Science.gov

Sample records for pressure waves

  1. Fluid pressure waves trigger earthquakes

    NASA Astrophysics Data System (ADS)

    Mulargia, Francesco; Bizzarri, Andrea

    2015-03-01

    Fluids-essentially meteoric water-are present everywhere in the Earth's crust, occasionally also with pressures higher than hydrostatic due to the tectonic strain imposed on impermeable undrained layers, to the impoundment of artificial lakes or to the forced injections required by oil and gas exploration and production. Experimental evidence suggests that such fluids flow along preferred paths of high diffusivity, provided by rock joints and faults. Studying the coupled poroelastic problem, we find that such flow is ruled by a nonlinear partial differential equation amenable to a Barenblatt-type solution, implying that it takes place in form of solitary pressure waves propagating at a velocity which decreases with time as v ∝ t [1/(n - 1) - 1] with n ≳ 7. According to Tresca-Von Mises criterion, these waves appear to play a major role in earthquake triggering, being also capable to account for aftershock delay without any further assumption. The measure of stress and fluid pressure inside active faults may therefore provide direct information about fault potential instability.

  2. Investigation of Pressurized Wave Bearings

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Dimofte, Florin

    2003-01-01

    The wave bearing has been pioneered and developed by Dr. Dimofte over the past several years. This bearing will be the main focus of this research. It is believed that the wave bearing offers a number of advantages over the foil bearing, which is the bearing that NASA is currently pursuing for turbomachinery applications. The wave bearing is basically a journal bearing whose film thickness varies around the circumference approximately sinusoidally, with usually 3 or 4 waves. Being a rigid geometry bearing, it provides precise control of shaft centerlines. The wave profile also provides good load capacity and makes the bearing very stable. Manufacturing techniques have been devised that should allow the production of wave bearings almost as cheaply as conventional full-circular bearings.

  3. Extreme Vortical Waves Under External Pressure Action

    NASA Astrophysics Data System (ADS)

    Abrashkin, Anatoly; Soloviev, Alexander

    2013-04-01

    A vortical model for deep-water freak wave formation is presented. The wind action is simulated by non-uniform pressure on the free surface. The motion of the fluid is described by exact solution of 2D hydrodynamics equations for ideal inviscid fluid in Lagrange variables. Two types of flows are studied: the breather and freak wave in the field of Gerstner wave. Fluid particles rotate in circles of different radius and drift current is absent. The pressure on free surface is non-uniform and opposite in phase with the wave profile. It is examined alternating-sign and sign-constant negative distributions of the pressure. Dynamics of free surface and pressure for extreme waves are calculated. Unlike other models the analyzed flows are vortical. The vorticity is located mostly in the neighborhood of their peaks. For enough large amplitudes it has been found the effect of the wave overturn. The influence of distribution of the pressure and vorticity on appearance and character of the overturn are studied. It has been found that increasing of horizontal velocity of fluid with the height causes the overturn as in the case of simple wave. It is shown that the height of freak wave depends on the steepness of Gerstner wave. If its value is near to 1, then the height tends to 0. The freak wave can not form on a steep Gerstner flow. For small steepness the ratio between the height of the peak and Gerstner wave amplitude can reach 10 and even more. The wave of maximal amplitude has length from the range 20-60 m.

  4. [Slow pressure waves during intracranial hypertension].

    PubMed

    Lemaire, J J

    1997-01-01

    Intracranial pressure waves include fast waves (pulse and respiration) and slow waves. Only the latter are considered here. Since the definition of three wave types in the pioneering works of Janny (1950) and Lundberg (1960), their study of frequential characteristics shows they are included in a spectrum where three contiguous frequency bands are individualised: the B wave band (BW) between 8 x 10(-3) Hz and 50 x 10(-3) Hz; the Infra B band (IB) below 8 x 10(-3) Hz; and the Ultra B band (UB) beyond 50 x 10(-3) Hz to 200 x 10(-3) Hz. The origin of these waves is vascular and some may be physiological. They are probably generated by central neuro-pacemakers and/or cyclic phenomena of cerebral autoregulation. They are linked with slow peripheral arterial pressure waves, with biological rhythms and with biomechanics and vasomotricity in the craniospinal enclosure. They are pathological for the slowest (IB), particularly if they are plateau waves, but the physiologic-pathologic boundary is not yet established for each type of slow waves. They can cause severe consequences if they result in major cerebral perfusion pressure changes, and if they induce or worsen herniations.

  5. Pressure waves in a supersaturated bubbly magma

    USGS Publications Warehouse

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.

    2011-01-01

    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  6. Pressure wave charged repetitively pulsed gas laser

    DOEpatents

    Kulkarny, Vijay A.

    1982-01-01

    A repetitively pulsed gas laser in which a system of mechanical shutters bracketing the laser cavity manipulate pressure waves resulting from residual energy in the cavity gas following a lasing event so as to draw fresh gas into the cavity and effectively pump spent gas in a dynamic closed loop.

  7. Pressure waves generated by steady flames.

    NASA Technical Reports Server (NTRS)

    Kuhl, A. L.; Kamel, M. M.; Oppenheim, A. K.

    1973-01-01

    Analysis of pressure waves that can be generated by clouds of explosive gas mixtures in a free atmosphere which is initially at a uniform state. The treatment is restricted only to the final stage of constant flame velocity when the flowfield is self-similar. By the introduction of reduced blast-wave parameters as phase-plane coordinates, the problem is resolved into the determination of the appropriate integral curves on this plane. Results, including space profiles of gasdynamic parameters, have been computed for a specific case of a hydrocarbon-air mixture characterized by a specific heat ratio of 1.3, sound speed at NTP of 345 m/sec, and volumetric expansion ratio corresponding to constant pressure deflagration of 7. Maximum overpressure ratios that can be generated by such flames in point-and line-symmetrical waves range from .00053, for the lower bound in the burning speed, up to 6 for the deflagration, while, for the average speeds of 5 to 10 m/sec, they are at a level of 0.05 to 0.10.

  8. Pressure Waves in Medicine: From Tissue Injury to Drug Delivery

    NASA Astrophysics Data System (ADS)

    Doukas, Apostolos G.

    2004-07-01

    Pressure waves have the potential to cause injury to cells and tissue or enable novel therapeutic modalities, such as fragmentation of kidney stones and drug delivery. Research on the biological effects of pressure waves have shown that the biological response on depends the pressure-wave characteristics. One of the most prominent effects induced by pressure waves is the permeabilization of a number of barrier structures (cell plasma membrane, skin and microbial biofilms) and facilitate the delivery of macromolecules. The permeabilization of the barrier structure is transient and the barrier function recovers. Thus, pressure waves can induce delivery of molecular species that would not normally cross the barrier structure.

  9. Solitary Water Waves of Large Amplitude Generated by Surface Pressure

    NASA Astrophysics Data System (ADS)

    Wheeler, Miles H.

    2015-11-01

    We consider exact nonlinear solitary water waves on a shear flow with an arbitrary distribution of vorticity. Ignoring surface tension, we impose a non-constant pressure on the free surface. Starting from a uniform shear flow with a flat free surface and a supercritical wave speed, we vary the surface pressure and use a continuation argument to construct a global connected set of symmetric solitary waves. This set includes waves of depression whose profiles increase monotonically from a central trough where the surface pressure is at its lowest, as well as waves of elevation whose profiles decrease monotonically from a central crest where the surface pressure is at its highest. There may also be two waves in this connected set with identical surface pressure, only one of which is a wave of depression.

  10. Pressure wave propagation studies for oscillating cascades

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1992-01-01

    The unsteady flowfield around an oscillating cascade of flat plates is studied using a time marching Euler code. Exact solutions based on linear theory serve as model problems to study pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step is demonstrated. Results show that an approximate non-reflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer than cases using reflective boundary conditions. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates does a better job of capturing the unsteady flowfield than cases using uniform grids as long as the CFL number is less than one for a sufficient portion of the grid. Results for various stagger angles and oscillation frequencies show good agreement with linear theory as long as the grid is properly resolved.

  11. Pressure wave propagation studies for oscillating cascades

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1992-01-01

    The unsteady flow field around an oscillating cascade of flat plates is studied using a time marching Euler code. Exact solutions based on linear theory serve as model problems to study pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step is demonstrated. Results show that an approximate non-reflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer than cases using reflective boundary conditions. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates does a better job of capturing the unsteady flow field than cases using uniform grids as long as the CFL number is less than one for a sufficient portion of the grid. Results for various stagger angles and oscillation frequencies show good agreement with linear theory as long as the grid is properly resolved.

  12. Plateau Waves of Intracranial Pressure and Multimodal Brain Monitoring.

    PubMed

    Dias, Celeste; Maia, Isabel; Cerejo, Antonio; Smielewski, Peter; Paiva, José-Artur; Czosnyka, Marek

    2016-01-01

    The aim of this study was to describe multimodal brain monitoring characteristics during plateau waves of intracranial pressure (ICP) in patients with head injury, using ICM+ software for continuous recording. Plateau waves consist of an abrupt elevation of ICP above 40 mmHg for 5-20 min. This is a prospective observational study of patients with head injury who were admitted to a neurocritical care unit and who developed plateau waves. We analyzed 59 plateau waves that occurred in 8 of 18 patients (44 %). At the top of plateau waves arterial blood pressure remained almost constant, but cerebral perfusion pressure, cerebral blood flow, brain tissue oxygenation, and cerebral oximetry decreased. After plateau waves, patients with a previously better autoregulation status developed hyperemia, demonstrated by an increase in cerebral blood flow and brain oxygenation. Pressure and oxygen cerebrovascular reactivity indexes (pressure reactivity index and ORxshort) increased significantly during the plateau wave as a sign of disruption of autoregulation. Bedside multimodal brain monitoring is important to characterize increases in ICP and give differential diagnoses of plateau waves, as management of this phenomenon differs from that of regular ICP.

  13. Influence of Plasma Pressure Fluctuation on RF Wave Propagation

    NASA Astrophysics Data System (ADS)

    Liu, Zhiwei; Bao, Weimin; Li, Xiaoping; Liu, Donglin; Zhou, Hui

    2016-02-01

    Pressure fluctuations in the plasma sheath from spacecraft reentry affect radio-frequency (RF) wave propagation. The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory, plasma theory, and electromagnetic wave theory. We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling. We analyzed the variations in reflection and transmission properties induced by pressure fluctuations. Our results show that, at the GPS frequency, if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection, transmission, and absorption properties. In extreme situations, the fluctuations can even cause blackout. At the Ka frequency, the influences are obvious when the waves are not totally transmitted. The influences are more pronounced at the GPS frequency than at the Ka frequency. This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves, as well as the influences of plasma fluctuations on wave propagation. Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations, the influences on link budgets should be taken into consideration. supported by the National Basic Research Program of China (No. 2014CB340205) and National Natural Science Foundation of China (No. 61301173)

  14. Corotating pressure waves without streams in the solar wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1983-01-01

    Voyager 1 and 2 magnetic field and plasma data are presented which demonstrate the existence of large scale, corotating, non-linear pressure waves between 2 AU and 4 AU that are not accompanied by fast streams. The pressure waves are presumed to be generated by corotating streams near the Sun. For two of the three pressure waves that are discussed, the absence of a stream is probably a real, physical effect, viz., a consequence of deceleration of the stream by the associated compression wave. For the third pressure wave, the apparent absence of a stream may be a geometrical effect; it is likely that the stream was at latitudes just above those of the spacecraft, while the associated shocks and compression wave extended over a broader range of latitudes so that they could be observed by the spacecraft. It is suggested that the development of large-scale non-linear pressure waves at the expense of the kinetic energy of streams produces a qualitative change in the solar wind in the outer heliosphere. Within a few AU the quasi-stationary solar wind structure is determined by corotating streams whose structure is determined by the boundary conditions near the Sun.

  15. Air pressure waves from Mount St. Helens eruptions

    NASA Astrophysics Data System (ADS)

    Reed, Jack W.

    1987-10-01

    Infrasonic recordings of the pressure wave from the Mount St. Helens (MSH) eruption on May 18, 1980, together with the weather station barograph records were used to estimate an equivalent explosion airblast yield for this eruption. Pressure wave amplitudes versus distance patterns were found to be comparable with patterns found for a small-scale nuclear explosion, the Krakatoa eruption, and the Tunguska comet impact, indicating that the MSH wave came from an explosion equivalent of about 5 megatons of TNT. The peculiar audibility pattern reported, with the blast being heard only at ranges beyond about 100 km, is explained by consideration of finite-amplitude shock propagation developments.

  16. Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power.

    PubMed

    Mynard, Jonathan P; Smolich, Joseph J

    2016-04-15

    Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics.

  17. Initial condition effect on pressure waves in an axisymmetric jet

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey H.; Raman, Ganesh

    1988-01-01

    A pair of microphones (separated axially by 5.08 cm and laterally by 1.3 cm) are placed on either side of the jet centerline to investigate coherent pressure fluctuations in an axisymmetric jet at Strouhal numbers less than unity. Auto-spectra, transfer-function, and coherence measurements are made for a tripped and untripped boundary layer initial condition. It was found that coherent acoustic pressure waves originating in the upstream plenum chamber propagate a greater distance downstream for the tripped initial condition than for the untripped initial condition. In addition, for the untripped initial condition the development of the coherent hydrodynamic pressure waves shifts downstream.

  18. Acoustic wave propagation in high-pressure system.

    PubMed

    Foldyna, Josef; Sitek, Libor; Habán, Vladimír

    2006-12-22

    Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.

  19. Quantification of wave reflection using peripheral blood pressure waveforms.

    PubMed

    Kim, Chang-Sei; Fazeli, Nima; McMurtry, M Sean; Finegan, Barry A; Hahn, Jin-Oh

    2015-01-01

    This paper presents a novel minimally invasive method for quantifying blood pressure (BP) wave reflection in the arterial tree. In this method, two peripheral BP waveforms are analyzed to obtain an estimate of central aortic BP waveform, which is used together with a peripheral BP waveform to compute forward and backward pressure waves. These forward and backward waves are then used to quantify the strength of wave reflection in the arterial tree. Two unique strengths of the proposed method are that 1) it replaces highly invasive central aortic BP and flow waveforms required in many existing methods by less invasive peripheral BP waveforms, and 2) it does not require estimation of characteristic impedance. The feasibility of the proposed method was examined in an experimental swine subject under a wide range of physiologic states and in 13 cardiac surgery patients. In the swine subject, the method was comparable to the reference method based on central aortic BP and flow. In cardiac surgery patients, the method was able to estimate forward and backward pressure waves in the absence of any central aortic waveforms: on the average, the root-mean-squared error between actual versus computed forward and backward pressure waves was less than 5 mmHg, and the error between actual versus computed reflection index was less than 0.03.

  20. Dual mode acoustic wave sensor for precise pressure reading

    NASA Astrophysics Data System (ADS)

    Mu, Xiaojing; Kropelnicki, Piotr; Wang, Yong; Randles, Andrew Benson; Chuan Chai, Kevin Tshun; Cai, Hong; Gu, Yuan Dong

    2014-09-01

    In this letter, a Microelectromechanical system acoustic wave sensor, which has a dual mode (lateral field exited Lamb wave mode and surface acoustic wave (SAW) mode) behavior, is presented for precious pressure change read out. Comb-like interdigital structured electrodes on top of piezoelectric material aluminium nitride (AlN) are used to generate the wave modes. The sensor membrane consists of single crystalline silicon formed by backside-etching of the bulk material of a silicon on insulator wafer having variable device thickness layer (5 μm-50 μm). With this principle, a pressure sensor has been fabricated and mounted on a pressure test package with pressure applied to the backside of the membrane within a range of 0 psi to 300 psi. The temperature coefficient of frequency was experimentally measured in the temperature range of -50 °C to 300 °C. This idea demonstrates a piezoelectric based sensor having two modes SAW/Lamb wave for direct physical parameter—pressure readout and temperature cancellation which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications using the dual mode behavior of the sensor and differential readout at the same time.

  1. Diaphragm Pressure Wave Generator Developments at Industrial Research Ltd

    NASA Astrophysics Data System (ADS)

    Caughley, A. J.; Emery, N.; Glasson, N. D.

    2010-04-01

    Industrial Research Ltd (IRL) have been developing a unique diaphragm based pressure wave generator technology for pulse tube and Stirling cryocoolers. Our system uses a metal diaphragm to separate the clean cryocooler gas circuit from a conventionally lubricated mechanical driver, thus producing a clean pressure wave with a long life drive that does not require the precision manufacture and associated costs of large linear motors. The first successful diaphragm pressure wave generator produced 3.2 kW of acoustic power at an electro-acoustic efficiency of 72% with a swept volume of 200 ml and a prototype has now accumulated over 2500 hours running. This paper describes recent developments in the technology. To explore scaling, a small diaphragm pressure wave generator with a swept volume of 20 ml has been constructed and has delivered 454 W of acoustic power at an electro-acoustic efficiency of 60%. Improvements have been made to the hydraulic force amplifier mechanism for driving the diaphragms resulting in a cheaper and lighter mechanism than the mechanical linkage originally used. To meet a customer's specific requirements, the 200 ml pressure wave generator's stroke was extended to achieve 240 ml of swept volume thereby increasing its acoustic power delivery to 4.1 kW without compromising efficiency.

  2. 30 kW metal diaphragm pressure wave generator

    NASA Astrophysics Data System (ADS)

    Caughley, A.; Branje, P.; Klok, T.

    2014-01-01

    Callaghan Innovation has been developing a metal-diaphragm pressure wave generator technology for pulse tube or Stirling cryocoolers since 2005. A series of successful pressure wave generators have been designed, fabricated and demonstrated ranging in swept volume from 20 to 240 cc driven by commercially available induction motors of powers from 0.5 kW to 7.5 kW respectively. A number of pulse tubes have also been design and successfully trialed with these pressure wave generators. Cooling powers up to 600 W at 120 K have been achieved. We have now scaled the pressure wave generator technology to 1000cc swept volume, powered by a 30 kW induction motor with the intention of providing over 20 kW of acoustic power to either pulse tube or Stirling expanders. The aim is to develop a cryocooler with more than 1000 W of refrigeration at 77 K. Target applications include liquefaction and High Temperature Superconducting devices. Initial results from testing the 1000 cc pressure wave generator are presented and we will discuss the challenges and advantages involved in scaling the metal diaphragm technology to higher acoustic powers.

  3. Acoustic Wave Propagation in Pressure Sense Lines

    NASA Technical Reports Server (NTRS)

    Vitarius, Patrick; Gregory, Don A.; Wiley, John; Korman, Valentin

    2003-01-01

    Sense lines are used in pressure measurements to passively transmit information from hostile environments to areas where transducers can be used. The transfer function of a sense line can be used to obtain information about the measured environment from the protected sensor. Several properties of this transfer function are examined, including frequency dependence, Helmholtz resonance, and time of flight delay.

  4. Cerebral perfusion pressure and abnormal intracranial pressure wave forms: their relation to outcome in birth asphyxia.

    PubMed

    Raju, T N; Vidyasagar, D; Papazafiratou, C

    1981-06-01

    Intracranial pressure (ICP) studies were carried out in 14 infants with severe birth asphyxia and brain damage. A markedly low cerebral perfusion pressure (CPP) was noted in infants who died and in 1 infant who survived with cerebral palsy. The long-term ICP tracing revealed negative waves and plateau waves in 2 infants. Cushing response was noted in 2 infants who had elevated ICP. The value and significance of evaluated CPP and of abnormal waveforms are discussed.

  5. Generation of high pressure and temperature by converging detonation waves

    NASA Astrophysics Data System (ADS)

    Singh, V. P.; Shukla, S. K.

    1987-07-01

    Generation of high pressure and temperature has various applications in defense. Several techniques, viz flying plate method, collapsing of linear, convergence of detonation waves in solid explosives, have been established in this connection. In this paper, converging detonation waves in solid explosives, where variable heat of detonation is being added to the front, are studied by using Whitham's characteristics rule. Results are compared with those reported elsewhere.

  6. Ultrasonic wave based pressure measurement in small diameter pipeline.

    PubMed

    Wang, Dan; Song, Zhengxiang; Wu, Yuan; Jiang, Yuan

    2015-12-01

    An effective non-intrusive method of ultrasound-based technique that allows monitoring liquid pressure in small diameter pipeline (less than 10mm) is presented in this paper. Ultrasonic wave could penetrate medium, through the acquisition of representative information from the echoes, properties of medium can be reflected. This pressure measurement is difficult due to that echoes' information is not easy to obtain in small diameter pipeline. The proposed method is a study on pipeline with Kneser liquid and is based on the principle that the transmission speed of ultrasonic wave in pipeline liquid correlates with liquid pressure and transmission speed of ultrasonic wave in pipeline liquid is reflected through ultrasonic propagation time providing that acoustic distance is fixed. Therefore, variation of ultrasonic propagation time can reflect variation of pressure in pipeline. Ultrasonic propagation time is obtained by electric processing approach and is accurately measured to nanosecond through high resolution time measurement module. We used ultrasonic propagation time difference to reflect actual pressure in this paper to reduce the environmental influences. The corresponding pressure values are finally obtained by acquiring the relationship between variation of ultrasonic propagation time difference and pressure with the use of neural network analysis method, the results show that this method is accurate and can be used in practice.

  7. Hydrodynamic pressure of breaking waves on buildings and their interaction

    NASA Astrophysics Data System (ADS)

    Kashevarova, G. G.; Martirosyan, A. S.

