line with the greater prevalence of CVD among non-white populations. Generally, this was true even after accounting for brachial BP, suggesting that waveform parameters may have increased usefulness in capturing ethnic variations in cardiovascular risk. Heavy alcohol consumption, smoking and especially BMI may partially contribute to elevated levels of these parameters.

  20. Arterial waveform parameters in a large, population-based sample of adults: relationships with ethnicity and lifestyle factors

    PubMed Central

    Sluyter, J D; Hughes, A D; Thom, S A McG; Lowe, A; Camargo Jr, C A; Hametner, B; Wassertheurer, S; Parker, K H; Scragg, R K R

    2017-01-01

    Little is known about how aortic waveform parameters vary with ethnicity and lifestyle factors. We investigated these issues in a large, population-based sample. We carried out a cross-sectional analysis of 4798 men and women, aged 50–84 years from Auckland, New Zealand. Participants were 3961 European, 321 Pacific, 266 Maori and 250 South Asian people. We assessed modifiable lifestyle factors via questionnaires, and measured body mass index (BMI) and brachial blood pressure (BP). Suprasystolic oscillometry was used to derive aortic pressure, from which several haemodynamic parameters were calculated. Heavy alcohol consumption and BMI were positively related to most waveform parameters. Current smokers had higher levels of aortic augmentation index than non-smokers (difference=3.7%, P<0.0001). Aortic waveform parameters, controlling for demographics, antihypertensives, diabetes and cardiovascular disease (CVD), were higher in non-Europeans than in Europeans. Further adjustment for brachial BP or lifestyle factors (particularly BMI) reduced many differences but several remained. Despite even further adjustment for mean arterial pressure, pulse rate, height and total:high-density lipoprotein cholesterol, compared with Europeans, South Asians had higher levels of all measured aortic waveform parameters (for example, for backward pressure amplitude: β=1.5 mm Hg; P<0.0001), whereas Pacific people had 9% higher loge (excess pressure integral) (P<0.0001). In conclusion, aortic waveform parameters varied with ethnicity in line with the greater prevalence of CVD among non-white populations. Generally, this was true even after accounting for brachial BP, suggesting that waveform parameters may have increased usefulness in capturing ethnic variations in cardiovascular risk. Heavy alcohol consumption, smoking and especially BMI may partially contribute to elevated levels of these parameters. PMID:28004730

  1. Novel wave intensity analysis of arterial pulse wave propagation accounting for peripheral reflections

    PubMed Central

    Alastruey, Jordi; Hunt, Anthony A E; Weinberg, Peter D

    2014-01-01

    We present a novel analysis of arterial pulse wave propagation that combines traditional wave intensity analysis with identification of Windkessel pressures to account for the effect on the pressure waveform of peripheral wave reflections. Using haemodynamic data measured in vivo in the rabbit or generated numerically in models of human compliant vessels, we show that traditional wave intensity analysis identifies the timing, direction and magnitude of the predominant waves that shape aortic pressure and flow waveforms in systole, but fails to identify the effect of peripheral reflections. These reflections persist for several cardiac cycles and make up most of the pressure waveform, especially in diastole and early systole. Ignoring peripheral reflections leads to an erroneous indication of a reflection-free period in early systole and additional error in the estimates of (i) pulse wave velocity at the ascending aorta given by the PU–loop method (9.5% error) and (ii) transit time to a dominant reflection site calculated from the wave intensity profile (27% error). These errors decreased to 1.3% and 10%, respectively, when accounting for peripheral reflections. Using our new analysis, we investigate the effect of vessel compliance and peripheral resistance on wave intensity, peripheral reflections and reflections originating in previous cardiac cycles. PMID:24132888

  2. Statistics of indicated pressure in combustion engine.

    NASA Astrophysics Data System (ADS)

    Sitnik, L. J.; Andrych-Zalewska, M.

    2016-09-01

    The paper presents the classic form of pressure waveforms in burn chamber of diesel engine but based on strict analytical basis for amending the displacement volume. The pressure measurement results are obtained in the engine running on an engine dynamometer stand. The study was conducted by a 13-phase ESC test (European Stationary Cycle). In each test phase are archived 90 waveforms of pressure. As a result of extensive statistical analysis was found that while the engine is idling distribution of 90 value of pressure at any value of the angle of rotation of the crankshaft can be described uniform distribution. In the each point of characteristic of the engine corresponding to the individual phases of the ESC test, 90 of the pressure for any value of the angle of rotation of the crankshaft can be described as normal distribution. These relationships are verified using tests: Shapiro-Wilk, Jarque-Bera, Lilliefors, Anderson-Darling. In the following part, with each value of the crank angle, are obtain values of descriptive statistics for the pressure data. In its essence, are obtained a new way to approach the issue of pressure waveform analysis in the burn chamber of engine. The new method can be used to further analysis, especially the combustion process in the engine. It was found, e.g. a very large variances of pressure near the transition from compression to expansion stroke. This lack of stationarity of the process can be important both because of the emissions of exhaust gases and fuel consumption of the engine.

  3. Genesis of the characteristic pulmonary venous pressure waveform as described by the reservoir-wave model

    PubMed Central

    Bouwmeester, J Christopher; Belenkie, Israel; Shrive, Nigel G; Tyberg, John V

    2014-01-01

    Conventional haemodynamic analysis of pulmonary venous and left atrial (LA) pressure waveforms yields substantial forward and backward waves throughout the cardiac cycle; the reservoir wave model provides an alternative analysis with minimal waves during diastole. Pressure and flow in a single pulmonary vein (PV) and the main pulmonary artery (PA) were measured in anaesthetized dogs and the effects of hypoxia and nitric oxide, volume loading, and positive-end expiratory pressure (PEEP) were observed. The reservoir wave model was used to determine the reservoir contribution to PV pressure and flow. Subtracting reservoir pressure and flow resulted in ‘excess’ quantities which were treated as wave-related. Wave intensity analysis of excess pressure and flow quantified the contributions of waves originating upstream (from the PA) and downstream (from the LA and/or left ventricle (LV)). Major features of the characteristic PV waveform are caused by sequential LA and LV contraction and relaxation creating backward compression (i.e. pressure-increasing) waves followed by decompression (i.e. pressure-decreasing) waves. Mitral valve opening is linked to a backwards decompression wave (i.e. diastolic suction). During late systole and early diastole, forward waves originating in the PA are significant. These waves were attenuated less with volume loading and delayed with PEEP. The reservoir wave model shows that the forward and backward waves are negligible during LV diastasis and that the changes in pressure and flow can be accounted for by the discharge of upstream reservoirs. In sharp contrast, conventional analysis posits forward and backward waves such that much of the energy of the forward wave is opposed by the backward wave. PMID:25015922

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wackerbarth, David

    Sandia National Laboratories has developed a computer program to review, reduce and manipulate waveform data. PlotData is designed for post-acquisition waveform data analysis. PlotData is both a post-acquisition and an advanced interactive data analysis environment. PlotData requires unidirectional waveform data with both uniform and discrete time-series measurements. PlotData operates on a National Instruments' LabVIEW™ software platform. Using PlotData, the user can capture waveform data from digitizing oscilloscopes over a GPIB, USB and Ethernet interface from Tektronix, Lecroy or Agilent scopes. PlotData can both import and export several types of binary waveform files including, but not limited to, Tektronix .wmf files,more » Lecroy.trc files and xy pair ASCIIfiles. Waveform manipulation includes numerous math functions, integration, differentiation, smoothing, truncation, and other specialized data reduction routines such as VISAR, POV, PVDF (Bauer) piezoelectric gauges, and piezoresistive gauges such as carbon manganin pressure gauges.« less

  5. Computational Modeling of Blast Wave Transmission Through Human Ear.

    PubMed

    Leckness, Kegan; Nakmali, Don; Gan, Rong Z

    2018-03-01

    Hearing loss has become the most common disability among veterans. Understanding how blast waves propagate through the human ear is a necessary step in the development of effective hearing protection devices (HPDs). This article presents the first 3D finite element (FE) model of the human ear to simulate blast wave transmission through the ear. The 3D FE model of the human ear consisting of the ear canal, tympanic membrane, ossicular chain, and middle ear cavity was imported into ANSYS Workbench for coupled fluid-structure interaction analysis in the time domain. Blast pressure waveforms recorded external to the ear in human cadaver temporal bone tests were applied at the entrance of the ear canal in the model. The pressure waveforms near the tympanic membrane (TM) in the canal (P1) and behind the TM in the middle ear cavity (P2) were calculated. The model-predicted results were then compared with measured P1 and P2 waveforms recorded in human cadaver ears during blast tests. Results show that the model-derived P1 waveforms were in an agreement with the experimentally recorded waveforms with statistic Kurtosis analysis. The FE model will be used for the evaluation of HPDs in future studies.

  6. Waveform shape analysis: extraction of physiologically relevant information from Doppler recordings.

    PubMed

    Ramsay, M M; Broughton Pipkin, F; Rubin, P C; Skidmore, R

    1994-05-01

    1. Doppler recordings were made from the brachial artery of healthy female subjects during a series of manoeuvres which altered the pressure-flow characteristics of the vessel. 2. Changes were induced in the peripheral circulation of the forearm by the application of heat or ice-packs. A sphygmomanometer cuff was used to create graded occlusion of the vessel above and below the point of measurement. Recordings were also made whilst the subjects performed a standardized Valsalva manoeuvre. 3. The Doppler recordings were analysed both with the standard waveform indices (systolic/diastolic ratio, pulsatility index and resistance index) and by the method of Laplace transform analysis. 4. The waveform parameters obtained by Laplace transform analysis distinguished the different changes in flow conditions; they thus had direct physiological relevance, unlike the standard waveform indices.

  7. Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures

    DTIC Science & Technology

    2014-11-01

    networks were trained to predict an individual’s electrocardiogram (ECG) and arterial blood pressure ( ABP ) waveform data, which can potentially help...various ESN architectures for prediction tasks, and establishes the benefits of using ESN architecture designs for predicting ECG and ABP waveforms...arterial blood pressure ( ABP ) waveforms immediately prior to the machine generated alarms. When tested, the algorithm suppressed approximately 59.7

  8. Models of brachial to finger pulse wave distortion and pressure decrement.

    PubMed

    Gizdulich, P; Prentza, A; Wesseling, K H

    1997-03-01

    To model the pulse wave distortion and pressure decrement occurring between brachial and finger arteries. Distortion reversion and decrement correction were also our aims. Brachial artery pressure was recorded intra-arterially and finger pressure was recorded non-invasively by the Finapres technique in 53 adult human subjects. Mean pressure was subtracted from each pressure waveform and Fourier analysis applied to the pulsations. A distortion model was estimated for each subject and averaged over the group. The average inverse model was applied to the full finger pressure waveform. The pressure decrement was modelled by multiple regression on finger systolic and diastolic levels. Waveform distortion could be described by a general, frequency dependent model having a resonance at 7.3 Hz. The general inverse model has an anti-resonance at this frequency. It converts finger to brachial pulsations thereby reducing average waveform distortion from 9.7 (s.d. 3.2) mmHg per sample for the finger pulse to 3.7 (1.7) mmHg for the converted pulse. Systolic and diastolic level differences between finger and brachial arterial pressures changed from -4 (15) and -8 (11) to +8 (14) and +8 (12) mmHg, respectively, after inverse modelling, with pulse pressures correct on average. The pressure decrement model reduced both the mean and the standard deviation of systolic and diastolic level differences to 0 (13) and 0 (8) mmHg. Diastolic differences were thus reduced most. Brachial to finger pulse wave distortion due to wave reflection in arteries is almost identical in all subjects and can be modelled by a single resonance. The pressure decrement due to flow in arteries is greatest for high pulse pressures superimposed on low means.

  9. Unsteady blade-surface pressures on a large-scale advanced propeller: Prediction and data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1990-01-01

    An unsteady 3-D Euler analysis technique is employed to compute the flow field of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (takeoff), the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.

  10. Unsteady blade surface pressures on a large-scale advanced propeller - Prediction and data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1990-01-01

    An unsteady three dimensional Euler analysis technique is employed to compute the flowfield of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (take-off) the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.

  11. Pulsed Phase Lock Loop Device for Monitoring Intracranial Pressure During Space Flight

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.

    2003-01-01

    We have developed an ultrasonic device to monitor ICP waveforms non-invasively from cranial diameter oscillations using a NASA-developed pulsed phase lock loop (PPLL) technique. The purpose of this study was to attempt to validate the PPLL device for reliable recordings of ICP waveforms and analysis of ICP dynamics in vivo. METHODS: PPLL outputs were recorded in patients during invasive ICP monitoring at UCSD Medical Center (n=10). RESULTS: An averaged linear regression coefficient between ICP and PPLL waveform data during one cardiac cycle in all patients is 0.88 +/- 0.02 (mean +/- SE). Coherence function analysis indicated that ICP and PPLL waveforms have high correlation in the lst, 2nd, and 3rd harmonic waves associated with a cardiac cycle. CONCLUSIONS: PPLL outputs represent ICP waveforms in both frequency and time domains. PPLL technology enables in vivo evaluation of ICP dynamics non-invasively, and can acquire continuous ICP waveforms during spaceflight because of compactness and non-invasive nature.

  12. An electronic circuit that detects left ventricular ejection events by processing the arterial pressure waveform

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.; Webb, J. A., Jr.

    1972-01-01

    An electronic circuit for processing arterial blood pressure waveform signals is described. The circuit detects blood pressure as the heart pumps blood through the aortic valve and the pressure distribution caused by aortic valve closure. From these measurements, timing signals for use in measuring the left ventricular ejection time is determined, and signals are provided for computer monitoring of the cardiovascular system. Illustrations are given of the circuit and pressure waveforms.

  13. Doppler waveform study as indicator of change of portal pressure after administration of octreotide

    PubMed Central

    Haider, Shahbaz; Hussain, Qurban; Tabassum, Sumera; Hussain, Bilal; Durrani, Muhammad Rasheed; Ahmed, Fayyaz

    2016-01-01

    Objective: To estimate the effect of portal pressure lowering drug ‘octreotide’, by observing the Doppler waveform before and after the administration of intravenous bolus of octreotide and thus to assess indirectly its efficacy to lower the portal pressure. Methods: This quassi experimental study was carried out in Medical Department in collaboration with Radiology Department of Jinnah Postgraduate Medical Center Karachi Pakistan from September 10, 2015 to February 5, 2016. Cases were selected from patients admitted in Medical Wards and those attending Medical OPD. Diagnosis of cirrhosis was confirmed by Clinical Examination and Lab & Imaging investigation in Medical Department. Doppler waveform study was done by experienced radiologist in Radiology Department before and after administration of octreotide. Doppler signals were obtained from the right hepatic vein. Waveform tracings were recorded for five seconds and categorized as ‘monophasic’, ‘biphasic’ and ‘triphasic’. Waveform changes from one waveform to other were noted and analyzed. Results: Significant change i.e. from ‘monophasic’ to ‘biphasic’ or ‘biphasic’ to ‘triphasic’ was seen in 56% cases while ‘monophasic’ to ‘triphasic’ was seen in 20% cases. No change was seen in 24% cases. Improvement in waveform reflects lowering of portal vein pressure. Conclusion: Non invasive Hepatic vein Doppler waveform study showed improvement in Doppler waveform after administration of octreotide in 76% cases. Doppler waveform study has the potential of becoming non invasive ‘follow up tool’ of choice for assessing portal pressure in patients having variceal bleed due to portal hypertension. PMID:27648043

  14. Mechanical Damage of Tympanic Membrane in Relation to Impulse Pressure Waveform – A Study in Chinchillas

    PubMed Central

    Gan, Rong Z.; Nakmali, Don; Ji, Xiao D.; Leckness, Kegan; Yokell, Zachary

    2016-01-01

    Mechanical damage to middle ear components in blast exposure directly causes hearing loss, and the rupture of the tympanic membrane (TM) is the most frequent injury of the ear. However, it is unclear how the severity of injury graded by different patterns of TM rupture is related to the overpressure waveforms induced by blast waves. In the present study, the relationship between the TM rupture threshold and the impulse or overpressure waveform has been investigated in chinchillas. Two groups of animals were exposed to blast overpressure simulated in our lab under two conditions: open field and shielded with a stainless steel cup covering the animal head. Auditory brainstem response (ABR) and wideband tympanometry were measured before and after exposure to check the hearing threshold and middle ear function. Results show that waveforms recorded in the shielded case were different from those in the open field and the TM rupture threshold in the shielded case was lower than that in the open field (3.4±0.7 vs. 9.1±1.7 psi or 181±1.6 vs. 190±1.9 dB SPL). The impulse pressure energy spectra analysis of waveforms demonstrates that the shielded waveforms include greater energy at high frequencies than that of the open field waves. Finally, a 3D finite element (FE) model of the chinchilla ear was used to compute the distributions of stress in the TM and the TM displacement with impulse pressure waves. The FE model-derived change of stress in response to pressure loading in the shielded case was substantially faster than that in the open case. This finding provides the biomechanical mechanisms for blast induced TM damage in relation to overpressure waveforms. The TM rupture threshold difference between the open and shielded cases suggests that an acoustic role of helmets may exist, intensifying ear injury during blast exposure. PMID:26807796

  15. Pulse pressure waveform in hydrocephalus: what it is and what it isn't.

    PubMed

    Czosnyka, Marek; Czosnyka, Zofia; Keong, Nicole; Lavinio, Andreas; Smielewski, Piotr; Momjian, Shahan; Schmidt, Eric A; Petrella, Gianpaolo; Owler, Brian; Pickard, John D

    2007-04-15

    Apart from its mean value, the pulse waveform of intracranial pressure (ICP) is an essential element of pressure recording. The authors reviewed their experience with the measurement and interpretation of ICP pulse amplitude by referring to a database of recordings in hydrocephalic patients. The database contained computerized pressure recordings from 2100 infusion studies (either lumbar or intraventricular) or overnight ICP monitoring sessions in patients suffering from hydrocephalus of various types (both communicating and noncommunicating), origins, and stages of management (shunt or no shunt). Amplitude was calculated from ICP waveforms by using a spectral analysis methodology. The appearance of a pulse waveform amplitude is positive evidence of a technically correct recording of ICP and helps to distinguish between postural and vasogenic variations in ICP. Pulse amplitude is significantly correlated with the amplitude of cerebral blood flow velocity (R = 0.4, p = 0.012) as assessed using Doppler ultrasonography. Amplitude is positively correlated with a mean ICP (R = 0.21 in idiopathic normal-pressure hydrocephalus [NPH]; number of cases 131; p < 0.01) and resistance to cerebrospinal fluid outflow (R = 0.22) but does not seem to be correlated with cerebrospinal elasticity, dilation of ventricles, or severity of hydrocephalus (NPH score). Amplitude increases slightly with age (R = 0.39, p < 0.01; number of cases 46). A positive association between pulse amplitude and increased ICP during an infusion study is helpful in distinguishing between hydrocephalus and predominant brain atrophy. A large amplitude is associated with a good outcome after shunting (positive predictive power 0.9), whereas a low amplitude has no predictive power in outcome prognostication (0.5). Pulse amplitude is reduced by a properly functioning shunt. Proper recording, detection, and interpretation of ICP pulse waveforms provide clinically useful information about patients suffering from hydrocephalus.

  16. Comparison of pulmonary artery and central venous pressure waveform measurements via digital and graphic measurement methods.

    PubMed

    Ahrens, T S; Schallom, L

    2001-01-01

    Techniques to measure pulmonary artery (PA) pressure waveforms include digital measurement, graphic measurement, and freeze-cursor measurement. Previous studies reported the inaccuracy of digital and freeze-cursor measurements. However, many of the previous studies were small and did not thoroughly examine the circumstances of when digital measurements might be inaccurate. To compare digital measurements and graphic measurements of PA and central venous pressure (CVP) waveforms in patients with a variety of respiratory patterns, and to compare digital measurements and graphic measurements of CVPs in patients with abnormal or right ventricular waveforms. A total of 928 patients were enrolled in this study. Waveforms from the PA and CVP were collected from each patient. The monitor pressure value (digital measurement) printed on the recorded waveform was compared with the pressure value obtained by a graphic strip recording and measured by one of the primary investigators (graphic measurement). Digital measurements were found to be inaccurate in measuring waveforms in all respiratory categories and in measuring right ventricular waveforms. PA diastolic values and CVP values were the most inaccurately measured waveforms. Digital errors of more than 4 mm Hg were common. There were instances in which the monitor's digital measurement was substantially different from the graphically measured value. This difference has the potential to mislead interpretation of clinical situations. The monitor's ability to occasionally give digital measurement values similar to the graphic measurements may lead to a false sense of security in clinicians. Because the accuracy of the monitor is inconsistent, the bedside clinician should interpret waveforms through use of a graphic recording rather than rely on the digital measurement on the monitor.

  17. Advanced life systems hardware development for future missions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An examination of the pulse formation in an externalized vessel suggests that the vessel does not behave as a simple visco-elastic tube. Pressure-pulse waveform transducers are sensitive either to the pressure present at the vessel wall or to the volume of blood filling a region of tissue. Results of comparisons between intra-and extra-vascular pressure recordings suggest that changes in vasomotor tone and transducer-vessel pressures may be the greatest contributors to the divergence of extra-vascular waveforms from intra-vascular waveforms.

  18. Analysis of motor fan radiated sound and vibration waveform by automatic pattern recognition technique using "Mahalanobis distance"

    NASA Astrophysics Data System (ADS)

    Toma, Eiji

    2018-06-01

    In recent years, as the weight of IT equipment has been reduced, the demand for motor fans for cooling the interior of electronic equipment is on the rise. Sensory test technique by inspectors is the mainstream for quality inspection of motor fans in the field. This sensory test requires a lot of experience to accurately diagnose differences in subtle sounds (sound pressures) of the fans, and the judgment varies depending on the condition of the inspector and the environment. In order to solve these quality problems, development of an analysis method capable of quantitatively and automatically diagnosing the sound/vibration level of a fan is required. In this study, it was clarified that the analysis method applying the MT system based on the waveform information of noise and vibration is more effective than the conventional frequency analysis method for the discrimination diagnosis technology of normal and abnormal items. Furthermore, it was found that due to the automation of the vibration waveform analysis system, there was a factor influencing the discrimination accuracy in relation between the fan installation posture and the vibration waveform.

  19. Predicting electrocardiogram and arterial blood pressure waveforms with different Echo State Network architectures.

    PubMed

    Fong, Allan; Mittu, Ranjeev; Ratwani, Raj; Reggia, James

    2014-01-01

    Alarm fatigue caused by false alarms and alerts is an extremely important issue for the medical staff in Intensive Care Units. The ability to predict electrocardiogram and arterial blood pressure waveforms can potentially help the staff and hospital systems better classify a patient's waveforms and subsequent alarms. This paper explores the use of Echo State Networks, a specific type of neural network for mining, understanding, and predicting electrocardiogram and arterial blood pressure waveforms. Several network architectures are designed and evaluated. The results show the utility of these echo state networks, particularly ones with larger integrated reservoirs, for predicting electrocardiogram waveforms and the adaptability of such models across individuals. The work presented here offers a unique approach for understanding and predicting a patient's waveforms in order to potentially improve alarm generation. We conclude with a brief discussion of future extensions of this research.

  20. Blood pressure evaluation using sphygmomanometry assisted by arterial pulse waveform detection by fiber Bragg grating pulse device

    NASA Astrophysics Data System (ADS)

    Sharath, Umesh; Sukreet, Raju; Apoorva, Girish; Asokan, Sundarrajan

    2013-06-01

    We report a blood pressure evaluation methodology by recording the radial arterial pulse waveform in real time using a fiber Bragg grating pulse device (FBGPD). Here, the pressure responses of the arterial pulse in the form of beat-to-beat pulse amplitude and arterial diametrical variations are monitored. Particularly, the unique signatures of pulse pressure variations have been recorded in the arterial pulse waveform, which indicate the systolic and diastolic blood pressure while the patient is subjected to the sphygmomanometric blood pressure examination. The proposed method of blood pressure evaluation using FBGPD has been validated with the auscultatory method of detecting the acoustic pulses (Korotkoff sounds) by an electronic stethoscope.

  1. Genesis of multipeaked waves of the esophagus: repetitive contractions or motion artifact?

    PubMed

    Sampath, Neha J; Bhargava, Valmik; Mittal, Ravinder K

    2010-06-01

    Multipeaked waves (MPW) in the distal esophagus occur frequently in patients with esophageal spastic motor disorders and diabetes mellitus and are thought to represent repetitive esophageal contractions. We aimed to investigate whether the relative motion between a stationary pressure sensor and contracted peristaltic esophageal segment that moves with respiration leads to the formation of MPW. We mathematically modeled the effect of relative movement between a moving pressure segment and a fixed pressure sensor on the pressure waveform morphology. We conducted retrospective analysis of 100 swallow-induced esophageal contractions in 10 patients, who demonstrated >30% MPW on high-resolution manometry (HRM) during standardized swallows. Finally, using HRM, we determined the effects of suspended breathing and hyperventilation on the waveform morphology in 10 patients prospectively. Modeling revealed that relative movement between a stationary pressure sensor and a moving contracted segment, contraction duration, contraction amplitude, respiratory frequency, and depth of respiration affects the waveform morphology. Retrospective analysis demonstrated a close temporal association with the onset of second and subsequent contractions in MPW with respiratory phase reversals. Numbers of peaks in MPW and respiratory phase reversals were closely related to the duration of contraction. In the prospective study, suspended breathing and hyperventilation resulted in a significant decrease and increase in the MPW frequency as well as the number of peaks within MPW respectively. We conclude that MPW observed during clinical motility studies are not indicative of repetitive esophageal contraction; rather they represent respiration-related movement of the contracted esophageal segment in relation to the stationary pressure sensor.

  2. Reliability of Waveform Analysis as an Adjunct to Loss of Resistance for Thoracic Epidural Blocks.

    PubMed

    Leurcharusmee, Prangmalee; Arnuntasupakul, Vanlapa; Chora De La Garza, Daniel; Vijitpavan, Amorn; Ah-Kye, Sonia; Saelao, Abhidej; Tiyaprasertkul, Worakamol; Finlayson, Roderick J; Tran, De Q H

    2015-01-01

    The epidural space is most commonly identified with loss of resistance (LOR). Although sensitive, LOR lacks specificity, as cysts in interspinous ligaments, gaps in ligamentum flavum, paravertebral muscles, thoracic paravertebral spaces, and intermuscular planes can yield nonepidural LOR. Epidural waveform analysis (EWA) provides a simple confirmatory adjunct for LOR. When the needle is correctly positioned inside the epidural space, measurement of the pressure at its tip results in a pulsatile waveform. In this observational study, we set out to assess the sensitivity, specificity, as well as positive and negative predictive values of EWA for thoracic epidural blocks. We enrolled a convenience sample of 160 patients undergoing thoracic epidural blocks for thoracic surgery, abdominal surgery, or rib fractures. The choice of patient position (sitting or lateral decubitus), approach (midline or paramedian), and LOR medium (air or normal saline) was left to the operator (attending anesthesiologist, fellow, or resident). After obtaining a satisfactory LOR, the operator injected 5 mL of normal saline through the epidural needle. A sterile tubing, connected to a pressure transducer, was attached to the needle to measure the pressure at the needle tip. A 4-mL bolus of lidocaine 2% with epinephrine 5 μg/mL was then administered and, after 10 minutes, the patient was assessed for sensory blockade to ice. The failure rate (incorrect identification of the epidural space with LOR) was 23.1%. Of these 37 failed epidural blocks, 27 provided no sensory anesthesia at 10 minutes. In 10 subjects, the operator was unable to thread the catheter through the needle. When compared with the ice test, the sensitivity, specificity, and positive and negative predictive values of EWA were 91.1%, 83.8%, 94.9%, and 73.8%, respectively. Epidural waveform analysis (with pressure transduction through the needle) provides a simple adjunct to LOR for thoracic epidural blocks. Although its use was devoid of complications, further confirmatory studies are required before its routine implementation in clinical practice.

  3. Mechanical damage of tympanic membrane in relation to impulse pressure waveform - A study in chinchillas.

    PubMed

    Gan, Rong Z; Nakmali, Don; Ji, Xiao D; Leckness, Kegan; Yokell, Zachary

    2016-10-01

    Mechanical damage to middle ear components in blast exposure directly causes hearing loss, and the rupture of the tympanic membrane (TM) is the most frequent injury of the ear. However, it is unclear how the severity of injury graded by different patterns of TM rupture is related to the overpressure waveforms induced by blast waves. In the present study, the relationship between the TM rupture threshold and the impulse or overpressure waveform has been investigated in chinchillas. Two groups of animals were exposed to blast overpressure simulated in our lab under two conditions: open field and shielded with a stainless steel cup covering the animal head. Auditory brainstem response (ABR) and wideband tympanometry were measured before and after exposure to check the hearing threshold and middle ear function. Results show that waveforms recorded in the shielded case were different from those in the open field and the TM rupture threshold in the shielded case was lower than that in the open field (3.4 ± 0.7 vs. 9.1 ± 1.7 psi or 181 ± 1.6 vs. 190 ± 1.9 dB SPL). The impulse pressure energy spectra analysis of waveforms demonstrates that the shielded waveforms include greater energy at high frequencies than that of the open field waves. Finally, a 3D finite element (FE) model of the chinchilla ear was used to compute the distributions of stress in the TM and the TM displacement with impulse pressure waves. The FE model-derived change of stress in response to pressure loading in the shielded case was substantially faster than that in the open case. This finding provides the biomechanical mechanisms for blast induced TM damage in relation to overpressure waveforms. The TM rupture threshold difference between the open and shielded cases suggests that an acoustic role of helmets may exist, intensifying ear injury during blast exposure. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses.

    PubMed

    Jin, Cheng; Stein, Gregory J; Hong, Kyung-Han; Lin, C D

    2015-07-24

    We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications.

  5. Waveform classification and statistical analysis of seismic precursors to the July 2008 Vulcanian Eruption of Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Rodgers, Mel; Smith, Patrick; Pyle, David; Mather, Tamsin

    2016-04-01

    Understanding the transition between quiescence and eruption at dome-forming volcanoes, such as Soufrière Hills Volcano (SHV), Montserrat, is important for monitoring volcanic activity during long-lived eruptions. Statistical analysis of seismic events (e.g. spectral analysis and identification of multiplets via cross-correlation) can be useful for characterising seismicity patterns and can be a powerful tool for analysing temporal changes in behaviour. Waveform classification is crucial for volcano monitoring, but consistent classification, both during real-time analysis and for retrospective analysis of previous volcanic activity, remains a challenge. Automated classification allows consistent re-classification of events. We present a machine learning (random forest) approach to rapidly classify waveforms that requires minimal training data. We analyse the seismic precursors to the July 2008 Vulcanian explosion at SHV and show systematic changes in frequency content and multiplet behaviour that had not previously been recognised. These precursory patterns of seismicity may be interpreted as changes in pressure conditions within the conduit during magma ascent and could be linked to magma flow rates. Frequency analysis of the different waveform classes supports the growing consensus that LP and Hybrid events should be considered end members of a continuum of low-frequency source processes. By using both supervised and unsupervised machine-learning methods we investigate the nature of waveform classification and assess current classification schemes.

  6. A Compressed Sensing Based Method for Reducing the Sampling Time of A High Resolution Pressure Sensor Array System

    PubMed Central

    Sun, Chenglu; Li, Wei; Chen, Wei

    2017-01-01

    For extracting the pressure distribution image and respiratory waveform unobtrusively and comfortably, we proposed a smart mat which utilized a flexible pressure sensor array, printed electrodes and novel soft seven-layer structure to monitor those physiological information. However, in order to obtain high-resolution pressure distribution and more accurate respiratory waveform, it needs more time to acquire the pressure signal of all the pressure sensors embedded in the smart mat. In order to reduce the sampling time while keeping the same resolution and accuracy, a novel method based on compressed sensing (CS) theory was proposed. By utilizing the CS based method, 40% of the sampling time can be decreased by means of acquiring nearly one-third of original sampling points. Then several experiments were carried out to validate the performance of the CS based method. While less than one-third of original sampling points were measured, the correlation degree coefficient between reconstructed respiratory waveform and original waveform can achieve 0.9078, and the accuracy of the respiratory rate (RR) extracted from the reconstructed respiratory waveform can reach 95.54%. The experimental results demonstrated that the novel method can fit the high resolution smart mat system and be a viable option for reducing the sampling time of the pressure sensor array. PMID:28796188

  7. Preoperative partitioning of pulmonary vascular resistance correlates with early outcome after thromboendarterectomy for chronic thromboembolic pulmonary hypertension.

    PubMed

    Kim, Nick H S; Fesler, Pierre; Channick, Richard N; Knowlton, Kirk U; Ben-Yehuda, Ori; Lee, Stephen H; Naeije, Robert; Rubin, Lewis J

    2004-01-06

    Pulmonary thromboendarterectomy (PTE) is the preferred treatment for chronic thromboembolic pulmonary hypertension (CTEPH), but persistent pulmonary hypertension after PTE, as a result of either inaccessible distal thrombotic material or coexistent intrinsic small-vessel disease, remains a major determinant of poor outcome. Conventional preoperative evaluation is unreliable in identifying patients at risk for persistent pulmonary hypertension or predicting postoperative hemodynamic outcome. We postulated that pulmonary arterial occlusion pressure waveform analysis, a technique that has been used for partitioning pulmonary vascular resistance, might identify CTEPH patients with significant distal, small-vessel disease. Twenty-six patients underwent preoperative right heart catheterization before PTE. Pulmonary artery occlusion waveform recordings were performed in triplicate. Postoperative hemodynamics after PTE were compared with preoperative partitioning of pulmonary vascular resistance derived from the occlusion data. Preoperative assessment of upstream resistance (Rup) correlated with both postoperative total pulmonary resistance index (R2=0.79, P<0.001) and postoperative mean pulmonary artery pressure (R2=0.75, P<0.001). All 4 postoperative deaths occurred in patients with a preoperative Rup <60%. Pulmonary arterial occlusion pressure waveform analysis may identify CTEPH patients at risk for persistent pulmonary hypertension and poor outcome after PTE. Patients with CTEPH and Rup value <60% appear to be at highest risk.

  8. Radial artery pulse waveform analysis based on curve fitting using discrete Fourier series.

    PubMed

    Jiang, Zhixing; Zhang, David; Lu, Guangming

    2018-04-19

    Radial artery pulse diagnosis has been playing an important role in traditional Chinese medicine (TCM). For its non-invasion and convenience, the pulse diagnosis has great significance in diseases analysis of modern medicine. The practitioners sense the pulse waveforms in patients' wrist to make diagnoses based on their non-objective personal experience. With the researches of pulse acquisition platforms and computerized analysis methods, the objective study on pulse diagnosis can help the TCM to keep up with the development of modern medicine. In this paper, we propose a new method to extract feature from pulse waveform based on discrete Fourier series (DFS). It regards the waveform as one kind of signal that consists of a series of sub-components represented by sine and cosine (SC) signals with different frequencies and amplitudes. After the pulse signals are collected and preprocessed, we fit the average waveform for each sample using discrete Fourier series by least squares. The feature vector is comprised by the coefficients of discrete Fourier series function. Compared with the fitting method using Gaussian mixture function, the fitting errors of proposed method are smaller, which indicate that our method can represent the original signal better. The classification performance of proposed feature is superior to the other features extracted from waveform, liking auto-regression model and Gaussian mixture model. The coefficients of optimized DFS function, who is used to fit the arterial pressure waveforms, can obtain better performance in modeling the waveforms and holds more potential information for distinguishing different psychological states. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Transfer function for vital infrasound pressures between the carotid artery and the tympanic membrane.

    PubMed

    Furihata, Kenji; Yamashita, Masato

    2013-02-01

    While occupational injury is associated with numerous individual and work-related risk factors, including long working hours and short sleep duration, the complex mechanisms causing such injuries are not yet fully understood. The relationship between the infrasound pressures of the tympanic membrane [ear canal pressure (ECP)], detected using an earplug embedded with a low-frequency microphone, and the carotid artery [carotid artery pressure (CAP)], detected using a stethoscope fitted with the same microphone, can be quantitatively characterized using systems analysis. The transfer functions of 40 normal workers (19 to 57 years old) were characterized, involving the analysis of 446 data points. The ECP waveform exhibits a pulsatile character with a slow respiratory component, which is superimposed on a biphasic recording that is synchronous with the cardiac cycle. The respiratory ECP waveform correlates with the instantaneous heart rate. The results also revealed that various fatigue-related risk factors may affect the mean magnitudes of the measured pressures and the delay transfer functions between CAP and ECP in the study population; these factors include systolic blood pressure, salivary amylase activity, age, sleep duration, postural changes, chronic fatigue, and pulse rate.

  10. Complexity of intracranial pressure correlates with outcome after traumatic brain injury

    PubMed Central

    Lu, Cheng-Wei; Czosnyka, Marek; Shieh, Jiann-Shing; Smielewska, Anna; Pickard, John D.

    2012-01-01

    This study applied multiscale entropy analysis to investigate the correlation between the complexity of intracranial pressure waveform and outcome after traumatic brain injury. Intracranial pressure and arterial blood pressure waveforms were low-pass filtered to remove the respiratory and pulse components and then processed using a multiscale entropy algorithm to produce a complexity index. We identified significant differences across groups classified by the Glasgow Outcome Scale in intracranial pressure, pressure-reactivity index and complexity index of intracranial pressure (P < 0.0001; P = 0.001; P < 0.0001, respectively). Outcome was dichotomized as survival/death and also as favourable/unfavourable. The complexity index of intracranial pressure achieved the strongest statistical significance (F = 28.7; P < 0.0001 and F = 17.21; P < 0.0001, respectively) and was identified as a significant independent predictor of mortality and favourable outcome in a multivariable logistic regression model (P < 0.0001). The results of this study suggest that complexity of intracranial pressure assessed by multiscale entropy was significantly associated with outcome in patients with brain injury. PMID:22734128

  11. Compressed storage of arterial pressure waveforms by selection of significant points.

    PubMed

    de Graaf, P M; van Goudoever, J; Wesseling, K H

    1997-09-01

    Continuous records of arterial blood pressure can be obtained non-invasively with Finapres, even for periods of 24 hours. Increasingly, storage of such records is done digitally, requiring large disc capacities. It is therefore necessary to find methods to store blood pressure waveforms in compressed form. The method of selection of significant points known from ECG data compression is adapted. Points are selected as significant wherever the first derivative of the pressure wave changes sign. As a second stage recursive partitioning is used to select additional points such that the difference between the selected points, linearly interpolated, and the original curve remains below a maximum. This method is tested on finger arterial pressure waveform epochs of 60 s duration taken from 32 patients with a wide range of blood pressures and heart rates. An average compression factor of 4.6 (SD 1.0) is obtained when accepting a maximum difference of 3 mmHg. The root mean squared error is 1 mmHg averaged over the group of patient waveforms. Clinically relevant parameters such as systolic, diastolic and mean pressure are reproduced with an offset error of less than 0.5 (0.3) mmHg and scatter less than 0.6 (0.1) mmHg. It is concluded that a substantial compression factor can be achieved with a simple and computationally fast algorithm and little deterioration in waveform quality and pressure level accuracy.

  12. Pulse oximeter plethysmographic waveform changes in awake, spontaneously breathing, hypovolemic volunteers.

    PubMed

    McGrath, Susan P; Ryan, Kathy L; Wendelken, Suzanne M; Rickards, Caroline A; Convertino, Victor A

    2011-02-01

    The primary objective of this study was to determine whether alterations in the pulse oximeter waveform characteristics would track progressive reductions in central blood volume. We also assessed whether changes in the pulse oximeter waveform provide an indication of blood loss in the hemorrhaging patient before changes in standard vital signs. Pulse oximeter data from finger, forehead, and ear pulse oximeter sensors were collected from 18 healthy subjects undergoing progressive reduction in central blood volume induced by lower body negative pressure (LBNP). Stroke volume measurements were simultaneously recorded using impedance cardiography. The study was conducted in a research laboratory setting where no interventions were performed. Pulse amplitude, width, and area under the curve (AUC) features were calculated from each pulse wave recording. Amalgamated correlation coefficients were calculated to determine the relationship between the changes in pulse oximeter waveform features and changes in stroke volume with LBNP. For pulse oximeter sensors on the ear and forehead, reductions in pulse amplitude, width, and area were strongly correlated with progressive reductions in stroke volume during LBNP (R(2) ≥ 0.59 for all features). Changes in pulse oximeter waveform features were observed before profound decreases in arterial blood pressure. The best correlations between pulse features and stroke volume were obtained from the forehead sensor area (R(2) = 0.97). Pulse oximeter waveform features returned to baseline levels when central blood volume was restored. These results support the use of pulse oximeter waveform analysis as a potential diagnostic tool to detect clinically significant hypovolemia before the onset of cardiovascular decompensation in spontaneously breathing patients.

  13. Pulse Waveform and Transcranial Doppler Analysis during Lower Body Negative Pressure

    DTIC Science & Technology

    1993-04-01

    26, 23]. The application of negative pressure to the body for scientific or medical purposes was first used in 1841 by Junod , who used it to create a...localized hyperemia [26]. Junod also suggested that it could be used prior to invasive surgical procedures, since the syncope it was able to produce

  14. Circuit for detecting initial systole and dicrotic notch. [for monitoring arterial pressure

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.; Webb, J. A., Jr. (Inventor)

    1974-01-01

    Circuitry is disclosed for processing an arterial pressure waveform to produce during any one cycle a pulse corresponding to the initial systole and a pulse corresponding to the dicrotic notch. In a first channel, an electrical analog of the arterial pressure waveform is filtered and then compared to the original waveform to produce an initial systole signal. In a second channel, the analog is differentiated, filtered, and fed through a gate controlled by pulses from the first channel to produce an electrical pulse corresponding to the dicrotic notch.

  15. A Randomized Comparison Between Conventional and Waveform-Confirmed Loss of Resistance for Thoracic Epidural Blocks.

    PubMed

    Arnuntasupakul, Vanlapa; Van Zundert, Tom C R V; Vijitpavan, Amorn; Aliste, Julian; Engsusophon, Phatthanaphol; Leurcharusmee, Prangmalee; Ah-Kye, Sonia; Finlayson, Roderick J; Tran, De Q H

    2016-01-01

    Epidural waveform analysis (EWA) provides a simple confirmatory adjunct for loss of resistance (LOR): when the needle tip is correctly positioned inside the epidural space, pressure measurement results in a pulsatile waveform. In this randomized trial, we compared conventional and EWA-confirmed LOR in 2 teaching centers. Our research hypothesis was that EWA-confirmed LOR would decrease the failure rate of thoracic epidural blocks. One hundred patients undergoing thoracic epidural blocks for thoracic surgery, abdominal surgery, or rib fractures were randomized to conventional LOR or EWA-LOR. The operator was allowed as many attempts as necessary to achieve a satisfactory LOR (by feel) in the conventional group. In the EWA-LOR group, LOR was confirmed by connecting the epidural needle to a pressure transducer using a rigid extension tubing. Positive waveforms indicated that the needle tip was positioned inside the epidural space. The operator was allowed a maximum of 3 different intervertebral levels to obtain a positive waveform. If waveforms were still absent at the third level, the operator simply accepted LOR as the technical end point. However, the patient was retained in the EWA-LOR group (intent-to-treat analysis).After achieving a satisfactory tactile LOR (conventional group), positive waveforms (EWA-LOR group), or a third intervertebral level with LOR but no waveform (EWA-LOR group), the operator administered a 4-mL test dose of lidocaine 2% with epinephrine 5 μg/mL. Fifteen minutes after the test dose, a blinded investigator assessed the patient for sensory block to ice. Compared with LOR, EWA-LOR resulted in a lower rate of primary failure (2% vs 24%; P = 0.002). Subgroup analysis based on experience level reveals that EWA-LOR outperformed conventional LOR for novice (P = 0.001) but not expert operators. The performance time was longer in the EWA-LOR group (11.2 ± 6.2 vs 8.0 ± 4.6 minutes; P = 0.006). Both groups were comparable in terms of operator's level of expertise, depth of the epidural space, approach, and LOR medium. In the EWA-LOR group, operators obtained a pulsatile waveform with the first level attempted in 60% of patients. However, 40% of subjects required performance at a second or third level. Compared with its conventional counterpart, EWA-confirmed LOR results in a lower failure rate for thoracic epidural blocks (2% vs 24%) in our teaching centers. Confirmatory EWA provides significant benefits for inexperienced operators.

  16. Peripheral i.v. analysis (PIVA) of venous waveforms for volume assessment in patients undergoing haemodialysis.

    PubMed

    Hocking, K M; Alvis, B D; Baudenbacher, F; Boyer, R; Brophy, C M; Beer, I; Eagle, S

    2017-12-01

    The assessment of intravascular volume status remains a challenge for clinicians. Peripheral i.v. analysis (PIVA) is a method for analysing the peripheral venous waveform that has been used to monitor volume status. We present a proof-of-concept study for evaluating the efficacy of PIVA in detecting changes in fluid volume. We enrolled 37 hospitalized patients undergoing haemodialysis (HD) as a controlled model for intravascular volume loss. Respiratory rate (F0) and pulse rate (F1) frequencies were measured. PIVA signal was obtained by fast Fourier analysis of the venous waveform followed by weighing the magnitude of the amplitude of the pulse rate frequency. PIVA was compared with peripheral venous pressure and standard monitoring of vital signs. Regression analysis showed a linear correlation between volume loss and change in the PIVA signal (R2=0.77). Receiver operator curves demonstrated that the PIVA signal showed an area under the curve of 0.89 for detection of 20 ml kg-1 change in volume. There was no correlation between volume loss and peripheral venous pressure, blood pressure or pulse rate. PIVA-derived pulse rate and respiratory rate were consistent with similar numbers derived from the bio-impedance and electrical signals from the electrocardiogram. PIVA is a minimally invasive, novel modality for detecting changes in fluid volume status, respiratory rate and pulse rate in spontaneously breathing patients with peripheral i.v. cannulas. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Dynamic Energy Loss Characteristics in the Native Aortic Valve

    NASA Astrophysics Data System (ADS)

    Hwai Yap, Choon; Dasi, Laksmi P.; Yoganathan, Ajit P.

    2009-11-01

    Aortic Valve (AV) stenosis if untreated leads to heart failure. From a mechanics standpoint, heart failure implies failure to generate sufficient mechanical power to overcome energy losses in the circulation. Thus energy efficiency-based measures are direct measures of AV disease severity, which unfortunately is not used in current clinical measures of stenosis severity. We present an analysis of the dynamic rate of energy dissipation through the AV from direct high temporal resolution measurements of flow and pressure drop across the AV in a pulsatile left heart setup. Porcine AV was used and measurements at various conditions were acquired: varying stroke volumes; heart rates; and stenosis levels. Energy dissipation waveform has a distinctive pattern of being skewed towards late systole, attributed to the explosive growth of flow instabilities from adverse pressure gradient. Increasing heart rate and stroke volume increases energy dissipation, but does not alter the normalized shape of the dissipation temporal profile. Stenosis increases energy dissipation and also alters the normalized shape of dissipation waveform with significantly more losses during late acceleration phase. Since stenosis produces a departure from the signature dissipation waveform shape, dynamic energy dissipation analysis can be extended into a clinical tool for AV evaluation.

  18. Pulse wave analysis in a 180-degree curved artery model: Implications under physiological and non-physiological inflows

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    Systolic and diastolic blood pressures, pulse pressures, and left ventricular hypertrophy contribute to cardiovascular risks. Increase of arterial stiffness due to aging and hypertension is an important factor in cardiovascular, chronic kidney and end-stage-renal-diseases. Pulse wave analysis (PWA) based on arterial pressure wave characteristics, is well established in clinical practice for evaluation of arterial distensibility and hypertension. The objective of our exploratory study in a rigid 180-degree curved artery model was to evaluate arterial pressure waveforms. Bend upstream conditions were measured using a two-component, two-dimensional, particle image velocimeter (2C-2D PIV). An ultrasonic transit-time flow meter and a catheter with a MEMS-based solid state pressure sensor, capable of measuring up to 20 harmonics of the observed pressure waveform, monitored flow conditions downstream of the bend. Our novel continuous wavelet transform algorithm (PIVlet 1.2), in addition to detecting coherent secondary flow structures is used to evaluate arterial pulse wave characteristics subjected to physiological and non-physiological inflows. Results of this study will elucidate the utility of wavelet transforms in arterial function evaluation and pulse wave speed. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  19. Weak shock propagation through a turbulent atmosphere

    NASA Technical Reports Server (NTRS)

    Pierce, Allan D.; Sparrow, Victor W.

    1990-01-01

    Consideration is given to the propagation through turbulence of transient pressure waveforms whose initial onset at any given point is an abrupt shock. The work is motivated by the desire to eventually develop a mathematical model for predicting statistical features, such as peak overpressures and spike widths, of sonic booms generated by supersonic aircraft. It is argued that the transient waveform received at points where x greater than 0 will begin with a pressure jump and a formulation is developed for predicting the amount of this jump and the time derivatives of the pressure waveform immediately following the jump.

  20. Central venous pulse pressure analysis using an R-synchronized pressure measurement system.

    PubMed

    Fujita, Yoshihisa; Hayashi, Daisuke; Wada, Shinya; Yoshioka, Naoki; Yasukawa, Takeshi; Pestel, Gunther

    2006-12-01

    The information derived from central venous catheters is underused. We developed an EKG-R synchronization and averaging system to obtained distinct CVP waveforms and analyzed components of these. Twenty-five paralyzed surgical patients undergoing CVP monitoring under mechanical ventilation were studied. CVP and EKG signals were analyzed employing our system, the mean CVP and CVP at end-diastole during expiration were compared, and CVP waveform components were measured using this system. CVP waveforms were clearly visualized in all patients. They showed the a peak to be 1.8+/- 0.7 mmHg, which was the highest of three peaks, and the x trough to be lower than the y trough (-1.6+/- 0.7 mmHg and -0.9+/- 0.5 mmHg, respectively), with a mean pulse pressure of 3.4 mmHg. The difference between the mean CVP and CVP at end-diastole during expiration was 0.58+/- 0.81 mmHg. The mean CVP can be used as an index of right ventricular preload in patients under mechanical ventilation with regular sinus rhythm. Our newly developed system is useful for clinical monitoring and for education in circulatory physiology.

  1. Variation of High-Intensity Therapeutic Ultrasound (HITU) Pressure Field Characterization: Effects of Hydrophone Choice, Nonlinearity, Spatial Averaging and Complex Deconvolution.

    PubMed

    Liu, Yunbo; Wear, Keith A; Harris, Gerald R

    2017-10-01

    Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high-intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement variation and signal analysis, still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small polyvinylidene fluoride capsule hydrophone and two fiberoptic hydrophones. The focal waveform and beam distribution of a single-element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveforms. Compressional pressure (p + ), rarefactional pressure (p - ) and focal beam distribution were compared up to 10.6/-6.0 MPa (p + /p - ) (1.05 MHz) and 20.65/-7.20 MPa (3.3 MHz). The effects of spatial averaging, local non-linear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed a variation of no better than 10%-15% among hydrophones during HITU pressure characterization. Published by Elsevier Inc.

  2. Motion Tolerant Unfocused Imaging of Physiological Waveforms for Blood Pressure Waveform Estimation Using Ultrasound.

    PubMed

    Seo, Joohyun; Pietrangelo, Sabino J; Sodini, Charles G; Lee, Hae-Seung

    2018-05-01

    This paper details unfocused imaging using single-element ultrasound transducers for motion tolerant arterial blood pressure (ABP) waveform estimation. The ABP waveform is estimated based on pulse wave velocity and arterial pulsation through Doppler and M-mode ultrasound. This paper discusses approaches to mitigate the effect of increased clutter due to unfocused imaging on blood flow and diameter waveform estimation. An intensity reduction model (IRM) estimator is described to track the change of diameter, which outperforms a complex cross-correlation model (C3M) estimator in low contrast environments. An adaptive clutter filtering approach is also presented, which reduces the increased Doppler angle estimation error due to unfocused imaging. Experimental results in a flow phantom demonstrate that flow velocity and diameter waveforms can be reliably measured with wide lateral offsets of the transducer position. The distension waveform estimated from human carotid M-mode imaging using the IRM estimator shows physiological baseline fluctuations and 0.6-mm pulsatile diameter change on average, which is within the expected physiological range. These results show the feasibility of this low cost and portable ABP waveform estimation device.

  3. CAP waveform estimation from the measured electrical bioimpedance values: Patient's heart rate variability analysis.

    PubMed

    Krivoshei, A; Uuetoa, H; Min, M; Annus, P; Uuetoa, T; Lamp, J

    2015-08-01

    The paper presents analysis of the generic transfer function (TF) between Electrical Bioimpedance (EBI) measured non-invasively on the wrist and Central Aortic Pressure (CAP) invasively measured at the aortic root. Influence of the Heart Rate (HR) variations on the generic TF and on reconstructed CAP waveforms is investigated. The HR variation analysis is provided on a single patient data to exclude inter-patient influences at the current research stage. A new approach for the generic TF estimating from a data ensemble is presented as well. Moreover, an influence of the cardiac period beginning point selection is analyzed and empirically optimal solution for its selection is proposed.

  4. Real-time display of flow-pressure-volume loops.

    PubMed

    Morozoff, P E; Evans, R W

    1992-01-01

    Graphic display of respiratory waveforms can be valuable for monitoring the progress of ventilated patients. A system has been developed that can display flow-pressure-volume loops as derived from a patient's respiratory circuit in real time. It can also display, store, print, and retrieve ventilatory waveforms. Five loops can be displayed at once: current, previous, reference, "ideal," and previously saved. Two components, the data-display device (DDD) and the data-collection device (DCD), comprise the system. An IBM 286/386 computer with a graphics card (VGA) and bidirectional parallel port is used for the DDD; an eight-bit microprocessor card and an A/D convertor card make up the DCD. A real-time multitasking operating system was written to control the DDD, while the DCD operates from in-line assembly code. The DCD samples the pressure and flow sensors at 100 Hz and looks for a complete flow waveform pattern based on flow slope. These waveforms are then passed to the DDD via the mutual parallel port. Within the DDD a process integrates the flow to create a volume signal and performs a multilinear regression on the pressure, flow, and volume data to calculate the elastance, resistance, pressure offset, and coefficient of determination. Elastance, resistance, and offset are used to calculate Pr and Pc where: Pr[k] = P[k]-offset-(elastance.V[k]) and Pc[k] = P[k]-offset-(resistance.F[k]). Volume vs. Pc and flow vs. Pr can be displayed in real time. Patient data from previous clinical tests were loaded into the device to verify the software calculations. An analog waveform generator was used to simulate flow and pressure waveforms that validated the system.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Model-Based, Noninvasive Monitoring of Intracranial Pressure

    DTIC Science & Technology

    2013-07-01

    patients. A physiologically based model relates ICP to simultaneously measured waveforms of arterial blood pressure ( ABP ), obtained via radial... ABP and CBFV are currently measured as the clinical standard of care. The project’s major accomplishments include: assembling a suitable system for...synchronized arterial blood pressure ( ABP ) and cerebral blood flow velocity (CBFV) waveform measurements that can be obtained quite routinely. Our processing

  6. Computation of acoustic ressure fields produced in feline brain by high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Omidi, Nazanin

    In 1975, Dunn et al. (JASA 58:512-514) showed that a simple relation describes the ultrasonic threshold for cavitation-induced changes in the mammalian brain. The thresholds for tissue damage were estimated for a variety of acoustic parameters in exposed feline brain. The goal of this study was to improve the estimates for acoustic pressures and intensities present in vivo during those experimental exposures by estimating them using nonlinear rather than linear theory. In our current project, the acoustic pressure waveforms produced in the brains of anesthetized felines were numerically simulated for a spherically focused, nominally f1-transducer (focal length = 13 cm) at increasing values of the source pressure at frequencies of 1, 3, and 9 MHz. The corresponding focal intensities were correlated with the experimental data of Dunn et al. The focal pressure waveforms were also computed at the location of the true maximum. For low source pressures, the computed waveforms were the same as those determined using linear theory, and the focal intensities matched experimentally determined values. For higher source pressures, the focal pressure waveforms became increasingly distorted, with the compressional amplitude of the wave becoming greater, and the rarefactional amplitude becoming lower than the values calculated using linear theory. The implications of these results for clinical exposures are discussed.

  7. Uncertainty of High Intensity Therapeutic Ultrasound (HITU) Field Characterization with Hydrophones: Effects of Nonlinearity, Spatial Averaging, and Complex Sensitivity

    PubMed Central

    Liu, Yunbo; Wear, Keith A.; Harris, Gerald R.

    2017-01-01

    Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement uncertainty and signal analysis still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small PVDF capsule hydrophone and two different fiber-optic hydrophones. The focal waveform and beam distribution of a single element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveform. Compressional pressure, rarefactional pressure, and focal beam distribution were compared up to 10.6/−6.0 MPa (p+ and p−) (1.05 MHz) and 20.65/−7.20 MPa (3.3 MHz). In particular, the effects of spatial averaging, local nonlinear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed an uncertainty of no better than 10–15% on hydrophone-based HITU pressure characterization. PMID:28735734

  8. Thickness noise of a propeller and its relation to blade sweep

    NASA Astrophysics Data System (ADS)

    Amiet, R. K.

    1988-07-01

    Linear acoustic theory is used to determine the thickness noise produced by a supersonic propeller with sharp leading and trailing edges. The method reveals details of the calculated waveform. Abrupt changes of slope in the pressure-time waveform which are produced by singular points entering or leaving the tip blade are pointed out. It is found that the behavior of the pressure-time waveform is closely related to changes in the retarded rotor shape. The results indicate that logarithmic singularities in the waveform are produced by regions on the blade edges that move towards the observer at sonic speed, with the edge normal to the line joining the source point and the observer.

  9. Airfoil gust response and the sound produced by airifoil-vortex interaction

    NASA Technical Reports Server (NTRS)

    Amiet, R. K.

    1986-01-01

    This paper contributes to the understanding of the noise generation process of an airfoil encountering an unsteady upwash. By using a fast Fourier transform together with accurate airfoil response functions, the lift-time waveform for an airfoil encountering a delta function gust (the indicial function) is calculated for a flat plate airfoil in a compressible flow. This shows the interesting property that the lift is constant until the generated acoustic wave reaches the trailing edge. Expressions are given for the magnitude of this constant and for the pressure distribution on the airfoil during this time interval. The case of an airfoil cutting through a line vortex is also analyzed. The pressure-time waveform in the far field is closely related to the left-time waveform for the above problem of an airfoil entering a delta function gust. The effects of varying the relevant parameters in the problem are studied, including the observed position, the core diameter of the vortex, the vortex orientation and the airfoil span. The far field sound varies significantly with observer position, illustrating the importance of non-compactness effects. Increasing the viscous core diameter tends to smooth the pressure-time waveform. For small viscous core radius and infinite span, changing the vortex orientation changes only the amplitude of the pressure-time waveform, and not the shape.

  10. Extrapolation of sonic boom pressure signatures by the waveform parameter method

    NASA Technical Reports Server (NTRS)

    Thomas, C. L.

    1972-01-01

    The waveform parameter method of sonic boom extrapolation is derived and shown to be equivalent to the F-function method. A computer program based on the waveform parameter method is presented and discussed, with a sample case demonstrating program input and output.

  11. Control volume based hydrocephalus research; analysis of human data

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin; Wei, Timothy; Voorhees, Abram; Madsen, Joseph; Anor, Tomer

    2010-11-01

    Hydrocephalus is a neuropathophysiological disorder primarily diagnosed by increased cerebrospinal fluid volume and pressure within the brain. To date, utilization of clinical measurements have been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Pressure volume models and electric circuit analogs enforce volume conservation principles in terms of pressure. Control volume analysis, through the integral mass and momentum conservation equations, ensures that pressure and volume are accounted for using first principles fluid physics. This approach is able to directly incorporate the diverse measurements obtained by clinicians into a simple, direct and robust mechanics based framework. Clinical data obtained for analysis are discussed along with data processing techniques used to extract terms in the conservation equation. Control volume analysis provides a non-invasive, physics-based approach to extracting pressure information from magnetic resonance velocity data that cannot be measured directly by pressure instrumentation.

  12. A pulsatile pressure waveform is a sensitive marker for confirming the location of the thoracic epidural space.

    PubMed

    Lennox, Pamela H; Umedaly, Hamed S; Grant, Raymer P; White, S Adrian; Fitzmaurice, Brett G; Evans, Kenneth G

    2006-10-01

    The purpose of this study was to assess the validity of using a pulsatile, pressure waveform transduced from the epidural space through an epidural needle or catheter to confirm correct placement for maximal analgesia and to compare 3 different types of catheters' ability to transduce a waveform. A single-center, prospective, randomized trial. A tertiary-referral hospital. Eighty-one patients undergoing posterolateral thoracotomy who required a thoracic epidural catheter for postoperative pain management. Each epidural needle and each epidural catheter was transduced to determine if there was a pulsatile waveform exhibited. Sensitivity of the pulsatile waveform transduced through an epidural needle to identify correct placement of the epidural needle and the sensitivity of each catheter type to identify placement were compared. In 79 of 81 cases (97.5%), the waveform transduced directly through the epidural needle had a pulsatile characteristic as determined by blinded observers. In a total of 53 of 81 epidural catheters (65.4%), the transduced waveform displayed pulsations. Twenty-four of 27 catheters in group S-P/Sims Portex (Smiths Medical MD, Inc, St Paul, MN) (88.9%) transduced a pulsatile tracing from the epidural space, a significantly greater percentage than in the other 2 groups (p = 0.02). The technique of transducing the pressure waveform from the epidural needle inserted in the epidural space is a sensitive and reliable alternative to other techniques for confirmation of correct epidural catheter placement. The technique is simple, sensitive, and inexpensive and uses equipment available in any operating room.

  13. Aortic pulse wave velocity and reflecting distance estimation from peripheral waveforms in humans: detection of age- and exercise training-related differences.

    PubMed

    Pierce, Gary L; Casey, Darren P; Fiedorowicz, Jess G; Seals, Douglas R; Curry, Timothy B; Barnes, Jill N; Wilson, DeMaris R; Stauss, Harald M

    2013-07-01

    We hypothesized that demographic/anthropometric parameters can be used to estimate effective reflecting distance (EfRD), required to derive aortic pulse wave velocity (APWV), a prognostic marker of cardiovascular risk, from peripheral waveforms and that such estimates can discriminate differences in APWV and EfRD with aging and habitual endurance exercise in healthy adults. Ascending aortic pressure waveforms were derived from peripheral waveforms (brachial artery pressure, n = 25; and finger volume pulse, n = 15) via a transfer function and then used to determine the time delay between forward- and backward-traveling waves (Δtf-b). True EfRDs were computed as directly measured carotid-femoral pulse wave velocity (CFPWV) × 1/2Δtf-b and then used in regression analysis to establish an equation for EfRD based on demographic/anthropometric data (EfRD = 0.173·age + 0.661·BMI + 34.548 cm, where BMI is body mass index). We found good agreement between true and estimated APWV (Pearson's R² = 0.43; intraclass correlation = 0.64; both P < 0.05) and EfRD (R² = 0.24; intraclass correlation = 0.40; both P < 0.05). In young sedentary (22 ± 2 years, n = 6), older sedentary (62 ± 1 years, n = 24), and older endurance-trained (61 ± 2 years, n = 14) subjects, EfRD (from demographic/anthropometric parameters), APWV, and 1/2Δtf-b (from brachial artery pressure waveforms) were 52.0 ± 0.5, 61.8 ± 0.4, and 60.6 ± 0.5 cm; 6.4 ± 0.3, 9.6 ± 0.2, and 8.1 ± 0.2 m/s; and 82 ± 3, 65 ± 1 and 76 ± 2 ms (all P < 0.05), respectively. Our results demonstrate that APWV derived from peripheral waveforms using age and BMI to estimate EfRD correlates with CFPWV in healthy adults. This method can reliably detect the distal shift of the reflecting site with age and the increase in APWV with sedentary aging that is attenuated with habitual endurance exercise.

  14. Noninvasive calculation of the aortic blood pressure waveform from the flow velocity waveform: a proof of concept

    PubMed Central

    Vennin, Samuel; Mayer, Alexia; Li, Ye; Fok, Henry; Clapp, Brian; Alastruey, Jordi

    2015-01-01

    Estimation of aortic and left ventricular (LV) pressure usually requires measurements that are difficult to acquire during the imaging required to obtain concurrent LV dimensions essential for determination of LV mechanical properties. We describe a novel method for deriving aortic pressure from the aortic flow velocity. The target pressure waveform is divided into an early systolic upstroke, determined by the water hammer equation, and a diastolic decay equal to that in the peripheral arterial tree, interposed by a late systolic portion described by a second-order polynomial constrained by conditions of continuity and conservation of mean arterial pressure. Pulse wave velocity (PWV, which can be obtained through imaging), mean arterial pressure, diastolic pressure, and diastolic decay are required inputs for the algorithm. The algorithm was tested using 1) pressure data derived theoretically from prespecified flow waveforms and properties of the arterial tree using a single-tube 1-D model of the arterial tree, and 2) experimental data acquired from a pressure/Doppler flow velocity transducer placed in the ascending aorta in 18 patients (mean ± SD: age 63 ± 11 yr, aortic BP 136 ± 23/73 ± 13 mmHg) at the time of cardiac catheterization. For experimental data, PWV was calculated from measured pressures/flows, and mean and diastolic pressures and diastolic decay were taken from measured pressure (i.e., were assumed to be known). Pressure reconstructed from measured flow agreed well with theoretical pressure: mean ± SD root mean square (RMS) error 0.7 ± 0.1 mmHg. Similarly, for experimental data, pressure reconstructed from measured flow agreed well with measured pressure (mean RMS error 2.4 ± 1.0 mmHg). First systolic shoulder and systolic peak pressures were also accurately rendered (mean ± SD difference 1.4 ± 2.0 mmHg for peak systolic pressure). This is the first noninvasive derivation of aortic pressure based on fluid dynamics (flow and wave speed) in the aorta itself. PMID:26163442

  15. A Fiber Bragg Grating Sensor for Radial Artery Pulse Waveform Measurement.

    PubMed

    Jia, Dagong; Chao, Jing; Li, Shuai; Zhang, Hongxia; Yan, Yingzhan; Liu, Tiegen; Sun, Ye

    2018-04-01

    In this paper, we report the design and experimental validation of a novel optical sensor for radial artery pulse measurement based on fiber Bragg grating (FBG) and lever amplification mechanism. Pulse waveform analysis is a diagnostic tool for clinical examination and disease diagnosis. High fidelity radial artery pulse waveform has been investigated in clinical studies for estimating central aortic pressure, which is proved to be predictors of cardiovascular diseases. As a three-dimensional cylinder, the radial artery needs to be examined from different locations to achieve optimal pulse waveform for estimation and diagnosis. The proposed optical sensing system is featured as high sensitivity and immunity to electromagnetic interference for multilocation radial artery pulse waveform measurement. The FBG sensor can achieve the sensitivity of 8.236 nm/N, which is comparable to a commonly used electrical sensor. This FBG-based system can provide high accurate measurement, and the key characteristic parameters can be then extracted from the raw signals for clinical applications. The detecting performance is validated through experiments guided by physicians. In the experimental validation, we applied this sensor to measure the pulse waveforms at various positions and depths of the radial artery in the wrist according to the diagnostic requirements. The results demonstrate the high feasibility of using optical systems for physiological measurement and using this FBG sensor for radial artery pulse waveform in clinical applications.

  16. Development of water level estimation algorithms using SARAL/Altika dataset and validation over the Ukai reservoir, India

    NASA Astrophysics Data System (ADS)

    Chander, Shard; Ganguly, Debojyoti

    2017-01-01

    Water level was estimated, using AltiKa radar altimeter onboard the SARAL satellite, over the Ukai reservoir using modified algorithms specifically for inland water bodies. The methodology was based on waveform classification, waveform retracking, and dedicated inland range corrections algorithms. The 40-Hz waveforms were classified based on linear discriminant analysis and Bayesian classifier. Waveforms were retracked using Brown, Ice-2, threshold, and offset center of gravity methods. Retracking algorithms were implemented on full waveform and subwaveforms (only one leading edge) for estimating the improvement in the retrieved range. European Centre for Medium-Range Weather Forecasts (ECMWF) operational, ECMWF re-analysis pressure fields, and global ionosphere maps were used to exactly estimate the range corrections. The microwave and optical images were used for estimating the extent of the water body and altimeter track location. Four global positioning system (GPS) field trips were conducted on same day as the SARAL pass using two dual frequency GPS. One GPS was mounted close to the dam in static mode and the other was used on a moving vehicle within the reservoir in Kinematic mode. In situ gauge dataset was provided by the Ukai dam authority for the time period January 1972 to March 2015. The altimeter retrieved water level results were then validated with the GPS survey and in situ gauge dataset. With good selection of virtual station (waveform classification, back scattering coefficient), Ice-2 retracker and subwaveform retracker both work better with an overall root-mean-square error <15 cm. The results support that the AltiKa dataset, due to a smaller foot-print and sharp trailing edge of the Ka-band waveform, can be utilized for more accurate water level information over inland water bodies.

  17. Computational Modeling of Meteor-Generated Ground Pressure Signatures

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Brown, Peter G.

    2017-01-01

    We present a thorough validation of a computational approach to predict infrasonic signatures of centimeter-sized meteoroids. We assume that the energy deposition along the meteor trail is dominated by atmospheric drag and simulate the steady, inviscid flow of air in thermochemical equilibrium to compute the meteoroid's near-body pressure signature. This signature is then propagated through a stratified and windy atmosphere to the ground using a methodology adapted from aircraft sonic-boom analysis. An assessment of the numerical accuracy of the near field and the far field solver is presented. The results show that when the source of the signature is the cylindrical Mach-cone, the simulations closely match the observations. The prediction of the shock rise-time, the zero-peak amplitude of the waveform, and the duration of the positive pressure phase are consistently within 10% of the measurements. Uncertainty in the shape of the meteoroid results in a poorer prediction of the trailing part of the waveform. Overall, our results independently verify energy deposition estimates deduced from optical observations.

  18. Power coupling mode transitions induced by tailored voltage waveforms in capacitive oxygen discharges

    NASA Astrophysics Data System (ADS)

    Derzsi, Aranka; Bruneau, Bastien; Gibson, Andrew Robert; Johnson, Erik; O'Connell, Deborah; Gans, Timo; Booth, Jean-Paul; Donkó, Zoltán

    2017-03-01

    Low-pressure capacitively coupled radio frequency discharges operated in O2 and driven by tailored voltage waveforms are investigated experimentally and by means of kinetic simulations. Pulse-type (peaks/valleys) and sawtooth-type voltage waveforms that consist of up to four consecutive harmonics of the fundamental frequency are used to study the amplitude asymmetry effect as well as the slope asymmetry effect at different fundamental frequencies (5, 10, and 15 MHz) and at different pressures (50-700 mTorr). Values of the DC self-bias determined experimentally and spatio-temporal excitation rates derived from phase resolved optical emission spectroscopy measurements are compared with particle-in-cell/Monte Carlo collisions simulations. The spatio-temporal distributions of the excitation rate obtained from experiments are well reproduced by the simulations. Transitions of the discharge electron heating mode from the drift-ambipolar mode to the α-mode are induced by changing the number of consecutive harmonics included in the driving voltage waveform or by changing the gas pressure. Changing the number of harmonics in the waveform has a strong effect on the electronegativity of the discharge, on the generation of the DC self-bias and on the control of ion properties at the electrodes, both for pulse-type, as well as sawtooth-type driving voltage waveforms The effect of the surface quenching rate of oxygen singlet delta metastable molecules on the spatio-temporal excitation patterns is also investigated.

  19. Method to produce American Thoracic Society flow-time waveforms using a mechanical pump.

    PubMed

    Hankinson, J L; Reynolds, J S; Das, M K; Viola, J O

    1997-03-01

    The American Thoracic Society (ATS) recently adopted a new set of 26 standard flow-time waveforms for use in testing both diagnostic and monitoring devices. Some of these waveforms have a higher frequency content than present in the ATS-24 standard volume-time waveforms, which, when produced by a mechanical pump, may result in a pump flow output that is less than the desired flow due to gas compression losses within the pump. To investigate the effects of gas compression, a mechanical pump was used to generate the necessary flows to test mini-Wright and Assess peak expiratory flow (PEF) meters. Flow output from the pump was measured by two different independent methods, a pneumotachometer and a method based on piston displacement and pressure measured within the pump. Measuring output flow based on piston displacement and pressure has been validated using a pneumotachometer and mini-Wright PEF meter, and found to accurately measure pump output. This method introduces less resistance (lower back-pressure) and dead space volume than using a pneumotachometer in series with the meter under test. Pump output flow was found to be lower than the desired flow both with the mini-Wright and Assess meters (for waveform No. 26, PEFs 7.1 and 10.9% lower, respectively). To compensate for losses due to gas compression, we have developed a method of deriving new input waveforms, which, when used to drive a commercially available mechanical pump, accurately and reliably produces the 26 ATS flow-time waveforms, even those with the fastest rise-times.

  20. Pulse transit time differential measurement by fiber Bragg grating pulse recorder.

    PubMed

    Umesh, Sharath; Padma, Srivani; Ambastha, Shikha; Kalegowda, Anand; Asokan, Sundarrajan

    2015-05-01

    The present study reports a noninvasive technique for the measurement of the pulse transit time differential (PTTD) from the pulse pressure waveforms obtained at the carotid artery and radial artery using fiber Bragg grating pulse recorders (FBGPR). PTTD is defined as the time difference between the arrivals of a pulse pressure waveform at the carotid and radial arterial sites. The PTTD is investigated as an indicator of variation in the systolic blood pressure. The results are validated against blood pressure variation obtained from a Mindray Patient Monitor. Furthermore, the pulse wave velocity computed from the obtained PTTD is compared with the pulse wave velocity obtained from the color Doppler ultrasound system and is found to be in good agreement. The major advantage of the PTTD measurement via FBGPRs is that the data acquisition system employed can simultaneously acquire pulse pressure waveforms from both FBGPRs placed at carotid and radial arterial sites with a single time scale, which eliminates time synchronization complexity.