    2016-10-01

    In the course of numerical experiments the problem hydrodynamic pressure of breaking waves on buildings and their interaction was solved in a related setting, e.g. fluid flow and deformation of the building were calculated simultaneously. The method of calculation allows evaluating the dependence of the hydrodynamic pressure of water flow from the shape of the building in plan, size and orientation relative to the direction of flow stream. This study allowed to perform strength analysis of buildings under the action of breakthrough wave for evaluate the necessity of guard measures.

  8. Acoustic waves in gases with strong pressure gradients

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.

    1989-01-01

    The effect of strong pressure gradients on the acoustic modes (standing waves) of a rectangular cavity is investigated analytically. When the cavity response is represented by a sum of modes, each mode is found to have two resonant frequencies. The lower frequency is near the Viaesaela-Brundt frequency, which characterizes the buoyant effect, and the higher frequency is above the ordinary acoustic resonance frequency. This finding shows that the propagation velocity of the acoustic waves is increased due to the pressure gradient effect.

  9. Rapid miniature fiber optic pressure sensors for blast wave measurements

    NASA Astrophysics Data System (ADS)

    Zou, Xiaotian; Wu, Nan; Tian, Ye; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2013-02-01

    Traumatic brain injury (TBI) is a serious potential threat to soldiers who are exposed to explosions. Since the pathophysiology of TBI associated with a blast wave is not clearly defined, it is crucial to have a sensing system to accurately quantify the blast wave dynamics. This paper presents an ultra-fast fiber optic pressure sensor based on Fabry-Perot (FP) interferometric principle that is capable of measuring the rapid pressure changes in a blast event. The blast event in the experiment was generated by a starter pistol blank firing at close range, which produced a more realistic wave profile compared to using compressed air driven shock tubes. To the authors' knowledge, it is also the first study to utilize fiber optic pressure sensors to measure the ballistics shock wave of a pistol firing. The results illustrated that the fiber optic pressure sensor has a rise time of 200 ns which demonstrated that the sensor has ability to capture the dynamic pressure transient during a blast event. Moreover, the resonant frequency of the sensor was determined to be 4.11 MHz, which agrees well with the specific designed value.

  10. Air pressure waves from Mount St. Helens eruptions

    SciTech Connect

    Reed, J.W.

    1987-10-20

    Weather station barograph records as well as infrasonic recordings of the pressure wave from the Mount St. Helens eruption of May 18, 1980, have been used to estimate an equivalent explosion airblast yield for this event. Pressure amplitude versus distance patterns in various directions compared with patterns from other large explosions, such as atmospheric nuclear tests, the Krakatoa eruption, and the Tunguska comet impact, indicate that the wave came from an explosion equivalent of a few megatons of TNT. The extent of tree blowdown is considerably greater than could be expected from such an explosion, and the observed forest damage is attributed to outflow of volcanic material. The pressure-time signature obtained at Toledo, Washington, showed a long, 13-min duration negative phase as well as a second, hour-long compression phase, both probably caused by ejacta dynamics rather than standard explosion wave phenomenology. The peculiar audibility pattern, with the blast being heard only at ranges beyond about 100 km, is explicable by finite amplitude propagation effects. Near the source, compression was slow, taking more than a second but probably less than 5 s, so that it went unnoticed by human ears and susceptible buildings were not damaged. There was no damage as Toledo (54 km), where the recorded amplitude would have broken windows with a fast compression. An explanation is that wave emissions at high elevation angles traveled to the upper stratosphere, where low ambient air pressures caused this energetic pressure oscillation to form a shock wave with rapid, nearly instantaneous compression. Atmospheric refraction then returned part of this wave to ground level at long ranges, where the fast compressions were clearly audible. copyright American Geophysical Union 1987

  11. Pressure induced Superconductivity in the Charge Density Wave Compound Tritelluride

    SciTech Connect

    Hamlin, J.J.; Zocco, D.A.; Sayles, T.A.; Maple, M.B.; Chu, J.-H.; Fisher, I.R.; /Stanford U., Geballe Lab.

    2010-02-15

    A series of high-pressure electrical resistivity measurements on single crystals of TbTe{sub 3} reveal a complex phase diagram involving the interplay of superconducting, antiferromagnetic and charge density wave order. The onset of superconductivity reaches a maximum of almost 4 K (onset) near {approx} 12.4 GPa.

  12. Utilization of sparker induced pressure waves to tenderize meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the feasibility of tenderizing meat using high pressure waves generated from a sparker source. Beef strip loins were cut into steaks from the anterior end and one to two steaks from each strip loin were randomly selected to serve as non-treated controls and the remaining ste...

  13. Measurement of Blast Waves from Bursting Pressureized Frangible Spheres

    NASA Technical Reports Server (NTRS)

    Esparza, E. D.; Baker, W. E.

    1977-01-01

    Small-scale experiments were conducted to obtain data on incident overpressure at various distances from bursting pressurized spheres. Complete time histories of blast overpressure generated by rupturing glass spheres under high internal pressure were obtained using eight side-on pressure transducers. A scaling law is presented, and its nondimensional parameters are used to compare peak overpressures, arrival times, impulses, and durations for different initial conditions and sizes of blast source. The nondimensional data are also compared, whenever possible, with results of theoretical calculations and compiled data for Pentolite high explosive. The scaled data are repeatable and show significant differences from blast waves generated by condensed high-explosives.

  14. Relationship between high-order non-linearity of random waves and wave pressures acting on offshore breakwaters

    NASA Astrophysics Data System (ADS)

    Kashima, Hiroaki

    2016-04-01

    In the design of breakwaters, the wave pressures out of the surf zone are estimated by the maximum wave height which corresponds to the 1.8 times of significant wave height according to Rayleigh theory. On the other hand, the nonlinear four-wave interactions can lead to a significant enhancement of occurrence frequency of extreme waves which have more than twice the significant wave height. It is necessary to appropriately evaluate the effects of the deviation from Rayleigh theory on the wave pressures acting on offshore breakwaters under extreme wave conditions. In this study, the physical experiments in a wave tank were conducted to understand the effect of the occurrence frequency of the maximum wave height on the wave pressures acting on offshore breakwaters. In our analysis, the wave pressures acting on breakwaters were estimated by using three kinds of the maximum wave heights. The first and second are the maximum wave height and the 1.8 times of significant wave height obtained from the physical experiments. The last is the maximum wave height given by the Japanese design method for breakwaters taking into account the nonlinear wave shoaling effects. As a result, the occurrence frequency of the maximum wave height given by the physical experiments is in a good agreement with the high-order nonlinear theory by Mori and Janssen (2006) and there is the deviation from the Rayleigh theory not only offshore but also in the intermediate depth. Moreover, the wave pressures using the maximum wave height are widely distributed to the designed value of the wave pressure while the dispersion of the wave pressures using the 1.8 times of the significant wave height is small. As the non-linearity of the waves becomes stronger, the wave pressures tend to exceed the designed value of the wave pressure on the average through the behavior of the maximum wave height depending on the kurtosis which is the indicator of the high-order nonlinear interactions. Finally, it is

  15. Propagation of elastic pressure waves in a beam window

    NASA Astrophysics Data System (ADS)

    Davenne, T. R.; Loveridge, P.

    2016-09-01

    As particle accelerator beam power increases, stress on beam windows and targets increases. Many simulations are carried out to model the dynamic stresses that are induced in these critical components by near instantaneous beam heating. However while it is often easy to obtain simulation results there are few analytical solutions available to check the accuracy of simulation techniques. We follow the strand of several authors over the years who have offered analytical solutions to the classic problem of radial stress waves in a beam window. Many of these significant contributions have still had niggling issues with regard to resolving peak stress and limitations on the applied initial heating condition. We formulate an analytical expression for the radial pressure waves based on a Green's function solution of Feynman's wave equation. A complete analysis of the problem demonstrates that a hypothesis that beam induced pressure waves are composed of a static and transient component is indeed correct. The analytical expression is shown to give stable bounded solutions with easily determined peak stress levels. Finally a comparison between analytical expression and finite element analysis of the problem yields some general guidelines that should be adhered to for achieving accurate stress wave simulations.

  16. Internal wave-turbulence pressure above sloping sea bottoms

    NASA Astrophysics Data System (ADS)

    Haren, Hans

    2011-12-01

    An accurate bottom pressure sensor has been moored at different sites varying from a shallow sea strait via open ocean guyots to a 1900 m deep Gulf of Mexico. All sites show more or less sloping bottom topography. Focusing on frequencies (σ) higher than tidal, the pressure records are remarkably similar, to within the 95% statistical significance bounds, in the internal gravity wave continuum (IWC) band up to buoyancy frequency N. The IWC has a relatively uniform spectral slope: log(P(σ)) = -αlog(σ), α = 2 ± 1/3. The spectral collapse is confirmed from independent internal hydrostatic pressure estimate, which suggests a saturated IWC. For σ > N, all pressure-spectra transit to a bulge that differs in magnitude. This bulge is commonly attributed to long surface waves. For the present data it is suggested to be due to stratified turbulence-internal wave coupling, which is typically large over sloping topography. The bulge drops off at a more or less common frequency of 2-3 × 10-2 Hz, which is probably related with typical turbulent overturning scales.

  17. Propagation of waves in a medium with high radiation pressure

    NASA Technical Reports Server (NTRS)

    Bisnovatyy-Kogan, G. S.; Blinnikov, S. I.

    1979-01-01

    The propagation and mutual transformation of acoustic and thermal waves are investigated in media with a high radiative pressure. The equations of hydrodynamics for matter and the radiative transfer equations in a moving medium in the Eddington approximation are used in the investigation. Model problems of waves in a homogeneous medium with an abrupt jump in opacity and in a medium of variable opacity are presented. The characteristic and the times of variability are discussed. Amplitude for the brightness fluctuations for very massive stars are discussed.

  18. Air pressure waves from Mount St. Helens eruptions

    SciTech Connect

    Reed, J.W.

    1980-01-01

    Barograms from a number of National Weather Service stations were assembled for the May 18, 1980, eruption and compared to airblast wave propagations from large explosions. Wave amplitudes at 50 to 300 km distances were about what might be expected from a nuclear explosion of between 1 megaton and 10 megaton yield. Pressure-time signatures could not be resolved for the first compression phase, because of the slow paper recording speed. The 900 s negative phase duration was much too long for comparison with the negative phase of an explosion. Nevertheless, positive and negative amplitudes were about equal, as often observed at long distances from explosions. Calculations have been made for a simple finite amplitude propagation model. These show rough bounds on the source compression rate, to give the observed inaudible waves at least to 54 km distance, yet cause audibly rapid compression at Seattle, near 150 km, and beyond.

  19. Narrowed Aortoseptal Angle Is Related to Increased Central Blood Pressure and Aortic Pressure Wave Reflection

    PubMed Central

    Olafiranye, Oladipupo; Ibrahim, Mediha; Kamran, Haroon; Venner-Jones, Kinda; McFarlane, Samy I.; Salciccioli, Louis; Lazar, Jason M.

    2012-01-01

    The left ventricular (LV) aortoseptal angle (ASA) decreases with age, and is associated with basal septal hypertrophy (septal bulge). Enhanced arterial pressure wave reflection is known to impact LV hypertrophy. We assessed whether ASA is related to central blood pressure (BP) and augmentation index (AI), a measure of the reflected pressure wave. We studied 75 subjects (age 62 ± 16 years; 66% female) who were referred for transthoracic echocardiography and had radial artery applanation tonometry within 24 h. Peripheral systolic BP (P-SBP), peripheral diastolic BP (P-DBP), and peripheral pulse pressure (P-PP) were obtained by sphygmomanometry. Central BPs (C-SBP, C-DBP, C-PP) and AI were derived from applanation tonometry. AI was corrected for heart rate (AI75). The basal septal wall thickness (SWT), mid SWT and ASA were measured using the parasternal long axis echocardiographic view. Mean ASA and AI75 were 117 ± 11° and 22 ± 11%, respectively. ASA correlated with AI75 (r = −0.31, p ≤ 0.01), C-SBP (r = −0.24, p = 0.04), C-PP (r = −0.29, p = 0.01), but only showed a trend towards significance with P-SBP (r = −0.2, p = 0.09) and P-PP (r = −0.21, p = 0.08). Interestingly, C-PP was correlated with basal SWT (r = 0.27, p = 0.02) but not with mid SWT (r = 0.19, p = 0.11). On multivariate linear regression analysis, adjusted for age, gender, weight, and mean arterial pressure, AI75 was an independent predictor of ASA (p = 0.02). Our results suggest that a narrowed ASA is related to increased pressure wave reflection and higher central BP. Further studies are needed to determine whether narrowed LV ASA is a cause or consequence of enhanced wave reflection and whether other factors are involved. PMID:22969773

  20. Exercise central (aortic) blood pressure is predominantly driven by forward traveling waves, not wave reflection.

    PubMed

    Schultz, Martin G; Davies, Justin E; Roberts-Thomson, Phillip; Black, J Andrew; Hughes, Alun D; Sharman, James E

    2013-07-01

    Exercise hypertension independently predicts cardiovascular mortality, although little is known about exercise central hemodynamics. This study aimed to determine the contribution of arterial wave travel and aortic reservoir characteristics to central blood pressure (BP) during exercise. We hypothesized that exercise central BP would be principally related to forward wave travel and aortic reservoir function. After routine diagnostic coronary angiography, invasive pressure and flow velocity were recorded in the ascending aorta via sensor-tipped intra-arterial wires in 10 participants (age, 55±10 years; 70% men) free of coronary artery disease with normal left ventricular function. Measures were recorded at baseline and during supine cycle ergometry. Using wave intensity analysis, dominant wave types throughout the cardiac cycle were identified (forward and backward, compression, and decompression), and aortic reservoir and excess pressure were calculated. Central systolic BP increased significantly with exercise (Δ=19±12 mm Hg; P<0.001). This was associated with increases in systolic forward compression waves (Δ=12×10(6)±17×10(6) W·m(-2)·s(-1); P=0.045) and forward decompression waves in late systole (Δ=9×10(6)±6×10(6) W·m(-2)·s(-1); P<0.001). Despite significant augmentation in BP (Δ=9±6 mm Hg; P=0.002), reflected waves did not increase in magnitude (Δ=-1×10(6)±3×10(6) W·m(-2)·s(-1); P=0.2). Excess pressure rose significantly with exercise (Δ=16±9 mm Hg; P<0.001), and reservoir pressure integral fell (Δ=-5×10(5)±5×10(5) Pa·s; P=0.010). Change in reflection coefficient negatively correlated with change in central systolic BP (r=-0.68; P=0.03). We conclude that elevation of exercise central BP is principally because of increases in aortic forward traveling waves generated by left ventricular ejection. These findings have relevance to understanding central BP waveform morphology and pathophysiology of exercise hypertension.

  1. Pressure wave generated by the Mount St. Helens eruption

    SciTech Connect

    Banister, J.B.

    1984-06-20

    Histories of the air pressure wave radiated from the eruption of Mount St. Helens on May 18, 1980, were calculated for two models of the eruption cloud expansion. The first considered the wave radiated from an accelerated plane surface, while the second examined the wave radiated from an expanding hemisphere. Two histories of eruption cloud motion based on photographs were used. Peak positive overpressures were about the same for these cloud motion histories of expansion into a hemisphere was assumed. If an accelerated planar source model was used, the peak positive pressures have again about the same value in east and west direction, but values are about half in the north and south direction. Observed peak overpressures at microbarograph stations are somewhat higher than the calculated with the most marked departures at the greater surface ranges. These observed overpressures may have been about half the correct values, however. Microbarograph records show a weaker rarefaction than calculated histories or none at all. This can be explained, in part, by a lack of a real motion coherence in the slowing eruption cloud. If it is also possible the net ash cloud volume increased considerably after its vertical growth ceased and weakened the negative phase as well as lengthening the positive phase.

  2. Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves

    SciTech Connect

    IceCube Collaboration; Klein, Spencer

    2009-06-04

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  3. Coastal Trapped Waves, Alongshore Pressure Gradients, and the California Undercurrent

    DTIC Science & Technology

    2014-01-01

    REPORJ Db.’XE IDD-MM-YYYYj 06-03-2014 2. REPORT TYPE Journal Article 4 . TITLE AND SUBTITLE Coastal Trapped Waves, Alongshore Pressure Gradients...8217 ’ 1 A^rl b) )1^N Iff^ 0.2 0.1 Z 0 V -0.1 -0.2 4 % ^ ^ w ! , : 1 1 CCMP 10m wind (m/s) 128 126 124 122 120...region 30 - 4 ’) N, 135<>-115 W (Tigs. la.b). and hindcast results aiv pre- sented for the year 20(15. The model is forced with atmospheric products

  4. Nonlinear shock acceleration. III - Finite wave velocity, wave pressure, and entropy generation via wave damping

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1985-01-01

    The nonlinear theory of shock acceleration developed in earlier papers, which treated the waves as being completely frozen into the fluid, is generalized to include wave dynamics. In the limit where damping keeps the wave amplitude small, it is found that a finite phase velocity (V sub ph) of the scattering waves through the background fluid, tempers the acceleration generated by high Mach number shocks. Asymptotic spectra proportional to 1/E sq are possible only when the ratio of wave velocity to shock velocity is less than 0.13. For a given asymptotic spectrum, the efficiency of relativistic particle production is found to be practically independent of the value of V sub ph, so that earlier results concerning its value remain valid for finite V sub ph. In the limit where there is no wave damping, it is shown that for modest Alfven Mach numbers, approximately greater than 4 and less than 6, the magnetic field is amplified by the energetic particles to the point of being in rough equipartition with them, as models of synchrotron emission frequently take the field to be. In this case, the disordering and amplification of field energy may play a major role in the shock transition.

  5. Tunnel pressure waves - A smartphone inquiry on rail travel

    NASA Astrophysics Data System (ADS)

    Müller, Andreas; Hirth, Michael; Kuhn, Jochen

    2016-02-01

    When traveling by rail, you might have experienced the following phenomenon: The train enters a tunnel, and after some seconds a noticeable pressure change occurs, as perceived by your ears or even by a rapid wobbling of the train windows. The basic physics is that pressure waves created by the train travel down the tunnel, are reflected at its other end, and travel back until they meet the train again. Here we will show (i) how this effect can be well understood as a kind of large-scale outdoor case of a textbook paradigm, and (ii) how, e.g., a prediction of the tunnel length from the inside of a moving train on the basis of this model can be validated by means of a mobile phone measurement.

  6. Simulations of nonlinear continuous wave pressure fields in FOCUS

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.

    2017-03-01

    The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.

  7. On the Generation of Multiple Atmospheric Pressure Waves Observed During Violent Volcanic Eruptions.

    NASA Astrophysics Data System (ADS)

    Medici, E. F.; Waite, G. P.

    2015-12-01

    One or more atmospheric pressure waves followed by a supersonic jet may be generated during the over pressurized vapor-solid-liquid mixture ejection of a violent volcanic eruption. The source of these multiple atmospheric pressure waves could have different origins. Among the physical mechanisms that could explain these behaviors are pulsating eruptions, the dynamics of shock waves, coupled pressure wave-supersonic jet interaction, or a combination of all these factors. In order to elucidate the causes of these complex fluid flow dynamics, a series of analog volcanic eruption experiments using an atmospheric shock tube were performed. During the testing, single and multiple pressure waves and the subsequent supersonic jet were generated. The controlled laboratory conditions enable studies of the most relevant variables potentially responsible for the formation of the multiple pressure waves. The tests were performed using dry, compressed nitrogen at standard room temperature that was free of particles. Yet, under this idealization of a real volcanic eruption, multiple pressure waves were observed on the high-speed video imaging and recorded on the pressure transducer. The amount of energy being released on each test was varied to achieve different discharge dynamics and the formation of single and multiple pressure waves. The preliminary experimental observations indicate a coupled pressure wave-jet interaction as source of multiple pressure waves.

  8. Mass Spectrometry of Atmospheric Pressure Surface Wave Discharges

    NASA Astrophysics Data System (ADS)

    Ridenti, M. A.; Souza-Corrêa, J. A.; Amorim, J.

    2016-05-01

    By applying mass spectrometry techniques, we carried out measurements of ionic mass spectrum and their energy distribution in order to investigate an atmospheric argon discharge by using a surfatron surface-wave device. The mass and energy distribution measurements were performed with fixed flow rate (2.5 SLM) of pure argon gas (99.999%) and different Ar-O2 gas mixture compositions (99-1, 98-2 and 97-3). The mass spectra and energy distributions were recorded for Ar+, O+, O+ 2, N+ and N2 +. The axial distribution profiles of ionic mass and their energy were obtained for different experimental conditions as a function of the plasma length. The results showed that the peak of the positive ion energy distributions shifted to higher energies and also that the distribution width increased as the distance between the sampling orifice and the launcher gap was increased. It was also found that under certain experimental conditions the ion flux of atomic species were higher than the ion flux of their diatomic counterpart. The motivation of this study was to obtain a better understanding of a surface wave discharge in atmospheric pressure that may play a key role on new second generation biofuel technologies.

  9. A thoracic mechanism of mild traumatic brain injury due to blast pressure waves.

    PubMed

    Courtney, A C; Courtney, M W

    2009-01-01

    The mechanisms by which blast pressure waves cause mild-to-moderate traumatic brain injury (mTBI) are an open question. Possibilities include acceleration of the head, direct passage of the blast wave via the cranium, and propagation of the blast wave to the brain via a thoracic mechanism. The hypothesis that the blast pressure wave reaches the brain via a thoracic mechanism is considered in light of ballistic and blast pressure wave research. Ballistic pressure waves, caused by penetrating ballistic projectiles or ballistic impacts to body armor, can only reach the brain via an internal mechanism and have been shown to cause cerebral effects. Similar effects have been documented when a blast pressure wave has been applied to the whole body or focused on the thorax in animal models. While vagotomy reduces apnea and bradycardia due to ballistic or blast pressure waves, it does not eliminate neural damage in the brain, suggesting that the pressure wave directly affects the brain cells via a thoracic mechanism. An experiment is proposed which isolates the thoracic mechanism from cranial mechanisms of mTBI due to blast wave exposure. Results have implications for evaluating risk of mTBI due to blast exposure and for developing effective protection.

  10. Study on Pressure Wave Propagation in a Liquid Containing Spherical Bubbles in a Rectangular Duct

    NASA Astrophysics Data System (ADS)

    Kawahara, Junya; Watanabe, Masao; Kobayashi, Kazumichi

    2015-12-01

    Pressure wave propagation in a liquid containing several bubbles is numerically investigated. We simulate liner plane wave propagation in a liquid containing 10 spherical bubbles in a rectangular duct with the equation of motion for N spherical bubbles. The sound pressures of the reflected waves from the rigid walls are calculated by using the method of images. The result shows that the phase velocity of the pressure wave propagating in the liquid containing 10 spherical bubbles in the duct agrees well with the low-frequency speed of sound in a homogeneous bubbly liquid.

  11. An application of Love SH waves for the viscosity measurement of triglycerides at high pressures

    NASA Astrophysics Data System (ADS)

    Rostocki, A. J.; Siegoczyński, R. M.; Kiełczyński, P.; Szalewski, M.

    2010-03-01

    A new ultrasonic method of viscosity measurements at a high-pressure conditions has been presented. The method is based on the Love wave amplitude measurement. The same electronic setup as in the Bleustein-Gulyaev (B-G) wave method applied by the authors recently for a high-pressure measurement was adopted. The new sensors were made of metallic materials, which make them more reliable at high-pressure conditions. The method has been successfully applied for the viscosity measurement of some triglycerides at high-pressure conditions up to 1 GPa. The results have been compared with the earlier results obtained using B-G waves. This comparison has shown that Love wave method sensors are more reliable than B-G wave sensors and are also cheaper in fabrication, although the sensitivity of Love wave sensors is lower. During the measurement, the phase transitions in the investigated liquids were observed.

  12. The pressure impulse of a laser-induced underwater shock wave

    NASA Astrophysics Data System (ADS)

    Tagawa, Yoshiyuki; Yamamoto, Shota; Hayasaka, Keisuke; Kameda, Masaharu

    2016-11-01

    We investigate the pressure impulse, the time integral of pressure evolution, of a laser-induced underwater shock wave. We simultaneously observe plasma formation, shock-wave expansion, and pressure in water using a combined measurement system that obtains high-resolution nanosecond-order image sequences. Remarkably, pressure impulse is found to distribute symmetrically for a wide range of experimental parameters even when the shock waves are emitted from an elongated plasma. In contrast, distribution of pressure peak is found to be non-spherically-symmetric. We rationalize aforementioned results by considering the structure of the underwater shock wave as a collection of multiple spherical shock waves originated from point-like plasmas in an elongated region. This work was supported by JSPS KAKANHI Grant Number JP26709007.

  13. Predicting S-wave velocities for unconsolidated sediments at low effective pressure

    USGS Publications Warehouse

    Lee, Myung W.

    2010-01-01

    Accurate S-wave velocities for shallow sediments are important in performing a reliable elastic inversion for gas hydrate-bearing sediments and in evaluating velocity models for predicting S-wave velocities, but few S-wave velocities are measured at low effective pressure. Predicting S-wave velocities by using conventional methods based on the Biot-Gassmann theory appears to be inaccurate for laboratory-measured velocities at effective pressures less than about 4-5 megapascals (MPa). Measured laboratory and well log velocities show two distinct trends for S-wave velocities with respect to P-wave velocity: one for the S-wave velocity less than about 0.6 kilometer per second (km/s) which approximately corresponds to effective pressure of about 4-5 MPa, and the other for S-wave velocities greater than 0.6 km/s. To accurately predict S-wave velocities at low effective pressure less than about 4-5 MPa, a pressure-dependent parameter that relates the consolidation parameter to shear modulus of the sediments at low effective pressure is proposed. The proposed method in predicting S-wave velocity at low effective pressure worked well for velocities of water-saturated sands measured in the laboratory. However, this method underestimates the well-log S-wave velocities measured in the Gulf of Mexico, whereas the conventional method performs well for the well log velocities. The P-wave velocity dispersion due to fluid in the pore spaces, which is more pronounced at high frequency with low effective pressures less than about 4 MPa, is probably a cause for this discrepancy.

  14. Rogue wave formation under the action of quasi-stationary pressure

    NASA Astrophysics Data System (ADS)

    Abrashkin, A. A.; Oshmarina, O. E.

    2016-05-01

    The process of rogue wave formation on deep water is considered. A wave of extreme amplitude is born against the background of uniform waves (Gerstner waves) under the action of external pressure on free surface. The pressure distribution has a form of a quasi-stationary "pit". The fluid motion is supposed to be a vortex one and is described by an exact solution of equations of 2D hydrodynamics for an ideal fluid in Lagrangian coordinates. Liquid particles are moving around circumferences of different radii in the absence of drift flow. Values of amplitude and wave steepness optimal for rogue wave formation are found numerically. The influence of vorticity distribution and pressure drop on parameters of the fluid is investigated.

  15. The Generation of Pressure Waves by the Implosion of Light Bulbs in a High-Pressure Water Environment

    NASA Astrophysics Data System (ADS)

    Ikeda, C.; Czechanowski, M.; Duncan, J. H.

    2007-11-01

    The implosion of light bulbs in a high-pressure water environment was studied experimentally in a nearly spherical implosion tank with a nominal internal diameter of 1.77 m. During an experimental run, the light bulb was tethered in the center of the tank which was then filled with water and slowly pressurized by adding nitrogen gas into a small ullage above the water. The gas pressure in the ullage was measured with a slow response transducer and the high-frequency pressure waves in the water were recorded at 14 positions in the tank with underwater blast sensors. The motion of the light bulb was recorded with a high-speed digital movie camera. The implosions occurred at ambient pressures (Pa) ranging from 6.1 bar to 11.6 bar. The collapse times of the light bulbs were found to be about 1.3 times the theoretical collapse time of a spherical bubble at the same ambient pressure and with the same radius as the light bulb. The ratio of the peak pressure increase due to the pressure wave at a fixed distance (r) from the bubble to the ambient pressure at implosion ((P(r)-Pa)/Pa) increased from about 0.5 to 2.7 as the ambient pressure increased over the above-mentioned range.

  16. [A calibrated method for blood pressure measurement based on volume pulse wave].

    PubMed

    Youde, Ding; Qinkai, Deng; Feixue, Liang; Jinseng, Guo

    2010-01-01

    Physiology parameters measurement based on volume pulse wave is suitable for the monitoring blood pressure continuously. This paper described that the systolic blood pressure (SBP) and diastolic blood pressure (DBP) can be calibrated by measuring the pulse propagation time, just on one point of finger tip. The volume pulse wave was acquired by lighting the red and infrared LED alternately, and after signal processing, an accelerated pulse wave was obtained. Then by measuring the pulse wave propagation time between the progressive wave and reflected wave, we can find the relationship of the time and the blood pressure, and establish the related systolic blood pressure measurement equation. At the same time, based on the relationship between alternating current and direct current components in the volume pulse waveforms and through regression analysising, the relevant diastolic blood pressure measurement equation can be established. 33 clinical experimentation cases have been worked by dividing them into two groups: training group (18 cases) and control group (15 cases), by comparing with the measuring results of the OMRON electronic sphygmomanometer. The results indicated that the two methods had good coherence. The measurement described is simple and reliable, and may be served as a new method for noninvasively and continuously measurement of blood pressure.

  17. An Experimental Investigation of the Wave Pattern Generated by a Moving Pressure Source: Solitary Capillary-Gravity Waves

    NASA Astrophysics Data System (ADS)

    Duncan, J. H.; Diorio, J. D.; Lisiewski, A.; Harris, R.

    2009-11-01

    The wave pattern generated by a small pressure source moving across a water surface at speeds less than the minimum phase speed for linear gravity-capillary waves (cmin = 23 cm/s) was investigated experimentally. The resulting wave pattern was measured using cinematic shadowgraph and laser-induced fluorescence (LIF) techniques. The results show the existence of several distinct behavioral states. At low speeds, no wave behavior is observed and the pattern resembles the symmetric stationary condition. However, at a critical speed, but still below cmin, the pattern undergoes a sudden transition to an asymmetric state with a stationary, 2D solitary wave that forms behind the pressure source. This solitary wave is elongated in the cross-stream relative to the stream-wise direction and resembles gravity-capillary ``lumps'' observed in previous numerical calculations. As the translation speed approaches cmin, another time-dependent behavior is observed characterized by periodic ``shedding'' from a V-shaped solitary wave pattern. This work will be discussed in conjunction with the recent numerical calculations of T. Akylas and his research group.

  18. Limitations of the Use of Pressure Waves to Verify Correct Epidural Needle Position in Dogs

    PubMed Central

    Bergadano, Alessandra; Spadavecchia, Claudia

    2013-01-01

    The use of pressure waves to confirm the correct position of the epidural needle has been described in several domestic species and proposed as a valid alternative to standard methods, namely, control radiographic exam and fluoroscopy. The object of this retrospective clinical study was to evaluate the sensitivity of the epidural pressure waves as a test to verify the correct needle placement in the epidural space in dogs, in order to determine whether this technique could be useful not only in the clinical setting but also when certain knowledge of needle's tip position is required, for instance when performing clinical research focusing on epidural anaesthesia. Of the 54 client-owned dogs undergoing elective surgeries and enrolled in this retrospective study, only 45% showed epidural pressure waves before and after epidural injection. Twenty-six percent of the animals showed epidural pressure waves only after the injection, whereas 29% of the dogs showed epidural pressure waves neither before nor after injection and were defined as false negatives. Our results show that the epidural pressure wave technique to verify epidural needle position lacks sensitivity, resulting in many false negatives. As a consequence, the applicability of this technique is limited to situations in which precise, exact knowledge of the needle's tip position is not mandatory. PMID:23853736

  19. Quantification of abnormal intracranial pressure waves and isotope cisternography for diagnosis of occult communicating hydrocephalus

    SciTech Connect

    Cardoso, E.R.; Piatek, D.; Del Bigio, M.R.; Stambrook, M.; Sutherland, J.B.

    1989-01-01

    Nineteen consecutive patients with suspected occult communicating hydrocephalus were investigated by means of clinical evaluation, neuropsychological testing, isotope cisternography, computed tomography scanning, and continuous intracranial pressure monitoring. Semi-quantitative grading systems were used in the evaluation of the clinical, neuropsychological, and cisternographic assessments. Clinical examination, neuropsychological testing, and computed tomography scanning were repeated 3 months after ventriculoperitoneal shunting. All patients showed abnormal intracranial pressure waves and all improved after shunting. There was close correlation between number, peak, and pulse pressures of B waves and the mean intracranial pressure. However, quantification of B waves by means of number, frequency, and amplitude did not help in predicting the degree of clinical improvement postshunting. The most sensitive predictor of favorable response to shunting was enlargement of the temporal horns on computed tomography scan. Furthermore, the size of temporal horns correlated with mean intracranial pressure. There was no correlation between abnormalities on isotope cisternography and clinical improvement.

  20. Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.

    1992-01-01

    Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.

  1. A simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina.

    PubMed

    Till, S J; Milsom, P K; Rowlands, G

    2004-07-01

    Shock waves have been proposed in the literature as a mechanism for retinal damage induced by ultra-short laser pulses. For a spherical absorber, we derive a set of linear equations describing the propagation of pressure waves. We show that the formation of shock fronts is due to the form of the absorber rather than the inclusion of nonlinear terms in the equations. The analytical technique used avoids the need for a Laplace transform approach and is easily applied to other absorber profiles. Our analysis suggests that the 'soft' nature of the membrane surrounding retinal melanosomes precludes shock waves as a mechanism for the retinal damage induced by ultra-short pulse lasers. The quantitative estimates of the pressure gradients induced by laser absorption which are made possible by this work, together with detailed meso-scale or molecular modelling, will allow alternative damage mechanisms to be identified.

  2. Wave Journal Bearing. Part 2: Experimental Pressure Measurements and Fractional Frequency Whirl Threshold for Wave and Plain Journal Bearings

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Dimofte, Florin; Addy, Harold E., Jr.

    1995-01-01

    A new hydrodynamic bearing concept, the wave journal bearing, is being developed because it has better stability characteristics than plain journal bearings while maintaining similar load capacity. An analysis code to predict the steady state and dynamic performance of the wave journal bearing is also part of the development. To verify numerical predictions and contrast the wave journal bearing's stability characteristics to a plain journal bearing, tests were conducted at NASA Lewis Research Center using an air bearing test rig. Bearing film pressures were measured at 16 ports located around the bearing circumference at the middle of the bearing length. The pressure measurements for both a plain journal bearing and a wave journal bearing compared favorably with numerical predictions. Both bearings were tested with no radial load to determine the speed threshold for self-excited fractional frequency whirl. The plain journal bearing started to whirl immediately upon shaft start-up. The wave journal did not incur self-excited whirl until 800 to 900 rpm as predicted by the analysis. Furthermore, the wave bearing's geometry limited the whirl orbit to less than the bearing's clearance. In contrast, the plain journal bearing did not limit the whirl orbit, causing it to rub.

  3. Ultrafast Time Response Pressure-Sensitive Paint for Unsteady Shock-Wave Research

    NASA Astrophysics Data System (ADS)

    Numata, Daiju; Asai, Keisuke

    Pressure-Sensitive Paint (PSP) is an optical pressure measurement technique widely used in aerodynamic experiments, and has been applied to unsteady shock-wave phenomena [1, 2]. However, one of the largest problems to apply PSP to high-speed and unsteady phenomena is the response time of PSP.

  4. Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 1: Basic theory.

    PubMed

    Berkouk, K; Carpenter, P W; Lucey, A D

    2003-12-01

    Our work is motivated by ideas about the pathogenesis of syringomyelia. This is a serious disease characterized by the appearance of longitudinal cavities within the spinal cord. Its causes are unknown, but pressure propagation is probably implicated. We have developed an inviscid theory for the propagation of pressure waves in co-axial, fluid-filled, elastic tubes. This is intended as a simple model of the intraspinal cerebrospinal-fluid system. Our approach is based on the classic theory for the propagation of longitudinal waves in single, fluid-filled, elastic tubes. We show that for small-amplitude waves the governing equations reduce to the classic wave equation. The wave speed is found to be a strong function of the ratio of the tubes' cross-sectional areas. It is found that the leading edge of a transmural pressure pulse tends to generate compressive waves with converging wave fronts. Consequently, the leading edge of the pressure pulse steepens to form a shock-like elastic jump. A weakly nonlinear theory is developed for such an elastic jump.

  5. Two Dimensional Finite Element Analysis for the Effect of a Pressure Wave in the Human Brain

    NASA Astrophysics Data System (ADS)

    Ponce L., Ernesto; Ponce S., Daniel

    2008-11-01

    Brain injuries in people of all ages is a serious, world-wide health problem, with consequences as varied as attention or memory deficits, difficulties in problem-solving, aggressive social behavior, and neuro degenerative diseases such as Alzheimer's and Parkinson's. Brain injuries can be the result of a direct impact, but also pressure waves and direct impulses. The aim of this work is to develop a predictive method to calculate the stress generated in the human brain by pressure waves such as high power sounds. The finite element method is used, combined with elastic wave theory. The predictions of the generated stress levels are compared with the resistance of the arterioles that pervade the brain. The problem was focused to the Chilean mining where there are some accidents happen by detonations and high sound level. There are not formal medical investigation, however these pressure waves could produce human brain damage.

  6. Transient pressure wave in the behind armor blunt trauma: experimental and computational investigation.

    PubMed

    Luo, Shaomin; Xu, Cheng; Wang, Shu; Wen, Yaoke

    2017-02-01

    In the last few decades, various researches focus on the transient pressure in the behind armor blunt trauma. This paper presented a investigation on the transient pressure in the ballistic gelatin behind a soft body armor subjected to the impacting from three ammunitions. Experimental results show that three peaks appear on the pressure-time curves without taking into account the ammunition type and the impact velocity. Furthermore, numerical models of the test were created to compare modelling results to the pressure from the pressure gauges buried in the gelatin block. The main features on the pressure-time cure were discussed to analyze the wave formation and propagation. With the verified model, the effect of the boundary was also investigated to explain the wave reflection which appeared after two peaks.

  7. Solar wind dynamic pressure effect on planetary wave propagation and synoptic-scale Rossby wave breaking

    NASA Astrophysics Data System (ADS)

    Lu, Hua; Franzke, Christian; Martius, Olivia; Jarvis, Martin J.; Phillips, Tony

    2013-05-01

    We provide statistical evidence of the effect of the solar wind dynamic pressure (Psw) on the northern winter and spring circulations. We find that the vertical structure of the Northern Annular Mode (NAM), the zonal mean circulation, and Eliassen-Palm (EP)-flux anomalies show a dynamically consistent pattern of downward propagation over a period of ~45 days in response to positive Psw anomalies. When the solar irradiance is high, the signature of Psw is marked by a positive NAM anomaly descending from the stratosphere to the surface during winter. When the solar irradiance is low, the Psw signal has the opposite sign, occurs in spring, and is confined to the stratosphere. The negative Psw signal in the NAM under low solar irradiance conditions is primarily governed by enhanced vertical EP-flux divergence and a warmer polar region. The winter Psw signal under high solar irradiance conditions is associated with positive anomalies of the horizontal EP-flux divergence at 55°N-75°N and negative anomalies at 25°N-45°N, which corresponds to the positive NAM anomaly. The EP-flux divergence anomalies occur ~15 days ahead of the mean-flow changes. A significant equatorward shift of synoptic-scale Rossby wave breaking (RWB) near the tropopause is detected during January-March, corresponding to increased anticyclonic RWB and a decrease in cyclonic RWB. We suggest that the barotropic instability associated with asymmetric ozone in the upper stratosphere and the baroclinic instability associated with the polar vortex in the middle and lower stratosphere play a critical role for the winter signal and its downward propagation.

  8. Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.

    PubMed

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-03-01

    The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions.

  9. Amplification of Pressure Waves during Vibrational Equilibration of Excited Chemical Reaction Products

    SciTech Connect

    Tarver, C M

    2004-05-11

    The Non-Equilibrium Zeldovich - von Neumann - Doring (NEZND) theory of self-sustaining detonation identified amplification of pressure wavelets during equilibration of vibrationally excited reaction products in the reaction zone as the physical mechanism by which exothermic chemical energy release sustains detonation waves. This mechanism leads to the formation of the well-known, complex three-dimensional structure of a self-sustaining detonation wave. This amplification mechanism is postulated to be a general property of subsonic and supersonic reactive flows occurring during: shock to detonation transition (SDT); hot spot ignition and growth; deflagration to detonation transition (DDT); flame acceleration by shock or compression waves; and acoustic (sound) wave amplification. The existing experimental and theoretical evidence for pressure wave amplification by chemical energy release into highly vibrationally excited product molecules under these reactive flow conditions is reviewed in this paper.

  10. Characterization of the pressure wave originating in the explosion of a gas cloud

    NASA Astrophysics Data System (ADS)

    Essers, J. A.

    Models for predicting the effects of hydrocarbon explosions on nuclear power plants are discussed. By solving the Euler equations for simple one dimensional models, formulas predicting wave speed, induced flow velocity, reflected wave speed and overpressure as functions of the local value of incident wave overpressure are obtained. A simplified nonlinear isentropic potential flow model is proposed. Errors in predicting wave characteristics from this model or from classical linear acoustic models are evaluated. Formulas to predict the evolution of main pressure pulse characteristics are given. The time and distance required for the formation of a sharp pressure pulse and to obtain a significant spreading of expansion phase is assessed. The ability of models to accurately predict these deformations is discussed. The isentropic model leads to an excellent prediction of all wave characteristics if the overpressure is not very large. Except for very weak overpressures, the accuracy of acoustic models is poor.

  11. Characterization of laser-driven shock waves in solids using a fiber optic pressure probe

    DOE PAGES

    Cranch, Geoffrey A.; Lunsford, Robert; Grun, Jacob; ...

    2013-11-08

    Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry–Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry–Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. As a result, the peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.

  12. Variation of Pressure Waveforms in Measurements of Extracorporeal Shock Wave Lithotripter

    NASA Astrophysics Data System (ADS)

    Inose, Naoto; Ide, Masao

    1993-05-01

    In this paper, we describe measurement of variation in pressure waveforms of the acoustic field of an extra-corporeal shock-wave lithotripter (ESWL). Variations in the measured acoustic fields and pressure waveform of an underwater spark-gap-type ESWL with an exhausted spark plug electrode have been reported by researchers using crystal sensors. If the ESWL spark plugs become exhausted, patients feel pain during kidney, biliary stone disintegration. We studied the relationship between exhaustion of electrodes and the variation of pressure waveforms and shock-wave fields of the ESWL using a newly developed hydrophone.