  1. Novel application of parameters in waveform contour analysis for assessing arterial stiffness in aged and atherosclerotic subjects.

    PubMed

    Wu, Hsien-Tsai; Liu, Cyuan-Cin; Lin, Po-Hsun; Chung, Hui-Ming; Liu, Ming-Chien; Yip, Hon-Kan; Liu, An-Bang; Sun, Cheuk-Kwan

    2010-11-01

    Although contour analysis of pulse waves has been proposed as a non-invasive means in assessing arterial stiffness in atherosclerosis, accurate determination of the conventional parameters is usually precluded by distorted waveforms in the aged and atherosclerotic objects. We aimed at testing reliable indices in these patient populations. Digital volume pulse (DVP) curve was obtained from 428 subjects recruited from a health screening program at a single medical center from January 2007 to July 2008. Demographic data, blood pressure, and conventional parameters for contour analysis including pulse wave velocity (PWV), crest time (CT), stiffness index (SI), and reflection index (RI) were recorded. Two indices including normalized crest time (NCT) and crest time ratio (CTR) were also analysed and compared with the known parameters. Though ambiguity of dicrotic notch precluded an accurate determination of the two key conventional parameters for assessing arterial stiffness (i.e. SI and RI), NCT and CTR were unaffected because the sum of CT and T(DVP) (i.e. the duration between the systolic and diastolic peak) tended to remain constant. NCT and CTR also correlated significantly with age, systolic and diastolic blood pressure, PWV, SI and RI (all P<0.01). NCT and CTR not only showed significant positive correlations with the conventional parameters for assessment of atherosclerosis (i.e. SI, RI, and PWV), but they also are of particular value in assessing degree of arterial stiffness in subjects with indiscernible peak of diastolic wave that precludes the use of conventional parameters in waveform contour analysis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Noninvasive arterial blood pressure waveforms in patients with continuous-flow left ventricular assist devices.

    PubMed

    Martina, Jerson R; Westerhof, Berend E; de Jonge, Nicolaas; van Goudoever, Jeroen; Westers, Paul; Chamuleau, Steven; van Dijk, Diederik; Rodermans, Ben F M; de Mol, Bas A J M; Lahpor, Jaap R

    2014-01-01

    Arterial blood pressure and echocardiography may provide useful physiological information regarding cardiac support in patients with continuous-flow left ventricular assist devices (cf-LVADs). We investigated the accuracy and characteristics of noninvasive blood pressure during cf-LVAD support. Noninvasive arterial pressure waveforms were recorded with Nexfin (BMEYE, Amsterdam, The Netherlands). First, these measurements were validated simultaneously with invasive arterial pressures in 29 intensive care unit patients. Next, the association between blood pressure responses and measures derived by echocardiography, including left ventricular end-diastolic dimensions (LVEDDs), left ventricular end-systolic dimensions (LVESDs), and left ventricular shortening fraction (LVSF) were determined during pump speed change procedures in 30 outpatients. Noninvasive arterial blood pressure waveforms by the Nexfin monitor slightly underestimated invasive measures during cf-LVAD support. Differences between noninvasive and invasive measures (mean ± SD) of systolic, diastolic, mean, and pulse pressures were -7.6 ± 5.8, -7.0 ± 5.2, -6.9 ± 5.1, and -0.6 ± 4.5 mm Hg, respectively (all <10%). These blood pressure responses did not correlate with LVEDD, LVESD, or LVSF, while LVSF correlated weakly with both pulse pressure (r = 0.24; p = 0.005) and (dP(art)/dt)max (r = 0.25; p = 0.004). The dicrotic notch in the pressure waveform was a better predictor of aortic valve opening (area under the curve [AUC] = 0.87) than pulse pressure (AUC = 0.64) and (dP(art)/dt)max (AUC = 0.61). Patients with partial support rather than full support at 9,000 rpm had a significant change in systolic pressure, pulse pressure, and (dP(art)/dt)max during ramp studies, while echocardiographic measures did not change. Blood pressure measurements by Nexfin were reliable and may thereby act as a compliment to the assessment of the cf-LVAD patient.

  3. Flow characteristics around a deformable stenosis under pulsatile flow condition

    NASA Astrophysics Data System (ADS)

    Choi, Woorak; Park, Jun Hong; Byeon, Hyeokjun; Lee, Sang Joon

    2018-01-01

    A specific portion of a vulnerable stenosis is deformed periodically under a pulsatile blood flow condition. Detailed analysis of such deformable stenosis is important because stenotic deformation can increase the likelihood of rupture, which may lead to sudden cardiac death or stroke. Various diagnostic indices have been developed for a nondeformable stenosis by using flow characteristics and resultant pressure drop across the stenosis. However, the effects of the stenotic deformation on the flow characteristics remain poorly understood. In this study, the flows around a deformable stenosis model and two different rigid stenosis models were investigated under a pulsatile flow condition. Particle image velocimetry was employed to measure flow structures around the three stenosis models. The deformable stenosis model was deformed to achieve high geometrical slope and height when the flow rate was increased. The deformation of the stenotic shape enhanced jet deflection toward the opposite vessel wall of the stenosis. The jet deflection in the deformable model increased the rate of jet velocity and turbulent kinetic energy (TKE) production as compared with those in the rigid models. The effect of stenotic deformation on the pulsating waveform related with the pressure drop was analyzed using the TKE production rate. The deformable stenosis model exhibited a phase delay of the peak point in the waveform. These results revealed the potential use of pressure drop waveform as a diagnostic index for deformable stenosis.

  4. Classifiers utilized to enhance acoustic based sensors to identify round types of artillery/mortar

    NASA Astrophysics Data System (ADS)

    Grasing, David; Desai, Sachi; Morcos, Amir

    2008-04-01

    Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.

  5. Artillery/mortar type classification based on detected acoustic transients

    NASA Astrophysics Data System (ADS)

    Morcos, Amir; Grasing, David; Desai, Sachi

    2008-04-01

    Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.

  6. Artillery/mortar round type classification to increase system situational awareness

    NASA Astrophysics Data System (ADS)

    Desai, Sachi; Grasing, David; Morcos, Amir; Hohil, Myron

    2008-04-01

    Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.

  7. Pulsatile pipe flow transition: Flow waveform effects

    NASA Astrophysics Data System (ADS)

    Brindise, Melissa C.; Vlachos, Pavlos P.

    2018-01-01

    Although transition is known to exist in various hemodynamic environments, the mechanisms that govern this flow regime and their subsequent effects on biological parameters are not well understood. Previous studies have investigated transition in pulsatile pipe flow using non-physiological sinusoidal waveforms at various Womersley numbers but have produced conflicting results, and multiple input waveform shapes have yet to be explored. In this work, we investigate the effect of the input pulsatile waveform shape on the mechanisms that drive the onset and development of transition using particle image velocimetry, three pulsatile waveforms, and six mean Reynolds numbers. The turbulent kinetic energy budget including dissipation rate, production, and pressure diffusion was computed. The results show that the waveform with a longer deceleration phase duration induced the earliest onset of transition, while the waveform with a longer acceleration period delayed the onset of transition. In accord with the findings of prior studies, for all test cases, turbulence was observed to be produced at the wall and either dissipated or redistributed into the core flow by pressure waves, depending on the mean Reynolds number. Turbulent production increased with increasing temporal velocity gradients until an asymptotic limit was reached. The turbulence dissipation rate was shown to be independent of mean Reynolds number, but a relationship between the temporal gradients of the input velocity waveform and the rate of turbulence dissipation was found. In general, these results demonstrated that the shape of the input pulsatile waveform directly affected the onset and development of transition.

  8. Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method

    NASA Astrophysics Data System (ADS)

    Ciurys, Marek Pawel

    2017-12-01

    Field-circuit model of a brushless DC motor with speed control using PWM method was developed. Waveforms of electrical and mechanical quantities of the designed motor with a high pressure vane pump built in a rotor of the motor were computed. Analysis of electromagnetic phenomena in the system: single phase AC network - converter - BLDC motor was carried out.

  9. Analysis of intracranial pressure: past, present, and future.

    PubMed

    Di Ieva, Antonio; Schmitz, Erika M; Cusimano, Michael D

    2013-12-01

    The monitoring of intracranial pressure (ICP) is an important tool in medicine for its ability to portray the brain's compliance status. The bedside monitor displays the ICP waveform and intermittent mean values to guide physicians in the management of patients, particularly those having sustained a traumatic brain injury. Researchers in the fields of engineering and physics have investigated various mathematical analysis techniques applicable to the waveform in order to extract additional diagnostic and prognostic information, although they largely remain limited to research applications. The purpose of this review is to present the current techniques used to monitor and interpret ICP and explore the potential of using advanced mathematical techniques to provide information about system perturbations from states of homeostasis. We discuss the limits of each proposed technique and we propose that nonlinear analysis could be a reliable approach to describe ICP signals over time, with the fractal dimension as a potential predictive clinically meaningful biomarker. Our goal is to stimulate translational research that can move modern analysis of ICP using these techniques into widespread practical use, and to investigate to the clinical utility of a tool capable of simplifying multiple variables obtained from various sensors.

  10. Analysis of automobile engine cylinder pressure and rotation speed from engine body vibration signal

    NASA Astrophysics Data System (ADS)

    Wang, Yuhua; Cheng, Xiang; Tan, Haishu

    2016-01-01

    In order to improve the engine vibration signal process method for the engine cylinder pressure and engine revolution speed measurement instrument, the engine cylinder pressure varying with the engine working cycle process has been regarded as the main exciting force for the engine block forced vibration. The forced vibration caused by the engine cylinder pressure presents as a low frequency waveform which varies with the cylinder pressure synchronously and steadily in time domain and presents as low frequency high energy discrete humorous spectrum lines in frequency domain. The engine cylinder pressure and the rotation speed can been extract form the measured engine block vibration signal by low-pass filtering analysis in time domain or by FFT analysis in frequency domain, the low-pass filtering analysis in time domain is not only suitable for the engine in uniform revolution condition but also suitable for the engine in uneven revolution condition. That provides a practical and convenient way to design motor revolution rate and cylinder pressure measurement instrument.

  11. Development of optoelectronic monitoring system for ear arterial pressure waveforms

    NASA Astrophysics Data System (ADS)

    Sasayama, Satoshi; Imachi, Yu; Yagi, Tamotsu; Imachi, Kou; Ono, Toshirou; Man-i, Masando

    1994-02-01

    Invasive intra-arterial blood pressure measurement is the most accurate method but not practical if the subject is in motion. The apparatus developed by Wesseling et al., based on a volume-clamp method of Penaz (Finapres), is able to monitor continuous finger arterial pressure waveforms noninvasively. The limitation of Finapres is the difficulty in measuring the pressure of a subject during work that involves finger or arm action. Because the Finapres detector is attached to subject's finger, the measurements are affected by inertia of blood and hydrostatic effect cause by arm or finger motion. To overcome this problem, the authors made a detector that is attached to subject's ear and developed and optoelectronic monitoring systems for ear arterial pressure waveform (Earpres). An IR LEDs, photodiode, and air cuff comprised the detector. The detector was attached to a subject's ear, and the space adjusted between the air cuff and the rubber plate on which the LED and photodiode were positioned. To evaluate the accuracy of Earpres, the following tests were conducted with participation of 10 healthy male volunteers. The subjects rested for about five minutes, then performed standing and squatting exercises to provide wide ranges of systolic and diastolic arterial pressure. Intra- and inter-individual standard errors were calculated according to the method of van Egmond et al. As a result, average, the averages of intra-individual standard errors for earpres appeared small (3.7 and 2.7 mmHg for systolic and diastolic pressure respectively). The inter-individual standard errors for Earpres were about the same was Finapres for both systolic and diastolic pressure. The results showed the ear monitor was reliable in measuring arterial blood pressure waveforms and might be applicable to various fields such as sports medicine and ergonomics.

  12. Respiratory variation of systolic and diastolic time intervals within radial arterial waveform: a comparison with dynamic preload index.

    PubMed

    Park, Ji Hyun; Hwang, Gyu-Sam

    2016-08-01

    A blood pressure (BP) waveform contains various pieces of information related to respiratory variation. Systolic time interval (STI) reflects myocardial performance, and diastolic time interval (DTI) represents diastolic filling. This study examined whether respiratory variations of STI and DTI within radial arterial waveform are comparable to dynamic indices. During liver transplantation, digitally recorded BP waveform and stroke volume variation (SVV) were retrospectively analyzed. Beat-to-beat STI and DTI were extracted within each BP waveform, which were separated by dicrotic notch. Systolic time variation (STV) was calculated by the average of 3 consecutive respiratory cycles: [(STImax- STImin)/STImean]. Similar formula was used for diastolic time variation (DTV) and pulse pressure variation (PPV). Receiver operating characteristic analysis with area under the curve (AUC) was used to assess thresholds predictive of SVV ≥12% and PPV ≥12%. STV and DTV showed significant correlations with SVV (r= 0.78 and r= 0.67, respectively) and PPV (r= 0.69 and r= 0.69, respectively). Receiver operating characteristic curves demonstrated that STV ≥11% identified to predict SVV ≥12% with 85.7% sensitivity and 89.3% specificity (AUC = 0.935; P< .001). DTV ≥11% identified to predict SVV ≥12% with 71.4% sensitivity and 85.7% specificity (AUC = 0.829; P< .001). STV ≥12% and DTV ≥11% identified to predict PPV ≥12% with an AUC of 0.881 and 0.885, respectively. Respiratory variations of STI and DTI derived from radial arterial contour have a potential to predict hemodynamic response as a surrogate for SVV or PPV. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Swarms of repeating long-period earthquakes at Shishaldin Volcano, Alaska, 2001-2004

    USGS Publications Warehouse

    Petersen, Tanja

    2007-01-01

    During 2001–2004, a series of four periods of elevated long-period seismic activity, each lasting about 1–2 months, occurred at Shishaldin Volcano, Aleutian Islands, Alaska. The time periods are termed swarms of repeating events, reflecting an abundance of earthquakes with highly similar waveforms that indicate stable, non-destructive sources. These swarms are characterized by increased earthquake amplitudes, although the seismicity rate of one event every 0.5–5 min has remained more or less constant since Shishaldin last erupted in 1999. A method based on waveform cross-correlation is used to identify highly repetitive events, suggestive of spatially distinct source locations. The waveform analysis shows that several different families of similar events co-exist during a given swarm day, but generally only one large family dominates. A network of hydrothermal fractures may explain the events that do not belong to a dominant repeating event group, i.e. multiple sources at different locations exist next to a dominant source. The dominant waveforms exhibit systematic changes throughout each swarm, but some of these waveforms do reappear over the course of 4 years indicating repeatedly activated source locations. The choked flow model provides a plausible trigger mechanism for the repeating events observed at Shishaldin, explaining the gradual changes in waveforms over time by changes in pressure gradient across a constriction within the uppermost part of the conduit. The sustained generation of Shishaldin's long-period events may be attributed to complex dynamics of a multi-fractured hydrothermal system: the pressure gradient within the main conduit may be regulated by temporarily sealing and reopening of parallel flow pathways, by the amount of debris within the main conduit and/or by changing gas influx into the hydrothermal system. The observations suggest that Shishaldin's swarms of repeating events represent time periods during which a dominant source is activated.

  14. Effect of Stagger on the Vibroacoustic Loads from Clustered Rockets

    NASA Technical Reports Server (NTRS)

    Rojo, Raymundo; Tinney, Charles E.; Ruf, Joseph H.

    2016-01-01

    The effect of stagger startup on the vibro-acoustic loads that form during the end- effects-regime of clustered rockets is studied using both full-scale (hot-gas) and laboratory scale (cold gas) data. Both configurations comprise three nozzles with thrust optimized parabolic contours that undergo free shock separated flow and restricted shock separated flow as well as an end-effects regime prior to flowing full. Acoustic pressure waveforms recorded at the base of the nozzle clusters are analyzed using various statistical metrics as well as time-frequency analysis. The findings reveal a significant reduction in end- effects-regime loads when engine ignition is staggered. However, regardless of stagger, both the skewness and kurtosis of the acoustic pressure time derivative elevate to the same levels during the end-effects-regime event thereby demonstrating the intermittence and impulsiveness of the acoustic waveforms that form during engine startup.

  15. Simultaneous monitoring of static and dynamic intracranial pressure parameters from two separate sensors in patients with cerebral bleeds: comparison of findings.

    PubMed

    Eide, Per Kristian; Holm, Sverre; Sorteberg, Wilhelm

    2012-09-07

    We recently reported that in an experimental setting the zero pressure level of solid intracranial pressure (ICP) sensors can be altered by electrostatics discharges. Changes in the zero pressure level would alter the ICP level (mean ICP); whether spontaneous changes in mean ICP happen in clinical settings is not known. This can be addressed by comparing the ICP parameters level and waveform of simultaneous ICP signals. To this end, we retrieved our recordings in patients with cerebral bleeds wherein the ICP had been recorded simultaneously from two different sensors. During a time period of 10 years, 17 patients with cerebral bleeds were monitored with two ICP sensors simultaneously; sensor 1 was always a solid sensor while Sensor 2 was a solid -, a fluid - or an air-pouch sensor. The simultaneous signals were analyzed with automatic identification of the cardiac induced ICP waves. The output was determined in consecutive 6-s time windows, both with regard to the static parameter mean ICP and the dynamic parameters (mean wave amplitude, MWA, and mean wave rise time, MWRT). Differences in mean ICP, MWA and MWRT between the two sensors were determined. Transfer functions between the sensors were determined to evaluate how sensors reproduce the ICP waveform. Comparing findings in two solid sensors disclosed major differences in mean ICP in 2 of 5 patients (40%), despite marginal differences in MWA, MWRT, and linear phase magnitude and phase. Qualitative assessment of trend plots of mean ICP and MWA revealed shifts and drifts of mean ICP in the clinical setting. The transfer function analysis comparing the solid sensor with either the fluid or air-pouch sensors revealed more variable transfer function magnitude and greater differences in the ICP waveform derived indices. Simultaneous monitoring of ICP using two solid sensors may show marked differences in static ICP but close to identity in dynamic ICP waveforms. This indicates that shifts in ICP baseline pressure (sensor zero level) occur clinically; trend plots of the ICP parameters also confirm this. Solid sensors are superior to fluid - and air pouch sensors when evaluating the dynamic ICP parameters.

  16. bpshape wk4: a computer program that implements a physiological model for analyzing the shape of blood pressure waveforms

    NASA Technical Reports Server (NTRS)

    Ocasio, W. C.; Rigney, D. R.; Clark, K. P.; Mark, R. G.; Goldberger, A. L. (Principal Investigator)

    1993-01-01

    We describe the theory and computer implementation of a newly-derived mathematical model for analyzing the shape of blood pressure waveforms. Input to the program consists of an ECG signal, plus a single continuous channel of peripheral blood pressure, which is often obtained invasively from an indwelling catheter during intensive-care monitoring or non-invasively from a tonometer. Output from the program includes a set of parameter estimates, made for every heart beat. Parameters of the model can be interpreted in terms of the capacitance of large arteries, the capacitance of peripheral arteries, the inertance of blood flow, the peripheral resistance, and arterial pressure due to basal vascular tone. Aortic flow due to contraction of the left ventricle is represented by a forcing function in the form of a descending ramp, the area under which represents the stroke volume. Differential equations describing the model are solved by the method of Laplace transforms, permitting rapid parameter estimation by the Levenberg-Marquardt algorithm. Parameter estimates and their confidence intervals are given in six examples, which are chosen to represent a variety of pressure waveforms that are observed during intensive-care monitoring. The examples demonstrate that some of the parameters may fluctuate markedly from beat to beat. Our program will find application in projects that are intended to correlate the details of the blood pressure waveform with other physiological variables, pathological conditions, and the effects of interventions.

  17. Noninvasive calculation of the aortic blood pressure waveform from the flow velocity waveform: a proof of concept.

    PubMed

    Vennin, Samuel; Mayer, Alexia; Li, Ye; Fok, Henry; Clapp, Brian; Alastruey, Jordi; Chowienczyk, Phil

    2015-09-01

    Estimation of aortic and left ventricular (LV) pressure usually requires measurements that are difficult to acquire during the imaging required to obtain concurrent LV dimensions essential for determination of LV mechanical properties. We describe a novel method for deriving aortic pressure from the aortic flow velocity. The target pressure waveform is divided into an early systolic upstroke, determined by the water hammer equation, and a diastolic decay equal to that in the peripheral arterial tree, interposed by a late systolic portion described by a second-order polynomial constrained by conditions of continuity and conservation of mean arterial pressure. Pulse wave velocity (PWV, which can be obtained through imaging), mean arterial pressure, diastolic pressure, and diastolic decay are required inputs for the algorithm. The algorithm was tested using 1) pressure data derived theoretically from prespecified flow waveforms and properties of the arterial tree using a single-tube 1-D model of the arterial tree, and 2) experimental data acquired from a pressure/Doppler flow velocity transducer placed in the ascending aorta in 18 patients (mean ± SD: age 63 ± 11 yr, aortic BP 136 ± 23/73 ± 13 mmHg) at the time of cardiac catheterization. For experimental data, PWV was calculated from measured pressures/flows, and mean and diastolic pressures and diastolic decay were taken from measured pressure (i.e., were assumed to be known). Pressure reconstructed from measured flow agreed well with theoretical pressure: mean ± SD root mean square (RMS) error 0.7 ± 0.1 mmHg. Similarly, for experimental data, pressure reconstructed from measured flow agreed well with measured pressure (mean RMS error 2.4 ± 1.0 mmHg). First systolic shoulder and systolic peak pressures were also accurately rendered (mean ± SD difference 1.4 ± 2.0 mmHg for peak systolic pressure). This is the first noninvasive derivation of aortic pressure based on fluid dynamics (flow and wave speed) in the aorta itself. Copyright © 2015 the American Physiological Society.

  18. Design and performance of heart assist or artificial heart control systems

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Gebben, V. D.

    1978-01-01

    The factors leading to the design of a controlled driving system for either a heart assist pump or artificial heart are discussed. The system provides square pressure waveform to drive a pneumatic-type blood pump. For assist usage the system uses an R-wave detector circuit that can detect the R-wave of the electrocardiogram in the presence of electrical disturbances. This circuit provides a signal useful for synchronizing an assist pump with the natural heart. It synchronizes a square wave circuit, the output of which is converted into square waveforms of pneumatic pressure suitable for driving both assist device and artificial heart. The pressure levels of the driving waveforms are controlled by means of feedback channels to maintain physiological regulation of the artificial heart's output flow. A more compact system that could achieve similar regulatory characteristics is also discussed.

  19. Pulse amplitude of intracranial pressure waveform in hydrocephalus.

    PubMed

    Czosnyka, Z; Keong, N; Kim, D J; Radolovich, D; Smielewski, P; Lavinio, A; Schmidt, E A; Momjian, S; Owler, B; Pickard, J D; Czosnyka, M

    2008-01-01

    There is increasing interest in evaluation of the pulse amplitude of intracranial pressure (AMP) in explaining dynamic aspects of hydrocephalus. We reviewed a large number of ICP recordings in a group of hydrocephalic patients to assess utility of AMP. From a database including approximately 2,100 cases of infusion studies (either lumbar or intraventricular) and overnight ICP monitoring in patients suffering from hydrocephalus of various types (both communicating and non-communicating), etiology and stage of management (non-shunted or shunted) pressure recordings were evaluated. For subgroup analysis we selected 60 patients with idiopathic NPH with full follow-up after shunting. In 29 patients we compared pulse amplitude during an infusion study performed before and after shunting with a properly functioning shunt. Amplitude was calculated from ICP waveforms using spectral analysis methodology. A large amplitude was associated with good outcome after shunting (positive predictive value of clinical improvement for AMP above 2.5 mmHg was 95%). However, low amplitude did not predict poor outcome (for AMP below 2.5 mmHg 52% of patients improved). Correlations of AMP with ICP and Rcsf were positive and statistically significant (N = 131 with idiopathic NPH; R = 0.21 for correlation with mean ICP and 0.22 with Rcsf; p< 0.01). Correlation with the brain elastance coefficient (or PVI) was not significant. There was also no significant correlation between pulse amplitude and width of the ventricles. The pulse amplitude decreased (p < 0.005) after shunting. Interpretation of the ICP pulse waveform may be clinically useful in patients suffering from hydrocephalus. Elevated amplitude seems to be a positive predictor for clinical improvement after shunting. A properly functioning shunt reduces the pulse amplitude.

  20. Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach

    PubMed Central

    Canney, Michael S.; Bailey, Michael R.; Crum, Lawrence A.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.

    2008-01-01

    Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24 000 W∕cm2. The inputs to a Khokhlov–Zabolotskaya–Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W∕cm2, lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields. PMID:19062878

  1. Some effects of oscillation waveform and amplitude on unsteady turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Agarwal, Naval K.; Simpson, Roger L.; Shivaprasad, B. G.

    1992-01-01

    Some physical features of several unsteady separating turbulent boundary layers are presented for practical Reynolds numbers and reduced frequencies such as for helicopter and turbomachinery flows. The effects of unsteadiness amplitude and waveform are examined for flows along the floor of a converging and diverging wind tunnel test section. At the end of the converging portion, the mean skin friction coefficient normalized on the mean dynamic pressure is independent of the waveform and amplitude within low experimental uncertainties. In the detaching and detached portions of the flow, wall values of the fraction of time that the flow moves downstream of gamma sub pu, which is a separated flow state variable, shows that oscillation waveform and amplitude strongly influence the detached flow behavior. Distributions of gamma sub pu during a cycle indicate hysteresis within the detached flow and the effects of the higher harmonics of pressure gradient and velocity.

  2. Central Pulsatile Pressure and Flow Relationship in the Time and Frequency Domain to Characterise Hydraulic Input to the Brain and Cerebral Vascular Impedance.

    PubMed

    Kim, Mi Ok; O'Rourke, Michael F; Adji, Audrey; Avolio, Alberto P

    2016-01-01

    In the time domain, pulsatile flow and pressure can be characterised as the ratio of the late systolic boost of flow or pressure to the pulse amplitude so as to estimate the hydraulic input to the brain. While vascular impedance has been widely used to represent the load presented to the heart by the systemic circulation, it has not been applied to the cerebral circulation.We set out to study the relationship between the pressure and the flow augmentation index (AIx) in the time domain and to determine cerebral vascular impedance using aortic blood pressure and cerebral blood flow waveforms in the frequency domain. Twenty-four young subjects (aged 21-39 years) were recruited; aortic pressure was derived using SphygmoCor from radial pressure. Flow waveforms were recorded from the middle cerebral artery. In three subjects, we performed the Valsalva manoeuvre to investigate their response to physiological intervention. There was a linear relationship between flow and pressure AIx, and cerebral impedance values were similar to those estimated for low resistance vascular beds. Substantial change in pressure and flow wave contour was observed during the Valsalva manoeuvre; however, the relationship in both the time and the frequency domains were unchanged. This confirms that aortic pressure and cerebral flow waveform can be used to study cerebral impedance.

  3. A comparison of light spot hydrophone and fiber optic probe hydrophone for lithotripter field characterization.

    PubMed

    Smith, N; Sankin, G N; Simmons, W N; Nanke, R; Fehre, J; Zhong, P

    2012-01-01

    The performance of a newly developed light spot hydrophone (LSHD) in lithotripter field characterization was compared to that of the fiber optic probe hydrophone (FOPH). Pressure waveforms produced by a stable electromagnetic shock wave source were measured by the LSHD and FOPH under identical experimental conditions. In the low energy regime, focus and field acoustic parameters matched well between the two hydrophones. At clinically relevant high energy settings for shock wave lithotripsy, the measured leading compressive pressure waveforms matched closely with each other. However, the LSHD recorded slightly larger |P_| (p < 0.05) and secondary peak compressive pressures (p < 0.01) than the FOPH, leading to about 20% increase in total acoustic pulse energy calculated in a 6 mm radius around the focus (p = 0.06). Tensile pulse durations deviated ~5% (p < 0.01) due to tensile wave shortening from cavitation activity using the LSHD. Intermittent compression spikes and laser light reflection artifacts have been correlated to bubble activity based on simultaneous high-speed imaging analysis. Altogether, both hydrophones are adequate for lithotripter field characterization as specified by the international standard IEC 61846.

  4. Numerical prediction of meteoric infrasound signatures

    NASA Astrophysics Data System (ADS)

    Nemec, Marian; Aftosmis, Michael J.; Brown, Peter G.

    2017-06-01

    We present a thorough validation of a computational approach to predict infrasonic signatures of centimeter-sized meteoroids. This is the first direct comparison of computational results with well-calibrated observations that include trajectories, optical masses and ground pressure signatures. We assume that the energy deposition along the meteor trail is dominated by atmospheric drag and simulate a steady, inviscid flow of air in thermochemical equilibrium to compute a near-body pressure signature of the meteoroid. This signature is then propagated through a stratified and windy atmosphere to the ground using a methodology from aircraft sonic-boom analysis. The results show that when the source of the signature is the cylindrical Mach-cone, the simulations closely match the observations. The prediction of the shock rise-time, the zero-peak amplitude of the waveform and the duration of the positive pressure phase are consistently within 10% of the measurements. Uncertainty in primarily the shape of the meteoroid results in a poorer prediction of the trailing part of the waveform. Overall, our results independently verify energy deposition estimates deduced from optical observations.

  5. A remote and non-contact method for obtaining the blood-pulse waveform with a laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Desjardins, Candida L.; Antonelli, Lynn T.; Soares, Edward

    2007-02-01

    The use of lasers to remotely and non-invasively detect the blood pressure waveform of humans and animals would provide a powerful diagnostic tool. Current blood pressure measurement tools, such as a cuff, are not useful for burn and trauma victims, and animals require catheterization to acquire accurate blood pressure information. The purpose of our sensor method and apparatus invention is to remotely and non-invasively detect the blood pulse waveform of both animals and humans. This device is used to monitor an animal or human's skin in proximity to an artery using radiation from a laser Doppler vibrometer (LDV). This system measures the velocity (or displacement) of the pulsatile motion of the skin, indicative of physiological parameters of the arterial motion in relation to the cardiac cycle. Tests have been conducted that measures surface velocity with an LDV and a signal-processing unit, with enhanced detection obtained with optional hardware including a retro-reflector dot. The blood pulse waveform is obtained by integrating the velocity signal to get surface displacement using standard signal processing techniques. Continuous recording of the blood pulse waveform yields data containing information on cardiac health and can be analyzed to identify important events in the cardiac cycle, such as heart rate, the timing of peak systole, left ventricular ejection time and aortic valve closure. Experimental results are provided that demonstrates the current capabilities of the optical, non-contact sensor for the continuous, non-contact recording of the blood pulse waveform without causing patient distress.

  6. Central and peripheral blood pressures in relation to plasma advanced glycation end products in a Chinese population.

    PubMed

    Huang, Q-F; Sheng, C-S; Kang, Y-Y; Zhang, L; Wang, S; Li, F-K; Cheng, Y-B; Guo, Q-H; Li, Y; Wang, J-G

    2016-07-01

    We investigated the association of plasma AGE (advanced glycation end product) concentration with central and peripheral blood pressures and central-to-brachial blood pressure amplification in a Chinese population. The study subjects were from a newly established residential area in the suburb of Shanghai. Using the SphygmoCor system, we recorded radial arterial waveforms and derived aortic waveforms by a generalized transfer function and central systolic and pulse pressure by calibration for brachial blood pressure measured with an oscillometric device. The central-to-brachial pressure amplification was expressed as the central-to-brachial systolic blood pressure difference and pulse pressure difference and ratio. Plasma AGE concentration was measured by the enzyme-linked immunosorbent assay method and logarithmically transformed for statistical analysis. The 1051 participants (age, 55.1±13.1 years) included 663 women. After adjustment for sex, age and other confounding factors, plasma AGE concentration was associated with central but not peripheral blood pressures and with some of the pressure amplification indexes. Indeed, each 10-fold increase in plasma AGE concentration was associated with 2.94 mm Hg (P=0.04) higher central systolic blood pressure and 2.39% lower central-to-brachial pulse pressure ratio (P=0.03). In further subgroup analyses, the association was more prominent in the presence of hypercholesterolemia (+8.11 mm Hg, P=0.008) for central systolic blood pressure and in the presence of overweight and obesity (-4.89%, P=0.009), diabetes and prediabetes (-6.26%, P=0.10) or current smoking (-6.68%, P=0.045) for central-to-brachial pulse pressure ratio. In conclusion, plasma AGE concentration is independently associated with central systolic blood pressure and pulse pressure amplification, especially in the presence of several modifiable cardiovascular risk factors.

  7. Effects of treatment with oxytocin, xylazine butorphanol, guaifenesin, acepromazine, and detomidine on esophageal manometric pressure in conscious horses.

    PubMed

    Wooldridge, Anne A; Eades, Susan C; Hosgood, Giselle L; Moore, Rustin M

    2002-12-01

    To compare effects of oxytocin, acepromazine maleate, xylazine hydrochloride-butorphanol tartrate, guaifenesin, and detomidine hydrochloride on esophageal manometric pressure in horses. 8 healthy adult horses. A nasogastric tube, modified with 3 polyethylene tubes that exited at the postpharyngeal area, thoracic inlet, and distal portion of the esophagus, was fitted for each horse. Amplitude, duration, and rate of propagation of pressure waveforms induced by swallows were measured at 5, 10, 20, 30, and 40 minutes after administration of oxytocin, detomidine, acepromazine, xylazine-butorphanol, guaifenesin, or saline (0.9% NaCI) solution. Number of spontaneous swallows, spontaneous events (contractions that occurred in the absence of a swallow stimulus), and high-pressure events (sustained increases in baseline pressure of > 10 mm Hg) were compared before and after drug adminision. At 5 minutes after administration, detomidine increased waveform amplitude and decreased waveform duration at the thoracic inlet. At 10 minutes after administration, detomidine increased waveform duration at the thoracic inlet. Acepromazine administration increased the number of spontaneous events at the thoracic inlet and distal portion of the esophagus. Acepromazine and detomidine administration increased the number of high-pressure events at the thoracic inlet. Guaifenesin administration increased the number of spontaneous events at the thoracic inlet. Xylazine-butorphanol, detomidine, acepromazine, and guaifenesin administration decreased the number of spontaneous swallows. Detomidine, acepromazine, and a combination of xylazine butorphanol had the greatest effect on esophageal motility when evaluated manometrically. Reduction in spontaneous swallowing and changes in normal, coordinated peristaltic activity are the most clinically relevant effects.

  8. Validation of the inverse pulse wave transit time series as surrogate of systolic blood pressure in MVAR modeling.

    PubMed

    Giassi, Pedro; Okida, Sergio; Oliveira, Maurício G; Moraes, Raimes

    2013-11-01

    Short-term cardiovascular regulation mediated by the sympathetic and parasympathetic branches of the autonomic nervous system has been investigated by multivariate autoregressive (MVAR) modeling, providing insightful analysis. MVAR models employ, as inputs, heart rate (HR), systolic blood pressure (SBP) and respiratory waveforms. ECG (from which HR series is obtained) and respiratory flow waveform (RFW) can be easily sampled from the patients. Nevertheless, the available methods for acquisition of beat-to-beat SBP measurements during exams hamper the wider use of MVAR models in clinical research. Recent studies show an inverse correlation between pulse wave transit time (PWTT) series and SBP fluctuations. PWTT is the time interval between the ECG R-wave peak and photoplethysmography waveform (PPG) base point within the same cardiac cycle. This study investigates the feasibility of using inverse PWTT (IPWTT) series as an alternative input to SBP for MVAR modeling of the cardiovascular regulation. For that, HR, RFW, and IPWTT series acquired from volunteers during postural changes and autonomic blockade were used as input of MVAR models. Obtained results show that IPWTT series can be used as input of MVAR models, replacing SBP measurements in order to overcome practical difficulties related to the continuous sampling of the SBP during clinical exams.

  9. Modeling of an electrohydraulic lithotripter with the KZK equation.

    PubMed

    Averkiou, M A; Cleveland, R O

    1999-07-01

    The acoustic pressure field of an electrohydraulic extracorporeal shock wave lithotripter is modeled with a nonlinear parabolic wave equation (the KZK equation). The model accounts for diffraction, nonlinearity, and thermoviscous absorption. A numerical algorithm for solving the KZK equation in the time domain is used to model sound propagation from the mouth of the ellipsoidal reflector of the lithotripter. Propagation within the reflector is modeled with geometrical acoustics. It is shown that nonlinear distortion within the ellipsoidal reflector can play an important role for certain parameters. Calculated waveforms are compared with waveforms measured in a clinical lithotripter and good agreement is found. It is shown that the spatial location of the maximum negative pressure occurs pre-focally which suggests that the strongest cavitation activity will also be in front of the focus. Propagation of shock waves from a lithotripter with a pressure release reflector is considered and because of nonlinear propagation the focal waveform is not the inverse of the rigid reflector. Results from propagation through tissue are presented; waveforms are similar to those predicted in water except that the higher absorption in the tissue decreases the peak amplitude and lengthens the rise time of the shock.

  10. [The research in a foot pressure measuring system based on LabVIEW].

    PubMed

    Li, Wei; Qiu, Hong; Xu, Jiang; He, Jiping

    2011-01-01

    This paper presents a system of foot pressure measuring system based on LabVIEW. The designs of hardware and software system are figured out. LabVIEW is used to design the application interface for displaying plantar pressure. The system can realize the plantar pressure data acquisition, data storage, waveform display, and waveform playback. It was also shown that the testing results of the system were in line with the changing trend of normal gait, which conformed to human system engineering theory. It leads to the demonstration of system reliability. The system gives vivid and visual results, and provides a new method of how to measure foot-pressure and some references for the design of Insole System.

  11. Separation of Opiate Isomers Using Electrospray Ionization and Paper Spray Coupled to High-Field Asymmetric Waveform Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Manicke, Nicholas E.; Belford, Michael

    2015-05-01

    One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphone, and norcodeine. These isomers cannot be distinguished by tandem mass spectrometry. Separation prior to MS analysis is, therefore, required to distinguish these compounds, which are important in clinical chemistry and toxicology. FAIMS was coupled to a triple quadrupole mass spectrometer, and ionization was performed using either a pneumatically assisted heated electrospray ionization source (H-ESI) or paper spray, a direct analysis method that has been applied to the direct analysis of dried blood spots and other complex samples. We found that FAIMS was capable of separating the three opiate structural isomers using both H-ESI and paper spray as the ionization source.

  12. Subclavian vein pacing and venous pressure waveform measurement for phrenic nerve monitoring during cryoballoon ablation of atrial fibrillation.

    PubMed

    Ghosh, Justin; Singarayar, Suresh; Kabunga, Peter; McGuire, Mark A

    2015-06-01

    The phrenic nerves may be damaged during catheter ablation of atrial fibrillation. Phrenic nerve function is routinely monitored during ablation by stimulating the right phrenic nerve from a site in the superior vena cava (SVC) and manually assessing the strength of diaphragmatic contraction. However the optimal stimulation site, method of assessing diaphragmatic contraction, and techniques for monitoring the left phrenic nerve have not been established. We assessed novel techniques to monitor phrenic nerve function during cryoablation procedures. Pacing threshold and stability of phrenic nerve capture were assessed when pacing from the SVC, left and right subclavian veins. Femoral venous pressure waveforms were used to monitor the strength of diaphragmatic contraction. Stable capture of the left phrenic nerve by stimulation in the left subclavian vein was achieved in 96 of 100 patients, with a median capture threshold of 2.5 mA [inter-quartile range (IQR) 1.4-5.0 mA]. Stimulation of the right phrenic nerve from the subclavian vein was superior to stimulation from the SVC with lower pacing thresholds (1.8 mA IQR 1.4-3.3 vs. 6.0 mA IQR 3.4-8.0, P < 0.001). Venous pressure waveforms were obtained in all patients and attenuation of the waveform was always observed prior to onset of phrenic nerve palsy. The left phrenic nerve can be stimulated from the left subclavian vein. The subclavian veins are the optimal sites for phrenic nerve stimulation. Monitoring the femoral venous pressure waveform is a novel technique for detecting impending phrenic nerve damage. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  13. Arterial pulse wave velocity but not augmentation index is associated with coronary artery disease extent and severity: implications for arterial transfer function applicability.

    PubMed

    Hope, Sarah A; Antonis, Paul; Adam, David; Cameron, James D; Meredith, Ian T

    2007-10-01

    The aim of this study was to test the hypothesis that coronary artery disease extent and severity are associated with central aortic pressure waveform characteristics. Although it is thought that central aortic pressure waveform characteristics, particularly augmentation index, may influence cardiovascular disease progression and predict cardiovascular risk, little is known of the relationship between central waveform characteristics and the severity and extent of coronary artery disease. Central aortic waveforms (2F Millar pressure transducer-tipped catheters) were acquired at the time of coronary angiography for suspected native coronary artery disease in 40 patients (24 male). The severity and extent of disease were assessed independently by two observers using two previously described scoring systems (modified Gensini's stenosis and Sullivan's extent scores). Relationships between disease scores, aortic waveform characteristics, aorto-radial pulse wave velocity and subject demographic features were assessed by regression techniques. Both extent and severity scores were associated with increasing age and male sex (P < 0.001), but no other risk factors. Both scores were independently associated with aorto-radial pulse wave velocity (P < 0.001), which entered a multiple regression model prior to age and sex. This association was not dependent upon blood pressure. Neither score was associated with central aortic augmentation index, by either simple or multiple linear regression techniques including heart rate, subject demographic features and cardiovascular risk factors. Aorto-radial pulse wave velocity, but not central aortic augmentation index, is associated with both the extent and severity of coronary artery disease. This has potentially important implications for applicability of a generalized arterial transfer function.

  14. Atmospheric pressure ion focusing in a high-field asymmetric waveform ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Guevremont, Roger; Purves, Randy W.

    1999-02-01

    The focusing of ions at atmospheric pressure and room temperature in a high-field asymmetric waveform ion mobility spectrometer (FAIMS) has been investigated. FAIMS operates with the application of a high-voltage, high-frequency asymmetric waveform across parallel plates. This establishes conditions wherein an ion migrates towards one of the plates because of a difference in the ion mobility at the low and high electric field conditions during application of the waveform. The migration can be stopped by applying a dc compensation voltage (CV) which serves to create a "balanced" condition wherein the ion experiences no net transverse motion. This method has also been called "transverse field compensation ion mobility spectrometry" and "field ion spectrometry®." If this experiment is conducted using a device with cylindrical geometry, rather than with flat plates, an ion focusing region can exist in the annular space between the two concentric cylinders. Ion trajectory modeling showed that the behavior of the ions in the cylindrical geometry FAIMS analyzer was unlike any previously described atmospheric pressure ion optics system. The ions appeared to be trapped, or focused by being caught between two opposing forces. Requirements for establishing this focus for a given ion were identified: the applied waveform must be asymmetric, the electric field must be sufficiently high that the mobility of the ion deviates from its low-field value during the high-voltage portion of the asymmetric waveform, and finally, the electric field must be nonuniform in space (e.g., cylindrical or spherical geometry). Experimental observations with a prototype FAIMS device, which was designed to measure the radial distribution of ions in the FAIMS analyzer region, have confirmed the results of ion trajectory modeling.

  15. Transcranial motor evoked potential waveform changes in corrective fusion for adolescent idiopathic scoliosis.

    PubMed

    Kobayashi, Kazuyoshi; Imagama, Shiro; Ito, Zenya; Ando, Kei; Hida, Tetsuro; Ito, Kenyu; Tsushima, Mikito; Ishikawa, Yoshimoto; Matsumoto, Akiyuki; Nishida, Yoshihiro; Ishiguro, Naoki

    2017-01-01

    OBJECTIVE Corrective surgery for spinal deformities can lead to neurological complications. Several reports have described spinal cord monitoring in surgery for spinal deformity, but only a few have included patients younger than 20 years with adolescent idiopathic scoliosis (AIS). The goal of this study was to evaluate the characteristics of cases with intraoperative transcranial motor evoked potential (Tc-MEP) waveform deterioration during posterior corrective fusion for AIS. METHODS A prospective database was reviewed, comprising 68 patients with AIS who were treated with posterior corrective fusion in a prospective database. A total of 864 muscles in the lower extremities were chosen for monitoring, and acceptable baseline responses were obtained from 819 muscles (95%). Intraoperative Tc-MEP waveform deterioration was defined as a decrease in intraoperative amplitude of ≥ 70% of the control waveform. Age, Cobb angle, flexibility, operative time, estimated blood loss (EBL), intraoperative body temperature, blood pressure, number of levels fused, and correction rate were examined in patients with and without waveform deterioration. RESULTS The patients (3 males and 65 females) had an average age of 14.4 years (range 11-19 years). The mean Cobb angles before and after surgery were 52.9° and 11.9°, respectively, giving a correction rate of 77.4%. Fourteen patients (20%) exhibited an intraoperative waveform change, and these occurred during incision (14%), after screw fixation (7%), during the rotation maneuver (64%), during placement of the second rod after the rotation maneuver (7%), and after intervertebral compression (7%). Most waveform changes recovered after decreased correction or rest. No patient had a motor deficit postoperatively. In multivariate analysis, EBL (OR 1.001, p = 0.085) and number of levels fused (OR 1.535, p = 0.045) were associated with waveform deterioration. CONCLUSIONS Waveform deterioration commonly occurred during rotation maneuvers and more frequently in patients with a larger preoperative Cobb angle. The significant relationships of EBL and number of levels fused with waveform deterioration suggest that these surgical invasions may be involved in waveform deterioration.

  16. Characterizing Exterior and Interior Tropical Forest Structure Variability with Full-Waveform Airborne LIDAR Data in Lopé, Gabon

    NASA Astrophysics Data System (ADS)

    Marselis, S.; Tang, H.; Blair, J. B.; Hofton, M. A.; Armston, J.; Dubayah, R.

    2017-12-01

    Terrestrial ecotones, transition zones between ecological systems, have been identified as important regions to monitor the effects of environmental and human pressures on ecosystems. To observe such changes, the variability in vegetation horizontal and vertical structure must be characterized. The objective of this study is to quantify changes in vegetation structure in a tropical forest-savanna mosaic using airborne waveform lidar data. The study area is located in the northern part of the Lopé National Park in Gabon and is comprised of the vegetation types: savanna, colonizing forest, monodominant Okoumé forest, young Marantaceae forest and mixed Marantaceae forest. The lidar data were collected by the Land Vegetation and Ice Sensor (LVIS) in early March 2016, during the AfriSAR campaign. Metrics derived from the LVIS waveforms were then used to classify the five main vegetation types and characterize observed structural variability within types and across ecotones. Several supervised and unsupervised classification alogrithms, in combination with statistical analysis, were applied. The investigated methods are promising in their use to directly describe the structural variability within and between different vegetation types, map these vegetation types and the extent and location of their transition zones, and to characterize, among other attributes, the sharpness and width of such ecotones. These results provide important information in ecosystem studies as these methods can be used to study changes in vegetation structure, species-specific habitat, or the effects of deforestation and other human and natural pressures on the exterior and interior forest structure. These methods thus provide ample opportunity to assess the vegetation structure in degraded and second growth tropical forests to explore effects of e.g. grazing, logging or fragmentation. From this study we can conclude that lidar waveform remote sensing is highly useful in distinguishing vegetation types and their transition zones which will be increasingly important when assessing the impact of natural and human pressures on the world's tropical forests.

  17. Insights into Fourier Synthesis and Analysis: Part 2--A Simplified Mathematics.

    ERIC Educational Resources Information Center

    Moore, Guy S. M.

    1988-01-01

    Introduced is an analysis of a waveform into its Fourier components. Topics included are simplified analysis of a square waveform, a triangular waveform, half-wave rectified alternating current (AC), and impulses. Provides the mathematical expression and simplified analysis diagram of each waveform. (YP)

  18. Effects of dwell time of excitation waveform on meniscus movements for a tubular piezoelectric print-head: experiments and model

    NASA Astrophysics Data System (ADS)

    Chang, Jiaqing; Liu, Yaxin; Huang, Bo

    2017-07-01

    In inkjet applications, it is normal to search for an optimal drive waveform when dispensing a fresh fluid or adjusting a newly fabricated print-head. To test trial waveforms with different dwell times, a camera and a strobe light were used to image the protruding or retracting liquid tongues without ejecting any droplets. An edge detection method was used to calculate the lengths of the liquid tongues to draw the meniscus movement curves. The meniscus movement is determined by the time-domain response of the acoustic pressure at the nozzle of the print-head. Starting at the inverse piezoelectric effect, a mathematical model which considers the liquid viscosity in acoustic propagation is constructed to study the acoustic pressure response at the nozzle of the print-head. The liquid viscosity retards the propagation speed and dampens the harmonic amplitude. The pressure response, which is the combined effect of the acoustic pressures generated during the rising time and the falling time and after their propagations and reflections, explains the meniscus movements well. Finally, the optimal dwell time for droplet ejections is discussed.

  19. Tipping point analysis of a large ocean ambient sound record

    NASA Astrophysics Data System (ADS)

    Livina, Valerie N.; Harris, Peter; Brower, Albert; Wang, Lian; Sotirakopoulos, Kostas; Robinson, Stephen

    2017-04-01

    We study a long (2003-2015) high-resolution (250Hz) sound pressure record provided by the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) from the hydro-acoustic station Cape Leeuwin (Australia). We transform the hydrophone waveforms into five bands of 10-min-average sound pressure levels (including the third-octave band) and apply tipping point analysis techniques [1-3]. We report the results of the analysis of fluctuations and trends in the data and discuss the BigData challenges in processing this record, including handling data segments of large size and possible HPC solutions. References: [1] Livina et al, GRL 2007, [2] Livina et al, Climate of the Past 2010, [3] Livina et al, Chaos 2015.

  20. Ventilator waveforms on anesthesia machine: a simple tool for intraoperative mapping of phrenic nerve and mid-cervical roots.

    PubMed

    Georgoulis, George; Papagrigoriou, Eirini; Sindou, Marc

    2015-12-01

    A crucial aspect of surgery on the supraclavicular region, lateral neck, and mid-cervical vertebral region is the identification and sparing of the phrenic nerve and cervical (C4) root that are responsible for diaphragmatic innervation. Therefore intraoperative mapping of these nerve structures can be useful for difficult cases. Electrical stimulation with simultaneous observation of the ventilator waveforms of the anesthesia machine provides an effective method for the precise intraoperative mapping of these structures. In the literature, there is only one publication reporting the use of one of the waveforms (capnography) for this purpose. Capnography and pressure-time waveforms, two mandatory curves in anesthesiological monitoring, were studied under electrical stimulation of the phrenic nerve (one patient) and the C4 root (eight patients). The aim was to detect changes that would verify diaphragmatic contraction. No modifications in anesthesia or surgery and no additional maneuvers were required. In all patients, stimulation was followed by identifiable changes in the two waveforms, compatible with diaphragmatic contraction: acute reduction in amplitude on capnography and repetitive saw-like elevations on pressure-time curve. Frequency of patterns on pressure-time curve coincided with the frequency of stimulation; therefore the two recordings were complementary. This simple method proved effective in identifying the neural structures responsible for diaphragmatic function. We therefore suggest that it should be employed in the various types of surgery where these structures are at risk.

  1. Simultaneous monitoring of static and dynamic intracranial pressure parameters from two separate sensors in patients with cerebral bleeds: comparison of findings

    PubMed Central

    2012-01-01

    Background We recently reported that in an experimental setting the zero pressure level of solid intracranial pressure (ICP) sensors can be altered by electrostatics discharges. Changes in the zero pressure level would alter the ICP level (mean ICP); whether spontaneous changes in mean ICP happen in clinical settings is not known. This can be addressed by comparing the ICP parameters level and waveform of simultaneous ICP signals. To this end, we retrieved our recordings in patients with cerebral bleeds wherein the ICP had been recorded simultaneously from two different sensors. Materials and Methods: During a time period of 10 years, 17 patients with cerebral bleeds were monitored with two ICP sensors simultaneously; sensor 1 was always a solid sensor while Sensor 2 was a solid -, a fluid - or an air-pouch sensor. The simultaneous signals were analyzed with automatic identification of the cardiac induced ICP waves. The output was determined in consecutive 6-s time windows, both with regard to the static parameter mean ICP and the dynamic parameters (mean wave amplitude, MWA, and mean wave rise time, MWRT). Differences in mean ICP, MWA and MWRT between the two sensors were determined. Transfer functions between the sensors were determined to evaluate how sensors reproduce the ICP waveform. Results Comparing findings in two solid sensors disclosed major differences in mean ICP in 2 of 5 patients (40%), despite marginal differences in MWA, MWRT, and linear phase magnitude and phase. Qualitative assessment of trend plots of mean ICP and MWA revealed shifts and drifts of mean ICP in the clinical setting. The transfer function analysis comparing the solid sensor with either the fluid or air-pouch sensors revealed more variable transfer function magnitude and greater differences in the ICP waveform derived indices. Conclusions Simultaneous monitoring of ICP using two solid sensors may show marked differences in static ICP but close to identity in dynamic ICP waveforms. This indicates that shifts in ICP baseline pressure (sensor zero level) occur clinically; trend plots of the ICP parameters also confirm this. Solid sensors are superior to fluid – and air pouch sensors when evaluating the dynamic ICP parameters. PMID:22958653

  2. Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks

    NASA Astrophysics Data System (ADS)

    Wu, Bao; Wu, FengChao; Zhu, YinBo; Wang, Pei; He, AnMin; Wu, HengAn

    2018-04-01

    Micro-ejecta, an instability growth process, occurs at metal/vacuum or metal/gas interface when compressed shock wave releases from the free surface that contains surface defects. We present molecular dynamics (MD) simulations to investigate the ejecta production from tin surface shocked by supported and unsupported waves with pressures ranging from 8.5 to 60.8 GPa. It is found that the loading waveforms have little effect on spike velocity while remarkably affect the bubble velocity. The bubble velocity of unsupported shock loading remains nonzero constant value at late time as observed in experiments. Besides, the time evolution of ejected mass in the simulations is compared with the recently developed ejecta source model, indicating the suppressed ejection of unmelted or partial melted materials. Moreover, different reference positions are chosen to characterize the amount of ejecta under different loading waveforms. Compared with supported shock case, the ejected mass of unsupported shock case saturates at lower pressure. Through the analysis on unloading path, we find that the temperature of tin sample increases quickly from tensile stress state to zero pressure state, resulting in the melting of bulk tin under decaying shock. Thus, the unsupported wave loading exhibits a lower threshold pressure causing the solid-liquid phase transition on shock release than the supported shock loading.

  3. Non-invasive determination of instantaneous brachial blood flow using the oscillometric method.

    PubMed

    Liu, Shing-Hong; Wang, Jia-Jung; Cheng, Da-Chuan

    2009-08-01

    The oscillometric method has been widely used to measure arterial systolic and diastolic blood pressures, but its potential for arterial blood flow measurements still remains to be explored. The aim of this study was to non-invasively determine arterial blood flow using an oscillometric blood flow measurement system. The system consists of a pneumatic elastic cuff, an air-pumping motor, a releaser valve, a pressure transducer, and an airflow meter. To build a non-linear cuff model, we measured airflow pumped into the pneumatic cuff and cuff pressure using an airflow meter and pressure transducer during the inflation period, respectively. During the deflation period, only the pressure transducer was used to record cuff pressure. Based on the cuff model, the oscillometric blood flow waveform was obtained by integrating the oscillometric pressure waveform. We compared arterial blood flow derived from the maximum amplitude of the oscillometric blood flow waveform with Doppler-measured blood flow calculated with the diameters and blood velocities of the brachial arteries in 32 subjects who underwent diagnostic evaluations for peripheral arterial embolism. A linear correlation coefficient of r = 0.716 was found between the oscillometry- and Doppler-based blood flow measurements in the 32 subjects. These results suggest that blood flow passing through the brachial artery can be quantified non-invasively using the oscillometric approach after appropriate calibration.

  4. Relative Position of the Third Characteristic Peak of the Intracranial Pressure Pulse Waveform Morphology Differentiates Normal-Pressure Hydrocephalus Shunt Responders and Nonresponders.

    PubMed

    Hamilton, Robert; Fuller, Jennifer; Baldwin, Kevin; Vespa, Paul; Hu, Xiao; Bergsneider, Marvin

    2016-01-01

    The diversion of cerebrospinal fluid (CSF) remains the principal treatment option for patients with normal-pressure hydrocephalus (NPH). External lumbar drain (ELD) and overnight intracranial pressure (ICP) monitoring are popular prognostic tests for differentiating which patients will benefit from shunting. Using the morphological clustering and analysis of continuous intracranial pulse (MOCAIP) algorithm to extract morphological metrics from the overnight ICP signal, we hypothesize that changes in the third peak of the ICP pulse pressure waveform can be used to differentiate ELD responders and nonresponders. Our study involved 66 patients (72.2 ± 9.8 years) undergoing evaluation for possible NPH, which included overnight ICP monitoring and ELD. ELD outcome was based on clinical notes and divided into nonresponders and responders. MOCAIP was used to extract mean ICP, ICP wave amplitude (waveAmp), and a metric derived to study P3 elevation (P3ratio). Of the 66 patients, 7 were classified as nonresponders and 25 as significant responders. The mean ICP and waveAmp did not vary significantly (p = 0.19 and p = 0.41) between the outcome groups; however, the P3ratio did show a significant difference (p = 0.04). Initial results suggest that the P3ratio might be used as a prognostic indicator for ELD outcome.

  5. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M., E-mail: sehgalc@uphs.upenn.edu

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced eachmore » phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.« less

  6. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound.

    PubMed

    Cary, Theodore W; Reamer, Courtney B; Sultan, Laith R; Mohler, Emile R; Sehgal, Chandra M

    2014-02-01

    To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.

  7. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    PubMed Central

    Cary, Theodore W.; Reamer, Courtney B.; Sultan, Laith R.; Mohler, Emile R.; Sehgal, Chandra M.

    2014-01-01

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging. PMID:24506648

  8. Analysis of noise from reusable solid rocket motor firings

    NASA Astrophysics Data System (ADS)

    Jerome, Trevor W.; Gee, Kent L.; Neilsen, Tracianne B.

    2012-10-01

    As part of investigations into the design of next-generation launch vehicles, near and far-field data were collected during horizontal static firings of reusable solid rocket motors. Spatial variation of overall and one-third octave band pressure levels at sideline and polar arc arrays is analyzed. Spectra at individual microphone locations were analyzed. Positively-skewed pressure waveforms were observed in the probability density functions. Extreme skewness in the first-order estimate of the time derivative was found as a result of the presence of significant acoustic shocks.

  9. Gender-specific association of the plasminogen activator inhibitor-1 4G/5G polymorphism with central arterial blood pressure.

    PubMed

    Björck, Hanna M; Eriksson, Per; Alehagen, Urban; De Basso, Rachel; Ljungberg, Liza U; Persson, Karin; Dahlström, Ulf; Länne, Toste

    2011-07-01

    The functional plasminogen activator inhibitor-1 (PAI-1) 4G/5G polymorphism has previously been associated with hypertension. In recent years, central blood pressure, rather than brachial has been argued a better measure of cardiovascular damage and clinical outcome. The aim of this study was to investigate the possible influence of the 4G/5G polymorphism on central arterial blood pressure in a cohort of elderly individuals. We studied 410 individuals, 216 men and 194 women, aged 70-88. Central pressures and pulse waveforms were calculated from the radial artery pressure waveform by the use of the SphygmoCor system and a generalized transfer function. Brachial pressure was recorded using oscillometric technique (Dinamap, Critikon, Tampa, FL). PAI-1 antigen was determined in plasma. The results showed that central pressures were higher in women carrying the PAI-1 4G/4G genotype compared to female carriers of the 5G/5G genotype, (P = 0.025, P = 0.002, and P = 0.002 for central systolic-, diastolic-, and mean arterial pressure, respectively). The association remained after adjustment for potentially confounding factors related to hypertension. No association of the PAI-1 genotype with blood pressure was found in men. Multiple regression analysis revealed an association between PAI-1 genotype and plasma PAI-1 levels (P = 0.048). Our findings show a gender-specific association of the PAI-1 4G/5G polymorphism with central arterial blood pressure. The genotype effect was independent of other risk factors related to hypertension, suggesting that impaired fibrinolytic potential may play an important role in the development of central hypertension in women.

  10. Modeling measured glottal volume velocity waveforms.

    PubMed

    Verneuil, Andrew; Berry, David A; Kreiman, Jody; Gerratt, Bruce R; Ye, Ming; Berke, Gerald S

    2003-02-01

    The source-filter theory of speech production describes a glottal energy source (volume velocity waveform) that is filtered by the vocal tract and radiates from the mouth as phonation. The characteristics of the volume velocity waveform, the source that drives phonation, have been estimated, but never directly measured at the glottis. To accomplish this measurement, constant temperature anemometer probes were used in an in vivo canine constant pressure model of phonation. A 3-probe array was positioned supraglottically, and an endoscopic camera was positioned subglottically. Simultaneous recordings of airflow velocity (using anemometry) and glottal area (using stroboscopy) were made in 3 animals. Glottal airflow velocities and areas were combined to produce direct measurements of glottal volume velocity waveforms. The anterior and middle parts of the glottis contributed significantly to the volume velocity waveform, with less contribution from the posterior part of the glottis. The measured volume velocity waveforms were successfully fitted to a well-known laryngeal airflow model. A noninvasive measured volume velocity waveform holds promise for future clinical use.

  11. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood.

    PubMed

    Scully, Christopher G; Selvaraj, Nandakumar; Romberg, Frederick W; Wardhan, Richa; Ryan, John; Florian, John P; Silverman, David G; Shelley, Kirk H; Chon, Ki H

    2012-07-01

    We designed this study to determine if 900 mL of blood withdrawal during spontaneous breathing in healthy volunteers could be detected by examining the time-varying spectral amplitude of the photoplethysmographic (PPG) waveform in the heart rate frequency band and/or in the breathing rate frequency band before significant changes occurred in heart rate or arterial blood pressure. We also identified the best PPG probe site for early detection of blood volume loss by testing ear, finger, and forehead sites. Eight subjects had 900 mL of blood withdrawn followed by reinfusion of 900 mL of blood. Physiological monitoring included PPG waveforms from ear, finger, and forehead probe sites, standard electrocardiogram, and standard blood pressure cuff measurements. The time-varying amplitude sequences in the heart rate frequency band and breathing rate frequency band present in the PPG waveform were extracted from high-resolution time-frequency spectra. These amplitudes were used as a parameter for blood loss detection. Heart rate and arterial blood pressure did not significantly change during the protocol. Using time-frequency analysis of the PPG waveform from ear, finger, and forehead probe sites, the amplitude signal extracted at the frequency corresponding to the heart rate significantly decreased when 900 mL of blood was withdrawn, relative to baseline (all P < 0.05); for the ear, the corresponding signal decreased when only 300 mL of blood was withdrawn. The mean percent decrease in the amplitude of the heart rate component at 900 mL blood loss relative to baseline was 45.2% (38.2%), 42.0% (29.2%), and 42.3% (30.5%) for ear, finger, and forehead probe sites, respectively, with the lower 95% confidence limit shown in parentheses. After 900 mL blood reinfusion, the amplitude signal at the heart rate frequency showed a recovery towards baseline. There was a clear separation of amplitude values at the heart rate frequency between baseline and 900 mL blood withdrawal. Specificity and sensitivity were both found to be 87.5% with 95% confidence intervals (47.4%, 99.7%) for ear PPG signals for a chosen threshold value that was optimized to separate the 2 clusters of amplitude values (baseline and blood loss) at the heart rate frequency. Meanwhile, no significant changes in the spectral amplitude in the frequency band corresponding to respiration were found. A time-frequency spectral method detected blood loss in spontaneously breathing subjects before the onset of significant changes in heart rate or blood pressure. Spectral amplitudes at the heart rate frequency band were found to significantly decrease during blood loss in spontaneously breathing subjects, whereas those at the breathing rate frequency band did not significantly change. This technique may serve as a valuable tool in intraoperative and trauma settings to detect and monitor hemorrhage.

  12. Velocity Field Measurements of Human Coughing Using Time Resolved Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Khan, T.; Marr, D. R.; Higuchi, H.; Glauser, M. N.

    2003-11-01

    Quantitative fluid mechanics analysis of human coughing has been carried out using new Time Resolved Particle Image Velocimetry (TRPIV). The study involves measurement of velocity vector time-histories and velocity profiles. It is focused on the average normal human coughing. Some work in the past on cough mechanics has involved measurement of flow rates, tidal volumes and sub-glottis pressure. However, data of unsteady velocity vector field of the exiting highly time-dependent jets is not available. In this study, human cough waveform data are first acquired in vivo using conventional respiratory instrumentation for various volunteers of different gender/age groups. The representative waveform is then reproduced with a coughing/breathing simulator (with or without a manikin) for TRPIV measurements and analysis. The results of this study would be useful not only for designing of indoor air quality and heating, ventilation and air conditioning systems, but also for devising means of protection against infectious diseases.

  13. Prediction of wound healing after minor amputations of the diabetic foot.

    PubMed

    Caruana, Luana; Formosa, Cynthia; Cassar, Kevin

    2015-08-01

    To identify any significant differences in physiological test results between healing and non healing amputation sites. A single center prospective non-experimental study design was conducted on fifty subjects living with type 2 diabetes and requiring a forefoot or toe amputation. Subjects underwent non-invasive physiological testing preoperatively. These included assessment of pedal pulses, preoperative arterial spectral waveforms at the ankle, absolute toe pressures, toe-brachial pressure index and ankle-brachial pressure index. After 6 weeks, patients were examined to assess whether the amputation site was completely healed, was healing, had developed complications, or did not heal. There was no significant difference in ABPI between the healed/healing and the non-healing groups. Mean TBI (p=0.031) and toe pressure readings (p=0.014) were significantly higher in the healed/healing group compared to the non healing group. A significant difference was also found in ankle spectral waveforms between the two groups (p=0.028). TBIs, toe pressures and spectral waveforms at the ankle are better predictors of likelihood of healing and non-healing after minor amputation than ABPIs. ABPI alone is a poor indicator of the likelihood of healing of minor amputations and should not be relied on to determine need for revascularization procedures before minor amputation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Automated Analysis, Classification, and Display of Waveforms

    NASA Technical Reports Server (NTRS)

    Kwan, Chiman; Xu, Roger; Mayhew, David; Zhang, Frank; Zide, Alan; Bonggren, Jeff

    2004-01-01

    A computer program partly automates the analysis, classification, and display of waveforms represented by digital samples. In the original application for which the program was developed, the raw waveform data to be analyzed by the program are acquired from space-shuttle auxiliary power units (APUs) at a sampling rate of 100 Hz. The program could also be modified for application to other waveforms -- for example, electrocardiograms. The program begins by performing principal-component analysis (PCA) of 50 normal-mode APU waveforms. Each waveform is segmented. A covariance matrix is formed by use of the segmented waveforms. Three eigenvectors corresponding to three principal components are calculated. To generate features, each waveform is then projected onto the eigenvectors. These features are displayed on a three-dimensional diagram, facilitating the visualization of the trend of APU operations.

  15. Volcano infrasonic signals and magma degassing: First-order experimental insights and application to Stromboli

    NASA Astrophysics Data System (ADS)

    Lane, Stephen J.; James, Mike R.; Corder, Steven B.

    2013-09-01

    We demonstrate the rise and expansion of a gas slug as a fluid dynamic source mechanism for infrasonic signals generated by gas puffing and impulsive explosions at Stromboli. The fluid dynamics behind the rise, expansion and burst of gas slugs in the confines of an experimental tube can be characterised into different regimes. Passive expansion occurs for small gas masses, where negligible dynamic gas over-pressure develops during bubble ascent and, prior to burst, meniscus oscillation forms an important infrasonic source. With increasing gas mass, a transition regime emerges where dynamic gas over-pressure is significant. For larger gas masses, this regime transforms to fully explosive behaviour, where gas over-pressure dominates as an infrasonic source and bubble bursting is not a critical factor. The rate of change of excess pressure in the experimental tube was used to generate synthetic infrasonic waveforms. Qualitatively, the waveforms compare well to infrasonic waveforms measured from a range of eruptions at Stromboli. Assuming pressure continuity during flow through the vent, and applying dimensionless arguments from the first-order experiments, allows estimation of eruption metrics from infrasonic signals measured at Stromboli. Values of bubble length, gas mass and over-pressure calculated from infrasonic signals are in excellent agreement with those derived by independent means for eruptions at Stromboli, therefore providing a method of estimating eruption metrics from infrasonic measurement.

  16. Peripheral Venous Waveform Analysis for Detecting Hemorrhage and Iatrogenic Volume Overload in a Porcine Model.

    PubMed

    Hocking, Kyle M; Sileshi, Ban; Baudenbacher, Franz J; Boyer, Richard B; Kohorst, Kelly L; Brophy, Colleen M; Eagle, Susan S

    2016-10-01

    Unrecognized hemorrhage and unguided resuscitation is associated with increased perioperative morbidity and mortality. The authors investigated peripheral venous waveform analysis (PIVA) as a method for quantitating hemorrhage as well as iatrogenic fluid overload during resuscitation. The authors conducted a prospective study on Yorkshire Pigs (n = 8) undergoing hemorrhage, autologous blood return, and administration of balanced crystalloid solution beyond euvolemia. Intra-arterial blood pressure, electrocardiogram, and pulse oximetry were applied to each subject. Peripheral venous pressure was measured continuously through an upper extremity standard peripheral IV catheter and analyzed with LabChart. The primary outcome was comparison of change in the first fundamental frequency (f1) of PIVA with standard and invasive monitoring and shock index (SI). Hemorrhage, return to euvolemia, and iatrogenic fluid overload resulted in significantly non-zero slopes of f1 amplitude. There were no significant differences in heart rate or mean arterial pressure, and a late change in SI. For the detection of hypovolemia the PIVA f1 amplitude change generated an receiver operator curves (ROC) curve with an area under the curve (AUC) of 0.93; heart rate AUC = 0.61; mean arterial pressure AUC = 0.48, and SI AUC = 0.72. For hypervolemia the f1 amplitude generated an ROC curve with an AUC of 0.85, heart rate AUC = 0.62, mean arterial pressure AUC = 0.63, and SI AUC = 0.65. In this study, PIVA demonstrated a greater sensitivity for detecting acute hemorrhage, return to euvolemia, and iatrogenic fluid overload compared with standard monitoring and SI. PIVA may provide a low-cost, minimally invasive monitoring solution for monitoring and resuscitating patients with perioperative hemorrhage.

  17. Estimation of Individual-specific Progression to Impending Cardiovascular Instability using Arterial Waveforms

    DTIC Science & Technology

    2013-08-08

    pressure; SpO2, oxygen saturation of arterial blood by pulse oximetry. -75-60-45-30-15Baseline 40 50 60 70 80 90 100 HT LT LBNP, mmHg S tr o ke V o...systolic arterial blood pressure (mmHg) generated from the Finometer. R-R intervals (ms) were used to calculate heart rate (beats/min). Oxygen saturation of...The CRI can be integrated into any standard monitor that generates an arterial waveform, including a finger pulse oximeter that is available in the

  18. Nonlinear waveform distortion and shock formation in the near field of a continuous wave piston source

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Cathignol, Dominique

    2004-05-01

    A classical effect of nonlinear acoustics is that a plane sinusoidal acoustic wave propagating in a nonlinear medium transforms to a sawtooth wave with one shock per cycle. However, the waveform evolution can be quite different in the near field of a plane source due to diffraction. Previous numerical simulations of nonlinear acoustic waves in the near field of a circular piston source predict the development of two shocks per wave cycle [Khokhlova et al., J. Acoust. Soc. Am. 110, 95-108 (2001)]. Moreover, at some locations the peak pressure may be up to 4 times the source amplitude. The motivation of this work was to experimentally verify and further explain the phenomena of the nonlinear waveform distortion. Measurements were conducted in water with a 47-mm-diameter unfocused transducer, working at 1-MHz frequency. For pressure amplitudes higher than 0.5 MPa, two shocks per cycle were observed in the waveform beyond the last minimum of the fundamental harmonic amplitude. With the increase of the observation distance, these two shocks collided and formed one shock (per cycle), i.e., the waveform developed into the classical sawtooth wave. The experimental results were in a very good agreement with the modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation.

  19. Mach-Zehnder interferometry method for acoustic shock wave measurements in air and broadband calibration of microphones.

    PubMed

    Yuldashev, Petr; Karzova, Maria; Khokhlova, Vera; Ollivier, Sébastien; Blanc-Benon, Philippe

    2015-06-01

    A Mach-Zehnder interferometer is used to measure spherically diverging N-waves in homogeneous air. An electrical spark source is used to generate high-amplitude (1800 Pa at 15 cm from the source) and short duration (50 μs) N-waves. Pressure waveforms are reconstructed from optical phase signals using an Abel-type inversion. It is shown that the interferometric method allows one to reach 0.4 μs of time resolution, which is 6 times better than the time resolution of a 1/8-in. condenser microphone (2.5 μs). Numerical modeling is used to validate the waveform reconstruction method. The waveform reconstruction method provides an error of less than 2% with respect to amplitude in the given experimental conditions. Optical measurement is used as a reference to calibrate a 1/8-in. condenser microphone. The frequency response function of the microphone is obtained by comparing the spectra of the waveforms resulting from optical and acoustical measurements. The optically measured pressure waveforms filtered with the microphone frequency response are in good agreement with the microphone output voltage. Therefore, an optical measurement method based on the Mach-Zehnder interferometer is a reliable tool to accurately characterize evolution of weak shock waves in air and to calibrate broadband acoustical microphones.