  13. New ultrasonic Bleustein-Gulyaev wave method for measuring the viscosity of liquids at high pressure.

    PubMed

    Kiełczyński, P; Szalewski, M; Siegoczyński, R M; Rostocki, A J

    2008-02-01

    In this paper, a new method for measuring the viscosity of liquids at high pressure is presented. To this end the authors have applied an ultrasonic method using the Bleustein-Gulyaev (BG) surface acoustic wave. By applying the perturbation method, we can prove that the change in the complex propagation constant of the BG wave produced by the layer of liquid loading the waveguide surface is proportional to the shear mechanical impedance of the liquid. In the article, a measuring setup employing the BG wave for the purpose of measuring the viscosity of liquids at high pressure (up to 1 GPa) is presented. The results of high-pressure viscosity measurements of triolein and castor oil are also presented. In this paper the model of a Newtonian liquid was applied. Using this new method it is also possible to measure the viscosity of liquids during the phase transition and during the decompression process (hysteresis of the dependence of viscosity on pressure).

  14. New ultrasonic Bleustein-Gulyaev wave method for measuring the viscosity of liquids at high pressure

    NASA Astrophysics Data System (ADS)

    Kiełczyński, P.; Szalewski, M.; Siegoczyński, R. M.; Rostocki, A. J.

    2008-02-01

    In this paper, a new method for measuring the viscosity of liquids at high pressure is presented. To this end the authors have applied an ultrasonic method using the Bleustein-Gulyaev (BG) surface acoustic wave. By applying the perturbation method, we can prove that the change in the complex propagation constant of the BG wave produced by the layer of liquid loading the waveguide surface is proportional to the shear mechanical impedance of the liquid. In the article, a measuring setup employing the BG wave for the purpose of measuring the viscosity of liquids at high pressure (up to 1GPa) is presented. The results of high-pressure viscosity measurements of triolein and castor oil are also presented. In this paper the model of a Newtonian liquid was applied. Using this new method it is also possible to measure the viscosity of liquids during the phase transition and during the decompression process (hysteresis of the dependence of viscosity on pressure).

  15. Propagation velocity and reflection of pressure waves in the canine coronary artery.

    PubMed

    Arts, T; Kruger, R T; van Gerven, W; Lambregts, J A; Reneman, R S

    1979-10-01

    In this study the pressure wave velocity in the anterior descending branch of the left coronary artery (LADC) of the dog was measured by determining the delay time between pressure pulses along this artery. This method can only be applied if reflections of the pressure wave distal to the sites of pressure measurement are insignificant. From araldite casts of the coronary arteries the following relation between the diameter proximal to (dprox) and distal to (ddist 1, ddist 2) a bifurcation was found: dprox2.55 = ddist12.55 + ddist 22.55, indicating that reflections at a bifurcation areminimal. In dogs reflections were studied by inducing during diastole a pressure pulse in the aorta and measuring pressure and volume flow proximal to and pressure distal to a segment of the LADC at various levels of the coronary peripheral resistance. Reflection of high-frequency components (greater than 7 Hz) was found to be insignificant, allowing application of the above-mentioned method for measuring the wave-front velocity, which is insensitive to low-frequency reflection. At a pressure in the LADC of 13.3 kPa this velocity was 8.6 +/- 1.4 m.s-1 (mean +/- SD). The calculated dynamic cross-sectional stiffness (deltaP/(deltaA/A)) of the LADC was 97 +/- 11 kPa (mean +/- SE) at an arterial pressure of 13.3 kPa.

  16. Modelling and Experimental Verification of Pressure Wave Following Gaseous Helium Storage Tank Rupture

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Grabowski, M.; Jędrusyna, A.; Wach, J.

    Helium inventory in high energy accelerators, tokamaks and free electron lasers may exceed tens of tons. The gaseous helium is stored in steel tanks under a pressure of about 20 bar and at environment temperature. Accidental rupture of any of the tanks filled with the gaseous helium will create a rapid energy release in form of physical blast. An estimation of pressure wave distribution following the tank rupture and potential consequences to the adjacent research infrastructure and buildings is a very important task, critical in the safety aspect of the whole cryogenic system. According to the present regulations the TNT equivalent approach is to be applied to evaluate the pressure wave following a potential gas storage tank rupture. A special test stand was designed and built in order to verify experimentally the blast effects in controlled conditions. In order to obtain such a shock wave a pressurized plastic tank was used. The tank was ruptured and the resulting pressure wave was recorded using a spatially-distributed array of pressure sensors connected to a high-speed data acquisition device. The results of the experiments and the comparison with theoretical values obtained from thermodynamic model of the blast are presented. A good agreement between the simulated and measured data was obtained. Recommendations regarding the applicability of thermodynamic model of physical blast versus TNT approach, to estimate consequences of gas storage tank rupture are formulated. The laboratory scale experimental results have been scaled to ITER pressurized helium storage tanks.

  17. Wave reflection augments central systolic and pulse pressures during facial cooling.

    PubMed

    Edwards, David G; Roy, Matthew S; Prasad, Raju Y

    2008-06-01

    Cardiovascular events are more common in the winter months, possibly because of hemodynamic alterations in response to cold exposure. The purpose of this study was to determine the effect of acute facial cooling on central aortic pressure, arterial stiffness, and wave reflection. Twelve healthy subjects (age 23 +/- 3 yr; 6 men, 6 women) underwent supine measurements of carotid-femoral pulse wave velocity (PWV), brachial artery blood pressure, and central aortic pressure (via the synthesis of a central aortic pressure waveform by radial artery applanation tonometry and generalized transfer function) during a control trial (supine rest) and a facial cooling trial (0 degrees C gel pack). Aortic augmentation index (AI), an index of wave reflection, was calculated from the aortic pressure waveform. Measurements were made at baseline, 2 min, and 7 min during each trial. Facial cooling increased (P < 0.05) peripheral and central diastolic and systolic pressures. Central systolic pressure increased more than peripheral systolic pressure (22 +/- 3 vs. 15 +/- 2 mmHg; P < 0.05), resulting in decreased pulse pressure amplification ratio. Facial cooling resulted in a robust increase in AI and a modest increase in PWV (AI: -1.4 +/- 3.8 vs. 21.2 +/- 3.0 and 19.9 +/- 3.6%; PWV: 5.6 +/- 0.2 vs. 6.5 +/- 0.3 and 6.2 +/- 0.2 m/s; P < 0.05). Change in mean arterial pressure but not PWV predicted the change in AI, suggesting that facial cooling may increase AI independent of aortic PWV. Facial cooling and the resulting peripheral vasoconstriction are associated with an increase in wave reflection and augmentation of central systolic pressure, potentially explaining ischemia and cardiovascular events in the cold.

  18. The impact of hepatic pressurization on liver shear wave speed estimates in constrained versus unconstrained conditions

    NASA Astrophysics Data System (ADS)

    Rotemberg, V.; Palmeri, M.; Nightingale, R.; Rouze, N.; Nightingale, K.

    2012-01-01

    Increased hepatic venous pressure can be observed in patients with advanced liver disease and congestive heart failure. This elevated portal pressure also leads to variation in acoustic radiation-force-derived shear wave-based liver stiffness estimates. These changes in stiffness metrics with hepatic interstitial pressure may confound stiffness-based predictions of liver fibrosis stage. The underlying mechanism for this observed stiffening behavior with pressurization is not well understood and is not explained with commonly used linear elastic mechanical models. An experiment was designed to determine whether the stiffness increase exhibited with hepatic pressurization results from a strain-dependent hyperelastic behavior. Six excised canine livers were subjected to variations in interstitial pressure through cannulation of the portal vein and closure of the hepatic artery and hepatic vein under constrained conditions (in which the liver was not free to expand) and unconstrained conditions. Radiation-force-derived shear wave speed estimates were obtained and correlated with pressure. Estimates of hepatic shear stiffness increased with changes in interstitial pressure over a physiologically relevant range of pressures (0-35 mmHg) from 1.5 to 3.5 m s-1. These increases were observed only under conditions in which the liver was free to expand while pressurized. This behavior is consistent with hyperelastic nonlinear material models that could be used in the future to explore methods for estimating hepatic interstitial pressure noninvasively.

  19. Atmospheric Pressure Oscillations Forced by Surface Waves From the 2003 Tokachi-Oki Earthquake

    NASA Astrophysics Data System (ADS)

    Watada, S.; Nishida, K.; Sekiguchi, S.

    2004-12-01

    Clear atmospheric pressure changes associated with the 2003 Tokachi-Oki Earthquake with M 8.3 were recorded by 8 microbarographs along Japan. The maximum oscillatory pressure change is about 2 Pascal with dominant period is about 15-20 second, and lasted for more than 30 minutes. Comparing the pressure change with broadband seismic records observed near or at the microbarogram, the pressure change starts at the arrival of seismic waves and reaches its maximum amplitude at the arrival of Rayleigh waves. Four microbarographs, co-located with STS-1 broadband seismographs and suffering less atmospheric wind noise, show that peaks in vertical ground velocity records correspond to the peaks of atmospheric pressure records. Similar pressure changes were observed during the largest aftershock (M 7.4). All ground motion analyzed in this paper were recorded by STS-1 broadband sensors. Spectrum analysis in the frequency domain supports that the vertical ground velocity and the pressure change has the same phase and the amplitude ratio is constant up to a period of about 50 second. The constant amplitude ratio is about (atmospheric density) times (sound velocity in the atmosphere), indicating that the surface ground in vertical ground motion compresses or inflates the air above the ground locally and low-frequency sound waves are generated. Pressure change recorded after the passage of Rayleigh waves does not well correlate with the ground velocity. Through the precise atmospheric pressure and ground motion measurement at the same sites, we witnessed the process of low-frequency sound generation by the vertical ground surface motion acted as a vibrating plate of a speaker. The radiated low-frequency sound waves propagates upward and reaches to the ionosphere with large amplitude because of the energy conservation. The ionospheric turbulence reported in the past researches were originated from this low-frequency sound at the ground surface.

  20. Influence of dielectric barrier discharges on low Mach number shock waves at low to medium pressures

    SciTech Connect

    Bletzinger, P.; Ganguly, B.N.; Garscadden, A.

    2005-06-01

    For shock wave propagation in nonequilibrium plasmas, it has been shown that when the electron Debye length exceeds the shock wave discontinuity dimension, strong double layers are generated, propagating with the shock wave. Strong double layer formation leads to the enhancement of the local excitation, ionization, and local neutral gas heating which increases the shock wave velocity. It is shown that dielectric barrier discharges (DBD) in pure N{sub 2} also increase the shock wave velocity and broaden the shock wave. The DBD is considerably more energy efficient in producing these effects compared to a dc glow discharge and can operate over a wide pressure range. It is shown that these effects are also operative in the pure N{sub 2} discharge afterglow, allowing a wide range of pulse repetition frequencies.

  1. Prediction of the characteristics of two types of pressure waves in the cochlea: Theoretical considerations

    NASA Astrophysics Data System (ADS)

    Andoh, Masayoshi; Wada, Hiroshi

    2004-07-01

    The aim of this study was to predict the characteristics of two types of cochlear pressure waves, so-called fast and slow waves. A two-dimensional finite-element model of the organ of Corti (OC), including fluid-structure interaction with the surrounding lymph fluid, was constructed. The geometry of the OC at the basal turn was determined from morphological measurements of others in the gerbil hemicochlea. As far as mechanical properties of the materials within the OC are concerned, previously determined mechanical properties of portions within the OC were adopted, and unknown mechanical features were determined from the published measurements of static stiffness. Time advance of the fluid-structure scheme was achieved by a staggered approach. Using the model, the magnitude and phase of the fast and slow waves were predicted so as to fit the numerically obtained pressure distribution in the scala tympani with what is known about intracochlear pressure measurement. When the predicted pressure waves were applied to the model, the numerical result of the velocity of the basilar membrane showed good agreement with the experimentally obtained velocity of the basilar membrane documented by others. Thus, the predicted pressure waves appeared to be reliable. Moreover, it was found that the fluid-structure interaction considerably influences the dynamic behavior of the OC at frequencies near the characteristic frequency.

  2. The acute effects of smokeless tobacco on central aortic blood pressure and wave reflection characteristics

    PubMed Central

    Martin, Jeffrey S; Beck, Darren T; Gurovich, Alvaro N; Braith, Randy W

    2010-01-01

    The main objectives of this study were to examine the acute effect of a single dose of smokeless tobacco (ST) on central aortic blood pressure and wave reflection characteristics. Fifteen apparently healthy male subjects (aged 30.6 ± 6.2 y) were given a 2.5 g oral dose of ST after baseline measurements were recorded. Pulse wave analysis using radial artery applanation tonometry was performed in triplicate at baseline (0 min) and at 10-min intervals during (10, 20 and 30 min) and after (40, 50 and 60 min) ST use. An acute dose of ST was associated with a significant increase in heart rate (HR), central aortic systolic and diastolic blood pressure, peripheral brachial systolic and diastolic blood pressure, and aortic augmentation index normalized to a fixed heart rate of 75 bpm (AIx@75). Furthermore, ejection duration and round trip travel time of the reflected pressure wave (Δtp) were significantly decreased as a result of one time ST use. As a result of changes in aortic pressure wave reflection characteristics, there was a significant increase in wasted left ventricular pressure energy (LVEw) and the tension–time index (TTI) as a result of ST use. In conclusion, one time use of ST elicits significant transient increases in HR, central aortic pressures, AIx@75, the TTI and LVEw. Chronic users subjected to decades of elevated central pressures and left ventricular work may have an increased cardiovascular risk as central aortic pressures are even more strongly related to cardiovascular outcomes than peripheral blood pressures. PMID:20719817

  3. The acute effects of smokeless tobacco on central aortic blood pressure and wave reflection characteristics.

    PubMed

    Martin, Jeffrey S; Beck, Darren T; Gurovich, Alvaro N; Braith, Randy W

    2010-10-01

    The main objectives of this study were to examine the acute effect of a single dose of smokeless tobacco (ST) on central aortic blood pressure and wave reflection characteristics. Fifteen apparently healthy male subjects (aged 30.6 ± 6.2 y) were given a 2.5 g oral dose of ST after baseline measurements were recorded. Pulse wave analysis using radial artery applanation tonometry was performed in triplicate at baseline (0 min) and at 10-min intervals during (10, 20 and 30 min) and after (40, 50 and 60 min) ST use. An acute dose of ST was associated with a significant increase in heart rate (HR), central aortic systolic and diastolic blood pressure, peripheral brachial systolic and diastolic blood pressure, and aortic augmentation index normalized to a fixed heart rate of 75 bpm (AIx@75). Furthermore, ejection duration and round trip travel time of the reflected pressure wave (Δt(p)) were significantly decreased as a result of one time ST use. As a result of changes in aortic pressure wave reflection characteristics, there was a significant increase in wasted left ventricular pressure energy (LVE(w)) and the tension-time index (TTI) as a result of ST use. In conclusion, one time use of ST elicits significant transient increases in HR, central aortic pressures, AIx@75, the TTI and LVE(w). Chronic users subjected to decades of elevated central pressures and left ventricular work may have an increased cardiovascular risk as central aortic pressures are even more strongly related to cardiovascular outcomes than peripheral blood pressures.

  4. Wave reflection quantification based on pressure waveforms alone--methods, comparison, and clinical covariates.

    PubMed

    Hametner, Bernhard; Wassertheurer, Siegfried; Kropf, Johannes; Mayer, Christopher; Holzinger, Andreas; Eber, Bernd; Weber, Thomas

    2013-03-01

    Within the last decade the quantification of pulse wave reflections mainly focused on measures of central aortic systolic pressure and its augmentation through reflections based on pulse wave analysis (PWA). A complementary approach is the wave separation analysis (WSA), which quantifies the total amount of arterial wave reflection considering both aortic pulse and flow waves. The aim of this work is the introduction and comparison of aortic blood flow models for WSA assessment. To evaluate the performance of the proposed modeling approaches (Windkessel, triangular and averaged flow), comparisons against Doppler measurements are made for 148 patients with preserved ejection fraction. Stepwise regression analysis between WSA and PWA parameters are performed to provide determinants of methodological differences. Against Doppler measurement mean difference and standard deviation of the amplitudes of the decomposed forward and backward pressure waves are comparable for Windkessel and averaged flow models. Stepwise regression analysis shows similar determinants between Doppler and Windkessel model only. The results indicate that the Windkessel method provides accurate estimates of wave reflection in subjects with preserved ejection fraction. The comparison with waveforms derived from Doppler ultrasound as well as recently proposed simple triangular and averaged flow waves showed that this approach may reduce variability and provide realistic results.

  5. Relationship between radial and central arterial pulse wave and evaluation of central aortic pressure using the radial arterial pulse wave.

    PubMed

    Takazawa, Kenji; Kobayashi, Hideyuki; Shindo, Naohisa; Tanaka, Nobuhiro; Yamashina, Akira

    2007-03-01

    Since a decrease of central aortic pressure contributes to the prevention of cardiovascular events, simple measurement of not only brachial blood pressure but also central aortic pressure may be useful in the prevention and treatment of cardiovascular diseases. In this study, we simultaneously measured radial artery pulse waves non-invasively and ascending aortic pressure invasively, before and after the administration of nicorandil. We then compared changes in central aortic pressure and radial arterial blood pressure calibrated with brachial blood pressure in addition to calculating the augmentation index (AI) at the aorta and radial artery. After nicorandil administration, the reduction in maximal systolic blood pressure in the aorta (Deltaa-SBP) was -14+/-15 mmHg, significantly larger than that in early systolic pressure in the radial artery (Deltar-SBP) (-9+/-12 mmHg). The reduction in late systolic blood pressure in the radial artery (Deltar-SBP2) was -15+/-14 mmHg, significantly larger than Deltar-SBP, but not significantly different from Deltaa-SBP. There were significant relationships between Deltaa-SBP and Deltar-SBP (r=0.81, p<0.001), and between Deltaa-SBP and Deltar-SBP2 (r=0.91, p<0.001). The slope of the correlation regression line with Deltar-SBP2 (0.83) was larger and closer to 1 than that with Deltar-SBP (0.63), showing that the relationship was close to 1:1. Significant correlations were obtained between aortic AI (a-AI) and radial AI (r-AI) (before nicorandil administration: r=0.91, p<0.001; after administration: r=0.70, p<0.001). These data suggest that the measurement of radial artery pulse wave and observation of changes in the late systolic blood pressure in the radial artery (r-SBP2) in addition to the ordinary measurement of brachial blood pressure may enable a more accurate evaluation of changes in maximal systolic blood pressure in the aorta (a-SBP).

  6. Oscillatory pressure wave transmission from the upper airway to the carotid artery.

    PubMed

    Howitt, Lauren; Kairaitis, Kristina; Kirkness, Jason P; Garlick, Sarah R; Wheatley, John R; Byth, Karen; Amis, Terence C

    2007-11-01

    Snoring-associated vibration energy transmission from the upper airway to the carotid artery has been hypothesized as a potential atherosclerotic plaque initiating/rupturing event that may provide a pathogenic mechanism linking snoring and embolic stroke. We examined transmission of oscillatory pressure waves from the pharyngeal lumen to the common carotid artery wall and lumen in seven male, anesthetized, spontaneously breathing New Zealand White rabbits. Airflow was monitored via a pneumotachograph inserted in series in the intact trachea. Fifteen 20-s runs of, separately, 40-, 60-, and 90-Hz oscillatory pressure waves [pressure amplitude in the trachea (Ptr(amp)), amplitude 2-20 cmH(2)O] were generated by a loudspeaker driven by a sine wave generator and amplifier and superimposed on tidal breathing via the cranial tracheal connector. Pressure transducer-tipped catheters measured pressure amplitudes in the tissues adjacent to the common carotid artery bifurcation (Pcti(amp)) and within the lumen (carotid sinus; Pcs(amp)). Data were analyzed using power spectrum analysis and linear mixed-effects statistical modeling. Both the frequency (f) and amplitude of the injected pressure wave influenced Pcti(amp) and Pcs(amp), in that ln Pcti(amp) = 1.2(Ptr(amp)) + 0.02(f) - 5.2, and ln Pcs(amp) = 0.6(Ptr(amp)) + 0.02(f) - 4.9 (both P < 0.05). Across all frequencies tested, transfer of oscillatory pressure across the carotid artery wall was associated with an amplitude gain, as expressed by a Pcs(amp)-to-Pcti(amp) ratio of 1.8 +/- 0.3 (n = 6). Our findings confirm transmission of oscillatory pressure waves from the upper airway lumen to the peripharyngeal tissues and across the carotid artery wall to the lumen. Further studies are required to establish the role of this incident energy in the pathogenesis of carotid artery vascular disease.

  7. Superconductivity of Mg/MgO interface formed by shock-wave pressure

    NASA Astrophysics Data System (ADS)

    Sidorov, N. S.; Palnichenko, A. V.; Shakhrai, D. V.; Avdonin, V. V.; Vyaselev, O. M.; Khasanov, S. S.

    2013-05-01

    A mixture of Mg and MgO has been subjected to a shock-wave pressure of ≈170 kbar. The ac susceptibility measurements of the product has revealed a metastable superconductivity with Tc ≈ 30 K, characterized by glassy dynamics of the shielding currents below Tc. Comparison of the ac susceptibility and the dc magnetization measurements infers that the superconductivity arises within the interfacial layer formed between metallic Mg and its oxide due to the shock-wave treatment.