  20. Waveform-preserved unidirectional acoustic transmission based on impedance-matched acoustic metasurface and phononic crystal

    NASA Astrophysics Data System (ADS)

    Song, Ai-Ling; Chen, Tian-Ning; Wang, Xiao-Peng; Wan, Le-Le

    2016-08-01

    The waveform distortion happens in most of the unidirectional acoustic transmission (UAT) devices proposed before. In this paper, a novel type of waveform-preserved UAT device composed of an impedance-matched acoustic metasurface (AMS) and a phononic crystal (PC) structure is proposed and numerically investigated. The acoustic pressure field distributions and transmittance are calculated by using the finite element method. The subwavelength AMS that can modulate the wavefront of the transmitted wave at will is designed and the band structure of the PC structure is calculated and analyzed. The sound pressure field distributions demonstrate that the unidirectional acoustic transmission can be realized by the proposed UAT device without changing the waveforms of the output waves, which is the distinctive feature compared with the previous UAT devices. The physical mechanism of the unidirectional acoustic transmission is discussed by analyzing the refraction angle changes and partial band gap map. The calculated transmission spectra show that the UAT device is valid within a relatively broad frequency range. The simulation results agree well with the theoretical predictions. The proposed UAT device provides a good reference for designing waveform-preserved UAT devices and has potential applications in many fields, such as medical ultrasound, acoustic rectifiers, and noise insulation.

  1. The leaking mode problem in atmospheric acoustic-gravity wave propagation

    NASA Technical Reports Server (NTRS)

    Kinney, W. A.; Pierce, A. D.

    1976-01-01

    The problem of predicting the transient acoustic pressure pulse at long horizontal distances from large explosions in the atmosphere is examined. Account is taken of poles off the real axis and of branch line integrals in the general integral governing the transient waveform. Perturbation techniques are described for the computation of the imaginary ordinate of the poles and numerical studies are described for a model atmosphere terminated by a halfspace with c = 478 m/sec above 125 km. For frequencies less than 0.0125 rad/sec, the GR sub 1 mode, for example, is found to have a frequency dependent amplitude decay of the order of 0.0001 nepers/km. Examples of numerically synthesized transient waveforms are exhibited with and without the inclusion of leaking modes. The inclusion of leaking modes results in waveforms with a more marked beginning rather than a low frequency oscillating precursor of gradually increasing amplitude. Also, the revised computations indicate that waveforms invariably begin with a pressure rise, a result supported by other theoretical considerations and by experimental data.

  2. Development of a theoretical framework for analyzing cerebrospinal fluid dynamics

    PubMed Central

    Cohen, Benjamin; Voorhees, Abram; Vedel, Søren; Wei, Timothy

    2009-01-01

    Background To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservation; but control volume analysis enforces independent conditions on pressure and volume. Previously, utilization of clinical measurements has been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Methods Control volume analysis is presented to introduce the reader to the theoretical background of this foundational fluid mechanics technique for application to general control volumes. This approach is able to directly incorporate the diverse measurements obtained by clinicians to better elucidate intracranial dynamics and progression to disorder. Results Several examples of meaningful intracranial control volumes and the particular measurement sets needed for the analysis are discussed. Conclusion Control volume analysis provides a framework to guide the type and location of measurements and also a way to interpret the resulting data within a fundamental fluid physics analysis. PMID:19772652

  3. Measurement and Modeling of Acoustic Fields in a Gel Phantom at High Intensities

    NASA Astrophysics Data System (ADS)

    Canney, Michael S.; Bailey, Michael R.; Khokhlova, Vera A.; Crum, Lawrence A.

    2006-05-01

    The goal of this work was to compare measured and numerically predicted HIFU pressure waveforms in water and a tissue-mimicking phantom. Waveforms were measured at the focus of a 2-MHz HIFU transducer with a fiber optic hydrophone. The transducer was operated with acoustic powers ranging from 2W to 300W. A KZK-type equation was used for modeling the experimental conditions. Strongly asymmetric nonlinear waves with peak positive pressure up to 80 MPa and peak negative pressure up to 20 MPa were measured in water, while waves up to 50 MPa peak positive pressure and 15 MPa peak negative pressure were measured in tissue phantoms. The values of peak negative pressure corresponded well with numerical simulations and were significantly smaller than predicted by linear extrapolation from low-level measurements. The values of peak positive pressures differed only at high levels of excitation where bandwidth limitations of the hydrophone failed to fully capture the predicted sharp shock fronts.

  4. Reliability of pulse waveform separation analysis: effects of posture and fasting.

    PubMed

    Stoner, Lee; Credeur, Daniel; Fryer, Simon; Faulkner, James; Lambrick, Danielle; Gibbs, Bethany Barone

    2017-03-01

    Oscillometric pulse wave analysis devices enable, with relative simplicity and objectivity, the measurement of central hemodynamic parameters. The important parameters are central blood pressures and indices of arterial wave reflection, including wave separation analysis (backward pressure component Pb and reflection magnitude). This study sought to determine whether the measurement precision (between-day reliability) of Pb and reflection magnitude: exceeds the criterion for acceptable reliability; and is affected by posture (supine, seated) and fasting state. Twenty healthy adults (50% female, 27.9 years, 24.2 kg/m) were tested on six different mornings: 3 days fasted, 3 days nonfasted condition. On each occasion, participants were tested in supine and seated postures. Oscillometric pressure waveforms were recorded on the left upper arm. The criterion intra-class correlation coefficient value of 0.75 was exceeded for Pb (0.76) and reflection magnitude (0.77) when participants were assessed under the combined supine-fasted condition. The intra-class correlation coefficient was lowest for Pb in seated-nonfasted condition (0.57), and lowest for reflection magnitude in the seated-fasted condition (0.56). For Pb, the smallest detectible change that must be exceeded in order for a significant change to occur in an individual was 2.5 mmHg, and for reflection magnitude, the smallest detectable change was 8.5%. Assessments of Pb and reflection magnitude are as follows: exceed the criterion for acceptable reliability; and are most reliable when participants are fasted in a supine position. The demonstrated reliability suggests sufficient precision to detect clinically meaningful changes in reflection magnitude and Pb.

  5. Doppler indexes of left ventricular systolic and diastolic flow and central pulse pressure in relation to renal resistive index.

    PubMed

    Kuznetsova, Tatiana; Cauwenberghs, Nicholas; Knez, Judita; Thijs, Lutgarde; Liu, Yan-Ping; Gu, Yu-Mei; Staessen, Jan A

    2015-04-01

    The cardio-renal interaction occurs via hemodynamic and humoral factors. Noninvasive assessment of renal hemodynamics is currently possible by assessment of renal resistive index (RRI) derived from intrarenal Doppler arterial waveforms as ((peak systolic velocity - end-diastolic velocity)/peak systolic velocity). Limited information is available regarding the relationship between RRI and cardiac hemodynamics. We investigated these associations in randomly recruited subjects from a general population. In 171 participants (48.5% women; mean age, 52.2 years), using pulsed wave Doppler, we measured RRI (mean, 0.60) and left ventricular outflow tract (LVOT) and transmitral (E and A) blood flow peak velocities and its velocity time integrals (VTI). Using carotid applanation tonometry, we measured central pulse pressure and arterial stiffness indexes such as augmentation pressure and carotid-femoral pulse wave velocity. In stepwise regression analysis, RRI independently and significantly increased with female sex, age, body weight, brachial pulse pressure, and use of β-blockers, whereas it decreased with body height and mean arterial pressure. In multivariable-adjusted models with central pulse pressure and arterial stiffness indexes as the explanatory variables, we observed a significant and positive correlation of RRI only with central pulse pressure (P < 0.0001). Among the Doppler indexes of left ventricular blood flow, RRI was significantly and positively associated with LVOT and E peak velocities (P ≤ 0.012) and VTIs (P ≤ 0.010). We demonstrated that in unselected subjects RRI was significantly associated with central pulse pressure and left ventricular systolic and diastolic Doppler blood flow indexes. Our findings imply that in addition to the anthropometric characteristics, cardiac hemodynamic factors influence the intrarenal arterial Doppler waveform patterns. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Modeling Nonlinear Acoustic Standing Waves in Resonators: Theory and Experiments

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Li, Xiaofan; Finkbeiner, Joshua

    2004-01-01

    The overall goal of the cooperative research with NASA Glenn is to fundamentally understand, computationally model, and experimentally validate non-linear acoustic waves in enclosures with the ultimate goal of developing a non-contact acoustic seal. The longer term goal is to transition the Glenn acoustic seal innovation to a prototype sealing device. Lucas and coworkers are credited with pioneering work in Resonant Macrosonic Synthesis (RMS). Several Patents and publications have successfully illustrated the concept of Resonant Macrosonic Synthesis. To utilize this concept in practical application one needs to have an understanding of the details of the phenomenon and a predictive tool that can examine the waveforms produced within resonators of complex shapes. With appropriately shaped resonators one can produce un-shocked waveforms of high amplitude that would result in very high pressures in certain regions. Our goal is to control the waveforms and exploit the high pressures to produce an acoustic seal. Note that shock formation critically limits peak-to-peak pressure amplitudes and also causes excessive energy dissipation. Proper shaping of the resonator is thus critical to the use of this innovation.

  7. Non-invasive method for the aortic blood pressure waveform estimation using the measured radial EBI

    NASA Astrophysics Data System (ADS)

    Krivoshei, Andrei; Lamp, Jürgen; Min, Mart; Uuetoa, Tiina; Uuetoa, Hasso; Annus, Paul

    2013-04-01

    The paper presents a method for the Central Aortic Pressure (CAP) waveform estimation from the measured radial Electrical Bio-Impedance (EBI). The method proposed here is a non-invasive and health-safe approach to estimate the cardiovascular system parameters, such as the Augmentation Index (AI). Reconstruction of the CAP curve from the EBI data is provided by spectral domain transfer functions (TF), found on the bases of data analysis. Clinical experiments were carried out on 30 patients in the Center of Cardiology of East-Tallinn Central Hospital during coronary angiography on patients in age of 43 to 80 years. The quality and reliability of the method was tested by comparing the evaluated augmentation indices obtained from the invasively measured CAP data and from the reconstructed curve. The correlation coefficient r = 0.89 was calculated in the range of AICAP values from 5 to 28. Comparing to the traditional tonometry based method, the developed one is more convenient to use and it allows long-term monitoring of the AI, what is not possible with tonometry probes.

  8. Artificial arterial blood pressure artifact models and an evaluation of a robust blood pressure and heart rate estimator

    PubMed Central

    Li, Qiao; Mark, Roger G; Clifford, Gari D

    2009-01-01

    Background Within the intensive care unit (ICU), arterial blood pressure (ABP) is typically recorded at different (and sometimes uneven) sampling frequencies, and from different sensors, and is often corrupted by different artifacts and noise which are often non-Gaussian, nonlinear and nonstationary. Extracting robust parameters from such signals, and providing confidences in the estimates is therefore difficult and requires an adaptive filtering approach which accounts for artifact types. Methods Using a large ICU database, and over 6000 hours of simultaneously acquired electrocardiogram (ECG) and ABP waveforms sampled at 125 Hz from a 437 patient subset, we documented six general types of ABP artifact. We describe a new ABP signal quality index (SQI), based upon the combination of two previously reported signal quality measures weighted together. One index measures morphological normality, and the other degradation due to noise. After extracting a 6084-hour subset of clean data using our SQI, we evaluated a new robust tracking algorithm for estimating blood pressure and heart rate (HR) based upon a Kalman Filter (KF) with an update sequence modified by the KF innovation sequence and the value of the SQI. In order to do this, we have created six novel models of different categories of artifacts that we have identified in our ABP waveform data. These artifact models were then injected into clean ABP waveforms in a controlled manner. Clinical blood pressure (systolic, mean and diastolic) estimates were then made from the ABP waveforms for both clean and corrupted data. The mean absolute error for systolic, mean and diastolic blood pressure was then calculated for different levels of artifact pollution to provide estimates of expected errors given a single value of the SQI. Results Our artifact models demonstrate that artifact types have differing effects on systolic, diastolic and mean ABP estimates. We show that, for most artifact types, diastolic ABP estimates are less noise-sensitive than mean ABP estimates, which in turn are more robust than systolic ABP estimates. We also show that our SQI can provide error bounds for both HR and ABP estimates. Conclusion The KF/SQI-fusion method described in this article was shown to provide an accurate estimate of blood pressure and HR derived from the ABP waveform even in the presence of high levels of persistent noise and artifact, and during extreme bradycardia and tachycardia. Differences in error between artifact types, measurement sensors and the quality of the source signal can be factored into physiological estimation using an unbiased adaptive filter, signal innovation and signal quality measures. PMID:19586547

  9. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.

    PubMed

    Xiang, J; Siddiqui, A H; Meng, H

    2014-12-18

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Performance, Facility Pressure Effects, and Stability Characterization Tests of NASA's Hall Effect Rocket with Magnetic Shielding Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Herman, Daniel; Peterson, Peter Y.; Williams, George J.; Gilland, James; Hofer, Richard; Mikellides, Ioannis

    2016-01-01

    NASA's Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) has been the subject of extensive technology maturation in preparation for flight system development. Part of the technology maturation effort included experimental evaluation of the TDU-1 thruster with conducting and dielectric front pole cover materials in two different electrical configurations. A graphite front magnetic pole cover thruster configuration with the thruster body electrically tied to cathode, and an alumina front pole cover thruster configuration with the thruster body floating were evaluated. Both configurations were also evaluated at different facility background pressure conditions to evaluate background pressure effects on thruster operation. Performance characterization tests found that higher thruster performance was attained with the graphite front pole cover configuration with the thruster electrically tied to cathode. A total thrust efficiency of 68% and a total specific impulse of 2,820 s was demonstrated at a discharge voltage of 600 V and a discharge power of 12.5 kW. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations and with maps of the discharge current-voltage-magnetic field (IVB). Analysis of TDU-1 discharge current waveforms found that lower normalized discharge current peak-to-peak and root mean square magnitudes were attained when the thruster was electrically floated with alumina front pole covers. Background pressure effects characterization tests indicated that the thruster performance and stability were mostly invariant to changes in the facility background pressure for vacuum chamber pressure below 1×10-5 Torr-Xe (for thruster flow rates of 20.5 mg/s). Power spectral density analysis of the discharge current waveforms showed that increasing the vacuum chamber background pressure resulted in a higher discharge current dominant breathing mode frequency. Finally, IVB maps of the TDU-1 thruster indicated that the discharge current became more oscillatory with higher discharge current peak-to-peak and RMS values with increased facility background pressure at lower thruster mass flow rates; thruster operation at higher flow rates resulted in less change to the thruster's IVB characteristics with elevated background pressure.

  11. Glottal volume velocity waveform characteristics in subjects with and without vocal training, related to gender, sound intensity, fundamental frequency, and age.

    PubMed

    Sulter, A M; Wit, H P

    1996-11-01

    Glottal volume velocity waveform characteristics of 224 subjects, categorized in four groups according to gender and vocal training, were determined, and their relations to sound-pressure level, fundamental frequency, intra-oral pressure, and age were analyzed. Subjects phonated at three intensity conditions. The glottal volume velocity waveforms were obtained by inverse filtering the oral flow. Glottal volume velocity waveforms were parameterized with flow-based (minimum flow, ac flow, average flow, maximum flow declination rate) and time-based parameters (closed quotient, closing quotient, speed quotient), as well as with derived parameters (vocal efficiency and glottal resistance). Higher sound-pressure levels, intra-oral pressures, and flow-parameter values (ac flow, maximum flow declination rate) were observed, when compared with previous investigations. These higher values might be the result of the specific phonation tasks (stressed /ae/ vowel in a word and a sentence) or filtering processes. Few statistically significant (p < 0.01) differences in parameters were found between untrained and trained subjects [the maximum flow declination rate and the closing quotient were higher in trained women (p < 0.001), and the speed quotient was higher in trained men (p < 0.005)]. Several statistically significant parameter differences were found between men and women [minimum flow, ac flow, average flow, maximum flow declination rate, closing quotient, glottal resistance (p < 0.001), and closed quotient (p < 0.005)]. Significant effects of intensity condition were observed on ac flow, maximum flow declination rate, closing quotient, and vocal efficiency in women (p < 0.005), and on minimum flow, ac flow, average flow, maximum flow declination rate, closed quotient, and vocal efficiency in men (p < 0.01).

  12. Modeling of the dolphin's clicking sound source: The influence of the critical parameters

    NASA Astrophysics Data System (ADS)

    Dubrovsky, N. A.; Gladilin, A.; Møhl, B.; Wahlberg, M.

    2004-07-01

    A physical and a mathematical models of the dolphin’s source of echolocation clicks have been recently proposed. The physical model includes a bottle of pressurized air connected to the atmosphere with an underwater rubber tube. A compressing rubber ring is placed on the underwater portion of the tube. The ring blocks the air jet passing through the tube from the bottle. This ring can be brought into self-oscillation by the air jet. In the simplest case, the ring displacement follows a repeated triangular waveform. Because the acoustic pressure gradient is proportional to the second time derivative of the displacement, clicks arise at the bends of the displacement waveform. The mathematical model describes the dipole oscillations of a sphere “frozen” in the ring and calculates the waveform and the sound pressure of the generated clicks. The critical parameters of the mathematical model are the radius of the sphere and the peak value and duration of the triangular displacement curve. This model allows one to solve both the forward (deriving the properties of acoustic clicks from the known source parameters) and the inverse (calculating the source parameters from the acoustic data) problems. Data from click records of Odontocetes were used to derive both the displacement waveforms and the size of the “frozen sphere” or a structure functionally similar to it. The mathematical model predicts a maximum source level of up to 235 dB re 1 μPa at 1-m range when using a 5-cm radius of the “frozen” sphere and a 4-mm maximal displacement. The predicted sound pressure level is similar to that of the clicks produced by Odontocetest.

  13. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  14. Experimental feasibility study of estimation of the normalized central blood pressure waveform from radial photoplethysmogram.

    PubMed

    Zahedi, Edmond; Sohani, Vahid; Ali, M A Mohd; Chellappan, Kalaivani; Beng, Gan Kok

    2015-01-01

    The feasibility of a novel system to reliably estimate the normalized central blood pressure (CBPN) from the radial photoplethysmogram (PPG) is investigated. Right-wrist radial blood pressure and left-wrist PPG were simultaneously recorded in five different days. An industry-standard applanation tonometer was employed for recording radial blood pressure. The CBP waveform was amplitude-normalized to determine CBPN. A total of fifteen second-order autoregressive models with exogenous input were investigated using system identification techniques. Among these 15 models, the model producing the lowest coefficient of variation (CV) of the fitness during the five days was selected as the reference model. Results show that the proposed model is able to faithfully reproduce CBPN (mean fitness = 85.2% ± 2.5%) from the radial PPG for all 15 segments during the five recording days. The low CV value of 3.35% suggests a stable model valid for different recording days.

  15. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  16. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  17. On the Analysis of Fingertip Photoplethysmogram Signals

    PubMed Central

    Elgendi, Mohamed

    2012-01-01

    Photoplethysmography (PPG) is used to estimate the skin blood flow using infrared light. Researchers from different domains of science have become increasingly interested in PPG because of its advantages as non-invasive, inexpensive, and convenient diagnostic tool. Traditionally, it measures the oxygen saturation, blood pressure, cardiac output, and for assessing autonomic functions. Moreover, PPG is a promising technique for early screening of various atherosclerotic pathologies and could be helpful for regular GP-assessment but a full understanding of the diagnostic value of the different features is still lacking. Recent studies emphasise the potential information embedded in the PPG waveform signal and it deserves further attention for its possible applications beyond pulse oximetry and heart-rate calculation. Therefore, this overview discusses different types of artifact added to PPG signal, characteristic features of PPG waveform, and existing indexes to evaluate for diagnoses. PMID:22845812

  18. Noise Reduction of Ocean-Bottom Pressure Data Toward Real-Time Tsunami Forecasting

    NASA Astrophysics Data System (ADS)

    Tsushima, H.; Hino, R.

    2008-12-01

    We discuss a method of noise reduction of ocean-bottom pressure data to be fed into the near-field tsunami forecasting scheme proposed by Tsushima et al. [2008a]. In their scheme, the pressure data is processed in real time as follows: (1) removing ocean tide components by subtracting the sea-level variation computed from a theoretical tide model, (2) applying low-pass digital filter to remove high-frequency fluctuation due to seismic waves, and (3) removing DC-offset and linear-trend component to determine a baseline of relative sea level. However, it turns out this simple method is not always successful in extracting tsunami waveforms from the data, when the observed amplitude is ~1cm. For disaster mitigation, accurate forecasting of small tsunamis is important as well as large tsunamis. Since small tsunami events occur frequently, successful tsunami forecasting of those events are critical to obtain public reliance upon tsunami warnings. As a test case, we applied the data-processing described above to the bottom pressure records containing tsunami with amplitude less than 1 cm which was generated by the 2003 Off-Fukushima earthquake occurring in the Japan Trench subduction zone. The observed pressure variation due to the ocean tide is well explained by the calculated tide signals from NAO99Jb model [Matsumoto et al., 2000]. However, the tide components estimated by BAYTAP-G [Tamura et al., 1991] from the pressure data is more appropriate for predicting and removing the ocean tide signals. In the pressure data after removing the tide variations, there remain pressure fluctuations with frequencies ranging from about 0.1 to 1 mHz and with amplitudes around ~10 cm. These fluctuations distort the estimation of zero-level and linear trend to define relative sea-level variation, which is treated as tsunami waveform in the subsequent analysis. Since the linear trend is estimated from the data prior to the origin time of the earthquake, an artificial linear trend is produced in the processed waveform. This artificial linear trend degrades the accuracy of the tsunami forecasting, although the forecasting result is expected to be robust against the existence of short-period noise [Tsushima et al., 2008a]. Since the bottom pressure show gradual increase (or decrease) in the tsunami source region [Tsushima et al., 2008b], it is important to remove the linear trend not related to the tsunami generation from the data before fed into the analysis. Therefore, the reduction of the noise in sub-mHz band is critical for the forecasting small tsunamis. Applying a kind of frequency filters to eliminate this noise cannot be a solution for this problem because actual tsunami signals may also contain components of this frequency band. We investigate whether any statistical modelings of the noise are effective for reducing the sub-mHz noise.

  19. Performance, Facility Pressure Effects, and Stability Characterization Tests of NASA's Hall Effect Rocket with Magnetic Shielding Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Peterson, Peter; Hofer, Richard; Mikellides, Ioannis

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for flight system development. Part of the technology maturation effort included experimental evaluation of the TDU-1 thruster with conducting and dielectric front pole cover materials in two different electrical configurations. A graphite front pole cover thruster configuration with the thruster body electrically tied to cathode and an alumina front pole cover thruster configuration with the thruster body floating were evaluated. Both configurations were also evaluated at different facility background pressure conditions to evaluate background pressure effects on thruster operation. Performance characterization tests found that higher thruster performance was attained with the graphite front pole cover configuration with the thruster electrically tied to cathode. A total thrust efficiency of 68 and a total specific impulse of 2,820 s was demonstrated at a discharge voltage of 600 V and a discharge power of 12.5 kW. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations and with maps of the current-voltage-magnetic field (IVB). Analysis of TDU-1 discharge current waveforms found that lower normalized discharge current peak-to-peak and root mean square magnitudes were attained when the thruster was electrically floated with alumina front pole covers. Background pressure effects characterization tests indicated that the thruster performance and stability was mostly invariant to changes in the facility background pressure for vacuum chamber pressure below 110-5 Torr-Xe (for thruster flow rate above 8 mgs). Power spectral density analysis of the discharge current waveform showed that increasing the vacuum chamber background pressure resulted in a higher discharge current dominant frequency. Finally the IVB maps of the TDU-1 thruster taken at elevated magnetic fields indicated that the discharge current became more oscillatory with increased facility background pressure at lower thruster mass flow rates, where thruster operation at higher flow rates resulted in less change to the thrusters IVB characteristics.

  20. Echocardiographic Assessment of Aortic Pulse-Wave Velocity: Validation against Invasive Pressure Measurements.

    PubMed

    Styczynski, Grzegorz; Rdzanek, Adam; Pietrasik, Arkadiusz; Kochman, Janusz; Huczek, Zenon; Sobieraj, Piotr; Gaciong, Zbigniew; Szmigielski, Cezary

    2016-11-01

    Aortic pulse-wave velocity (PWV) is a measure of aortic stiffness that has a prognostic role in various diseases and in the general population. A number of methods are used to measure PWV, including Doppler ultrasound. Although echocardiography has been used for PWV measurement, to the authors' knowledge, it has never been tested against an invasive reference method at the same time point. Therefore, the aim of this study was to compare prospectively an echocardiographic PWV measurement, called echo-PWV, with an invasive study. Forty-five patients (mean age, 66 years; 60% men) underwent simultaneous intra-arterial pressure recording and echocardiographic Doppler flow evaluation during elective cardiac catheterization. Proximal pressure and Doppler waveforms were acquired in the aortic arch. Distal pressure waveforms were registered in the right and distal Doppler waveforms in the left external iliac artery. Transit time was measured as a delay of the foot of pressure or Doppler waveform in the distal relative to the proximal location. Distance was measured on the catheter for invasive PWV and over the surface for echo-PWV. Echo-PWV was calculated as distance divided by transit time. In the whole group, mean invasive PWV was 9.38 m/sec and mean echo-PWV was 9.51 m/sec (P = .78). The Pearson' correlation coefficient between methods was 0.93 (P < .0001). A Bland-Altman plot revealed a mean difference between invasive PWV and echo-PWV of 0.13 ± 0.79 m/sec. Echo-PWV, based on Doppler echocardiography, is a reliable method of aortic PWV measurement, with a close correlation with invasive assessment. Wider implementation of the echo-PWV method for the evaluation of aortic wall stiffness can further expand the clinical and scientific utility of echocardiography. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  1. Improved Pulse Transit Time Estimation by System Identification Analysis of Proximal and Distal Arterial Waveforms

    DTIC Science & Technology

    2011-10-01

    response; pulse wave velocity ACCORDING TO THE MOENS-KORTEWEG equation, pulse wave ve- locity ( PWV ) increases as the arteries stiffen. Indeed, PWV is the...and mortality in hypertensive patients (2, 4, 12, 14). In addition, because arterial stiffness increases with arterial blood pressure (ABP), PWV and...ABP often show positive correlation, suggesting that PWV could provide a means to achieve continuous, noninvasive, and cuffless ABP monitoring (18

  2. Waveform fitting and geometry analysis for full-waveform lidar feature extraction

    NASA Astrophysics Data System (ADS)

    Tsai, Fuan; Lai, Jhe-Syuan; Cheng, Yi-Hsiu

    2016-10-01

    This paper presents a systematic approach that integrates spline curve fitting and geometry analysis to extract full-waveform LiDAR features for land-cover classification. The cubic smoothing spline algorithm is used to fit the waveform curve of the received LiDAR signals. After that, the local peak locations of the waveform curve are detected using a second derivative method. According to the detected local peak locations, commonly used full-waveform features such as full width at half maximum (FWHM) and amplitude can then be obtained. In addition, the number of peaks, time difference between the first and last peaks, and the average amplitude are also considered as features of LiDAR waveforms with multiple returns. Based on the waveform geometry, dynamic time-warping (DTW) is applied to measure the waveform similarity. The sum of the absolute amplitude differences that remain after time-warping can be used as a similarity feature in a classification procedure. An airborne full-waveform LiDAR data set was used to test the performance of the developed feature extraction method for land-cover classification. Experimental results indicate that the developed spline curve- fitting algorithm and geometry analysis can extract helpful full-waveform LiDAR features to produce better land-cover classification than conventional LiDAR data and feature extraction methods. In particular, the multiple-return features and the dynamic time-warping index can improve the classification results significantly.

  3. Near-field shock formation in noise propagation from a high-power jet aircraft.

    PubMed

    Gee, Kent L; Neilsen, Tracianne B; Downing, J Micah; James, Michael M; McKinley, Richard L; McKinley, Robert C; Wall, Alan T

    2013-02-01

    Noise measurements near the F-35A Joint Strike Fighter at military power are analyzed via spatial maps of overall and band pressure levels and skewness. Relative constancy of the pressure waveform skewness reveals that waveform asymmetry, characteristic of supersonic jets, is a source phenomenon originating farther upstream than the maximum overall level. Conversely, growth of the skewness of the time derivative with distance indicates that acoustic shocks largely form through the course of near-field propagation and are not generated explicitly by a source mechanism. These results potentially counter previous arguments that jet "crackle" is a source phenomenon.

  4. Improved Measurement of Blood Pressure by Extraction of Characteristic Features from the Cuff Oscillometric Waveform

    PubMed Central

    Lim, Pooi Khoon; Ng, Siew-Cheok; Jassim, Wissam A.; Redmond, Stephen J.; Zilany, Mohammad; Avolio, Alberto; Lim, Einly; Tan, Maw Pin; Lovell, Nigel H.

    2015-01-01

    We present a novel approach to improve the estimation of systolic (SBP) and diastolic blood pressure (DBP) from oscillometric waveform data using variable characteristic ratios between SBP and DBP with mean arterial pressure (MAP). This was verified in 25 healthy subjects, aged 28 ± 5 years. The multiple linear regression (MLR) and support vector regression (SVR) models were used to examine the relationship between the SBP and the DBP ratio with ten features extracted from the oscillometric waveform envelope (OWE). An automatic algorithm based on relative changes in the cuff pressure and neighbouring oscillometric pulses was proposed to remove outlier points caused by movement artifacts. Substantial reduction in the mean and standard deviation of the blood pressure estimation errors were obtained upon artifact removal. Using the sequential forward floating selection (SFFS) approach, we were able to achieve a significant reduction in the mean and standard deviation of differences between the estimated SBP values and the reference scoring (MLR: mean ± SD = −0.3 ± 5.8 mmHg; SVR and −0.6 ± 5.4 mmHg) with only two features, i.e., Ratio2 and Area3, as compared to the conventional maximum amplitude algorithm (MAA) method (mean ± SD = −1.6 ± 8.6 mmHg). Comparing the performance of both MLR and SVR models, our results showed that the MLR model was able to achieve comparable performance to that of the SVR model despite its simplicity. PMID:26087370

  5. Unconstrained pulse pressure monitoring for health management using hetero-core fiber optic sensor.

    PubMed

    Nishiyama, Michiko; Sonobe, Masako; Watanabe, Kazuhiro

    2016-09-01

    In this paper, we present a pulse pressure waveform sensor that does not constrain a wearer's daily activity; the sensor uses hetero-core fiber optics. Hetero-core fiber sensors have been found to be sensitive to moderate bending. To detect minute pulse pressure changes from the radial artery at the wrist, we devised a fiber sensor arrangement using three-point bending supports. We analyzed and evaluated the measurement validity using wavelet transformation, which is well-suited for biological signal processing. It was confirmed that the detected pulse waveform had a fundamental mode frequency of around 1.25 Hz over the time-varying waveform. A band-pass filter with a range of frequencies from 0.85 to 1.7 Hz was used to pick up the fundamental mode. In addition, a high-pass filter with 0.85 Hz frequency eliminated arm motion artifacts; consequently, we achieved high signal-to-noise ratio. For unrestricted daily health management, it is desirable that pulse pressure monitoring can be achieved by simply placing a device on the hand without the sensor being noticed. Two types of arrangements were developed and demonstrated in which the pulse sensors were either embedded in a base, such as an armrest, or in a wearable device. A wearable device without cuff pressure using a sensitivity-enhanced fiber sensor was successfully achieved with a sensitivity of 0.07-0.3 dB with a noise floor lower than 0.01 dB for multiple subjects.

  6. Leak detection using structure-borne noise

    NASA Technical Reports Server (NTRS)

    Holland, Stephen D. (Inventor); Roberts, Ronald A. (Inventor); Chimenti, Dale E. (Inventor)

    2010-01-01

    A method for detection and location of air leaks in a pressure vessel, such as a spacecraft, includes sensing structure-borne ultrasound waveforms associated with turbulence caused by a leak from a plurality of sensors and cross correlating the waveforms to determine existence and location of the leak. Different configurations of sensors and corresponding methods can be used. An apparatus for performing the methods is also provided.

  7. Baseline pressure errors (BPEs) extensively influence intracranial pressure scores: results of a prospective observational study

    PubMed Central

    2014-01-01

    Background Monitoring of intracranial pressure (ICP) is a cornerstone in the surveillance of neurosurgical patients. The ICP is measured against a baseline pressure (i.e. zero - or reference pressure). We have previously reported that baseline pressure errors (BPEs), manifested as spontaneous shift or drifts in baseline pressure, cause erroneous readings of mean ICP in individual patients. The objective of this study was to monitor the frequency and severity of BPEs. To this end, we performed a prospective, observational study monitoring the ICP from two separate ICP sensors (Sensors 1 and 2) placed in close proximity in the brain. We characterized BPEs as differences in mean ICP despite near to identical ICP waveform in Sensors 1 and 2. Methods The study enrolled patients with aneurysmal subarachnoid hemorrhage in need of continuous ICP monitoring as part of their intensive care management. The two sensors were placed close to each other in the brain parenchyma via the same burr hole. The monitoring was performed as long as needed from a clinical perspective and the ICP recordings were stored digitally for analysis. For every patient the mean ICP as well as the various ICP wave parameters of the two sensors were compared. Results Sixteen patients were monitored median 164 hours (ranges 70 – 364 hours). Major BPEs, as defined by marked differences in mean ICP despite similar ICP waveform, were seen in 9 of them (56%). The BPEs were of magnitudes that had the potential to alter patient management. Conclusions Baseline Pressure Errors (BPEs) occur in a significant number of patients undergoing continuous ICP monitoring and they may alter patient management. The current practice of measuring ICP against a baseline pressure does not comply with the concept of State of the Art. Monitoring of the ICP waves ought to become the new State of the Art as they are not influenced by BPEs. PMID:24472296

  8. Intrinsic frequency for a systems approach to haemodynamic waveform analysis with clinical applications

    PubMed Central

    Pahlevan, Niema M.; Tavallali, Peyman; Rinderknecht, Derek G.; Petrasek, Danny; Matthews, Ray V.; Hou, Thomas Y.; Gharib, Morteza

    2014-01-01

    The reductionist approach has dominated the fields of biology and medicine for nearly a century. Here, we present a systems science approach to the analysis of physiological waveforms in the context of a specific case, cardiovascular physiology. Our goal in this study is to introduce a methodology that allows for novel insight into cardiovascular physiology and to show proof of concept for a new index for the evaluation of the cardiovascular system through pressure wave analysis. This methodology uses a modified version of sparse time–frequency representation (STFR) to extract two dominant frequencies we refer to as intrinsic frequencies (IFs; ω1 and ω2). The IFs are the dominant frequencies of the instantaneous frequency of the coupled heart + aorta system before the closure of the aortic valve and the decoupled aorta after valve closure. In this study, we extract the IFs from a series of aortic pressure waves obtained from both clinical data and a computational model. Our results demonstrate that at the heart rate at which the left ventricular pulsatile workload is minimized the two IFs are equal (ω1 = ω2). Extracted IFs from clinical data indicate that at young ages the total frequency variation (Δω = ω1 − ω2) is close to zero and that Δω increases with age or disease (e.g. heart failure and hypertension). While the focus of this paper is the cardiovascular system, this approach can easily be extended to other physiological systems or any biological signal. PMID:25008087

  9. Waveform Similarity Analysis: A Simple Template Comparing Approach for Detecting and Quantifying Noisy Evoked Compound Action Potentials.

    PubMed

    Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira

    2015-01-01

    Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound action potentials in neural regeneration studies.

  10. Waveform Similarity Analysis: A Simple Template Comparing Approach for Detecting and Quantifying Noisy Evoked Compound Action Potentials

    PubMed Central

    Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira

    2015-01-01

    Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound action potentials in neural regeneration studies. PMID:26325291

  11. T-phase and tsunami pressure waveforms recorded by near-source IMS water-column hydrophone triplets during the 2015 Chile earthquake

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Haralabus, G.; Zampolli, M.; Özel, N. M.

    2016-12-01

    Underwater acoustic signal waveforms recorded during the 2015 Chile earthquake (Mw 8.3) by the hydrophones of hydroacoustic station HA03, located at the Juan Fernandez Islands, are analyzed. HA03 is part of the Comprehensive Nuclear-Test-Ban Treaty International Monitoring System. The interest in the particular data set stems from the fact that HA03 is located only approximately 700 km SW from the epicenter of the earthquake. This makes it possible to study aspects of the signal associated with the tsunamigenic earthquake, which would be more difficult to detect had the hydrophones been located far from the source. The analysis shows that the direction of arrival of the T phase can be estimated by means of a three-step preprocessing technique which circumvents spatial aliasing caused by the hydrophone spacing, the latter being large compared to the wavelength. Following this preprocessing step, standard frequency-wave number analysis (F-K analysis) can accurately estimate back azimuth and slowness of T-phase signals. The data analysis also shows that the dispersive tsunami signals can be identified by the water-column hydrophones at the time when the tsunami surface gravity wave reaches the station.

  12. Effect of Nozzle Nonlinearities upon Nonlinear Stability of Liquid Propellant Rocket Motors

    NASA Technical Reports Server (NTRS)

    Padmanabhan, M. S.; Powell, E. A.; Zinn, B. T.

    1975-01-01

    A three dimensional, nonlinear nozzle admittance relation is developed by solving the wave equation describing finite amplitude oscillatory flow inside the subsonic portion of a choked, slowly convergent axisymmetric nozzle. This nonlinear nozzle admittance relation is then used as a boundary condition in the analysis of nonlinear combustion instability in a cylindrical liquid rocket combustor. In both nozzle and chamber analyses solutions are obtained using the Galerkin method with a series expansion consisting of the first tangential, second tangential, and first radial modes. Using Crocco's time lag model to describe the distributed unsteady combustion process, combustion instability calculations are presented for different values of the following parameters: (1) time lag, (2) interaction index, (3) steady-state Mach number at the nozzle entrance, and (4) chamber length-to-diameter ratio. In each case, limit cycle pressure amplitudes and waveforms are shown for both linear and nonlinear nozzle admittance conditions. These results show that when the amplitudes of the second tangential and first radial modes are considerably smaller than the amplitude of the first tangential mode the inclusion of nozzle nonlinearities has no significant effect on the limiting amplitude and pressure waveforms.

  13. Source mechanism analysis of central Aceh earthquake July 2, 2013 Mw 6.2 using moment tensor inversion with BMKG waveform data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasetyo, Retno Agung, E-mail: prasetyo.agung@bmkg.go.id; Heryandoko, Nova; Afnimar

    The source mechanism of earthquake on July 2, 2013 was investigated by using moment tensor inversion. The result also compared by the field observation. Five waveform data of BMKG’s seismic network used to estimate the mechanism of earthquake, namely ; KCSI, MLSI, LASI, TPTI and SNSI. Main shock data taken during 200 seconds and filtered by using Butterworth band pass method from 0.03 to 0.05 Hz of frequency. Moment tensor inversion method is applied based on the point source assumption. Furthermore, the Green function calculated using the extended reflectivity method which modified by Kohketsu. The inversion result showed a strike-slipmore » faulting, where the nodal plane strike/dip/rake (124/80.6/152.8) and minimum variance value 0.3285 at a depth of 6 km (centroid). It categorized as a shallow earthquake. Field observation indicated that the building orientated to the east. It can be related to the southwest of dip direction which has 152 degrees of slip. As conclusion, the Pressure (P) and Tension (T) axis described dominant compression is happen from the south which is caused by pressure of the Indo-Australian plate.« less

  14. Determination of Dimensionless Attenuation Coefficient in Shaped Resonators

    NASA Technical Reports Server (NTRS)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2003-01-01

    The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.

  15. Model-Based, Noninvasive Monitoring of Intracranial Pressure

    DTIC Science & Technology

    2012-10-01

    nICP) estimate requires simultaneous measurement of the waveforms of arterial blood pressure ( ABP ), obtained via radial artery catheter or finger...initial database comprises subarachnoid hemorrhage patients in neuro-intensive care at our partner hospital, for whom ICP, ABP and CBFV are currently

  16. Multi-Scale Peak and Trough Detection Optimised for Periodic and Quasi-Periodic Neuroscience Data.

    PubMed

    Bishop, Steven M; Ercole, Ari

    2018-01-01

    The reliable detection of peaks and troughs in physiological signals is essential to many investigative techniques in medicine and computational biology. Analysis of the intracranial pressure (ICP) waveform is a particular challenge due to multi-scale features, a changing morphology over time and signal-to-noise limitations. Here we present an efficient peak and trough detection algorithm that extends the scalogram approach of Scholkmann et al., and results in greatly improved algorithm runtime performance. Our improved algorithm (modified Scholkmann) was developed and analysed in MATLAB R2015b. Synthesised waveforms (periodic, quasi-periodic and chirp sinusoids) were degraded with white Gaussian noise to achieve signal-to-noise ratios down to 5 dB and were used to compare the performance of the original Scholkmann and modified Scholkmann algorithms. The modified Scholkmann algorithm has false-positive (0%) and false-negative (0%) detection rates identical to the original Scholkmann when applied to our test suite. Actual compute time for a 200-run Monte Carlo simulation over a multicomponent noisy test signal was 40.96 ± 0.020 s (mean ± 95%CI) for the original Scholkmann and 1.81 ± 0.003 s (mean ± 95%CI) for the modified Scholkmann, demonstrating the expected improvement in runtime complexity from [Formula: see text] to [Formula: see text]. The accurate interpretation of waveform data to identify peaks and troughs is crucial in signal parameterisation, feature extraction and waveform identification tasks. Modification of a standard scalogram technique has produced a robust algorithm with linear computational complexity that is particularly suited to the challenges presented by large, noisy physiological datasets. The algorithm is optimised through a single parameter and can identify sub-waveform features with minimal additional overhead, and is easily adapted to run in real time on commodity hardware.

  17. Picosecond High Pressure Gas Switch Experiment

    DTIC Science & Technology

    1993-06-01

    the calculated pulse waveform for a much higher voltage and pressure switch . Also, a discussion of the modifications made on an existing pulse...s 80 8 ~ 60 J 40 .. : ~--~: __ ~’----~-~ 0.1 10 100 1000 Frequency Figure 7. Output switch recovery. Conclusion The high- pressure switch has...effective in matching experimental results, and should thus be useful in the design of high-voltage and pressure switch configurations

  18. Continuous stroke volume estimation from aortic pressure using zero dimensional cardiovascular model: proof of concept study from porcine experiments.

    PubMed

    Kamoi, Shun; Pretty, Christopher; Docherty, Paul; Squire, Dougie; Revie, James; Chiew, Yeong Shiong; Desaive, Thomas; Shaw, Geoffrey M; Chase, J Geoffrey

    2014-01-01

    Accurate, continuous, left ventricular stroke volume (SV) measurements can convey large amounts of information about patient hemodynamic status and response to therapy. However, direct measurements are highly invasive in clinical practice, and current procedures for estimating SV require specialized devices and significant approximation. This study investigates the accuracy of a three element Windkessel model combined with an aortic pressure waveform to estimate SV. Aortic pressure is separated into two components capturing; 1) resistance and compliance, 2) characteristic impedance. This separation provides model-element relationships enabling SV to be estimated while requiring only one of the three element values to be known or estimated. Beat-to-beat SV estimation was performed using population-representative optimal values for each model element. This method was validated using measured SV data from porcine experiments (N = 3 female Pietrain pigs, 29-37 kg) in which both ventricular volume and aortic pressure waveforms were measured simultaneously. The median difference between measured SV from left ventricle (LV) output and estimated SV was 0.6 ml with a 90% range (5th-95th percentile) -12.4 ml-14.3 ml. During periods when changes in SV were induced, cross correlations in between estimated and measured SV were above R = 0.65 for all cases. The method presented demonstrates that the magnitude and trends of SV can be accurately estimated from pressure waveforms alone, without the need for identification of complex physiological metrics where strength of correlations may vary significantly from patient to patient.

  19. Transient flow analysis linked to fast pressure disturbance monitored in pipe systems

    NASA Astrophysics Data System (ADS)

    Kueny, J. L.; Lourenco, M.; Ballester, J. L.

    2012-11-01

    EDF Hydro Division has launched the RENOUVEAU program in order to increase performance and improve plant availability through anticipation. Due to this program, a large penstocks fleet is equipped with pressure transducers linked to a special monitoring system. Any significant disturbance of the pressure is captured in a snapshot and the waveform of the signal is stored and analyzed. During these transient states, variations in flow are unknown. In order to determine the structural impact of such overpressure occurring during complex transients conditions over the entire circuit, EDF DTG has asked ENSE3 GRENOBLE to develop a code called ACHYL CF*. The input data of ACHYL CF are circuit topology and pressure boundaries conditions. This article provide a description of the computer code developed for modeling the transient flow in a pipe network using the signals from pressure transducers as boundary conditions. Different test cases will be presented, simulating real hydro power plants for which measured pressure signals are available.

  20. Estimation of Pulse Transit Time as a Function of Blood Pressure Using a Nonlinear Arterial Tube-Load Model.

    PubMed

    Gao, Mingwu; Cheng, Hao-Min; Sung, Shih-Hsien; Chen, Chen-Huan; Olivier, Nicholas Bari; Mukkamala, Ramakrishna

    2017-07-01

    pulse transit time (PTT) varies with blood pressure (BP) throughout the cardiac cycle, yet, because of wave reflection, only one PTT value at the diastolic BP level is conventionally estimated from proximal and distal BP waveforms. The objective was to establish a technique to estimate multiple PTT values at different BP levels in the cardiac cycle. a technique was developed for estimating PTT as a function of BP (to indicate the PTT value for every BP level) from proximal and distal BP waveforms. First, a mathematical transformation from one waveform to the other is defined in terms of the parameters of a nonlinear arterial tube-load model accounting for BP-dependent arterial compliance and wave reflection. Then, the parameters are estimated by optimally fitting the waveforms to each other via the model-based transformation. Finally, PTT as a function of BP is specified by the parameters. The technique was assessed in animals and patients in several ways including the ability of its estimated PTT-BP function to serve as a subject-specific curve for calibrating PTT to BP. the calibration curve derived by the technique during a baseline period yielded bias and precision errors in mean BP of 5.1 ± 0.9 and 6.6 ± 1.0 mmHg, respectively, during hemodynamic interventions that varied mean BP widely. the new technique may permit, for the first time, estimation of PTT values throughout the cardiac cycle from proximal and distal waveforms. the technique could potentially be applied to improve arterial stiffness monitoring and help realize cuff-less BP monitoring.

  1. Comparison of acoustic fields produced by the original and upgraded HM-3 lithotripter

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Zhu, Songlin; Dreyer, Thomas; Liebler, Marko; Zhong, Pei

    2003-10-01

    To reduce tissue injury in shock wave lithotripsy (SWL) while maintaining satisfactory stone comminution, an original HM-3 lithotripter was upgraded by a reflector insert to suppress large intraluminal bubble expansion, which is a primary mechanism of vascular injury in SWL. The pressure waveforms produced by the original and upgraded HM-3 lithotripter were measured by using a fiber optical probe hydrophone (FOPH), which was scanned both along and transverse to the lithotripter axis at 1-mm step using a computer-controlled 3-D positioning system. At F2, the pressure waveform produced by the upgraded HM-3 lithotripter at 22 kV has a distinct dual-pulse structure, with a leading shock wave of ~45 MPa from the reflector insert and a 4-μs delayed second pulse of ~15 MPa reflected from the uncovered bottom surface of the original HM-3 reflector. The beam sizes of the original and upgraded HM-3 lithotripter are comparable in both axial and lateral directions. The pressure waveforms measured at the reflector aperture will be used as input to the KZK equation to predict the lithotripter shock wave at F2. Furthermore, bubble dynamics predicted by the Gilmore model will be compared with experimental observation by high-speed imaging. [Work supported by NIH.

  2. A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.

    PubMed

    Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A

    2005-11-01

    While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.

  3. Gaussian fitting for carotid and radial artery pressure waveforms: comparison between normal subjects and heart failure patients.

    PubMed

    Liu, Chengyu; Zheng, Dingchang; Zhao, Lina; Liu, Changchun

    2014-01-01

    It has been reported that Gaussian functions could accurately and reliably model both carotid and radial artery pressure waveforms (CAPW and RAPW). However, the physiological relevance of the characteristic features from the modeled Gaussian functions has been little investigated. This study thus aimed to determine characteristic features from the Gaussian functions and to make comparisons of them between normal subjects and heart failure patients. Fifty-six normal subjects and 51 patients with heart failure were studied with the CAPW and RAPW signals recorded simultaneously. The two signals were normalized first and then modeled by three positive Gaussian functions, with their peak amplitude, peak time, and half-width determined. Comparisons of these features were finally made between the two groups. Results indicated that the peak amplitude of the first Gaussian curve was significantly decreased in heart failure patients compared with normal subjects (P<0.001). Significantly increased peak amplitude of the second Gaussian curves (P<0.001) and significantly shortened peak times of the second and third Gaussian curves (both P<0.001) were also presented in heart failure patients. These results were true for both CAPW and RAPW signals, indicating the clinical significance of the Gaussian modeling, which should provide essential tools for further understanding the underlying physiological mechanisms of the artery pressure waveform.

  4. A Waveform Archiving System for the GE Solar 8000i Bedside Monitor.

    PubMed

    Fanelli, Andrea; Jaishankar, Rohan; Filippidis, Aristotelis; Holsapple, James; Heldt, Thomas

    2018-01-01

    Our objective was to develop, deploy, and test a data-acquisition system for the reliable and robust archiving of high-resolution physiological waveform data from a variety of bedside monitoring devices, including the GE Solar 8000i patient monitor, and for the logging of ancillary clinical and demographic information. The data-acquisition system consists of a computer-based archiving unit and a GE Tram Rac 4A that connects to the GE Solar 8000i monitor. Standard physiological front-end sensors connect directly to the Tram Rac, which serves as a port replicator for the GE monitor and provides access to these waveform signals through an analog data interface. Together with the GE monitoring data streams, we simultaneously collect the cerebral blood flow velocity envelope from a transcranial Doppler ultrasound system and a non-invasive arterial blood pressure waveform along a common time axis. All waveform signals are digitized and archived through a LabView-controlled interface that also allows for the logging of relevant meta-data such as clinical and patient demographic information. The acquisition system was certified for hospital use by the clinical engineering team at Boston Medical Center, Boston, MA, USA. Over a 12-month period, we collected 57 datasets from 11 neuro-ICU patients. The system provided reliable and failure-free waveform archiving. We measured an average temporal drift between waveforms from different monitoring devices of 1 ms every 66 min of recorded data. The waveform acquisition system allows for robust real-time data acquisition, processing, and archiving of waveforms. The temporal drift between waveforms archived from different devices is entirely negligible, even for long-term recording.

  5. Photonic microwave waveforms generation based on pulse carving and superposition in time-domain

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Jiang, Yang; Zi, Yuejiao; He, Yutong; Tian, Jing; Zhang, Xiaoyu; Luo, Hao; Dong, Ruyang

    2018-05-01

    A novel photonic approach for various microwave waveforms generation based on time-domain synthesis is theoretically analyzed and experimentally investigated. In this scheme, two single-drive Mach-Zehnder modulators are used for pulses shaping. After shifting the phase and implementing envelopes superposition of the pulses, desired waveforms can be achieved in time-domain. The theoretic analysis and simulations are presented. In the experimental demonstrations, a triangular waveform, square waveform, and half duty cycle sawtooth (or reversed-sawtooth) waveform are generated successfully. By utilizing time multiplexing technique, a frequency-doubled sawtooth (or reversed-sawtooth) waveform with 100% duty cycle can be obtained. In addition, a fundamental frequency sawtooth (or reversed-sawtooth) waveform with 100% duty cycle can also be achieved by the superposition of square waveform and frequency-doubled sawtooth waveform.

  6. Blast waves from violent explosive activity at Yasur Volcano, Vanuatu

    NASA Astrophysics Data System (ADS)

    Marchetti, E.; Ripepe, M.; Delle Donne, D.; Genco, R.; Finizola, A.; Garaebiti, E.

    2013-11-01

    and seismic waveforms were collected during violent strombolian activity at Yasur Volcano (Vanuatu). Averaging ~3000 seismic events showed stable waveforms, evidencing a low-frequency (0.1-0.3 Hz) signal preceding ~5-6 s the explosion. Infrasonic waveforms were mostly asymmetric with a sharp compressive (5-106 Pa) onset, followed by a small long-lasting rarefaction phase. Regardless of the pressure amplitude, the ratio between the positive and negative phases was constant. These waveform characteristics closely resembled blast waves. Infrared imagery showed an apparent cold spherical front ~20 m thick, which moved between 342 and 405 m/s before the explosive hot gas/fragments cloud. We interpret this cold front as that produced by the vapor condensation induced by the passage of the shock front. We suggest that violent strombolian activity at Yasur was driven by supersonic dynamics with gas expanding at 1.1 Mach number inside the conduit.

  7. Acoustic Full Waveform Inversion to Characterize Near-surface Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rodgers, A. J.

    2015-12-01

    Recent high-quality, atmospheric overpressure data from chemical high-explosive experiments provide a unique opportunity to characterize near-surface explosions, specifically estimating yield and source time function. Typically, yield is estimated from measured signal features, such as peak pressure, impulse, duration and/or arrival time of acoustic signals. However, the application of full waveform inversion to acoustic signals for yield estimation has not been fully explored. In this study, we apply a full waveform inversion method to local overpressure data to extract accurate pressure-time histories of acoustics sources during chemical explosions. A robust and accurate inversion technique for acoustic source is investigated using numerical Green's functions that take into account atmospheric and topographic propagation effects. The inverted pressure-time history represents the pressure fluctuation at the source region associated with the explosion, and thus, provides a valuable information about acoustic source mechanisms and characteristics in greater detail. We compare acoustic source properties (i.e., peak overpressure, duration, and non-isotropic shape) of a series of explosions having different emplacement conditions and investigate the relationship of the acoustic sources to the yields of explosions. The time histories of acoustic sources may refine our knowledge of sound-generation mechanisms of shallow explosions, and thereby allow for accurate yield estimation based on acoustic measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Hemodynamic transition driven by stent porosity in sidewall aneurysms.

    PubMed

    Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Farhat, Mohamed; Pereira, Vitor Mendes

    2015-05-01

    The healing process of intracranial aneurysms (IAs) treated with flow diverter stents (FDSs) depends on the IA flow modifications and on the epithelization process over the neck. In sidewall IA models with straight parent artery, two main hemodynamic regimes with different flow patterns and IA flow magnitude were broadly observed for unstented and high porosity stented IA on one side, and low porosity stented IA on the other side. The hemodynamic transition between these two regimes is potentially involved in thrombosis formation. In the present study, CFD simulations and multi-time lag (MTL) particle imaging velocimetry (PIV) measurements were combined to investigate the physical nature of this transition. Measurable velocity fields and non-measurable shear stress and pressure fields were assessed experimentally and numerically in the aneurysm volume in the presence of stents with various porosities. The two main regimes observed in both PIV and CFD showed typical flow features of shear and pressure driven regimes. In particular, the waveform of the averaged IA velocities was matching both the shear stress waveform at IA neck or the pressure gradient waveform in parent artery. Moreover, the transition between the two regimes was controlled by stent porosity: a decrease of stent porosity leads to an increase (decrease) of pressure differential (shear stress) through IA neck. Finally, a good PIV-CFD agreement was found except in transitional regimes and low motion eddies due to small mismatch of PIV-CFD running conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. 10 CFR 431.282 - Test Procedures [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., metal halide, and high-pressure sodium lamps. Mercury vapor lamp means a high intensity discharge lamp..., current, and waveform) for starting and operating. High intensity discharge lamp means an electric... light is produced by radiation from mercury typically operating at a partial vapor pressure in excess of...

  10. Numerical analysis of the pressure drop across highly-eccentric coronary stenoses: application to the calculation of the fractional flow reserve.

    PubMed

    Agujetas, R; González-Fernández, M R; Nogales-Asensio, J M; Montanero, J M

    2018-05-30

    Fractional flow reverse (FFR) is the gold standard assessment of the hemodynamic significance of coronary stenoses. However, it requires the catheterization of the coronary artery to determine the pressure waveforms proximal and distal to the stenosis. On the contrary, computational fluid dynamics enables the calculation of the FFR value from relatively non-invasive computed tomography angiography (CTA). We analyze the flow across idealized highly-eccentric coronary stenoses by solving the Navier-Stokes equations. We examine the influence of several aspects (approximations) of the simulation method on the calculation of the FFR value. We study the effects on the FFR value of errors made in the segmentation of clinical images. For this purpose, we compare the FFR value for the nominal geometry with that calculated for other shapes that slightly deviate from that geometry. This analysis is conducted for a range of stenosis severities and different inlet velocity and pressure waveforms. The errors made in assuming a uniform velocity profile in front of the stenosis, as well as those due to the Newtonian and laminar approximations, are negligible for stenosis severities leading to FFR values around the threshold 0.8. The limited resolution of the stenosis geometry reconstruction is the major source of error when predicting the FFR value. Both systematic errors in the contour detection of just 1-pixel size in the CTA images and a low-quality representation of the stenosis surface (coarse faceted geometry) may yield wrong outcomes of the FFR assessment for an important set of eccentric stenoses. On the contrary, the spatial resolution of images acquired with optical coherence tomography may be sufficient to ensure accurate predictions for the FFR value.

  11. Transducer selection and application in magnetoacoustic tomography with magnetic induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuqi; Wang, Jiawei; Ma, Qingyu, E-mail: maqingyu@njnu.edu.cn

    2016-03-07

    As an acoustic receiver, transducer plays a vital role in signal acquisition and image reconstruction for magnetoacoustic tomography with magnetic induction (MAT-MI). In order to optimize signal acquisition, the expressions of acoustic pressure detection and waveform collection are theoretically studied based on the radiation theory of acoustic dipole and the reception pattern of transducer. Pressure distributions are simulated for a cylindrical phantom model using a planar piston transducer with different radii and bandwidths. The proposed theory is also verified by the experimental measurements of acoustic waveform detection for an aluminum foil cylinder. It is proved that acoustic pressure with sharpmore » and clear boundary peaks can be detected by the large-radius transducer with wide bandwidth, reflecting the differential of the induced Lorentz force accurately, which is helpful for precise conductivity reconstruction. To detect acoustic pressure with acceptable pressure amplitude, peak pressure ratio, amplitude ratio, and improved signal to noise ratio, the scanning radius of 5–10 times the radius of the object should be selected to improve the accuracy of image reconstruction. This study provides a theoretical and experimental basis for transducer selection and application in MAT-MI to obtain reconstructed images with improved resolution and definition.« less

  12. Noninvasive intracranial pressure measurement using infrasonic emissions from the tympanic membrane.

    PubMed

    Stettin, Eduard; Paulat, Klaus; Schulz, Chris; Kunz, Ulrich; Mauer, Uwe Max

    2011-06-01

    We investigated whether ICP can be assessed by measuring infrasonic emissions from the tympanic membrane. An increase in ICP was induced in 22 patients with implanted ICP pressure sensors. ICP waveforms that were obtained invasively and continuously were compared with infrasonic emission waveforms. In addition, the noninvasive method was used in a control group of 14 healthy subjects. In a total of 83 measurements, the changes in ICP that were observed in response to different types of stimulation were detected in the waveforms obtained noninvasively as well as in those acquired invasively. Low ICP was associated with an initial high peak and further peaks with smaller amplitudes. High ICP was associated with a marked decrease in the number of peaks and in the difference between the amplitudes of the initial and last peaks. The assessment of infrasonic emissions, however, does not yet enable us to provide exact figures. It is conceivable that the assessment of infrasonic emissions will become suitable both as a screening tool and for the continuous monitoring of ICP in an intensive care environment.

  13. Free-field propagation of high intensity noise

    NASA Technical Reports Server (NTRS)

    Welz, Joseph P.; Mcdaniel, Oliver H.

    1990-01-01

    Observed spectral data from supersonic jet aircraft are known to contain much more high frequency energy than can be explained by linear acoustic propagation theory. It is believed that the high frequency energy is an effect of nonlinear distortion due to the extremely high acoustic levels generated by the jet engines. The objective, to measure acoustic waveform distortion for spherically diverging high intensity noise, was reached by using an electropneumatic acoustic source capable of generating sound pressure levels in the range of 140 to 160 decibels (re 20 micro Pa). The noise spectrum was shaped to represent the spectra generated by jet engines. Two microphones were used to capture the acoustic pressure waveform at different points along the propagation path in order to provide a direct measure of the waveform distortion as well as spectral distortion. A secondary objective was to determine that the observed distortion is an acoustic effect. To do this an existing computer prediction code that deals with nonlinear acoustic propagation was used on data representative of the measured data. The results clearly demonstrate that high intensity jet noise does shift the energy in the spectrum to the higher frequencies along the propagation path. In addition, the data from the computer model are in good agreement with the measurements, thus demonstrating that the waveform distortion can be accounted for with nonlinear acoustic theory.

  14. One-dimensional model for the intracranial pulse morphological analysis during hyperventilation and CO2 inhalation tests

    NASA Astrophysics Data System (ADS)

    Ryu, Jaiyoung; Hu, Xiao; Shadden, Shawn C.

    2015-11-01

    The brain's CO2 reactivity mechanism is coupled with cerebral autoregulation and other unique features of cerebral hemodynamics. We developed a one-dimensional nonlinear model of blood flow in the cerebral arteries coupled to lumped parameter (LP) networks. The LP networks incorporate cerebral autoregulation, CO2 reactivity, intracranial pressure, cerebrospinal fluid, and cortical collateral blood flow models. The model was used to evaluate hemodynamic variables (arterial deformation, blood velocity and pressure) in the cerebral vasculature during hyperventilation and CO2 inhalation test. Tests were performed for various arterial blood pressure (ABP) representing normal and hypotensive conditions. The increase of the cerebral blood flow rates agreed well with the published measurements for various ABP measurements taken during clinical CO2 reactivity tests. The changes in distal vasculature affected the reflected pulse wave energy, which caused the waveform morphological changes at the middle cerebral, common and internal carotid arteries. The pulse morphological analysis demonstrated agreement with previous clinical measurements for cerebral vasoconstriction and vasodilation.

  15. Remote Blood Pressure Waveform Sensing Method and Apparatus

    DTIC Science & Technology

    2008-06-02

    test the effects of drugs, exercise, or other stimuli, whereby an increase or decrease in the ratio may indicate an improvement or worsening of systolic...even though high blood pressure in animals can be symptomatic of a variety of diseases including chronic renal failure, hyperthyroidism , Cushing’s

  16. Adaptive phase k-means algorithm for waveform classification

    NASA Astrophysics Data System (ADS)

    Song, Chengyun; Liu, Zhining; Wang, Yaojun; Xu, Feng; Li, Xingming; Hu, Guangmin

    2018-01-01

    Waveform classification is a powerful technique for seismic facies analysis that describes the heterogeneity and compartments within a reservoir. Horizon interpretation is a critical step in waveform classification. However, the horizon often produces inconsistent waveform phase, and thus results in an unsatisfied classification. To alleviate this problem, an adaptive phase waveform classification method called the adaptive phase k-means is introduced in this paper. Our method improves the traditional k-means algorithm using an adaptive phase distance for waveform similarity measure. The proposed distance is a measure with variable phases as it moves from sample to sample along the traces. Model traces are also updated with the best phase interference in the iterative process. Therefore, our method is robust to phase variations caused by the interpretation horizon. We tested the effectiveness of our algorithm by applying it to synthetic and real data. The satisfactory results reveal that the proposed method tolerates certain waveform phase variation and is a good tool for seismic facies analysis.

  17. A PDA-based electrocardiogram/blood pressure telemonitor for telemedicine.

    PubMed

    Bolanos, Marcos; Nazeran, Homayoun; Gonzalez, Izzac; Parra, Ricardo; Martinez, Christopher

    2004-01-01

    An electrocardiogram (ECG) / blood pressure (BP) telemonitor consisting of comprehensive integration of various electrical engineering concepts, devices, and methods was developed. This personal digital assistant-based (PDAbased) system focused on integration of biopotential amplifiers, photoplethysmographic measurement of blood pressure, microcontroller devices, programming methods, wireless transmission, signal filtering and analysis, interfacing, and long term memory devices (24 hours) to develop a state-of-the-art ECG/BP telemonitor. These instrumentation modules were developed and tested to realize a complete and compact system that could be deployed to assist in telemedicine applications and heart rate variability studies. The specific objective of this device was to facilitate the long term monitoring and recording of ECG and blood pressure signals. This device was able to acquire ECG/BP waveforms, transmit them wirelessly to a PDA, save them onto a compact flash memory, and display them on the LCD screen of the PDA. It was also capable of calculating the heart rate (HR) in beats per minute, and providing systolic and diastolic blood pressure values.

  18. Assessment of central haemomodynamics from a brachial cuff in a community setting

    PubMed Central

    2012-01-01

    Background Large artery stiffening and wave reflections are independent predictors of adverse events. To date, their assessment has been limited to specialised techniques and settings. A new, more practical method allowing assessment of central blood pressure from waveforms recorded using a conventional automated oscillometric monitor has recently been validated in laboratory settings. However, the feasibility of this method in a community based setting has not been assessed. Methods One-off peripheral and central haemodynamic (systolic and diastolic blood pressure (BP) and pulse pressure) and wave reflection parameters (augmentation pressure (AP) and index, AIx) were obtained from 1,903 volunteers in an Austrian community setting using a transfer-function like method (ARCSolver algorithm) and from waveforms recorded with a regular oscillometric cuff. We assessed these parameters for known differences and associations according to gender and age deciles from <30 years to >80 years in the whole population and a subset with a systolic BP < 140 mmHg. Results We obtained 1,793 measures of peripheral and central BP, PP and augmentation parameters. Age and gender associations with central haemodynamic and augmentation parameters reflected those previously established from reference standard non-invasive techniques under specialised settings. Findings were the same for patients with a systolic BP below 140 mmHg (i.e. normotensive). Lower values for AIx in the current study are possibly due to differences in sampling rates, detection frequency and/or averaging procedures and to lower numbers of volunteers in younger age groups. Conclusion A novel transfer-function like algorithm, using brachial cuff-based waveform recordings, provides robust and feasible estimates of central systolic pressure and augmentation in community-based settings. PMID:22734820

  19. Effects of acute dietary nitrate supplementation on aortic blood pressure and aortic augmentation index in young and older adults.

    PubMed

    Hughes, William E; Ueda, Kenichi; Treichler, David P; Casey, Darren P

    2016-09-30

    Aging is associated with elevated blood pressure (peripheral and aortic; BP) and aortic augmentation index (AIx) which may contribute to aortic BP. Although inorganic nitrate consumption reduces peripheral BP in both young and older adults, the effects of nitrate consumption on aortic BP and wave reflection in young and older adults is unknown. Therefore, we sought to characterize the effects of nitrate consumption on aortic BP and AIx in young and older adults. Noninvasive aortic pressure waveforms were synthesized from high-fidelity radial pressure waveforms via applanation tonometry before and following (60, 90, 120, 150, and 180 min) consumption of a nitrate-rich beetroot juice in 26 healthy adults (young: 25 ± 4 years, n = 14; older: 64 ± 5 years, n = 12). Aortic BP and indices of aortic wave reflection (AIx and AIx normalized for heart rate; AIx@75bpm) were calculated from the generated aortic pressure waveform. Nitrate consumption increased plasma nitrite in both groups 60-180 min following beetroot consumption (P < 0.001). Nitrate consumption reduced peripheral and aortic BP in both young and older adults (P < 0.05), with the change being similar between age groups. Conversely, indices of aortic wave reflection were reduced only in young adults following nitrate consumption (range of change from baseline over time: AIx@75bpm, -4.3 to -8.8%, P < 0.05), whereas aortic AIx remained unchanged in the older adults. Taken together, our results suggest that acute dietary nitrate supplementation reduces peripheral and aortic BP similarly in young and older adults despite differential effects on aortic AIx between age groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Automatic detection of oesophageal intubation based on ventilation pressure waveforms shows high sensitivity and specificity in patients with pulmonary disease.

    PubMed

    Kalmar, Alain F; Absalom, Anthony; Rombouts, Pieter; Roets, Jelle; Dewaele, Frank; Verdonck, Pascal; Stemerdink, Arjanne; Zijlstra, Jan G; Monsieurs, Koenraad G

    2016-08-01

    Unrecognised endotracheal tube misplacement in emergency intubations has a reported incidence of up to 17%. Current detection methods have many limitations restricting their reliability and availability in these circumstances. There is therefore a clinical need for a device that is small enough to be practical in emergency situations and that can detect oesophageal intubation within seconds. In a first reported evaluation, we demonstrated an algorithm based on pressure waveform analysis, able to determine tube location with high reliability in healthy patients. The aim of this study was to validate the specificity of the algorithm in patients with abnormal pulmonary compliance, and to demonstrate the reliability of a newly developed small device that incorporates the technology. Intubated patients with mild to moderate lung injury, admitted to intensive care were included in the study. The device was connected to the endotracheal tube, and three test ventilations were performed in each patient. All diagnostic data were recorded on PC for subsequent specificity/sensitivity analysis. A total of 105 ventilations in 35 patients with lung injury were analysed. With the threshold D-value of 0.1, the system showed a 100% sensitivity and specificity to diagnose tube location. The algorithm retained its specificity in patients with decreased pulmonary compliance. We also demonstrated the feasibility to integrate sensors and diagnostic hardware in a small, portable hand-held device for convenient use in emergency situations. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Cylinder pressure reconstruction based on complex radial basis function networks from vibration and speed signals

    NASA Astrophysics Data System (ADS)

    Johnsson, Roger

    2006-11-01

    Methods to measure and monitor the cylinder pressure in internal combustion engines can contribute to reduced fuel consumption, noise and exhaust emissions. As direct measurements of the cylinder pressure are expensive and not suitable for measurements in vehicles on the road indirect methods which measure cylinder pressure have great potential value. In this paper, a non-linear model based on complex radial basis function (RBF) networks is proposed for the reconstruction of in-cylinder pressure pulse waveforms. Input to the network is the Fourier transforms of both engine structure vibration and crankshaft speed fluctuation. The primary reason for the use of Fourier transforms is that different frequency regions of the signals are used for the reconstruction process. This approach also makes it easier to reduce the amount of information that is used as input to the RBF network. The complex RBF network was applied to measurements from a 6-cylinder ethanol powered diesel engine over a wide range of running conditions. Prediction accuracy was validated by comparing a number of parameters between the measured and predicted cylinder pressure waveform such as maximum pressure, maximum rate of pressure rise and indicated mean effective pressure. The performance of the network was also evaluated for a number of untrained running conditions that differ both in speed and load from the trained ones. The results for the validation set were comparable to the trained conditions.

  2. Fault Slip Distribution of the 2016 Fukushima Earthquake Estimated from Tsunami Waveforms

    NASA Astrophysics Data System (ADS)

    Gusman, Aditya Riadi; Satake, Kenji; Shinohara, Masanao; Sakai, Shin'ichi; Tanioka, Yuichiro

    2017-08-01

    The 2016 Fukushima normal-faulting earthquake (Mjma 7.4) occurred 40 km off the coast of Fukushima within the upper crust. The earthquake generated a moderate tsunami which was recorded by coastal tide gauges and offshore pressure gauges. First, the sensitivity of tsunami waveforms to fault dimensions and depths was examined and the best size and depth were determined. Tsunami waveforms computed based on four available focal mechanisms showed that a simple fault striking northeast-southwest and dipping southeast (strike = 45°, dip = 41°, rake = -95°) yielded the best fit to the observed waveforms. This fault geometry was then used in a tsunami waveform inversion to estimate the fault slip distribution. A large slip of 3.5 m was located near the surface and the major slip region covered an area of 20 km × 20 km. The seismic moment, calculated assuming a rigidity of 2.7 × 1010 N/m2 was 3.70 × 1019 Nm, equivalent to Mw = 7.0. This is slightly larger than the moments from the moment tensor solutions (Mw 6.9). Large secondary tsunami peaks arrived approximately an hour after clear initial peaks were recorded by the offshore pressure gauges and the Sendai and Ofunato tide gauges. Our tsunami propagation model suggests that the large secondary tsunami signals were from tsunami waves reflected off the Fukushima coast. A rather large tsunami amplitude of 75 cm at Kuji, about 300 km north of the source, was comparable to those recorded at stations located much closer to the epicenter, such as Soma and Onahama. Tsunami simulations and ray tracing for both real and artificial bathymetry indicate that a significant portion of the tsunami wave was refracted to the coast located around Kuji and Miyako due to bathymetry effects.

  3. Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

    NASA Astrophysics Data System (ADS)

    Hinder, Ian; Buonanno, Alessandra; Boyle, Michael; Etienne, Zachariah B.; Healy, James; Johnson-McDaniel, Nathan K.; Nagar, Alessandro; Nakano, Hiroyuki; Pan, Yi; Pfeiffer, Harald P.; Pürrer, Michael; Reisswig, Christian; Scheel, Mark A.; Schnetter, Erik; Sperhake, Ulrich; Szilágyi, Bela; Tichy, Wolfgang; Wardell, Barry; Zenginoğlu, Anıl; Alic, Daniela; Bernuzzi, Sebastiano; Bode, Tanja; Brügmann, Bernd; Buchman, Luisa T.; Campanelli, Manuela; Chu, Tony; Damour, Thibault; Grigsby, Jason D.; Hannam, Mark; Haas, Roland; Hemberger, Daniel A.; Husa, Sascha; Kidder, Lawrence E.; Laguna, Pablo; London, Lionel; Lovelace, Geoffrey; Lousto, Carlos O.; Marronetti, Pedro; Matzner, Richard A.; Mösta, Philipp; Mroué, Abdul; Müller, Doreen; Mundim, Bruno C.; Nerozzi, Andrea; Paschalidis, Vasileios; Pollney, Denis; Reifenberger, George; Rezzolla, Luciano; Shapiro, Stuart L.; Shoemaker, Deirdre; Taracchini, Andrea; Taylor, Nicholas W.; Teukolsky, Saul A.; Thierfelder, Marcus; Witek, Helvi; Zlochower, Yosef

    2013-01-01

    The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binary's total mass is ˜100-200M⊙, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios ⩽4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.

  4. A computer system for timing and acoustical analysis of crackles: a study in cryptogenic fibrosing alveolitis.

    PubMed

    Dalmasso, F; Guarene, M M; Spagnolo, R; Benedetto, G; Righini, G

    1984-01-01

    A system for recording and processing lung crackles is described. These are detected by a microphone on the chest wall and recorded simultaneously with flow rate, tidal volume and oesophageal pressure on a four-channel tape recorder. The sound signal is subsequently digitized by an analog-to-digital converter and processed by a minicomputer, using the Time Series Language and the fast Fourier transform algorithm. A preliminary study on seven patients with cryptogenic fibrosing alveolitis (CFA) confirms that crackles typically occur at the end of inspiration; timing seems to be well related to inspired volume and esophageal pressure. Inspiratory crackles of CFA have a well-defined waveform: it consists of a starting component and a damped oscillation, which probably depends on the resonant frequency of the lung. The crackle energy content is mainly concentrated in the frequency range between 100 and 2 000 Hz, the spectrum shape being determined by the energy distribution between the two components of the waveform. This recording and processing system gives more complete information about crackles than auscultation does, allowing their quantification and reproducibility. It may be used to compare crackles in different diseases, and may be simplified and standardized for routine clinical use as an additional noninvasive diagnostic technique.

  5. Waveform analysis-guided treatment versus a standard shock-first protocol for the treatment of out-of-hospital cardiac arrest presenting in ventricular fibrillation: results of an international randomized, controlled trial.

    PubMed

    Freese, John P; Jorgenson, Dawn B; Liu, Ping-Yu; Innes, Jennifer; Matallana, Luis; Nammi, Krishnakant; Donohoe, Rachael T; Whitbread, Mark; Silverman, Robert A; Prezant, David J

    2013-08-27

    Ventricular fibrillation (VF) waveform properties have been shown to predict defibrillation success and outcomes among patients treated with immediate defibrillation. We postulated that a waveform analysis algorithm could be used to identify VF unlikely to respond to immediate defibrillation, allowing selective initial treatment with cardiopulmonary resuscitation in an effort to improve overall survival. In a multicenter, double-blind, randomized study, out-of-hospital cardiac arrest patients in 2 urban emergency medical services systems were treated with automated external defibrillators using either a VF waveform analysis algorithm or the standard shock-first protocol. The VF waveform analysis used a predefined threshold value below which return of spontaneous circulation (ROSC) was unlikely with immediate defibrillation, allowing selective treatment with a 2-minute interval of cardiopulmonary resuscitation before initial defibrillation. The primary end point was survival to hospital discharge. Secondary end points included ROSC, sustained ROSC, and survival to hospital admission. Of 6738 patients enrolled, 987 patients with VF of primary cardiac origin were included in the primary analysis. No immediate or long-term survival benefit was noted for either treatment algorithm (ROSC, 42.5% versus 41.2%, P=0.70; sustained ROSC, 32.4% versus 33.4%, P=0.79; survival to admission, 34.1% versus 36.4%, P=0.46; survival to hospital discharge, 15.6% versus 17.2%, P=0.55, respectively). Use of a waveform analysis algorithm to guide the initial treatment of out-of-hospital cardiac arrest patients presenting in VF did not improve overall survival compared with a standard shock-first protocol. Further study is recommended to examine the role of waveform analysis for the guided management of VF.

  6. Blood Pressure Monitoring for the Anesthesiologist: A Practical Review.

    PubMed

    Bartels, Karsten; Esper, Stephen A; Thiele, Robert H

    2016-06-01

    Periodic, quantitative measurement of blood pressure (BP) in humans, predating the era of evidence-based medicine by over a century, is a component of the American Society of Anesthesiologists standards for basic anesthetic monitoring and is a staple of anesthetic management worldwide. Adherence to traditional BP parameters complicates the ability of investigators to determine whether particular BP ranges confer any clinical benefits. The BP waveform is a complex amalgamation of both antegrade and retrograde (reflected) pressure waves and is affected by vascular compliance, distance from the left ventricle, and the 3D structure of the vascular tree. Although oscillometry is the standard method of measuring BP semicontinuously in anesthetized patients and is the primary form of measurement in >80% of general anesthetics, major shortcomings of oscillometry are its poor performance at the extremes and its lack of information concerning BP waveform. Although arterial catheterization remains the gold standard for accurate BP measurement, 2 classes of devices have been developed to noninvasively measure the BP waveform continuously, including tonometric and volume clamp devices. Described in terms of a feedback loop, control of BP requires measurement, an algorithm (usually human), and an intervention. This narrative review article discusses the details of BP measurement and the advantages and disadvantages of both noninvasive and invasive monitoring, as well as the principles and algorithms associated with each technique.

  7. Temperature analysis with voltage-current time differential operation of electrochemical sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay

    A method for temperature analysis of a gas stream. The method includes identifying a temperature parameter of an affected waveform signal. The method also includes calculating a change in the temperature parameter by comparing the affected waveform signal with an original waveform signal. The method also includes generating a value from the calculated change which corresponds to the temperature of the gas stream.

  8. Theoretical and experimental analysis of laser altimeters for barometric measurements over the ocean

    NASA Technical Reports Server (NTRS)

    Tsai, B. M.; Gardner, C. S.

    1984-01-01

    The statistical characteristics and the waveforms of ocean-reflected laser pulses are studied. The received signal is found to be corrupted by shot noise and time-resolved speckle. The statistics of time-resolved speckle and its effects on the timing accuracy of the receiver are studied in the general context of laser altimetry. For estimating the differential propagation time, various receiver timing algorithms are proposed and their performances evaluated. The results indicate that, with the parameters of a realistic altimeter, a pressure measurement accuracy of a few millibars is feasible. The data obtained from the first airborne two-color laser altimeter experiment are processed and analyzed. The results are used to verify the pressure measurement concept.

  9. Acoustic dipole radiation based electrical impedance contrast imaging approach of magnetoacoustic tomography with magnetic induction.

    PubMed

    Sun, Xiaodong; Fang, Dawei; Zhang, Dong; Ma, Qingyu

    2013-05-01

    Different from the theory of acoustic monopole spherical radiation, the acoustic dipole radiation based theory introduces the radiation pattern of Lorentz force induced dipole sources to describe the principle of magnetoacoustic tomography with magnetic induction (MAT-MI). Although two-dimensional (2D) simulations have been studied for cylindrical phantom models, layer effects of the dipole sources within the entire object along the z direction still need to be investigated to evaluate the performance of MAT-MI for different geometric specifications. The purpose of this work is further verifying the validity and generality of acoustic dipole radiation based theory for MAT-MI with two new models in different shapes, dimensions, and conductivities. Based on the theory of acoustic dipole radiation, the principles of MAT-MI were analyzed with derived analytic formulae. 2D and 3D numerical studies for two new models of aluminum foil and cooked egg were conducted to simulate acoustic pressures and corresponding waveforms, and 2D images of the scanned layers were reconstructed with the simplified back projection algorithm for the waveforms collected around the models. The spatial resolution for conductivity boundary differentiation was also analyzed with different foil thickness. For comparison, two experimental measurements were conducted for a cylindrical aluminum foil phantom and a shell-peeled cooked egg. The collected waveforms and the reconstructed images of the scanned layers were achieved to verify the validation of the acoustic dipole radiation based theory for MAT-MI. Despite the difference between the 2D and 3D simulated pressures, good consistence of the collected waveforms proves that wave clusters are generated by the abrupt pressure changes with bipolar vibration phases, representing the opposite polarities of the conductivity changes along the measurement direction. The configuration of the scanned layer can be reconstructed in terms of shape and size, and the conductivity boundaries are displayed in stripes with different contrast and bipolar intensities. Layer effects are demonstrated to have little influence on the collected waveforms and the reconstructed images of the scanned layers for the two new models. The experimental results have good agreements with numerical simulations, and the reconstructed 2D images provide conductivity configurations in the scanned layers of the aluminum foil and the egg models. It can be concluded that the acoustic pressure of MAT-MI is produced by the divergence of the induced Lorentz force, and the collected waveforms comprise wave clusters with bipolar vibration phases and different amplitudes, providing the information of conductivity boundaries in the scanned layer. With the simplified back projection algorithm for diffraction sources, collected waveforms can be used to reconstruct 2D conductivity contrast image and the conductivity configuration in the scanned layer can be obtained in terms of shape and size in stripes with the spatial resolution of the acoustic wavelength. The favorable results further verify the validity and generality of the acoustic dipole radiation based theory and suggest the feasibility of MAT-MI as an effective electrical impedance contrast imaging approach for medical imaging.

  10. Radar altimeter waveform modeled parameter recovery. [SEASAT-1 data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Satellite-borne radar altimeters include waveform sampling gates providing point samples of the transmitted radar pulse after its scattering from the ocean's surface. Averages of the waveform sampler data can be fitted by varying parameters in a model mean return waveform. The theoretical waveform model used is described as well as a general iterative nonlinear least squares procedures used to obtain estimates of parameters characterizing the modeled waveform for SEASAT-1 data. The six waveform parameters recovered by the fitting procedure are: (1) amplitude; (2) time origin, or track point; (3) ocean surface rms roughness; (4) noise baseline; (5) ocean surface skewness; and (6) altitude or off-nadir angle. Additional practical processing considerations are addressed and FORTRAN source listing for subroutines used in the waveform fitting are included. While the description is for the Seasat-1 altimeter waveform data analysis, the work can easily be generalized and extended to other radar altimeter systems.

  11. Turbofan forced mixer lobe flow modeling. 1: Experimental and analytical assessment

    NASA Technical Reports Server (NTRS)

    Barber, T.; Paterson, R. W.; Skebe, S. A.

    1988-01-01

    A joint analytical and experimental investigation of three-dimensional flowfield development within the lobe region of turbofan forced mixer nozzles is described. The objective was to develop a method for predicting the lobe exit flowfield. In the analytical approach, a linearized inviscid aerodynamical theory was used for representing the axial and secondary flows within the three-dimensional convoluted mixer lobes and three-dimensional boundary layer analysis was applied thereafter to account for viscous effects. The experimental phase of the program employed three planar mixer lobe models having different waveform shapes and lobe heights for which detailed measurements were made of the three-dimensional velocity field and total pressure field at the lobe exit plane. Velocity data was obtained using Laser Doppler Velocimetry (LDV) and total pressure probing and hot wire anemometry were employed to define exit plane total pressure and boundary layer development. Comparison of data and analysis was performed to assess analytical model prediction accuracy. As a result of this study a planar mixed geometry analysis was developed. A principal conclusion is that the global mixer lobe flowfield is inviscid and can be predicted from an inviscid analysis and Kutta condition.

  12. Pulse oximeter as a sensor of fluid responsiveness: do we have our finger on the best solution?

    PubMed Central

    Monnet, Xavier; Lamia, Bouchra; Teboul, Jean-Louis

    2005-01-01

    The pulse oximetry plethysmographic signal resembles the peripheral arterial pressure waveform, and the degree of respiratory variation in the pulse oximetry wave is close to the degree of respiratory arterial pulse pressure variation. Thus, it is tempting to speculate that pulse oximetry can be used to assess preload responsiveness in mechanically ventilated patients. In this commentary we briefly review the complex meaning of the pulse oximetry plethysmographic signal and highlight the advantages, limitations and pitfalls of the pulse oximetry method. Future studies including volume challenge must be performed to test whether the pulse oximetry waveform can really serve as a nonivasive tool for the guidance of fluid therapy in patients receiving mechanical ventilation in intensive care units and in operating rooms. PMID:16277729

  13. Vocal fold vibrations: high-speed imaging, kymography, and acoustic analysis: a preliminary report.

    PubMed

    Larsson, H; Hertegård, S; Lindestad, P A; Hammarberg, B

    2000-12-01

    To evaluate a new analysis system, High-Speed Tool Box (H. Larsson, custom-made program for image analysis, version 1.1, Department of Logopedics and Phoniatrics, Huddinge University Hospital, Huddinge, Sweden, 1998) for studying vocal fold vibrations using a high-speed camera and to relate findings from these analyses to sound characteristics. A Weinberger Speedcam + 500 system (Weinberger AG, Dietikon, Switzerland) was used with a frame rate of 1,904 frames per second. Images were stored and analyzed digitally. Analysis included automatic glottal edge detection and calculation of glottal area variations, as well as kymography. These signals were compared with acoustic waveforms using the Soundswell program (Hitech Development AB, Stockholm, Sweden). The High-Speed Tool Box was applied on two types of high-speed recordings: a diplophonic phonation and a tremor voice. Relations between glottal vibratory patterns and the sound waveform were analyzed. In the diplophonic phonation, the glottal area waveform, as well as the kymogram, showed a specific pattern of repetitive glottal closures, which was also seen in the acoustic waveform. In the tremor voice, fundamental frequency (F0) fluctuations in the acoustic waveform were reflected in slow variations in amplitude in the glottal area waveform. For studying details of mucosal movements during these kinds of abnormal vibrations, the glottal area waveform was particularly useful. Our results suggest that this combined high-speed acoustic-kymographic analysis package is a promising aid for separating and specifying different voice qualities such as diplophonia and voice tremor. Apart from clinical use, this finding should be of help for specification of the terminology of different voice qualities.

  14. The effect of voltage waveform and tube diameter on transporting cold plasma strings through a flexible dielectric tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohbatzadeh, Farshad, E-mail: f.sohbat@umz.ac.ir; Nano and Biotechnology Research Group, Faculty of Basic Sciences, University of Mazandaran, Babolsar 47416-95447, Mazandaran; Omran, Azadeh Valinataj

    2014-11-15

    In this work, we developed transporting atmospheric pressure cold plasma using single electrode configuration through a sub-millimetre flexible dielectric tube beyond 100 cm. It was shown that the waveform of the applied high voltage is essential for controlling upstream and downstream plasma inside the tube. In this regard, sawtooth waveform enabled the transport of plasma with less applied high voltage compared to sinusoidal and pulsed form voltages. A cold plasma string as long as 130 cm was obtained by only 4 kV peak-to-peak sawtooth high voltage waveform. Optical emission spectroscopy revealed that reactive chemical species, such as atomic oxygen and hydroxyl, are generatedmore » at the tube exit. The effect of tube diameter on the transported plasma was also examined: the smaller the diameter, the higher the applied voltage. The device is likely to be used for sterilization, decontamination, and therapeutic endoscopy as already suggested by other groups in recent past years.« less

  15. Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: excitation dynamics and ion flux asymmetry

    DOE PAGES

    Bruneau, B.; Diomede, P.; Economou, D. J.; ...

    2016-06-08

    Parallel plate capacitively coupled plasmas in hydrogen at relatively high pressure (~1 Torr) are excited with tailored voltage waveforms containing up to five frequencies. Predictions of a hybrid model combining a particle-in-cell simulation with Monte Carlo collisions and a fluid model are compared to phase resolved optical emission spectroscopy measurements, yielding information on the dynamics of the excitation rate in these discharges. When the discharge is excited with amplitude asymmetric waveforms, the discharge becomes electrically asymmetric, with different ion energies at each of the two electrodes. Unexpectedly, large differences in themore » $$\\text{H}_{2}^{+}$$ fluxes to each of the two electrodes are caused by the different $$\\text{H}_{3}^{+}$$ energies. When the discharge is excited with slope asymmetric waveforms, only weak electrical asymmetry of the discharge is observed. In this case, electron power absorption due to fast sheath expansion at one electrode is balanced by electron power absorption at the opposite electrode due to a strong electric field reversal.« less

  16. The analysis and interpretation of very-long-period seismic signals on volcanoes

    NASA Astrophysics Data System (ADS)

    Sindija, Dinko; Neuberg, Jurgen; Smith, Patrick

    2017-04-01

    The study of very long period (VLP) seismic signals became possible with the widespread use of broadband instruments. VLP seismic signals are caused by transients of pressure in the volcanic edifice and have periods ranging from several seconds to several minutes. For the VLP events recorded in March 2012 and 2014 at Soufriere Hills Volcano, Montserrat, we model the ground displacement using several source time functions: a step function using Richards growth equation, Küpper wavelet, and a damped sine wave to which an instrument response is then applied. This way we get a synthetic velocity seismogram which is directly comparable to the data. After the full vector field of ground displacement is determined, we model the source mechanism to determine the relationship between the source mechanism and the observed VLP waveforms. Emphasis of the research is on how different VLP waveforms are related to the volcano environment and the instrumentation used and on the processing steps in this low frequency band to get most out of broadband instruments.

  17. Characteristics of microearthquakes accompanying hydraulic fracturing as determined from studies of spectra of seismic waveforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehler, M.; Bame, D.

    1985-03-01

    A study of the spectral properties of the waveforms recorded during hydraulic fracturing earthquakes has been carried out to obtain information about the physical dimensions of the earthquakes. We find two types of events. The first type has waveforms with clear P and S arrivals and spectra that are very similar to earthquakes occurring in tectonic regions. These events are interpreted as being due to shear slip along fault planes. The second type of event has waveforms that are similar in many ways to long period earthquakes observed at volcanoes and is called long period. Many waveforms of these eventsmore » are identical, which implies that these events represent repeated activation of a given source. We propose that the source of these long period events is the sudden opening of a channel that connects two cracks filled with fluid at different pressures. The sizes of the two cracks differ, which causes two or more peaks to appear in the spectra, each peak being associated with one physical dimension of the crack. From the frequencies at which spectral peaks occur, we estimate crack dimensions of between 3 and 22m. 13 refs., 8 figs.« less

  18. A Study of New Pulse Auscultation System

    PubMed Central

    Chen, Ying-Yun; Chang, Rong-Seng

    2015-01-01

    This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT) and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine’s pulsing techniques, where pulse signals at places called “cun”, “guan” and “chi” of the left hand were measured during lifting (100 g), searching (125 g) and pressing (150 g) actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners’ objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision. PMID:25875192

  19. A study of new pulse auscultation system.

    PubMed

    Chen, Ying-Yun; Chang, Rong-Seng

    2015-04-14

    This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT) and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine's pulsing techniques, where pulse signals at places called "cun", "guan" and "chi" of the left hand were measured during lifting (100 g), searching (125 g) and pressing (150 g) actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners' objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision.

  20. Mass spectrometric characterization of a high-field asymmetric waveform ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Purves, Randy W.; Guevremont, Roger; Day, Stephen; Pipich, Charles W.; Matyjaszczyk, Matthew S.

    1998-12-01

    Ion mobility spectrometry (IMS) has become an important method for the detection of many compounds because of its high sensitivity and amenability to miniaturization for field-portable monitoring; applications include detection of narcotics, explosives, and chemical warfare agents. High-field asymmetric waveform ion mobility spectrometry (FAIMS) differs from IMS in that the electric fields are applied using a high-frequency periodic asymmetric waveform, rather than a dc voltage. Furthermore, in FAIMS the compounds are separated by the difference in the mobility of ions at high electric field relative to low field, rather than by compound to compound differences in mobility at low electric field (IMS). We report here the first cylindrical-geometry-FAIMS interface with mass spectrometry (FAIMS-MS) and the MS identification of the peaks observed in a FAIMS compensation voltage (CV) spectrum. Using both an electrometer-based-FAIMS (FAIMS-E) and FAIMS-MS, several variables that affect the sensitivity of ion detection were examined for two (polarity reversed) asymmetric waveforms (modes 1 and 2) each of which yields a unique spectrum. An increase in the dispersion voltage (DV) was found to improve the sensitivity and separation observed in the FAIMS CV spectrum. This increase in sensitivity and the unexpected dissimilarity in modes 1 and 2 suggest that atmospheric pressure ion focusing is occurring in the FAIMS analyzer. The sensitivity and peak locations in the CV spectra were affected by temperature, gas flow rates, operating pressure, and analyte concentration.

  1. Measurement and numerical simulation of high intensity focused ultrasound field in water

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2017-11-01

    In the present study, the acoustic field of a high intensity focused ultrasound (HIFU) transducer in water was measured by using a commercially available needle hydrophone intended for HIFU use. To validate the results of hydrophone measurements, numerical simulations of HIFU fields were performed by integrating the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation from the frequency-domain perspective with the help of a MATLAB-based software package developed for HIFU simulation. Quantitative values for the focal waveforms, the peak pressures, and the size of the focal spot were obtained in various regimes of linear, quasilinear, and nonlinear propagation up to the source pressure levels when the shock front was formed in the waveform. The numerical results with the HIFU simulator solving the KZK equation were compared with the experimental data and found to be in good agreement. This confirms that the numerical simulation based on the KZK equation is capable of capturing the nonlinear pressure field of therapeutic HIFU transducers well enough to make it suitable for HIFU treatment planning.

  2. Improved Pulse Wave Velocity Estimation Using an Arterial Tube-Load Model

    PubMed Central

    Gao, Mingwu; Zhang, Guanqun; Olivier, N. Bari; Mukkamala, Ramakrishna

    2015-01-01

    Pulse wave velocity (PWV) is the most important index of arterial stiffness. It is conventionally estimated by non-invasively measuring central and peripheral blood pressure (BP) and/or velocity (BV) waveforms and then detecting the foot-to-foot time delay between the waveforms wherein wave reflection is presumed absent. We developed techniques for improved estimation of PWV from the same waveforms. The techniques effectively estimate PWV from the entire waveforms, rather than just their feet, by mathematically eliminating the reflected wave via an arterial tube-load model. In this way, the techniques may be more robust to artifact while revealing the true PWV in absence of wave reflection. We applied the techniques to estimate aortic PWV from simultaneously and sequentially measured central and peripheral BP waveforms and simultaneously measured central BV and peripheral BP waveforms from 17 anesthetized animals during diverse interventions that perturbed BP widely. Since BP is the major acute determinant of aortic PWV, especially under anesthesia wherein vasomotor tone changes are minimal, we evaluated the techniques in terms of the ability of their PWV estimates to track the acute BP changes in each subject. Overall, the PWV estimates of the techniques tracked the BP changes better than those of the conventional technique (e.g., diastolic BP root-mean-squared-errors of 3.4 vs. 5.2 mmHg for the simultaneous BP waveforms and 7.0 vs. 12.2 mmHg for the BV and BP waveforms (p < 0.02)). With further testing, the arterial tube-load model-based PWV estimation techniques may afford more accurate arterial stiffness monitoring in hypertensive and other patients. PMID:24263016

  3. Real-time Tsunami Inundation Prediction Using High Performance Computers

    NASA Astrophysics Data System (ADS)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2014-12-01

    Recently off-shore tsunami observation stations based on cabled ocean bottom pressure gauges are actively being deployed especially in Japan. These cabled systems are designed to provide real-time tsunami data before tsunamis reach coastlines for disaster mitigation purposes. To receive real benefits of these observations, real-time analysis techniques to make an effective use of these data are necessary. A representative study was made by Tsushima et al. (2009) that proposed a method to provide instant tsunami source prediction based on achieving tsunami waveform data. As time passes, the prediction is improved by using updated waveform data. After a tsunami source is predicted, tsunami waveforms are synthesized from pre-computed tsunami Green functions of linear long wave equations. Tsushima et al. (2014) updated the method by combining the tsunami waveform inversion with an instant inversion of coseismic crustal deformation and improved the prediction accuracy and speed in the early stages. For disaster mitigation purposes, real-time predictions of tsunami inundation are also important. In this study, we discuss the possibility of real-time tsunami inundation predictions, which require faster-than-real-time tsunami inundation simulation in addition to instant tsunami source analysis. Although the computational amount is large to solve non-linear shallow water equations for inundation predictions, it has become executable through the recent developments of high performance computing technologies. We conducted parallel computations of tsunami inundation and achieved 6.0 TFLOPS by using 19,000 CPU cores. We employed a leap-frog finite difference method with nested staggered grids of which resolution range from 405 m to 5 m. The resolution ratio of each nested domain was 1/3. Total number of grid points were 13 million, and the time step was 0.1 seconds. Tsunami sources of 2011 Tohoku-oki earthquake were tested. The inundation prediction up to 2 hours after the earthquake occurs took about 2 minutes, which would be sufficient for a practical tsunami inundation predictions. In the presentation, the computational performance of our faster-than-real-time tsunami inundation model will be shown, and preferable tsunami wave source analysis for an accurate inundation prediction will also be discussed.

  4. Using impedance cardiography with postural change to stratify patients with hypertension.

    PubMed

    DeMarzo, Arthur P

    2011-06-01

    Early detection of cardiovascular disease in patients with hypertension could initiate appropriate treatment to control blood pressure and prevent the progression of cardiovascular disease. The goal of this study was to show how impedance cardiography waveform analysis with postural change can be used to detect subclinical cardiovascular disease in patients with high blood pressure. Patients with high blood pressure had impedance cardiography data obtained in two positions, standing upright and supine. In 50 adults, impedance cardiography indicated that all patients had abnormal data, with 44 (88%) having multiple abnormalities. Impedance cardiography showed 32 (64%) had ventricular dysfunction, 48 (96%) had vascular load abnormalities, 34 (68%) had hemodynamic abnormalities, 2 (4%) had hypovolemia, and 3 (6%) had hypervolemia. Hypertensive patients have diverse cardiovascular abnormalities that can be quantified by impedance cardiography. By stratifying patients with ventricular, vascular, and hemodynamic abnormalities, treatment could be customized based on the abnormal underlying mechanisms with the potential to rapidly control blood pressure, prevent progression of cardiovascular disease, and possibly reverse remodeling.

  5. Time domain reflectometry waveform analysis with second order bounded mean oscillation

    USDA-ARS?s Scientific Manuscript database

    Tangent-line methods and adaptive waveform interpretation with Gaussian filtering (AWIGF) have been proposed for determining reflection positions of time domain reflectometry (TDR) waveforms. However, the accuracy of those methods is limited for short probe TDR sensors. Second order bounded mean osc...

  6. A long source area of the 1906 Colombia-Ecuador earthquake estimated from observed tsunami waveforms

    NASA Astrophysics Data System (ADS)

    Yamanaka, Yusuke; Tanioka, Yuichiro; Shiina, Takahiro

    2017-12-01

    The 1906 Colombia-Ecuador earthquake induced both strong seismic motions and a tsunami, the most destructive earthquake in the history of the Colombia-Ecuador subduction zone. The tsunami propagated across the Pacific Ocean, and its waveforms were observed at tide gauge stations in countries including Panama, Japan, and the USA. This study conducted slip inverse analysis for the 1906 earthquake using these waveforms. A digital dataset of observed tsunami waveforms at the Naos Island (Panama) and Honolulu (USA) tide gauge stations, where the tsunami was clearly observed, was first produced by consulting documents. Next, the two waveforms were applied in an inverse analysis as the target waveform. The results of this analysis indicated that the moment magnitude of the 1906 earthquake ranged from 8.3 to 8.6. Moreover, the dominant slip occurred in the northern part of the assumed source region near the coast of Colombia, where little significant seismicity has occurred, rather than in the southern part. The results also indicated that the source area, with significant slip, covered a long distance, including the southern, central, and northern parts of the region.[Figure not available: see fulltext.

  7. Real-Time Processing of Continuous Physiological Signals in a Neurocritical Care Unit on a Stream Data Analytics Platform.

    PubMed

    Bai, Yong; Sow, Daby; Vespa, Paul; Hu, Xiao

    2016-01-01

    Continuous high-volume and high-frequency brain signals such as intracranial pressure (ICP) and electroencephalographic (EEG) waveforms are commonly collected by bedside monitors in neurocritical care. While such signals often carry early signs of neurological deterioration, detecting these signs in real time with conventional data processing methods mainly designed for retrospective analysis has been extremely challenging. Such methods are not designed to handle the large volumes of waveform data produced by bedside monitors. In this pilot study, we address this challenge by building a prototype system using the IBM InfoSphere Streams platform, a scalable stream computing platform, to detect unstable ICP dynamics in real time. The system continuously receives electrocardiographic and ICP signals and analyzes ICP pulse morphology looking for deviations from a steady state. We also designed a Web interface to display in real time the result of this analysis in a Web browser. With this interface, physicians are able to ubiquitously check on the status of their patients and gain direct insight into and interpretation of the patient's state in real time. The prototype system has been successfully tested prospectively on live hospitalized patients.

  8. Analysis of cardiovascular regulation.

    PubMed

    Wilhelm, F H; Grossman, P; Roth, W T

    1999-01-01

    Adequate characterization of hemodynamic and autonomic responses to physical and mental stress can elucidate underlying mechanisms of cardiovascular disease or anxiety disorders. We developed a physiological signal processing system for analysis of continuously recorded ECG, arterial blood pressure (BP), and respiratory signals using the programming language Matlab. Data collection devices are a 16-channel digital, physiological recorder (Vitaport), a finger arterial pressure transducer (Finapres), and a respiratory inductance plethysmograph (Respitrace). Besides the conventional analysis of the physiological channels, power spectral density and transfer functions of respiration, heart rate, and blood pressure variability are used to characterize respiratory sinus arrhythmia (RSA), 0.10-Hz BP oscillatory activity (Mayer-waves), and baroreflex sensitivity. The arterial pressure transducer waveforms permit noninvasive estimation of stroke volume, cardiac output, and systemic vascular resistance. Time trends in spectral composition of indices are assessed using complex demodulation. Transient dynamic changes of cardiovascular parameters at the onset of stress and recovery periods are quantified using a regression breakpoint model that optimizes piecewise linear curve fitting. Approximate entropy (ApEn) is computed to quantify the degree of chaos in heartbeat dynamics. Using our signal processing system we found distinct response patterns in subgroups of patients with coronary artery disease or anxiety disorders, which were related to specific pharmacological and behavioral factors.

  9. Analysis of Waveform Retracking Methods in Antarctic Ice Sheet Based on CRYOSAT-2 Data

    NASA Astrophysics Data System (ADS)

    Xiao, F.; Li, F.; Zhang, S.; Hao, W.; Yuan, L.; Zhu, T.; Zhang, Y.; Zhu, C.

    2017-09-01

    Satellite altimetry plays an important role in many geoscientific and environmental studies of Antarctic ice sheet. The ranging accuracy is degenerated near coasts or over nonocean surfaces, due to waveform contamination. A postprocess technique, known as waveform retracking, can be used to retrack the corrupt waveform and in turn improve the ranging accuracy. In 2010, the CryoSat-2 satellite was launched with the Synthetic aperture Interferometric Radar ALtimeter (SIRAL) onboard. Satellite altimetry waveform retracking methods are discussed in the paper. Six retracking methods including the OCOG method, the threshold method with 10 %, 25 % and 50 % threshold level, the linear and exponential 5-β parametric methods are used to retrack CryoSat-2 waveform over the transect from Zhongshan Station to Dome A. The results show that the threshold retracker performs best with the consideration of waveform retracking success rate and RMS of retracking distance corrections. The linear 5-β parametric retracker gives best waveform retracking precision, but cannot make full use of the waveform data.

  10. Simulating energy cascade of shock wave formation process in a resonator by gas kinetic scheme

    NASA Astrophysics Data System (ADS)

    Qu, Chengwu; Zhang, Xiaoqing; Feng, Heying

    2017-12-01

    The temporal-spatial evolution of gas oscillation was simulated by gas kinetic scheme (GKS) in a cylindrical resonator, driven by a piston at one end and rigidly closed at the other end. Periodic shock waves propagating back and forth were observed in the resonator under finite amplitude of gas oscillation. The studied results demonstrated that the acoustic pressure is a saw-tooth waveform and the oscillatory velocity is a square waveform at the central position of the resonant tube. Moreover, it was found by harmonic analysis that there was no presence of obvious feature for pressure node in such a typical standing wave resonator, and the distribution of acoustic fields displayed a one-dimensional feature for the acoustic pressure while a quasi-one-dimensional form for oscillatory velocity, which demonstrated the nonlinear effects. The simulation results for axial distribution of acoustic intensity showed a good consistency with the published experimental data in the open literature domain, which provides a verification for the effectiveness of the GKS model proposed. The influence of displacement amplitude of the driving piston on the formation of shock wave was numerically investigated, and the simulated results revealed the cascade process of harmonic wave energy from the fundamental wave to higher harmonics. In addition, this study found that the acoustic intensity at the driving end of the resonant tube would increase linearly with the displacement amplitude of the piston due to nonlinear effects, rather than the exponential variation by linear theory. This research demonstrates that the GKS model is strongly capable of simulating nonlinear acoustic problems.

  11. Ionization asymmetry effects on the properties modulation of atmospheric pressure dielectric barrier discharge sustained by tailored voltage waveforms

    NASA Astrophysics Data System (ADS)

    Zhang, Z. L.; Nie, Q. Y.; Zhang, X. N.; Wang, Z. B.; Kong, F. R.; Jiang, B. H.; Lim, J. W. M.

    2018-04-01

    The dielectric barrier discharge (DBD) is a promising technology to generate high density and uniform cold plasmas in atmospheric pressure gases. The effective independent tuning of key plasma parameters is quite important for both application-focused and fundamental studies. In this paper, based on a one-dimensional fluid model with semi-kinetics treatment, numerical studies of ionization asymmetry effects on the properties modulation of atmospheric DBD sustained by tailored voltage waveforms are reported. The driving voltage waveform is characterized by an asymmetric-slope fundamental sinusoidal radio frequency signal superimposing one or more harmonics, and the effects of the number of harmonics, phase shift, as well as the fluctuation of harmonics on the sheath dynamics, impact ionization of electrons and key plasma parameters are investigated. The results have shown that the electron density can exhibit a substantial increase due to the effective electron heating by a spatially asymmetric sheath structure. The strategic modulation of harmonics number and phase shift is capable of raising the electron density significantly (e.g., nearly three times in this case), but without a significant increase in the gas temperature. Moreover, by tailoring the fluctuation of harmonics with a steeper slope, a more profound efficiency in electron impact ionization can be achieved, and thus enhancing the electron density effectively. This method then enables a novel alternative approach to realize the independent control of the key plasma parameters under atmospheric pressure.

  12. 2015 Volcanic Tsunami Earthquake near Torishima Island: Array analysis of ocean bottom pressure gauge records

    NASA Astrophysics Data System (ADS)

    Fukao, Y.; Sugioka, H.; Ito, A.; Shiobara, H.; Sandanbata, O.; Watada, S.; Satake, K.

    2016-12-01

    An array of ocean bottom pressure gauges was deployed off east of Aogashima island of the Izu-Bonin arc from May 2014 to May 2015. The array consists of 10 ocean bottom pressure gauges using ParoScientific quartz resonators which can measure absolute water pressure at 7000m depth with nano-resolution. The array configures equilateral triangles with minimum and maximum lengths of 10 and 30km. This array recorded seismic and tsunami waves from the CLVD-type earthquake (M5.7) of May 02, 2015, that occurred near Torishima Island 100 km distant from the array. Comparison with records of ordinary thrust earthquakes with similar magnitudes at similar distances indicates that this event generated anomalously large tsunamis relative to seismic waves. We made an array analysis for the phase speed, propagating azimuth and travel time of tsunami wave in a frequency range 1-10 mHz, where the dispersion effect is significant. The results show excellent agreements with the frequency-dependent ray-tracing calculations. The tsunami trace apparently starts with positive onset (pressure increase) and reaches a maximum amplitude of about 200Pa (≈2cm in tsunami height). A closer inspection, however, shows a preceding negative small pulse (Fig. 1), suggesting that the seafloor deformation at the tsunami source consists of a central large uplift and a peripheral small depression. This mode of deformation is qualitatively consistent with a finite CLVD source uniformly shortened laterally and uniformly stretched vertically without volume change. The detection of weak initial motions is indebted to the array deployment of sensitive pressure gauges far away from coastal regions. The bandpass-filtered waveform is drastically different between the lower and higher frequency ranges. The waveform is single-peaked in the lower frequency range (<5 mHz) but is ringing in the higher frequency range (>5 mHz), corresponding to the tsunami spectrum that consists of the broad primary peak around 3.5 mHz and the sharp double peaks at around 6.5 and 9 mHz. We interpret the broad primary peak as due to the tsunami source associated with seafloor deformation and the sharp double peaks as due to wave resonance (seiche) inside the Smith Caldera.

  13. Aortic Blood Flow Reversal Determines Renal Function: Potential Explanation for Renal Dysfunction Caused by Aortic Stiffening in Hypertension.

    PubMed

    Hashimoto, Junichiro; Ito, Sadayoshi

    2015-07-01

    Aortic stiffness determines the glomerular filtration rate (GFR) and predicts the progressive decline of the GFR. However, the underlying pathophysiological mechanism remains obscure. Recent evidence has shown a close link between aortic stiffness and the bidirectional (systolic forward and early diastolic reverse) flow characteristics. We hypothesized that the aortic stiffening-induced renal dysfunction is attributable to altered central flow dynamics. In 222 patients with hypertension, Doppler velocity waveforms were recorded at the proximal descending aorta to calculate the reverse/forward flow ratio. Tonometric waveforms were recorded to measure the carotid-femoral (aortic) and carotid-radial (peripheral) pulse wave velocities, to estimate the aortic pressure from the radial waveforms, and to compute the aortic characteristic impedance. In addition, renal hemodynamics was evaluated by duplex ultrasound. The estimated GFR was inversely correlated with the aortic pulse wave velocity, reverse/forward flow ratio, pulse pressure, and characteristic impedance, whereas it was not correlated with the peripheral pulse wave velocity or mean arterial pressure. The association between aortic pulse wave velocity and estimated GFR was independent of age, diabetes mellitus, hypercholesterolemia, and antihypertensive medication. However, further adjustment for the aortic reverse/forward flow ratio and pulse pressure substantially weakened this association, and instead, the reverse/forward flow ratio emerged as the strongest determinant of estimated GFR (P=0.001). A higher aortic reverse/forward flow ratio was also associated with lower intrarenal forward flow velocities. These results suggest that an increase in aortic flow reversal (ie, retrograde flow from the descending thoracic aorta toward the aortic arch), caused by aortic stiffening and impedance mismatch, reduces antegrade flow into the kidney and thereby deteriorates renal function. © 2015 American Heart Association, Inc.

  14. Dynamic Pressure Calibration Standard

    NASA Technical Reports Server (NTRS)

    Schutte, P. C.; Cate, K. H.; Young, S. D.

    1986-01-01

    Vibrating columns of fluid used to calibrate transducers. Dynamic pressure calibration standard developed for calibrating flush diaphragm-mounted pressure transducers. Pressures up to 20 kPa (3 psi) accurately generated over frequency range of 50 to 1,800 Hz. System includes two conically shaped aluminum columns one 5 cm (2 in.) high for low pressures and another 11 cm (4.3 in.) high for higher pressures, each filled with viscous fluid. Each column mounted on armature of vibration exciter, which imparts sinusoidally varying acceleration to fluid column. Signal noise low, and waveform highly dependent on quality of drive signal in vibration exciter.

  15. Analysis of chemical warfare agents in food products by atmospheric pressure ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry.

    PubMed

    Kolakowski, Beata M; D'Agostino, Paul A; Chenier, Claude; Mester, Zoltán

    2007-11-01

    Flow injection high field asymmetric waveform ion mobility spectrometry (FAIMS)-mass spectrometry (MS) methodology was developed for the detection and identification of chemical warfare (CW) agents in spiked food products. The CW agents, soman (GD), sarin (GB), tabun (GA), cyclohexyl sarin (GF), and four hydrolysis products, ethylphosphonic acid (EPA), methylphosphonic acid (MPA), pinacolyl methylphosphonic acid (Pin MPA), and isopropyl methylphosphonic acid (IMPA) were separated and detected by positive ion and negative ion atmospheric pressure ionization-FAIMS-MS. Under optimized conditions, the compensation voltages were 7.2 V for GD, 8.0 V for GA, 7.2 V for GF, 7.6 V for GB, 18.2 V for EPA, 25.9 V for MPA, -1.9 V for PinMPA, and +6.8 V for IMPA. Sample preparation was kept to a minimum, resulting in analysis times of 3 min or less per sample. The developed methodology was evaluated by spiking bottled water, canola oil, cornmeal, and honey samples at low microgram per gram (or microg/mL) levels with the CW agents or CW agent hydrolysis products. The detection limits observed for the CW agents in the spiked food samples ranged from 3 to 15 ng/mL in bottled water, 1-33 ng/mL in canola oil, 1-34 ng/g in cornmeal, and 13-18 ng/g in honey. Detection limits were much higher for the CW agent hydrolysis products, with only MPA being detected in spiked honey samples.

  16. Development of Advanced Propagation Models and Application to the Study of Impulsive Infrasonic Events

    DTIC Science & Technology

    2007-09-01

    waveforms recorded at St. George, Utah, from the Texarkana event. Figure 6. Recorded infrasound waveforms at one of the SGAR array elements...along with its spectrogram, from the Texarkana underground nuclear explosion of February 10, 1989. Preliminary Analysis of Waveform Parameters Related

  17. Gas stream analysis using voltage-current time differential operation of electrochemical sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay

    A method for analysis of a gas stream. The method includes identifying an affected region of an affected waveform signal corresponding to at least one characteristic of the gas stream. The method also includes calculating a voltage-current time differential between the affected region of the affected waveform signal and a corresponding region of an original waveform signal. The affected region and the corresponding region of the waveform signals have a sensitivity specific to the at least one characteristic of the gas stream. The method also includes generating a value for the at least one characteristic of the gas stream basedmore » on the calculated voltage-current time differential.« less

  18. Quantitative Assessment of Blood Pressure Measurement Accuracy and Variability from Visual Auscultation Method by Observers without Receiving Medical Training

    PubMed Central

    Feng, Yong; Chen, Aiqing

    2017-01-01

    This study aimed to quantify blood pressure (BP) measurement accuracy and variability with different techniques. Thirty video clips of BP recordings from the BHS training database were converted to Korotkoff sound waveforms. Ten observers without receiving medical training were asked to determine BPs using (a) traditional manual auscultatory method and (b) visual auscultation method by visualizing the Korotkoff sound waveform, which was repeated three times on different days. The measurement error was calculated against the reference answers, and the measurement variability was calculated from the SD of the three repeats. Statistical analysis showed that, in comparison with the auscultatory method, visual method significantly reduced overall variability from 2.2 to 1.1 mmHg for SBP and from 1.9 to 0.9 mmHg for DBP (both p < 0.001). It also showed that BP measurement errors were significant for both techniques (all p < 0.01, except DBP from the traditional method). Although significant, the overall mean errors were small (−1.5 and −1.2 mmHg for SBP and −0.7 and 2.6 mmHg for DBP, resp., from the traditional auscultatory and visual auscultation methods). In conclusion, the visual auscultation method had the ability to achieve an acceptable degree of BP measurement accuracy, with smaller variability in comparison with the traditional auscultatory method. PMID:29423405

  19. Discharge processes and an electrical model of atmospheric pressure plasma jets in argon

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Shao, Tao; Yang, Jing; Zhang, Cheng

    2016-01-01

    In this paper, an atmospheric pressure plasma discharge in argon was generated using a needle-to-ring electrode configuration driven by a sinusoidal excitation voltage. The electric discharge processes and discharge characteristics were investigated by inspecting the voltage-current waveforms, Lissajous curves and lighting emission images. The change in discharge mode with applied voltage amplitude was studied and characterised, and three modes of corona discharge, dielectric barrier discharge (DBD) and jet discharge were identified, which appeared in turn with increasing applied voltage and can be distinguished clearly from the measured voltage-current waveforms, light-emission images and the changing gradient of discharge power with applied voltage. Based on the experimental results and discharge mechanism analysis, an equivalent electrical model and the corresponding equivalent circuit for characterising the whole discharge processes accurately was proposed, and the three discharge stages were characterised separately. A voltage-controlled current source (VCCS) associated with a resistance and a capacitance were used to represent the DBD stage, and the plasma plume and corona discharge were modelled by a variable capacitor in series with a variable resistor. Other factors that can influence the discharge, such as lead and stray capacitance values of the circuit, were also considered in the proposed model. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  20. Artificial Intelligence Estimation of Carotid-Femoral Pulse Wave Velocity using Carotid Waveform.

    PubMed

    Tavallali, Peyman; Razavi, Marianne; Pahlevan, Niema M

    2018-01-17

    In this article, we offer an artificial intelligence method to estimate the carotid-femoral Pulse Wave Velocity (PWV) non-invasively from one uncalibrated carotid waveform measured by tonometry and few routine clinical variables. Since the signal processing inputs to this machine learning algorithm are sensor agnostic, the presented method can accompany any medical instrument that provides a calibrated or uncalibrated carotid pressure waveform. Our results show that, for an unseen hold back test set population in the age range of 20 to 69, our model can estimate PWV with a Root-Mean-Square Error (RMSE) of 1.12 m/sec compared to the reference method. The results convey the fact that this model is a reliable surrogate of PWV. Our study also showed that estimated PWV was significantly associated with an increased risk of CVDs.

  1. A computer system for analysis and transmission of spirometry waveforms using volume sampling.

    PubMed

    Ostler, D V; Gardner, R M; Crapo, R O

    1984-06-01

    A microprocessor-controlled data gathering system for telemetry and analysis of spirometry waveforms was implemented using a completely digital design. Spirometry waveforms were obtained from an optical shaft encoder attached to a rolling seal spirometer. Time intervals between 10-ml volume changes (volume sampling) were stored. The digital design eliminated problems of analog signal sampling. The system measured flows up to 12 liters/sec with 5% accuracy and volumes up to 10 liters with 1% accuracy. Transmission of 10 waveforms took about 3 min. Error detection assured that no data were lost or distorted during transmission. A pulmonary physician at the central hospital reviewed the volume-time and flow-volume waveforms and interpretations generated by the central computer before forwarding the results and consulting with the rural physician. This system is suitable for use in a major hospital, rural hospital, or small clinic because of the system's simplicity and small size.

  2. Extraction of microseismic waveforms characteristics prior to rock burst using Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Li, Xuelong; Li, Zhonghui; Wang, Enyuan; Feng, Junjun; Chen, Liang; Li, Nan; Kong, Xiangguo

    2016-09-01

    This study provides a new research idea concerning rock burst prediction. The characteristics of microseismic (MS) waveforms prior to and during the rock burst were studied through the Hilbert-Huang transform (HHT). In order to demonstrate the advantage of the MS features extraction based on HHT, the conventional analysis method (Fourier transform) was also used to make a comparison. The results show that HHT is simple and reliable, and could extract in-depth information about the characteristics of MS waveforms. About 10 days prior to the rock burst, the main frequency of MS waveforms transforms from the high-frequency to low-frequency. What's more, the waveforms energy also presents accumulation characteristic. Based on our study results, it can be concluded that the MS signals analysis through HHT could provide valuable information about the coal or rock deformation and fracture.

  3. Anomalous waveforms observed in laboratory-formed gas hydrate-bearing and ice-bearing sediments

    PubMed Central

    Lee, Myung W.; Waite, William F.

    2011-01-01

    Acoustic transmission measurements of compressional, P, and shear, S, wave velocities rely on correctly identifying the P- and S-body wave arrivals in the measured waveform. In cylindrical samples for which the sample is much longer than the acoustic wavelength, these body waves can be obscured by high-amplitude waveform features arriving just after the relatively small-amplitude P-body wave. In this study, a normal mode approach is used to analyze this type of waveform, observed in sediment containing gas hydrate or ice. This analysis extends an existing normal-mode waveform propagation theory by including the effects of the confining medium surrounding the sample, and provides guidelines for estimating S-wave velocities from waveforms containing multiple large-amplitude arrivals. PMID:21476628

  4. Effects of water drinking test on ocular blood flow waveform parameters: A laser speckle flowgraphy study.

    PubMed

    Bhatti, Mehwish Saba; Tang, Tong Boon; Laude, Augustinus

    2017-01-01

    The water-drinking test (WDT) is a provocative test used in glaucoma research to assess the effects of elevated intraocular pressure (IOP). Defective autoregulation due to changes in perfusion pressure may play a role in the pathophysiology of several ocular diseases. This study aims to examine the effects of WDT on ocular blood flow (in the form of pulse waveform parameters obtained using laser speckle flowgraphy) to gain insight into the physiology of ocular blood flow and its autoregulation in healthy individuals. Changes in pulse waveform parameters of mean blur rate (MBR) in the entire optic nerve head (ONH), the vasculature of the ONH, the tissue area of the ONH, and the avascular tissue area located outside of the ONH were monitored over time. Significant increases in the falling rate of MBR over the entire ONH and its tissue area and decreases in blowout time (BOT) of the tissue area were observed only at 10 minutes after water intake. Significant increases in the skew of the waveform and the falling rate were observed in the vasculature of the ONH at 40 and 50 minutes after water intake, respectively. In the avascular region of the choroid, the average MBR increased significantly up to 30 minutes after water intake. Furthermore, the rising rate in this region increased significantly at 20 and 40 minutes, and the falling rate and acceleration-time index were both significantly increased at 40 minutes after water intake. Our results indicate the presence of effective autoregulation of blood flow at the ONH after WDT. However, in the choroidal region, outside of the ONH, effective autoregulation was not observed until 30 minutes after water intake in healthy study participants. These pulse waveform parameters could potentially be used in the diagnosis and/or monitoring of patients with glaucoma.

  5. Effects of water drinking test on ocular blood flow waveform parameters: A laser speckle flowgraphy study

    PubMed Central

    Bhatti, Mehwish Saba; Laude, Augustinus

    2017-01-01

    The water-drinking test (WDT) is a provocative test used in glaucoma research to assess the effects of elevated intraocular pressure (IOP). Defective autoregulation due to changes in perfusion pressure may play a role in the pathophysiology of several ocular diseases. This study aims to examine the effects of WDT on ocular blood flow (in the form of pulse waveform parameters obtained using laser speckle flowgraphy) to gain insight into the physiology of ocular blood flow and its autoregulation in healthy individuals. Changes in pulse waveform parameters of mean blur rate (MBR) in the entire optic nerve head (ONH), the vasculature of the ONH, the tissue area of the ONH, and the avascular tissue area located outside of the ONH were monitored over time. Significant increases in the falling rate of MBR over the entire ONH and its tissue area and decreases in blowout time (BOT) of the tissue area were observed only at 10 minutes after water intake. Significant increases in the skew of the waveform and the falling rate were observed in the vasculature of the ONH at 40 and 50 minutes after water intake, respectively. In the avascular region of the choroid, the average MBR increased significantly up to 30 minutes after water intake. Furthermore, the rising rate in this region increased significantly at 20 and 40 minutes, and the falling rate and acceleration-time index were both significantly increased at 40 minutes after water intake. Our results indicate the presence of effective autoregulation of blood flow at the ONH after WDT. However, in the choroidal region, outside of the ONH, effective autoregulation was not observed until 30 minutes after water intake in healthy study participants. These pulse waveform parameters could potentially be used in the diagnosis and/or monitoring of patients with glaucoma. PMID:28742142

  6. Magnetic plethysmograph transducers for local blood pulse wave velocity measurement.

    PubMed

    Nabeel, P M; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2014-01-01

    We present the design of magnetic plethysmograph (MPG) transducers for detection of blood pulse waveform and evaluation of local pulse wave velocity (PWV), for potential use in cuffless blood pressure (BP) monitoring. The sensors utilize a Hall effect magnetic field sensor to capture the blood pulse waveform. A strap based design is performed to enable reliable capture of large number of cardiac cycles with relative ease. The ability of the transducer to consistently detect the blood pulse is verified by in-vivo trials on few volunteers. A duality of such transducers is utilized to capture the local PWV at the carotid artery. The pulse transit time (PTT) between the two detected pulse waveforms, measured along a small section of the carotid artery, was evaluated using automated algorithms to ensure consistency of measurements. The correlation between the measured values of local PWV and BP was also investigated. The developed transducers provide a reliable, easy modality for detecting pulse waveform on superficial arteries. Such transducers, used for measurement of local PWV, could potentially be utilized for cuffless, continuous evaluation of BP at various superficial arterial sites.

  7. Slope and amplitude asymmetry effects on low frequency capacitively coupled carbon tetrafluoride plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruneau, B., E-mail: bastien.bruneau@polytechnique.edu; Johnson, E.; Korolov, I.

    2016-04-28

    We report investigations of capacitively coupled carbon tetrafluoride (CF{sub 4}) plasmas excited with tailored voltage waveforms containing up to five harmonics of a base frequency of 5.5 MHz. The impact of both the slope asymmetry, and the amplitude asymmetry, of these waveforms on the discharge is examined by combining experiments with particle-in-cell simulations. For all conditions studied herein, the discharge is shown to operate in the drift-ambipolar mode, where a comparatively large electric field in the plasma bulk (outside the sheaths) is the main mechanism for electron power absorption leading to ionization. We show that both types of waveform asymmetries stronglymore » influence the ion energy at the electrodes, with the particularity of having the highest ion flux on the electrode where the lowest ion energy is observed. Even at the comparatively high pressure (600 mTorr) and low fundamental frequency of 5.5 MHz used here, tailoring the voltage waveforms is shown to efficiently create an asymmetry of both the ion energy and the ion flux in geometrically symmetric reactors.« less

  8. Noninvasive iPhone Measurement of Left Ventricular Ejection Fraction Using Intrinsic Frequency Methodology.

    PubMed

    Pahlevan, Niema M; Rinderknecht, Derek G; Tavallali, Peyman; Razavi, Marianne; Tran, Thao T; Fong, Michael W; Kloner, Robert A; Csete, Marie; Gharib, Morteza

    2017-07-01

    The study is based on previously reported mathematical analysis of arterial waveform that extracts hidden oscillations in the waveform that we called intrinsic frequencies. The goal of this clinical study was to compare the accuracy of left ventricular ejection fraction derived from intrinsic frequencies noninvasively versus left ventricular ejection fraction obtained with cardiac MRI, the most accurate method for left ventricular ejection fraction measurement. After informed consent, in one visit, subjects underwent cardiac MRI examination and noninvasive capture of a carotid waveform using an iPhone camera (The waveform is captured using a custom app that constructs the waveform from skin displacement images during the cardiac cycle.). The waveform was analyzed using intrinsic frequency algorithm. Outpatient MRI facility. Adults able to undergo MRI were referred by local physicians or self-referred in response to local advertisement and included patients with heart failure with reduced ejection fraction diagnosed by a cardiologist. Standard cardiac MRI sequences were used, with periodic breath holding for image stabilization. To minimize motion artifact, the iPhone camera was held in a cradle over the carotid artery during iPhone measurements. Regardless of neck morphology, carotid waveforms were captured in all subjects, within seconds to minutes. Seventy-two patients were studied, ranging in age from 20 to 92 years old. The main endpoint of analysis was left ventricular ejection fraction; overall, the correlation between ejection fraction-iPhone and ejection fraction-MRI was 0.74 (r = 0.74; p < 0.0001; ejection fraction-MRI = 0.93 × [ejection fraction-iPhone] + 1.9). Analysis of carotid waveforms using intrinsic frequency methods can be used to document left ventricular ejection fraction with accuracy comparable with that of MRI. The measurements require no training to perform or interpret, no calibration, and can be repeated at the bedside to generate almost continuous analysis of left ventricular ejection fraction without arterial cannulation.

  9. A system for rapid analysis of the femoral blood velocity waveform at the bedside.

    PubMed

    Capper, W L; Amoore, J N; Clifford, P C; Immelman, E J; Harries-Jones, E P

    1986-01-01

    The shape of the arterial blood velocity waveform varies with atherosclerotic disease and several methods of quantifying the shape in order to predict the severity of the disease have been described. These methods include pulsatility index, the Laplace transform method, and principal component analysis. This paper describes the development of a system which allows the operator to acquire, display, and store waveforms from each limb and then to quantify the waveforms at the bedside within a few minutes. The system includes a 10 MHz bi-directional Doppler unit, an instantaneous mean frequency processor, and an Apple II microcomputer fitted with an accelerator card. Both the Laplace transform parameters and the pulsatility index are computed and each result is printed in tabular form together with the averaged results of five waveforms from each limb. The printout is suitable for inclusion in the patient's folder. In initial clinical studies Laplace transform analysis exhibited a good correlation with aorto-iliac stenosis as assessed angiographically (R = 0.73 P less than 0.001 t test).

  10. [Study of sharing platform of web-based enhanced extracorporeal counterpulsation hemodynamic waveform data].

    PubMed

    Huang, Mingbo; Hu, Ding; Yu, Donglan; Zheng, Zhensheng; Wang, Kuijian

    2011-12-01

    Enhanced extracorporeal counterpulsation (EECP) information consists of both text and hemodynamic waveform data. At present EECP text information has been successfully managed through Web browser, while the management and sharing of hemodynamic waveform data through Internet has not been solved yet. In order to manage EECP information completely, based on the in-depth analysis of EECP hemodynamic waveform file of digital imaging and communications in medicine (DICOM) format and its disadvantages in Internet sharing, we proposed the use of the extensible markup language (XML), which is currently the Internet popular data exchange standard, as the storage specification for the sharing of EECP waveform data. Then we designed a web-based sharing system of EECP hemodynamic waveform data via ASP. NET 2.0 platform. Meanwhile, we specifically introduced the four main system function modules and their implement methods, including DICOM to XML conversion module, EECP waveform data management module, retrieval and display of EECP waveform module and the security mechanism of the system.

  11. Ultrasound tomography imaging with waveform sound speed: parenchymal changes in women undergoing tamoxifen therapy

    NASA Astrophysics Data System (ADS)

    Sak, Mark; Duric, Neb; Littrup, Peter; Sherman, Mark; Gierach, Gretchen

    2017-03-01

    Ultrasound tomography (UST) is an emerging modality that can offer quantitative measurements of breast density. Recent breakthroughs in UST image reconstruction involve the use of a waveform reconstruction as opposed to a raybased reconstruction. The sound speed (SS) images that are created using the waveform reconstruction have a much higher image quality. These waveform images offer improved resolution and contrasts between regions of dense and fatty tissues. As part of a study that was designed to assess breast density changes using UST sound speed imaging among women undergoing tamoxifen therapy, UST waveform sound speed images were then reconstructed for a subset of participants. These initial results show that changes to the parenchymal tissue can more clearly be visualized when using the waveform sound speed images. Additional quantitative testing of the waveform images was also started to test the hypothesis that waveform sound speed images are a more robust measure of breast density than ray-based reconstructions. Further analysis is still needed to better understand how tamoxifen affects breast tissue.

  12. Estimation of coronary wave intensity analysis using noninvasive techniques and its application to exercise physiology

    PubMed Central

    Nijjer, Sukhjinder; Sen, Sayan; Petraco, Ricardo; Jones, Siana; Al-Lamee, Rasha; Foin, Nicolas; Al-Bustami, Mahmud; Sethi, Amarjit; Kaprielian, Raffi; Ramrakha, Punit; Khan, Masood; Malik, Iqbal S.; Francis, Darrel P.; Parker, Kim; Hughes, Alun D.; Mikhail, Ghada W.; Mayet, Jamil; Davies, Justin E.

    2015-01-01

    Wave intensity analysis (WIA) has found particular applicability in the coronary circulation where it can quantify traveling waves that accelerate and decelerate blood flow. The most important wave for the regulation of flow is the backward-traveling decompression wave (BDW). Coronary WIA has hitherto always been calculated from invasive measures of pressure and flow. However, recently it has become feasible to obtain estimates of these waveforms noninvasively. In this study we set out to assess the agreement between invasive and noninvasive coronary WIA at rest and measure the effect of exercise. Twenty-two patients (mean age 60) with unobstructed coronaries underwent invasive WIA in the left anterior descending artery (LAD). Immediately afterwards, noninvasive LAD flow and pressure were recorded and WIA calculated from pulsed-wave Doppler coronary flow velocity and central blood pressure waveforms measured using a cuff-based technique. Nine of these patients underwent noninvasive coronary WIA assessment during exercise. A pattern of six waves were observed in both modalities. The BDW was similar between invasive and noninvasive measures [peak: 14.9 ± 7.8 vs. −13.8 ± 7.1 × 104 W·m−2·s−2, concordance correlation coefficient (CCC): 0.73, P < 0.01; cumulative: −64.4 ± 32.8 vs. −59.4 ± 34.2 × 102 W·m−2·s−1, CCC: 0.66, P < 0.01], but smaller waves were underestimated noninvasively. Increased left ventricular mass correlated with a decreased noninvasive BDW fraction (r = −0.48, P = 0.02). Exercise increased the BDW: at maximum exercise peak BDW was −47.0 ± 29.5 × 104 W·m−2·s−2 (P < 0.01 vs. rest) and cumulative BDW −19.2 ± 12.6 × 103 W·m−2·s−1 (P < 0.01 vs. rest). The BDW can be measured noninvasively with acceptable reliably potentially simplifying assessments and increasing the applicability of coronary WIA. PMID:26683900

  13. Estimation of coronary wave intensity analysis using noninvasive techniques and its application to exercise physiology.

    PubMed

    Broyd, Christopher J; Nijjer, Sukhjinder; Sen, Sayan; Petraco, Ricardo; Jones, Siana; Al-Lamee, Rasha; Foin, Nicolas; Al-Bustami, Mahmud; Sethi, Amarjit; Kaprielian, Raffi; Ramrakha, Punit; Khan, Masood; Malik, Iqbal S; Francis, Darrel P; Parker, Kim; Hughes, Alun D; Mikhail, Ghada W; Mayet, Jamil; Davies, Justin E

    2016-03-01

    Wave intensity analysis (WIA) has found particular applicability in the coronary circulation where it can quantify traveling waves that accelerate and decelerate blood flow. The most important wave for the regulation of flow is the backward-traveling decompression wave (BDW). Coronary WIA has hitherto always been calculated from invasive measures of pressure and flow. However, recently it has become feasible to obtain estimates of these waveforms noninvasively. In this study we set out to assess the agreement between invasive and noninvasive coronary WIA at rest and measure the effect of exercise. Twenty-two patients (mean age 60) with unobstructed coronaries underwent invasive WIA in the left anterior descending artery (LAD). Immediately afterwards, noninvasive LAD flow and pressure were recorded and WIA calculated from pulsed-wave Doppler coronary flow velocity and central blood pressure waveforms measured using a cuff-based technique. Nine of these patients underwent noninvasive coronary WIA assessment during exercise. A pattern of six waves were observed in both modalities. The BDW was similar between invasive and noninvasive measures [peak: 14.9 ± 7.8 vs. -13.8 ± 7.1 × 10(4) W·m(-2)·s(-2), concordance correlation coefficient (CCC): 0.73, P < 0.01; cumulative: -64.4 ± 32.8 vs. -59.4 ± 34.2 × 10(2) W·m(-2)·s(-1), CCC: 0.66, P < 0.01], but smaller waves were underestimated noninvasively. Increased left ventricular mass correlated with a decreased noninvasive BDW fraction (r = -0.48, P = 0.02). Exercise increased the BDW: at maximum exercise peak BDW was -47.0 ± 29.5 × 10(4) W·m(-2)·s(-2) (P < 0.01 vs. rest) and cumulative BDW -19.2 ± 12.6 × 10(3) W·m(-2)·s(-1) (P < 0.01 vs. rest). The BDW can be measured noninvasively with acceptable reliably potentially simplifying assessments and increasing the applicability of coronary WIA. Copyright © 2016 the American Physiological Society.

  14. Central blood pressure in children and adolescents: non-invasive development and testing of novel transfer functions.

    PubMed

    Cai, T Y; Qasem, A; Ayer, J G; Butlin, M; O'Meagher, S; Melki, C; Marks, G B; Avolio, A; Celermajer, D S; Skilton, M R

    2017-12-01

    Central blood pressure can be estimated from peripheral pulses in adults using generalised transfer functions (TF). We sought to create and test age-specific non-invasively developed TFs in children, with comparison to a pre-existing adult TF. We studied healthy children from two sites at two time points, 8 and 14 years of age, split by site into development and validation groups. Radial and carotid pressure waveforms were obtained by applanation tonometry. Central systolic pressure was derived from carotid waveforms calibrated to brachial mean and diastolic pressures. Age-specific TFs created in the development groups (n=50) were tested in the validation groups aged 8 (n=137) and 14 years (n=85). At 8 years of age, the age-specific TF estimated 82, 99 and 100% of central systolic pressure values within 5, 10 and 15 mm Hg of their measured values, respectively. This TF overestimated central systolic pressure by 2.2 (s.d. 3.7) mm Hg, compared to being underestimated by 5.6 (s.d. 3.9) mm Hg with the adult TF. At 14 years of age, the age-specific TF estimated 60, 87 and 95% of values within 5, 10 and 15 mm Hg of their measured values, respectively. This TF underestimated central systolic pressure by 0.5 (s.d. 6.7) mm Hg, while the adult TF underestimated it by 6.8 (s.d. 6.0) mm Hg. In conclusion, age-specific TFs more accurately predict central systolic pressure measured at the carotid artery in children than an existing adult TF.

  15. Forward and Backward Pressure Waveform Morphology in Hypertension

    PubMed Central

    Li, Ye; Gu, Haotian; Fok, Henry; Alastruey, Jordi

    2017-01-01

    We tested the hypothesis that increased pulse wave reflection and altered backward waveform morphology contribute to increased pulse pressure in subjects with higher pulse pressure compared with lower pulse pressure and to actions of vasoactive drugs to increase pulse pressure. We examined the relationship of backward to forward wave morphology in 158 subjects who were evaluated for hypertension (including some normotensive subjects) divided into 3 groups by central pulse pressure: group 1, 33±6.5 mm Hg; group 2, 45±4.1 mm Hg; and group 3, 64±12.9 mm Hg (means±SD) and in healthy normotensive subjects during administration of inotropic and vasomotor drugs. Aortic pressure and flow in the aortic root were estimated by carotid tonometry and Doppler sonography, respectively. Morphology of the backward wave relative to the forward wave was similar in subjects in the lowest and highest tertiles of pulse pressure. Similar results were seen with the inotropic, vasopressor and vasodilator drugs, dobutamine, norepinephrine, and phentolamine, with the backward wave maintaining a constant ratio to the forward wave. However, nitroglycerin, a drug with a specific action to dilate muscular conduit arteries, reduced the amplitude of the backward wave relative to the forward wave from 0.26±0.018 at baseline to 0.19±0.019 during nitroglycerin 30 μg/min IV (P<0.01). These results are best explained by an approximately constant amount of reflection of the forward wave from the peripheral vasculature. The amount of reflection can be modified by dilation of peripheral muscular conduit arteries but contributes little to increased pulse pressure in hypertension. PMID:27920128

  16. Fluid flow through the larynx channel

    NASA Astrophysics Data System (ADS)

    Miller, J. A.; Pereira, J. C.; Thomas, D. W.

    1988-03-01

    The classic two-mass model of the larynx channel is extended by including the false vocal folds and the laryngeal ventricle. Several glottis profiles are postulated to exist which are the result of the forces applied to the mucus membrane due to intraglottal pressure variation. These profiles constrain the air flow which allows the formation of one or two "venae contractae". The location of these influences the pressure in the glottis and layrngeal ventricle and also gives rise to additional viscous losses as well as losses due to flow enlargement. Sampled waveforms are calculated from the model for volume velocity, glottal area, Reynolds number and fluid forces over the vocal folds for various profiles. Results show that the computed waveforms agree with physiological data [1,2] and that it is not necessary to use any empirical constants to match the simulation results. Also, the onset of phonation is shown to be possible either with abduction or adduction of the vocal folds.

  17. Constant flow-driven microfluidic oscillator for different duty cycles

    PubMed Central

    Kim, Sung-Jin; Yokokawa, Ryuji; Lesher-Perez, Sasha Cai; Takayama, Shuichi

    2012-01-01

    This paper presents microfluidic devices that autonomously convert two constant flow inputs into an alternating oscillatory flow output. We accomplish this hardware embedded self-control programming using normally closed membrane valves that have an inlet, an outlet, and a membrane-pressurization chamber connected to a third terminal. Adjustment of threshold opening pressures in these 3-terminal flow switching valves enabled adjustment of oscillation periods to between 57–360 s with duty cycles of 0.2–0.5. These values are in relatively good agreement with theoretical values, providing the way for rational design of an even wider range of different waveform oscillations. We also demonstrate the ability to use these oscillators to perform temporally patterned delivery of chemicals to living cells. The device only needs a syringe pump, thus removing the use of complex, expensive external actuators. These tunable waveform microfluidic oscillators are envisioned to facilitate cell-based studies that require temporal stimulation. PMID:22206453

  18. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  19. Rotational viscometer for high-pressure high-temperature fluids

    DOEpatents

    Carr, Kenneth R.

    1985-01-01

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer includes a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. An output is generated indicative of the phase difference between the two waveforms.

  20. Implementation of the Domino Sampling Waveform digitizer in the PIBETA experiment

    NASA Astrophysics Data System (ADS)

    Wang, Ying

    The Domino Sampling Chip(DSC)-Waveform digitization system is a significant addition to electronics arsenal of PIBETA experiment. It is used to digitize waveforms from every photo tube in the detector. Through carefully programmed offline analysis of its raw data collected during regular runtime, better timing and energy resolution are achieved compared with feast's results. And more importantly, the geometric character of the digitized waveform which contains information of energy deposition of particle decays can be utilized for particle identification, a great advantage that regular unit could not possess. In addition to fastbus, incorporate DSC data through its offline analysis including timing and energy offset, scale calibration will contribute a final more precise result of PIBETA experiment.

  1. Design of HIFU transducers for generating specified nonlinear ultrasound fields

    PubMed Central

    Rosnitskiy, Pavel B.; Yuldashev, Petr V.; Sapozhnikov, Oleg A.; Maxwell, Adam; Kreider, Wayne; Bailey, Michael R.; Khokhlova, Vera A.

    2016-01-01

    Various clinical applications of high intensity focused ultrasound (HIFU) have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this work was to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasilinear conditions at the focus. Multi-parametric nonlinear modeling based on the KZK equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. Results are presented in terms of the parameters of an equivalent single-element, spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full-diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields. PMID:27775904

  2. Anomalous waveforms observed in laboratory-formed gas hydrate-bearing and ice-bearing sediments

    USGS Publications Warehouse

    Lee, M.W.; Waite, W.F.

    2011-01-01

    Acoustic transmission measurements of compressional, P, and shear, S, wave velocities rely on correctly identifying the P- and S-body wave arrivals in the measured waveform. In cylindrical samples for which the sample is much longer than the acoustic wavelength, these body waves can be obscured by high-amplitude waveform features arriving just after the relatively small-amplitude P-body wave. In this study, a normal mode approach is used to analyze this type of waveform, observed in sediment containing gas hydrate or ice. This analysis extends an existing normal-mode waveform propagation theory by including the effects of the confining medium surrounding the sample, and provides guidelines for estimating S-wave velocities from waveforms containing multiple large-amplitude arrivals. ?? 2011 Acoustical Society of America.

  3. WaveformECG: A Platform for Visualizing, Annotating, and Analyzing ECG Data

    PubMed Central

    Winslow, Raimond L.; Granite, Stephen; Jurado, Christian

    2017-01-01

    The electrocardiogram (ECG) is the most commonly collected data in cardiovascular research because of the ease with which it can be measured and because changes in ECG waveforms reflect underlying aspects of heart disease. Accessed through a browser, WaveformECG is an open source platform supporting interactive analysis, visualization, and annotation of ECGs. PMID:28642673

  4. A quasi-dynamic nonlinear finite element model to investigate prosthetic interface stresses during walking for trans-tibial amputees.

    PubMed

    Jia, Xiaohong; Zhang, Ming; Li, Xiaobing; Lee, Winson C C

    2005-07-01

    To predict the interface pressure between residual limb and prosthetic socket for trans-tibial amputees during walking. A quasi-dynamic finite element model was built based on the actual geometry of residual limb, internal bones and socket liner. To simulate the friction/slip boundary conditions between the skin and liner, automated surface-to-surface contact was used. Besides variable external loads and material inertia, the coupling between the large rigid displacement of knee joint and small elastic deformation of residual limb and prosthetic components were also considered. Interface pressure distribution was found to have the same profile during walking. The high pressures fall over popliteal depression, middle patella tendon, lateral tibia and medial tibia regions. Interface pressure predicted by static or quasi-dynamic analysis had the similar double-peaked waveform shape in stance phase. The consideration of inertial effects and motion of knee joint cause 210% average variation of the area between the pressure curve and the horizontal line of pressure threshold between two cases, even though there is only a small change in the peak pressure. The findings in this paper show that the coupling dynamic effects of inertial loads and knee flexion must be considered to study interface pressure between residual limb and prosthetic socket during walking.