  8. Influence of ambient air pressure on the energy conversion of laser-breakdown induced blast waves

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2013-09-01

    Influence of ambient pressure on energy conversion efficiency from a Nd : glass laser pulse (λ = 1.053 µm) to a laser-induced blast wave was investigated at reduced pressure. Temporal incident and transmission power histories were measured using sets of energy meters and photodetectors. A half-shadowgraph half-self-emission method was applied to visualize laser absorption waves. Results show that the blast energy conversion efficiency ηbw decreased monotonically with the decrease in ambient pressure. The decrease was small, from 40% to 38%, for the pressure change from 101 kPa to 50 kPa, but the decrease was considerable, to 24%, when the pressure was reduced to 30 kPa. Compared with a TEA-CO2-laser-induced blast wave (λ = 10.6 µm), higher fraction absorption in the laser supported detonation regime ηLSD of 90% was observed, which is influenced slightly by the reduction of ambient pressure. The conversion fraction ηbw/ηLSD≈90% was achieved at pressure >50 kPa, which is significantly higher than that in a CO2 laser case.

  9. Using pressure and seismological broadband ocean data to model shear wave velocities in the north Atlantic.

    NASA Astrophysics Data System (ADS)

    Rios, Celia; Dahm, Torsten; Jegen, Marion

    2010-05-01

    Seafloor compliance is the transfer function between pressure and vertical displacement at the seafloor Infragravity waves in the oceanic layer have long periods in the range of 30 - 500 s and obey a simple frequency-wavenumber relation. Seafloor compliance from infragravity waves can be analyzed with single station recordings to determinate sub-seafloor shear wave velocities. Previous studies in the Pacific Ocean have demonstrated that reliable near-surface shear wave profiles can be derived from infragravity wave compliance. However, these studies indicate that, beside the water depth the compliance measurements are limited by instrument sensitivity, calibration uncertainties and possibly other effects. In this work seafloor compliance and infragravity waves are observed at two different locations in the Atlantic Ocean: the Logatchev hydrothermal field at the Mid Atlantic Ridge and the Azores (Sao Miguel Island). The data was acquired with the broadband ocean compliance station developed at the University of Hamburg as well as ocean station from the German instrument pool for amphibian seismology (DEPAS) equipped with broadband seismometers and pressure sensors. Vertical velocity and pressure data were used to calculate power spectral densities and normalized compliance along two profiles (one in each location). Power spectral densities show a dominant peak at low frequencies (0.01-0.035Hz) limited by the expected cut-off frequency, which is dependent on the water depth at each station. The peak has been interpreted as a strong infragravity wave with values between 10-14 and 10-11 (m/s2)2/Hz and 104 and 106 (Pa2)2/Hz for acceleration and pressure respectively. The results show compliance values between 10-10 and 10-8 1/Pa and its estimations take into account the coherence between seismic and pressure signals in order to confirm that the seismic signals in the infragravity waves are caused by pressure sources. Shear wave velocity models, with depth resolution

  10. Characteristics of surface sound pressure and absorption of a finite impedance strip for a grazing incident plane wave.

    PubMed

    Sum, K S; Pan, J

    2007-07-01

    Distributions of sound pressure and intensity on the surface of a flat impedance strip flush-mounted on a rigid baffle are studied for a grazing incident plane wave. The distributions are obtained by superimposing the unperturbed wave (the specularly reflected wave as if the strip is rigid plus the incident wave) with the radiated wave from the surface vibration of the strip excited by the unperturbed pressure. The radiated pressure interferes with the unperturbed pressure and distorts the propagating plane wave. When the plane wave propagates in the baffle-strip-baffle direction, it encounters discontinuities in acoustical impedance at the baffle-strip and strip-baffle interfaces. The radiated pressure is highest around the baffle-strip interface, but decreases toward the strip-baffle interface where the plane wave distortion reduces accordingly. As the unperturbed and radiated waves have different magnitudes and superimpose out of phase, the surface pressure and intensity increase across the strip in the plane wave propagation direction. Therefore, the surface absorption of the strip is nonzero and nonuniform. This paper provides an understanding of the surface pressure and intensity behaviors of a finite impedance strip for a grazing incident plane wave, and of how the distributed intensity determines the sound absorption coefficient of the strip.

  11. In-situ determination of SH-channel wave velocity and the influence of overburden pressure

    SciTech Connect

    Reeves, J.J.; Major, M.W.

    1982-04-01

    In the Dutch Creek 1 Mine at Coal Basin, Colorado, SH-channel waves have been transmitted through floor coal underneath a gob (cave darea) produced by an advancing longwall panel. For any given source, only the receiver directly adjacent or closest to the source was monitored by the Geometrics ES 1210 F seismograph. Two sources were used to excite channel waves at each source location; one an explosive charge, the other a hammer blow. Tests showed that variation in overburden pressure on coal can be detected seismically using channel waves passing through the coal.

  12. Wave-induced pore pressure and effective stresses in a porous seabed with variable permeability

    SciTech Connect

    Jeng, D.S.; Seymour, B.R.

    1996-12-31

    An evaluation of wave-induced soil response is particularly useful for geotechnical and coastal engineers involved in the design of foundations for offshore structures. To simplify the mathematical procedure, most theories available for the wave/seabed interaction problem have assumed a porous seabed with uniform permeability, despite strong evidence of variable permeability. This paper proposes an analytical solution for the wave induced soil response in a porous seabed with variable permeability. Verification is available through reduction to the simple case of uniform permeability. The numerical results indicate that the effect of variable soil permeability on pore pressure and effective stresses is significant.

  13. Propagation of terahertz waves in an atmospheric pressure microplasma with Epstein electron density profile

    SciTech Connect

    Yuan Chengxun; Zhou Zhongxiang; Zhang, Jingwen W.; Sun Hongguo; Wang He; Du Yanwei; Xiang Xiaoli

    2011-03-15

    Propagation properties of terahertz (THz) waves in a bounded atmospheric-pressure microplasma (AMP) are analyzed in this study. A modified Epstein profile model is used to simulate the electron density distribution caused by the plasma sheaths. By introducing the dielectric constant of a Drude-Lorentz model and using the method of dividing the plasma into a series of subslabs with uniform electron density, the coefficients of power reflection, transmission, and absorption are derived for a bounded microplasma structure. The effects of size of microplasma, electron density profile, and collision frequency on the propagation of THz waves are analyzed numerically. The results indicate that the propagation of THz waves in AMPs depend greatly on the above three parameters. It is demonstrated that the THz wave can play an important role in AMPs diagnostics; meanwhile, the AMP can be used as a novel potential tool to control THz wave propagation.

  14. Experimental observation of standing wave effect in low-pressure very-high-frequency capacitive discharges

    SciTech Connect

    Liu, Yong-Xin; Gao, Fei; Liu, Jia; Wang, You-Nian

    2014-07-28

    Radial uniformity measurements of plasma density were carried out by using a floating double probe in a cylindrical (21 cm in electrode diameter) capacitive discharge reactor driven over a wide range of frequencies (27–220 MHz). At low rf power, a multiple-node structure of standing wave effect was observed at 130 MHz. The secondary density peak caused by the standing wave effect became pronounced and shifts toward the axis as the driving frequency further to increase, indicative of a much more shortened standing-wave wavelength. With increasing rf power, the secondary density peak shift toward the radial edge, namely, the standing-wave wavelength was increased, in good qualitative agreement with the previous theory and simulation results. At higher pressures and high frequencies, the rf power was primarily deposited at the periphery of the electrode, due to the fact that the waves were strongly damped as they propagated from the discharge edge into the center.

  15. Modeling and simulation of pressure waves generated by nano-thermite reactions

    NASA Astrophysics Data System (ADS)

    Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; (Yuki) Horie, Yasuyuki

    2012-11-01

    This paper reports the modeling of pressure waves from the explosive reaction of nano-thermites consisting of mixtures of nanosized aluminum and oxidizer granules. Such nanostructured thermites have higher energy density (up to 26 kJ/cm3) and can generate a transient pressure pulse four times larger than that from trinitrotoluene (TNT) based on volume equivalence. A plausible explanation for the high pressure generation is that the reaction times are much shorter than the time for a shock wave to propagate away from the reagents region so that all the reaction energy is dumped into the gaseous products almost instantaneously and thereby a strong shock wave is generated. The goal of the modeling is to characterize the gas dynamic behavior for thermite reactions in a cylindrical reaction chamber and to model the experimentally measured pressure histories. To simplify the details of the initial stage of the explosive reaction, it is assumed that the reaction generates a one dimensional shock wave into an air-filled cylinder and propagates down the tube in a self-similar mode. Experimental data for Al/Bi2O3 mixtures were used to validate the model with attention focused on the ratio of specific heats and the drag coefficient. Model predictions are in good agreement with the measured pressure histories.

  16. Charge Design Considerations and Their Effect on Pressure Waves in Guns

    DTIC Science & Technology

    1980-12-01

    with his invention, the recording crusher gage. The significance of pressure waves, their origin and connection with high pressure and catastrophic...motion. In the second configuration, foam nodules were dispersed in the bed to 2 • expand it fully to the closure plug. The experimental results shown in...PRIMER PROPELLANT BED CORK OR POLYURETHANE WITH POLYSTYRENE FOAM CLOSURE PLUG NODULES Figure 22. Special Experimental Propelling Charges for 5-In./54

  17. The Design, Development, and Evaluation of a Differential Pressure Gauge Directional Wave Monitor.

    DTIC Science & Technology

    1982-10-01

    Ai23 958 THE DESIGN DEVELOPMENT AND EVALUATION OF A DIFFERENTIAL 1/3 PRESSURE GURGE DI..(U) COASTRL ENGINEERING RESEARCH CENTER FORT BELVOIR YR K R...I1IBI =. 5 6 LA 112 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963- A q.. MR 82-11 k0- The Design, Development, and Evaluation of a ...OF REPORT & PERIOD COVERED THE DESIGN, DEVELOPMENT, AND EVALUATION Miscellaneous Report OF A DIFFERENTIAL PRESSURE GAUGE DIRECTIONAL WAVE MONITOR 6

  18. The effects of pressure, temperature, and pore water on velocities in Westerly granite. [for seismic wave propagation

    NASA Technical Reports Server (NTRS)

    Spencer, J. W., Jr.; Nur, A. M.

    1976-01-01

    A description is presented of an experimental assembly which has been developed to conduct concurrent measurements of compressional and shear wave velocities in rocks at high temperatures and confining pressures and with independent control of the pore pressure. The apparatus was used in studies of the joint effects of temperature, external confining pressure, and internal pore water on sonic velocities in Westerly granite. It was found that at a given temperature, confining pressure has a larger accelerating effect on compressional waves in dry rock, whereas at a given confining pressure, temperature has a larger retarding effect on shear waves.

  19. Control and reduction of unsteady pressure loads in separated shock wave turbulent boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Dolling, David S.; Barter, John W.

    1995-01-01

    The focus was on developing means of controlling and reducing unsteady pressure loads in separated shock wave turbulent boundary layer interactions. Section 1 describes how vortex generators can be used to effectively reduce loads in compression ramp interaction, while Section 2 focuses on the effects of 'boundary-layer separators' on the same interaction.

  20. Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas

    SciTech Connect

    Taniguchi, Shigeru Sugiyama, Masaru; Arima, Takashi; Ruggeri, Tommaso

    2014-01-15

    We study the shock wave structure in a rarefied polyatomic gas based on a simplified model of extended thermodynamics in which the dissipation is due only to the dynamic pressure. In this case the differential system is very simple because it is a variant of Euler system with a new scalar equation for the dynamic pressure [T. Arima, S. Taniguchi, T. Ruggeri, and M. Sugiyama, Phys. Lett. A 376, 2799–2803 (2012)]. It is shown that this theory is able to describe the three types of the shock wave structure observed in experiments: the nearly symmetric shock wave structure (Type A, small Mach number), the asymmetric structure (Type B, moderate Mach number), and the structure composed of thin and thick layers (Type C, large Mach number)

  1. Three-dimensional visualization of shear wave propagation generated by dual acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    Mochizuki, Yuta; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    An elastic property of biological soft tissue is an important indicator of the tissue status. Therefore, quantitative and noninvasive methods for elasticity evaluation have been proposed. Our group previously proposed a method using acoustic radiation pressure irradiated from two directions for elastic property evaluation, in which by measuring the propagation velocity of the shear wave generated by the acoustic radiation pressure inside the object, the elastic properties of the object were successfully evaluated. In the present study, we visualized the propagation of the shear wave in a three-dimensional space by the synchronization of signals received at various probe positions. The proposed method succeeded in visualizing the shear wave propagation clearly in the three-dimensional space of 35 × 41 × 4 mm3. These results show the high potential of the proposed method to estimate the elastic properties of the object in the three-dimensional space.

  2. Hydrodynamic pressure computation under real sea surface on basis of autoregressive model of irregular waves

    NASA Astrophysics Data System (ADS)

    Degtyarev, A.; Gankevich, I.

    2015-05-01

    Determining the impact of external excitations on a dynamic marine object such as ship hull in a seaway is the main goal of simulations. Now such simulations is most often based on approximate mathematical models that use results of the theory of small amplitude waves. The most complicated software for marine objects behavior simulation LAMP IV (Large amplitude motion program) uses numerical solution of traditional hydrodynamic problem without often used approximations but on the basis of theory of small amplitude waves. For efficiency reasons these simulations can be based on autoregressive model to generate real wave surface. Such a surface possesses all the hydrodynamic characteristics of sea waves, preserves dispersion relation and also shows superior performance compared to other wind wave models. Naturally, the known surface can be used to compute velocity field and in turn to determine pressures in any point under sea surface. The resulting computational algorithm can be used to determine pressures without use of theory of small-amplitude waves.

  3. Experimental Study on a Standing Wave Thermoacoustic Prime Mover with Air Working Gas at Various Pressures

    NASA Astrophysics Data System (ADS)

    Setiawan, Ikhsan; Achmadin, Wahyu N.; Murti, Prastowo; Nohtomi, Makoto

    2016-04-01

    Thermoacoustic prime mover is an energy conversion device which converts thermal energy into acoustic work (sound wave). The advantages of this machine are that it can work with air as the working gas and does not produce any exhaust gases, so that it is environmentally friendly. This paper describes an experimental study on a standing wave thermoacoustic prime mover with air as the working gas at various pressures from 0.05 MPa to 0.6 MPa. We found that 0.2 MPa is the optimum pressure which gives the lowest onset temperature difference of 355 °C. This pressure value would be more preferable in harnessing low grade heat sources to power the thermoacoustic prime mover. In addition, we find that the lowest onset temperature difference is obtained when rh /δ k ratio is 2.85, where r h is the hydraulic radius of the stack and δ k is the thermal penetration depth of the gas. Moreover, the pressure amplitude of the sound wave is significantly getting larger from 2.0 kPa to 9.0 kPa as the charged pressure increases from 0.05 MPa up to 0.6 MPa.

  4. Measurement of the normal component of compressive wave pressure in a rock with Manganin sensors

    SciTech Connect

    Virchenko, V.A.; Egorov, A.P.; Krasavin, S.V.

    1985-03-01

    Measurement of dynamic pressures in compressed media with manganin wire sensors has become common in the past few years. The increased interest in this method is due to the technological simplicity of measurement and the ease of manufacturing the manganin pickup. The method has been continually improved and put to new applications. In this paper the authors describe an experiment using manganin sensors to measure the normal component of a compressive pressure wave in rocks (marble, schist, and diabase) generated by industrial blasts. Subtle effects not previously identified include: decomposition of the shockwave in the rock and identification of an elastic precursor; features of damping of the normal component of compressive wave pressure as a function of distance from the load application point; and the pattern of destruction of brittle materials. The authors conclude that manganin sensors can be broadly applied in mining for studies of the efficacy of various types of explosives and in investigations of the mechanism of rock destruction.

  5. Time-resolved wave profile measurements in copper to Megabar pressures

    SciTech Connect

    Chhabildas, L C; Asay, J R

    1981-01-01

    Many time-resolved techniques have been developed which have greatly aided in the understanding of dynamic material behavior such as the high pressure-dynamic strength of materials. In the paper, time-resolved measurements of copper (at shock-induced high pressures and temperatures) are used to illustrate the capability of using such techniques to investigate high pressure strength. Continuous shock loading and release wave profiles have been made in copper to 93 GPa using velocity interferometric techniques. Fine structure in the release wave profiles from the shocked state indicates an increase in shear strength of copper to 1.5 GPa at 93 GPa from its ambient value of 0.08 GPa.

  6. Shear wave measurements in shock-induced, high-pressure phases

    SciTech Connect

    Aidun, J.B.

    1993-01-01

    Structural phase transformations under shock loading are of considerable interest for understanding the response of solids under nonhydrostatic stresses and at high strain-rates. Examining shock-induced transformations from continuum level measurements is fundamentally constrained by the inability to directly identify microscopic processes, and also by the limited number of material properties that can be directly measured. ne latter limitation can be reduced by measuring both shear and compression waves using Lagrangian gauges in combined, compression and shear loading. The shear wave serves as an important, real-time probe of the shocked state and unloading response. Using results from a recent study of CaCO[sub 3], the unique information obtained from the shear wave speed and the detailed structure of the shear wave are shown to be useful for distinguishing the effects of phase transformations from yielding, as well as in characterizing the high-pressure phases and the yielding process under shock loading.

  7. Shear wave measurements in shock-induced, high-pressure phases

    SciTech Connect

    Aidun, J.B.

    1993-07-01

    Structural phase transformations under shock loading are of considerable interest for understanding the response of solids under nonhydrostatic stresses and at high strain-rates. Examining shock-induced transformations from continuum level measurements is fundamentally constrained by the inability to directly identify microscopic processes, and also by the limited number of material properties that can be directly measured. ne latter limitation can be reduced by measuring both shear and compression waves using Lagrangian gauges in combined, compression and shear loading. The shear wave serves as an important, real-time probe of the shocked state and unloading response. Using results from a recent study of CaCO{sub 3}, the unique information obtained from the shear wave speed and the detailed structure of the shear wave are shown to be useful for distinguishing the effects of phase transformations from yielding, as well as in characterizing the high-pressure phases and the yielding process under shock loading.

  8. Brachial vs. central systolic pressure and pulse wave transmission indicators: a critical analysis.

    PubMed

    Izzo, Joseph L

    2014-12-01

    This critique is intended to provide background for the reader to evaluate the relative clinical utilities of brachial cuff systolic blood pressure (SBP) and its derivatives, including pulse pressure, central systolic pressure, central augmentation index (AI), and pulse pressure amplification (PPA). The critical question is whether the newer indicators add sufficient information to justify replacing or augmenting brachial cuff blood pressure (BP) data in research and patient care. Historical context, pathophysiology of variations in pulse wave transmission and reflection, issues related to measurement and model errors, statistical limitations, and clinical correlations are presented, along with new comparative data. Based on this overview, there is no compelling scientific or practical reason to replace cuff SBP with any of the newer indicators in the vast majority of clinical situations. Supplemental value for central SBP may exist in defining patients with exaggerated PPA ("spurious systolic hypertension"), managing cardiac and aortic diseases, and in studies of cardiovascular drugs, but there are no current standards for these possibilities.

  9. Comparison of actinide production in traveling wave and pressurized water reactors

    SciTech Connect

    Osborne, A.G.; Smith, T.A.; Deinert, M.R.

    2013-07-01

    The geopolitical problems associated with civilian nuclear energy production arise in part from the accumulation of transuranics in spent nuclear fuel. A traveling wave reactor is a type of breed-burn reactor that could, if feasible, reduce the overall production of transuranics. In one possible configuration, a cylinder of natural or depleted uranium would be subjected to a fast neutron flux at one end. The neutrons would transmute the uranium, producing plutonium and higher actinides. Under the right conditions, the reactor could become critical, at which point a self-stabilizing fission wave would form and propagate down the length of the reactor cylinder. The neutrons from the fission wave would burn the fissile nuclides and transmute uranium ahead of the wave to produce additional fuel. Fission waves in uranium are driven largely by the production and fission of {sup 239}Pu. Simulations have shown that the fuel burnup can reach values greater than 400 MWd/kgIHM, before fission products poison the reaction. In this work we compare the production of plutonium and minor actinides produced in a fission wave to that of a UOX fueled light water reactor, both on an energy normalized basis. The nuclide concentrations in the spent traveling wave reactor fuel are computed using a one-group diffusion model and are verified using Monte Carlo simulations. In the case of the pressurized water reactor, a multi-group collision probability model is used to generate the nuclide quantities. We find that the traveling wave reactor produces about 0.187 g/MWd/kgIHM of transuranics compared to 0.413 g/MWd/kgIHM for a pressurized water reactor running fuel enriched to 4.95 % and burned to 50 MWd/kgIHM. (authors)

  10. Pressure fluctuations beneath turbulent spots and instability wave packets in a hypersonic boundary layer.

    SciTech Connect

    Beresh, Steven Jay; Casper, Katya M.; Schneider, Steven P.

    2010-12-01

    The development of turbulent spots in a hypersonic boundary layer was studied on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Under quiet flow conditions, the nozzle wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large turbulent spots that can be readily measured with pressure transducers. Measurements of naturally occurring wave packets and developing turbulent spots were made. The peak frequencies of these natural wave packets were in agreement with second-mode computations. For a controlled study, the breakdown of disturbances created by spark and glow perturbations were studied at similar freestream conditions. The spark perturbations were the most effective at creating large wave packets that broke down into turbulent spots. The flow disturbances created by the controlled perturbations were analyzed to obtain amplitude criteria for nonlinearity and breakdown as well as the convection velocities of the turbulent spots. Disturbances first grew into linear instability waves and then quickly became nonlinear. Throughout the nonlinear growth of the wave packets, large harmonics are visible in the power spectra. As breakdown begins, the peak amplitudes of the instability waves and harmonics decrease into the rising broad-band frequencies. Instability waves are still visible on either side of the growing turbulent spots during this breakdown process.

  11. Dayside magnetospheric ULF wave frequency modulated by a solar wind dynamic pressure negative impulse

    NASA Astrophysics Data System (ADS)

    Shen, X. C.; Shi, Q. Q.; Zong, Q.-G.; Tian, A. M.; Nowada, M.; Sun, W. J.; Zhao, H. Y.; Hudson, M. K.; Wang, H. Z.; Fu, S. Y.; Pu, Z. Y.

    2017-02-01

    Ultralow frequency (ULF) waves play an important role in the transport of the solar wind energy to the magnetosphere. In this paper, we present a ULF wave event in the dayside magnetosphere which shows a sudden decrease in frequency from 3.1 to 2.3 mHz around 0756 UT on 11 January 2010, when a solar wind dynamic pressure drop (from ˜5 to ˜2 nPa) was observed simultaneously. The wave exits globally. The phase differences between electric and magnetic fields indicate that the compressional mode wave is standing before and after the wave frequency decrease. This result suggests that the ULF wave should be associated with a cavity mode and the frequency decrease might be induced by the change of the cavity size. A theoretical calculation was made to estimate the cavity mode frequency. The calculated wave frequency before/after the negative impulse is 3.8/2.6 mHz, which is consistent with the observations.

  12. Use of Z-pinch sources for high-pressure shock wave studies

    SciTech Connect

    Konrad, C.H.; Asay, J.R.; Hall, C.A.

    1998-01-01

    In this paper, we will discuss the use of z-pinch sources for shock wave studies at multi-Mbar pressures. Experimental plans to use the technique for absolute shock Hugoniot measurements are discussed. Recent developments have demonstrated the use of pulsed power techniques for producing intense radiation sources (Z pinches) for driving planar shock waves in samples with spatial dimensions significantly larger than possible with other radiation sources. Initial indications are that using Z pinch sources for producing Planckian radiation sources in secondary hohlraums can be used to drive shock waves in samples with diameters to a few millimeters and thickness approaching one millimeter in thickness. These dimensions provides the opportunity to measure both shock velocity and the particle velocity behind the shock front with accuracy comparable to that obtained with gun launchers. In addition, the peak hohlraum temperatures of nearly 150 eV that are now possible with Z pinch sources result in shock wave pressures approaching 45 Mbar in high impedance materials such as tungsten and 10-15 Mbar in low impedance materials such as aluminum and plastics. In this paper, we discuss the use of Z pinch sources for making accurate absolute EOS measurements in the megabar pressure range.

  13. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    SciTech Connect

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  14. Kinetic model of ionization waves in a positive column at intermediate pressures in inert gases.

    PubMed

    Golubovskii, Y B; Maiorov, V A; Nekutchaev, V O; Behnke, J; Behnke, J F

    2001-03-01

    A kinetic model of ionization waves in the inert gas discharge is constructed, which is based on the simultaneous solution of the kinetic equation for electrons and the continuity equations for ions and excited atoms. The model corresponds to a range of intermediate pressures and small currents, when elastic collisions dominate in the electron energy balance and electron-electron collisions are negligibly small. A linear theory of ionization waves is constructed, growth rates and frequencies of wave disturbances able to propagate in plasma are found. It is shown that there is an upper bound to the existence of striations by pressure, as well as the lower bound by current. The self-consistent solution of the source system of equations is obtained, which describes a nonlinear wave. The profile of electric field and the electron distribution function in this field are calculated. The results of calculations are compared with the experimental data. The wavelengths obtained are essentially larger than the electron energy relaxation length. Such waves cannot be described within the limits of fluid models.

  15. Ventricular size and isotope cisternography in patients with acute transient rises of intracranial pressure (plateau waves)

    SciTech Connect

    Hayashi, M.; Kobayashi, H.; Fujii, H.; Yamamoto, S.

    1982-12-01

    The size of the ventricular system and cerebrospinal fluid (CSF) flow were determined in 17 patients with plateau waves, using computerized tomography (CT) and isotope cisternography. Some patients had increased intracranial pressure (ICP) resulting from space-occupying lesions and other causes, and some had normal ICP observed in normal-pressure hydrocephalus. The size and shape of the ventricular system during plateau wave phases as ascertained by CT showed little or no change as compared with its size and shape during the interval phases between two waves. It was also noticed that, in patients with supratentorial masses, the midline shift showed no difference in degree between the two phases. These findings suggest that there is little change in the intracranial CSF volume between the two phases, that is, there is little compensatory outflow of the intracranial CSF for the ICP variations. These results may also support the assumption that the plateau waves are not caused by an intermittent obstruction of the CSF pathways. Isotope cisternography showed a marked delay of clearance of radioactivity from the intracranial CSF in 15 patients. The cisternographic pattern in patients with increased ICP and the absence of ventricular dilatation demonstrated an abnormally large accumulation of radioactivity over the cerebral convexities, and the pattern in patients with normal-pressure hydrocephalus showed complete obstruction of the subarachnoid space over both cerebral convexities. These observations suggest that, in patients with plateau waves, there is a marked delay in CSF absorption. The authors postulate that the reduction of CSF absorption may create a critically tight condition within the cranial cavity and act as a contributory factor in the development of the plateau waves.

  16. Characterization of a setup to test the impact of high-amplitude pressure waves on living cells.

    PubMed

    Schmidt, Mischa; Kahlert, Ulf; Wessolleck, Johanna; Maciaczyk, Donata; Merkt, Benjamin; Maciaczyk, Jaroslaw; Osterholz, Jens; Nikkhah, Guido; Steinhauser, Martin O

    2014-01-24

    The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction.

  17. Characterization of a Setup to test the Impact of High-Amplitude Pressure Waves on Living Cells

    PubMed Central

    Schmidt, Mischa; Kahlert, Ulf; Wessolleck, Johanna; Maciaczyk, Donata; Merkt, Benjamin; Maciaczyk, Jaroslaw; Osterholz, Jens; Nikkhah, Guido; Steinhauser, Martin O.

    2014-01-01

    The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction. PMID:24458018

  18. Characterization of a Setup to test the Impact of High-Amplitude Pressure Waves on Living Cells

    NASA Astrophysics Data System (ADS)

    Schmidt, Mischa; Kahlert, Ulf; Wessolleck, Johanna; Maciaczyk, Donata; Merkt, Benjamin; Maciaczyk, Jaroslaw; Osterholz, Jens; Nikkhah, Guido; Steinhauser, Martin O.

    2014-01-01

    The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction.

  19. A new modeling approach of pressure waves at the inlet of internal combustion engines

    NASA Astrophysics Data System (ADS)

    Chalet, David; Mahé, Alexandre; Hétet, Jean-François; Migaud, Jérôme

    2011-06-01

    This paper presents a new model used to describe the propagation of pressure waves at the inlet systems of internal combustion engine. In the first part, an analogy is made between the compressible air in a pipe and a mechanical ideal mass damper spring system. A new model is then presented and the parameters of this model are determined by the use of an experimental setup (shock tube test bench). With this model, a transfer function is defined in order to link directly the pressure and the air mass flow rate. In the second part, the model is included into an internal combustion engine simulation code. The results obtained with this code are compared to experimental ones which are measured on a one-cylinder engine test bench. This last one is driven by an electric motor in order to study only the effect of the pressure waves on the engine behavior. A good agreement is obtained between the experimental results and the numerical ones and the new approach is an alternative method for modeling the pressure wave phenomena in an internal combustion engine manifold.

  20. Pressure wave measurements from thermal cook-off of an HMX based high explosive

    SciTech Connect

    Forbes, J W; Tarver, C M; Urtiew, P A; Garcia, F; Greenwood, D W; Vandersall, K S

    2000-10-10

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios.

  1. Pressure Wave Measurements from Thermal Cook-off of an HMX Based Explosive

    SciTech Connect

    Forbes, J W; Tarver, C M; Urtiew, P A; Garcia, F; Greenwood, D W; Vandersall, K S

    2001-05-09

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios.

  2. Pressure Wave Measurements from Thermal Cook-Off of an HMX Based High Explosive PBX 9501

    SciTech Connect

    Garcia, F; Forbes, J W; Tarver, C M; Urtiew, P A; Greenwood, D W; Vandersall, K S

    2001-05-31

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios.

  3. Estimated Pulse Wave Velocity Calculated from Age and Mean Arterial Blood Pressure

    PubMed Central

    Greve, Sara V.; Laurent, Stephan; Olsen, Michael H.

    2017-01-01

    In a recently published paper, Greve et al [J Hypertens 2016;34:1279-1289] investigate whether the estimated carotid-femoral pulse wave velocity (ePWV), calculated using an equation derived from the relationship between carotid-femoral pulse wave velocity (cfPWV), age, and blood pressure, predicts cardiovascular disease (CVD) as good as the measured cfPWV. Because ePWV predicts CVD as good as cfPWV, some might wonder whether ePWV could be replaced by cfPWV, which is a time-consuming measurement requiring an expensive apparatus. This question is addressed in this mini-review. PMID:28229052

  4. Superconductivity of Al/Al2O3 interface formed by shock-wave pressure

    NASA Astrophysics Data System (ADS)

    Palnichenko, A. V.; Shakhrai, D. V.; Avdonin, V. V.; Vyaselev, O. M.; Khasanov, S. S.

    2015-05-01

    A mixture of Al and α -Al2O3 has been subjected to a shock-wave pressure of ≃ 170 kbar, followed by vacuum-encapsulating and quenching of the product to liquid nitrogen. The ac magnetic susceptibility measurements of the samples have revealed metastable superconductivity with Tc ≈ 37 K, characterized by glassy dynamics of the shielding currents below Tc . Comparison of the ac susceptibility and the dc magnetization measurements infers that the superconductivity arises within the interfacial granular layer formed between metallic Al and its oxide due to the shock-wave treatment.

  5. Superconductivity of Cu/CuOx interface formed by shock-wave pressure

    NASA Astrophysics Data System (ADS)

    Shakhray, D. V.; Avdonin, V. V.; Palnichenko, A. V.

    2016-11-01

    A mixture of powdered Cu and CuO has been subjected to shock-wave pressure of 350 kbar with following quenching of the vacuum-encapsulated product to 77 K. The ac magnetic susceptibility measurements of the samples have revealed metastable superconductivity with Tc ≈ 19 K, characterized by glassy dynamics of the shielding currents below Tc . Comparison of the ac susceptibility and the DC magnetization measurements infers that the superconductivity arises within the granular interfacial layer formed between metallic Cu and its oxides due to the shock-wave treatment.

  6. Superconductivity of Cu/CuOx interface formed by shock-wave pressure

    NASA Astrophysics Data System (ADS)

    Palnichenko, A. V.; Sidorov, N. S.; Shakhrai, D. V.; Avdonin, V. V.; Vyaselev, O. M.; Khasanov, S. S.

    2014-03-01

    A mixture of powdered Cu and CuO has been subjected to a shock-wave pressure of ≃350 kbar with following quenching of the vacuum-encapsulated product to ≈77 K. The ac magnetic susceptibility measurements of the samples have revealed metastable superconductivity with Tc≈19.5 K, characterized by glassy dynamics of the shielding currents below Tc. Comparison of the ac susceptibility and the dc magnetization measurements infers that the superconductivity arises within the granular interfacial layer formed between metallic Cu and its oxides due to the shock-wave treatment.

  7. Wave propagation with different pressure signals: an experimental study on the latex tube.

    PubMed

    Ursino, M; Artioli, E; Gallerani, M

    1993-07-01

    To have deeper insight into the main factors affecting wave propagation in real hydraulic lines, we measured the true propagation coefficient in two latex rubber tubes via the three-point pressure method. The measurements were performed using both sinusoidal pressure signals of different amplitudes and periodic square waves as well as aperiodic pressure impulses. The results obtained were then compared with those predicted by a classic linear model valuable for a purely elastic maximally tethered tube. Our measurements demonstrate that the three-point pressure method may introduce significant errors at low frequencies (below 1 Hz in the present experiments) when the distance between two consecutive transducers becomes much lower than the wavelength. The pattern of phase velocity in the range 2-20 Hz turns out to be about 10 per cent higher than the theoretical one computed using the static value of the Young modulus. This result supports the idea that the dynamic Young modulus of the material is slightly higher than that measured in static conditions. The experimental attenuation per wavelength is significantly higher than the theoretical one over most of the frequencies examined, and settles at a constant value as frequency increases. Introduction of wall viscoelasticity in the theoretical model can explain only a portion of the observed high frequency damping and wave attenuation. Finally, increasing the amplitude of pressure changes significantly affects the measured value of the propagation coefficient, especially at those frequencies for which direct and reflected waves sum together in a positive fashion. In these conditions we observed a moderate increase in phase velocity and a much more evident increase in attenuation per wavelength.

  8. Radial energy transport by magnetospheric ULF waves: Effects of magnetic curvature and plasma pressure

    NASA Technical Reports Server (NTRS)

    Kouznetsov, Igor; Lotko, William

    1995-01-01

    The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the

  9. Negative Pressures and Spallation in Water Drops Subjected to Nanosecond Shock Waves.

    PubMed

    Stan, Claudiu A; Willmott, Philip R; Stone, Howard A; Koglin, Jason E; Liang, Mengning; Aquila, Andrew L; Robinson, Joseph S; Gumerlock, Karl L; Blaj, Gabriel; Sierra, Raymond G; Boutet, Sébastien; Guillet, Serge A H; Curtis, Robin H; Vetter, Sharon L; Loos, Henrik; Turner, James L; Decker, Franz-Josef

    2016-06-02

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below -100 MPa were reached in the drops. We model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.

  10. Arterial pulse pressure amplification described by means of a nonlinear wave model: characterization of human aging

    NASA Astrophysics Data System (ADS)

    Alfonso, M.; Cymberknop, L.; Armentano, R.; Pessana, F.; Wray, S.; Legnani, W.

    2016-04-01

    The representation of blood pressure pulse as a combination of solitons captures many of the phenomena observed during its propagation along the systemic circulation. The aim of this work is to analyze the applicability of a compartmental model for propagation regarding the pressure pulse amplification associated with arterial aging. The model was applied to blood pressure waveforms that were synthesized using solitons, and then validated by waveforms obtained from individuals from differentiated age groups. Morphological changes were verified in the blood pressure waveform as a consequence of the aging process (i.e. due to the increase in arterial stiffness). These changes are the result of both a nonlinear interaction and the phenomena present in the propagation of nonlinear mechanic waves.

  11. Reduction of fluctuating pressure loads in shock wave turbulent boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Barter, John W.; Dolling, David S.

    1995-01-01

    Fluctuating surface pressure measurements have been made to investigate the effectiveness of boundary layer separators (BLS's) in reducing the fluctuating pressure loads produced by separated shock wave turbulent boundary layer interactions. Measurements have been made under unswept and swept compression corner interactions in a Mach 5 flow. BLS's fix the separation location and eliminate the large-amplitude, low-frequency fluctuating pressure loads upstream of the compression corners. The loads on the unswept compression corner face are reduced by as much as 59%. The BLS's also shift the mean pressure distribution on the unswept corner face in the streamwise direction. Results show that the loads on the corner face vary with the BLS height and the distance between the BLS and the compression corner. Suggestions for the optimum placement and the use of the BLS's are also made.

  12. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    SciTech Connect

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; Koglin, Jason E.; Liang, Mengning; Aquila, Andrew L.; Robinson, Joseph S.; Gumerlock, Karl L.; Blaj, Gabriel; Sierra, Raymond G.; Boutet, Sebastien; Guillet, Serge A. H.; Curtis, Robin H.; Vetter, Sharon L.; Loos, Henrik; Turner, James L.; Decker, Franz -Josef

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPa were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.

  13. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    DOE PAGES

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  14. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    PubMed

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  15. CMOS-compatible ruggedized high-temperature Lamb wave pressure sensor

    NASA Astrophysics Data System (ADS)

    Kropelnicki, P.; Muckensturm, K.-M.; Mu, X. J.; Randles, A. B.; Cai, H.; Ang, W. C.; Tsai, J. M.; Vogt, H.

    2013-08-01

    This paper describes the development of a novel ruggedized high-temperature pressure sensor operating in lateral field exited (LFE) Lamb wave mode. The comb-like structure electrodes on top of aluminum nitride (AlN) were used to generate the wave. A membrane was fabricated on SOI wafer with a 10 µm thick device layer. The sensor chip was mounted on a pressure test package and pressure was applied to the backside of the membrane, with a range of 20-100 psi. The temperature coefficient of frequency (TCF) was experimentally measured in the temperature range of -50 °C to 300 °C. By using the modified Butterworth-van Dyke model, coupling coefficients and quality factor were extracted. Temperature-dependent Young's modulus of composite structure was determined using resonance frequency and sensor interdigital transducer (IDT) wavelength which is mainly dominated by an AlN layer. Absolute sensor phase noise was measured at resonance to estimate the sensor pressure and temperature sensitivity. This paper demonstrates an AlN-based pressure sensor which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications.

  16. Elastic wave velocities of lunar samples at high pressures and their geophysical implications.

    PubMed

    Kanamori, H; Nur, A; Chung, D; Wones, D; Simmons, G

    1970-01-30

    Ultrasonic measurement of P and S velocities of Apollo 11 lunar samples 10020, 10057, and 10065 to 5 kilobars pressure at room temperature shows a pronounced increase of velocity (as much as twofold) for the first 2 kilobars. The travel times predicted from the velocity-depth curve of sample 10057 are consistent with the results of the Apollo 12 seismic experiments. At pressures below 200 bars, the samples are highly attenuating; for both P and S waves, the value of Q is about 10.

  17. Shock wave reflection induced detonation (SWRID) under high pressure and temperature condition in closed cylinder

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Qi, Y.; Liu, H.; Zhang, P.; He, X.; Wang, J.

    2016-09-01

    Super-knock is one of the major obstacles for improving power density in advanced internal combustion engines (ICE). This work studied the mechanism of super-knock initiation using a rapid compression machine that simulated conditions relevant to ICEs and provided excellent optical accessibility. Based on the high-speed images and pressure traces of the stoichiometric iso-octane/oxygen/nitrogen combustion under high-temperature and high-pressure conditions, it was observed that detonation was first initiated in the near-wall region as a result of shock wave reflection. Before detonation was initiated, the speed of the combustion wave front was less than that of the Chapman-Jouguet (C-J) detonation speed (around 1840 m/s). In the immediate vicinity of the initiation, the detonation speed was much higher than that of the C-J detonation.

  18. New experimental capabilities and theoretical insights of high pressure compression waves

    SciTech Connect

    Orlikowski, D; Nguyen, J; Patterson, J R; Minich, R; Martin, L P; Holmes, N

    2007-07-20

    Currently there are three platforms that offer quasi-isentropic compression or ramp-wave compression (RWC): light-gas gun, magnetic flux (Z-pinch), and laser. We focus here on the light-gas gun technique and on some current theoretical insights from experimental data. A gradient impedance through the length of the impactor provides the pressure pulse upon impactor to the subject material. Applications and results are given concerning high-pressure strength and liquid to solid, phase transition of water plus its associated phase fraction history. We also introduce the Korteweg-deVries-Burgers equation as a means to understand the evolution these RWC waves that propagate through the thickness of the subject material. This equation has the necessary competition between non-linear, dispersion, and dissipation processes, which is shown through observed structures that are manifested in the experimental particle velocity histories. Such methodology points towards a possible quantifiable dissipation, through which RWC experiments may be analyzed.

  19. Instantaneous and efficient surface wave excitation of a low pressure gas or gases

    DOEpatents

    Levy, Donald J.; Berman, Samuel M.

    1988-01-01

    A system for instantaneously ionizing and continuously delivering energy in the form of surface waves to a low pressure gas or mixture of low pressure gases, comprising a source of rf energy, a discharge container, (such as a fluorescent lamp discharge tube), an rf shield, and a coupling device responsive to rf energy from the source to couple rf energy directly and efficiently to the gas or mixture of gases to ionize at least a portion of the gas or gases and to provide energy to the gas or gases in the form of surface waves. The majority of the rf power is transferred to the gas or gases near the inner surface of the discharge container to efficiently transfer rf energy as excitation energy for at least one of the gases. The most important use of the invention is to provide more efficient fluorescent and/or ultraviolet lamps.

  20. Theoretical study of the light pressure force acting on a spherical dielectric particle of an arbitrary size in the interference field of two plane monochromatic electromagnetic waves

    SciTech Connect

    Guzatov, D V; Gaida, L S; Afanas'ev, Anatolii A

    2008-12-31

    The light pressure force acting on a spherical dielectric particle in the interference field of two plane monochromatic electromagnetic waves is studied in detail for different particle radii and angles of incidence of waves. (light pressure)

  1. Nonlinear acoustics in a dispersive continuum: Random waves, radiation pressure, and quantum noise

    NASA Astrophysics Data System (ADS)

    Cabot, M. A.

    The nonlinear interaction of sound with sound is studied using dispersive hydrodynamics which derived from a variational principle and the assumption that the internal energy density depends on gradients of the mass density. The attenuation of sound due to nonlinear interaction with a background is calculated and is shown to be sensitive to both the nature of the dispersion and decay bandwidths. The theoretical results are compared to those of low temperature helium experiments. A kinetic equation which described the nonlinear self-inter action of a background is derived. When a Deybe-type cutoff is imposed, a white noise distribution is shown to be a stationary distribution of the kinetic equation. The attenuation and spectrum of decay of a sound wave due to nonlinear interaction with zero point motion is calculated. In one dimension, the dispersive hydrodynamic equations are used to calculate the Langevin and Rayleigh radiation pressures of wave packets and solitary waves.