  5. Multi-Gaussian fitting for pulse waveform using Weighted Least Squares and multi-criteria decision making method.

    PubMed

    Wang, Lu; Xu, Lisheng; Feng, Shuting; Meng, Max Q-H; Wang, Kuanquan

    2013-11-01

    Analysis of pulse waveform is a low cost, non-invasive method for obtaining vital information related to the conditions of the cardiovascular system. In recent years, different Pulse Decomposition Analysis (PDA) methods have been applied to disclose the pathological mechanisms of the pulse waveform. All these methods decompose single-period pulse waveform into a constant number (such as 3, 4 or 5) of individual waves. Furthermore, those methods do not pay much attention to the estimation error of the key points in the pulse waveform. The estimation of human vascular conditions depends on the key points' positions of pulse wave. In this paper, we propose a Multi-Gaussian (MG) model to fit real pulse waveforms using an adaptive number (4 or 5 in our study) of Gaussian waves. The unknown parameters in the MG model are estimated by the Weighted Least Squares (WLS) method and the optimized weight values corresponding to different sampling points are selected by using the Multi-Criteria Decision Making (MCDM) method. Performance of the MG model and the WLS method has been evaluated by fitting 150 real pulse waveforms of five different types. The resulting Normalized Root Mean Square Error (NRMSE) was less than 2.0% and the estimation accuracy for the key points was satisfactory, demonstrating that our proposed method is effective in compressing, synthesizing and analyzing pulse waveforms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. FAST TRACK COMMUNICATION: Nanocrystalline silicon film growth morphology control through RF waveform tailoring

    NASA Astrophysics Data System (ADS)

    Johnson, Erik V.; Verbeke, Thomas; Vanel, Jean-Charles; Booth, Jean-Paul

    2010-10-01

    We demonstrate the application of RF waveform tailoring to generate an electrical asymmetry in a capacitively coupled plasma-enhanced chemical vapour deposition system, and its use to control the growth mode of hydrogenated amorphous and nanocrystalline silicon thin films deposited at low temperature (150 °C). A dramatic shift in the dc bias potential at the powered electrode is observed when simply inverting the voltage waveform from 'peaks' to 'troughs', indicating an asymmetric distribution of the sheath voltage. By enhancing or suppressing the ion bombardment energy at the substrate (situated on the grounded electrode), the growth of thin silicon films can be switched between amorphous and nanocrystalline modes, as observed using in situ spectroscopic ellipsometry. The effect is observed at pressures sufficiently low that the collisional reduction in average ion bombardment energy is not sufficient to allow nanocrystalline growth (<100 mTorr).

  7. Local pulse wave velocity estimated from small vibrations measured ultrasonically at multiple points on the arterial wall

    NASA Astrophysics Data System (ADS)

    Ito, Mika; Arakawa, Mototaka; Kanai, Hiroshi

    2018-07-01

    Pulse wave velocity (PWV) is used as a diagnostic criterion for arteriosclerosis, a major cause of heart disease and cerebrovascular disease. However, there are several problems with conventional PWV measurement techniques. One is that a pulse wave is assumed to only have an incident component propagating at a constant speed from the heart to the femoral artery, and another is that PWV is only determined from a characteristic time such as the rise time of the blood pressure waveform. In this study, we noninvasively measured the velocity waveform of small vibrations at multiple points on the carotid arterial wall using ultrasound. Local PWV was determined by analyzing the phase component of the velocity waveform by the least squares method. This method allowed measurement of the time change of the PWV at approximately the arrival time of the pulse wave, which discriminates the period when the reflected component is not contaminated.

  8. Sonic Boom Propagation Codes Validated by Flight Test

    NASA Technical Reports Server (NTRS)

    Poling, Hugh W.

    1996-01-01

    The sonic boom propagation codes reviewed in this study, SHOCKN and ZEPHYRUS, implement current theory on air absorption using different computational concepts. Review of the codes with a realistic atmosphere model confirm the agreement of propagation results reported by others for idealized propagation conditions. ZEPHYRUS offers greater flexibility in propagation conditions and is thus preferred for practical aircraft analysis. The ZEPHYRUS code was used to propagate sonic boom waveforms measured approximately 1000 feet away from an SR-71 aircraft flying at Mach 1.25 to 5000 feet away. These extrapolated signatures were compared to measurements at 5000 feet. Pressure values of the significant shocks (bow, canopy, inlet and tail) in the waveforms are consistent between extrapolation and measurement. Of particular interest is that four (independent) measurements taken under the aircraft centerline converge to the same extrapolated result despite differences in measurement conditions. Agreement between extrapolated and measured signature duration is prevented by measured duration of the 5000 foot signatures either much longer or shorter than would be expected. The duration anomalies may be due to signature probing not sufficiently parallel to the aircraft flight direction.

  9. Use of a Doppler pulmonary artery catheter for continuous measurement of right ventricular pump function and contractility during single lung transplantation.

    PubMed

    Heerdt, P M; Pond, C G; Kussman, M K; Triantafillou, A N

    1993-01-01

    Despite numerous technologic advances in intraoperative monitoring, the only methods routinely available for assessment of right ventricular function in lung transplant recipients are continuous measurement of right heart pressures and intermittent thermodilution determination of cardiac output and ejection fraction. Additional data may now be obtained with transesophageal echocardiography, although this technology is expensive and not widely available and requires diverting attention from a potentially unstable patient for data acquisition and analysis. Recently, a Doppler pulmonary artery catheter was introduced that measures beat-to-beat pulmonary artery blood flow-velocity, cross sectional area, and volume flow. Because of data indicating that acceleration of blood in the pulmonary artery (measured as the first derivative of either the velocity or flow waveform) is a sensitive indicator of right ventricular contractility, we have used waveforms obtained with the catheter for assessment of right ventricular pump function (stroke volume and peak pulmonary artery flow rate) and contractility in heart surgery patients. We report here our experience with this method in two patients undergoing left single lung transplantation.

  10. High pressure effects in high-field asymmetric waveform ion mobility spectrometry.

    PubMed

    Wang, Yonghuan; Wang, Xiaozhi; Li, Lingfen; Chen, Chilai; Xu, Tianbai; Wang, Tao; Luo, Jikui

    2016-08-30

    High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) is an analytical technique based on the principle of non-linear electric field dependence of coefficient of mobility of ions for separation that was originally conceived in the Soviet Union in the early 1980s. Being well developed over the past decades, FAIMS has become an efficient method for the separation and characterization of gas-phase ions at ambient pressure, often in air, to detect trace amounts of chemical species including explosives, toxic chemicals, chemical warfare agents and other compounds. However the resolution of FAIMS and ion separation capability need to be improved for more applications of the technique. The effects of above-ambient pressure varying from 1 to 3 atm on peak position, resolving power, peak width, and peak intensity are investigated theoretically and experimentally using micro-fabricated planar FAIMS in purified air. Peak positions, varying with pressure in a way as a function of dispersion voltage, could be simplified by expressing both compensation and dispersion fields in Townsend units for E/N, the ratio of electric field intensity (E) to the gas number density (N). It is demonstrated that ion Townsend-scale peak positions remain unchanged for a range of pressures investigated, implying that the higher the pressure is, stronger compensation and separation fields are needed within limits of air breakdown field. Increase in pressure is found to separate ions that could not be distinguished in ambient pressure, which could be interpreted as the differentials of ions' peak compensation voltage expanded wider than the dilation of peak widths leading to resolving power enhancement with pressure. Increase in pressure can also result in an increase in peak intensity. Copyright © 2016 John Wiley & Sons, Ltd.

  11. High spatial resolution pressure distribution of the vaginal canal in Pompoir practitioners: A biomechanical approach for assessing the pelvic floor.

    PubMed

    Cacciari, Licia P; Pássaro, Anice C; Amorim, Amanda C; Sacco, Isabel C N

    2017-08-01

    Pompoir is a technique poorly studied in the literature that claims to improve pelvic floor strength and coordination. This study aims to investigate the pelvic floor muscles' coordination throughout the vaginal canal among Pompoir practitioners and non-practitioners by describing a high resolution map of pressure distribution. This cross-sectional, study included 40 healthy women in two groups: control and Pompoir. While these women performed both sustained and "waveform" pelvic floor muscle contractions, the spatiotemporal pressure distribution in their vaginal canals was evaluated by a non-deformable probe fully instrumented with a 10×10 matrix of capacitive transducers. Pompoir group was able to sustain the pressure levels achieved for a longer period (40% longer, moderate effect, P=0.04). During the "waveform" contraction task, Pompoir group achieved lower, earlier peak pressures (moderate effect, P=0.05) and decreased rates of contraction (small effect, P=0.04) and relaxation (large effect, P=0.01). During both tasks, Pompoir group had smaller relative contributions by the mid-region and the anteroposterior planes and greater contributions by the caudal and cranial regions and the latero-lateral planes. Results suggest that specific coordination training of the pelvic floor muscles alters the pressure distribution profile, promoting a more-symmetric distribution of pressure throughout the vaginal canal. Therefore, this study suggests that pelvic floor muscles can be trained to a degree beyond strengthening by focusing on coordination, which results in changes in symmetry of the spatiotemporal pressure distribution in the vaginal canal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Error analysis of numerical gravitational waveforms from coalescing binary black holes

    NASA Astrophysics Data System (ADS)

    Fong, Heather; Chu, Tony; Kumar, Prayush; Pfeiffer, Harald; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela; SXS Collaboration

    2016-03-01

    The Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) has finished a successful first observation run and will commence its second run this summer. Detection of compact object binaries utilizes matched-filtering, which requires a vast collection of highly accurate gravitational waveforms. This talk will present a set of about 100 new aligned-spin binary black hole simulations. I will discuss their properties, including a detailed error analysis, which demonstrates that the numerical waveforms are sufficiently accurate for gravitational wave detection purposes, as well as for parameter estimation purposes.

  13. Waveform-based spaceborne GNSS-R wind speed observation: Demonstration and analysis using UK TechDemoSat-1 data

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Yang, Dongkai; Zhang, Bo; Li, Weiqiang

    2018-03-01

    This paper explores two types of mathematical functions to fit single- and full-frequency waveform of spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R), respectively. The metrics of the waveforms, such as the noise floor, peak magnitude, mid-point position of the leading edge, leading edge slope and trailing edge slope, can be derived from the parameters of the proposed models. Because the quality of the UK TDS-1 data is not at the level required by remote sensing mission, the waveforms buried in noise or from ice/land are removed by defining peak-to-mean ratio, cosine similarity of the waveform before wind speed are retrieved. The single-parameter retrieval models are developed by comparing the peak magnitude, leading edge slope and trailing edge slope derived from the parameters of the proposed models with in situ wind speed from the ASCAT scatterometer. To improve the retrieval accuracy, three types of multi-parameter observations based on the principle component analysis (PCA), minimum variance (MV) estimator and Back Propagation (BP) network are implemented. The results indicate that compared to the best results of the single-parameter observation, the approaches based on the principle component analysis and minimum variance could not significantly improve retrieval accuracy, however, the BP networks obtain improvement with the RMSE of 2.55 m/s and 2.53 m/s for single- and full-frequency waveform, respectively.

  14. Comparison between transdermal nitroglycerin and sildenafil citrate in intrauterine growth restriction: effects on uterine, umbilical and fetal middle cerebral artery pulsatility indices.

    PubMed

    Trapani, A; Gonçalves, L F; Trapani, T F; Franco, M J; Galluzzo, R N; Pires, M M S

    2016-07-01

    To evaluate the effects of transdermal nitroglycerin (GTN) and sildenafil citrate on Doppler velocity waveforms of the uterine (UtA), umbilical (UA) and fetal middle cerebral (MCA) arteries in pregnancies with intrauterine growth restriction (IUGR). This was a prospective study of 35 singleton pregnancies (gestational age, 24-31 weeks) with IUGR and abnormal UtA and UA Doppler waveforms. We compared maternal arterial blood pressure and Z-scores of the pulsatility index (PI) of UtA, UA and fetal MCA before and after application of a transdermal GTN patch (average dose, 0.4 mg/h), oral sildenafil citrate (50 mg) or placebo. Statistical analysis was performed by ANOVA for paired samples. There was a significant decrease in UtA-PI after application of GTN (21.0%) and sildenafil citrate (20.4%). A significant reduction in UA-PI was also observed for both GTN (19.1%) and sildenafil citrate (18.2%). There was no difference in UtA- and UA-PI when the GTN and sildenafil groups were compared. No changes in Doppler velocimetry were observed in the placebo group and no significant change in MCA-PI was observed in any group. Maternal arterial blood pressure decreased with administration of both GTN and sildenafil citrate in those with pre-eclampsia. The use of transdermal GTN or sildenafil citrate in pregnancies with IUGR is associated with a significant reduction in both UtA and UA Doppler PI, as well as maternal arterial blood pressure. Neither drug affected the MCA-PI. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  15. Analysis of vibration waveforms of electromechanical response to determine piezoelectric and electrostrictive coefficients.

    PubMed

    Izumi, Tatsuya; Hagiwara, Manabu; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki

    2012-08-01

    We developed a possible method to determine both coefficients of piezoelectricity (d) and electrostriction (M) at the same time by a waveform analysis of current and vibration velocity in the resonance state. The waveforms of the current and vibration velocity were theoretically described using the equations of motion and piezoelectric constitutive equations, considering the dissipation effect. The dissipation factor of the d coefficient and M coefficient is dielectric loss tangent tan δ. The waveforms measured in all of the ceramics, such as Pb(Zr,Ti)O(3) (PZT), Pb(Mg,Nb)O(3) (PMN), and 0.8Pb(Mg(1/3)Nb2/3)O(3)-0.2PbTiO(3) (PMN-PT), were well fitted with the calculated waveform. This fitting produced both the d and M coefficients, which agreed with those determined via the conventional methods. Moreover, the respective contributions of both piezoelectricity and electrostriction to the d value determined in the resonance-antiresonance method were clarified.

  16. Categorisation of full waveform data provided by laser scanning devices

    NASA Astrophysics Data System (ADS)

    Ullrich, Andreas; Pfennigbauer, Martin

    2011-11-01

    In 2004, a laser scanner device for commercial airborne laser scanning applications, the RIEGL LMS-Q560, was introduced to the market, making use of a radical alternative approach to the traditional analogue signal detection and processing schemes found in LIDAR instruments so far: digitizing the echo signals received by the instrument for every laser pulse and analysing these echo signals off-line in a so-called full waveform analysis in order to retrieve almost all information contained in the echo signal using transparent algorithms adaptable to specific applications. In the field of laser scanning the somewhat unspecific term "full waveform data" has since been established. We attempt a categorisation of the different types of the full waveform data found in the market. We discuss the challenges in echo digitization and waveform analysis from an instrument designer's point of view and we will address the benefits to be gained by using this technique, especially with respect to the so-called multi-target capability of pulsed time-of-flight LIDAR instruments.

  17. Waveform generation in the EETS

    NASA Astrophysics Data System (ADS)

    Wilshire, J. P.

    1985-05-01

    Design decisions and analysis for the waveform generation portion of an electrical equipment test set are discussed. This test set is unlike conventional ATE in that it is portable and designed to operate in forward area sites for the USMC. It is also unique in that it provides for functional testing for 32 electronic units from the AV-88 Harrier II aircraft. Specific requirements for the waveform generator are discussed, including a wide frequency range, high resolution and accuracy, and low total harmonic distortion. Several approaches to meet these requirements are considered and a specific concept is presented in detail, which consists of a digitally produced waveform that feeds a deglitched analog conversion circuit. Rigorous mathematical analysis is presented to prove that this concept meets the requirements. Finally, design alternatives and enhancements are considered.

  18. Oscillometric analysis compared with cardiac magnetic resonance for the assessment of aortic pulse wave velocity in patients with myocardial infarction.

    PubMed

    Feistritzer, Hans-Josef; Klug, Gert; Reinstadler, Sebastian J; Reindl, Martin; Mayr, Agnes; Schocke, Michael; Metzler, Bernhard

    2016-09-01

    Measurement of aortic pulse wave velocity (PWV) is the gold standard for assessment of aortic stiffness. In patients with ST-segment elevation myocardial infarction (STEMI), high aortic PWV has deleterious effects on the myocardium. In the present study, we compared a novel oscillometric device with cardiac magnetic resonance (CMR) imaging for the assessment of aortic PWV in STEMI patients. We measured aortic PWV in 60 reperfused STEMI patients using two different methods. The oscillometric method (PWVOSC) is based on mathematical transformation of brachial pressure waveforms, oscillometrically determined using a common cuff (Mobil-O-Graph, I.E.M., Stolberg, North Rhine-Westphalia, Germany). Phase-contrast CMR imaging (1.5 T scanner, Siemens, Erlangen, Bavaria, Germany) at the level of the ascending and abdominal aorta was performed to determine CMR-derived pulse wave velocity with the use of the transit time method. The mean age of the study population was 57 ± 11 years; 11 (18%) were women. Median PWVOSC was 7.4 m/s (interquartile range 6.8-8.9 m/s), and median CMR-derived pulse wave velocity was 6.3 m/s (interquartile range 5.7-8.2 m/s) (P < 0.001). A strong correlation was detected between both methods (r = 0.724, P < 0.001). Bland-Altman analysis revealed a bias of 0.62 m/s (upper and lower limit of agreement: 3.84 and -2.61 m/s). The coefficient of variation between both methods was 21%. In reperfused STEMI patients, aortic PWV assessed noninvasively by transformation of brachial pressure waveforms showed an acceptable agreement with the CMR-derived transit time method.

  19. Prediction of intracranial hypertension through noninvasive intracranial pressure waveform analysis in pediatric hydrocephalus.

    PubMed

    Ballestero, Matheus Fernando Manzolli; Frigieri, Gustavo; Cabella, Brenno Caetano Troca; de Oliveira, Sergio Mascarenhas; de Oliveira, Ricardo Santos

    2017-09-01

    The purpose of this study is to evaluate a noninvasive device to assess intracranial pressure wave form in children with hydrocephalus. A prospective and non-experimental descriptive-analytic study was performed. Fifty-six patients were enrolled in this study. They were divided in four groups: group A, children with clinically compensated hydrocephalus; B, surgically treated hydrocephalus; C, patients with acute intracranial hypertension due to hydrocephalus; and D, children without neurological disease (control). Data were collected through the installation of an extracranial deformation sensor, coupled to the children's scalp, which allowed registration of noninvasive intracranial pressure curves. Parameters obtained were analyzed: P2/P1 ratio, "classification P1 and P2 and P1 slope. P2/P1 index and "classification of P1 and P2" had a sensitivity of 80% and specificity of 100% for predicting intracranial hypertension. "P1 slope" presented no statistical difference. This study showed a useful and noninvasive method for monitoring intracranial pressure, which was able to indicate the intracranial hypertension in children with hydrocephalus and, thus, should be further investigated for clinical applications.

  20. MULTI-FREQUENCY OSCILLATORY VENTILATION IN THE PREMATURE LUNG: EFFECTS ON GAS EXCHANGE, MECHANICS, AND VENTILATION DISTRIBUTION

    PubMed Central

    Kaczka, David W.; Herrmann, Jacob; Zonneveld, C. Elroy; Tingay, David G.; Lavizzari, Anna; Noble, Peter B.; Pillow, J. Jane

    2015-01-01

    Background Despite the theoretical benefits of high-frequency oscillatory ventilation (HFOV) in preterm infants, systematic reviews of randomized clinical trials do not confirm improved outcomes. We hypothesized that oscillating a premature lung with multiple frequencies simultaneously would improve gas exchange compared to traditional single-frequency oscillatory ventilation (SFOV). The goal of this study was to develop a novel method for HFOV, termed ‘multi-frequency oscillatory ventilation’ (MFOV), which relies on a broadband flow waveform more suitable for the heterogeneous mechanics of the immature lung. Methods Thirteen intubated preterm lambs were randomized to either SFOV or MFOV for 1 hour, followed by crossover to the alternative regimen for 1 hour. The SFOV waveform consisted of a pure sinusoidal flow at 5 Hz, while the customized MFOV waveform consisted of a 5 Hz fundamental with additional energy at 10 and 15 Hz. Per standardized protocol, mean pressure at airway opening (P̅ao) and inspired O2 fraction were adjusted as needed, and root mean square of the delivered oscillatory volume waveform (Vrms) was adjusted 15-minute intervals. A ventilatory cost function for SFOV and MFOV was defined as VC=(Vrms2PaCO2)Wt−1, where Wt denotes body weight. Results Averaged over all time points, MFOV resulted in significantly lower VC (246.9±6.0 vs. 363.5±15.9 mL2 mmHg kg−1) and P̅ao (12.8±0.3 vs. 14.1±0.5 cmH2O) compared to SFOV, suggesting more efficient gas exchange and enhanced lung recruitment at lower mean airway pressures. Conclusions Oscillation with simultaneous multiple frequencies may be a more efficient ventilator modality in premature lungs compared to traditional single-frequency HFOV. PMID:26495977

  1. A model of the instantaneous pressure-velocity relationships of the neonatal cerebral circulation.

    PubMed

    Panerai, R B; Coughtrey, H; Rennie, J M; Evans, D H

    1993-11-01

    The instantaneous relationship between arterial blood pressure (BP) and cerebral blood flow velocity (CBFV), measured with Doppler ultrasound in the anterior cerebral artery, is represented by a vascular waterfall model comprising vascular resistance, compliance, and critical closing pressure. One min recordings obtained from 61 low birth weight newborns were fitted to the model using a least-squares procedures with correction for the time delay between the BP and CBFV signals. A sensitivity analysis was performed to study the effects of low-pass filtering (LPF), cutoff frequency, and noise on the estimated parameters of the model. Results indicate excellent fitting of the model (F-test, p < 0.0001) when the BP and CBFV signals are LPF at 7.5 Hz. Reconstructed CBFV waveforms using the BP signal and the model parameters have a mean correlation coefficient of 0.94 with the measured flow velocity tracing (N = 232 epochs). The model developed can be useful for interpreting clinical findings and as a framework for research into cerebral autoregulation.

  2. Comparison of Regression Analysis and Transfer Function in Estimating the Parameters of Central Pulse Waves from Brachial Pulse Wave.

    PubMed

    Chai, Rui; Xu, Li-Sheng; Yao, Yang; Hao, Li-Ling; Qi, Lin

    2017-01-01

    This study analyzed ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO), and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. Invasively measured parameters were compared with parameters measured from brachial pulse waves by regression model and transfer function model. Accuracy of parameters estimated by regression and transfer function model, was compared too. Findings showed that k value, central pulse wave and brachial pulse wave parameters invasively measured, correlated positively. Regression model parameters including A_slope, DBP, SEVR, and transfer function model parameters had good consistency with parameters invasively measured. They had same effect of consistency. SBP, PP, SV, and CO could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  3. Diagnosis of Swallowing Disorders: How We Interpret Pharyngeal Manometry.

    PubMed

    Cock, Charles; Omari, Taher

    2017-03-01

    We provide an overview of the clinical application of novel pharyngeal high-resolution impedance manometry (HRIM) with pressure flow analysis (PFA) in our hands with example cases. In our Centre, we base our interpretation of HRIM recordings upon a qualitative assessment of pressure-impedance waveforms during individual swallows, as well as a quantitative assessment of averaged PFA swallow function variables. We provide a description of two global swallowing efficacy measures, the swallow risk index (SRI), reflecting global swallowing dysfunction (higher SRI = greater aspiration risk) and the post-swallow impedance ratio (PSIR) detecting significant post-swallow bolus residue. We describe a further eight swallow function variables specific to the hypopharynx and upper esophageal sphincter (UES), assessing hypo-pharyngeal distension pressure, contractility, bolus presence and flow timing, and UES basal tone, relaxation, opening and contractility. Pharyngeal HRIM has now come of age, being applicable for routine clinical practice to assess the biomechanics of oropharyngeal swallowing dysfunction. In the future, it may guide treatment strategies and allow more objective longitudinal follow-up on clinical outcomes.

  4. Prediction of Knee Joint Contact Forces From External Measures Using Principal Component Prediction and Reconstruction.

    PubMed

    Saliba, Christopher M; Clouthier, Allison L; Brandon, Scott C E; Rainbow, Michael J; Deluzio, Kevin J

    2018-05-29

    Abnormal loading of the knee joint contributes to the pathogenesis of knee osteoarthritis. Gait retraining is a non-invasive intervention that aims to reduce knee loads by providing audible, visual, or haptic feedback of gait parameters. The computational expense of joint contact force prediction has limited real-time feedback to surrogate measures of the contact force, such as the knee adduction moment. We developed a method to predict knee joint contact forces using motion analysis and a statistical regression model that can be implemented in near real-time. Gait waveform variables were deconstructed using principal component analysis and a linear regression was used to predict the principal component scores of the contact force waveforms. Knee joint contact force waveforms were reconstructed using the predicted scores. We tested our method using a heterogenous population of asymptomatic controls and subjects with knee osteoarthritis. The reconstructed contact force waveforms had mean (SD) RMS differences of 0.17 (0.05) bodyweight compared to the contact forces predicted by a musculoskeletal model. Our method successfully predicted subject-specific shape features of contact force waveforms and is a potentially powerful tool in biofeedback and clinical gait analysis.

  5. Focusing of shock waves induced by optical breakdown in water

    PubMed Central

    Sankin, Georgy N.; Zhou, Yufeng; Zhong, Pei

    2008-01-01

    The focusing of laser-generated shock waves by a truncated ellipsoidal reflector was experimentally and numerically investigated. Pressure waveform and distribution around the first (F1) and second foci (F2) of the ellipsoidal reflector were measured. A neodymium doped yttrium aluminum garnet laser of 1046 nm wavelength and 5 ns pulse duration was used to create an optical breakdown at F1, which generates a spherically diverging shock wave with a peak pressure of 2.1–5.9 MPa at 1.1 mm stand-off distance and a pulse width at half maximum of 36–65 ns. Upon reflection, a converging shock wave is produced which, upon arriving at F2, has a leading compressive wave with a peak pressure of 26 MPa and a zero-crossing pulse duration of 0.1 μs, followed by a trailing tensile wave of −3.3 MPa peak pressure and 0.2 μs pulse duration. The −6 dB beam size of the focused shock wave field is 1.6×0.2 mm2 along and transverse to the shock wave propagation direction. Formation of elongated plasmas at high laser energy levels limits the increase in the peak pressure at F2. General features in the waveform profile of the converging shock wave are in qualitative agreement with numerical simulations based on the Hamilton model. PMID:18537359

  6. Source mechanism of long-period events at Kusatsu-Shirane Volcano, Japan, inferred from waveform inversion of the effective excitation functions

    USGS Publications Warehouse

    Nakano, M.; Kumagai, H.; Chouet, B.A.

    2003-01-01

    We investigate the source mechanism of long-period (LP) events observed at Kusatsu-Shirane Volcano, Japan, based on waveform inversions of their effective excitation functions. The effective excitation function, which represents the apparent excitation observed at individual receivers, is estimated by applying an autoregressive filter to the LP waveform. Assuming a point source, we apply this method to seven LP events the waveforms of which are characterized by simple decaying and nearly monochromatic oscillations with frequency in the range 1-3 Hz. The results of the waveform inversions show dominant volumetric change components accompanied by single force components, common to all the events analyzed, and suggesting a repeated activation of a sub-horizontal crack located 300 m beneath the summit crater lakes. Based on these results, we propose a model of the source process of LP seismicity, in which a gradual buildup of steam pressure in a hydrothermal crack in response to magmatic heat causes repeated discharges of steam from the crack. The rapid discharge of fluid causes the collapse of the fluid-filled crack and excites acoustic oscillations of the crack, which produce the characteristic waveforms observed in the LP events. The presence of a single force synchronous with the collapse of the crack is interpreted as the release of gravitational energy that occurs as the slug of steam ejected from the crack ascends toward the surface and is replaced by cooler water flowing downward in a fluid-filled conduit linking the crack and the base of the crater lake. ?? 2003 Elsevier Science B.V. All rights reserved.

  7. Phase-space topography characterization of nonlinear ultrasound waveforms.

    PubMed

    Dehghan-Niri, Ehsan; Al-Beer, Helem

    2018-03-01

    Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Laplace-domain waveform modeling and inversion for the 3D acoustic-elastic coupled media

    NASA Astrophysics Data System (ADS)

    Shin, Jungkyun; Shin, Changsoo; Calandra, Henri

    2016-06-01

    Laplace-domain waveform inversion reconstructs long-wavelength subsurface models by using the zero-frequency component of damped seismic signals. Despite the computational advantages of Laplace-domain waveform inversion over conventional frequency-domain waveform inversion, an acoustic assumption and an iterative matrix solver have been used to invert 3D marine datasets to mitigate the intensive computing cost. In this study, we develop a Laplace-domain waveform modeling and inversion algorithm for 3D acoustic-elastic coupled media by using a parallel sparse direct solver library (MUltifrontal Massively Parallel Solver, MUMPS). We precisely simulate a real marine environment by coupling the 3D acoustic and elastic wave equations with the proper boundary condition at the fluid-solid interface. In addition, we can extract the elastic properties of the Earth below the sea bottom from the recorded acoustic pressure datasets. As a matrix solver, the parallel sparse direct solver is used to factorize the non-symmetric impedance matrix in a distributed memory architecture and rapidly solve the wave field for a number of shots by using the lower and upper matrix factors. Using both synthetic datasets and real datasets obtained by a 3D wide azimuth survey, the long-wavelength component of the P-wave and S-wave velocity models is reconstructed and the proposed modeling and inversion algorithm are verified. A cluster of 80 CPU cores is used for this study.

  9. Improved pressure contour analysis for estimating cardiac stroke volume using pulse wave velocity measurement.

    PubMed

    Kamoi, Shun; Pretty, Christopher; Balmer, Joel; Davidson, Shaun; Pironet, Antoine; Desaive, Thomas; Shaw, Geoffrey M; Chase, J Geoffrey

    2017-04-24

    Pressure contour analysis is commonly used to estimate cardiac performance for patients suffering from cardiovascular dysfunction in the intensive care unit. However, the existing techniques for continuous estimation of stroke volume (SV) from pressure measurement can be unreliable during hemodynamic instability, which is inevitable for patients requiring significant treatment. For this reason, pressure contour methods must be improved to capture changes in vascular properties and thus provide accurate conversion from pressure to flow. This paper presents a novel pressure contour method utilizing pulse wave velocity (PWV) measurement to capture vascular properties. A three-element Windkessel model combined with the reservoir-wave concept are used to decompose the pressure contour into components related to storage and flow. The model parameters are identified beat-to-beat from the water-hammer equation using measured PWV, wave component of the pressure, and an estimate of subject-specific aortic dimension. SV is then calculated by converting pressure to flow using identified model parameters. The accuracy of this novel method is investigated using data from porcine experiments (N = 4 Pietrain pigs, 20-24.5 kg), where hemodynamic properties were significantly altered using dobutamine, fluid administration, and mechanical ventilation. In the experiment, left ventricular volume was measured using admittance catheter, and aortic pressure waveforms were measured at two locations, the aortic arch and abdominal aorta. Bland-Altman analysis comparing gold-standard SV measured by the admittance catheter and estimated SV from the novel method showed average limits of agreement of ±26% across significant hemodynamic alterations. This result shows the method is capable of estimating clinically acceptable absolute SV values according to Critchely and Critchely. The novel pressure contour method presented can accurately estimate and track SV even when hemodynamic properties are significantly altered. Integrating PWV measurements into pressure contour analysis improves identification of beat-to-beat changes in Windkessel model parameters, and thus, provides accurate estimate of blood flow from measured pressure contour. The method has great potential for overcoming weaknesses associated with current pressure contour methods for estimating SV.

  10. Behaviour of tetraalkylammonium ions in high-field asymmetric waveform ion mobility spectrometry.

    PubMed

    Aksenov, Alexander A; Kapron, James T

    2010-05-30

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an ion-filtering technique recently adapted for use with liquid chromatography/mass spectrometry (LC/MS) to remove interferences during analysis of complex matrices. This is the first systematic study of a series of singly charged tetraalkylammonium ions by FAIMS-MS. The compensation voltage (CV) is the DC offset of the waveform which permits the ion to emerge from FAIMS and it was determined for each member of the series under various conditions. The electrospray ionization conditions explored included spray voltage, vaporizer temperature, and sheath and auxiliary gas pressure. The FAIMS conditions explored included carrier gas flow rate, electrode temperature and composition of the carrier gas. Optimum desolvation was achieved using sufficient carrier gas (flow rate > or = 2 L/min) to ensure stable response. Low-mass ions (m/z 100-200) are more susceptible to changes in electrode temperature and gas composition than high mass ions (m/z 200-700). As a result of this study, ions are reliably analyzed using standard FAIMS conditions (dispersion voltage -5000 V, carrier gas flow rate 3 L/min, 50% helium/50%nitrogen, inner electrode temperature 70 degrees C and outer electrode temperature 90 degrees C). Variation of FAIMS conditions may be of great use for the separation of very low mass tetraalkylammonium (TAA) ions from other TAA ions. The FAIMS conditions do not appear to have a major effect on higher mass ions. Copyright 2010 John Wiley & Sons, Ltd.

  11. Seismic waveform classification using deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Q.; Allen, R. M.

    2017-12-01

    MyShake is a global smartphone seismic network that harnesses the power of crowdsourcing. It has an Artificial Neural Network (ANN) algorithm running on the phone to distinguish earthquake motion from human activities recorded by the accelerometer on board. Once the ANN detects earthquake-like motion, it sends a 5-min chunk of acceleration data back to the server for further analysis. The time-series data collected contains both earthquake data and human activity data that the ANN confused. In this presentation, we will show the Convolutional Neural Network (CNN) we built under the umbrella of supervised learning to find out the earthquake waveform. The waveforms of the recorded motion could treat easily as images, and by taking the advantage of the power of CNN processing the images, we achieved very high successful rate to select the earthquake waveforms out. Since there are many non-earthquake waveforms than the earthquake waveforms, we also built an anomaly detection algorithm using the CNN. Both these two methods can be easily extended to other waveform classification problems.

  12. Forward and Backward Pressure Waveform Morphology in Hypertension.

    PubMed

    Li, Ye; Gu, Haotian; Fok, Henry; Alastruey, Jordi; Chowienczyk, Philip

    2017-02-01

    We tested the hypothesis that increased pulse wave reflection and altered backward waveform morphology contribute to increased pulse pressure in subjects with higher pulse pressure compared with lower pulse pressure and to actions of vasoactive drugs to increase pulse pressure. We examined the relationship of backward to forward wave morphology in 158 subjects who were evaluated for hypertension (including some normotensive subjects) divided into 3 groups by central pulse pressure: group 1, 33±6.5 mm Hg; group 2, 45±4.1 mm Hg; and group 3, 64±12.9 mm Hg (means±SD) and in healthy normotensive subjects during administration of inotropic and vasomotor drugs. Aortic pressure and flow in the aortic root were estimated by carotid tonometry and Doppler sonography, respectively. Morphology of the backward wave relative to the forward wave was similar in subjects in the lowest and highest tertiles of pulse pressure. Similar results were seen with the inotropic, vasopressor and vasodilator drugs, dobutamine, norepinephrine, and phentolamine, with the backward wave maintaining a constant ratio to the forward wave. However, nitroglycerin, a drug with a specific action to dilate muscular conduit arteries, reduced the amplitude of the backward wave relative to the forward wave from 0.26±0.018 at baseline to 0.19±0.019 during nitroglycerin 30 μg/min IV (P<0.01). These results are best explained by an approximately constant amount of reflection of the forward wave from the peripheral vasculature. The amount of reflection can be modified by dilation of peripheral muscular conduit arteries but contributes little to increased pulse pressure in hypertension. © 2016 The Authors.

  13. Systolic Blood Pressure Accuracy Enhancement in the Electronic Palpation Method Using Pulse Waveform

    DTIC Science & Technology

    2001-10-25

    adrenalin) or vasodilating (Nipride or Nitromex) medicines. Also painkillers and anesthetics (Oxanest, Diprivan, Fentanyl and Rapifen) may have affected...the measurements. It is hard to distinguish the effects of medication and assess their relation to blood pressure errors and pulse shapes...CONCLUSION During this study, 51 cardiac operated patients were measured to define the effects of arterial stiffening on the accuracy of the

  14. High Voltage, Low Inductance Hydrogen Thyratron Study Program.

    DTIC Science & Technology

    1981-01-01

    E-E Electrode Spacing Ef Cathode Heater Voltage egy Peak Forward Grid Voltage epy Peak Forward Anode Voltage epx Peak Inverse Anode Voltage Eres... electrodes . ........... 68 30 Marx generator used for sample testing. ........... 68 31 Waveforms showing sample holdoff and sample breakdown 73 32...capability (a function of gas pressure and electrode spacing) could be related to its current rise time capability (a function of gas pressure and inductance

  15. A computer model of the pediatric circulatory system for testing pediatric assist devices.

    PubMed

    Giridharan, Guruprasad A; Koenig, Steven C; Mitchell, Michael; Gartner, Mark; Pantalos, George M

    2007-01-01

    Lumped parameter computer models of the pediatric circulatory systems for 1- and 4-year-olds were developed to predict hemodynamic responses to mechanical circulatory support devices. Model parameters, including resistance, compliance and volume, were adjusted to match hemodynamic pressure and flow waveforms, pressure-volume loops, percent systole, and heart rate of pediatric patients (n = 6) with normal ventricles. Left ventricular failure was modeled by adjusting the time-varying compliance curve of the left heart to produce aortic pressures and cardiac outputs consistent with those observed clinically. Models of pediatric continuous flow (CF) and pulsatile flow (PF) ventricular assist devices (VAD) and intraaortic balloon pump (IABP) were developed and integrated into the heart failure pediatric circulatory system models. Computer simulations were conducted to predict acute hemodynamic responses to PF and CF VAD operating at 50%, 75% and 100% support and 2.5 and 5 ml IABP operating at 1:1 and 1:2 support modes. The computer model of the pediatric circulation matched the human pediatric hemodynamic waveform morphology to within 90% and cardiac function parameters with 95% accuracy. The computer model predicted PF VAD and IABP restore aortic pressure pulsatility and variation in end-systolic and end-diastolic volume, but diminish with increasing CF VAD support.

  16. Noninvasive Intracranial Pressure Determination in Patients with Subarachnoid Hemorrhage.

    PubMed

    Noraky, James; Verghese, George C; Searls, David E; Lioutas, Vasileios A; Sonni, Shruti; Thomas, Ajith; Heldt, Thomas

    2016-01-01

    Intracranial pressure (ICP) should ideally be measured in many conditions affecting the brain. The invasiveness and associated risks of the measurement modalities in current clinical practice restrict ICP monitoring to a small subset of patients whose diagnosis and treatment could benefit from ICP measurement. To expand validation of a previously proposed model-based approach to continuous, noninvasive, calibration-free, and patient-specific estimation of ICP to patients with subarachnoid hemorrhage (SAH), we made waveform recordings of cerebral blood flow velocity in several major cerebral arteries during routine, clinically indicated transcranial Doppler examinations for vasospasm, along with time-locked waveform recordings of radial artery blood pressure (APB), and ICP was measured via an intraventricular drain catheter. We also recorded the locations to which ICP and ABP were calibrated, to account for a possible hydrostatic pressure difference between measured ABP and the ABP value at a major cerebral vessel. We analyzed 21 data records from five patients and were able to identify 28 data windows from the middle cerebral artery that were of sufficient data quality for the ICP estimation approach. Across these windows, we obtained a mean estimation error of -0.7 mmHg and a standard deviation of the error of 4.0 mmHg. Our estimates show a low bias and reduced variability compared with those we have reported before.

  17. Speech Analysis and Synthesis Based on Pitch-Synchronous Segmentation of the Speech Waveform.

    DTIC Science & Technology

    1994-11-09

    95.1 Nasality Distinguishes /n/ from /d/, /m/ from /b/, etc. 96.1 99.2 96.9 99.2 Sustention Distinguishes /ffrom /p/, 86.7 91.4 82.8 92.7/b/ from /v...first incoming pitch waveform becomes the first template, and it is stored in memory . Step 2: The amplitude spectrum of the next incoming pitch waveform

  18. Lattice Boltzmann modeling to explain volcano acoustic source.

    PubMed

    Brogi, Federico; Ripepe, Maurizio; Bonadonna, Costanza

    2018-06-22

    Acoustic pressure is largely used to monitor explosive activity at volcanoes and has become one of the most promising technique to monitor volcanoes also at large scale. However, no clear relation between the fluid dynamics of explosive eruptions and the associated acoustic signals has yet been defined. Linear acoustic has been applied to derive source parameters in the case of strong explosive eruptions which are well-known to be driven by large overpressure of the magmatic fluids. Asymmetric acoustic waveforms are generally considered as the evidence for supersonic explosive dynamics also for small explosive regimes. We have used Lattice-Boltzmann modeling of the eruptive fluid dynamics to analyse the acoustic wavefield produced by different flow regimes. We demonstrate that acoustic waveform well reproduces the flow dynamics of a subsonic fluid injection related to discrete explosive events. Different volumetric flow rate, at low-Mach regimes, can explain both the observed symmetric and asymmetric waveform. Hence, asymmetric waveforms are not necessarily related to the shock/supersonic fluid dynamics of the source. As a result, we highlight an ambiguity in the general interpretation of volcano acoustic signals for the retrieval of key eruption source parameters, necessary for a reliable volcanic hazard assessment.

  19. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure.

    PubMed

    Scholze, Alexandra; Rinder, Christiane; Beige, Joachim; Riezler, Reiner; Zidek, Walter; Tepel, Martin

    2004-01-27

    Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure. We investigated the metabolic and hemodynamic effects of intravenous administration of acetylcysteine, a thiol-containing antioxidant, during a hemodialysis session in a prospective, randomized, placebo-controlled crossover study in 20 patients with end-stage renal failure. Under control conditions, a hemodialysis session reduced plasma homocysteine concentration to 58+/-22% predialysis (mean+/-SD), whereas in the presence of acetylcysteine, the plasma homocysteine concentration was significantly more reduced to 12+/-7% predialysis (P<0.01). The reduction of plasma homocysteine concentration was significantly correlated with a reduction of pulse pressure. A 10% decrease in plasma homocysteine concentration was associated with a decrease of pulse pressure by 2.5 mm Hg. Analysis of the second derivative of photoplethysmogram waveform showed changes of arterial wave reflectance during hemodialysis in the presence of acetylcysteine, indicating improved endothelial function. Acetylcysteine-dependent increase of homocysteine removal during a hemodialysis session improves plasma homocysteine concentration, pulse pressure, and endothelial function in patients with end-stage renal failure.

  20. Platform for Postprocessing Waveform-Based NDE

    NASA Technical Reports Server (NTRS)

    Roth, Don

    2008-01-01

    Taking advantage of the similarities that exist among all waveform-based non-destructive evaluation (NDE) methods, a common software platform has been developed containing multiple- signal and image-processing techniques for waveforms and images. The NASA NDE Signal and Image Processing software has been developed using the latest versions of LabVIEW, and its associated Advanced Signal Processing and Vision Toolkits. The software is useable on a PC with Windows XP and Windows Vista. The software has been designed with a commercial grade interface in which two main windows, Waveform Window and Image Window, are displayed if the user chooses a waveform file to display. Within these two main windows, most actions are chosen through logically conceived run-time menus. The Waveform Window has plots for both the raw time-domain waves and their frequency- domain transformations (fast Fourier transform and power spectral density). The Image Window shows the C-scan image formed from information of the time-domain waveform (such as peak amplitude) or its frequency-domain transformation at each scan location. The user also has the ability to open an image, or series of images, or a simple set of X-Y paired data set in text format. Each of the Waveform and Image Windows contains menus from which to perform many user actions. An option exists to use raw waves obtained directly from scan, or waves after deconvolution if system wave response is provided. Two types of deconvolution, time-based subtraction or inverse-filter, can be performed to arrive at a deconvolved wave set. Additionally, the menu on the Waveform Window allows preprocessing of waveforms prior to image formation, scaling and display of waveforms, formation of different types of images (including non-standard types such as velocity), gating of portions of waves prior to image formation, and several other miscellaneous and specialized operations. The menu available on the Image Window allows many further image processing and analysis operations, some of which are found in commercially-available image-processing software programs (such as Adobe Photoshop), and some that are not (removing outliers, Bscan information, region-of-interest analysis, line profiles, and precision feature measurements).

  1. Lane marking detection based on waveform analysis and CNN

    NASA Astrophysics Data System (ADS)

    Ye, Yang Yang; Chen, Hou Jin; Hao, Xiao Li

    2017-06-01

    Lane markings detection is a very important part of the ADAS to avoid traffic accidents. In order to obtain accurate lane markings, in this work, a novel and efficient algorithm is proposed, which analyses the waveform generated from the road image after inverse perspective mapping (IPM). The algorithm includes two main stages: the first stage uses an image preprocessing including a CNN to reduce the background and enhance the lane markings. The second stage obtains the waveform of the road image and analyzes the waveform to get lanes. The contribution of this work is that we introduce local and global features of the waveform to detect the lane markings. The results indicate the proposed method is robust in detecting and fitting the lane markings.

  2. Analysis and Evaluation of Project EVERGREEN Data

    DTIC Science & Technology

    1991-09-01

    1 9 9c9" 9 9 9 91?t- VI vi rl i v AH AR AA R a- 6 4 h 1" t - 10 i h t -: .4 .a: : t : 3 t : ta at ~ ~’~ M ~4C ~ C0.~b ~ ~ qO ~ Cm @ el 0. z ~M C q f... Anton , Howard and Rorres , Chris, Elementary Linear Algebra with AyDlications, John Wiley and Sons, New York, 1987. 2. Binnall, Eugene P., EVERGREEN... C . ANALYSIS OF INDIVIDUAL WAVEFORMS.........52 1. Directory 5-1-90 . . . . . .. .. .. .. ... 58 a. Waveform NTSO4BO1.WFM............58 b. Waveform

  3. Angular velocity of gravitational radiation from precessing binaries and the corotating frame

    NASA Astrophysics Data System (ADS)

    Boyle, Michael

    2013-05-01

    This paper defines an angular velocity for time-dependent functions on the sphere and applies it to gravitational waveforms from compact binaries. Because it is geometrically meaningful and has a clear physical motivation, the angular velocity is uniquely useful in helping to solve an important—and largely ignored—problem in models of compact binaries: the inverse problem of deducing the physical parameters of a system from the gravitational waves alone. It is also used to define the corotating frame of the waveform. When decomposed in this frame, the waveform has no rotational dynamics and is therefore as slowly evolving as possible. The resulting simplifications lead to straightforward methods for accurately comparing waveforms and constructing hybrids. As formulated in this paper, the methods can be applied robustly to both precessing and nonprecessing waveforms, providing a clear, comprehensive, and consistent framework for waveform analysis. Explicit implementations of all these methods are provided in accompanying computer code.

  4. A Novel Mobile Phone Application for Pulse Pressure Variation Monitoring Based on Feature Extraction Technology: A Method Comparison Study in a Simulated Environment.

    PubMed

    Desebbe, Olivier; Joosten, Alexandre; Suehiro, Koichi; Lahham, Sari; Essiet, Mfonobong; Rinehart, Joseph; Cannesson, Maxime

    2016-07-01

    Pulse pressure variation (PPV) can be used to assess fluid status in the operating room. This measurement, however, is time consuming when done manually and unreliable through visual assessment. Moreover, its continuous monitoring requires the use of expensive devices. Capstesia™ is a novel Android™/iOS™ application, which calculates PPV from a digital picture of the arterial pressure waveform obtained from any monitor. The application identifies the peaks and troughs of the arterial curve, determines maximum and minimum pulse pressures, and computes PPV. In this study, we compared the accuracy of PPV generated with the smartphone application Capstesia (PPVapp) against the reference method that is the manual determination of PPV (PPVman). The Capstesia application was loaded onto a Samsung Galaxy S4 phone. A physiologic simulator including PPV was used to display arterial waveforms on a computer screen. Data were obtained with different sweep speeds (6 and 12 mm/s) and randomly generated PPV values (from 2% to 24%), pulse pressure (30, 45, and 60 mm Hg), heart rates (60-80 bpm), and respiratory rates (10-15 breaths/min) on the simulator. Each metric was recorded 5 times at an arterial height scale X1 (PPV5appX1) and 5 times at an arterial height scale X3 (PPV5appX3). Reproducibility of PPVapp and PPVman was determined from the 5 pictures of the same hemodynamic profile. The effect of sweep speed, arterial waveform scale (X1 or X3), and number of images captured was assessed by a Bland-Altman analysis. The measurement error (ME) was calculated for each pair of data. A receiver operating characteristic curve analysis determined the ability of PPVapp to discriminate a PPVman > 13%. Four hundred eight pairs of PPVapp and PPVman were analyzed. The reproducibility of PPVapp and PPVman was 10% (interquartile range, 7%-14%) and 6% (interquartile range, 3%-10%), respectively, allowing a threshold ME of 12%. The overall mean bias for PPVappX1 was 1.1% within limits of -1.4% (95% confidence interval [CI], -1.7 to -1.1) to +3.5% (95% CI, +3.2 to +3.8). Averaging 5 values of PPVappX1 with a sweep speed of 12 mm/s resulted in the smallest bias (+0.6%) and the best limits of agreement (±1.3%). ME of PPVapp was <12% whenever 3, 4, or 5 pictures were taken to average PPVapp. The best predictive value for PPVapp to detect a PPVman > 13% was obtained for PPVappX1 by averaging 5 pictures showing a PPVapp threshold of 13.5% (95% CI, 12.9-15.2) and a receiver operating characteristic curve area of 0.989 (95% CI, 0.963-0.998) with a sensitivity of 97% and a specificity of 94%. Our findings show that the Capstesia PPV calculation is a dependable substitute for standard manual PPV determination in a highly controlled environment (simulator study). Further studies are warranted to validate this mobile feature extraction technology to predict fluid responsiveness in real conditions.

  5. Source mechanism of very-long-period signals accompanying dome growth activity at Merapi volcano, Indonesia

    USGS Publications Warehouse

    Hidayat, D.; Chouet, B.; Voight, B.; Dawson, P.; Ratdomopurbo, Antonius

    2002-01-01

    Very-long-period (VLP) pulses with period of 6-7s, displaying similar waveforms, were identified in 1998 from broadband seismographs around the summit crater. These pulses accompanied most of multiphase (MP) earthquakes, a type of long-period event locally defined at Merapi Volcano. Source mechanisms for several VLP pulses were examined by applying moment tensor inversion to the waveform data. Solutions were consistent with a crack striking ???70?? and dipping ???50?? SW, 100m under the active dome, suggest pressurized gas transport involving accumulation and sudden release of 10-60 m3 of gas in the crack over a 6s interval.

  6. A comparison of second order derivative based models for time domain reflectometry wave form analysis

    USDA-ARS?s Scientific Manuscript database

    Adaptive waveform interpretation with Gaussian filtering (AWIGF) and second order bounded mean oscillation operator Z square 2(u,t,r) are TDR analysis methods based on second order differentiation. AWIGF was originally designed for relatively long probe (greater than 150 mm) TDR waveforms, while Z s...

  7. Solenoid valve performance characteristics studied

    NASA Technical Reports Server (NTRS)

    Abe, J. T.; Blackburn, S.

    1970-01-01

    Current and voltage waveforms of a solenoid coil are recorded as the valve opens and closes. Analysis of the waveforms with respect to time and the phase of the valve cycle accurately describes valve performance.

  8. Gravitational Radiation Characteristics of Nonspinning Black-Hole Binaries

    NASA Technical Reports Server (NTRS)

    Kelly, B. J.; Baker, J. G.; Boggs, W. D.; Centrella, J. M.; vanMeter, J. R.; McWilliams, S. T.

    2008-01-01

    We present a detailed descriptive analysis of the gravitational radiation from binary mergers of non-spinning black holes, based on numerical relativity simulations of systems varying from equal-mass to a 6:1 mass ratio. Our analysis covers amplitude and phase characteristics of the radiation, suggesting a unified picture of the waveforms' dominant features in terms of an implicit rotating source, applying uniformly to the full wavetrain, from inspiral through ringdown. We construct a model of the late-stage frequency evolution that fits the l = m modes, and identify late-time relationships between waveform frequency and amplitude. These relationships allow us to construct a predictive model for the late-time waveforms, an alternative to the common practice of modelling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.

  9. Enhancing high-order harmonic generation by sculpting waveforms with chirp

    NASA Astrophysics Data System (ADS)

    Peng, Dian; Frolov, M. V.; Pi, Liang-Wen; Starace, Anthony F.

    2018-05-01

    We present a theoretical analysis showing how chirp can be used to sculpt two-color driving laser field waveforms in order to enhance high-order harmonic generation (HHG) and/or extend HHG cutoff energies. Specifically, we consider driving laser field waveforms composed of two ultrashort pulses having different carrier frequencies in each of which a linear chirp is introduced. Two pairs of carrier frequencies of the component pulses are considered: (ω , 2 ω ) and (ω , 3 ω ). Our results show how changing the signs of the chirps in each of the two component pulses leads to drastic changes in the HHG spectra. Our theoretical analysis is based on numerical solutions of the time-dependent Schrödinger equation and on a semiclassical analytical approach that affords a clear physical interpretation of how our optimized waveforms lead to enhanced HHG spectra.

  10. Analytic gravitational waveforms for generic precessing compact binaries

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Klein, Antoine; Cornish, Neil; Yunes, Nicolas

    2017-01-01

    Gravitational waves from compact binaries are subject to amplitude and phase modulations arising from interactions between the angular momenta of the system. Failure to account for such spin-precession effects in gravitational wave data analysis could hinder detection and completely ruin parameter estimation. In this talk I will describe the construction of closed-form, frequency-domain waveforms for fully-precessing, quasi-circular binary inspirals. The resulting waveforms can model spinning binaries of arbitrary spin magnitudes, spin orientations, and masses during the inspiral phase. I will also describe ongoing efforts to extend these inspiral waveforms to the merger and ringdown phases.

  11. Clinical and ocular motor analysis of the infantile nystagmus syndrome in the first 6 months of life.

    PubMed

    Hertle, R W; Maldanado, V K; Maybodi, M; Yang, D

    2002-06-01

    The infantile nystagmus syndrome (INS) usually begins in infancy and may or may not be associated with visual sensory system abnormalities. Little is known about its specific waveforms in the first 6 months of life or their relation to the developing visual system. This study identifies the clinical and ocular motility characteristics of the INS and establishes the range of waveforms present in the first 6 months of life. 27 infants with involuntary ocular oscillations typical of INS are included in this analysis. They were evaluated both clinically and with motility recordings. Eye movement analysis was performed off line from computer analysis of digitised data. Variables analysed included age, sex, vision, ocular abnormalities, head position, and null zone, neutral zone characteristics, symmetry, conjugacy, waveforms, frequencies, and foveation times. Ages ranged from 3 to 6.5 months (average 4.9 months). 15 patients (56%) had abnormal vision for age, nine (33%) had strabismus, five (19%) had an anomalous head posture, 13 (48%) had oculographic null and neutral positions, nine (33%) had binocular asymmetry, and only two showed consistent dysconjugacy. Average binocular frequency was 3.3 Hz, monocular frequency 6.6 Hz. Average foveation periods were longer and more "jerk" wave forms were observed in those patients with normal vision. Common clinical characteristics and eye movement waveforms of INS begin in the first few months of infancy and waveform analysis at this time may help with both diagnosis and visual status.

  12. Characterization of a viscoelastic heterogeneous object with an effective model by nonlinear full waveform inversion

    NASA Astrophysics Data System (ADS)

    Mesgouez, A.

    2018-05-01

    The determination of equivalent viscoelastic properties of heterogeneous objects remains challenging in various scientific fields such as (geo)mechanics, geophysics or biomechanics. The present investigation addresses the issue of the identification of effective constitutive properties of a binary object by using a nonlinear and full waveform inversion scheme. The inversion process, without any regularization technique or a priori information, aims at minimizing directly the discrepancy between the full waveform responses of a bi-material viscoelastic cylindrical object and its corresponding effective homogeneous object. It involves the retrieval of five constitutive equivalent parameters. Numerical simulations are performed in a laboratory-scale two-dimensional configuration: a transient acoustic plane wave impacts the object and the diffracted fluid pressure, solid stress or velocity component fields are determined using a semi-analytical approach. Results show that the retrieval of the density and of the real parts of both the compressional and the shear wave velocities have been carried out successfully regarding the number and location of sensors, the type of sensors, the size of the searching space, the frequency range of the incident plane pressure wave, and the change in the geometric or mechanical constitution of the bi-material object. The retrieval of the imaginary parts of the wave velocities can reveal in some cases the limitations of the proposed approach.

  13. Rotational viscometer for high-pressure, high-temperature fluids

    DOEpatents

    Carr, K.R.

    1983-06-06

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer include a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. Means are provided to generate an output indicative of the phase difference between the two waveforms. The viscometer is comparatively simple, inexpensive, rugged, and does not require shaft seals.

  14. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  15. Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation.

    PubMed

    Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B

    2011-04-25

    We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.

  16. Performance Analysis of a Link-16/JTIDS Compatible Waveform With Noncoherent Detection, Diversity and Side Information

    DTIC Science & Technology

    2009-09-01

    OF A LINK-16/JTIDS COMPATIBLE WAVEFORM WITH NONCOHERENT DETECTION, DIVERSITY AND SIDE INFORMATION by Ioannis Kagioglidis September 2009... Noncoherent Detection, Diversity and Side Information. 6. AUTHOR Ioannis Kagioglidis 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...baseband waveforms and detected noncoherently . For noncoherent detection, only one five bit symbol is transmitted on both the I and Q components of

  17. Goal-Directed Fluid Therapy Guided by Cardiac Monitoring During High-Risk Abdominal Surgery in Adult Patients: Cost-Effectiveness Analysis of Esophageal Doppler and Arterial Pulse Pressure Waveform Analysis.

    PubMed

    Legrand, Guillaume; Ruscio, Laura; Benhamou, Dan; Pelletier-Fleury, Nathalie

    2015-07-01

    Several minimally invasive techniques for cardiac output monitoring such as the esophageal Doppler (ED) and arterial pulse pressure waveform analysis (APPWA) have been shown to improve surgical outcomes compared with conventional clinical assessment (CCA). To evaluate the cost-effectiveness of these techniques in high-risk abdominal surgery from the perspective of the French public health insurance fund. An analytical decision model was constructed to compare the cost-effectiveness of ED, APPWA, and CCA. Effectiveness data were defined from meta-analyses of randomized clinical trials. The clinical end points were avoidance of hospital mortality and avoidance of major complications. Hospital costs were estimated by the cost of corresponding diagnosis-related groups. Both goal-directed therapy strategies evaluated were more effective and less costly than CCA. Perioperative mortality and the rate of major complications were reduced by the use of ED and APPWA. Cost reduction was mainly due to the decrease in the rate of major complications. APPWA was dominant compared with ED in 71.6% and 27.6% and dominated in 23.8% and 20.8% of the cases when the end point considered was "major complications avoided" and "death avoided," respectively. Regarding cost per death avoided, APPWA was more likely to be cost-effective than ED in a wide range of willingness to pay. Cardiac output monitoring during high-risk abdominal surgery is cost-effective and is associated with a reduced rate of hospital mortality and major complications, whatever the device used. The two devices evaluated had negligible costs compared with the observed reduction in hospital costs. Our comparative studies suggest a larger effect with APPWA that needs to be confirmed by further studies. Copyright © 2015 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  18. Comparison of noninvasive pulse transit time estimates as markers of blood pressure using invasive pulse transit time measurements as a reference.

    PubMed

    Gao, Mingwu; Olivier, N Bari; Mukkamala, Ramakrishna

    2016-05-01

    Pulse transit time (PTT) measured as the time delay between invasive proximal and distal blood pressure (BP) or flow waveforms (invasive PTT [I-PTT]) tightly correlates with BP PTT estimated as the time delay between noninvasive proximal and distal arterial waveforms could therefore permit cuff-less BP monitoring. A popular noninvasive PTT estimate for this application is the time delay between ECG and photoplethysmography (PPG) waveforms (pulse arrival time [PAT]). Another estimate is the time delay between proximal and distal PPG waveforms (PPG-PTT). PAT and PPG-PTT were assessed as markers of BP over a wide physiologic range using I-PTT as a reference. Waveforms for determining I-PTT, PAT, and PPG-PTT through central arteries were measured from swine during baseline conditions and infusions of various hemodynamic drugs. Diastolic, mean, and systolic BP varied widely in each subject (group average (mean ± SE) standard deviation between 25 ± 2 and 36 ± 2 mmHg). I-PTT correlated well with all BP levels (group average R(2) values between 0.86 ± 0.03 and 0.91 ± 0.03). PPG-PTT also correlated well with all BP levels (group average R(2) values between 0.81 ± 0.03 and 0.85 ± 0.02), and its R(2) values were not significantly different from those of I-PTT PAT correlated best with systolic BP (group average R(2) value of 0.70 ± 0.04), but its R(2) values for all BP levels were significantly lower than those of I-PTT (P < 0.005) and PPG-PTT (P < 0.02). The pre-ejection period component of PAT was responsible for its inferior correlation with BP In sum, PPG-PTT was not different from I-PTT and superior to the popular PAT as a marker of BP. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  19. Artificial Intelligence Assists Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  20. Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate.

    PubMed

    Shelley, Kirk H

    2007-12-01

    In this article, I examine the source of the photoplethysmograph (PPG), as well as methods of investigation, with an emphasize on amplitude, rhythm, and pulse analysis. The PPG waveform was first described in the 1930s. Although considered an interesting ancillary monitor, the "pulse waveform" never underwent intensive investigation. Its importance in clinical medicine was greatly increased with the introduction of the pulse oximeter into routine clinical care in the 1980s. Its waveform is now commonly displayed in the clinical setting. Active research efforts are beginning to demonstrate a utility beyond oxygen saturation and heart rate determination. Future trends are being heavily influenced by modern digital signal processing, which is allowing a re-examination of this ubiquitous waveform. Key to unlocking the potential of this waveform is an unfettered access to the raw signal, combined with standardization of its presentation, and methods of analysis. In the long run, we need to learn how to consistently quantify the characteristics of the PPG in such a way as to allow the results from research efforts be translated into clinically useful devices.

  1. Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data

    NASA Astrophysics Data System (ADS)

    Lee, Sanggyun; Kim, Hyun-cheol; Im, Jungho

    2018-05-01

    We propose a waveform mixture algorithm to detect leads from CryoSat-2 data, which is novel and different from the existing threshold-based lead detection methods. The waveform mixture algorithm adopts the concept of spectral mixture analysis, which is widely used in the field of hyperspectral image analysis. This lead detection method was evaluated with high-resolution (250 m) MODIS images and showed comparable and promising performance in detecting leads when compared to the previous methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters (i.e., stack standard deviation, stack skewness, stack kurtosis, pulse peakiness, and backscatter σ0), as it directly uses L1B waveform data, unlike the existing threshold-based methods. Monthly lead fraction maps were produced by the waveform mixture algorithm, which shows interannual variability of recent sea ice cover during 2011-2016, excluding the summer season (i.e., June to September). We also compared the lead fraction maps to other lead fraction maps generated from previously published data sets, resulting in similar spatiotemporal patterns.

  2. Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.

    PubMed

    Rosnitskiy, Pavel B; Yuldashev, Petr V; Sapozhnikov, Oleg A; Maxwell, Adam D; Kreider, Wayne; Bailey, Michael R; Khokhlova, Vera A

    2017-02-01

    Various clinical applications of high-intensity focused ultrasound have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this paper is to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasi-linear conditions at the focus. Multiparametric nonlinear modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. The results are presented in terms of the parameters of an equivalent single-element spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields.

  3. A novel compliance measurement in radial arteries using strain-gauge plethysmography.

    PubMed

    Liu, Shing-Hong; Tyan, Chu-Chang; Chang, Kang-Ming

    2009-09-01

    We propose a novel method for assessing the compliance of the radial artery by using a two-axis mechanism and a standard positioning procedure for detecting the optimal measuring site. A modified sensor was designed to simultaneously measure the arterial diameter change waveform (ADCW) and pressure pulse waveform with a strain gauge and piezoresistor. In the x-axis scanning, the sensor could be placed close to the middle of the radial artery when the ADCW reached the maximum amplitude. In the Z-axis scanning, the contact pressure was continuously increased for data measurement. Upon the deformation of the strain gauge following the change in the vascular cross-section, the ADCW was transferred to the change of the vascular radius. The loaded strain compliance of the radial artery (C(strain)) can be determined by dividing the dynamic changed radius by the pulse pressure. Twenty-three untreated, mild or moderate hypertensive patients aged 29-85 were compared with 14 normotensive patients aged 25-62. The maximum strain compliance between the two groups was significantly different (p < 0.005). Of the hypertensive patients, 14 were at risk of developing hyperlipidemia. There was a significant difference between this and the normotension group (p < 0.005).

  4. Noninvasive measurement of pulsatile intracranial pressure using ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, T.; Ballard, R. E.; Shuer, L. M.; Cantrell, J. H.; Yost, W. T.; Hargens, A. R.

    1998-01-01

    The present study was designed to validate our noninvasive ultrasonic technique (pulse phase locked loop: PPLL) for measuring intracranial pressure (ICP) waveforms. The technique is based upon detecting skull movements which are known to occur in conjunction with altered intracranial pressure. In bench model studies, PPLL output was highly correlated with changes in the distance between a transducer and a reflecting target (R2 = 0.977). In cadaver studies, transcranial distance was measured while pulsations of ICP (amplitudes of zero to 10 mmHg) were generated by rhythmic injections of saline. Frequency analyses (fast Fourier transformation) clearly demonstrate the correspondence between the PPLL output and ICP pulse cycles. Although theoretically there is a slight possibility that changes in the PPLL output are caused by changes in the ultrasonic velocity of brain tissue, the decreased amplitudes of the PPLL output as the external compression of the head was increased indicates that the PPLL output represents substantial skull movement associated with altered ICP. In conclusion, the ultrasound device has sufficient sensitivity to detect transcranial pulsations which occur in association with the cardiac cycle. Our technique makes it possible to analyze ICP waveforms noninvasively and will be helpful for understanding intracranial compliance and cerebrovascular circulation.

  5. Modelflow Estimates of Stroke Volume Do Not Correlate With Doppler Ultrasound Estimates During Upright Posture

    NASA Technical Reports Server (NTRS)

    Ferguson, Connor R.; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.; Laurie, Steven S.

    2014-01-01

    Orthostatic intolerance affects 60-80% of astronauts returning from long-duration missions, representing a significant risk to completing mission-critical tasks. While likely multifactorial, a reduction in stroke volume (SV) represents one factor contributing to orthostatic intolerance during stand and head up tilt (HUT) tests. Current measures of SV during stand or HUT tests use Doppler ultrasound and require a trained operator and specialized equipment, restricting its use in the field. BeatScope (Finapres Medical Systems BV, The Netherlands) uses a modelflow algorithm to estimate SV from continuous blood pressure waveforms in supine subjects; however, evidence supporting the use of Modelflow to estimate SV in subjects completing stand or HUT tests remain scarce. Furthermore, because the blood pressure device is held extended at heart level during HUT tests, but allowed to rest at the side during stand tests, changes in the finger arterial pressure waveform resulting from arm positioning could alter modelflow estimated SV. The purpose of this project was to compare Doppler ultrasound and BeatScope estimations of SV to determine if BeatScope can be used during stand or HUT tests. Finger photoplethysmography was used to acquire arterial pressure waveforms corrected for hydrostatic finger-to-heart height using the Finometer (FM) and Portapres (PP) arterial pressure devices in 10 subjects (5 men and 5 women) during a stand test while simultaneous estimates of SV were collected using Doppler ultrasound. Measures were made after 5 minutes of supine rest and while subjects stood for 5 minutes. Next, SV estimates were reacquired while each arm was independently raised to heart level, a position similar to tilt testing. Supine SV estimates were not significantly different between all three devices (FM: 68+/-20, PP: 71+/-21, US: 73+/-21 ml/beat). Upon standing, the change in SV estimated by FM (-18+/-8 ml) was not different from PP (-21+/-12), but both were significantly less than US (-37+/-16 ml, p<.05). Raising finger BP devices to heart level caused no significant change in SV measured with any of the devices (FM: 1.5+/-19, PP: 1.7+/-26, US: 0.5+/-6), although variability was 3-6x greater as assessed by both blood pressure devices compared to US. Retrospective analysis of blood pressure data to assess SV in 11 supine subjects revealed significantly different estimates between methods (FM: 95+/-17, US: 75+/-32, p<.05), but the change in SV resulting from HUT was similar between methods (FM: -37+/-9, US: -40+/-18 ml). However, the correlation coefficient determined from pairs of SV estimated by US and FM was weak (r2=0.03). These data suggest Modelflow cannot be used in lieu of Doppler ultrasound to estimate SV during stand or HUT tests. Further investigation should focus on identifying factors contributing to differences between these measurement techniques in order to make use of a simple method for assessing beat-by-beat changes in SV during postural changes, especially during field testing.

  6. Intratracheal Milrinone Bolus Administration During Acute Right Ventricular Dysfunction After Cardiopulmonary Bypass.

    PubMed

    Gebhard, Caroline Eva; Desjardins, Georges; Gebhard, Cathérine; Gavra, Paul; Denault, André Y

    2017-04-01

    To evaluate intratracheal milrinone (tMil) administration for rapid treatment of right ventricular (RV) dysfunction as a novel route after cardiopulmonary bypass. Retrospective analysis. Single-center study. The study comprised 7 patients undergoing cardiac surgery who exhibited acute RV dysfunction after cardiopulmonary bypass. After difficult weaning caused by cardiopulmonary bypass-induced acute RV dysfunction, milrinone was administered as a 5-mg bolus inside the endotracheal tube. RV function improvement, as indicated by decreasing pulmonary artery pressure and changes of RV waveforms, was observed in all 7 patients. Adverse effects of tMil included dynamic RV outflow tract obstruction (2 patients) and a decrease in systemic mean arterial pressure (1 patient). tMil may be an effective, rapid, and easily applicable therapeutic alternative to inhaled milrinone for the treatment of acute RV failure during cardiac surgery. However, sufficiently powered clinical trials are needed to confirm these findings. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: a stability analysis.

    PubMed

    Sharzehee, Mohammadali; Khalafvand, Seyed Saeid; Han, Hai-Chao

    2018-02-01

    Tortuous aneurysmal arteries are often associated with a higher risk of rupture but the mechanism remains unclear. The goal of this study was to analyze the buckling and post-buckling behaviors of aneurysmal arteries under pulsatile flow. To accomplish this goal, we analyzed the buckling behavior of model carotid and abdominal aorta with aneurysms by utilizing fluid-structure interaction (FSI) method with realistic waveforms boundary conditions. FSI simulations were done under steady-state and pulsatile flow for normal (1.5) and reduced (1.3) axial stretch ratios to investigate the influence of aneurysm, pulsatile lumen pressure and axial tension on stability. Our results indicated that aneurysmal artery buckled at the critical buckling pressure and its deflection nonlinearly increased with increasing lumen pressure. Buckling elevates the peak stress (up to 118%). The maximum aneurysm wall stress at pulsatile FSI flow was (29%) higher than under static pressure at the peak lumen pressure of 130 mmHg. Buckling results show an increase in lumen shear stress at the inner side of the maximum deflection. Vortex flow was dramatically enlarged with increasing lumen pressure and artery diameter. Aneurysmal arteries are more susceptible than normal arteries to mechanical instability which causes high stresses in the aneurysm wall that could lead to aneurysm rupture.

  8. Lightning-channel morphology by return-stroke radiation field waveforms

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; Le Vine, D. M.; Idone, V. P.

    1995-01-01

    Simultaneous video and wideband electric field recordings of 32 cloud-to-ground lightning flashes in Florida were analyzed to show the formation of new channels to ground can be detected by examination of the return-stroke radiation fields alone. The return-stroke E and dE/dt waveforms were subjectively classified according to their fine structure. Then the video images were examined field by field to identify each waveform with a visible channel to ground. Fifty-five correlated waveforms and channel images were obtained. Of these, all 34 first-stroke waveforms (multiple jagged E peaks, noisy dE/dt), 8 of which were not radiated by the chronologically first stroke in the flash, came from new channels to ground (not previously seen on video). All 18 subsequent-stroke waveforms (smoothly rounded E and quiet dE/dt after initial peak) were radiated by old channels (illuminated by a previous stroke). Two double-ground waveforms (two distinct first-return-stroke pulses separated by tens of microseconds or less) coincided with video fields showing two new channels. One `anomalous-stroke' waveform (beginning like a first stroke and ending like a subsequent) was produced by a new channel segment to ground branching off an old channel. This waveform classification depends on the presence or absence of high-frequency fine structure. Fourier analysis shows that first-stroke waveforms contain about 18 dB more spectral power in the frequency interval from 500 kHz to at least 7 MHz than subsequent-stroke waveforms for at least 13 microseconds after the main peak.

  9. Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet

    NASA Astrophysics Data System (ADS)

    Zhou, Qiujiao; Qi, Bing; Huang, Jianjun; Pan, Lizhu; Liu, Ying

    2016-04-01

    The properties of a helium atmospheric-pressure plasma jet (APPJ) are diagnosed with a dual assisted grounded electrode dielectric barrier discharge device. In the glow discharge, we captured the current waveforms at the positions of the three grounded rings. From the current waveforms, the time delay between the adjacent positions of the rings is employed to calculate the plasma bullet velocity of the helium APPJ. Moreover, the electron density is deduced from a model combining with the time delay and current intensity, which is about 1011 cm-3. In addition, The ion-neutral particles collision frequency in the radial direction is calculated from the current phase difference between two rings, which is on the order of 107 Hz. The results are helpful for understanding the basic properties of APPJs. supported by National Natural Science Foundation of China (No. 11105093), the Technological Project of Shenzhen, China (No. JC201005280485A), and the Planned S&T Program of Shenzhen, China (No. JC201105170703A)

  10. Studying Townsend and glow modes in an atmospheric-pressure DBD using mass spectrometry

    NASA Astrophysics Data System (ADS)

    McKay, Kirsty; Donaghy, David; He, Feng; Bradley, James W.

    2018-01-01

    Ambient molecular beam mass spectrometry has been employed to examine the effects of the mode of operation and the excitation waveform on the ionic content of a helium-based atmospheric-pressure parallel plate dielectric barrier discharge. By applying 10 kHz microsecond voltage pulses with a nanosecond rise times and 10 kHz sinusoidal voltage waveforms, distinctly different glow and Townsend modes were produced, respectively. Results showed a significant difference in the dominant ion species between the two modes. In the Townsend mode, molecular oxygen ions, atomic oxygen anions and nitric oxide anions are the most abundant species, however, in the glow mode water clusters ions and hydrated nitric oxygen anions dominate. Several hypotheses are put forward to explain these differences, including low electron densities and energies in the Townsend mode, more efficient ionization of water molecules through penning ionization and charge exchange with other species in glow mode, and large temperature gradients due to the pulsed nature of the glow mode, leading to more favorable conditions for cluster formation.

  11. Source mechanism of small long-period events at Mount St. Helens in July 2005 using template matching, phase-weighted stacking, and full-waveform inversion

    USGS Publications Warehouse

    Matoza, Robin S.; Chouet, Bernard A.; Dawson, Phillip B.; Shearer, Peter M.; Haney, Matthew M.; Waite, Gregory P.; Moran, Seth C.; Mikesell, T. Dylan

    2015-01-01

    Long-period (LP, 0.5-5 Hz) seismicity, observed at volcanoes worldwide, is a recognized signature of unrest and eruption. Cyclic LP “drumbeating” was the characteristic seismicity accompanying the sustained dome-building phase of the 2004–2008 eruption of Mount St. Helens (MSH), WA. However, together with the LP drumbeating was a near-continuous, randomly occurring series of tiny LP seismic events (LP “subevents”), which may hold important additional information on the mechanism of seismogenesis at restless volcanoes. We employ template matching, phase-weighted stacking, and full-waveform inversion to image the source mechanism of one multiplet of these LP subevents at MSH in July 2005. The signal-to-noise ratios of the individual events are too low to produce reliable waveform-inversion results, but the events are repetitive and can be stacked. We apply network-based template matching to 8 days of continuous velocity waveform data from 29 June to 7 July 2005 using a master event to detect 822 network triggers. We stack waveforms for 359 high-quality triggers at each station and component, using a combination of linear and phase-weighted stacking to produce clean stacks for use in waveform inversion. The derived source mechanism pointsto the volumetric oscillation (~10 m3) of a subhorizontal crack located at shallow depth (~30 m) in an area to the south of Crater Glacier in the southern portion of the breached MSH crater. A possible excitation mechanism is the sudden condensation of metastable steam from a shallow pressurized hydrothermal system as it encounters cool meteoric water in the outer parts of the edifice, perhaps supplied from snow melt.

  12. Full-waveform seismic tomography of the Vrancea, Romania, subduction region

    NASA Astrophysics Data System (ADS)

    Baron, Julie; Morelli, Andrea

    2017-12-01

    The Vrancea region is one of the few locations of deep seismicity in Europe. Seismic tomography has been able to map lithospheric downwelling, but has not been able yet to clearly discriminate between competing geodynamic interpretations of the geological and geophysical evidence available. We study the seismic structure of the Vrancea subduction zone, using adjoint-based, full-waveform tomography to map the 3D vP and vS structure in detail. We use the database that was built during the CALIXTO (Carpathian Arc Lithosphere X-Tomography) temporary experiment, restricted to the broadband sensors and local intermediate-depth events. We fit waveforms with a cross-correlation misfit criterion in separate time windows around the expected P and S arrivals, and perform 17 iterations of vP and vS model updates (altogether, requiring about 16 million CPU hours) before reaching stable convergence. Among other features, our resulting model shows a nearly vertical, high-velocity body, that overlaps with the distribution of seismicity in its northeastern part. In its southwestern part, a slab appears to dip less steeply to the NW, and is suggestive of ongoing - or recently concluded - subduction geodynamic processes. Joint inversion for vP and vS allow us to address the vP/vS ratio distribution, that marks high vP/vS in the crust beneath the Focsani sedimentary basin - possibly due to high fluid pressure - and a low vP/vS edge along the lower plane of the subducting lithosphere, that in other similar environment has been attributed to dehydration of serpentine in the slab. In spite of the restricted amount of data available, and limitations on the usable frequency pass-band, full-waveform inversion reveals its potential to improve the general quality of imaging with respect to other tomographic techniques - although at a sensible cost in terms of computing resources. Our study also shows that re-analysis of legacy data sets with up-to-date techniques may bring new, useful, information.

  13. Wavelet analysis of the impedance cardiogram waveforms

    NASA Astrophysics Data System (ADS)

    Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.

    2012-12-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  14. Tailored-waveform Collisional Activation of Peptide Ion Electron Transfer Survivor Ions in Cation Transmission Mode Ion/Ion Reaction Experiments

    PubMed Central

    Han, Hongling; Londry, Frank A.; Erickson, David E.; McLuckey, Scott A.

    2010-01-01

    SUMMARY Broad-band resonance excitation via a tailored waveform in a high pressure collision cell (Q2) on a hybrid quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been implemented for cation transmission mode electron transfer ion/ion reactions of tryptic polypeptides. The frequency components in the broadband waveform were defined to excite the first generation intact electron transfer products for relatively large tryptic peptides. The optimum amplitude of the arbitrary waveform applied has been determined empirically to be 3.0 Vp-p, which is effective for relatively high mass-to-charge (m/z) ratio precursor ions with little elimination of sequence information for low m/z ions. The application of broadband activation during the transmission mode ion/ion reaction obviates frequency and amplitude tuning normally associated with ion trap collision induced dissociation (CID). This approach has been demonstrated with triply and doubly charged tryptic peptides with and without post-translational modifications. Enhanced structural information was achieved by production of a larger number of informative c- and z-type fragments using the tailored waveform on unmodified and modified (phosphorylated and glycosylated) peptides when the first generation intact electron transfer products fell into the defined frequency range. This approach can be applied to a wide range of tryptic peptide ions, making it attractive as a rapid and general approach for ETD LC-MS/MS of tryptic peptides in a QqTOF instrument. PMID:19305916

  15. Experimental study on the pressure wave propagation in the artificial arterial tree in brain

    NASA Astrophysics Data System (ADS)

    Shimada, Shinya; Tsurusaki, Ryo; Iwase, Fumiaki; Matsukawa, Mami; Lagrée, Pierre-Yves

    2018-07-01

    A pulse wave measurement is effective for the early detection of arteriosclerosis. The pulse wave consists of incident and reflected waves. The reflected wave of the pulse wave measured at the left common carotid artery seems to originate from the vascular beds in the brain. The aim of this study is to know if the reflected waves from the occlusions in cerebral arteries can affect the pulse waveform. The artificial arterial tree in the brain was therefore fabricated using polyurethane tubes. After investigating the effects of the bifurcation angle on the pulse waveform, we attempted to confirm whether the reflected waves from occlusions in the artificial arterial tree in the brain can be experimentally measured at the left common carotid artery. Results indicate that the bifurcation angle did not affect the pulse waveform, and that the reflected wave from an occlusion with a diameter of more than 1 mm in the brain could be observed.

  16. Tsunami simulation method initiated from waveforms observed by ocean bottom pressure sensors for real-time tsunami forecast; Applied for 2011 Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Tanioka, Yuichiro

    2017-04-01

    After tsunami disaster due to the 2011 Tohoku-oki great earthquake, improvement of the tsunami forecast has been an urgent issue in Japan. National Institute of Disaster Prevention is installing a cable network system of earthquake and tsunami observation (S-NET) at the ocean bottom along the Japan and Kurile trench. This cable system includes 125 pressure sensors (tsunami meters) which are separated by 30 km. Along the Nankai trough, JAMSTEC already installed and operated the cable network system of seismometers and pressure sensors (DONET and DONET2). Those systems are the most dense observation network systems on top of source areas of great underthrust earthquakes in the world. Real-time tsunami forecast has depended on estimation of earthquake parameters, such as epicenter, depth, and magnitude of earthquakes. Recently, tsunami forecast method has been developed using the estimation of tsunami source from tsunami waveforms observed at the ocean bottom pressure sensors. However, when we have many pressure sensors separated by 30km on top of the source area, we do not need to estimate the tsunami source or earthquake source to compute tsunami. Instead, we can initiate a tsunami simulation from those dense tsunami observed data. Observed tsunami height differences with a time interval at the ocean bottom pressure sensors separated by 30 km were used to estimate tsunami height distribution at a particular time. In our new method, tsunami numerical simulation was initiated from those estimated tsunami height distribution. In this paper, the above method is improved and applied for the tsunami generated by the 2011 Tohoku-oki great earthquake. Tsunami source model of the 2011 Tohoku-oki great earthquake estimated using observed tsunami waveforms, coseimic deformation observed by GPS and ocean bottom sensors by Gusman et al. (2012) is used in this study. The ocean surface deformation is computed from the source model and used as an initial condition of tsunami simulation. By assuming that this computed tsunami is a real tsunami and observed at ocean bottom sensors, new tsunami simulation is carried out using the above method. The station distribution (each station is separated by 15 min., about 30 km) observed tsunami waveforms which were actually computed from the source model. Tsunami height distributions are estimated from the above method at 40, 80, and 120 seconds after the origin time of the earthquake. The Near-field Tsunami Inundation forecast method (Gusman et al. 2014) was used to estimate the tsunami inundation along the Sanriku coast. The result shows that the observed tsunami inundation was well explained by those estimated inundation. This also shows that it takes about 10 minutes to estimate the tsunami inundation from the origin time of the earthquake. This new method developed in this paper is very effective for a real-time tsunami forecast.

  17. High-fidelity digital recording and playback sphygmomanometry system: device description and proof of concept.

    PubMed

    Lee, Jongshill; Chee, Youngjoon; Kim, Inyoung; Karpettas, Nikos; Kollias, Anastasios; Atkins, Neil; Stergiou, George S; O'Brien, Eoin

    2015-10-01

    This study describes the development of a new digital sphygmocorder (DS-II), which allows the digital recording and playback of the Korotkoff sounds, together with cuff pressure waveform, and its performance in a pilot validation study. A condenser microphone and stethoscope head detect Korotkoff sounds and an electronic chip, dedicated to audio-signal processing, is used to record high-quality sounds. Systolic and diastolic blood pressure (SBP/DBP) are determined from the recorded signals with an automatic beat detection algorithm that displays the cuff pressure at each beat on the monitor. Recordings of Korotkoff sounds, with the cuff pressure waveforms, and the simultaneous on-site assessments of SBP/DBP were performed during 100 measurements in 10 individuals. The observers reassessed the recorded signals to verify their accuracy and differences were calculated. The features of the high-fidelity DS-II, the technical specifications and the assessment procedures utilizing the playback software are described. Interobserver absolute differences (mean±SD) in measurements were 0.7±1.1/1.3±1.3 mmHg (SBP/DBP) with a mercury sphygmomanometer and 0.3±0.9/0.8±1.2 mmHg with the DS-II. The absolute DS-II mercury sphygmomanometer differences were 1.3±1.9/1.5±1.3 mmHg (SBP/DBP). The high-fidelity DS-II device presents satisfactory agreement with simultaneous measurements of blood pressure with a mercury sphygmomanometer. The device will be a valuable methodology for validating new blood pressure measurement technologies and devices.

  18. The Influence of Measurement Methodology on the Accuracy of Electrical Waveform Distortion Analysis

    NASA Astrophysics Data System (ADS)

    Bartman, Jacek; Kwiatkowski, Bogdan

    2018-04-01

    The present paper covers a review of documents that specify measurement methods of voltage waveform distortion. It also presents measurement stages of waveform components that are uncommon in the classic fundamentals of electrotechnics and signal theory, including the creation process of groups and subgroups of harmonics and interharmonics. Moreover, the paper discusses selected distortion factors of periodic waveforms and presents analyses that compare the values of these distortion indices. The measurements were carried out in the cycle per cycle mode and the measurement methodology that was used complies with the IEC 61000-4-7 norm. The studies showed significant discrepancies between the values of analyzed parameters.

  19. Electronic circuit detects left ventricular ejection events in cardiovascular system

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.; Webb, J. A., Jr.

    1972-01-01

    Electronic circuit processes arterial blood pressure waveform to produce discrete signals that coincide with beginning and end of left ventricular ejection. Output signals provide timing signals for computers that monitor cardiovascular systems. Circuit operates reliably for heart rates between 50 and 200 beats per minute.

  20. On the accuracy and precision of numerical waveforms: effect of waveform extraction methodology

    NASA Astrophysics Data System (ADS)

    Chu, Tony; Fong, Heather; Kumar, Prayush; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela

    2016-08-01

    We present a new set of 95 numerical relativity simulations of non-precessing binary black holes (BBHs). The simulations sample comprehensively both black-hole spins up to spin magnitude of 0.9, and cover mass ratios 1-3. The simulations cover on average 24 inspiral orbits, plus merger and ringdown, with low initial orbital eccentricities e\\lt {10}-4. A subset of the simulations extends the coverage of non-spinning BBHs up to mass ratio q = 10. Gravitational waveforms at asymptotic infinity are computed with two independent techniques: extrapolation and Cauchy characteristic extraction. An error analysis based on noise-weighted inner products is performed. We find that numerical truncation error, error due to gravitational wave extraction, and errors due to the Fourier transformation of signals with finite length of the numerical waveforms are of similar magnitude, with gravitational wave extraction errors dominating at noise-weighted mismatches of ˜ 3× {10}-4. This set of waveforms will serve to validate and improve aligned-spin waveform models for gravitational wave science.

  1. Blast Load Simulator Experiments for Computational Model Validation Report 3

    DTIC Science & Technology

    2017-07-01

    establish confidence in the results produced by the simulations. This report describes a set of replicate experiments in which a small, non - responding steel...designed to simulate blast waveforms for explosive yields up to 20,000 lb of TNT equivalent at a peak reflected pressure up to 80 psi and a peak...the pressure loading on a non - responding box-type structure at varying obliquities located in the flow of the BLS simulated blast environment for

  2. Effects of volcano topography on seismic broad-band waveforms

    NASA Astrophysics Data System (ADS)

    Neuberg, Jürgen; Pointer, Tim

    2000-10-01

    Volcano seismology often deals with rather shallow seismic sources and seismic stations deployed in their near field. The complex stratigraphy on volcanoes and near-field source effects have a strong impact on the seismic wavefield, complicating the interpretation techniques that are usually employed in earthquake seismology. In addition, as most volcanoes have a pronounced topography, the interference of the seismic wavefield with the stress-free surface results in severe waveform perturbations that affect seismic interpretation methods. In this study we deal predominantly with the surface effects, but take into account the impact of a typical volcano stratigraphy as well as near-field source effects. We derive a correction term for plane seismic waves and a plane-free surface such that for smooth topographies the effect of the free surface can be totally removed. Seismo-volcanic sources radiate energy in a broad frequency range with a correspondingly wide range of different Fresnel zones. A 2-D boundary element method is employed to study how the size of the Fresnel zone is dependent on source depth, dominant wavelength and topography in order to estimate the limits of the plane wave approximation. This approximation remains valid if the dominant wavelength does not exceed twice the source depth. Further aspects of this study concern particle motion analysis to locate point sources and the influence of the stratigraphy on particle motions. Furthermore, the deployment strategy of seismic instruments on volcanoes, as well as the direct interpretation of the broad-band waveforms in terms of pressure fluctuations in the volcanic plumbing system, are discussed.

  3. Focused and Steady-State Characteristics of Shaped Sonic Boom Signatures: Prediction and Analysis

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Bobbitt, Percy J.; Massey, Steven J.; Plotkin, Kenneth J.; Kandil, Osama A.; Zheng, Xudong

    2011-01-01

    The objective of this study is to examine the effect of flight, at off-design conditions, on the propagated sonic boom pressure signatures of a small "low-boom" supersonic aircraft. The amplification, or focusing, of the low magnitude "shaped" signatures produced by maneuvers such as the accelerations from transonic to supersonic speeds, climbs, turns, pull-up and pushovers is the concern. To analyze these effects, new and/or improved theoretical tools have been developed, in addition to the use of existing methodology. Several shaped signatures are considered in the application of these tools to the study of selected maneuvers and off-design conditions. The results of these applications are reported in this paper as well as the details of the new analytical tools. Finally, the magnitude of the focused boom problem for "low boom" supersonic aircraft designs has been more accurately quantified and potential "mitigations" suggested. In general, "shaped boom" signatures, designed for cruise flight, such as asymmetric and symmetric flat-top and initial-shock ramp waveforms retain their basic shape during transition flight. Complex and asymmetric and symmetric initial shock ramp waveforms provide lower magnitude focus boom levels than N-waves or asymmetric and symmetric flat-top signatures.

  4. On the role of glottis-interior sources in the production of voiced sound.

    PubMed

    Howe, M S; McGowan, R S

    2012-02-01

    The voice source is dominated by aeroacoustic sources downstream of the glottis. In this paper an investigation is made of the contribution to voiced speech of secondary sources within the glottis. The acoustic waveform is ultimately determined by the volume velocity of air at the glottis, which is controlled by vocal fold vibration, pressure forcing from the lungs, and unsteady backreactions from the sound and from the supraglottal air jet. The theory of aerodynamic sound is applied to study the influence on the fine details of the acoustic waveform of "potential flow" added-mass-type glottal sources, glottis friction, and vorticity either in the glottis-wall boundary layer or in the portion of the free jet shear layer within the glottis. These sources govern predominantly the high frequency content of the sound when the glottis is near closure. A detailed analysis performed for a canonical, cylindrical glottis of rectangular cross section indicates that glottis-interior boundary/shear layer vortex sources and the surface frictional source are of comparable importance; the influence of the potential flow source is about an order of magnitude smaller. © 2012 Acoustical Society of America

  5. Orthogonal Chirp-Based Ultrasonic Positioning

    PubMed Central

    Khyam, Mohammad Omar; Ge, Shuzhi Sam; Li, Xinde; Pickering, Mark

    2017-01-01

    This paper presents a chirp based ultrasonic positioning system (UPS) using orthogonal chirp waveforms. In the proposed method, multiple transmitters can simultaneously transmit chirp signals, as a result, it can efficiently utilize the entire available frequency spectrum. The fundamental idea behind the proposed multiple access scheme is to utilize the oversampling methodology of orthogonal frequency-division multiplexing (OFDM) modulation and orthogonality of the discrete frequency components of a chirp waveform. In addition, the proposed orthogonal chirp waveforms also have all the advantages of a classical chirp waveform. Firstly, the performance of the waveforms is investigated through correlation analysis and then, in an indoor environment, evaluated through simulations and experiments for ultrasonic (US) positioning. For an operational range of approximately 1000 mm, the positioning root-mean-square-errors (RMSEs) &90% error were 4.54 mm and 6.68 mm respectively. PMID:28448454

  6. Orthogonal Chirp-Based Ultrasonic Positioning.

    PubMed

    Khyam, Mohammad Omar; Ge, Shuzhi Sam; Li, Xinde; Pickering, Mark

    2017-04-27

    This paper presents a chirp based ultrasonic positioning system (UPS) using orthogonal chirp waveforms. In the proposed method, multiple transmitters can simultaneously transmit chirp signals, as a result, it can efficiently utilize the entire available frequency spectrum. The fundamental idea behind the proposed multiple access scheme is to utilize the oversampling methodology of orthogonal frequency-division multiplexing (OFDM) modulation and orthogonality of the discrete frequency components of a chirp waveform. In addition, the proposed orthogonal chirp waveforms also have all the advantages of a classical chirp waveform. Firstly, the performance of the waveforms is investigated through correlation analysis and then, in an indoor environment, evaluated through simulations and experiments for ultrasonic (US) positioning. For an operational range of approximately 1000 mm, the positioning root-mean-square-errors (RMSEs) &90% error were 4.54 mm and 6.68 mm respectively.

  7. Wallops waveform analysis of SEASAT-1 radar altimeter data

    NASA Technical Reports Server (NTRS)

    Hayne, G. S.

    1980-01-01

    Fitting a six parameter model waveform to over ocean experimental data from the waveform samplers in the SEASAT-1 radar altimeter is described. The fitted parameters include a waveform risetime, skewness, and track point; from these can be obtained estimates of the ocean surface significant waveheight, the surface skewness, and a correction to the altimeter's on board altitude measurement, respectively. Among the difficulties encountered are waveform sampler gains differing from calibration mode data, and incorporating the actual SEASAT-1 sampled point target response in the fitted wave form. There are problems in using the spacecraft derived attitude angle estimates, and a different attitude estimator is developed. Points raised in this report have consequences for the SEASAT-1 radar altimeter's ocean surface measurements are for the design and calibration of radar altimeters in future oceanographic satellites.

  8. Non-invasive assessment of peripheral arterial disease: Automated ankle brachial index measurement and pulse volume analysis compared to duplex scan.

    PubMed

    Lewis, Jane Ea; Williams, Paul; Davies, Jane H

    2016-01-01

    This cross-sectional study aimed to individually and cumulatively compare sensitivity and specificity of the (1) ankle brachial index and (2) pulse volume waveform analysis recorded by the same automated device, with the presence or absence of peripheral arterial disease being verified by ultrasound duplex scan. Patients (n=205) referred for lower limb arterial assessment underwent ankle brachial index measurement and pulse volume waveform recording using volume plethysmography, followed by ultrasound duplex scan. The presence of peripheral arterial disease was recorded if ankle brachial index <0.9; pulse volume waveform was graded as 2, 3 or 4; or if haemodynamically significant stenosis >50% was evident with ultrasound duplex scan. Outcome measure was agreement between the measured ankle brachial index and interpretation of pulse volume waveform for peripheral arterial disease diagnosis, using ultrasound duplex scan as the reference standard. Sensitivity of ankle brachial index was 79%, specificity 91% and overall accuracy 88%. Pulse volume waveform sensitivity was 97%, specificity 81% and overall accuracy 85%. The combined sensitivity of ankle brachial index and pulse volume waveform was 100%, specificity 76% and overall accuracy 85%. Combining these two diagnostic modalities within one device provided a highly accurate method of ruling out peripheral arterial disease, which could be utilised in primary care to safely reduce unnecessary secondary care referrals.

  9. Effects of Prone Position and Positive End-Expiratory Pressure on Noninvasive Estimators of ICP: A Pilot Study.

    PubMed

    Robba, Chiara; Bragazzi, Nicola Luigi; Bertuccio, Alessandro; Cardim, Danilo; Donnelly, Joseph; Sekhon, Mypinder; Lavinio, Andrea; Duane, Derek; Burnstein, Rowan; Matta, Basil; Bacigaluppi, Susanna; Lattuada, Marco; Czosnyka, Marek

    2017-07-01

    Prone positioning and positive end-expiratory pressure can improve pulmonary gas exchange and respiratory mechanics. However, they may be associated with the development of intracranial hypertension. Intracranial pressure (ICP) can be noninvasively estimated from the sonographic measurement of the optic nerve sheath diameter (ONSD) and from the transcranial Doppler analysis of the pulsatility (ICPPI) and the diastolic component (ICPFVd) of the velocity waveform. The effect of the prone positioning and positive end-expiratory pressure on ONSD, ICPFVd, and ICPPI was assessed in a prospective study of 30 patients undergoing spine surgery. One-way repeated measures analysis of variance, fixed-effect multivariate regression models, and receiver operating characteristic analyses were used to analyze numerical data. The mean values of ONSD, ICPFVd, and ICPPI significantly increased after change from supine to prone position. Receiver operating characteristic analyses demonstrated that, among the noninvasive methods, the mean ONSD measure had the greatest area under the curve signifying it is the most effective in distinguishing a hypothetical change in ICP between supine and prone positioning (0.86±0.034 [0.79 to 0.92]). A cutoff of 0.43 cm was found to be a best separator of ONSD value between supine and prone with a specificity of 75.0 and a sensitivity of 86.7. Noninvasive ICP estimation may be useful in patients at risk of developing intracranial hypertension who require prone positioning.

  10. Source process of a long-period event at Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Kumagai, H.; Chouet, B.A.; Dawson, P.B.

    2005-01-01

    We analyse a long-period (LP) event observed by a dense seismic network temporarily operated at Kilauea volcano, Hawaii, in 1996. We systematically perform spectral analyses, waveform inversions and forward modeling of the LP event to quantify its source process. Spectral analyses identify two dominant spectral frequencies at 0.6 and 1.3 Hz with associated Q values in the range 10-20. Results from waveform inversions assuming six moment-tensor and three single-force components point to the resonance of a horizontal crack located at a depth of approximately 150 m near the northeastern rim of the Halemaumau pit crater. Waveform simulations based on a fluid-filled crack model suggest that the observed frequencies and Q values can be explained by a crack filled with a hydrothermal fluid in the form of either bubbly water or steam. The shallow hydrothermal crack located directly above the magma conduit may have been heated by volcanic gases leaking from the conduit. The enhanced flux of heat raised the overall pressure of the hydrothermal fluid in the crack and induced a rapid discharge of fluid from the crack, which triggered the acoustic vibrations of the resonator generating the LP waveform. The present study provides further support to the idea that LP events originate in the resonance of a crack. ?? 2005 RAS.

  11. Effects of blood pressure and sex on the change of wave reflection: evidence from Gaussian fitting method for radial artery pressure waveform.

    PubMed

    Liu, Chengyu; Zhao, Lina; Liu, Changchun

    2014-01-01

    An early return of the reflected component in the arterial pulse has been recognized as an important indicator of cardiovascular risk. This study aimed to determine the effects of blood pressure and sex factor on the change of wave reflection using Gaussian fitting method. One hundred and ninety subjects were enrolled. They were classified into four blood pressure categories based on the systolic blood pressures (i.e., ≤ 110, 111-120, 121-130 and ≥ 131 mmHg). Each blood pressure category was also stratified for sex factor. Electrocardiogram (ECG) and radial artery pressure waveforms (RAPW) signals were recorded for each subject. Ten consecutive pulse episodes from the RAPW signal were extracted and normalized. Each normalized pulse episode was fitted by three Gaussian functions. Both the peak position and peak height of the first and second Gaussian functions, as well as the peak position interval and peak height ratio, were used as the evaluation indices of wave reflection. Two-way ANOVA results showed that with the increased blood pressure, the peak position of the second Gaussian significantly shorten (P < 0.01), the peak height of the first Gaussian significantly decreased (P < 0.01) and the peak height of the second Gaussian significantly increased (P < 0.01), inducing the significantly decreased peak position interval and significantly increased peak height ratio (both P < 0.01). Sex factor had no significant effect on all evaluation indices (all P > 0.05). Moreover, the interaction between sex and blood pressure factors also had no significant effect on all evaluation indices (all P > 0.05). These results showed that blood pressure has significant effect on the change of wave reflection when using the recently developed Gaussian fitting method, whereas sex has no significant effect. The results also suggested that the Gaussian fitting method could be used as a new approach for assessing the arterial wave reflection.

  12. Evaluation of eating and rumination behaviour in cows using a noseband pressure sensor

    PubMed Central

    2013-01-01

    Background An automated technique for recording eating and rumination behaviour was evaluated in ten lactating Brown Swiss cows by comparing data obtained from a pressure sensor with data obtained via direct observation over a 24-hour period. The recording device involved a pressure sensor integrated in the noseband of a halter. The analysed variables included number and duration of individual rumination, eating and resting phases, total daily length of these phases and number of cuds chewed per day. Results Eating and rumination phases were readily differentiated based on characteristic pressure profiles. Chewing movements during rumination were regular and generated regular waveforms with uniform amplitudes, whereas eating generated irregular waveforms with variable amplitudes. There was complete or almost complete agreement and no significant differences between data obtained via direct observation and pressure sensor technique. Both methods yielded an average of 16 daily eating phases with a mean duration of 28.3 minutes. Total time spent eating was 445.0 minutes for direct observation and 445.4 minutes for the pressure sensor technique. Both techniques recorded an average of 13.3 rumination phases with a mean duration of 30.3 (direct observation) and of 30.2 (pressure sensor) minutes. Total time spent ruminating per day, number of cuds per day and chewing cycles per cud were 389.3 and 388.3 minutes, 410.1 and 410.0 and 60.0 and 60.3 for direct observation and pressure sensor technique, respectively. There was a significant difference between the two methods with respect to mean number of chewing cycles per day (24′669, direct observation vs. 24′751, pressure sensor, P < 0.05, paired t-test). There were strong correlations between the two recording methods with correlation coefficients ranging from 0.98 to 1.00. Conclusions The results confirmed that measurements of eating and rumination variables obtained via the pressure sensor technique are in excellent agreement with data obtained via direct observation. PMID:23941142

  13. Fetal electrocardiogram (ECG) for fetal monitoring during labour.

    PubMed

    Neilson, James P

    2015-12-21

    Hypoxaemia during labour can alter the shape of the fetal electrocardiogram (ECG) waveform, notably the relation of the PR to RR intervals, and elevation or depression of the ST segment. Technical systems have therefore been developed to monitor the fetal ECG during labour as an adjunct to continuous electronic fetal heart rate monitoring with the aim of improving fetal outcome and minimising unnecessary obstetric interference. To compare the effects of analysis of fetal ECG waveforms during labour with alternative methods of fetal monitoring. The Cochrane Pregnancy and Childbirth Group's Trials Register (latest search 23 September 2015) and reference lists of retrieved studies. Randomised trials comparing fetal ECG waveform analysis with alternative methods of fetal monitoring during labour. One review author independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. One review author assessed the quality of the evidence using the GRADE approach. Seven trials (27,403 women) were included: six trials of ST waveform analysis (26,446 women) and one trial of PR interval analysis (957 women). The trials were generally at low risk of bias for most domains and the quality of evidence for ST waveform analysis trials was graded moderate to high. In comparison to continuous electronic fetal heart rate monitoring alone, the use of adjunctive ST waveform analysis made no obvious difference to primary outcomes: births by caesarean section (risk ratio (RR) 1.02, 95% confidence interval (CI) 0.96 to 1.08; six trials, 26,446 women; high quality evidence); the number of babies with severe metabolic acidosis at birth (cord arterial pH less than 7.05 and base deficit greater than 12 mmol/L) (average RR 0.72, 95% CI 0.43 to 1.20; six trials, 25,682 babies; moderate quality evidence); or babies with neonatal encephalopathy (RR 0.61, 95% CI 0.30 to 1.22; six trials, 26,410 babies; high quality evidence). There were, however, on average fewer fetal scalp samples taken during labour (average RR 0.61, 95% CI 0.41 to 0.91; four trials, 9671 babies; high quality evidence) although the findings were heterogeneous and there were no data from the largest trial (from the USA). There were marginally fewer operative vaginal births (RR 0.92, 95% CI 0.86 to 0.99; six trials, 26,446 women); but no obvious difference in the number of babies with low Apgar scores at five minutes or babies requiring neonatal intubation, or babies requiring admission to the special care unit (RR 0.96, 95% CI 0.89 to 1.04, six trials, 26,410 babies; high quality evidence). There was little evidence that monitoring by PR interval analysis conveyed any benefit of any sort. The modest benefits of fewer fetal scalp samplings during labour (in settings in which this procedure is performed) and fewer instrumental vaginal births have to be considered against the disadvantages of needing to use an internal scalp electrode, after membrane rupture, for ECG waveform recordings. We found little strong evidence that ST waveform analysis had an effect on the primary outcome measures in this systematic review.There was a lack of evidence showing that PR interval analysis improved any outcomes; and a larger future trial may possibly demonstrate beneficial effects.There is little information about the value of fetal ECG waveform monitoring in preterm fetuses in labour. Information about long-term development of the babies included in the trials would be valuable.

  14. Automated seismic waveform location using Multichannel Coherency Migration (MCM)-I. Theory

    NASA Astrophysics Data System (ADS)

    Shi, Peidong; Angus, Doug; Rost, Sebastian; Nowacki, Andy; Yuan, Sanyi

    2018-03-01

    With the proliferation of dense seismic networks sampling the full seismic wavefield, recorded seismic data volumes are getting bigger and automated analysis tools to locate seismic events are essential. Here, we propose a novel Multichannel Coherency Migration (MCM) method to locate earthquakes in continuous seismic data and reveal the location and origin time of seismic events directly from recorded waveforms. By continuously calculating the coherency between waveforms from different receiver pairs, MCM greatly expands the available information which can be used for event location. MCM does not require phase picking or phase identification, which allows fully automated waveform analysis. By migrating the coherency between waveforms, MCM leads to improved source energy focusing. We have tested and compared MCM to other migration-based methods in noise-free and noisy synthetic data. The tests and analysis show that MCM is noise resistant and can achieve more accurate results compared with other migration-based methods. MCM is able to suppress strong interference from other seismic sources occurring at a similar time and location. It can be used with arbitrary 3D velocity models and is able to obtain reasonable location results with smooth but inaccurate velocity models. MCM exhibits excellent location performance and can be easily parallelized giving it large potential to be developed as a real-time location method for very large datasets.

  15. Influence of Individual Differences on the Calculation Method for FBG-Type Blood Pressure Sensors

    PubMed Central

    Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun; Kobayashi, Yuka

    2016-01-01

    In this paper, we propose a blood pressure calculation and associated measurement method that by using a fiber Bragg grating (FBG) sensor. There are several points at which the pulse can be measured on the surface of the human body, and when a FBG sensor located at any of these points, the pulse wave signal can be measured. The measured waveform is similar to the acceleration pulse wave. The pulse wave signal changes depending on several factors, including whether or not the individual is healthy and/or elderly. The measured pulse wave signal can be used to calculate the blood pressure using a calibration curve, which is constructed by a partial least squares (PLS) regression analysis using a reference blood pressure and the pulse wave signal. In this paper, we focus on the influence of individual differences from calculated blood pressure based on each calibration curve. In our study, the calculated blood pressure from both the individual and overall calibration curves were compared, and our results show that the calculated blood pressure based on the overall calibration curve had a lower measurement accuracy than that based on an individual calibration curve. We also found that the influence of the individual differences on the calculated blood pressure when using the FBG sensor method were very low. Therefore, the FBG sensor method that we developed for measuring the blood pressure was found to be suitable for use by many people. PMID:28036015

  16. Influence of Individual Differences on the Calculation Method for FBG-Type Blood Pressure Sensors.

    PubMed

    Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun; Kobayashi, Yuka

    2016-12-28

    In this paper, we propose a blood pressure calculation and associated measurement method that by using a fiber Bragg grating (FBG) sensor. There are several points at which the pulse can be measured on the surface of the human body, and when a FBG sensor located at any of these points, the pulse wave signal can be measured. The measured waveform is similar to the acceleration pulse wave. The pulse wave signal changes depending on several factors, including whether or not the individual is healthy and/or elderly. The measured pulse wave signal can be used to calculate the blood pressure using a calibration curve, which is constructed by a partial least squares (PLS) regression analysis using a reference blood pressure and the pulse wave signal. In this paper, we focus on the influence of individual differences from calculated blood pressure based on each calibration curve. In our study, the calculated blood pressure from both the individual and overall calibration curves were compared, and our results show that the calculated blood pressure based on the overall calibration curve had a lower measurement accuracy than that based on an individual calibration curve. We also found that the influence of the individual differences on the calculated blood pressure when using the FBG sensor method were very low. Therefore, the FBG sensor method that we developed for measuring the blood pressure was found to be suitable for use by many people.

  17. Relaxation and turbulence effects on sonic boom signatures

    NASA Technical Reports Server (NTRS)

    Pierce, Allan D.; Sparrow, Victor W.

    1992-01-01

    The rudimentary theory of sonic booms predicts that the pressure signatures received at the ground begin with an abrupt shock, such that the overpressure is nearly abrupt. This discontinuity actually has some structure, and a finite time is required for the waveform to reach its peak value. This portion of the waveform is here termed the rise phase, and it is with this portion that this presentation is primarily concerned. Any time characterizing the duration of the rise phase is loosely called the 'rise time.' Various definitions are used in the literature for this rise time. In the present discussion the rise time can be taken as the time for the waveform to rise from 10 percent of its peak value to 90 percent of its peak value. The available data on sonic booms that appears in the open literature suggests that typical values of shock over-pressure lie in the range of 30 Pa to 200 Pa, typical values of shock duration lie in the range of 150 ms to 250 ms, and typical values of the rise time lie in the range of 1 ms to 5 ms. The understanding of the rise phase of sonic booms is important because the perceived loudness of a shock depends primarily on the structure of the rise phase. A longer rise time typically implies a less loud shock. A primary question is just what physical mechanisms are most important for the determination of the detailed structure of the rise phase.

  18. Femoral venous pressure waveform as indicator of phrenic nerve injury in the setting of second-generation cryoballoon ablation.

    PubMed

    Mugnai, Giacomo; de Asmundis, Carlo; Ströker, Erwin; Hünük, Burak; Moran, Darragh; Ruggiero, Diego; De Regibus, Valentina; Coutino-Moreno, Hugo Enrique; Takarada, Ken; Choudhury, Rajin; Poelaert, Jan; Verborgh, Christian; Brugada, Pedro; Chierchia, Gian-Battista

    2017-07-01

    Femoral venous pressure waveform (VPW) analysis has been recently described as a novel method to assess phrenic nerve function during atrial fibrillation ablation procedures by means of the cryoballoon technique. In this study, we sought to evaluate the feasibility and effectiveness of this technique, with respect to the incidence of phrenic nerve injury (PNI), in comparison with the traditional abdominal palpation technique alone. Consecutive patients undergoing second-generation cryoballoon ablation (CB-A) from June 2014 to June 2015 were retrospectively analyzed. Diagnosis of PNI was made if any reduced motility or paralysis of the hemidiaphragm was detected on fluoroscopy. During the study period, a total of 350 consecutive patients (man 67%, age 57.2 ± 12.9 years) were enrolled (200 using traditional phrenic nerve assessment and 150 using VPW monitoring). The incidence of PNI in the overall population was 8.0% (28/350); of these, eight were impending PNI (2.3%), 14 transient (4.0%), and six persistent (1.7%). Patients having undergone CB-A with traditional assessment experienced 18 phrenic nerve palsies (9.0%) vs two in 'VPW monitoring' group (1.3%; P = 0.002). Specifically, the former presented 12 transient (6.0%) and six persistent (3.0%) phrenic nerve palsies, and the latter exhibited two transient (1.3%; P = 0.03) and no persistent (0%; P = 0.04) phrenic nerve palsies. In conclusion, this novel method assessing the VPW for predicting PNI is inexpensive, easily available, with reproducible measurements, and appears to be more effective than traditional assessment methods.

  19. A fluid-driven earthquake swarm on the margin of the Yellowstone caldera

    USGS Publications Warehouse

    Shelly, David R.; Hill, David P.; Massin, Frederick; Farrell, Jamie; Smith, Robert B.; Taira, Taka'aki

    2013-01-01

    Over the past several decades, the Yellowstone caldera has experienced frequent earthquake swarms and repeated cycles of uplift and subsidence, reflecting dynamic volcanic and tectonic processes. Here, we examine the detailed spatial-temporal evolution of the 2010 Madison Plateau swarm, which occurred near the northwest boundary of the Yellowstone caldera. To fully explore the evolution of the swarm, we integrated procedures for seismic waveform-based earthquake detection with precise double-difference relative relocation. Using cross-correlation of continuous seismic data and waveform templates constructed from cataloged events, we detected and precisely located 8710 earthquakes during the three-week swarm, nearly four times the number of events included in the standard catalog. This high-resolution analysis reveals distinct migration of earthquake activity over the course of the swarm. The swarm initiated abruptly on January 17, 2010 at about 10 km depth and expanded dramatically outward (both shallower and deeper) over time, primarily along a NNW-striking, ~55º ENE-dipping structure. To explain these characteristics, we hypothesize that the swarm was triggered by the rupture of a zone of confined high-pressure aqueous fluids into a pre-existing crustal fault system, prompting release of accumulated stress. The high-pressure fluid injection may have been accommodated by hybrid shear and dilatational failure, as is commonly observed in exhumed hydrothermally affected fault zones. This process has likely occurred repeatedly in Yellowstone as aqueous fluids exsolved from magma migrate into the brittle crust, and it may be a key element in the observed cycles of caldera uplift and subsidence.

  20. Computational Support of 9x7 Wind Tunnel Test of Sonic Boom Models with Plumes

    NASA Technical Reports Server (NTRS)

    Jensen, James C.; Denison, Marie; Durston, Don; Cliff, Susan E.

    2017-01-01

    NASA and its industry partners are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The interaction of the nozzle jet flow with the aircrafts' aft components is typically where the greatest uncertainly in the pressure signature is observed with high-fidelity numerical simulations. An extensive wind tunnel test was conducted in February 2016 in the NASA Ames 9- by 7- Foot Supersonic Wind Tunnel to help address the nozzle jet effects on sonic boom. Five test models with a variety of shock generators of differing waveforms and strengths were tested with a convergent-divergent nozzle for a wide range of nozzle pressure ratios. The LAVA unstructured flow solver was used to generate first CFD comparisons with the new experimental database using best practice meshing and analysis techniques for sonic boom vehicle design for all five different configurations. LAVA was also used to redesign the internal flow path of the nozzle and to better understand the flow field in the test section, both of which significantly improved the quality of the test data.

  1. HEART: an automated beat-to-beat cardiovascular analysis package using Matlab.

    PubMed

    Schroeder, M J Mark J; Perreault, Bill; Ewert, D L Daniel L; Koenig, S C Steven C

    2004-07-01

    A computer program is described for beat-to-beat analysis of cardiovascular parameters from high-fidelity pressure and flow waveforms. The Hemodynamic Estimation and Analysis Research Tool (HEART) is a post-processing analysis software package developed in Matlab that enables scientists and clinicians to document, load, view, calibrate, and analyze experimental data that have been digitally saved in ascii or binary format. Analysis routines include traditional hemodynamic parameter estimates as well as more sophisticated analyses such as lumped arterial model parameter estimation and vascular impedance frequency spectra. Cardiovascular parameter values of all analyzed beats can be viewed and statistically analyzed. An attractive feature of the HEART program is the ability to analyze data with visual quality assurance throughout the process, thus establishing a framework toward which Good Laboratory Practice (GLP) compliance can be obtained. Additionally, the development of HEART on the Matlab platform provides users with the flexibility to adapt or create study specific analysis files according to their specific needs. Copyright 2003 Elsevier Ltd.

  2. Performance Analysis of a JTIDS/Link-16 Type Waveform using 32-ary Orthogonal Signaling with 32 Chip Baseband Waveforms and a Concatenated Code

    DTIC Science & Technology

    2009-12-01

    with 32 chip baseband waveforms such as Walsh functions. Performance with both coherent and noncoherent detection is analyzed. For noncoherent ...detection, only one five bit symbol is transmitted on the I and Q components of the carrier per symbol duration, so the data throughput for noncoherent ...for coherent and noncoherent demodulation, respectively, when 510bP  . Likewise, in an AWGN only environment with a diversity of two, the proposed

  3. Interim Research Performance Report (Contract N00014-11-1-0752, The University of Mississippi)

    DTIC Science & Technology

    2013-06-18

    CONSIDERED • let Nozzle - CiHiic Section Convecging-Diveigiog Nozzle: Design Mach, Alj = 1.74. - Exil Diamcler. I), - 5II.X nun • Pressure Matched...waveform analysis (wavelet based) to study spectral properties a tl •;■ " i 0. ,\\IK",V"is||<s \\£j-r+ru^^ SlUOXK kl NIMM: E3ÜÜ3«. UKC Annual Rait...R.lii« R|! 74 CATALOG OF RUN CONDITIONS l- «(MiHiiivpi -V /- AU",V’».^1K’> t4-. vT.: T,r^4j>- 201» (INK kl Nun « ki’duiluNi IIRC AIUHMI Hii\\i«w

  4. Development of real time monitor system displaying seismic waveform data observed at seafloor seismic network, DONET, for disaster management information

    NASA Astrophysics Data System (ADS)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Takahashi, N.; Sonoda, A.; Miura, S.; Tsuboi, S.

    2014-12-01

    Mega-thrust earthquakes are anticipated to occur in the Nankai Trough in southwest Japan. In the source areas, we have deployed seafloor seismic network, DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis), in 2010 in order to monitor seismicity, crustal deformations, and tsunamis. DONET system consists of totally 20 stations, which is composed of six kinds of sensors, including strong-motion seismometers and quartz pressure gauges. Those stations are densely distributed with an average spatial interval of 15-20 km and cover near the trench axis to coastal areas. Observed data are transferred to a land station through a fiber-optical cable and then to JAMSTEC (Japan Agency for Marine-Earth Science and Technology) data management center through a private network in real time. After 2011 off the Pacific coast of Tohoku Earthquake, each local government close to Nankai Trough try to plan disaster prevention scheme. JAMSTEC will disseminate DONET data combined with research accomplishment so that they will be widely recognized as important earthquake information. In order to open DONET data observed for research to local government, we have developed a web application system, REIS (Real-time Earthquake Information System). REIS is providing seismic waveform data to some local governments close to Nankai Trough as a pilot study. As soon as operation of DONET is ready, REIS will start full-scale operation. REIS can display seismic waveform data of DONET in real-time, users can select strong motion and pressure data, and configure the options of trace view arrangement, time scale, and amplitude. In addition to real-time monitoring, REIS can display past seismic waveform data and show earthquake epicenters on the map. In this presentation, we briefly introduce DONET system and then show our web application system. We also discuss our future plans for further developments of REIS.

  5. Degeneracy of gravitational waveforms in the context of GW150914

    NASA Astrophysics Data System (ADS)

    Creswell, James; Liu, Hao; Jackson, Andrew D.; von Hausegger, Sebastian; Naselsky, Pavel

    2018-03-01

    We study the degeneracy of theoretical gravitational waveforms for binary black hole mergers using an aligned-spin effective-one-body model. After appropriate truncation, bandpassing, and matching, we identify regions in the mass–spin parameter space containing waveforms similar to the template proposed for GW150914, with masses m1 = 36+5‑4 Msolar and m2 = 29+4‑4 Msolar, using the cross-correlation coefficient as a measure of the similarity between waveforms. Remarkably high cross-correlations are found across broad regions of parameter space. The associated uncertanties exceed these from LIGO's Bayesian analysis considerably. We have shown that waveforms with greatly increased masses, such as m1 = 70 Msolar and m2 = 35 Msolar, and strong anti-aligned spins (χ1 = 0.95 and χ2 = ‑0.95) yield almost the same signal-to-noise ratio in the strain data for GW150914.

  6. Simulation of Transient Response of Ir-TES for Position-Sensitive TES with Waveform Domain Multiplexing

    NASA Astrophysics Data System (ADS)

    Minamikawa, Y.; Sato, H.; Mori, F.; Damayanthi, R. M. T.; Takahashi, H.; Ohno, M.

    2008-04-01

    We are developing a new x-ray microcalorimeter based on a superconducting transition edge sensor (TES) as an imaging sensor. Our measurement shows unique waveforms which we consider as an expression of thermal nonuniformity of TES films. This arises from the different thermal responses, so that response signal shapes would vary according to the position of the incident x-ray. This position dependency deteriorate the measured energy resolution, but with appropriate waveform analysis, this would be useful for imaging device. For more inspection, we have developed a simulation code which enables a dynamic simulation to obtain a transient response of the TES by finite differential method. Temperature and electric current distributions are calculated. As a result, we successfully obtained waveform signals. The calculated signal waveforms have similar characteristics to the measured signals. This simulation visualized the transition state of the device and will help to design better detector.

  7. Analysis and demonstration of vibration waveform reconstruction in distributed optical fiber vibration sensing system

    NASA Astrophysics Data System (ADS)

    Zhu, Hui; Shan, Xuekang; Sun, Xiaohan

    2017-10-01

    A method for reconstructing the vibration waveform from the optical time-domain backscattering pulses in the distributed optical fiber sensing system (DOFSS) is proposed, which allows for extracting and recovering the external vibration signal from the tested pulses by analog signal processing, so that can obtain vibration location and waveform simultaneously. We establish the response model of DOFSS to the external vibration and analyze the effects of system parameters on the operational performance. The main parts of the DOFSS are optimized, including delay fiber length and wavelength, to improve the sensitivity of the system. The experimental system is set up and the vibration amplitudes and reconstructed waveforms are fit well with the original driving signal. The experimental results demonstrate that the performance of vibration waveform reconstruction is good with SNR of 15 dB whenever the external vibrations with different intensities and frequencies exert on the sensing fiber.

  8. Extraction of AE events to estimate their b values under a triaxial compressive condition Examination using continuous broadband records

    NASA Astrophysics Data System (ADS)

    Yoneda, N.; Kawakata, H.; Hirano, S.; Yoshimitsu, N.; Takahashi, N.

    2017-12-01

    Seismic b values estimated in previous laboratory compressive tests had been utilized for natural earthquake studies. Randomly sampled enough number of events over a wide magnitude range are essential for accurate b value estimation. In former triaxial tests, PZTs had sensitivity only in a narrow frequency range. In addition, the recording system could not extract all signals because of mask times or threshold setting. Recently, Yoshimitsu et al. (2014) enabled to use broadband transducers under triaxial conditions and achieved to acquire waveforms continuously in several hours. With such a system, they estimated the seismic moment of AE at very small magnitude scale. We expected that their continuous broadband recording system made it possible to record much more AE with a wider magnitude range for credible b value estimation in a laboratory. In this study, we performed a compressive test under a higher confining pressure as an updated experiment of Yoshimitsu et al. (2014) and extracted an enough amount of AE. We prepared an intact cylindrical Westerly Granite sample, 100 mm long by 50 mm in diameter. We conducted a triaxial compressive test under a confining pressure of 50 MPa, at a room temperature with drying conditions. Seven broadband transducers (sensitive range; 100 kHz - 1,000 kHz) were located in different height, respectively. Besides, a PZT was mounted to transmit elastic waves for velocity estimation during the experiment. At first, we increased the confining pressure and then started the loading. We switched the load control method from the axial load control to the circumferential displacement one. After exceeding the peak stress, compressive stress was unloaded with a high speed and the sample was recovered. A potential fault was observed on the recovered sample surface. Waveform recording was continued throughout the test for more than 200 minutes. The result of extracting signals by an STA/LTA ratio method for the waveforms recorded by each transducer, we detected about 2,170,000 signals at the most and about 450,000 at the minimum. Recorded waveforms may also include the elastic waves from the PZT and electrical noises. To find the combination of the signals derived from the same event, we used the largest differences in travel times for all transducer pairs. Finally, we obtained about 450,000 combinations.

  9. Assessment of Gait Characteristics in Total Knee Arthroplasty Patients Using a Hierarchical Partial Least Squares Method.

    PubMed

    Wang, Wei; Ackland, David C; McClelland, Jodie A; Webster, Kate E; Halgamuge, Saman

    2018-01-01

    Quantitative gait analysis is an important tool in objective assessment and management of total knee arthroplasty (TKA) patients. Studies evaluating gait patterns in TKA patients have tended to focus on discrete data such as spatiotemporal information, joint range of motion and peak values of kinematics and kinetics, or consider selected principal components of gait waveforms for analysis. These strategies may not have the capacity to capture small variations in gait patterns associated with each joint across an entire gait cycle, and may ultimately limit the accuracy of gait classification. The aim of this study was to develop an automatic feature extraction method to analyse patterns from high-dimensional autocorrelated gait waveforms. A general linear feature extraction framework was proposed and a hierarchical partial least squares method derived for discriminant analysis of multiple gait waveforms. The effectiveness of this strategy was verified using a dataset of joint angle and ground reaction force waveforms from 43 patients after TKA surgery and 31 healthy control subjects. Compared with principal component analysis and partial least squares methods, the hierarchical partial least squares method achieved generally better classification performance on all possible combinations of waveforms, with the highest classification accuracy . The novel hierarchical partial least squares method proposed is capable of capturing virtually all significant differences between TKA patients and the controls, and provides new insights into data visualization. The proposed framework presents a foundation for more rigorous classification of gait, and may ultimately be used to evaluate the effects of interventions such as surgery and rehabilitation.

  10. Correlation of Electropenetrography Waveforms From Lygus lineolaris (Hemiptera: Miridae) Feeding on Cotton Squares With Chemical Evidence of Inducible Tannins.

    PubMed

    Cervantes, Felix A; Backus, Elaine A; Godfrey, Larry; Wallis, Christopher; Akbar, Waseem; Clark, Thomas L; Rojas, Maria G

    2017-10-01

    Probing behavior of Lygus lineolaris (Palisot de Beauvois) has previously been characterized with electropenetrography (EPG). Cell rupturing (CR) and ingestion (I) EPG waveforms were identified as the two main stylet-probing behaviors by adult L. lineolaris. However, characterization and identification of EPG waveforms are not complete until specific events of a particular waveform are correlated to insect probing. With the use of EPG, histology, microscopy, and chemical analysis, probing behavior of L. lineolaris on pin-head cotton squares was studied. Occurrences of waveforms CR and I were artificially terminated during the EPG recording. Histological samples of probed cotton squares were prepared and analyzed to correlate specific types and occurrences of feeding damage location and plant responses to insect feeding. Both CR and I occurred in the staminal column of the cotton square. Cell rupturing events elicited the production of dark-red deposits seen in histological staining that were demonstrated via chemical analysis to contain condensed tannins. We hypothesize that wounding and saliva secreted during CR triggered release of tannins, because tannin production was positively correlated with the number of probes with single CR events performed by L. lineolaris. Degraded plant tissue and tannins were removed from the staminal column during occurrence of waveform I. These results conclude the process of defining CR and I as probing waveforms performed by L. lineolaris on pin-head cotton squares. These biological definitions will now allow EPG to be used to quantitatively compare L. lineolaris feeding among different plant treatments, with the goal of improving pest management tactics against this pest. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  11. The Waveform Suite: A robust platform for accessing and manipulating seismic waveforms in MATLAB

    NASA Astrophysics Data System (ADS)

    Reyes, C. G.; West, M. E.; McNutt, S. R.

    2009-12-01

    The Waveform Suite, developed at the University of Alaska Geophysical Institute, is an open-source collection of MATLAB classes that provide a means to import, manipulate, display, and share waveform data while ensuring integrity of the data and stability for programs that incorporate them. Data may be imported from a variety of sources, such as Antelope, Winston databases, SAC files, SEISAN, .mat files, or other user-defined file formats. The waveforms being manipulated in MATLAB are isolated from their stored representations, relieving the overlying programs from the responsibility of understanding the specific format in which data is stored or retrieved. The waveform class provides an object oriented framework that simplifies manipulations to waveform data. Playing with data becomes easier because the tedious aspects of data manipulation have been automated. The user is able to change multiple waveforms simultaneously using standard mathematical operators and other syntactically familiar functions. Unlike MATLAB structs or workspace variables, the data stored within waveform class objects are protected from modification, and instead are accessed through standardized functions, such as get and set; these are already familiar to users of MATLAB’s graphical features. This prevents accidental or nonsensical modifications to the data, which in turn simplifies troubleshooting of complex programs. Upgrades to the internal structure of the waveform class are invisible to applications which use it, making maintenance easier. We demonstrate the Waveform Suite’s capabilities on seismic data from Okmok and Redoubt volcanoes. Years of data from Okmok were retrieved from Antelope and Winston databases. Using the Waveform Suite, we built a tremor-location program. Because the program was built on the Waveform Suite, modifying it to operate on real-time data from Redoubt involved only minimal code changes. The utility of the Waveform Suite as a foundation for large developments is demonstrated with the Correlation Toolbox for MATLAB. This mature package contains 50+ codes for carrying out various type of waveform correlation analyses (multiplet analysis, clustering, interferometry, …) This package is greatly strengthened by delegating numerous book-keeping and signal processing tasks to the underlying Waveform Suite. The Waveform Suite’s built-in tools for searching arbitrary directory/file structures is demonstrated with matched video and audio from the recent eruption of Redoubt Volcano. These tools were used to find subsets of photo images corresponding to specific seismic traces. Using Waveform’s audio file routines, matched video and audio were assembled to produce outreach-quality eruption products. The Waveform Suite is not designed as a ready-to-go replacement for more comprehensive packages such as SAC or AH. Rather, it is a suite of classes which provide core time series functionality in a MATLAB environment. It is designed to be a more robust alternative to the numerous ad hoc MATLAB formats that exist. Complex programs may be created upon the Waveform Suite’s framework, while existing programs may be modified to take advantage of the Waveform Suites capabilities.

  12. Improving Free-Piston Stirling Engine Specific Power

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell Henry

    2014-01-01

    This work uses analytical methods to demonstrate the potential benefits of optimizing piston and/or displacer motion in a Stirling Engine. Isothermal analysis was used to show the potential benefits of ideal motion in ideal Stirling engines. Nodal analysis is used to show that ideal piston and displacer waveforms are not optimal in real Stirling engines. Constrained optimization was used to identify piston and displacer waveforms that increase Stirling engine specific power.

  13. Improving Free-Piston Stirling Engine Specific Power

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.

    2015-01-01

    This work uses analytical methods to demonstrate the potential benefits of optimizing piston and/or displacer motion in a Stirling engine. Isothermal analysis was used to show the potential benefits of ideal motion in ideal Stirling engines. Nodal analysis is used to show that ideal piston and displacer waveforms are not optimal in real Stirling engines. Constrained optimization was used to identify piston and displacer waveforms that increase Stirling engine specific power.

  14. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study.

    PubMed

    Pennell, Thomas; Yi, Juneyoung L; Kaufman, Bruce A; Krishnamurthy, Satish

    2016-03-01

    OBJECT Mechanical failure-which is the primary cause of CSF shunt malfunction-is not readily diagnosed, and the specific reasons for mechanical failure are not easily discerned. Prior attempts to measure CSF flow noninvasively have lacked the ability to either quantitatively or qualitatively obtain data. To address these needs, this preliminary study evaluates an ultrasonic transit time flow sensor in pediatric and adult patients with external ventricular drains (EVDs). One goal was to confirm the stated accuracy of the sensor in a clinical setting. A second goal was to observe the sensor's capability to record real-time continuous CSF flow. The final goal was to observe recordings during instances of flow blockage or lack of flow in order to determine the sensor's ability to identify these changes. METHODS A total of 5 pediatric and 11 adult patients who had received EVDs for the treatment of hydrocephalus were studied in a hospital setting. The primary EVD was connected to a secondary study EVD that contained a fluid-filled pressure transducer and an in-line transit time flow sensor. Comparisons were made between the weight of the drainage bag and the flow measured via the sensor in order to confirm its accuracy. Data from the pressure transducer and the flow sensor were recorded continuously at 100 Hz for a period of 24 hours by a data acquisition system, while the hourly CSF flow into the drip chamber was recorded manually. Changes in the patient's neurological status and their time points were noted. RESULTS The flow sensor demonstrated a proven accuracy of ± 15% or ± 2 ml/hr. The flow sensor allowed real-time continuous flow waveform data recordings. Dynamic analysis of CSF flow waveforms allowed the calculation of the pressure-volume index. Lastly, the sensor was able to diagnose a blocked catheter and distinguish between the blockage and lack of flow. CONCLUSIONS The Transonic flow sensor accurately measures CSF output within ± 15% or ± 2 ml/hr, diagnoses the blockage or lack of flow, and records real-time continuous flow data in patients with EVDs. Calculations of a wide variety of diagnostic parameters can be made from the waveform recordings, including resistance and compliance of the ventricular catheters and the compliance of the brain. The sensor's clinical applications may be of particular importance to the noninvasive diagnosis of shunt malfunctions with the development of an implantable device.

  15. Global and local waveform simulations using the VERCE platform

    NASA Astrophysics Data System (ADS)

    Garth, Thomas; Saleh, Rafiq; Spinuso, Alessandro; Gemund, Andre; Casarotti, Emanuele; Magnoni, Federica; Krischner, Lion; Igel, Heiner; Schlichtweg, Horst; Frank, Anton; Michelini, Alberto; Vilotte, Jean-Pierre; Rietbrock, Andreas

    2017-04-01

    In recent years the potential to increase resolution of seismic imaging by full waveform inversion has been demonstrated on a range of scales from basin to continental scales. These techniques rely on harnessing the computational power of large supercomputers, and running large parallel codes to simulate the seismic wave field in a three-dimensional geological setting. The VERCE platform is designed to make these full waveform techniques accessible to a far wider spectrum of the seismological community. The platform supports the two widely used spectral element simulation programs SPECFEM3D Cartesian, and SPECFEM3D globe, allowing users to run a wide range of simulations. In the SPECFEM3D Cartesian implementation the user can run waveform simulations on a range of pre-loaded meshes and velocity models for specific areas, or upload their own velocity model and mesh. In the new SPECFEM3D globe implementation, the user will be able to select from a number of continent scale model regions, or perform waveform simulations for the whole earth. Earthquake focal mechanisms can be downloaded within the platform, for example from the GCMT catalogue, or users can upload their own focal mechanism catalogue through the platform. The simulations can be run on a range of European supercomputers in the PRACE network. Once a job has been submitted and run through the platform, the simulated waveforms can be manipulated or downloaded for further analysis. The misfit between the simulated and recorded waveforms can then be calculated through the platform through three interoperable workflows, for raw-data access (FDSN) and caching, pre-processing and finally misfit. The last workflow makes use of the Pyflex analysis software. In addition, the VERCE platform can be used to produce animations of waveform propagation through the velocity model, and synthetic shakemaps. All these data-products are made discoverable and re-usable thanks to the VERCE data and metadata management layer. We demonstrate the functionality of the VERCE platform with two use cases, one using the pre-loaded velocity model and mesh for the Maule area of Chile using the SPECFEM3D Cartesian workflow, and one showing the output of a global simulation using the SPECFEM3D globe workflow. It is envisioned that this tool will allow a much greater range of seismologists to access these full waveform inversion tools, and aid full waveform tomographic and source inversion, synthetic shakemap production and other full waveform applications, in a wide range of tectonic settings.

  16. Robust MOE Detector for DS-CDMA Systems with Signature Waveform Mismatch

    NASA Astrophysics Data System (ADS)

    Lin, Tsui-Tsai

    In this letter, a decision-directed MOE detector with excellent robustness against signature waveform mismatch is proposed for DS-CDMA systems. Both the theoretic analysis and computer simulation results demonstrate that the proposed detector can provide better SINR performance than that of conventional detectors.

  17. The compression and expansion waves of the forward and backward flows: an in-vitro arterial model.

    PubMed

    Feng, J; Khir, A W

    2008-05-01

    Although the propagation of arterial waves of forward flows has been studied before, that of backward flows has not been thoroughly investigated. The aim of this research is to investigate the propagation of the compression and expansion waves of backward flows in terms of wave speed and dissipation, in flexible tubes. The aim is also to compare the propagation of these waves with those of forward flows. A piston pump generated a flow waveform in the shape of approximately half-sinusoid, in flexible tubes (12 mm and 16 mm diameter). The pump produced flow in either the forward or the backward direction by moving the piston forward, in a 'pushing action' or backward, in a 'pulling action', using a graphite brushes d.c. motor. Pressure and flow were measured at intervals of 5 cm along each tube and wave speed was determined using the PU-loop method. The simultaneous measurements of diameter were also taken at the same position of the pressure and flow in the 16 mm tube. Wave intensity analysis was used to determine the magnitude of the pressure and velocity waveforms and wave intensity in the forward and backward directions. Under the same initial experimental conditions, wave speed was higher during the pulling action (backward flow) than during the pushing action (forward flow). The amplitudes of pressure and velocity in the pulling action were significantly higher than those in the pushing action. The tube diameter was approximately 20 per cent smaller in the pulling action than in the pushing action in the 16 mm tube. The compression and expansion waves resulting from the pushing and pulling actions dissipated exponentially along the travelling distance, and their dissipation was greater in the smaller than in the larger tubes. Local wave speed in flexible tubes is flow direction- and wave nature-dependent and is greater with expansion than with compression waves. Wave dissipation has an inverse relationship with the vessel diameter, and dissipation of the expansion wave of the pulling action was greater than that of the pushing action.

  18. Simulation Analysis of DC and Switching Impulse Superposition Circuit

    NASA Astrophysics Data System (ADS)

    Zhang, Chenmeng; Xie, Shijun; Zhang, Yu; Mao, Yuxiang

    2018-03-01

    Surge capacitors running between the natural bus and the ground are affected by DC and impulse superposition voltage during operation in the converter station. This paper analyses the simulation aging circuit of surge capacitors by PSCAD electromagnetic transient simulation software. This paper also analyses the effect of the DC voltage to the waveform of the impulse voltage generation. The effect of coupling capacitor to the test voltage waveform is also studied. Testing results prove that the DC voltage has little effect on the waveform of the output of the surge voltage generator, and the value of the coupling capacitor has little effect on the voltage waveform of the sample. Simulation results show that surge capacitor DC and impulse superimposed aging test is feasible.

  19. A simple computer-based measurement and analysis system of pulmonary auscultation sounds.

    PubMed

    Polat, Hüseyin; Güler, Inan

    2004-12-01

    Listening to various lung sounds has proven to be an important diagnostic tool for detecting and monitoring certain types of lung diseases. In this study a computer-based system has been designed for easy measurement and analysis of lung sound using the software package DasyLAB. The designed system presents the following features: it is able to digitally record the lung sounds which are captured with an electronic stethoscope plugged to a sound card on a portable computer, display the lung sound waveform for auscultation sites, record the lung sound into the ASCII format, acoustically reproduce the lung sound, edit and print the sound waveforms, display its time-expanded waveform, compute the Fast Fourier Transform (FFT), and display the power spectrum and spectrogram.

  20. Evaluation of Physiologically-Based Artificial Neural Network Models to Detect Operator Workload in Remotely Piloted Aircraft Operations

    DTIC Science & Technology

    2016-07-13

    to a computer via Bluetooth . Respiration is captured as a breathing waveform signal using a capacitive pressure sensor, sampled at 18 Hz. The...dropouts in the Bluetooth signal and artifacts caused by body movement. Workload models. Four artificial neural network models were created using

  1. Direct measurement of capillary blood pressure in the human lip

    NASA Technical Reports Server (NTRS)

    Parazynski, S. E.; Tucker, B. J.; Aratow, M.; Crenshaw, A.; Hargens, A. R.

    1993-01-01

    In this study, we developed and tested a new procedure for measuring microcirculatory blood pressures above heart level in humans. Capillary and postcapillary venule blood pressures were measured directly in 13 human subjects by use of the servonulling micropressure technique adapted for micropuncture of lip capillaries. Pressure waveforms were recorded in 40 separate capillary vessels and 14 separate postcapillary venules over periods ranging from 5 to 64 s. Localization and determination of capillary and postcapillary vessels were ascertained anatomically before pressure measurements. Capillary pressure was 33.2 +/- 1.5 (SE) mm Hg in lips of subjects seated upright. Repeated micropunctures of the same vessel gave an average coefficient of variation of 0.072. Postcapillary venule pressure was 18.9 +/- 1.6 mm Hg. This procedure produces a direct and reproducible means of measuring microvascular blood pressures in a vascular bed above heart level in humans.

  2. Efficiency Analysis of Waveform Shape for Electrical Excitation of Nerve Fibers

    PubMed Central

    Wongsarnpigoon, Amorn; Woock, John P.; Grill, Warren M.

    2011-01-01

    Stimulation efficiency is an important consideration in the stimulation parameters of implantable neural stimulators. The objective of this study was to analyze the effects of waveform shape and duration on the charge, power, and energy efficiency of neural stimulation. Using a population model of mammalian axons and in vivo experiments on cat sciatic nerve, we analyzed the stimulation efficiency of four waveform shapes: square, rising exponential, decaying exponential, and rising ramp. No waveform was simultaneously energy-, charge-, and power-optimal, and differences in efficiency among waveform shapes varied with pulse width (PW) For short PWs (≤ 0.1 ms), square waveforms were no less energy-efficient than exponential waveforms, and the most charge-efficient shape was the ramp. For long PWs (≥0.5 ms), the square was the least energy-efficient and charge-efficient shape, but across most PWs, the square was the most power-efficient shape. Rising exponentials provided no practical gains in efficiency over the other shapes, and our results refute previous claims that the rising exponential is the energy-optimal shape. An improved understanding of how stimulation parameters affect stimulation efficiency will help improve the design and programming of implantable stimulators to minimize tissue damage and extend battery life. PMID:20388602

  3. Time-lapse seismic waveform modelling and attribute analysis using hydromechanical models for a deep reservoir undergoing depletion

    NASA Astrophysics Data System (ADS)

    He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.

    2016-04-01

    Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and reservoir units. More importantly, the results from this study indicate that integrated seismic and hydromechanical modelling can help constrain time-lapse uncertainty and hence reduce risk due to fluid extraction and injection.

  4. The shift-invariant discrete wavelet transform and application to speech waveform analysis.

    PubMed

    Enders, Jörg; Geng, Weihua; Li, Peijun; Frazier, Michael W; Scholl, David J

    2005-04-01

    The discrete wavelet transform may be used as a signal-processing tool for visualization and analysis of nonstationary, time-sampled waveforms. The highly desirable property of shift invariance can be obtained at the cost of a moderate increase in computational complexity, and accepting a least-squares inverse (pseudoinverse) in place of a true inverse. A new algorithm for the pseudoinverse of the shift-invariant transform that is easier to implement in array-oriented scripting languages than existing algorithms is presented together with self-contained proofs. Representing only one of the many and varied potential applications, a recorded speech waveform illustrates the benefits of shift invariance with pseudoinvertibility. Visualization shows the glottal modulation of vowel formants and frication noise, revealing secondary glottal pulses and other waveform irregularities. Additionally, performing sound waveform editing operations (i.e., cutting and pasting sections) on the shift-invariant wavelet representation automatically produces quiet, click-free section boundaries in the resulting sound. The capabilities of this wavelet-domain editing technique are demonstrated by changing the rate of a recorded spoken word. Individual pitch periods are repeated to obtain a half-speed result, and alternate individual pitch periods are removed to obtain a double-speed result. The original pitch and formant frequencies are preserved. In informal listening tests, the results are clear and understandable.

  5. The shift-invariant discrete wavelet transform and application to speech waveform analysis

    NASA Astrophysics Data System (ADS)

    Enders, Jörg; Geng, Weihua; Li, Peijun; Frazier, Michael W.; Scholl, David J.

    2005-04-01

    The discrete wavelet transform may be used as a signal-processing tool for visualization and analysis of nonstationary, time-sampled waveforms. The highly desirable property of shift invariance can be obtained at the cost of a moderate increase in computational complexity, and accepting a least-squares inverse (pseudoinverse) in place of a true inverse. A new algorithm for the pseudoinverse of the shift-invariant transform that is easier to implement in array-oriented scripting languages than existing algorithms is presented together with self-contained proofs. Representing only one of the many and varied potential applications, a recorded speech waveform illustrates the benefits of shift invariance with pseudoinvertibility. Visualization shows the glottal modulation of vowel formants and frication noise, revealing secondary glottal pulses and other waveform irregularities. Additionally, performing sound waveform editing operations (i.e., cutting and pasting sections) on the shift-invariant wavelet representation automatically produces quiet, click-free section boundaries in the resulting sound. The capabilities of this wavelet-domain editing technique are demonstrated by changing the rate of a recorded spoken word. Individual pitch periods are repeated to obtain a half-speed result, and alternate individual pitch periods are removed to obtain a double-speed result. The original pitch and formant frequencies are preserved. In informal listening tests, the results are clear and understandable. .

  6. Loss of pulse pressure amplification between the ascending and descending aorta in patients after an aortic arch repair.

    PubMed

    Murakami, Tomoaki; Shiraishi, Masahiro; Nawa, Tomohiro; Takeda, Atsuhito

    2017-03-01

    One of the most important problems in patients with an aortic coarctation after an aortic arch repair is future cardiovascular disease. We previously reported the enhancement of the aortic pressure wave reflection in patients and hypothesized that the enhancement was caused by a new pressure wave reflection generated from the repaired site. To prove the hypothesis, we analyzed the pressure waveform in the ascending and descending aorta and examined their pulse pressure (PP) amplification. Fifteen patients after an aortic arch repair without a recoarctation were enrolled. The ascending and descending aorta pressure waveforms were recorded by a pressure sensor mounted catheter. The pressures were compared with those of age-matched controls. The patient's age was 7.3 ± 2.7 years, and they underwent the aortic arch repair at 30.1 ± 29.0 days. The ascending aorta SBP (106.1 ± 12.7 mmHg) was higher than in the control patients (97.9 ± 14.3) (P = 0.015). The PP at the ascending aorta in the patients (41.3 ± 7.8) was wider than that in the controls (36.4 ± 5.0) (P = 0.010). There was no difference concerning the PP at the descending aorta between the patients (41.0 ± 7.7) and controls (40.5 ± 6.5). The difference in the PP between the descending and ascending aorta (PP at the descending aorta - PP at the ascending aorta) in the patients was -0.3 ± 1.7 and 5.1 ± 2.9 in the controls (P < 0.0001). The ascending aortic PP was augmented in the patients after the aortic arch repair. It could be one of the causes of future cardiovascular disease.

  7. Index of cerebrospinal compensatory reserve in hydrocephalus.

    PubMed

    Kim, Dong-Joo; Czosnyka, Zofia; Keong, Nicole; Radolovich, Danila K; Smielewski, Peter; Sutcliffe, Michael P F; Pickard, John D; Czosnyka, Marek

    2009-03-01

    An index of cerebrospinal compensatory reserve (RAP) has been introduced as a potential descriptor of neurological deterioration after head trauma. It is numerically computed as a linear correlation coefficient between the mean intracranial pressure and the pulse amplitude of the pressure waveform. We explore how RAP varies with different forms of physiological or nonphysiological intracranial volume loads in adult hydrocephalus, with and without a functioning cerebrospinal fluid (CSF) shunt. A database of intracranial pressure recordings during CSF infusion studies and overnight monitoring in hydrocephalic patients was reviewed for clinical comparison of homogeneous subgroups of patients with hypothetical differences of pressure-volume compensatory reserve. The database includes 980 patients of mixed etiology: idiopathic normal pressure hydrocephalus (NPH), 47%; postsubarachnoid hemorrhage NPH, 12%; noncommunicating hydrocephalus, 22%; others, 19%. All CSF compensatory parameters were calculated by using intracranial pressure waveforms. In NPH, RAP correlated strongly with the resistance to CSF outflow (r(s) = 0.35; P = 0.045), but weakly correlated with ventriculomegaly (r(s) = 0.13; P = 0.41). In idiopathic nonshunted NPH patients, RAP did not correlate significantly with elasticity calculated from the CSF infusion test (r(s) = 0.11; P = 0.21). During infusion studies, RAP increased in comparison to values recorded at baseline (from a median of 0.45-0.86, P = 0.14 * 10(-8)), indicating a narrowing of the volume-pressure compensatory reserve. During B-waves associated with the REM (rapid eye movement) phase of sleep, RAP increased from a median of 0.53 to 0.89; P = 1.2 * 10(-5). After shunting, RAP decreased (median before shunting, 0.59; median after shunting, 0.34; P = 0.0001). RAP also showed the ability to reflect the functional state of the shunt (patent shunt median, 0.36; blocked shunt median, 0.84; P = 0.0002). RAP appears to characterize pressure-volume compensatory reserve in patients with hydrocephalus.