  2. Relationship between Orientation to a Blast and Pressure Wave Propagation Inside the Rat Brian

    DTIC Science & Technology

    2011-01-01

    generated during an explosion may result in brain damage anll related neuro- logical impairments. Several mechanisms by which the primary blast wave can...CSF). to the central nervous system. To address a basic question related to the mechanisms of blast brain injury. pressure was measured inside the...can damage the bra in have been pro- posed, includi ng: ( 1) mechanical displacement of brain resulting in contusions and hemorrhages and direct

  3. The vibration of a box-type structure. II - Response to a travelling pressure wave.

    NASA Technical Reports Server (NTRS)

    Popplewell, N.

    1971-01-01

    A finite element method is formulated for determining the transient response of a box-type structure to a traveling, arbitrarily shaped pressure wave. The method is illustrated by considering an example of practical concern - the sonic boom. The acceleration-time histories of a closed box are compared with those obtained experimentally from a simulated boom. Satisfactory agreement is obtained with only four rectangular elements per individual face and a simplified loading of the box.

  4. In situ measurements of impact-induced pressure waves in sandstone targets

    NASA Astrophysics Data System (ADS)

    Hoerth, Tobias; Schäfer, Frank; Nau, Siegfried; Kuder, Jürgen; Poelchau, Michael H.; Thoma, Klaus; Kenkmann, Thomas

    2014-10-01

    In the present study we introduce an innovative method for the measurement of impact-induced pressure waves within geological materials. Impact experiments on dry and water-saturated sandstone targets were conducted at a velocity of 4600 m/s using 12 mm steel projectiles to investigate amplitudes, decay behavior, and speed of the waves propagating through the target material. For this purpose a special kind of piezoresistive sensor capable of recording transient stress pulses within solid brittle materials was developed and calibrated using a Split-Hopkinson pressure bar. Experimental impact parameters (projectile size and speed) were kept constant and yielded reproducible signal curves in terms of rise time and peak amplitudes. Pressure amplitudes decreased by 3 orders of magnitude within the first 250 mm (i.e., 42 projectile radii). The attenuation for water-saturated sandstone is higher compared to dry sandstone which is attributed to dissipation effects caused by relative motion between bulk material and interstitial water. The proportion of the impact energy radiated as seismic energy (seismic efficiency) is in the order of 10-3. The present study shows the feasibility of real-time measurements of waves caused by hypervelocity impacts on geological materials. Experiments of this kind lead to a better understanding of the processes in the crater subsurface during a hypervelocity impact.

  5. Generation of a 400 GPa pressure in water using converging strong shock waves

    SciTech Connect

    Fedotov-Gefen, A.; Efimov, S.; Gilburd, L.; Bazalitski, G.; Gurovich, V. Tz.; Krasik, Ya. E.

    2011-06-15

    Results related to the generation of an extreme state of water with pressure up to (4.3 {+-} 0.2){center_dot}10{sup 11} Pa, density up to 4.2 {+-} 0.1 g/cm{sup 3}, and temperature up to 2.2 {+-} 0.1 eV in the vicinity of the implosion axis of a converging strong shock wave are reported. The shock wave was produced by the underwater electrical explosion of a cylindrical Cu wire array. A {approx}8 kJ pulse generator with a current amplitude {<=}550 kA and rise time of 350 ns was used to explode arrays having varying lengths, radii, and number of wires. Hydrodynamic numerical simulations coupled to the experimental data of the shock wave propagation in water, rate of energy deposition into the array, and light emission from the compressed water in the vicinity of the implosion axis were used to determine the pressure, density, and temperature profiles during the implosion. Results of a comparison between these parameters obtained with the SESAME and quantum molecular dynamics data bases of equation of state for water are reported as well. Also, the dependences of the maximal pressure in the vicinity of the implosion axes on the array radius and the deposited energy density per unit length are reported.

  6. Generation of a 400 GPa pressure in water using converging strong shock waves

    NASA Astrophysics Data System (ADS)

    Fedotov-Gefen, A.; Efimov, S.; Gilburd, L.; Bazalitski, G.; Gurovich, V. Tz.; Krasik, Ya. E.

    2011-06-01

    Results related to the generation of an extreme state of water with pressure up to (4.3 ± 0.2).1011 Pa, density up to 4.2 ± 0.1 g/cm3, and temperature up to 2.2 ± 0.1 eV in the vicinity of the implosion axis of a converging strong shock wave are reported. The shock wave was produced by the underwater electrical explosion of a cylindrical Cu wire array. A ˜8 kJ pulse generator with a current amplitude ≤550 kA and rise time of 350 ns was used to explode arrays having varying lengths, radii, and number of wires. Hydrodynamic numerical simulations coupled to the experimental data of the shock wave propagation in water, rate of energy deposition into the array, and light emission from the compressed water in the vicinity of the implosion axis were used to determine the pressure, density, and temperature profiles during the implosion. Results of a comparison between these parameters obtained with the SESAME and quantum molecular dynamics data bases of equation of state for water are reported as well. Also, the dependences of the maximal pressure in the vicinity of the implosion axes on the array radius and the deposited energy density per unit length are reported.

  7. A Experimental Study of Fluctuating Pressure Loads Beneath Swept Shock Wave/boundary Layer Interactions

    NASA Astrophysics Data System (ADS)

    Garg, Sanjay

    An experimental research program providing basic knowledge and establishing a database on the fluctuating pressure loads produced on aerodynamic surfaces beneath three-dimensional shock wave/boundary layer interactions is described. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins. Fin angles from 10 ^circ to 20^circ at freestream Mach numbers of 3 and 4 produce a variety of interaction strengths from weak to very strong. Miniature pressure transducers flush-mounted in the flat plate have been used to measure interaction-induced wall pressure fluctuations. The distributions of properties of the pressure fluctuations, such as their rms level, amplitude distribution and power spectra, are also determined. Measurements have been made for the first time in the aft regions of these interactions, revealing fluctuating pressure levels as high as 155 dB, which places them in the category of significant aeroacoustic load generators. The fluctuations near the foot of the fin are dominated by low frequency (0-5 kHz) components, and are caused by a previously unrecognized random motion of the primary attachment line. This phenomenon is probably intimately linked to the unsteadiness of the separation shock at the start of the interaction. The characteristics of the pressure fluctuations are explained in light of the features of the interaction flowfield. In particular, physical mechanisms responsible for the generation of high levels of surface pressure fluctuations are proposed based on the results of the study. The unsteadiness of the flowfield of the surface is also examined via a novel, non-intrusive optical technique. Results show that the entire shock structure generated by the interaction undergoes relatively low-frequency oscillations.

  8. On the Concordance of Static High Pressure Phase Transformation Data on Minerals With Shock Wave Data

    NASA Astrophysics Data System (ADS)

    de Carli, P. S.; El Goresy, A.; Xie, Z.; Sharp, T. G.

    2006-12-01

    About 50 years ago, shock wave researchers were confounded by the apparent rapidity of shock-induced phase transformations and invoked special mechanisms as an explanation. Some workers speculatively interpret shock wave data as indicative of very rapid reconstructive phase transformations of minerals at modest temperatures. The belief that kinetic effects are negligible has justified the use of microsecond duration shock recovery experiments to interpret much longer duration shock effects in terrestrial impact craters and in meteorites. Here we summarize the extensive evidence that phase transformations under shock compression are governed by the same kinetics as phase transitions under static compression. Hugoniot measurements on quartz and feldspars have been interpreted as indicating phase transitions to dense phases at pressures near 35 GPa. Release adiabat measurements imply that these phases persist on release of pressure down to about 7 GPa, below which there is expansion to a final density appropriate to a glass. Microsecond-duration shock recovery experiments support this interpretation; a low density amorphous phase (diaplectic glass) is recovered. A similar effect is observed in static compression experiments conducted at room temperature at a lower pressure, 12-15 GPa. The pressure difference is a kinetic effect; the transition requires higher shock pressures (implying higher shock temperatures) to run to completion on a microsecond time scale. Direct evidence for kinetic effects on the tectosilicate transformation is found in studies of naturally shocked meteorites that contain melt veins. When the melt veins solidify under pressure, the resultant mineralogy together with vein cooling calculations constrains the shock pressure-time history. In some samples, in which the shock pressure is constrained by vein mineralogy to a range of 17-25 Gpa, one may observe the presence of diaplectic glass in only near-vein regions heated by conduction from the vein

  9. Poroelastic Wave Propagation With a 3D Velocity-Stress-Pressure Finite-Difference Algorithm

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Symons, N. P.; Bartel, L. C.

    2004-12-01

    Seismic wave propagation within a three-dimensional, heterogeneous, isotropic poroelastic medium is numerically simulated with an explicit, time-domain, finite-difference algorithm. A system of thirteen, coupled, first-order, partial differential equations is solved for the particle velocity vector components, the stress tensor components, and the pressure associated with solid and fluid constituents of the two-phase continuum. These thirteen dependent variables are stored on staggered temporal and spatial grids, analogous to the scheme utilized for solution of the conventional velocity-stress system of isotropic elastodynamics. Centered finite-difference operators possess 2nd-order accuracy in time and 4th-order accuracy in space. Seismological utility is enhanced by an optional stress-free boundary condition applied on a horizontal plane representing the earth's surface. Absorbing boundary conditions are imposed on the flanks of the 3D spatial grid via a simple wavefield amplitude taper approach. A massively parallel computational implementation, utilizing the spatial domain decomposition strategy, allows investigation of large-scale earth models and/or broadband wave propagation within reasonable execution times. Initial algorithm testing indicates that a point force density and/or moment density source activated within a poroelastic medium generates diverging fast and slow P waves (and possibly an S-wave)in accord with Biot theory. Solid and fluid particle velocities are in-phase for the fast P-wave, whereas they are out-of-phase for the slow P-wave. Conversions between all wave types occur during reflection and transmission at interfaces. Thus, although the slow P-wave is regarded as difficult to detect experimentally, its presence is strongly manifest within the complex of waves generated at a lithologic or fluid boundary. Very fine spatial and temporal gridding are required for high-fidelity representation of the slow P-wave, without inducing excessive

  10. Visualization and Measurements of Sound Pressure Distribution of Ultrasonic Wave by Stroboscopic Real-Time Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Hisada, Shigeyoshi; Suzuki, Takahiro; Nakahara, Sumio; Fujita, Takeyoshi

    2002-05-01

    The sound pressure distribution of underwater ultrasonic waves is measured by real-time stroboscope holographic interferometry using bismuth silicon oxide single crystal. Stroboscopic sub-microsecond irradiation of laser light enables the recording of the stationary holographic interferogram of refractive index changes of water by ultrasonic waves for the frame time of a charge coupled device camera. The fringe order distribution is calculated from the interferogram by Fourier transform fringe analysis. The optical path differences caused by sound field along the optical path are converted into local field values of sound pressure, which is displayed as a gray scale distribution image. In the experiment, the sound pressure distributions of ultrasonic waves through rectangular and circular apertures are observed. They are compared with the theoretical sound pressure distribution. The sound pressure values obtained by a hydrophone show good agreement with the measured values obtained by this method. The converging and diverging sound pressure fields realized by an acoustic lens are measured.

  11. Pressure wave generated by the passage of a heavy charged particle in water.

    PubMed

    Sun, Y Y; Nath, R

    1993-01-01

    Energy deposition around the trajectories of ionizing particles with linear energy transfer (LET) of 4, 40, and 400 keV/microns in water and subsequent diffusion of deposited heat is calculated using computational fluid dynamics. Immediately after the deposition of energy by the charged particle, the temperature and pressure in the vicinity of the particle track both increase dramatically, leading to the formation of a thermal spike and a pressure wave. Initially, the region of heat deposition is primarily localized to a region called the "thermal core," which has dimensions of 0.3, 1, and 3 nm for particles with LETs of 4, 40, and 400 keV/microns, respectively. Instantaneous peak temperatures within the thermal core were 800 degrees C-2000 degrees C and peak pressures were about 25,000 atm. This sudden deposition of heat in a localized region leads to a very strong shock wave around the particle trajectory, which is shown to last for a duration of 10(-9)-10(-8) s. Even at distances beyond 10 nm away from the particle trajectory, pressures above 100 atm could exist for a duration of up to 10(-11) s. This local and transient environment, created by the passage of a charged particle in a medium, may lead to new mechanisms of radiation action leading to cell damage, as well as to the development of new radiation detectors.

  12. Simulation of High Pressure Ionization Waves in Straight and Circuitous Dielectric Channels

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Takashima, Keisuke; Adamovich, Igor V.; Kushner, Mark J.

    2011-10-01

    High pressure non-equilibrium plasmas are often transient and in the form of fast ionization waves (FIWs) with applications from plasma assisted combustion to plasma medicine. A numerical study of FIWs, with comparison to experiments, was conducted using nonPDPSIM, a 2-d plasma hydrodynamics model with radiation transport. We first investigated the fundamental properties of moderate pressure FIWs in straight dielectric channels to quantify their propagation mechanisms. The FIWs were generated by ns high voltage pulses in N2 and He at pressures of 10-20 Torr. Simulations are compared to experiments for transient electric fields and wave speed. The effects of the secondary emission properties of bounding surfaces on plasma uniformity will be discussed. We then applied these results to a study of the propagation of FIWs in Ne at atmospheric pressure through long, circuitous channels (length > 15 cm, width < 1 mm) as used to deliver plasma to remote sites. The FIW speed and front structure for positive and negative polarities, and the effects of channel curvature and dielectric constants of the channel wall on FIW dynamics will be discussed. Work is supported by the DOE Office of Fusion Energy Science.

  13. Radiation pressure of standing waves on liquid columns and small diffusion flames

    NASA Astrophysics Data System (ADS)

    Thiessen, David B.; Marr-Lyon, Mark J.; Wei, Wei; Marston, Philip L.

    2002-11-01

    The radiation pressure of standing ultrasonic waves in air is demonstrated in this investigation to influence the dynamics of liquid columns and small flames. With the appropriate choice of the acoustic amplitude and wavelength, the natural tendency of long columns to break because of surface tension was suppressed in reduced gravity [M. J. Marr-Lyon, D. B. Thiessen, and P. L. Marston, Phys. Rev. Lett. 86, 2293-2296 (2001); 87(20), 9001(E) (2001)]. Evaluation of the radiation force shows that narrow liquid columns are attracted to velocity antinodes. The response of a small vertical diffusion flame to ultrasonic radiation pressure in a horizontal standing wave was observed in normal gravity. In agreement with our predictions of the distribution of ultrasonic radiation stress on the flame, the flame is attracted to a pressure antinode and becomes slightly elliptical with the major axis in the plane of the antinode. The radiation pressure distribution and the direction of the radiation force follow from the dominance of the dipole scattering for small flames. Understanding radiation stress on flames is relevant to the control of hot fluid objects. [Work supported by NASA.

  14. Van Allen Probes observations of electromagnetic ion cyclotron waves triggered by enhanced solar wind dynamic pressure

    NASA Astrophysics Data System (ADS)

    Cho, J.-H.; Lee, D.-Y.; Noh, S.-J.; Shin, D.-K.; Hwang, J.; Kim, K.-C.; Lee, J. J.; Choi, C. R.; Thaller, S.; Skoug, R.

    2016-10-01

    Magnetospheric compression due to impact of enhanced solar wind dynamic pressure Pdyn has long been considered as one of the generation mechanisms of electromagnetic ion cyclotron (EMIC) waves. With the Van Allen Probe-A observations, we identify three EMIC wave events that are triggered by Pdyn enhancements under prolonged northward interplanetary magnetic field (IMF) quiet time preconditions. They are in contrast to one another in a few aspects. Event 1 occurs in the middle of continuously increasing Pdyn while Van Allen Probe-A is located outside the plasmapause at postmidnight and near the equator (magnetic latitude (MLAT) -3°). Event 2 occurs by a sharp Pdyn pulse impact while Van Allen Probe-A is located inside the plasmapause in the dawn sector and rather away from the equator (MLAT 12°). Event 3 is characterized by amplification of a preexisting EMIC wave by a sharp Pdyn pulse impact while Van Allen Probe-A is located outside the plasmapause at noon and rather away from the equator (MLAT -15°). These three events represent various situations where EMIC waves can be triggered by Pdyn increases. Several common features are also found among the three events. (i) The strongest wave is found just above the He+ gyrofrequency. (ii) The waves are nearly linearly polarized with a rather oblique propagation direction ( 28° to 39° on average). (iii) The proton fluxes increase in immediate response to the Pdyn impact, most significantly in tens of keV energy, corresponding to the proton resonant energy. (iv) The temperature anisotropy with T⊥ > T|| is seen in the resonant energy for all the events, although its increase by the Pdyn impact is not necessarily always significant. The last two points (iii) and (iv) may imply that in addition to the temperature anisotropy, the increase of the resonant protons must have played a critical role in triggering the EMIC waves by the enhanced Pdyn impact.

  15. Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy.

    PubMed

    Gennisson, Jean-Luc; Grenier, Nicolas; Combe, Christian; Tanter, Mickaël

    2012-09-01

    The in vivo influence of renal anisotropy and of urinary and vascular pressure on elasticity values using ultrasonic supersonic shear wave elastography was studied in pigs. Experiments were conducted in agreement with the European Commission guidelines and directives of the French Research Ministry. Six kidneys in three pigs were studied in vivo. Elasticity of renal cortex and medulla was quantified through the shear modulus (μ) by using the supersonic shear imaging technique with an 8 MHz linear ultrasound probe. All measurements were done peroperatively both in the axis and perpendicular to the main axis of pyramids, in normal condition, after progressive increase of urinary pressure, and after renal artery and renal vein ligation. In normal conditions, cortical (C) and medullary (M) elasticity values were always higher when acquisitions were realized with the ultrasound main axis perpendicular to main pyramid axis (C(//): 7.7 ± 2.3 kPa; M(//): 8.7 ± 2.5 kPa) than parallel (C(⊥): 6.9 ± 1.4 kPa; M(⊥): 6.6 ± 2.3 kPa), demonstrating an effect of renal anisotropy. In renal cortex, two bands were separated, inner cortex showing higher elasticity values (IC(⊥): 8.1 ± 1.9 kPa) than outer cortex (OC(⊥): 6.9 ± 1.4 kPa). Renal artery and renal vein ligation induced a decrease and an increase of elasticity respectively. Parenchymal elasticity increased linearly with elevation of urinary pressure. Intrarenal elasticity values vary with tissue anisotropy and, with vascular and urinary pressure levels. These parameters have to be taken into account for interpretation of tissue changes. Separation of outer and inner cortex could be attributable to perfusion differences.

  16. Two-dimensional vertical moisture-pressure dynamics above groundwater waves: Sand flume experiments and modelling

    NASA Astrophysics Data System (ADS)

    Shoushtari, Seyed Mohammad Hossein Jazayeri; Cartwright, Nick; Perrochet, Pierre; Nielsen, Peter

    2017-01-01

    This paper presents a new laboratory dataset on the moisture-pressure relationship above a dispersive groundwater wave in a two-dimensional vertical unconfined sand flume aquifer driven by simple harmonic forcing. A total of five experiments were conducted in which all experimental parameters were kept constant except for the oscillation period, which ranged from 268 s to 2449 s between tests. Moisture content and suction head sensor pairings were co-located at two locations in the unsaturated zone both approximately 0.2 m above the mean watertable elevation and respectively 0.3 m and 0.75 m from the driving head boundary. For all oscillation periods except for the shortest (T = 268s), the formation of a hysteretic moisture-pressure scanning loop was observed. Consistent with the decay of the saturated zone groundwater wave, the size of the observed moisture-pressure scanning loops decayed with increasing distance landward and the decay rate is larger for the shorter oscillation periods. At the shortest period (T = 268s), the observed moisture-pressure relationship was observed to be non-hysteretic but with a capillary capacity that differs from that of the static equilibrium wetting and drying curves. This finding is consistent with observations from existing one-dimensional vertical sand column experiments. The relative damping of the moisture content with distance landward is higher than that for the suction head consistent with the fact that transmission of pressure through a porous medium occurs more readily than mass transfer. This is further supported by the fact that observed phase lags for the unsaturated zone variables (i.e. suction head and moisture content) relative to the driving head are greater than the saturated zone variables (i.e. piezometric head). Harmonic analysis of the data reveals no observable generation of higher harmonics in either moisture or pressure despite the strongly non-linear relationship between the two. In addition, a phase lag

  17. Pressure Wave Measurements During Thermal Explosion of HMX-Based High Explosives

    SciTech Connect

    Forbes, J W; Garcia, F; Tarver, C M; Urtiew, P A; Greenwood, D W; Vandersall, K S

    2002-06-27

    Five different experiments on thermal heating of explosive materials have been performed. Three experiments thermally exploded PBX 9501 (HMX/Estane/BDNPA-F; 9512.512.5 wt %) donor charges while two others thermally exploded LX-04 (HMX/Viton A; 85/15 wt %). These donor charges were encased in 304 stainless steel. The transmitted two-dimensional pressure waves were measured by gauges in acceptor cylinders of Teflon, PBX 9501, or LX-04 that were in contact with the donors' steel case. A fifth experiment measured the pressure in an acceptor charge of PBX 9501 that had a 100 mm stand-off from the top of the steel case of the thermally cooked off PBX 9501 donor charge. Reactive flow hydrodynamic modeling using a rapid deflagration velocity of approximately 500 m/s was able to reproduce the pressure gauge records for both the in contact and stand off experiments that used PBX 9501 donors and acceptors.