  8. Topographic effects on infrasound propagation.

    PubMed

    McKenna, Mihan H; Gibson, Robert G; Walker, Bob E; McKenna, Jason; Winslow, Nathan W; Kofford, Aaron S

    2012-01-01

    Infrasound data were collected using portable arrays in a region of variable terrain elevation to quantify the effects of topography on observed signal amplitude and waveform features at distances less than 25 km from partially contained explosive sources during the Frozen Rock Experiment (FRE) in 2006. Observed infrasound signals varied in amplitude and waveform complexity, indicating propagation effects that are due in part to repeated local maxima and minima in the topography on the scale of the dominant wavelengths of the observed data. Numerical simulations using an empirically derived pressure source function combining published FRE accelerometer data and historical data from Project ESSEX, a time-domain parabolic equation model that accounted for local terrain elevation through terrain-masking, and local meteorological atmospheric profiles were able to explain some but not all of the observed signal features. Specifically, the simulations matched the timing of the observed infrasound signals but underestimated the waveform amplitude observed behind terrain features, suggesting complex scattering and absorption of energy associated with variable topography influences infrasonic energy more than previously observed. © 2012 Acoustical Society of America.

  9. Carrier-envelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses.

    PubMed

    Ishii, Nobuhisa; Kaneshima, Keisuke; Kitano, Kenta; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro

    2014-01-01

    High harmonic generation (HHG) using waveform-controlled, few-cycle pulses from Ti:sapphire lasers has opened emerging researches in strong-field and attosecond physics. However, the maximum photon energy of attosecond pulses via HHG remains limited to the extreme ultraviolet region. Long-wavelength light sources with carrier-envelope phase stabilization are promising to extend the photon energy of attosecond pulses into the soft X-ray region. Here we demonstrate carrier-envelope phase-dependent HHG in the water window using sub-two-cycle optical pulses at 1,600 nm. Experimental and simulated results indicate the confinement of soft X-ray emission in a single recombination event with a bandwidth of 75 eV around the carbon K edge. Control of high harmonics by the waveform of few-cycle infrared pulses is a key milestone to generate soft X-ray attosecond pulses. We measure a dependence of half-cycle bursts on the gas pressure, which indicates subcycle deformation of the waveform of the infrared drive pulses in the HHG process.

  10. Carrier-envelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses

    PubMed Central

    Ishii, Nobuhisa; Kaneshima, Keisuke; Kitano, Kenta; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro

    2014-01-01

    High harmonic generation (HHG) using waveform-controlled, few-cycle pulses from Ti:sapphire lasers has opened emerging researches in strong-field and attosecond physics. However, the maximum photon energy of attosecond pulses via HHG remains limited to the extreme ultraviolet region. Long-wavelength light sources with carrier-envelope phase stabilization are promising to extend the photon energy of attosecond pulses into the soft X-ray region. Here we demonstrate carrier-envelope phase-dependent HHG in the water window using sub-two-cycle optical pulses at 1,600 nm. Experimental and simulated results indicate the confinement of soft X-ray emission in a single recombination event with a bandwidth of 75 eV around the carbon K edge. Control of high harmonics by the waveform of few-cycle infrared pulses is a key milestone to generate soft X-ray attosecond pulses. We measure a dependence of half-cycle bursts on the gas pressure, which indicates subcycle deformation of the waveform of the infrared drive pulses in the HHG process. PMID:24535006

  11. Evaluation of the Circulatory Dynamics by using the Windkessel Model in Different Body Positions

    NASA Astrophysics Data System (ADS)

    Kotani, Kiyoshi; Iida, Fumiaki; Ogawa, Yutaro; Takamasu, Kiyoshi; Jimbo, Yasuhiko

    Autonomic nervous system is important in maintaining homeostasis by the opposing effects of sympathetic and parasympathetic nervous activity on organs. However, it is known that they are at times simultaneously increased or decreased in cases of strong fear or depression. Therefore, it is required to evaluate sympathetic and parasympathetic nervous activity independently. In this paper, we propose a method to evaluate sympathetic nervous activity by analyzing the decreases in blood pressure by utilizing the Windkessel model. Experiments are performed in sitting and standing positions for 380 s, respectively. First, we evaluate the effects of length for analysis on the Windkessel time constant. We shorten the length for analysis by multiplying constant coefficients (1.0, 0.9, and 0.8) to the length of blood pressure decrease and then cut-out the waveform for analysis. Then it is found that the Windkessel time constant is decreased as the length for analysis is shortened. This indicates that the length for analysis should be matched when the different experiments are compared. Second, we compare the Windkessel time constant of sitting to that of standing by matching their length for analysis. With statistically significant difference (P<0.05) the results indicate that the Windkessel time constant is larger in the sitting position. Through our observations this difference in the Windkessel time constant is caused by sympathetic nervous activity on vascular smooth muscle.

  12. Evaluation of nitroglycerin effect on remote photoplethysmogram waveform acquired at green and near infra-red illumination

    NASA Astrophysics Data System (ADS)

    Marcinkevics, Z.; Rubins, U.; Caica, A.; Grabovskis, A.

    2017-12-01

    Assessment of skin microcirculation provides diagnostically valuable information during the early stages of pathologies. The simple, cost-effective and intrusive alternative to existing circulation assessment methods is remote photoplethysmography (rPPG). The objective of the present pilot study was to reveal an effect on sublingual administration of 1 mg nitroglycerin on systemic hemodynamic parameters and rPPG waveforms, at 810 nm and 530nm illumination. The protocol comprised 3 minutes of baseline recording, 15 minutes recording of NTG effect, 2 minutes of arterial occlusion and the following 3 min reactive hyperemia. Two PPG signals were acquired from glabrous skin of the middle finger distal phalange, consecutively at 530 nm and 810nm, 125 fps per channel, and systemic cardiovascular parameters were continuously registered in a beat-to-beat manner with a Finameter-midi system. The NTG effect was observed 0.7- 1.2 minutes post administration, reaching its maximum after 3 minutes. Systemic cardiovascular parameters significantly changed: mean arterial pressure decreased by 7.7+/-3.6%, total peripheral resistance by 10.5+/-9.0%, whereas the heart rate increased by 27.2+/-11.8%. Substantial alterations were observed for rPPG waveforms during NTG effect, decreasing reflection and stiffness indices. It has been concluded that rPPG waveform may provide information related to arterial stiffness, and could be potentially utilized in the clinics.

  13. Small-area low-power heart condition monitoring system using dual-mode SAR-ADC for low-cost wearable healthcare systems.

    PubMed

    Shin, Young-San; Wee, Jae-Kyung; Song, Inchae; Lee, Seongsoo

    2015-01-01

    Heart rate monitoring is useful to detect many cardiovascular diseases. It can be implemented in a small device with low power consumption, and it can exploit low-cost piezoelectric pressure sensors to measure heart rate. However, it is also desirable to transmit heartbeat waveform for emergency treatment, which significantly increases transmission power. In this paper, a low-cost wireless heart condition monitoring SoC is proposed. It can monitor and transmit both heart rate and heartbeat waveform, but the hardware is extremely simplified to achieve in a small package. By slight modification of successive-approximation analog-digital converter, it can count heart rate and read out heartbeat waveform with the same hardware. In the normal mode, only an 8-bit heart rate is transmitted for power reduction. If the heart rate is out of a given range, it goes to the emergency mode and a 10-bit heartbeat waveform is transmitted for fast treatment. The fabricated chip size is 1.1 mm2 in 0.11 μ m CMOS technology, including the radio-frequency transmitter. The measured power consumption is 161.8 μ W in normal mode and 507.3 μ W in emergency mode, respectively. The proposed SoC achieves low-cost, small area, and low-power. It is useful as part of a disposable healthcare system.

  14. Design of a specialized computer for on-line monitoring of cardiac stroke volume

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Gebben, V. D.

    1972-01-01

    The design of a specialized analog computer for on-line determination of cardiac stroke volume by means of a modified version of the pressure pulse contour method is presented. The design consists of an analog circuit for computation and a timing circuit for detecting necessary events on the pressure waveform. Readouts of arterial pressures, systolic duration, heart rate, percent change in stroke volume, and percent change in cardiac output are provided for monitoring cardiac patients. Laboratory results showed that computational accuracy was within 3 percent, while animal experiments verified the operational capability of the computer. Patient safety considerations are also discussed.

  15. Spectral analysis of femoral artery blood flow waveforms of conscious domestic cats.

    PubMed

    dos Reis, Gisele F M; Nogueira, Rodrigo B; Silva, Adriana C; Oberlender, Guilherme; Muzzi, Ruthnéa A L; Mantovani, Matheus M

    2014-12-01

    The qualitative and quantitative aspects of femoral artery blood flow waveform spectra were evaluated in 15 male and 15 female Persian and mixed breed domestic cats (Felis catus), which were healthy and not sedated, using duplex Doppler ultrasonography (DDU). Spectral Doppler demonstrated a biphasic characteristic in 16 (53.34%) of the animals evaluated, and a triphasic characteristic in the 14 (46.66%) remaining animals. The systolic blood pressure and heart rate values were within the normal range for the species. The quantitative parameters evaluated, based on the spectral Doppler, were as follows: systolic velocity peak (SVP), recent diastolic velocity peak (RDVP), end diastolic velocity peak (EDVP), mean velocity (MV), integral velocity time (ITV), artery diameter (AD), femoral flow volume (FFV), pulsatility index (PI), resistive index (RI), systolic peak acceleration time (AT) and deceleration time (DT). The respective mean values were: 36.41 ± 7.33 cm/s, 4.69 ± 0.90 cm/s, 10.74 ± 2.74 cm/s, 23.06 ± 4.86 cm/s, 3.91 ± 1.05 cm, 0.17 ± 0.04 cm, 0.11 ± 0.08 cm(3), 3.85 ± 0.19, 1.40 ± 0.20, 39.84 ± 7.38 ms, and 114.0 ± 22.15 ms. No significant differences were found between males and females. The analyses carried out on the femoral artery flow spectrum obtained by DDU showed that it is easy to use and highly tolerated in non-sedated, healthy cats. It appears that DDU may be a useful diagnostic technique, but further studies are needed to evaluate how it compares with invasive telemetric methodology or high-definition oscillometric waveform analytic techniques. © ISFM and AAFP 2014.

  16. Detection of Delamination in Composite Beams Using Broadband Acoustic Emission Signatures

    NASA Technical Reports Server (NTRS)

    Okafor, A. C.; Chandrashekhara, K.; Jiang, Y. P.

    1996-01-01

    Delamination in composite structure may be caused by imperfections introduced during the manufacturing process or by impact loads by foreign objects during the operational life. There are some nondestructive evaluation methods to detect delamination in composite structures such as x-radiography, ultrasonic testing, and thermal/infrared inspection. These methods are expensive and hard to use for on line detection. Acoustic emission testing can monitor the material under test even under the presence of noise generated under load. It has been used extensively in proof-testing of fiberglass pressure vessels and beams. In the present work, experimental studies are conducted to investigate the use of broadband acoustic emission signatures to detect delaminations in composite beams. Glass/epoxy beam specimens with full width, prescribed delamination sizes of 2 inches and 4 inches are investigated. The prescribed delamination is produced by inserting Teflon film between laminae during the fabrication of composite laminate. The objectives of this research is to develop a method for predicting delamination size and location in laminated composite beams by combining smart materials concept and broadband AE analysis techniques. More specifically, a piezoceramic (PZT) patch is bonded on the surface of composite beams and used as a pulser. The piezoceramic patch simulates the AE wave source as a 3 cycles, 50KHz, burst sine wave. One broadband AE sensor is fixed near the PZT patch to measure the AE wave near the AE source. A second broadband AE sensor, which is used as a receiver, is scanned along the composite beams at 0.25 inch step to measure propagation of AE wave along the composite beams. The acquired AE waveform is digitized and processed. Signal strength, signal energy, cross-correlation of AE waveforms, and tracking of specific cycle of AE waveforms are used to detect delamination size and location.

  17. Development of a compact, sealless, tripod supported, magnetically driven centrifugal blood pump.

    PubMed

    Yuhki, A; Nogawa, M; Takatani, S

    2000-06-01

    In this study, a tripod supported sealless centrifugal blood pump was designed and fabricated for implantable application using a specially designed DC brushless motor. The tripod structure consists of 3 ceramic balls mounted at the bottom surface of the impeller moving in a polyethylene groove incorporated at the bottom pump casing. The follower magnet inside the impeller is coupled to the driver magnet of the motor outside the bottom pump casing, thus allowing the impeller to slide-rotate in the polyethylene groove as the motor turns. The pump driver has a weight of 230 g and a diameter of 60 mm. The acrylic pump housing has a weight of 220 g with the priming volume of 25 ml. At the pump rpm of 1,000 to 2,200, the generated head pressure ranged from 30 to 150 mm Hg with the maximum system efficiency being 12%. When the prototype pump was used in the pulsatile mock loop to assist the ventricle from its apex to the aorta, a strong correlation was obtained between the motor current and bypass flow waveforms. The waveform deformation index (WDI), defined as the ratio of the fundamental to the higher order harmonics of the motor current power spectral density, was computed to possibly detect the suction occurring inside the ventricle due to the prototype centrifugal pump. When the WDI was kept under the value of 0.20 by adjusting the motor rpm, it was successful in suppressing the suction due to the centrifugal pump in the ventricle. The prototype sealless, centrifugal pump together with the control method based on the motor current waveform analysis may offer an intermediate support of the failing left or right ventricle bridging to heart transplantation.

  18. Estimating Extracellular Spike Waveforms from CA1 Pyramidal Cells with Multichannel Electrodes

    PubMed Central

    Molden, Sturla; Moldestad, Olve; Storm, Johan F.

    2013-01-01

    Extracellular (EC) recordings of action potentials from the intact brain are embedded in background voltage fluctuations known as the “local field potential” (LFP). In order to use EC spike recordings for studying biophysical properties of neurons, the spike waveforms must be separated from the LFP. Linear low-pass and high-pass filters are usually insufficient to separate spike waveforms from LFP, because they have overlapping frequency bands. Broad-band recordings of LFP and spikes were obtained with a 16-channel laminar electrode array (silicone probe). We developed an algorithm whereby local LFP signals from spike-containing channel were modeled using locally weighted polynomial regression analysis of adjoining channels without spikes. The modeled LFP signal was subtracted from the recording to estimate the embedded spike waveforms. We tested the method both on defined spike waveforms added to LFP recordings, and on in vivo-recorded extracellular spikes from hippocampal CA1 pyramidal cells in anaesthetized mice. We show that the algorithm can correctly extract the spike waveforms embedded in the LFP. In contrast, traditional high-pass filters failed to recover correct spike shapes, albeit produceing smaller standard errors. We found that high-pass RC or 2-pole Butterworth filters with cut-off frequencies below 12.5 Hz, are required to retrieve waveforms comparable to our method. The method was also compared to spike-triggered averages of the broad-band signal, and yielded waveforms with smaller standard errors and less distortion before and after the spike. PMID:24391714

  19. Surface atrial frequency analysis in patients with atrial fibrillation: a tool for evaluating the effects of intervention.

    PubMed

    Raine, Dan; Langley, Philip; Murray, Alan; Dunuwille, Asunga; Bourke, John P

    2004-09-01

    The aims of this study were to evaluate (1) principal component analysis as a technique for extracting the atrial signal waveform from the standard 12-lead ECG and (2) its ability to distinguish changes in atrial fibrillation (AF) frequency parameters over time and in response to pharmacologic manipulation using drugs with different effects on atrial electrophysiology. Twenty patients with persistent AF were studied. Continuous 12-lead Holter ECGs were recorded for 60 minutes, first, in the drug-free state. Mean and variability of atrial waveform frequency were measured using an automated computer technique. This extracted the atrial signal by principal component analysis and identified the main frequency component using Fourier analysis. Patients were then allotted sequentially to receive 1 of 4 drugs intravenously (amiodarone, flecainide, sotalol, or metoprolol), and changes induced in mean and variability of atrial waveform frequency measured. Mean and variability of atrial waveform frequency did not differ within patients between the two 30-minute sections of the drug-free state. As hypothesized, significant changes in mean and variability of atrial waveform frequency were detected after manipulation with amiodarone (mean: 5.77 vs 4.86 Hz; variability: 0.55 vs 0.31 Hz), flecainide (mean: 5.33 vs 4.72 Hz; variability: 0.71 vs 0.31 Hz), and sotalol (mean: 5.94 vs 4.90 Hz; variability: 0.73 vs 0.40 Hz) but not with metoprolol (mean: 5.41 vs 5.17 Hz; variability: 0.81 vs 0.82 Hz). A technique for continuously analyzing atrial frequency characteristics of AF from the surface ECG has been developed and validated.

  20. Nonlinear reflection of a spherically divergent N-wave from a plane surface: Optical interferometry measurements in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karzova, M., E-mail: masha@acs366.phys.msu.ru; Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow; Yuldashev, P.

    2015-10-28

    Mach stem is a well-known structure typically observed in the process of strong (acoustic Mach numbers greater than 0.4) step-shock waves reflection from a rigid boundary. However, this phenomenon has been much less studied for weak shocks in nonlinear acoustic fields where Mach numbers are in the range from 0.001 to 0.01 and pressure waveforms have more complicated waveforms than step shocks. The goal of this work was to demonstrate experimentally how nonlinear reflection occurs in air for very weak spherically divergent acoustic spark-generated pulses resembling an N-wave. Measurements of reflection patterns were performed using a Mach-Zehnder interferometer. A thinmore » laser beam with sub-millimeter cross-section was used to obtain the time resolution of 0.4 µs, which is 6 times higher than the time resolution of the condenser microphones. Pressure waveforms were reconstructed using the inverse Abel transform applied to the phase of the signal measured by the interferometer. The Mach stem formation was observed experimentally as a result of collision of the incident and reflected shock pulses. It was shown that irregular reflection of the pulse occurred in a dynamic way and the length of the Mach stem increased linearly while the pulse propagated along the surface. Since the front shock of the spark-generated pulse was steeper than the rear shock, irregular type of reflection was observed only for the front shock of the pulse while the rear shock reflection occurred in a regular regime.« less

  1. An Ultrasonic Frequency Sweep Interferometer For Sound Speed Measurements On Liquids At High Temperature And Pressure

    NASA Astrophysics Data System (ADS)

    Ai, Y.; Lange, R. A.

    2003-12-01

    One of the most direct methods for obtaining melt compressibility is through measurements of sound speed via acoustic interferometry. This technique may be applied to silicate melts by either varying the path length or the frequency of the acoustic wave through the melt. To date, only the variable path length (VPL) technique has been applied, which restricts measurements to atmospheric pressure owing to the requirement of mechanical movement of the upper buffer rod. This, in turn, precludes the study of volatile-bearing liquids at pressure and a systematic study of how melt compressibility varies with pressure. We have developed a frequency sweep (FS) interferometer that can be applied at high pressure, which is based on frequency spectrum analysis on mirror reflection waves from high-temperature liquids. First, a theoretical acoustic model for a rod-liquid-rod (RLR) interferometer is proposed and solutions to the resultant wave equations are obtained. The solutions demonstrate that only two kinds of non-dispersive waves exist within the upper buffer rod. They have computable group velocities and waveform patterns that are entirely dependent on the material and diameter of the buffer rods. Experimental tests verify the theoretical model and indicate that buffer rods made of molybdenum metal and > 1.9 cm diameter are ideal for sound speed measurements in silicate melts with the FS interferometer. On the basis of the theoretical acoustic model, a mechanical assembly and signal-processing algorithm was designed to implement the FS interferometer. A very short pulse (e.g. 1 microsecond) encompassing a range of frequencies that span about 1 MHz is sent down the upper buffer rod and the first two mirror reflections from the liquid are collected and stored. Because they have the same waveform and have 180o phase difference, Fourier spectrum analysis can be performed to find the frequency response function of the two reflections, which is related to the sound speed and thickness of the melt. From the obtained frequency response function, the sound speed is calculated. We have applied this newly designed FS interferometer to two liquids with well-known sound speeds from the literature: NaCl liquid at 930o C and 1026 o C and a sodium aluminosilicate liquid at 1436 o C. Sound speeds were measured for these liquids at three center frequencies (4.5 MHz, 5.0 MHz, and 5.8 MHz). Our results are less than 0.6 % off the literature values and demonstrate the accuracy and precision of the FS interferometer. The principal advantage of the FS interferometer over the VPL method is that it requires no physical intervention or mechanical movement of the micrometer-transducer-rod assembly during a measurement. Thus, the FS method has considerable promise for adaption to high-pressure conditions in an internally-heated pressure vessel.

  2. Versatile photonic microwave waveforms generation using a dual-parallel Mach-Zehnder modulator without other dispersive elements

    NASA Astrophysics Data System (ADS)

    Bai, Guang-Fu; Hu, Lin; Jiang, Yang; Tian, Jing; Zi, Yue-Jiao; Wu, Ting-Wei; Huang, Feng-Qin

    2017-08-01

    In this paper, a photonic microwave waveform generator based on a dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. In this reported scheme, only one radio frequency signal is used to drive the dual-parallel Mach-Zehnder modulator. Meanwhile, dispersive elements or filters are not required in the proposed scheme, which make the scheme simpler and more stable. In this way, six variables can be adjusted. Through the different combinations of these variables, basic waveforms with full duty and small duty cycle can be generated. Tunability of the generator can be achieved by adjusting the frequency of the RF signal and the optical carrier. The corresponding theoretical analysis and simulation have been conducted. With guidance of theory and simulation, proof-of-concept experiments are carried out. The basic waveforms, including Gaussian, saw-up, and saw-down waveforms, with full duty and small duty cycle are generated at the repetition rate of 2 GHz. The theoretical and simulation results agree with the experimental results very well.

  3. Consistency of Post-Newtonian Waveforms with Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.; vanMeter, James R.; McWilliams, Sean T.; Centrella, Joan; Kelly, Bernard J.

    2007-01-01

    General relativity predicts the gravitational radiation signatures of mergers of compact binaries,such as coalescing binary black hole systems. Derivations of waveform predictions for such systems are required for optimal scientific analysis of observational gravitational wave data, and have so far been achieved primarily with the aid of the post-Newtonian (PN) approximation. The quaIity of this treatment is unclear, however, for the important late inspiral portion. We derive late-inspiral wave forms via a complementary approach, direct numerical simulation of Einstein's equations, which has recently matured sufficiently for such applications. We compare waveform phasing from simulations covering the last approximately 14 cycles of gravitational radiation from an equal-mass binary system of nonspinning black holes with corresponding 3PN and 3.5PN waveforms. We find phasing agreement consistent with internal error estimates based in either approach, at the level of one radian over approximately 10 cycles. The result suggests that PN waveforms for this system are effective roughly until the system reaches its last stable orbit just prior to the final merger.

  4. Real-time digital signal recovery for a multi-pole low-pass transfer function system.

    PubMed

    Lee, Jhinhwan

    2017-08-01

    In order to solve the problems of waveform distortion and signal delay by many physical and electrical systems with multi-pole linear low-pass transfer characteristics, a simple digital-signal-processing (DSP)-based method of real-time recovery of the original source waveform from the distorted output waveform is proposed. A mathematical analysis on the convolution kernel representation of the single-pole low-pass transfer function shows that the original source waveform can be accurately recovered in real time using a particular moving average algorithm applied on the input stream of the distorted waveform, which can also significantly reduce the overall delay time constant. This method is generalized for multi-pole low-pass systems and has noise characteristics of the inverse of the low-pass filter characteristics. This method can be applied to most sensors and amplifiers operating close to their frequency response limits to improve the overall performance of data acquisition systems and digital feedback control systems.

  5. Consistency of Post-Newtonian Waveforms with Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.; vanMeter, James R.; McWilliams, Sean T.; Cewntrella, Joan; Kelly, Bernard J.

    2006-01-01

    General relativity predicts the gravitational radiation signatures of mergers of compact binaries, such as coalescing binary black hole systems. Derivations of waveform predictions for such systems are required for optimal scientific analysis of observational gravitational wave data, and have so far been achieved primarily with the aid of the post-Newtonian (PN) approximation. The quality of this treatment is unclear, however, for the important late inspiral portion. We derive late-inspiral waveforms via a complementary approach, direct numerical simulation of Einstein's equations, which has recently matured sufficiently for such applications. We compare waveform phasing from simulations covering the last approximately 14 cycles of gravitational radiation from an equal-mass binary system of nonspinning black holes with the corresponding 3PN and 3.5PN orbital phasing. We find agreement consistent with internal error estimates based on either approach at the level of one radian over approximately 10 cycles. The result suggests that PN waveforms for this system are effective roughly until the system reaches its last stable orbit just prior to the final merger/

  6. An acoustic experimental and theoretical investigation of single disc propellers

    NASA Technical Reports Server (NTRS)

    Bumann, Elizabeth A.; Korkan, Kenneth D.

    1989-01-01

    An experimental study of the acoustic field associated with two, three, and four blade propeller configurations with a blade root angle of 50 deg was performed in the Texas A&M University 5 ft. x 6 ft. acoustically-insulated subsonic wind tunnel. A waveform analysis package was utilized to obtain experimental acoustic time histories, frequency spectra, and overall sound pressure level (OASPL) and served as a basis for comparison to the theoretical acoustic compact source theory of Succi (1979). Valid for subsonic tip speeds, the acoustic analysis replaced each blade by an array of spiraling point sources which exhibited a unique force vector and volume. The computer analysis of Succi was modified to include a propeller performance strip analysis which used a NACA 4-digit series airfoil data bank to calculate lift and drag for each blade segment given the geometry and motion of the propeller. Theoretical OASPL predictions were found to moderately overpredict experimental values for all operating conditions and propeller configurations studied.

  7. Detection of chlorinated and brominated byproducts of drinking water disinfection using electrospray ionization-high-field asymmetric waveform ion mobility spectrometry-mass spectrometry.

    PubMed

    Ells, B; Barnett, D A; Froese, K; Purves, R W; Hrudey, S; Guevremont, R

    1999-10-15

    The lower limit of detection for low molecular weight polar and ionic analytes using electrospray ionization-mass spectrometry (ESI-MS) is often severely compromised by an intense background that obscures ions of trace components in solution. Recently, a new technique, referred to as high-field asymmetric waveform ion mobility spectrometry (FAIMS), has been shown to separate gas-phase ions at atmospheric pressure and room temperature. A FAIMS instrument is an ion filter that may be tuned, by control of electrical voltages, to continuously transmit selected ions from a complex mixture. This capability offers significant advantages when FAIMS is coupled with ESI, a source that generates a wide variety of ions, including solvent clusters and salt adducts. In this report, the tandem arrangement of ESI-FAIMS-MS is used for the analysis of haloacetic acids, a class of disinfection byproducts regulated by the US EPA. FAIMS is shown to effectively discriminate against background ions resulting from the electrospray of tap water solutions containing the haloacetic acids. Consequently, mass spectra are simplified, the selectivity of the method is improved, and the limits of detection are lowered compared with conventional ESI-MS. The detection limits of ESI-FAIMS-MS for six haloacetic acids ranged between 0.5 and 4 ng/mL in 9:1 methanol/tap water (5 and 40 ng/mL in the original tap water samples) with no preconcentration, derivatization, or chromatographic separation prior to analysis.

  8. Bootstrap Signal-to-Noise Confidence Intervals: An Objective Method for Subject Exclusion and Quality Control in ERP Studies

    PubMed Central

    Parks, Nathan A.; Gannon, Matthew A.; Long, Stephanie M.; Young, Madeleine E.

    2016-01-01

    Analysis of event-related potential (ERP) data includes several steps to ensure that ERPs meet an appropriate level of signal quality. One such step, subject exclusion, rejects subject data if ERP waveforms fail to meet an appropriate level of signal quality. Subject exclusion is an important quality control step in the ERP analysis pipeline as it ensures that statistical inference is based only upon those subjects exhibiting clear evoked brain responses. This critical quality control step is most often performed simply through visual inspection of subject-level ERPs by investigators. Such an approach is qualitative, subjective, and susceptible to investigator bias, as there are no standards as to what constitutes an ERP of sufficient signal quality. Here, we describe a standardized and objective method for quantifying waveform quality in individual subjects and establishing criteria for subject exclusion. The approach uses bootstrap resampling of ERP waveforms (from a pool of all available trials) to compute a signal-to-noise ratio confidence interval (SNR-CI) for individual subject waveforms. The lower bound of this SNR-CI (SNRLB) yields an effective and objective measure of signal quality as it ensures that ERP waveforms statistically exceed a desired signal-to-noise criterion. SNRLB provides a quantifiable metric of individual subject ERP quality and eliminates the need for subjective evaluation of waveform quality by the investigator. We detail the SNR-CI methodology, establish the efficacy of employing this approach with Monte Carlo simulations, and demonstrate its utility in practice when applied to ERP datasets. PMID:26903849

  9. Optimal generation of spatially coherent soft X-ray isolated attosecond pulses in a gas-filled waveguide using two-color synthesized laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Cheng; Hong, Kyung -Han; Lin, C. D.

    2016-12-08

    Here, we numerically demonstrate the generation of intense, low-divergence soft X-ray isolated attosecond pulses in a gas-filled hollow waveguide using synthesized few-cycle two-color laser waveforms. The waveform is a superposition of a fundamental and its second harmonic optimized such that highest harmonic yields are emitted from each atom. We then optimize the gas pressure and the length and radius of the waveguide such that bright coherent high-order harmonics with angular divergence smaller than 1 mrad are generated, for photon energy from the extreme ultraviolet to soft X-rays. By selecting a proper spectral range enhanced isolated attosecond pulses are generated. Wemore » study how dynamic phase matching caused by the interplay among waveguide mode, neutral atomic dispersion, and plasma effect is achieved at the optimal macroscopic conditions, by performing time-frequency analysis and by analyzing the evolution of the driving laser’s electric field during the propagation. Our results, when combined with the on-going push of high-repetition-rate lasers (sub- to few MHz’s) may eventually lead to the generation of high-flux, low-divergence soft X-ray tabletop isolated attosecond pulses for applications.« less

  10. Origin of Large and Highly Variable Changes in the Apparent Spin Frequencies of Accretion-Powered Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Lamb, Frederick K.; Dorris, D.; Clare, A.; Van Wassenhove, S.; Yu, W.; Miller, M. C.

    2006-09-01

    The spin-frequency behavior of accretion-powered millisecond pulsars is usually inferred by power spectral analysis of their X-ray waveforms. The reported behavior of the spin frequencies of several accretion-powered millisecond pulsars is puzzling in two respects. First, analysis of the waveforms of these pulsars indicates that their spin frequencies are changing faster than predicted by the standard model of accretion torques. Second, there are wild swings of both signs in their apparent spin frequencies that are not correlated with the mass accretion rates inferred from their X-ray fluxes. We have computed the expected X-ray waveforms of pulsars like these, including special and general relativistic effects, and find that the changes in their waveforms produced by physically plausible changes in the flow of accreting matter onto their surfaces can explain their apparently anomalous spin-frequency behavior. This research was supported in part by NASA grant NAG 5-12030, NSF grant AST 0098399, and funds of the Fortner Endowed Chair at Illinois, and NSF grant AST 0098436 at Maryland.

  11. Transition in Pulsatile Pipe Flow

    NASA Astrophysics Data System (ADS)

    Vlachos, Pavlos; Brindise, Melissa

    2016-11-01

    Transition has been observed to occur in the aorta, and stenotic vessels, where pulsatile flow exists. However, few studies have investigated the characteristics and effects of transition in oscillating or pulsatile flow and none have utilized a physiological waveform. In this work, we explore transition in pipe flow using three pulsatile waveforms which all maintain the same mean and maximum flow rates and range to zero flow, as is physiologically typical. Velocity fields were obtained using planar particle image velocimetry for each pulsatile waveform at six mean Reynolds numbers ranging between 500 and 4000. Turbulent statistics including turbulent kinetic energy (TKE) and Reynolds stresses were computed. Quadrant analysis was used to identify characteristics of the production and dissipation of turbulence. Coherent structures were identified using the λci method. We developed a wavelet-Hilbert time-frequency analysis method to identify high frequency structures and compared these to the coherent structures. The results of this study demonstrate that the different pulsatile waveforms induce different levels of TKE and high frequency structures, suggesting that the rates of acceleration and deceleration influence the onset and development of transition.

  12. Investigation of Self Triggered Cosmic Ray Detectors using Silicon Photomultiplier

    NASA Astrophysics Data System (ADS)

    Knox, Adrian; Niduaza, Rommel; Hernandez, Victor; Ruiz, Daniel; Ramos, Daniel; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan

    2015-04-01

    The silicon photomultiplier (SiPM) is a highly sensitive light detector capable of measuring single photons. It costs a fraction of the photomultiplier tube and operates slightly above the breakdown voltage. At this conference we describe our investigation of SiPM, the multipixel photon counters (MPPC) from Hamamatsu as readout detectors for plastic scintillators working for detecting cosmic ray particles. Our setup consists of scintillator sheets embedded with blue to green wavelength shifting fibers optically coupled to MPPCs to detect scintillating light. Four detector assemblies would be constructed and arranged to work in self triggered mode. Using custom matching tee boxes, the amplified MPPC signals are fed to discriminators with threshold set to give a reasonable coincidence count rate. Moreover, the detector waveforms are digitized using a 5 Giga Samples per second waveform digitizer, the DRS4, and triggered with the coincidence logic to capture the MPPC waveforms. Offline analysis of the digitized waveforms is accomplished using the CERN package PAW and results of our experiments and the data analysis would also be discussed. US Department of Education Title V Grant Number PO31S090007.

  13. Exploring the efficacy of cyclic vs static aspiration in a cerebral thrombectomy model: an initial proof of concept study.

    PubMed

    Simon, Scott; Grey, Casey Paul; Massenzo, Trisha; Simpson, David G; Longest, P Worth

    2014-11-01

    Current technology for endovascular thrombectomy in ischemic stroke utilizes static loading and is successful in approximately 85% of cases. Existing technology uses either static suction (applied via a continuous pump or syringe) or flow arrest with a proximal balloon. In this paper we evaluate the potential of cyclic loading in aspiration thrombectomy. In order to evaluate the efficacy of cyclic aspiration, a model was created using a Penumbra aspiration system, three-way valve and Penumbra 5Max catheter. Synthetic clots were aspirated at different frequencies and using different aspiration mediums. Success or failure of clot removal and time were recorded. All statistical analyses were based on either a one-way or two-way analysis of variance, Holm-Sidak pairwise multiple comparison procedure (α=0.05). Cyclic aspiration outperformed static aspiration in overall clot removal and removal speed (p<0.001). Within cyclic aspiration, Max Hz frequencies (∼6.3 Hz) cleared clots faster than 1 Hz (p<0.001) and 2 Hz (p=0.024). Loading cycle dynamics (specific pressure waveforms) affected speed and overall clearance (p<0.001). Water as the aspiration medium was more effective at clearing clots than air (p=0.019). Cyclic aspiration significantly outperformed static aspiration in speed and overall clearance of synthetic clots in our experimental model. Within cyclic aspiration, efficacy is improved by increasing cycle frequency, utilizing specific pressure cycle waveforms and using water rather than air as the aspiration medium. These findings provide a starting point for altering existing thrombectomy technology or perhaps the development of new technologies with higher recanalization rates. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Electrostatic Precipitation in Nearly Pure Gaseous Nitrogen

    NASA Technical Reports Server (NTRS)

    Buhler, Charles; Calle, Carlos; Clements, Sid; Cox, Bobby; Ritz, Mindy

    2008-01-01

    Electrostatic precipitation was performed in a nearly pure gaseous nitrogen system as a possible remedy for black dust contaminant from high pressure 6000 psi lines at the NASA Kennedy Space Center. The results of a prototype electrostatic precipitator that was built and tested using nitrogen gas at standard atmospheric pressures is presented. High voltage pulsed waveforms are generated using a rotating spark gap system at 30 Hz. A unique dust delivery system utilizing the Venturi effect was devised that supplies a given amount of dust per unit time for testing purposes.

  15. Explosion yield estimation from pressure wave template matching

    PubMed Central

    Arrowsmith, Stephen; Bowman, Daniel

    2017-01-01

    A method for estimating the yield of explosions from shock-wave and acoustic-wave measurements is presented. The method exploits full waveforms by comparing pressure measurements against an empirical stack of prior observations using scaling laws. The approach can be applied to measurements across a wide-range of source-to-receiver distances. The method is applied to data from two explosion experiments in different regions, leading to mean relative errors in yield estimates of 0.13 using prior data from the same region, and 0.2 when applied to a new region. PMID:28618805

  16. Spike detection, characterization, and discrimination using feature analysis software written in LabVIEW.

    PubMed

    Stewart, C M; Newlands, S D; Perachio, A A

    2004-12-01

    Rapid and accurate discrimination of single units from extracellular recordings is a fundamental process for the analysis and interpretation of electrophysiological recordings. We present an algorithm that performs detection, characterization, discrimination, and analysis of action potentials from extracellular recording sessions. The program was entirely written in LabVIEW (National Instruments), and requires no external hardware devices or a priori information about action potential shapes. Waveform events are detected by scanning the digital record for voltages that exceed a user-adjustable trigger. Detected events are characterized to determine nine different time and voltage levels for each event. Various algebraic combinations of these waveform features are used as axis choices for 2-D Cartesian plots of events. The user selects axis choices that generate distinct clusters. Multiple clusters may be defined as action potentials by manually generating boundaries of arbitrary shape. Events defined as action potentials are validated by visual inspection of overlain waveforms. Stimulus-response relationships may be identified by selecting any recorded channel for comparison to continuous and average cycle histograms of binned unit data. The algorithm includes novel aspects of feature analysis and acquisition, including higher acquisition rates for electrophysiological data compared to other channels. The program confirms that electrophysiological data may be discriminated with high-speed and efficiency using algebraic combinations of waveform features derived from high-speed digital records.

  17. Mergers of black-hole binaries with aligned spins: Waveform characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Bernard J.; Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250; Baker, John G.

    2011-10-15

    We conduct a descriptive analysis of the multipolar structure of gravitational-radiation waveforms from equal-mass aligned-spin mergers, following an approach first presented in the complementary context of nonspinning black holes of varying mass ratio [J. G. Baker et al., Phys. Rev. D 78, 044046 (2008).]. We find that, as with the nonspinning mergers, the dominant waveform mode phases evolve together in lock-step through inspiral and merger, supporting the previous waveform description in terms of an adiabatically rigid rotator driving gravitational-wave emission--an implicit rotating source. We further apply the late-time merger-ringdown model for the rotational frequency introduced in [J. G. Baker etmore » al., Phys. Rev. D 78, 044046 (2008).], along with an improved amplitude model appropriate for the dominant (2, {+-}2) modes. This provides a quantitative description of the merger-ringdown waveforms, and suggests that the major features of these waveforms can be described with reference only to the intrinsic parameters associated with the state of the final black hole formed in the merger. We provide an explicit model for the merger-ringdown radiation, and demonstrate that this model agrees to fitting factors better than 95% with the original numerical waveforms for system masses above {approx}150M{sub {center_dot}}. This model may be directly applicable to gravitational-wave detection of intermediate-mass black-hole mergers.« less

  18. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques.

    PubMed

    Monte-Moreno, Enric

    2011-10-01

    This work presents a system for a simultaneous non-invasive estimate of the blood glucose level (BGL) and the systolic (SBP) and diastolic (DBP) blood pressure, using a photoplethysmograph (PPG) and machine learning techniques. The method is independent of the person whose values are being measured and does not need calibration over time or subjects. The architecture of the system consists of a photoplethysmograph sensor, an activity detection module, a signal processing module that extracts features from the PPG waveform, and a machine learning algorithm that estimates the SBP, DBP and BGL values. The idea that underlies the system is that there is functional relationship between the shape of the PPG waveform and the blood pressure and glucose levels. As described in this paper we tested this method on 410 individuals without performing any personalized calibration. The results were computed after cross validation. The machine learning techniques tested were: ridge linear regression, a multilayer perceptron neural network, support vector machines and random forests. The best results were obtained with the random forest technique. In the case of blood pressure, the resulting coefficients of determination for reference vs. prediction were R(SBP)(2)=0.91, R(DBP)(2)=0.89, and R(BGL)(2)=0.90. For the glucose estimation, distribution of the points on a Clarke error grid placed 87.7% of points in zone A, 10.3% in zone B, and 1.9% in zone D. Blood pressure values complied with the grade B protocol of the British Hypertension society. An effective system for estimate of blood glucose and blood pressure from a photoplethysmograph is presented. The main advantage of the system is that for clinical use it complies with the grade B protocol of the British Hypertension society for the blood pressure and only in 1.9% of the cases did not detect hypoglycemia or hyperglycemia. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Seismic facies analysis based on self-organizing map and empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Du, Hao-kun; Cao, Jun-xing; Xue, Ya-juan; Wang, Xing-jian

    2015-01-01

    Seismic facies analysis plays an important role in seismic interpretation and reservoir model building by offering an effective way to identify the changes in geofacies inter wells. The selections of input seismic attributes and their time window have an obvious effect on the validity of classification and require iterative experimentation and prior knowledge. In general, it is sensitive to noise when waveform serves as the input data to cluster analysis, especially with a narrow window. To conquer this limitation, the Empirical Mode Decomposition (EMD) method is introduced into waveform classification based on SOM. We first de-noise the seismic data using EMD and then cluster the data using 1D grid SOM. The main advantages of this method are resolution enhancement and noise reduction. 3D seismic data from the western Sichuan basin, China, are collected for validation. The application results show that seismic facies analysis can be improved and better help the interpretation. The powerful tolerance for noise makes the proposed method to be a better seismic facies analysis tool than classical 1D grid SOM method, especially for waveform cluster with a narrow window.

  20. The September 25, 2003 Tokachi-Oki Mw 8.3 Earthquake: Rupture Process From Joint Inversion of Tsunami Waveform, GPS, and Pressure Gages Data

    NASA Astrophysics Data System (ADS)

    Romano, F.; Lorito, S.; Piatanesi, A.; Antonioli, A.; George, D. L.; Hirata, K.

    2008-12-01

    We infer the slip distribution along the rupture zone of the September 25, 2003 Hokkaido Region (Japan) from tide-gages records of the tsunami, pressure gages, and GPS measured static coseismic displacements. According to USGS, this one has been the largest earthquake in 2003. We select waveforms from 16 stations, distributed along the east coast of the Hokkaido Region and the north-east coast of the Tohoku Region. Furthermore we select more than 100 GPS stations positioned on these regions and 2 high-precision pressure gages positioned in open sea near the epicenter; indeed the seafloor measurement of the water pressure is an innovative geodetic observation because the displacement of the seafloor is directly proportional to water pressure increase. We assume the fault plane to be consistent with the geometry of the subducting plate and the slip direction with the focal mechanism solutions and previous inversions of teleseismic body waves. We subdivide the fault plane into several subfaults (both along strike and down dip) and we compute the corresponding Green's function for the coseismic displacement considering a 3D Earth's model implemented in a Finite-Element code. As for the tsunami Green's function we use the shallow water equations and a bathymetric dataset with 10 arcsec of spatial resolution. The slip distribution is determined by means of a simulated annealing technique. Synthetic checkerboard tests, using the station coverage of the available data, indicate that the main features of the rupture process may be robustly inverted with a minimum subfault area of 30x30 km. We compare our results with those obtained by previous inversions of teleseismic, GPS and tsunami data.

  1. Intermediate-mass-ratio black-hole binaries: numerical relativity meets perturbation theory.

    PubMed

    Lousto, Carlos O; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-05-28

    We study black-hole binaries in the intermediate-mass-ratio regime 0.01≲q≲0.1 with a new technique that makes use of nonlinear numerical trajectories and efficient perturbative evolutions to compute waveforms at large radii for the leading and nonleading (ℓ, m) modes. As a proof-of-concept, we compute waveforms for q=1/10. We discuss applications of these techniques for LIGO and VIRGO data analysis and the possibility that our technique can be extended to produce accurate waveform templates from a modest number of fully nonlinear numerical simulations.

  2. Mergers of Non-spinning Black-hole Binaries: Gravitational Radiation Characteristics

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; vanMeter, James R.

    2008-01-01

    We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of non-spinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an implicit rotating source. This interpretation applies uniformly to the full wavetrain, from inspiral through ringdown. We emphasize strong relationships among the l = m modes that persist through the full wavetrain. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the l = m modes among all mass-ratios. We identify relationships, with a simple interpretation in terms of the implicit rotating source, among the evolution of frequency and amplitude, which hold for the late-time radiation. These detailed relationships provide sufficient information about the late-time radiation to yield a predictive model for the late-time waveforms, an alternative to the common practice of modeling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.

  3. Mergers of nonspinning black-hole binaries: Gravitational radiation characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, John G.; Centrella, Joan; Kelly, Bernard J.

    2008-08-15

    We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of nonspinning black holes, based on numerical simulations of systems varying from equal mass to a 6 ratio 1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an implicit rotating source. This interpretation applies uniformly to the full wave train, from inspiral through ringdown. We emphasizemore » strong relationships among the l=m modes that persist through the full wave train. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the l=m modes among all mass ratios. We identify relationships, with a simple interpretation in terms of the implicit rotating source, among the evolution of frequency and amplitude, which hold for the late-time radiation. These detailed relationships provide sufficient information about the late-time radiation to yield a predictive model for the late-time waveforms, an alternative to the common practice of modeling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.« less

  4. Tree species classification in subtropical forests using small-footprint full-waveform LiDAR data

    NASA Astrophysics Data System (ADS)

    Cao, Lin; Coops, Nicholas C.; Innes, John L.; Dai, Jinsong; Ruan, Honghua; She, Guanghui

    2016-07-01

    The accurate classification of tree species is critical for the management of forest ecosystems, particularly subtropical forests, which are highly diverse and complex ecosystems. While airborne Light Detection and Ranging (LiDAR) technology offers significant potential to estimate forest structural attributes, the capacity of this new tool to classify species is less well known. In this research, full-waveform metrics were extracted by a voxel-based composite waveform approach and examined with a Random Forests classifier to discriminate six subtropical tree species (i.e., Masson pine (Pinus massoniana Lamb.)), Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), Slash pines (Pinus elliottii Engelm.), Sawtooth oak (Quercus acutissima Carruth.) and Chinese holly (Ilex chinensis Sims.) at three levels of discrimination. As part of the analysis, the optimal voxel size for modelling the composite waveforms was investigated, the most important predictor metrics for species classification assessed and the effect of scan angle on species discrimination examined. Results demonstrate that all tree species were classified with relatively high accuracy (68.6% for six classes, 75.8% for four main species and 86.2% for conifers and broadleaved trees). Full-waveform metrics (based on height of median energy, waveform distance and number of waveform peaks) demonstrated high classification importance and were stable among various voxel sizes. The results also suggest that the voxel based approach can alleviate some of the issues associated with large scan angles. In summary, the results indicate that full-waveform LIDAR data have significant potential for tree species classification in the subtropical forests.

  5. A Transformation-Induced Shear Instability Model for Deep Earthquakes Based on Laboratory Nanoseismological and Microstructural Observations

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhu, L.; Shi, F.; Schubnel, A.; Hilairet, N.; Yu, T.; Rivers, M. L.; Gasc, J.; Li, Z.; Brunet, F.

    2016-12-01

    Global earthquake hypocenters depth displays a bimodal distribution: a first peak at < 50 km and a second peak around 550 - 600 km, before ceasing abruptly near 700 km. How fractures initiate, nucleate, and propagate at depths >70 km remains one of the greatest puzzles in earth science, since increasing pressure inhibits fracture propagation. Here we report high-resolution acoustic emission (AE) analysis of fractures triggered by partial transformation from olivine to spinel in Mg2GeO4, an analog to (Mg,Fe)2SiO4, the dominant mineral in the upper mantle. State-of-the-art synchrotron techniques and seismological methodologies were used for fault imaging and for event location and waveform analysis. Our results reveal unprecedented details of rupture nucleation and propagation, in both space and time: AE event magnitudes follow the Gutenberg-Richter law, with b values generally consistent with seismological observations, while the empirical relation between magnitude and rupture area is extended to millimeter-sized samples. A new rupture model for deep-focus earthquakes is proposed based on the well-known strain localization theory for pressure sensitive (dilatant) materials. The results show that shear failure processes, even at great depths, are scale-invariant.

  6. The Modularized Software Package ASKI - Full Waveform Inversion Based on Waveform Sensitivity Kernels Utilizing External Seismic Wave Propagation Codes

    NASA Astrophysics Data System (ADS)

    Schumacher, F.; Friederich, W.

    2015-12-01

    We present the modularized software package ASKI which is a flexible and extendable toolbox for seismic full waveform inversion (FWI) as well as sensitivity or resolution analysis operating on the sensitivity matrix. It utilizes established wave propagation codes for solving the forward problem and offers an alternative to the monolithic, unflexible and hard-to-modify codes that have typically been written for solving inverse problems. It is available under the GPL at www.rub.de/aski. The Gauss-Newton FWI method for 3D-heterogeneous elastic earth models is based on waveform sensitivity kernels and can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. The kernels are derived in the frequency domain from Born scattering theory as the Fréchet derivatives of linearized full waveform data functionals, quantifying the influence of elastic earth model parameters on the particular waveform data values. As an important innovation, we keep two independent spatial descriptions of the earth model - one for solving the forward problem and one representing the inverted model updates. Thereby we account for the independent needs of spatial model resolution of forward and inverse problem, respectively. Due to pre-integration of the kernels over the (in general much coarser) inversion grid, storage requirements for the sensitivity kernels are dramatically reduced.ASKI can be flexibly extended to other forward codes by providing it with specific interface routines that contain knowledge about forward code-specific file formats and auxiliary information provided by the new forward code. In order to sustain flexibility, the ASKI tools must communicate via file output/input, thus large storage capacities need to be accessible in a convenient way. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full waveform inversion.

  7. Application of Control Volume Analysis to Cerebrospinal Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Wei, Timothy; Cohen, Benjamin; Anor, Tomer; Madsen, Joseph

    2011-11-01

    Hydrocephalus is among the most common birth defects and may not be prevented nor cured. Afflicted individuals face serious issues, which at present are too complicated and not well enough understood to treat via systematic therapies. This talk outlines the framework and application of a control volume methodology to clinical Phase Contrast MRI data. Specifically, integral control volume analysis utilizes a fundamental, fluid dynamics methodology to quantify intracranial dynamics within a precise, direct, and physically meaningful framework. A chronically shunted, hydrocephalic patient in need of a revision procedure was used as an in vivo case study. Magnetic resonance velocity measurements within the patient's aqueduct were obtained in four biomedical state and were analyzed using the methods presented in this dissertation. Pressure force estimates were obtained, showing distinct differences in amplitude, phase, and waveform shape for different intracranial states within the same individual. Thoughts on the physiological and diagnostic research and development implications/opportunities will be presented.

  8. Integration of Off-Track Sonic Boom Analysis in Conceptual Design of Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2011-01-01

    A highly desired capability for the conceptual design of aircraft is the ability to rapidly and accurately evaluate new concepts to avoid adverse trade decisions that may hinder the development process in the later stages of design. Evaluating the robustness of new low-boom concepts is important for the conceptual design of supersonic aircraft. Here, robustness means that the aircraft configuration has a low-boom ground signature at both under- and off-track locations. An integrated process for off-track boom analysis is developed to facilitate the design of robust low-boom supersonic aircraft. The integrated off-track analysis can also be used to study the sonic boom impact and to plan future flight trajectories where flight conditions and ground elevation might have a significant effect on ground signatures. The key enabler for off-track sonic boom analysis is accurate computational fluid dynamics (CFD) solutions for off-body pressure distributions. To ensure the numerical accuracy of the off-body pressure distributions, a mesh study is performed with Cart3D to determine the mesh requirements for off- body CFD analysis and comparisons are made between the Cart3D and USM3D results. The variations in ground signatures that result from changes in the initial location of the near-field waveform are also examined. Finally, a complete under- and off-track sonic boom analysis is presented for two distinct supersonic concepts to demonstrate the capability of the integrated analysis process.

  9. The effects of aortic coarctation on cerebral hemodynamics and its importance in the etiopathogenesis of intracranial aneurysms.

    PubMed

    Singh, Pankaj K; Marzo, Alberto; Staicu, Cristina; William, Matt G; Wilkinson, Iain; Lawford, Patricia V; Rufenacht, Daniel A; Bijlenga, Philippe; Frangi, Alejandro F; Hose, Rodney; Patel, Umang J; Coley, Stuart C

    2010-01-01

    Hemodynamic changes in the cerebral circulation in presence of coarctation of aorta (CoA) and their significance in the increased intracranial aneurysms (IAs) formation in these patients remain unclear. In the present study, we measured the flow-rate waveforms in the cerebral arteries of a patient with CoA, followed by an analysis of different hemodynamic indices in a coexisting IA. Phase-contrast Magnetic Resonance (pc-MR) volumetric flow-rate (VFR) measurements were performed in cerebral arteries of a 51 years old woman with coexisting CoA, and five healthy volunteers. Numerical predictions of a number of relevant hemodynamic indices were performed in an IA located in sub-clinoid part of left internal carotid artery (ICA) of the patient. Computations were performed using Ansys(®)-CFX(™) solver using the VFR values measured in the patient as boundary conditions (BCs). A second analysis was performed using the average VFR values measured in healthy volunteers. The VFR waveforms measured in the patient and healthy volunteers were compared followed by a comparison of the hemodynamic indices obtained using both approaches. The results are discussed in the background of relevant literature. Mean flow-rates were increased by 27.1% to 54.9% (2.66-5.44 ml/sec) in the cerebral circulation of patients with CoA as compared to healthy volunteers (1.2-3.95 ml/sec). Velocities were increased inside the IA by 35-45%. An exponential rise of 650% was observed in the area affected by high wall shear stress (WSS>15Pa) when flow-rates specific to CoA were used as compared to population average flow-rates. Absolute values of space and time averaged WSS were increased by 65%. Whereas values of maximum pressure on the IA wall were increased by 15% the area of elevated pressure was actually decreased by 50%, reflecting a more focalized jet impingement within the IA of the CoA patient. IAs can develop in patients with CoA several years after the surgical repair. Cerebral flow-rates in CoA patients are significantly higher as compared to average flow-rates in healthy population. The increased supra-physiological WSS (>15Pa), OSI (>0.2) and focalized pressure may play an important role in the etiopathogenesis of IAs in patients with CoA.

  10. The Effects of Aortic Coarctation on Cerebral Hemodynamics and its Importance in the Etiopathogenesis of Intracranial Aneurysms

    PubMed Central

    Singh, Pankaj K; Marzo, Alberto; Staicu, Cristina; William, Matt G; Wilkinson, Iain; Lawford, Patricia V; Rufenacht, Daniel A; Bijlenga, Philippe; Frangi, Alejandro F; Hose, Rodney; Patel, Umang J; Coley, Stuart C

    2010-01-01

    Objectives: Hemodynamic changes in the cerebral circulation in presence of coarctation of aorta (CoA) and their significance in the increased intracranial aneurysms (IAs) formation in these patients remain unclear. In the present study, we measured the flow-rate waveforms in the cerebral arteries of a patient with CoA, followed by an analysis of different hemodynamic indices in a coexisting IA. Materials and Methods: Phase-contrast Magnetic Resonance (pc-MR) volumetric flow-rate (VFR) measurements were performed in cerebral arteries of a 51 years old woman with coexisting CoA, and five healthy volunteers. Numerical predictions of a number of relevant hemodynamic indices were performed in an IA located in sub-clinoid part of left internal carotid artery (ICA) of the patient. Computations were performed using Ansys®-CFX™ solver using the VFR values measured in the patient as boundary conditions (BCs). A second analysis was performed using the average VFR values measured in healthy volunteers. The VFR waveforms measured in the patient and healthy volunteers were compared followed by a comparison of the hemodynamic indices obtained using both approaches. The results are discussed in the background of relevant literature. Results: Mean flow-rates were increased by 27.1% to 54.9% (2.66–5.44 ml/sec) in the cerebral circulation of patients with CoA as compared to healthy volunteers (1.2–3.95 ml/sec). Velocities were increased inside the IA by 35–45%. An exponential rise of 650% was observed in the area affected by high wall shear stress (WSS>15Pa) when flow-rates specific to CoA were used as compared to population average flow-rates. Absolute values of space and time averaged WSS were increased by 65%. Whereas values of maximum pressure on the IA wall were increased by 15% the area of elevated pressure was actually decreased by 50%, reflecting a more focalized jet impingement within the IA of the CoA patient. Conclusions: IAs can develop in patients with CoA several years after the surgical repair. Cerebral flow-rates in CoA patients are significantly higher as compared to average flow-rates in healthy population. The increased supra-physiological WSS (>15Pa), OSI (>0.2) and focalized pressure may play an important role in the etiopathogenesis of IAs in patients with CoA. PMID:22518256

  11. Measuring joint kinematics of treadmill walking and running: Comparison between an inertial sensor based system and a camera-based system.

    PubMed

    Nüesch, Corina; Roos, Elena; Pagenstert, Geert; Mündermann, Annegret

    2017-05-24

    Inertial sensor systems are becoming increasingly popular for gait analysis because their use is simple and time efficient. This study aimed to compare joint kinematics measured by the inertial sensor system RehaGait® with those of an optoelectronic system (Vicon®) for treadmill walking and running. Additionally, the test re-test repeatability of kinematic waveforms and discrete parameters for the RehaGait® was investigated. Twenty healthy runners participated in this study. Inertial sensors and reflective markers (PlugIn Gait) were attached according to respective guidelines. The two systems were started manually at the same time. Twenty consecutive strides for walking and running were recorded and each software calculated sagittal plane ankle, knee and hip kinematics. Measurements were repeated after 20min. Ensemble means were analyzed calculating coefficients of multiple correlation for waveforms and root mean square errors (RMSE) for waveforms and discrete parameters. After correcting the offset between waveforms, the two systems/models showed good agreement with coefficients of multiple correlation above 0.950 for walking and running. RMSE of the waveforms were below 5° for walking and below 8° for running. RMSE for ranges of motion were between 4° and 9° for walking and running. Repeatability analysis of waveforms showed very good to excellent coefficients of multiple correlation (>0.937) and RMSE of 3° for walking and 3-7° for running. These results indicate that in healthy subjects sagittal plane joint kinematics measured with the RehaGait® are comparable to those using a Vicon® system/model and that the measured kinematics have a good repeatability, especially for walking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Compression strategies for LiDAR waveform cube

    NASA Astrophysics Data System (ADS)

    Jóźków, Grzegorz; Toth, Charles; Quirk, Mihaela; Grejner-Brzezinska, Dorota

    2015-01-01

    Full-waveform LiDAR data (FWD) provide a wealth of information about the shape and materials of the surveyed areas. Unlike discrete data that retains only a few strong returns, FWD generally keeps the whole signal, at all times, regardless of the signal intensity. Hence, FWD will have an increasingly well-deserved role in mapping and beyond, in the much desired classification in the raw data format. Full-waveform systems currently perform only the recording of the waveform data at the acquisition stage; the return extraction is mostly deferred to post-processing. Although the full waveform preserves most of the details of the real data, it presents a serious practical challenge for a wide use: much larger datasets compared to those from the classical discrete return systems. Atop the need for more storage space, the acquisition speed of the FWD may also limit the pulse rate on most systems that cannot store data fast enough, and thus, reduces the perceived system performance. This work introduces a waveform cube model to compress waveforms in selected subsets of the cube, aimed at achieving decreased storage while maintaining the maximum pulse rate of FWD systems. In our experiments, the waveform cube is compressed using classical methods for 2D imagery that are further tested to assess the feasibility of the proposed solution. The spatial distribution of airborne waveform data is irregular; however, the manner of the FWD acquisition allows the organization of the waveforms in a regular 3D structure similar to familiar multi-component imagery, as those of hyper-spectral cubes or 3D volumetric tomography scans. This study presents the performance analysis of several lossy compression methods applied to the LiDAR waveform cube, including JPEG-1, JPEG-2000, and PCA-based techniques. Wide ranges of tests performed on real airborne datasets have demonstrated the benefits of the JPEG-2000 Standard where high compression rates incur fairly small data degradation. In addition, the JPEG-2000 Standard-compliant compression implementation can be fast and, thus, used in real-time systems, as compressed data sequences can be formed progressively during the waveform data collection. We conclude from our experiments that 2D image compression strategies are feasible and efficient approaches, thus they might be applied during the acquisition of the FWD sensors.

  13. Controlling plasma properties under differing degrees of electronegativity using odd harmonic dual frequency excitation

    NASA Astrophysics Data System (ADS)

    Gibson, Andrew R.; Gans, Timo

    2017-11-01

    The charged particle dynamics in low-pressure oxygen plasmas excited by odd harmonic dual frequency waveforms (low frequency of 13.56 MHz and high frequency of 40.68 MHz) are investigated using a one-dimensional numerical simulation in regimes of both low and high electronegativity. In the low electronegativity regime, the time and space averaged electron and negative ion densities are approximately equal and plasma sustainment is dominated by ionisation at the sheath expansion for all combinations of low and high frequency and the phase shift between them. In the high electronegativity regime, the negative ion density is a factor of 15-20 greater than the low electronegativity cases. In these cases, plasma sustainment is dominated by ionisation inside the bulk plasma and at the collapsing sheath edge when the contribution of the high frequency to the overall voltage waveform is low. As the high frequency component contribution to the waveform increases, sheath expansion ionisation begins to dominate. It is found that the control of the average voltage drop across the plasma sheath and the average ion flux to the powered electrode are similar in both regimes of electronegativity, despite the differing electron dynamics using the considered dual frequency approach. This offers potential for similar control of ion dynamics under a range of process conditions, independent of the electronegativity. This is in contrast to ion control offered by electrically asymmetric waveforms where the relationship between the ion flux and ion bombardment energy is dependent upon the electronegativity.

  14. The phylogeny of swimming kinematics: The environment controls flagellar waveforms in sperm motility

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Burton, Lisa; Zimmer, Richard; Hosoi, Anette; Stocker, Roman

    2013-11-01

    In recent years, phylogenetic and molecular analyses have dominated the study of ecology and evolution. However, physical interactions between organisms and their environment, a fundamental determinant of organism ecology and evolution, are mediated by organism form and function, highlighting the need to understand the mechanics of basic survival strategies, including locomotion. Focusing on spermatozoa, we combined high-speed video microscopy and singular value decomposition analysis to quantitatively compare the flagellar waveforms of eight species, ranging from marine invertebrates to humans. We found striking similarities in sperm swimming kinematics between genetically dissimilar organisms, which could not be uncovered by phylogenetic analysis. The emergence of dominant waveform patterns across species are suggestive of biological optimization for flagellar locomotion and point toward environmental cues as drivers of this convergence. These results reinforce the power of quantitative kinematic analysis to understand the physical drivers of evolution and as an approach to uncover new solutions for engineering applications, such as micro-robotics.

  15. Detection of hidden mineral deposits by airborne spectral analysis of forest canopies. [Spirit Lake, Washington; Catheart Mountain, Maine; Blacktail Mountain, Montana; and Cotter Basin, Montana

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1984-01-01

    Data from field surveys and biogeochemical tests conducted in Maine, Montana, and Washington strongly correlate with results obtained using high resolution airborne spectroradiometer which detects an anomalous spectral waveform that appears definitely associated with sulfide mineralization. The spectral region most affected by mineral stress is between 550 nm and 750 nm. Spectral variations observed in the field occur on the wings of the red chlorophyll band centered at about 690 nm. The metal-stress-induced variations on the absorption band wing are most successfully resolved in the high spectral resolution field data using a waveform analysis technique. The development of chlorophyll pigments was retarded in greenhouse plants doped with copper and zinc in the laboratory. The lowered chlorophyll production resulted in changes on the wings of the chlorophyll bands of reflectance spectra of the plants. The airborne spectroradiometer system and waveform analysis remains the most sensitive technique for biogeochemical surveys.

  16. Waveform Analysis Optimization for the 45Ca Beta Decay Experiment

    NASA Astrophysics Data System (ADS)

    Whitehead, Ryan; 45Ca Collaboration

    2017-09-01

    The 45Ca experiment is searching for a non-zero Fierz interference term, which would imply a tensor type contribution to the low-energy weak interaction, possibly signaling Beyond-the-Standard-Model (BSM) physics. Beta spectrum measurements are being performed at LANL, using the segmented, large area, Si detectors developed for the Nab and UCNB experiments. 109 events have been recorded, with 38 of the 254 pixels instrumented, during the summers of 2016 and 2017. An important step to extracting the energy spectra is the correction of the waveform for pile-up events. A set of analysis tools has been developed to address this issue. A trapezoidal filter has been characterized and optimized for the experimental waveforms. This filter is primarily used for energy extraction, but, by adjusting certain parameters, it has been modified to identify pile-up events. The efficiency varies with the total energy of the particle and the amount deposited with each detector interaction. Preliminary results of this analysis will be presented.

  17. Effect of the spectrum of a high-intensity sound source on the sound-absorbing properties of a resonance-type acoustic lining

    NASA Astrophysics Data System (ADS)

    Ipatov, M. S.; Ostroumov, M. N.; Sobolev, A. F.

    2012-07-01

    Experimental results are presented on the effect of both the sound pressure level and the type of spectrum of a sound source on the impedance of an acoustic lining. The spectra under study include those of white noise, a narrow-band signal, and a signal with a preset waveform. It is found that, to obtain reliable data on the impedance of an acoustic lining from the results of interferometric measurements, the total sound pressure level of white noise or the maximal sound pressure level of a pure tone (at every oscillation frequency) needs to be identical to the total sound pressure level of the actual source at the site of acoustic lining on the channel wall.

  18. Parameterization of the Voice Source by Combining Spectral Decay and Amplitude Features of the Glottal Flow.

    ERIC Educational Resources Information Center

    Alku, Paavo; Vilkman, Erkki; Laukkanen, Anne-Maria

    1998-01-01

    A new method is presented for the parameterization of glottal volume velocity waveforms that have been estimated by inverse filtering acoustic speech pressure signals. The new technique combines two features of voice production: the AC value and the spectral decay of the glottal flow. Testing found the new parameter correlates strongly with the…

  19. Unsupervised Approaches for Post-Processing in Computationally Efficient Waveform-Similarity-Based Earthquake Detection

    NASA Astrophysics Data System (ADS)

    Bergen, K.; Yoon, C. E.; OReilly, O. J.; Beroza, G. C.

    2015-12-01

    Recent improvements in computational efficiency for waveform correlation-based detections achieved by new methods such as Fingerprint and Similarity Thresholding (FAST) promise to allow large-scale blind search for similar waveforms in long-duration continuous seismic data. Waveform similarity search applied to datasets of months to years of continuous seismic data will identify significantly more events than traditional detection methods. With the anticipated increase in number of detections and associated increase in false positives, manual inspection of the detection results will become infeasible. This motivates the need for new approaches to process the output of similarity-based detection. We explore data mining techniques for improved detection post-processing. We approach this by considering similarity-detector output as a sparse similarity graph with candidate events as vertices and similarities as weighted edges. Image processing techniques are leveraged to define candidate events and combine results individually processed at multiple stations. Clustering and graph analysis methods are used to identify groups of similar waveforms and assign a confidence score to candidate detections. Anomaly detection and classification are applied to waveform data for additional false detection removal. A comparison of methods will be presented and their performance will be demonstrated on a suspected induced and non-induced earthquake sequence.

  20. Feasibility study of parallel optical correlation-decoding analysis of lightning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Descour, M.R.; Sweatt, W.C.; Elliott, G.R.

    The optical correlator described in this report is intended to serve as an attention-focusing processor. The objective is to narrowly bracket the range of a parameter value that characterizes the correlator input. The input is a waveform collected by a satellite-borne receiver. In the correlator, this waveform is simultaneously correlated with an ensemble of ionosphere impulse-response functions, each corresponding to a different total-electron-count (TEC) value. We have found that correlation is an effective method of bracketing the range of TEC values likely to be represented by the input waveform. High accuracy in a computational sense is not required of themore » correlator. Binarization of the impulse-response functions and the input waveforms prior to correlation results in a lower correlation-peak-to-background-fluctuation (signal-to-noise) ratio than the peak that is obtained when all waveforms retain their grayscale values. The results presented in this report were obtained by means of an acousto-optic correlator previously developed at SNL as well as by simulation. An optical-processor architecture optimized for 1D correlation of long waveforms characteristic of this application is described. Discussions of correlator components, such as optics, acousto-optic cells, digital micromirror devices, laser diodes, and VCSELs are included.« less

  1. Nonlinear synthesis of infrasound propagation through an inhomogeneous, absorbing atmosphere.

    PubMed

    de Groot-Hedlin, C D

    2012-08-01

    An accurate and efficient method to predict infrasound amplitudes from large explosions in the atmosphere is required for diverse source types, including bolides, volcanic eruptions, and nuclear and chemical explosions. A finite-difference, time-domain approach is developed to solve a set of nonlinear fluid dynamic equations for total pressure, temperature, and density fields rather than acoustic perturbations. Three key features for the purpose of synthesizing nonlinear infrasound propagation in realistic media are that it includes gravitational terms, it allows for acoustic absorption, including molecular vibration losses at frequencies well below the molecular vibration frequencies, and the environmental models are constrained to have axial symmetry, allowing a three-dimensional simulation to be reduced to two dimensions. Numerical experiments are performed to assess the algorithm's accuracy and the effect of source amplitudes and atmospheric variability on infrasound waveforms and shock formation. Results show that infrasound waveforms steepen and their associated spectra are shifted to higher frequencies for nonlinear sources, leading to enhanced infrasound attenuation. Results also indicate that nonlinear infrasound amplitudes depend strongly on atmospheric temperature and pressure variations. The solution for total field variables and insertion of gravitational terms also allows for the computation of other disturbances generated by explosions, including gravity waves.

  2. Theoretical simulation of the multipole seismoelectric logging while drilling

    NASA Astrophysics Data System (ADS)

    Guan, Wei; Hu, Hengshan; Zheng, Xiaobo

    2013-11-01

    Acoustic logging-while-drilling (LWD) technology has been commercially used in the petroleum industry. However it remains a rather difficult task to invert formation compressional and shear velocities from acoustic LWD signals due to the unwanted strong collar wave, which covers or interferes with signals from the formation. In this paper, seismoelectric LWD is investigated for solving that problem. The seismoelectric field is calculated by solving a modified Poisson's equation, whose source term is the electric disturbance induced electrokinetically by the travelling seismic wave. The seismic wavefield itself is obtained by solving Biot's equations for poroelastic waves. From the simulated waveforms and the semblance plots for monopole, dipole and quadrupole sources, it is found that the electric field accompanies the collar wave as well as other wave groups of the acoustic pressure, despite the fact that seismoelectric conversion occurs only in porous formations. The collar wave in the electric field, however, is significantly weakened compared with that in the acoustic pressure, in terms of its amplitude relative to the other wave groups in the full waveforms. Thus less and shallower grooves are required to damp the collar wave if the seismoelectric LWD signals are recorded for extracting formation compressional and shear velocities.

  3. Idealized digital models for conical reed instruments, with focus on the internal pressure waveform.

    PubMed

    Kergomard, J; Guillemain, P; Silva, F; Karkar, S

    2016-02-01

    Two models for the generation of self-oscillations of reed conical woodwinds are presented. The models use the fewest parameters (of either the resonator or the exciter), whose influence can be quickly explored. The formulation extends iterated maps obtained for lossless cylindrical pipes without reed dynamics. It uses spherical wave variables in idealized resonators, with one parameter more than for cylinders: the missing length of the cone. The mouthpiece volume equals that of the missing part of the cone, and is implemented as either a cylindrical pipe (first model) or a lumped element (second model). Only the first model adds a length parameter for the mouthpiece and leads to the solving of an implicit equation. For the second model, any shape of nonlinear characteristic can be directly considered. The complex characteristic impedance for spherical waves requires sampling times smaller than a round trip in the resonator. The convergence of the two models is shown when the length of the cylindrical mouthpiece tends to zero. The waveform is in semi-quantitative agreement with experiment. It is concluded that the oscillations of the positive episode of the mouthpiece pressure are related to the length of the missing part, not to the reed dynamics.

  4. Incorporation of a spatial source distribution and a spatial sensor sensitivity in a laser ultrasound propagation model using a streamlined Huygens' principle.

    PubMed

    Laloš, Jernej; Babnik, Aleš; Možina, Janez; Požar, Tomaž

    2016-03-01

    The near-field, surface-displacement waveforms in plates are modeled using interwoven concepts of Green's function formalism and streamlined Huygens' principle. Green's functions resemble the building blocks of the sought displacement waveform, superimposed and weighted according to the simplified distribution. The approach incorporates an arbitrary circular spatial source distribution and an arbitrary circular spatial sensitivity in the area probed by the sensor. The displacement histories for uniform, Gaussian and annular normal-force source distributions and the uniform spatial sensor sensitivity are calculated, and the corresponding weight distributions are compared. To demonstrate the applicability of the developed scheme, measurements of laser ultrasound induced solely by the radiation pressure are compared with the calculated waveforms. The ultrasound is induced by laser pulse reflection from the mirror-surface of a glass plate. The measurements show excellent agreement not only with respect to various wave-arrivals but also in the shape of each arrival. Their shape depends on the beam profile of the excitation laser pulse and its corresponding spatial normal-force distribution. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Augmented kludge waveforms for detecting extreme-mass-ratio inspirals

    NASA Astrophysics Data System (ADS)

    Chua, Alvin J. K.; Moore, Christopher J.; Gair, Jonathan R.

    2017-08-01

    The extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes are an important class of source for the future space-based gravitational-wave detector LISA. Detecting signals from EMRIs will require waveform models that are both accurate and computationally efficient. In this paper, we present the latest implementation of an augmented analytic kludge (AAK) model, publicly available at https://github.com/alvincjk/EMRI_Kludge_Suite as part of an EMRI waveform software suite. This version of the AAK model has improved accuracy compared to its predecessors, with two-month waveform overlaps against a more accurate fiducial model exceeding 0.97 for a generic range of sources; it also generates waveforms 5-15 times faster than the fiducial model. The AAK model is well suited for scoping out data analysis issues in the upcoming round of mock LISA data challenges. A simple analytic argument shows that it might even be viable for detecting EMRIs with LISA through a semicoherent template bank method, while the use of the original analytic kludge in the same approach will result in around 90% fewer detections.

  6. Speech waveform perturbation analysis: a perceptual-acoustical comparison of seven measures.

    PubMed

    Askenfelt, A G; Hammarberg, B

    1986-03-01

    The performance of seven acoustic measures of cycle-to-cycle variations (perturbations) in the speech waveform was compared. All measures were calculated automatically and applied on running speech. Three of the measures refer to the frequency of occurrence and severity of waveform perturbations in special selected parts of the speech, identified by means of the rate of change in the fundamental frequency. Three other measures refer to statistical properties of the distribution of the relative frequency differences between adjacent pitch periods. One perturbation measure refers to the percentage of consecutive pitch period differences with alternating signs. The acoustic measures were tested on tape recorded speech samples from 41 voice patients, before and after successful therapy. Scattergrams of acoustic waveform perturbation data versus an average of perceived deviant voice qualities, as rated by voice clinicians, are presented. The perturbation measures were compared with regard to the acoustic-perceptual correlation and their ability to discriminate between normal and pathological voice status. The standard deviation of the distribution of the relative frequency differences was suggested as the most useful acoustic measure of waveform perturbations for clinical applications.

  7. Study on force mechanism for therapeutic effect of pushing manipulation with one-finger meditation base on similarity analysis of force and waveform.

    PubMed

    Fang, Lei; Fang, Min; Guo, Min-Min

    2016-12-27

    To reveal the force mechanism for therapeutic effect of pushing manipulation with one-finger meditation. A total of 15 participants were recruited in this study and assigned to an expert group, a skilled group and a novice group, with 5 participants in each group. Mechanical signals were collected from a biomechanical testing platform, and these data were further observed via similarity analysis and cluster analysis. Comparing the force waveforms of manipulation revealed that the manipulation forces were similar between the expert group and the skilled group (P>0.05). The mean value of vertical force was 9.8 N, and 95% CI rang from 6.37 to 14.70 N, but there were significant differences compared with the novice group (P<0.05). The result of overall similarity coefficient cluster analysis showed that two kinds of manipulation forces curves were existed between the expert group and the skilled group. Pushing manipulation with one-finger meditation is a kind of light stimulation manipulation on the acupoint, and force characteristics of double waveforms continuously alternated during manual operation.

  8. Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors

    NASA Astrophysics Data System (ADS)

    Bohé, Alejandro; Shao, Lijing; Taracchini, Andrea; Buonanno, Alessandra; Babak, Stanislav; Harry, Ian W.; Hinder, Ian; Ossokine, Serguei; Pürrer, Michael; Raymond, Vivien; Chu, Tony; Fong, Heather; Kumar, Prayush; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Lovelace, Geoffrey; Scheel, Mark A.; Szilágyi, Béla

    2017-02-01

    We improve the accuracy of the effective-one-body (EOB) waveforms that were employed during the first observing run of Advanced LIGO for binaries of spinning, nonprecessing black holes by calibrating them to a set of 141 numerical-relativity (NR) waveforms. The NR simulations expand the domain of calibration toward larger mass ratios and spins, as compared to the previous EOBNR model. Merger-ringdown waveforms computed in black-hole perturbation theory for Kerr spins close to extremal provide additional inputs to the calibration. For the inspiral-plunge phase, we use a Markov-chain Monte Carlo algorithm to efficiently explore the calibration space. For the merger-ringdown phase, we fit the NR signals with phenomenological formulae. After extrapolation of the calibrated model to arbitrary mass ratios and spins, the (dominant-mode) EOBNR waveforms have faithfulness—at design Advanced-LIGO sensitivity—above 99% against all the NR waveforms, including 16 additional waveforms used for validation, when maximizing only on initial phase and time. This implies a negligible loss in event rate due to modeling for these binary configurations. We find that future NR simulations at mass ratios ≳4 and double spin ≳0.8 will be crucial to resolving discrepancies between different ways of extrapolating waveform models. We also find that some of the NR simulations that already exist in such region of parameter space are too short to constrain the low-frequency portion of the models. Finally, we build a reduced-order version of the EOBNR model to speed up waveform generation by orders of magnitude, thus enabling intensive data-analysis applications during the upcoming observation runs of Advanced LIGO.

  9. Gravitational effects on global hemodynamics in different postures: A closed-loop multiscale mathematical analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Xiancheng; Noda, Shigeho; Himeno, Ryutaro; Liu, Hao

    2017-06-01

    We present a novel methodology and strategy to predict pressures and flow rates in the global cardiovascular network in different postures varying from supine to upright. A closed-loop, multiscale mathematical model of the entire cardiovascular system (CVS) is developed through an integration of one-dimensional (1D) modeling of the large systemic arteries and veins, and zero-dimensional (0D) lumped-parameter modeling of the heart, the cardiac-pulmonary circulation, the cardiac and venous valves, as well as the microcirculation. A versatile junction model is proposed and incorporated into the 1D model to cope with splitting and/or merging flows across a multibranched junction, which is validated to be capable of estimating both subcritical and supercritical flows while ensuring the mass conservation and total pressure continuity. To model gravitational effects on global hemodynamics during postural change, a robust venous valve model is further established for the 1D venous flows and distributed throughout the entire venous network with consideration of its anatomically realistic numbers and locations. The present integrated model is proven to enable reasonable prediction of pressure and flow rate waveforms associated with cardiopulmonary circulation, systemic circulation in arteries and veins, as well as microcirculation within normal physiological ranges, particularly in mean venous pressures, which well match the in vivo measurements. Applications of the cardiovascular model at different postures demonstrate that gravity exerts remarkable influence on arterial and venous pressures, venous returns and cardiac outputs whereas venous pressures below the heart level show a specific correlation between central venous and hydrostatic pressures in right atrium and veins.

  10. Physiological interpretation of Doppler shift waveforms: the femorodistal segment in combined disease.

    PubMed

    Campbell, W B; Baird, R N; Cole, S E; Evans, J M; Skidmore, R; Woodcock, J P

    1983-01-01

    A new method is presented for assessing the femorodistal segment in multisegmental arterial disease, using the Laplace transform technique of Doppler waveform analysis. Blood velocity/time waveforms were obtained at femoral and ankle levels in three groups of limbs--50 without arterial disease, 12 with isolated aortoiliac stenoses, and 32 with femoropopliteal occlusions, with and without proximal disease. The waveforms were analysed for Laplace transform and pulsatility index values. The omega 0 coefficients of the Laplace transform analysis at femoral and ankle levels were compared in each subject, as the omega 0 gradient (femoral/ankle omega 0): and pulsatility index damping factor (femoral/ankle P1) was also calculated. The omega 0 gradient was shown to detect femoropopliteal occlusion in the presence of multisegmental arterial disease and to give some indication of its haemodynamic significance. The diagnostic accuracy of the omega 0 gradient was superior to that of pulsatility index damping factor. When combined with its existing ability to detect aortoiliac stenosis, this new application of the Laplace transform method offers the possibility both of a system for complete localisation of significant arterial lesions, and potential for follow-up of vascular surgical procedures in the lower limb, from two simple Doppler recordings.

  11. Algorithms used in the Airborne Lidar Processing System (ALPS)

    USGS Publications Warehouse

    Nagle, David B.; Wright, C. Wayne

    2016-05-23

    The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.

  12. Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis

    NASA Astrophysics Data System (ADS)

    Chua, Alvin J. K.; Gair, Jonathan R.

    2015-12-01

    The space-based gravitational-wave detector eLISA has been selected as the ESA L3 mission, and the mission design will be finalized by the end of this decade. To prepare for mission formulation over the next few years, several outstanding and urgent questions in data analysis will be addressed using mock data challenges, informed by instrument measurements from the LISA Pathfinder satellite launching at the end of 2015. These data challenges will require accurate and computationally affordable waveform models for anticipated sources such as the extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes. Previous data challenges have made use of the well-known analytic EMRI waveforms of Barack and Cutler, which are extremely quick to generate but dephase relative to more accurate waveforms within hours, due to their mismatched radial, polar and azimuthal frequencies. In this paper, we describe an augmented Barack-Cutler model that uses a frequency map to the correct Kerr frequencies, along with updated evolution equations and a simple fit to a more accurate model. The augmented waveforms stay in phase for months and may be generated with virtually no additional computational cost.

  13. Computational cost for detecting inspiralling binaries using a network of laser interferometric detectors

    NASA Astrophysics Data System (ADS)

    Pai, Archana; Bose, Sukanta; Dhurandhar, Sanjeev

    2002-04-01

    We extend a coherent network data-analysis strategy developed earlier for detecting Newtonian waveforms to the case of post-Newtonian (PN) waveforms. Since the PN waveform depends on the individual masses of the inspiralling binary, the parameter-space dimension increases by one from that of the Newtonian case. We obtain the number of templates and estimate the computational costs for PN waveforms: for a lower mass limit of 1Msolar, for LIGO-I noise and with 3% maximum mismatch, the online computational speed requirement for single detector is a few Gflops; for a two-detector network it is hundreds of Gflops and for a three-detector network it is tens of Tflops. Apart from idealistic networks, we obtain results for realistic networks comprising of LIGO and VIRGO. Finally, we compare costs incurred in a coincidence detection strategy with those incurred in the coherent strategy detailed above.

  14. Mergers of Black-Hole Binaries with Aligned Spins: Waveform Characteristics

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; McWilliams, Sean T.; Centrella, Joan

    2011-01-01

    "We apply our gravitational-waveform analysis techniques, first presented in the context of nonspinning black holes of varying mass ratio [1], to the complementary case of equal-mass spinning black-hole binary systems. We find that, as with the nonspinning mergers, the dominant waveform modes phases evolve together in lock-step through inspiral and merger, supporting the previous model of the binary system as an adiabatically rigid rotator driving gravitational-wave emission - an implicit rotating source (IRS). We further apply the late-merger model for the rotational frequency introduced in [1], along with a new mode amplitude model appropriate for the dominant (2, plus or minus 2) modes. We demonstrate that this seven-parameter model performs well in matches with the original numerical waveform for system masses above - 150 solar mass, both when the parameters are freely fit, and when they are almost completely constrained by physical considerations."

  15. Particle-in-cell simulation of ion energy distributions on an electrode by applying tailored bias waveforms in the afterglow of a pulsed plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diomede, Paola; Economou, Demetre J.; Donnelly, Vincent M.

    2011-04-15

    A Particle-in-Cell simulation with Monte Carlo Collisions (PIC-MCC) was conducted of the application of tailored DC voltage steps on an electrode, during the afterglow of a capacitively-coupled pulsed-plasma argon discharge, to control the energy of ions incident on the counter-electrode. Staircase voltage waveforms with selected amplitudes and durations resulted in ion energy distributions (IED) with distinct narrow peaks, with controlled energies and fraction of ions under each peak. Temporary electron heating at the moment of application of a DC voltage step did not influence the electron density decay in the afterglow. The IED peaks were 'smeared' by collisions, especially atmore » the higher pressures of the range (10-40 mTorr) investigated.« less

  16. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.

    PubMed

    Swearingen, Kristian E; Moritz, Robert L

    2012-10-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve the detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, the authors review recent developments in LC-FAIMS-MS and its application to MS-based proteomics.

  17. Accoustic waveform logging--Advances in theory and application

    USGS Publications Warehouse

    Paillet, F.L.; Cheng, C.H.; Pennington , W.D.

    1992-01-01

    Full-waveform acoustic logging has made significant advances in both theory and application in recent years, and these advances have greatly increased the capability of log analysts to measure the physical properties of formations. Advances in theory provide the analytical tools required to understand the properties of measured seismic waves, and to relate those properties to such quantities as shear and compressional velocity and attenuation, and primary and fracture porosity and permeability of potential reservoir rocks. The theory demonstrates that all parts of recorded waveforms are related to various modes of propagation, even in the case of dipole and quadrupole source logging. However, the theory also indicates that these mode properties can be used to design velocity and attenuation picking schemes, and shows how source frequency spectra can be selected to optimize results in specific applications. Synthetic microseismogram computations are an effective tool in waveform interpretation theory; they demonstrate how shear arrival picks and mode attenuation can be used to compute shear velocity and intrinsic attenuation, and formation permeability for monopole, dipole and quadrupole sources. Array processing of multi-receiver data offers the opportunity to apply even more sophisticated analysis techniques. Synthetic microseismogram data is used to illustrate the application of the maximum-likelihood method, semblance cross-correlation, and Prony's method analysis techniques to determine seismic velocities and attenuations. The interpretation of acoustic waveform logs is illustrated by reviews of various practical applications, including synthetic seismogram generation, lithology determination, estimation of geomechanical properties in situ, permeability estimation, and design of hydraulic fracture operations.

  18. Response to long-period seismic waves recorded by broadband seismometer and pore pressure sensor at IODP Site C0002, Nankai Trough

    NASA Astrophysics Data System (ADS)

    Kitada, K.; Araki, E.; Kimura, T.; Saffer, D. M.

    2013-12-01

    Long term in situ monitoring of seismic activity, slow slip event, and pore fluid behavior around mega earthquake zone is important for understanding the processes of earthquake generation and strain accumulation. In order to characterize the response to long-period seismic waves, we compared waveforms and hydroseismograms recorded by broadband seismometer and pore pressure transducers, respectively, which were installed at IODP Site C0002 in the Nankai Trough Kumano Basin. The borehole monitoring system sensor array at Site C0002 is designed to collect multiparameter observations covering a dynamic range of events, including local microearthquakes, low frequency earthquakes, and large-scale earthquakes similar to the Tonankai earthquake. The suite of sensors for the downhole portion of the observatory includes a broadband seismometer (CMG3TBD, Guralp Systems Ltd.) with sampling rate of 100Hz at the depth of 907mbsf, and four pressure ports connected to pressure gauges located at 948mbsf, 917mbsf, 766mbsf, and at the seafloor. The sampling rate of the data logger was set to 1Hz after successful connection to the DONET seafloor cable network for real-time monitoring on 24 Jan 2013. Since then, we processed 12 earthquakes between a moment magnitude of 6.5 to 8.3. In addition to the comparison of long-period surface waves waveform and pressure data, we compared the records with theoretical strain seismograms. The latter were calculated by normal mode summation using the earth model PREM of Dziewonski and Anderson (1981). A Butterworth bandpass filter was applied to the records with cut-off frequencies of 0.003 and 0.1 Hz. Our initial results indicate that the hydroseismograms correspond well with the vertical rather than the horizontal (radial and transverse) components in seismic data. The observed hydroseismogram have a good correlation with the predicted volumetric strain seismogram, especially for the Okhotsk (2013/05/24 14:17UT, Mw8.3, 632km depth), the Chishima (2013/04/19 03:05UT, Mw7.2, 109km depth) and the Tokachi (2013/02/02 14:17UT, Mw6.9, 139km depth) earthquakes which occurred around NE offshore Hokkaido, Japan. The amplitude ratio between the waveforms showed a variety of the values ranging from about 0.05 to 0.2 hPa/nano-strain, suggesting the influence of small scale structure on seismic wave propagation at regional and teleseismic distances. These comparisons are important not only to assess the potential of pore pressure for long-period seismology studies, but also to better understand the response of the borehole to crustal deformation.

  19. Detection of Mouse Cough Based on Sound Monitoring and Respiratory Airflow Waveforms

    PubMed Central

    Chen, Liyan; Lai, Kefang; Lomask, Joseph Mark; Jiang, Bert; Zhong, Nanshan

    2013-01-01

    Detection for cough in mice has never yielded clearly audible sounds, so there is still a great deal of debates as to whether mice can cough in response to tussive stimuli. Here we introduce an approach for detection of mouse cough based on sound monitoring and airflow signals. 40 Female BALB/c mice were pretreated with normal saline, codeine, capasazepine or desensitized with capsaicin. Single mouse was put in a plethysmograph, exposed to aerosolized 100 µmol/L capsaicin for 3 min, followed by continuous observation for 3 min. Airflow signals of total 6 min were recorded and analyzed to detect coughs. Simultaneously, mouse cough sounds were sensed by a mini-microphone, monitored manually by an operator. When manual and automatic detection coincided, the cough was positively identified. Sound and sound waveforms were also recorded and filtered for further analysis. Body movements were observed by operator. Manual versus automated counts were compared. Seven types of airflow signals were identified by integrating manual and automated monitoring. Observation of mouse movements and analysis of sound waveforms alone did not produce meaningful data. Mouse cough numbers decreased significantly after all above drugs treatment. The Bland-Altman and consistency analysis between automatic and manual counts was 0.968 and 0.956. The study suggests that the mouse is able to present with cough, which could be detected by sound monitoring and respiratory airflow waveform changes. PMID:23555643

  20. Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis

    NASA Astrophysics Data System (ADS)

    Pietrowski, Wojciech; Górny, Konrad

    2017-12-01

    Recently, interest in new diagnostics methods in a field of induction machines was observed. Research presented in the paper shows the diagnostics of induction machine based on torque pulsation, under inter-turn short-circuit, during start-up of a machine. In the paper three numerical techniques were used: finite element analysis, signal analysis and artificial neural networks (ANN). The elaborated numerical model of faulty machine consists of field, circuit and motion equations. Voltage excited supply allowed to determine the torque waveform during start-up. The inter-turn short-circuit was treated as a galvanic connection between two points of the stator winding. The waveforms were calculated for different amounts of shorted-turns from 0 to 55. Due to the non-stationary waveforms a wavelet packet decomposition was used to perform an analysis of the torque. The obtained results of analysis were used as input vector for ANN. The response of the neural network was the number of shorted-turns in the stator winding. Special attention was paid to compare response of general regression neural network (GRNN) and multi-layer perceptron neural network (MLP). Based on the results of the research, the efficiency of the developed algorithm can be inferred.

  1. Numerical study of a confocal ultrasonic setup for creation of cavitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafond, Maxime, E-mail: maxime.lafond@inserm.fr; Chavrier, Françoise; Prieur, Fabrice

    2015-10-28

    Acoustic cavitation is used for various therapeutic applications such as local enhancement of drug delivery, histotripsy or hyperthermia. One of the utmost important parameter for cavitation creation is the rarefaction pressure. The typical magnitude of the rarefaction pressure required to initiate cavitation from gas dissolved in tissue is beyond the range of the megapascal. Because nonlinear effects need to be taken into account, a numerical simulator based on the Westervelt equation was used to study the pressure waveform and the acoustic field generated by a setup for creation of cavitation consisting of two high intensity focused ultrasound transducers mounted confocally.more » At constant acoustic power, simulations with only one and both transducers from the confocal setup showed that the distortion of the pressure waveform due to the combined effects of nonlinearity and diffraction is less pronounced when both confocal transducers are used. Consequently, the confocal setup generates a greater peak negative pressure at focus which is more favorable for cavitation initiation. Comparison between the confocal setup and a single transducer with the same total emitting surface puts in evidence the role of the spatial separation of the two beams. Furthermore, it has been previously shown that the location of the peak negative pressure created by a single transducer shifts from focus towards the transducers in the presence of nonlinear effects. The simulator was used to study a configuration where the acoustical axes of transducers intersect on the peak negative pressure instead of the geometrical focus. For a representative confocal setup, namely moderate nonlinear effects, a 2% increase of the peak negative pressure and 8% decrease of the peak positive pressure resulted from this configuration. These differences tend to increase by increasing nonlinear effects. Although the optimal position of the transducers varies with the nonlinear regimen, the intersection point remains the location of the peak negative pressure in any case. Thus, unlike the location of the peak negative pressure for a single transducer can shift by a few millimeters, the focal point of a confocal device is independent of the power. This point is particularly important for therapeutic applications, frequently requiring high spatial accuracy. An experiment conducted shows that cavitation creation can be achieved easier with confocal ultrasound.« less

  2. In-vivo fetal ultrasound exposimetry.

    PubMed

    Daft, C W; Siddiqi, T A; Fitting, D W; Meyer, R A; O'Brien, W R

    1990-01-01

    An instrument has been developed to measure the acoustic pressure field in vivo during an obstetric ultrasound examination. This provides for improved intensity values for exposure calculations, to assist in assessment of bioeffects. The ultrasonic field is sampled using a calibrated seven-element linear array hydrophone of poly(vinylidene difluoride) transducers, which is placed as close as possible to the ovary, embryo, or fetus using a vaginal approach. The RF signals from the hydrophone are digitized at 50 MHz, and the maximum amplitude waveform received in the examination is recorded. The output of the clinical B-scanner is calibrated by a measurement with the hydrophone in a water bath. From the hydrophone measurements, the in vivo I(SPTA), I(SPTP), and I(SPPA) are computed. Further analysis allows the frequency-dependent tissue attenuation to be assessed.

  3. Application of computerised penile arterial waveform analysis in the diagnosis of arteriogenic impotence. An initial study in potent and impotent men.

    PubMed

    Desai, K M; Gingell, J C; Skidmore, R; Follett, D H

    1987-11-01

    A new method is described for evaluating arteriogenic impotence by means of noninvasive quantification of penile Doppler arterial waveforms using computerised analysis based on the Laplace Transform model. The haemodynamic changes occurring during a papaverine-induced erection in healthy potent volunteers have been recorded by this technique, which has also been shown to be capable of discriminating between a normal and an abnormal penile arterial supply in an initial study of potent and impotent men.

  4. Inter-device differences in monitoring for goal-directed fluid therapy.

    PubMed

    Thiele, Robert H; Bartels, Karsten; Gan, Tong-Joo

    2015-02-01

    Goal-directed fluid therapy is an integral component of many Enhanced Recovery After Surgery (ERAS) protocols currently in use. The perioperative clinician is faced with a myriad of devices promising to deliver relevant physiologic data to better guide fluid therapy. The goal of this review is to provide concise information to enable the clinician to make an informed decision when choosing a device to guide goal-directed fluid therapy. The focus of many devices used for advanced hemodynamic monitoring is on providing measurements of cardiac output, while other, more recent, devices include estimates of fluid responsiveness based on dynamic indices that better predict an individual's response to a fluid bolus. Currently available technologies include the pulmonary artery catheter, esophageal Doppler, arterial waveform analysis, photoplethysmography, venous oxygen saturation, as well as bioimpedance and bioreactance. The underlying mechanistic principles for each device are presented as well as their performance in clinical trials relevant for goal-directed therapy in ERAS. The ERAS protocols typically involve a multipronged regimen to facilitate early recovery after surgery. Optimizing perioperative fluid therapy is a key component of these efforts. While no technology is without limitations, the majority of the currently available literature suggests esophageal Doppler and arterial waveform analysis to be the most desirable choices to guide fluid administration. Their performance is dependent, in part, on the interpretation of dynamic changes resulting from intrathoracic pressure fluctuations encountered during mechanical ventilation. Evolving practice patterns, such as low tidal volume ventilation as well as the necessity to guide fluid therapy in spontaneously breathing patients, will require further investigation.

  5. Nonlinear Analyses of Elicited Modal, Raised, and Pressed Rabbit Phonation

    PubMed Central

    Awan, Shaheen N.; Novaleski, Carolyn K.; Rousseau, Bernard

    2014-01-01

    Objectives/Hypothesis The purpose of this study was to use nonlinear dynamic analysis methods such as phase space portraits and correlation dimension (D2) as well as descriptive spectrographic analyses to characterize acoustic signals produced during evoked rabbit phonation. Methods Seventeen New Zealand white breeder rabbits were used to perform the study. A Grass S-88 stimulator (SA Instrumentation, Encinitas, CA) and constant current isolation unit (Grass Telefactor, model PSIU6; West Warwick, RI) were used to provide electrical stimulation to laryngeal musculature, and transglottal airflow rate and stimulation current (mA) were manipulated to elicit modal, raised intensity, and pressed phonations. Central 1 second portions of the most stable portion of the acoustic waveform for modal, raised intensity, and pressed phonations were edited, and then analyzed via phase space portraits, Poincaré sections, and the estimation of the correlation dimension (D2). In an attempt to limit the effects of the highly variable and nonstationary characteristics of some of the signals being analyzed, D2 analysis was also performed on the most stable central 200 ms portion of the acoustic waveform. Descriptive analysis of each phonation was also conducted using sound spectrograms. Results Results showed that the complexity of phonation and the subsequent acoustic waveform is increased as transglottal airflow rate and degree of glottal adduction is manipulated in the evoked rabbit phonation model. In particular, phonatory complexity, as quantified via correlation dimension analyses and demonstrated via spectrographic characteristics, increases from “modal” (i.e., phonation elicited at just above the phonation threshold pressure) to raised intensity (phonation elicited by increasing transglottal airflow rate) to pressed (phonation elicited by increasing the stimulation current delivered to the larynx). Variations in a single dynamic dimension (airflow rate or adductory force) resulted in significantly increased productions of nonlinear phenomenon, including bifurcations from periodicity to regions of subharmonic content, F0 and harmonic jumps, and evidence of periodicity within aperiodic regions (“chaos”). Conclusions The evoked rabbit phonation model described in this study allows for the elicitation of various types of phonations under controlled conditions and therefore, has the potential to provide insight regarding important variables that may elicit examples of nonlinear phenomena such as subharmonics and deterministic chaos. PMID:24836360

  6. General purpose pulse shape analysis for fast scintillators implemented in digital readout electronics

    NASA Astrophysics Data System (ADS)

    Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.

    2016-01-01

    Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.

  7. Multivariate Formation Pressure Prediction with Seismic-derived Petrophysical Properties from Prestack AVO inversion and Poststack Seismic Motion Inversion

    NASA Astrophysics Data System (ADS)

    Yu, H.; Gu, H.

    2017-12-01

    A novel multivariate seismic formation pressure prediction methodology is presented, which incorporates high-resolution seismic velocity data from prestack AVO inversion, and petrophysical data (porosity and shale volume) derived from poststack seismic motion inversion. In contrast to traditional seismic formation prediction methods, the proposed methodology is based on a multivariate pressure prediction model and utilizes a trace-by-trace multivariate regression analysis on seismic-derived petrophysical properties to calibrate model parameters in order to make accurate predictions with higher resolution in both vertical and lateral directions. With prestack time migration velocity as initial velocity model, an AVO inversion was first applied to prestack dataset to obtain high-resolution seismic velocity with higher frequency that is to be used as the velocity input for seismic pressure prediction, and the density dataset to calculate accurate Overburden Pressure (OBP). Seismic Motion Inversion (SMI) is an inversion technique based on Markov Chain Monte Carlo simulation. Both structural variability and similarity of seismic waveform are used to incorporate well log data to characterize the variability of the property to be obtained. In this research, porosity and shale volume are first interpreted on well logs, and then combined with poststack seismic data using SMI to build porosity and shale volume datasets for seismic pressure prediction. A multivariate effective stress model is used to convert velocity, porosity and shale volume datasets to effective stress. After a thorough study of the regional stratigraphic and sedimentary characteristics, a regional normally compacted interval model is built, and then the coefficients in the multivariate prediction model are determined in a trace-by-trace multivariate regression analysis on the petrophysical data. The coefficients are used to convert velocity, porosity and shale volume datasets to effective stress and then to calculate formation pressure with OBP. Application of the proposed methodology to a research area in East China Sea has proved that the method can bridge the gap between seismic and well log pressure prediction and give predicted pressure values close to pressure meassurements from well testing.

  8. Computer program for analysis of hemodynamic response to head-up tilt test

    NASA Astrophysics Data System (ADS)

    ŚwiÄ tek, Eliza; Cybulski, Gerard; Koźluk, Edward; PiÄ tkowska, Agnieszka; Niewiadomski, Wiktor

    2014-11-01

    The aim of this work was to create a computer program, written in the MATLAB environment, which enables the visualization and analysis of hemodynamic parameters recorded during a passive tilt test using the CNS Task Force Monitor System. The application was created to help in the assessment of the relationship between the values and dynamics of changes of the selected parameters and the risk of orthostatic syncope. The signal analysis included: R-R intervals (RRI), heart rate (HR), systolic blood pressure (sBP), diastolic blood pressure (dBP), mean blood pressure (mBP), stroke volume (SV), stroke index (SI), cardiac output (CO), cardiac index (CI), total peripheral resistance (TPR), total peripheral resistance index (TPRI), ventricular ejection time (LVET) and thoracic fluid content (TFC). The program enables the user to visualize waveforms for a selected parameter and to perform smoothing with selected moving average parameters. It allows one to construct the graph of means for any range, and the Poincare plot for a selected time range. The program automatically determines the average value of the parameter before tilt, its minimum and maximum value immediately after changing positions and the times of their occurrence. It is possible to correct the automatically detected points manually. For the RR interval, it determines the acceleration index (AI) and the brake index (BI). It is possible to save calculated values to an XLS with a name specified by user. The application has a user-friendly graphical interface and can run on a computer that has no MATLAB software.

  9. Computer Analysis of 400 HZ Aircraft Electrical Generator Test Data.

    DTIC Science & Technology

    1980-06-01

    Data Acquisition System. ............ 6 3 Voltage Waveform with Data Points. ....... 19 14 Zero Crossover Interpolation. ........ 20 5 Numerical...difference between successive positive-sloped zero crossovers of the waveform. However, the exact time of zero crossover is not known. This is because...data sampling and the generator output are not synchronized. This unsynchronization means that data points which correspond with an exact zero crossover

  10. Evaluation of Standard Versus Nonstandard Vital Signs Monitors in the Prehospital and Emergency Departments: Results and Lessons Learned from a Trauma Patient Care Protocol

    DTIC Science & Technology

    2014-04-24

    single lead and pleth waveform data from a thumb-mounted pulse oximeter to the WVSM were recorded at rates of 230 Hz and 75 Hz, respectively. For...were also used to derive other measurements including shock index (shock index = HR / SBP) and pulse pres- sure ( pulse pressure = SBP j diastolic

  11. Combustion stability with baffles, absorbers and velocity sensitive combustion. [liquid propellant rocket combustors

    NASA Technical Reports Server (NTRS)

    Mitchell, C. E.

    1980-01-01

    Analytical and computational techniques were developed to predict the stability behavior of liquid propellant rocket combustors using damping devices such as acoustic liners, slot absorbers, and injector face baffles. Models were developed to determine the frequency and decay rate of combustor oscillations, the spatial and temporal pressure waveforms, and the stability limits in terms of combustion response model parameters.

  12. Tectonic Tremor analysis with the Taiwan Chelungpu-Fault Drilling Program (TCDP) downhole seismometer array

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Hillers, G.; Ma, K.; Campillo, M.

    2011-12-01

    We study tectonic tremor activity in the Taichung area, Taiwan, analyzing continuous seismic records from 6 short-period sensors of the TCDP borehole array situated around 1 km depth. The low background noise level facilitates the detection of low-amplitude tectonic tremor and low-frequency earthquake (LFE) waveforms. We apply a hierarchical analysis to first detect transient amplitude increases, and to subsequently verify its tectonic origin, i.e. to associate it with tremor signals. The frequency content of tremor usually exceeds the background noise around 2-8 Hz; hence, in the first step, we use BHS1, BHS4 and BHS7 (top, center, bottom sensor) records to detect amplitude anomalies in this frequency range. We calculate the smoothed spectra of 30 second non-overlapping windows taken daily from 5 night time hours to avoid increased day time amplitudes associated with cultural activities. Amplitude detection is then performed on frequency dependent median values of 5 minute advancing, 10 minute long time windows, yielding a series of threshold dependent increased-energy spectra-envelopes, indicating teleseismic waveforms, potential tremor records, or other transients related to anthropogenic or natural sources. To verify the transients' tectonic origin, potential tremor waveforms detected by the amplitude method are manually picked in the time domain. We apply the Brown et al. (2008) LFE matched filter technique to three-component data from the 6 available sensors. Initial few-second templates are taken from the analyst-picked, minute-long segments, and correlated component-wise with 24-h data. Significantly increased similarity between templates and matched waveform segments is detected using the array-average 7-fold MAD measure. Harvested waveforms associated with this initial `weak' detection are stacked, and the thus created master templates are used in an iterative correlation procedure to arrive at robust LFE detections. The increased similarity of waveforms, showing essentially no moveout across the array, suggests a common source and path effect, therefore increasing the likelihood of a tectonic origin. Preliminary results from a pilot analysis confirm the existence of tremor-like signals in the tremor-typical frequency range. We present results from a comprehensive analysis of at least 2 years of continuous data. A limited resolution location procedure is applied, testament to the receiver geometry, and the inferred locations are discussed in relation to the tectonic situation.

  13. Alterations of pulsation absorber characteristics in experimental hydrocephalus.

    PubMed

    Park, Eun-Hyoung; Dombrowski, Stephen; Luciano, Mark; Zurakowski, David; Madsen, Joseph R

    2010-08-01

    Analysis of waveform data in previous studies suggests that the pulsatile movement of CSF may play a role in attenuating strong arterial pulsations entering the cranium, and its effectiveness in attenuating these pulsations may be altered by changes in intracranial pressure (ICP). These findings were obtained in studies performed in canines with normal anatomy of the CSF spaces. How then would pulsation absorbance respond to changes in CSF movement under obstructive conditions such as the development of hydrocephalus? In the present study, chronic obstructive hydrocephalus was induced by the injection of cyanoacrylate gel into the fourth ventricle of canines, and pulsation absorbance was compared before and after hydrocephalus induction. Five animals were evaluated with simultaneous recordings of ICP and arterial blood pressure (ABP) before and at 4 and 12 weeks after fourth ventricle obstruction by cyanoacrylate. To assess how the intracranial system responds to the arterial pulsatile component, ABP and ICP waveforms recorded in a time domain had to be analyzed in a frequency domain. In an earlier study the authors introduced a particular technique that allows characterization of the intracranial system in the frequency domain with sufficient accuracy and efficiency. This same method was used to analyze the relationship between ABP and ICP waveforms recorded during several acute states including hyperventilation as well as CSF withdrawal and infusion under conditions before and after inducing chronic obstructive hydrocephalus. Such a relationship is reflected in terms of a gain, which is a function of frequency. The cardiac pulsation absorbance (CPA) index, which is simply derived from a gain evaluated at the cardiac frequency, was used to quantitatively evaluate the changes in pulsation absorber function associated with the development of hydrocephalus within each of the animals, which did become hydrocephalic. To account for normal and hydrocephalic conditions within the same animal and at multiple time points, statistical analysis was performed by repeated-measures ANOVA. The performance of the pulsation absorber as assessed by CPA significantly deteriorated after the development of chronic hydrocephalus. In these animals the decrement in CPA was far more significant than other anticipated changes including those in ICP, compliance, or ICP pulse amplitude. To the extent that the free CSF movement acts as a buffer of arterial pulsation input to flow in microvessels, alterations in the pulsation absorber may play a pathophysiological role. One measure of alterations in the way the brain deals with pulsatile input-the CPA measurement-changes dramatically with the imposition of hydrocephalus. Results in the present study suggest that CPA may serve as a complementary metric to the conventional static measure of intracranial compliance in other experimental and clinical studies.

  14. Ultrasonic Bolt Gage

    NASA Technical Reports Server (NTRS)

    Gleman, Stuart M. (Inventor); Rowe, Geoffrey K. (Inventor)

    1999-01-01

    An ultrasonic bolt gage is described which uses a crosscorrelation algorithm to determine a tension applied to a fastener, such as a bolt. The cross-correlation analysis is preferably performed using a processor operating on a series of captured ultrasonic echo waveforms. The ultrasonic bolt gage is further described as using the captured ultrasonic echo waveforms to perform additional modes of analysis, such as feature recognition. Multiple tension data outputs, therefore, can be obtained from a single data acquisition for increased measurement reliability. In addition, one embodiment of the gage has been described as multi-channel, having a multiplexer for performing a tension analysis on one of a plurality of bolts.

  15. Intracranial pressure dynamics during simulated microgravity using a new noninvasive ultrasonic technique

    NASA Technical Reports Server (NTRS)

    Ueno, T.; Ballard, R. E.; Shuer, L. M.; Yost, W. T.; Cantrell, J. H.; Hargens, A. R.

    1998-01-01

    It is believed that intracranial pressure (ICP) may be elevated in microgravity because a fluid shift toward the head occurs due to loss of gravitational blood pressures. Elevated ICP may contribute to space adaptation syndrome, because as widely observed in clinical settings, elevated ICP causes headache, nausea, and projectile vomiting, which are similar to symptoms of space adaptation syndrome. However, the hypothesis that ICP is altered in microgravity is difficult to test because of the invasiveness of currently-available techniques. We have developed a new ultrasonic technique, which allows us to record ICP waveforms noninvasively. The present study was designed to understand postural effects on ICP and assess the feasibility of our new device in future flight experiments.

  16. Design of the biosonar simulator for dolphin's clicks waveform reproduction

    NASA Astrophysics Data System (ADS)

    Ishii, Ken; Akamatsu, Tomonari; Hatakeyama, Yoshimi

    1992-03-01

    The emitted clicks of Dall's porpoises consist of a pulse train of burst signals with an ultrasonic carrier frequency. The authors have designed a biosonar simulator to reproduce the waveforms associated with a dolphin's clicks underwater. The total reproduction system consists of a click signal acquisition block, a waveform analysis block, a memory unit, a click simulator, and a underwater, ultrasonic wave transmitter. In operation, data stored in an EPROM (Erasable Programmable Read Only Memory) are read out sequentially by a fast clock and converted to analog output signals. Then an ultrasonic power amplifier reproduces these signals through a transmitter. The click signal replaying block is referred to as the BSS (Biosonar Simulator). This is what simulates the clicks. The details of the BSS are described in this report. A unit waveform is defined. The waveform is divided into a burst period and a waiting period. Clicks are a sequence based on a unit waveform, and digital data are sequentially read out from an EPROM of waveform data. The basic parameters of the BSS are as follows: (1) reading clock, 100 ns to 25.4 microseconds; (2) number of reading clock, 34 to 1024 times; (3) counter clock in a waiting period, 100 ns to 25.4 microseconds; (4) number of counter clock, zero to 16,777,215 times; (5) number of burst/waiting repetition cycle, one to 128 times; and (6) transmission level adjustment by a programmable attenuator, zero to 86.5 dB. These basic functions enable the BSS to replay clicks of Dall's porpoise precisely.

  17. CFD Predictions of Sonic-Boom Characteristics for Unmodified and Modified SR-71 Configurations

    NASA Technical Reports Server (NTRS)

    Fouladi, Kamran

    1999-01-01

    Shaped sonic-boom signatures refer to signatures that look something other than the typical N-waves. Shaped sonic-boom signatures such as "flat-top," "ramp-type," or "hybrid-type" waveforms have been shown to reduce the subjective loudness without requiring reductions in overpressure peaks. The shaping of sonic-boom signatures requires increasing the shock rise time and changes in frequency spectra. So far, a flat-top waveform was shown to be achievable in wind tunnels; however, the influence of long propagation distance and real atmosphere on shaped signatures should be addressed using flight tests. Two different approaches have been proposed for sonic-boom minimization flight tests. The first approach, proposed by Eagle Aerospace, is for a flight test using a modified BQM-34 "FIREBEE" remotely piloted vehicle. The 30-foot long FIREBEE has a steady state flight condition at the Mach number and altitude of interest, and it can be recovered by helicopter from the water. As an alternative approach, a modified SR-71 vehicle has been proposed by the McDonnell Douglas Corporation. Benefits of the SR-71 include its variable geometry supersonic inlets, small cockpit bulge, higher Mach number capabilities, slender design, and longer length (105 foot). The present investigation addresses the sonic-boom analysis for the second vehicle.The objective of the current investigation is to assess the feasibility of a modified SR-71 configuration, with McDonnell Douglas-designed fuselage modifications, intended to produce shaped sonic-boom signatures on the ground. The present study describes the use of a higher-order computational fluid dynamics (CFD) method to predict the sonic-boom characteristics for both unmodified and modified SR-71 configurations. An Euler unstructured grid methodology is used to predict the near-field, three-dimensional pressure patterns generated by both SR-71 models. The computed near-field pressure signatures are extrapolated to specified distances below the aircraft down to impingement on the ground using the code MDBOOM. Comparisons of the near-field pressure signatures with available flight-test data are presented in the current paper.

  18. Algorithm theoretical basis for GEDI level-4A footprint above ground biomass density.

    NASA Astrophysics Data System (ADS)

    Kellner, J. R.; Armston, J.; Blair, J. B.; Duncanson, L.; Hancock, S.; Hofton, M. A.; Luthcke, S. B.; Marselis, S.; Tang, H.; Dubayah, R.

    2017-12-01

    The Global Ecosystem Dynamics Investigation is a NASA Earth-Venture-2 mission that will place a multi-beam waveform lidar instrument on the International Space Station. GEDI data will provide globally representative measurements of vertical height profiles (waveforms) and estimates of above ground carbon stocks throughout the planet's temperate and tropical regions. Here we describe the current algorithm theoretical basis for the L4A footprint above ground biomass data product. The L4A data product is above ground biomass density (AGBD, Mg · ha-1) at the scale of individual GEDI footprints (25 m diameter). Footprint AGBD is derived from statistical models that relate waveform height metrics to field-estimated above ground biomass. The field estimates are from long-term permanent plot inventories in which all free-standing woody plants greater than a diameter size threshold have been identified and mapped. We simulated GEDI waveforms from discrete-return airborne lidar data using the GEDI waveform simulator. We associated height metrics from simulated waveforms with field-estimated AGBD at 61 sites in temperate and tropical regions of North and South America, Europe, Africa, Asia and Australia. We evaluated the ability of empirical and physically-based regression and machine learning models to predict AGBD at the footprint level. Our analysis benchmarks the performance of these models in terms of site and region-specific accuracy and transferability using a globally comprehensive calibration and validation dataset.

  19. Classifying and retracking altimeter waveforms over wetlands: A case study in the Hsiang-Shan wetland, Taiwan

    NASA Astrophysics Data System (ADS)

    Huan Chin, K.; Wei Ming, C.; Chung-Yen, K.; Tseng, K. H.; Shum, C. K.; Hwang, C.; Cheng, K. C.

    2017-12-01

    A coastal wetland is an area saturated with fresh to saline water, and has a distinct ecological system. Taiwan has abundant wetlands, and some of them contain altimeter measurements from the Enivsat and TOPEX/Poseidon series of satellites. Typically, such measurements are refined to provide additional sea level measurements over tide gauge data. Often, here the refinements have limitations because of the contaminations of altimeter waveforms and improper geophysical corrections. In this study, we classify Envisat and SARAL/Altika waveforms over coastal areas of Taiwan using the Linear Discriminant Analysis (LDA). Three types of waveforms are identified: coastal ocean, wetland and land-noise waveforms. We carry out a case study over Hsinchu's Hsiang-Shan wetland in northern Taiwan. The coastal ocean and wetland waveforms, are retracked by two different retrackers, with the main objective of improving the accuracy of sea surface height measurements. The result is then assessed by measurements from a nearby tide gauge and modeled geoidal heights from EGM2008. Some of the parameters in our retrackers are associated with the surface and sub-surface properties of the Hsiang-Shan wetland. The space-time evolutions of these parameters can reflect wetland changes due to factors such as changes in sedimentation and soil moisture. This presentation will show how coastal altimeter data can benefit wetland studies.

  20. Waveform Template Matching and Analysis of Hydroacoustic Events from the April-May 2015 Eruption of Axial Volcano

    NASA Astrophysics Data System (ADS)

    Mann, M. E.; Bohnenstiehl, D. R.; Weis, J.

    2016-12-01

    The submarine emplacement of new lava flows during the 2015 eruption of Axial Volcano generated a series of impulsive acoustic signals that were captured by seismic and hydrophone sensors deployed as part of the Ocean Observatories Initiative cabled array network. A catalog of >37,000 explosions was created using a four-channel waveform matching routine using 800 template arrivals. Most of the explosions are sourced from a set of lava mounds erupted along the volcano's northern rift; however, a subset of 400 explosions are located within the caldera and track the flow of lava from a vent near its eastern rim. The earliest explosion occurs at 08:00 UTC on April 24, approximately four hours after the seismicity rate began to increase and two hours after bottom pressure recorders indicate the caldera floor began to subside. Between April 24 and 28 event rates are sustained at 1000/day. The rate then decreases gradually with explosive activity ending on 21 May, coincident with the initial re-inflation of the caldera. The windowed coefficient of variation of the inter-event time is approximately 1 throughout the eruption, consistent with a random process. The size-frequency distribution shows a bimodal pattern, with the loudest explosions, having received levels up to 157 dB re 1 micro-Pa, being produced during the first few hours of the eruption.

  1. Determining arterial wave transit time from a single aortic pressure pulse in rats: vascular impulse response analysis.

    PubMed

    Chang, Ru-Wen; Chang, Chun-Yi; Lai, Liang-Chuan; Wu, Ming-Shiou; Young, Tai-Horng; Chen, Yih-Sharng; Wang, Chih-Hsien; Chang, Kuo-Chu

    2017-01-19

    Arterial wave transit time (τ w ) in the lower body circulation is an effective biomarker of cardiovascular risk that substantially affects systolic workload imposed on the heart. This study evaluated a method for determining τ w from the vascular impulse response on the basis of the measured aortic pressure and an assumed triangular flow (Q tri ). The base of the unknown Q tri was constructed with a duration set equal to ejection time. The timing of the peak triangle was derived using a fourth-order derivative of the pressure waveform. Values of τ w s obtained using Q tri were compared with those obtained from the measure aortic flow wave (Q m ). Healthy rats (n = 27), rats with chronic kidney disease (CKD; n = 22), and rats with type 1 (n = 22) or type 2 (n = 11) diabetes were analyzed. The cardiovascular conditions in the CKD rats and both diabetic groups were characterized by a decrease in τ w s. The following significant relation was observed (P < 0.0001): τ w triQ  = -1.5709 + 1.0604 × τ w mQ (r 2  = 0.9641). Our finding indicates that aortic impulse response can be an effective method for the estimation of arterial τ w by using a single pressure recording together with the assumed Q tri .

  2. Low frequency AC waveform generator

    DOEpatents

    Bilharz, Oscar W.

    1986-01-01

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stabilization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform itself. The cosine is synthesized by squaring the triangular waveform, raising the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  3. The use of in-flight foot pressure as a countermeasure to neuromuscular degradation

    NASA Technical Reports Server (NTRS)

    Layne, C. S.; Mulavara, A. P.; Pruett, C. J.; McDonald, P. V.; Kozlovskaya, I. B.; Bloomberg, J. J.

    1998-01-01

    The purpose of this study was to determine whether applying foot pressure to unrestrained subjects during space flight could enhance the neuromuscular activation associated with rapid arm movements. Four men performed unilateral arm raises while wearing--or not wearing--specially designed boots during a 81- or 115-day space flight. Arm acceleration and surface EMG were obtained from selected lower limb and trunk muscles. Pearson r coefficients were used to evaluate similarity in phasic patterns between the two in-flight conditions. In-flight data also were magnitude normalized to the mean voltage value of the muscle activation waveforms obtained during the no-foot-pressure condition to facilitate comparison of activation amplitude between the two in-flight conditions. Foot pressure enhanced neuromuscular activation and somewhat modified the phasic features of the neuromuscular activation during the arm raises.

  4. Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion

    USGS Publications Warehouse

    Pecher, I.A.; Minshull, T.A.; Singh, S.C.; von Huene, Roland E.

    1996-01-01

    Much of our knowledge of the worldwide distribution of submarine gas hydrates comes from seismic observations of Bottom Simulating Reflectors (BSRs). Full waveform inversion has proven to be a reliable technique for studying the fine structure of BSRs using the compressional wave velocity. We applied a non-linear full waveform inversion technique to a BSR at a location offshore Peru. We first determined the large-scale features of seismic velocity variations using a statistical inversion technique to maximise coherent energy along travel-time curves. These velocities were used for a starting velocity model for the full waveform inversion, which yielded a detailed velocity/depth model in the vicinity of the BSR. We found that the data are best fit by a model in which the BSR consists of a thin, low-velocity layer. The compressional wave velocity drops from 2.15 km/s down to an average of 1.70 km/s in an 18m thick interval, with a minimum velocity of 1.62 km/s in a 6 m interval. The resulting compressional wave velocity was used to estimate gas content in the sediments. Our results suggest that the low velocity layer is a 6-18 m thick zone containing a few percent of free gas in the pore space. The presence of the BSR coincides with a region of vertical uplift. Therefore, we suggest that gas at this BSR is formed by a dissociation of hydrates at the base of the hydrate stability zone due to uplift and subsequently a decrease in pressure.

  5. EDDIE Seismology: Introductory spectral analysis for undergraduates

    NASA Astrophysics Data System (ADS)

    Soule, D. C.; Gougis, R.; O'Reilly, C.

    2016-12-01

    We present a spectral seismology lesson in which students use spectral analysis to describe the frequency of seismic arrivals based on a conceptual presentation of waveforms and filters. The goal is for students to surpass basic waveform terminology and relate a time domain signals to their conjugates in the frequency domain. Although seismology instruction commonly engages students in analysis of authentic seismological data, this is less true for lower-level undergraduate seismology instruction due to coding barriers to many seismological analysis tasks. To address this, our module uses Seismic Canvas (Kroeger, 2015; https://seiscode.iris.washington.edu/projects/seismiccanvas), a graphically interactive application for accessing, viewing and analyzing waveform data, which we use to plot earthquake data in the time domain. Once students are familiarized with the general components of the waveform (i.e. frequency, wavelength, amplitude and period), they use Seismic Canvas to transform the data into the frequency domain. Bypassing the mathematics of Fourier Series allows focus on conceptual understanding by plotting and manipulating seismic data in both time and frequency domains. Pre/post-tests showed significant improvements in students' use of seismograms and spectrograms to estimate the frequency content of the primary wave, which demonstrated students' understanding of frequency and how data on the spectrogram and seismogram are related. Students were also able to identify the time and frequency of the largest amplitude arrival, indicating understanding of amplitude and use of a spectrogram as an analysis tool. Students were also asked to compare plots of raw data and the same data filtered with a high-pass filter, and identify the filter used to create the second plot. Students demonstrated an improved understanding of how frequency content can be removed from a signal in the spectral domain.

  6. Replicating human expertise of mechanical ventilation waveform analysis in detecting patient-ventilator cycling asynchrony using machine learning.

    PubMed

    Gholami, Behnood; Phan, Timothy S; Haddad, Wassim M; Cason, Andrew; Mullis, Jerry; Price, Levi; Bailey, James M

    2018-06-01

    - Acute respiratory failure is one of the most common problems encountered in intensive care units (ICU) and mechanical ventilation is the mainstay of supportive therapy for such patients. A mismatch between ventilator delivery and patient demand is referred to as patient-ventilator asynchrony (PVA). An important hurdle in addressing PVA is the lack of a reliable framework for continuously and automatically monitoring the patient and detecting various types of PVA. - The problem of replicating human expertise of waveform analysis for detecting cycling asynchrony (i.e., delayed termination, premature termination, or none) was investigated in a pilot study involving 11 patients in the ICU under invasive mechanical ventilation. A machine learning framework is used to detect cycling asynchrony based on waveform analysis. - A panel of five experts with experience in PVA evaluated a total of 1377 breath cycles from 11 mechanically ventilated critical care patients. The majority vote was used to label each breath cycle according to cycling asynchrony type. The proposed framework accurately detected the presence or absence of cycling asynchrony with sensitivity (specificity) of 89% (99%), 94% (98%), and 97% (93%) for delayed termination, premature termination, and no cycling asynchrony, respectively. The system showed strong agreement with human experts as reflected by the kappa coefficients of 0.90, 0.91, and 0.90 for delayed termination, premature termination, and no cycling asynchrony, respectively. - The pilot study establishes the feasibility of using a machine learning framework to provide waveform analysis equivalent to an expert human. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Ability of ICU Health-Care Professionals to Identify Patient-Ventilator Asynchrony Using Waveform Analysis.

    PubMed

    Ramirez, Ivan I; Arellano, Daniel H; Adasme, Rodrigo S; Landeros, Jose M; Salinas, Francisco A; Vargas, Alvaro G; Vasquez, Francisco J; Lobos, Ignacio A; Oyarzun, Magdalena L; Restrepo, Ruben D

    2017-02-01

    Waveform analysis by visual inspection can be a reliable, noninvasive, and useful tool for detecting patient-ventilator asynchrony. However, it is a skill that requires a properly trained professional. This observational study was conducted in 17 urban ICUs. Health-care professionals (HCPs) working in these ICUs were asked to recognize different types of asynchrony shown in 3 evaluation videos. The health-care professionals were categorized according to years of experience, prior training in mechanical ventilation, profession, and number of asynchronies identified correctly. A total of 366 HCPs were evaluated. Statistically significant differences were found when HCPs with and without prior training in mechanical ventilation (trained vs non-trained HCPs) were compared according to the number of asynchronies detected correctly (of the HCPs who identified 3 asynchronies, 63 [81%] trained vs 15 [19%] non-trained, P < .001; 2 asynchronies, 72 [65%] trained vs 39 [35%] non-trained, P = .034; 1 asynchrony, 55 [47%] trained vs 61 [53%] non-trained, P = .02; 0 asynchronies, 17 [28%] trained vs 44 [72%] non-trained, P < .001). HCPs who had prior training in mechanical ventilation also increased, nearly 4-fold, their odds of identifying ≥2 asynchronies correctly (odds ratio 3.67, 95% CI 1.93-6.96, P < .001). However, neither years of experience nor profession were associated with the ability of HCPs to identify asynchrony. HCPs who have specific training in mechanical ventilation increase their ability to identify asynchrony using waveform analysis. Neither experience nor profession proved to be a relevant factor to identify asynchrony correctly using waveform analysis. Copyright © 2017 by Daedalus Enterprises.

  8. Making and Testing Hybrid Gravitational Waves from Colliding Black Holes and Neutron Stars

    NASA Astrophysics Data System (ADS)

    Garcia, Alyssa; Lovelace, Geoffrey; SXS Collaboration

    2016-03-01

    The Laser Interferometer Gravitational-wave Observatory (LIGO) is a detector that is currently working to observe gravitational waves (GW) from astronomical sources, such as colliding black holes and neutron stars, which are among LIGO's most promising sources. Observing as many waves as possible requires accurate predictions of what the waves look like, which are only possible with numerical simulations. In this poster, I will present results from new simulations of colliding black holes made using the Spectral Einstein Code (SpEC). In particular, I will present results for extending new and existing waveforms and using an open-source library. To construct a waveform that spans the frequency range where LIGO is most sensitive, we combine inexpensive, post-Newtonian approximate waveforms (valid far from merger) and numerical relativity waveforms (valid near the time of merger, when all approximations fail), making a hybrid GW. This work is one part of a new prototype framework for Numerical INJection Analysis with Matter (Matter NINJA). The complete Matter NINJA prototype will test GW search pipelines' abilities to find hybrid waveforms, from simulations containing matter (such as black hole-neutron star binaries), hidden in simulated detector noise.

  9. Max dD/Dt: A Novel Parameter to Assess Fetal Cardiac Contractility and a Substitute for Max dP/Dt.

    PubMed

    Fujita, Yasuyuki; Kiyokoba, Ryo; Yumoto, Yasuo; Kato, Kiyoko

    2018-07-01

    Aortic pulse waveforms are composed of a forward wave from the heart and a reflection wave from the periphery. We focused on this forward wave and suggested a new parameter, the maximum slope of aortic pulse waveforms (max dD/dt), for fetal cardiac contractility. Max dD/dt was calculated from fetal aortic pulse waveforms recorded with an echo-tracking system. A normal range of max dD/dt was constructed in 105 healthy fetuses using linear regression analysis. Twenty-two fetuses with suspected fetal cardiac dysfunction were divided into normal and decreased max dD/dt groups, and their clinical parameters were compared. Max dD/dt of aortic pulse waveforms increased linearly with advancing gestational age (r = 0.93). The decreased max dD/dt was associated with abnormal cardiotocography findings and short- and long-term prognosis. In conclusion, max dD/dt calculated from the aortic pulse waveforms in fetuses can substitute for max dP/dt, an index of cardiac contractility in adults. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  10. Optimal Pulse Configuration Design for Heart Stimulation. A Theoretical, Numerical and Experimental Study.

    NASA Astrophysics Data System (ADS)

    Hardy, Neil; Dvir, Hila; Fenton, Flavio

    Existing pacemakers consider the rectangular pulse to be the optimal form of stimulation current. However, other waveforms for the use of pacemakers could save energy while still stimulating the heart. We aim to find the optimal waveform for pacemaker use, and to offer a theoretical explanation for its advantage. Since the pacemaker battery is a charge source, here we probe the stimulation current waveforms with respect to the total charge delivery. In this talk we present theoretical analysis and numerical simulations of myocyte ion-channel currents acting as an additional source of charge that adds to the external stimulating charge for stimulation purposes. Therefore, we find that as the action potential emerges, the external stimulating current can be reduced accordingly exponentially. We then performed experimental studies in rabbit and cat hearts and showed that indeed exponential truncated pulses with less total charge can still induce activation in the heart. From the experiments, we present curves showing the savings in charge as a function of exponential waveform and we calculated that the longevity of the pacemaker battery would be ten times higher for the exponential current compared to the rectangular waveforms. Thanks to Petit Undergraduate Research Scholars Program and NSF# 1413037.

  11. Is amplitude loss of sonic waveforms due to intrinsic attenuation or source coupling to the medium?

    USGS Publications Warehouse

    Lee, Myung W.

    2006-01-01

    Sonic waveforms acquired in gas-hydrate-bearing sediments indicate strong amplitude loss associated with an increase in sonic velocity. Because the gas hydrate increases sonic velocities, the amplitude loss has been interpreted as due to intrinsic attenuation caused by the gas hydrate in the pore space, which apparently contradicts conventional wave propagation theory. For a sonic source in a fluid-filled borehole, the signal amplitude transmitted into the formation depends on the physical properties of the formation, including any pore contents, in the immediate vicinity of the source. A signal in acoustically fast material, such as gas-hydrate-bearing sediments, has a smaller amplitude than a signal in acoustically slower material. Therefore, it is reasonable to interpret the amplitude loss in the gas-hydrate-bearing sediments in terms of source coupling to the surrounding medium as well as intrinsic attenuation. An analysis of sonic waveforms measured at the Mallik 5L-38 well, Northwest Territories, Canada, indicates that a significant part of the sonic waveform's amplitude loss is due to a source-coupling effect. All amplitude analyses of sonic waveforms should include the effect of source coupling in order to accurately characterize the formation's intrinsic attenuation.

  12. Comparison of an oscillometric method with cardiac magnetic resonance for the analysis of aortic pulse wave velocity.

    PubMed

    Feistritzer, Hans-Josef; Reinstadler, Sebastian J; Klug, Gert; Kremser, Christian; Seidner, Benjamin; Esterhammer, Regina; Schocke, Michael F; Franz, Wolfgang-Michael; Metzler, Bernhard

    2015-01-01

    Pulse wave velocity (PWV) is the proposed gold-standard for the assessment of aortic elastic properties. The aim of this study was to compare aortic PWV determined by a recently developed oscillometric device with cardiac magnetic resonance imaging (CMR). PWV was assessed in 40 volunteers with two different methods. The oscillometric method (PWVOSC) is based on a transfer function from the brachial pressure waves determined by oscillometric blood pressure measurements with a common cuff (Mobil-O-Graph, I.E.M. Stolberg, Germany). CMR was used to determine aortic PWVCMR with the use of the transit time method based on phase-contrast imaging at the level of the ascending and abdominal aorta on a clinical 1.5 Tesla scanner (Siemens, Erlangen, Germany). The median age of the study population was 34 years (IQR: 24-55 years, 11 females). A very strong correlation was found between PWVOSC and PWVCMR (r = 0.859, p < 0.001). Mean PWVOSC was 6.7 ± 1.8 m/s and mean PWVCMR was 6.1 ± 1.8 m/s (p < 0.001). Analysis of agreement between the two measurements using Bland-Altman method showed a bias of 0.57 m/s (upper and lower limit of agreement: 2.49 m/s and -1.34 m/s). The corresponding coefficient of variation between both measurements was 15%. Aortic pulse wave velocity assessed by transformation of the brachial pressure waveform showed an acceptable agreement with the CMR-derived transit time method.

  13. Neural network for photoplethysmographic respiratory rate monitoring

    NASA Astrophysics Data System (ADS)

    Johansson, Anders

    2001-10-01

    The photoplethysmographic signal (PPG) includes respiratory components seen as frequency modulation of the heart rate (respiratory sinus arrhythmia, RSA), amplitude modulation of the cardiac pulse, and respiratory induced intensity variations (RIIV) in the PPG baseline. The aim of this study was to evaluate the accuracy of these components in determining respiratory rate, and to combine the components in a neural network for improved accuracy. The primary goal is to design a PPG ventilation monitoring system. PPG signals were recorded from 15 healthy subjects. From these signals, the systolic waveform, diastolic waveform, respiratory sinus arrhythmia, pulse amplitude and RIIV were extracted. By using simple algorithms, the rates of false positive and false negative detection of breaths were calculated for each of the five components in a separate analysis. Furthermore, a simple neural network (NN) was tried out in a combined pattern recognition approach. In the separate analysis, the error rates (sum of false positives and false negatives) ranged from 9.7% (pulse amplitude) to 14.5% (systolic waveform). The corresponding value of the NN analysis was 9.5-9.6%.

  14. Understanding Volcanic Conduit Dynamics: from Experimental Fragmentation to Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, A.; Alatorre-Ibarguengoitia, M. A.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The investigation of conduit dynamics at high pressure, under controlled laboratory conditions is a powerful tool to understand the physics behind volcanic processes before an eruption. In this work, we analyze the characteristics of the seismic response of an "experimental volcano" focusing on the dynamics of the conduit behavior during the fragmentation process of volcanic rocks. The "experimental volcano" is represented by a shock tube apparatus, which consists of a low-pressure voluminous tank (3 x 0.40 m), for sample recovery; and a high-pressure pipe-like conduit (16.5 x 2,5 cm), which represents the volcanic source mechanism, where rock samples are pressurized and fragmented. These two serial steel pipes are connected and sealed by a set of diaphragms that bear pressures in a range of 4 to 20 MPa. The history of the overall process of an explosion consists of four steps: 1) the slow pressurization of the pipe-like conduit filled with solid pumice and gas, 2) the sudden removal of the diaphragms, 3) the rapid decompression of the system and 4) the ejection of the gas-particle mixture. Each step imprints distinctive features on the microseismic records, reflecting the conduit dynamics during the explosion. In this work we show how features such as waveform characteristics, the three components of the force system acting on the conduit, the independent components of the moment tensor, the volumetric change of the source mechanism, the arrival time of the shock wave and its velocity, are quantified from the experimental microseismic data. Knowing these features, each step of the eruptive process, the conduit conditions and the source mechanism characteristics can be determined. The procedure applied in this experimental approach allows the use of seismic field data to estimate volcanic conduit conditions before an eruption takes place. We state on the hypothesis that the physics behind the pressurization and depressurization process of any conduit is the same and the effects of such process on the conduit dynamics are independent of size. We first described the very-long period (VLP) and long-period (LP) signals, observed in many active volcanoes around the world, and from comparison of waveform characteristics with their experimental analogues (eLP and eVLP signals) we found remarkable similarities and equivalent physical meaning. Based on our experimental investigations and analysis of field data recorded during volcanic eruptions we may conclude that VLP signals are caused by the inflation-deflation behavior of the volcanic conduit due to the decompression process, and that LP signals are manly associated with cracking and fragmentation of the magmatic material (ash, magma and gas) filling the conduit and ascending to the surface. In addition, we accounted for the repetitive character of LP and VLP signals, as a consequence of contraction and dilatation of a steady non-destructive source mechanism, which systematically responds to pressure changes of the volcanic system.

  15. Low frequency ac waveform generator

    DOEpatents

    Bilharz, O.W.

    1983-11-22

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stablization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  16. Strategies for efficient resolution analysis in full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Fichtner, A.; van Leeuwen, T.; Trampert, J.

    2016-12-01

    Full-waveform inversion is developing into a standard method in the seismological toolbox. It combines numerical wave propagation for heterogeneous media with adjoint techniques in order to improve tomographic resolution. However, resolution becomes increasingly difficult to quantify because of the enormous computational requirements. Here we present two families of methods that can be used for efficient resolution analysis in full-waveform inversion. They are based on the targeted extraction of resolution proxies from the Hessian matrix, which is too large to store and to compute explicitly. Fourier methods rest on the application of the Hessian to Earth models with harmonic oscillations. This yields the Fourier spectrum of the Hessian for few selected wave numbers, from which we can extract properties of the tomographic point-spread function for any point in space. Random probing methods use uncorrelated, random test models instead of harmonic oscillations. Auto-correlating the Hessian-model applications for sufficiently many test models also characterises the point-spread function. Both Fourier and random probing methods provide a rich collection of resolution proxies. These include position- and direction-dependent resolution lengths, and the volume of point-spread functions as indicator of amplitude recovery and inter-parameter trade-offs. The computational requirements of these methods are equivalent to approximately 7 conjugate-gradient iterations in full-waveform inversion. This is significantly less than the optimisation itself, which may require tens to hundreds of iterations to reach convergence. In addition to the theoretical foundations of the Fourier and random probing methods, we show various illustrative examples from real-data full-waveform inversion for crustal and mantle structure.

  17. Noninvasive estimation of assist pressure for direct mechanical ventricular actuation

    NASA Astrophysics Data System (ADS)

    An, Dawei; Yang, Ming; Gu, Xiaotong; Meng, Fan; Yang, Tianyue; Lin, Shujing

    2018-02-01

    Direct mechanical ventricular actuation is effective to reestablish the ventricular function with non-blood contact. Due to the energy loss within the driveline of the direct cardiac compression device, it is necessary to acquire the accurate value of assist pressure acting on the heart surface. To avoid myocardial trauma induced by invasive sensors, the noninvasive estimation method is developed and the experimental device is designed to measure the sample data for fitting the estimation models. By examining the goodness of fit numerically and graphically, the polynomial model presents the best behavior among the four alternative models. Meanwhile, to verify the effect of the noninvasive estimation, the simplified lumped parameter model is utilized to calculate the pre-support and the post-support left ventricular pressure. Furthermore, by adjusting the driving pressure beyond the range of the sample data, the assist pressure is estimated with the similar waveform and the post-support left ventricular pressure approaches the value of the adult healthy heart, indicating the good generalization ability of the noninvasive estimation method.

  18. Source Mechanism of Vulcanian Degassing at Popocatépetl Volcano, Mexico, Determined From Moment-Tensor Inversion of Very-long-period Seismic Waveforms

    NASA Astrophysics Data System (ADS)

    Chouet, B.; Dawson, P.; Arciniega, A.

    2004-12-01

    The source mechanism of very-long-period (VLP) signals accompanying degassing exhalations at Popocatépetl is analyzed in the 15-70~s band by minimizing the residual error between data and synthetics calculated for a point source embedded in a homogeneous medium. The waveforms of two events (04/23/00, 05/23/00) representative of mild Vulcanian eruptions are well reproduced by our inversion, which takes into account volcano topography. The source centroid is positioned 1500~m below the western perimeter of the summit crater, and the modeled source is composed of a shallow-dipping crack (sill with easterly dip of 10° ) intersecting a steeply-dipping crack (northeast striking dike with northwest dip of 83° ), whose surface trace bisects the vent. Both cracks undergo a similar sequence of inflation, deflation, and reinflation --- reflecting a cycle of pressurization, depressurization, and repressurization within a time interval of 3-5~min. The largest moment release occurs in the sill, showing a maximum volume change of 500-1000\\:m3, pressure drop of 3-5~MPa, and amplitude of recovered pressure equal to 1.2 times the amplitude of the pressure drop. In contrast, the maximum volume change in the dike is 200-300\\:m3, with a corresponding pressure drop of 1-2~MPa and pressure recovery equal to the pressure drop. Accompanying these volumetric sources is a single force with magnitude of 5 × 108~N, consistent with melt advection in response to the pressure transients. The source-time history of the three components of this force confirms that significant mass movement starts in the sill and triggers a mass movement response in the dike within ˜ 5~s. Such source behavior is consistent with the opening of an escape pathway for accumulated gases from slow pressurization of the sill driven by magma crystallization. The opening of a pathway for pent-up gases in the sill and rapid evacuation of this separated gas phase induces the pressure drop. Pressure recovery in the magma filling the sill is driven by diffusion of gases from the resulting supersaturated melt into bubbles. Assuming a penny-shaped crack at ambient pressure of 40~MPa, the observed pressure and volume variations can be modeled with the following attributes: crack radius, (100~m), crack aperture, (5~m), bubble number density, (1010 - 1012\\:m-3), initial bubble radius, (10-6\\:m), final bubble radius, ( ˜ 10-5\\:m), and net decrease of gas concentration in the melt, (0.01~wt%).

  19. Source mechanism of Vulcanian degassing at Popocatépetl Volcano, Mexico, determined from waveform inversions of very long period signals

    NASA Astrophysics Data System (ADS)

    Chouet, Bernard; Dawson, Phillip; Arciniega-Ceballos, Alejandra

    2005-07-01

    The source mechanism of very long period (VLP) signals accompanying volcanic degassing bursts at Popocatépetl is analyzed in the 15-70 s band by minimizing the residual error between data and synthetics calculated for a point source embedded in a homogeneous medium. The waveforms of two eruptions (23 April and 23 May 2000) representative of mild Vulcanian activity are well reproduced by our inversion, which takes into account volcano topography. The source centroid is positioned 1500 m below the western perimeter of the summit crater, and the modeled source is composed of a shallow dipping crack (sill with easterly dip of 10°) intersecting a steeply dipping crack (northeast striking dike dipping 83° northwest), whose surface extension bisects the vent. Both cracks undergo a similar sequence of inflation, deflation, and reinflation, reflecting a cycle of pressurization, depressurization, and repressurization within a time interval of 3-5 min. The largest moment release occurs in the sill, showing a maximum volume change of 500-1000 m3, pressure drop of 3-5 MPa, and amplitude of recovered pressure equal to 1.2 times the amplitude of the pressure drop. In contrast, the maximum volume change in the dike is less (200-300 m3), with a corresponding pressure drop of 1-2 MPa and pressure recovery equal to the pressure drop. Accompanying these volumetric sources are single-force components with magnitudes of 108 N, consistent with melt advection in response to pressure transients. The source time histories of the volumetric components of the source indicate that significant mass movement starts within the sill and triggers a mass movement response in the dike within a few seconds. Such source behavior is consistent with the opening of a pathway for escape of pent-up gases from slow pressurization of the sill driven by magma crystallization. The opening of this pathway and associated rapid evacuation of volcanic gases induces the pressure drop. Pressure recovery in the magma filling the sill is driven by diffusion of gases from the resulting supersaturated melt into bubbles. Assuming a penny-shaped crack at ambient pressure of 40 MPa, the observed pressure and volume variations can be modeled with the following attributes: crack radius (100 m), crack aperture (5 m), bubble number density (1010-1012 m-3), initial bubble radius (10-6 m), final bubble radius (˜10-5 m), and net decrease of gas concentration in the melt (0.01 wt %).

  20. Source mechanism of Vulcanian degassing at Popocatépetl Volcano, Mexico, determined from waveform inversions of very long period signals

    USGS Publications Warehouse

    Chouet, Bernard A.; Dawson, Phillip B.; Arciniega-Ceballos, Alejandra

    2005-01-01

    The source mechanism of very long period (VLP) signals accompanying volcanic degassing bursts at Popocatépetl is analyzed in the 15–70 s band by minimizing the residual error between data and synthetics calculated for a point source embedded in a homogeneous medium. The waveforms of two eruptions (23 April and 23 May 2000) representative of mild Vulcanian activity are well reproduced by our inversion, which takes into account volcano topography. The source centroid is positioned 1500 m below the western perimeter of the summit crater, and the modeled source is composed of a shallow dipping crack (sill with easterly dip of 10°) intersecting a steeply dipping crack (northeast striking dike dipping 83° northwest), whose surface extension bisects the vent. Both cracks undergo a similar sequence of inflation, deflation, and reinflation, reflecting a cycle of pressurization, depressurization, and repressurization within a time interval of 3–5 min. The largest moment release occurs in the sill, showing a maximum volume change of 500–1000 m3, pressure drop of 3–5 MPa, and amplitude of recovered pressure equal to 1.2 times the amplitude of the pressure drop. In contrast, the maximum volume change in the dike is less (200–300 m3), with a corresponding pressure drop of 1–2 MPa and pressure recovery equal to the pressure drop. Accompanying these volumetric sources are single-force components with magnitudes of 108 N, consistent with melt advection in response to pressure transients. The source time histories of the volumetric components of the source indicate that significant mass movement starts within the sill and triggers a mass movement response in the dike within a few seconds. Such source behavior is consistent with the opening of a pathway for escape of pent-up gases from slow pressurization of the sill driven by magma crystallization. The opening of this pathway and associated rapid evacuation of volcanic gases induces the pressure drop. Pressure recovery in the magma filling the sill is driven by diffusion of gases from the resulting supersaturated melt into bubbles. Assuming a penny-shaped crack at ambient pressure of 40 MPa, the observed pressure and volume variations can be modeled with the following attributes: crack radius (100 m), crack aperture (5 m), bubble number density (1010–1012 m−3), initial bubble radius (10−6 m), final bubble radius (∼10−5 m), and net decrease of gas concentration in the melt (0.01 wt %).

Top