  18. Landslide stability: Role of rainfall-induced, laterally propagating, pore-pressure waves

    USGS Publications Warehouse

    Priest, G.R.; Schulz, W.H.; Ellis, W.L.; Allan, J.A.; Niem, A.R.; Niem, W.A.

    2011-01-01

    The Johnson Creek Landslide is a translational slide in seaward-dipping Miocene siltstone and sandstone (Astoria Formation) and an overlying Quaternary marine terrace deposit. The basal slide plane slopes sub-parallel to the dip of the Miocene rocks, except beneath the back-tilted toe block, where it slopes inland. Rainfall events raise pore-water pressure in the basal shear zone in the form of pulses of water pressure traveling laterally from the headwall graben down the axis of the slide at rates of 1-6 m/hr. Infiltration of meteoric water and vertical pressure transmission through the unsaturated zone has been measured at ~50 mm/hr. Infiltration and vertical pressure transmission were too slow to directly raise head at the basal shear zone prior to landslide movement. Only at the headwall graben was the saturated zone shallow enough for rainfall events to trigger lateral pulses of water pressure through the saturated zone. When pressure levels in the basal shear zone exceeded thresholds defined in this paper, the slide began slow, creeping movement as an intact block. As pressures exceeded thresholds for movement in more of the slide mass, movement accelerated, and differential displacement between internal slide blocks became more pronounced. Rainfall-induced pore-pressure waves are probably a common landslide trigger wherever effective hydraulic conductivity is high and the saturated zone is located near the surface in some part of a slide. An ancillary finding is apparently greater accuracy of grouted piezometers relative to those in sand packs for measurement of pore pressures at the installed depth.

  19. Wave Reflection and Central Aortic Pressure Are Increased in Response to Static and Dynamic Muscle Contraction at Comparable Workloads

    DTIC Science & Technology

    2008-02-01

    wave reflec- tion is an important determinant of the central blood pressure response during forearm muscle contractions. tension-time index; exercise ...pressor reflex; blood pressure THE PRESSOR RESPONSE to exercise had been thought to be greater as a result of static muscle contraction compared with...equivalent peripheral blood pressure response to forearm and lower body exercise may result in very different central aortic pressures due to differential

  20. The Correlation Between Intracranial Pressure and Cerebral Blood Flow Velocity During ICP Plateau Waves.

    PubMed

    Lewis, Philip M; Smielewski, Peter; Rosenfeld, Jeffrey V; Pickard, John D; Czosnyka, Marek

    2016-01-01

    We previously showed that the flow-ICP index (Fix), a moving correlation coefficient between intracranial pressure (ICP) and cerebral blood flow velocity (CBFV), had marginally greater prognostic value for patients with traumatic brain injury (TBI) than an index of cerebral autoregulation (mean index, Mx). The aim of this study was to further examine the clinical and physiological relevance of Fix by studying its behaviour during ICP plateau waves in patients with TBI. Twenty-nine recordings of CBFV made during ICP plateau waves were analysed. Both Mx and Fix at baseline and peak ICP were significantly different, although the magnitude of Fix change was slightly greater. The correlation between Fix and cerebral perfusion pressure (CPP) was stronger than that between Mx and CPP. Unlike in our previous study, plotting Fix against CPP revealed a peak value in the range of "optimal" CPP, as indicated by the Mx versus CPP plot. The findings suggest that during periods of reduced CPP caused by plateau waves, the dynamic behaviour of Fix is similar to that of a measure of cerebral autoregulation. This conclusion needs to be verified against similar results obtained during episodes of supranormal CPP.

  1. Automated identification of peristaltic pressure waves in oesophageal manometry investigations using the rolling correlation technique.

    PubMed

    Perring, S; Jones, E

    2009-11-01

    We have implemented the technique of rolling correlation coefficient as proposed by Buttfield and Bolton (2005 Real time measurement of RR intervals using a digital signal processor J. Med. Eng. Technol. 29 8-13) for ECG R-wave detection in the detection and timing of oesophageal peristalsis. 43 sequential patients attending for oesophageal manometry were retrospectively reviewed. Two expert reviewers visually assessed each swallow for normality of peristaltic amplitude and propagation speed. Automatic assessment was performed using rolling correlation, maximum amplitude, threshold and maximum gradient techniques of identifying onset of peristalsis. Rolling correlation was comparable with the maximum amplitude technique at identifying peristaltic pressure waves visually identified as present. Rolling correlation was most effective at correctly identifying propagation velocity as normal (698 out of 845 normally propagating waves) and highest correlation with expert visual assessment of percentage abnormal propagation for each patient (R value 0.918). In a sub-group of 11 studies assessed as displaying normal motility, rolling correlation gave lowest variation of propagation speed and highest consistency with visual assessment. The rolling correlation technique is effective and accurate at identifying oesophageal peristalsis and characterizing peristaltic propagation in manometric studies even in the presence of abnormally weak peristalsis and other confounding pressure perturbations.

  2. Experimental validation of a millimeter wave radar technique to remotely sense atmospheric pressure at the Earth's surface

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1984-01-01

    Experiments with a millimeter wave radar operating on the NASA CV-990 aircraft which validate the technique for remotely sensing atmospheric pressure at the Earth's surface are described. Measurements show that the precise millimeter wave observations needed to deduce pressure from space with an accuracy of 1 mb are possible, that sea surface reflection properties agree with theory and that the measured variation of differential absorption with altitude corresponds to that expected from spectroscopic models.

  3. Modeling and simulations on the propagation characteristics of electromagnetic waves in sub-atmospheric pressure plasma slab

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Nie, Q. Y.; Li, B. W.; Kong, F. R.

    2017-01-01

    Sub-atmospheric pressure plasma slabs exhibit the feature of relatively high plasma number density and high collisional frequency between electrons and neutral gases, as well as similar thickness to the electromagnetic (EM) wavelength in communication bands. The propagation characteristics of EM waves in sub-atmospheric pressure plasma slabs are attracting much attention of the researchers due to their applications in the plasma antenna, the blackout effect during reentry, wave energy injection in the plasma, etc. In this paper, a numerical model with a one-dimensional assumption has been established and therefore, it is used for the investigations of the propagation characteristics of the EM waves in plasma slabs. In this model, the EM waves propagating in both sub-wavelength plasma slabs and plasmas with thicker slabs can be studied simultaneously, which is superior to the model with geometrical optics approximation. The influence of EM wave frequencies and collisional frequencies on the amplitude of the transmitted EM waves is discussed in typical plasma profiles. The results will be significant for deep understanding of the propagation behaviors of the EM waves in sub-atmospheric pressure nonuniform plasma slabs, as well as the applications of the interactions between EM waves and the sub-atmospheric pressure plasmas.

  4. Cavitation inception by the backscattering of pressure waves from a bubble interface

    SciTech Connect

    Takahira, Hiroyuki Ogasawara, Toshiyuki Mori, Naoto Tanaka, Moe

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  5. Effects of the air pressure on the wave-packet dynamics of gaseous iodine molecules at room temperature

    NASA Astrophysics Data System (ADS)

    Fan, Rongwei; He, Ping; Chen, Deying; Xia, Yuanqin; Yu, Xin; Wang, Jialing; Jiang, Yugang

    2013-02-01

    Based on ultrafast laser pulses, time-resolved resonance enhancement coherent anti-Stokes Raman scattering (RE-CARS) is applied to investigate wave-packet dynamics in gaseous iodine. The effects of air pressure on the wave-packet dynamics of iodine molecules are studied at pressures ranging from 1.5 Torr to 750 Torr. The RE-CARS signals are recorded in a gas cell filled with a mixture of about 0.3 Torr iodine in air buffer gas at room temperature. The revivals and fractional revival structures in the wave-packet signal are found to gradually disappear with rising air pressure up to 750 Torr, and the decay behaviors of the excited B-state and ground X-state become faster with increasing air pressure, which is due to the collision effects of the molecules and the growing complexity of the spectra at high pressures.

  6. The 24-hour pulse wave velocity, aortic augmentation index, and central blood pressure in normotensive volunteers.

    PubMed

    Kuznetsova, Tatyana Y; Korneva, Viktoria A; Bryantseva, Evgeniya N; Barkan, Vitaliy S; Orlov, Artemy V; Posokhov, Igor N; Rogoza, Anatoly N

    2014-01-01

    The purpose of this study was to examine the pulse wave velocity, aortic augmentation index corrected for heart rate 75 (AIx@75), and central systolic and diastolic blood pressure during 24-hour monitoring in normotensive volunteers. Overall, 467 subjects (206 men and 261 women) were recruited in this study. Participants were excluded from the study if they were less than 19 years of age, had blood test abnormalities, had a body mass index greater than 2 7.5 kg/m(2), had impaired glucose tolerance, or had hypotension or hypertension. Ambulatory blood pressure monitoring (ABPM) with the BPLab(®) device was performed in each subject. ABPM waveforms were analyzed using the special automatic Vasotens(®) algorithm, which allows the calculation of pulse wave velocity, AIx@75, central systolic and diastolic blood pressure for "24-hour", "awake", and "asleep" periods. Circadian rhythms and sex differences in these indexes were identified. Pending further validation in prospective outcome-based studies, our data may be used as preliminary diagnostic values for the BPLab ABPM additional index in adult subjects.

  7. Analysis of porous media heterogeneities using the diffusion of pressure waves

    NASA Astrophysics Data System (ADS)

    Rigord, P.; Caristan, Y.; Hulin, J. P.

    1993-06-01

    We present an experimental study and a model of the diffusion of sinusoidal pressure waves through porous media. We show that measurements of the hydraulic admittance A(omega) in the sine wave mode allow us to probe the structure of porous samples with an adjustable investigation depth depending on the frequency omega. The variations of A(omega) in heterogeneous media with a percolationlike geometry are modeled numerically on 2D percolation networks. One obtains a transition from normal diffusion at low frequencies to anomalous diffusion at higher frequencies. At the transition, the penetration depth of the wave is of the order of the percolation correlation length. The hydraulic admittance and transmittance of 20 percent porosity pressed calcite have been investigated experimentally with sine wave excitations at pulsations omega between 2 x 10 exp -4 and 0.42 rad/s. Both the modulus and the phase of the complex admittance A(omega) display normal diffusive variations as omega increases. Increasing the viscosity reduces the frequency above which the diffusive behavior is observed. The measured diffusion coefficient is 25 percent higher than that computed from permeability and compressibility values measured independently; this difference may be associated with nonconnected porosity.

  8. Pressure Generation from Micro-Bubble Collapse at Shock Wave Loading

    NASA Astrophysics Data System (ADS)

    Abe, Akihisa; Ohtani, Kiyonobu; Takayama, Kazuyoshi; Nishio, Shigeru; Mimura, Haruo; Takeda, Minoru

    This paper reports the result of a primary experimental and analytical study used to explore a reliable technology that is potentially applicable to the inactivation of micro-creatures contained in ship ballast water. A shock wave generated by the micro-explosion of a 10mg silver azide pellet in a 10mm wide parallel test section was used to interact with a bubble cloud consisting of bubbles with average diameter 10µm produced by a swirling flow type micro-bubble generator. Observations were carried out with a high-speed camera, IMACON200, and the corresponding rebound pressures of the collapsing bubbles were measured with a fiber optic probe pressure transducer that provides high spatial and temporal resolutions. We found that micro-bubbles collapse in several hundred nanoseconds after the shock exposure and the resulting peak pressure pulses that repeatedly occurred exceeded well over 200MPa measured at the 20mm distance from the explosion center. These continued for well over 20µs. The experimental pressure responses were explained by solving the one-dimensional bubble Rayleigh-Plesset equation. Such high peak pressures could be used effectively for the inactivation of micro-creatures contained in ship ballast water.

  9. A Study of Standing Pressure Waves Within Open and Closed Acoustic Resonators

    NASA Technical Reports Server (NTRS)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2002-01-01

    The first section of the results presented herein was conducted on an axisymmetric resonator configured with open ventilation ports on either end of the resonator, but otherwise closed and free from obstruction. The remaining section presents the results of a similar resonator shape that was closed, but contained an axisymmetric blockage centrally located through the axis of the resonator. Ambient air was used as the working fluid. In each of the studies, the resonator was oscillated at the resonant frequency of the fluid contained within the cavity while the dynamic pressure, static pressure, and temperature of the fluid were recorded at both ends of the resonator. The baseline results showed a marked reduction in the amplitude of the dynamic pressure waveforms over previous studies due to the use of air instead of refrigerant as the working fluid. A sharp reduction in the amplitude of the acoustic pressure waves was expected and recorded when the configuration of the resonators was modified from closed to open. A change in the resonant frequency was recorded when blockages of differing geometries were used in the closed resonator, while acoustic pressure amplitudes varied little from baseline measurements.

  10. Horizontal variability of high-frequency nonlinear internal waves in Massachusetts Bay detected by an array of seafloor pressure sensors

    NASA Astrophysics Data System (ADS)

    Thomas, J. A.; Lerczak, J. A.; Moum, J. N.

    2016-08-01

    A two-dimensional array of 14 seafloor pressure sensors was deployed to measure properties of tidally generated, nonlinear, high-frequency internal waves over a 14 km by 12 km area west of Stellwagen Bank in Massachusetts Bay during summer 2009. Thirteen high-frequency internal wave packets propagated through the region over 6.5 days (one packet every semidiurnal cycle). Propagation speed and direction of wave packets were determined by triangulation, using arrival times and distances between triads of sensor locations. Wavefront curvature ranged from straight to radially spreading, with wave speeds generally faster to the south. Waves propagated to the southwest, rotating to more westward with shoreward propagation. Linear theory predicts a relationship between kinetic energy and bottom pressure variance of internal waves that is sensitive to sheared background currents, water depth, and stratification. By comparison to seafloor acoustic Doppler current profiler measurements, observations nonetheless show a strong relationship between kinetic energy and bottom pressure variance. This is presumably due to phase-locking of the wave packets to the internal tide that dominates background currents and to horizontally uniform and relatively constant stratification throughout the study. This relationship was used to qualitatively describe variations in kinetic energy of the high-frequency wave packets. In general, high-frequency internal wave kinetic energy was greater near the southern extent of wavefronts and greatly decreased upon propagating shoreward of the 40 m isobath.

  11. Droplet actuation by surface acoustic waves: an interplay between acoustic streaming and radiation pressure

    NASA Astrophysics Data System (ADS)

    Brunet, Philippe; Baudoin, Michael; Matar, Olivier Bou; Zoueshtiagh, Farzam

    2010-11-01

    Surface acoustic waves (SAW) are known to be a versatile technique for the actuation of sessile drops. Droplet displacement, internal mixing or drop splitting, are amongst the elementary operations that SAW can achieve, which are useful on lab-on-chip microfluidics benches. On the purpose to understand the underlying physical mechanisms involved during these operations, we study experimentally the droplet dynamics varying different physical parameters. Here in particular, the influence of liquid viscosity and acoustic frequency is investigated: it is indeed predicted that both quantities should play a role in the acoustic-hydrodynamic coupling involved in the dynamics. The key point is to compare the relative magnitude of the attenuation length, i.e. the scale within which the acoustic wave decays in the fluid, and the size of the drop. This relative magnitude governs the relative importance of acoustic streaming and acoustic radiation pressure, which are both involved in the droplet dynamics.

  12. Cyclooxygenase inhibition augments central blood pressure and aortic wave reflection in aging humans.

    PubMed

    Barnes, Jill N; Casey, Darren P; Hines, Casey N; Nicholson, Wayne T; Joyner, Michael J

    2012-06-15

    The augmentation index and central blood pressure increase with normal aging. Recently, cyclooxygenase (COX) inhibitors, commonly used for the treatment of pain, have been associated with transient increases in the risk of cardiovascular events. We examined the effects of the COX inhibitor indomethacin (Indo) on central arterial hemodynamics and wave reflection characteristics in young and old healthy adults. High-fidelity radial arterial pressure waveforms were measured noninvasively by applanation tonometry before (control) and after Indo treatment in young (25 ± 5 yr, 7 men and 6 women) and old (64 ± 6 yr, 5 men and 6 women) subjects. Aortic systolic (control: 115 ± 3 mmHg vs. Indo: 125 ± 5 mmHg, P < 0.05) and diastolic (control: 74 ± 2 mmHg vs. Indo: 79 ± 3 mmHg, P < 0.05) pressures were elevated after Indo treatment in older subjects, whereas only diastolic pressure was elevated in young subjects (control: 71 ± 2 mmHg vs. Indo: 76 ± 1 mmHg, P < 0.05). Mean arterial pressure increased in both young and old adults after Indo treatment (P < 0.05). The aortic augmentation index and augmented pressure were elevated after Indo treatment in older subjects (control: 30 ± 5% vs. Indo 36 ± 6% and control 12 ± 1 mmHg vs. Indo: 18 ± 2 mmHg, respectively, P < 0.05), whereas pulse pressure amplification decreased (change: 8 ± 3%, P < 0.05). In addition, older subjects had a 61 ± 11% increase in wasted left ventricular energy after Indo treatment (P < 0.05). In contrast, young subjects showed no significant changes in any of the variables of interest. Taken together, these results demonstrate that COX inhibition with Indo unfavorably increases central wave reflection and augments aortic pressure in old but not young subjects. Our results suggest that aging individuals have a limited ability to compensate for the acute hemodynamic changes caused by systemic COX inhibition.

  13. Ultrasound Shear Wave Elasticity Imaging Quantifies Coronary Perfusion Pressure Effect on Cardiac Compliance

    PubMed Central

    Nagle, Matt; Trahey, Gregg E.; Wolf, Patrick D.

    2016-01-01

    Diastolic heart failure (DHF) is a major source of cardiac related morbidity and mortality in the world today. A major contributor to, or indicator of DHF is a change in cardiac compliance. Currently, there is no accepted clinical method to evaluate the compliance of cardiac tissue in diastolic dysfunction. Shear wave elasticity imaging (SWEI) is a novel ultrasound-based elastography technique that provides a measure of tissue stiffness. Coronary perfusion pressure affects cardiac stiffness during diastole; we sought to characterize the relationship between these two parameters using the SWEI technique. In this work, we demonstrate how changes in coronary perfusion pressure are reflected in a local SWEI measurement of stiffness during diastole. Eight Langendorff perfused isolated rabbit hearts were used in this study. Coronary perfusion pressure was changed in a randomized order (0–90 mmHg range) and SWEI measurements were recorded during diastole with each change. Coronary perfusion pressure and the SWEI measurement of stiffness had a positive linear correlation with the 95% confidence interval (CI) for the slope of 0.009–0.011 m/s/mmHg (R2 = 0.88). Furthermore, shear modulus was linearly correlated to the coronary perfusion pressure with the 95% CI of this slope of 0.035–0.042 kPa/mmHg (R2 = 0.83). In conclusion, diastolic SWEI measurements of stiffness can be used to characterize factors affecting cardiac compliance specifically the mechanical interaction (cross-talk) between perfusion pressure in the coronary vasculature and cardiac muscle. This relationship was found to be linear over the range of pressures tested. PMID:25291788

  14. Fluctuation of the charge density wave in TTF-TCNQ under high pressure

    NASA Astrophysics Data System (ADS)

    Murata, Keizo; Weng, Yufeng; Seno, Yuki; Rani Tamilselvan, Natarajan; Kobayashi, Kensuke; Arumugam, Sonachalam; Takashima, Yusaku; Yoshino, Harukazu; Kato, Reizo

    2009-03-01

    Temperature dependence of the resistivity of TTF-TCNQ along the b-(1D)- and a-axes was studied under hydrostatic pressure up to 8 GPa. A striking contrast was seen between the b-(1D)- and a-axes in the power-law dependence of resistivity ρ=ρ0Tα in the metallic region as well as the activation energy in the charge density wave (CDW) insulating state. We note that the careful terminal configuration is essentially important to obtain these properties.

  15. The Loss Spiral of Work Pressure, Work-Home Interference and Exhaustion: Reciprocal Relations in a Three-Wave Study

    ERIC Educational Resources Information Center

    Demerouti, Evangelia; Bakker, Arnold B.; Bulters, Annemieke J.

    2004-01-01

    This study tested the "loss spiral" hypothesis of work-home interference (WHI). Accordingly, work pressure was expected to lead to WHI and exhaustion, and, vice versa, exhaustion was expected to result in more WHI and work pressure over time. Results of SEM-analyses using three waves of data obtained from 335 employees of an employment agency…

  16. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.

    PubMed

    Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao

    2014-10-15

    Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.

  17. Application of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperature.

    PubMed

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Rostocki, A J; Tefelski, D B

    2011-12-01

    Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10°C to 40°C using ultrasonic measuring setup. Bleustein-Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids.

  18. An Experimental Investigation of the Free Surface Profiles Generated by a Moving Pressure Source: Solitary Capillary-Gravity Waves

    NASA Astrophysics Data System (ADS)

    Diorio, J. D.; Watkins, N.; Zuech, J.; Duncan, J. H.

    2008-11-01

    There have been several recent numerical investigations that have shown the existence of three-dimensional nonlinear solitary surface wave patterns that propagate with speeds less than the minimum wave phase speed prescribed by linear theory (23 cm/s for clean water). In the present study, wave patterns were generated by translating a small-diameter region of high pressure across a water surface. The high-pressure region was created by forcing air through a small-diameter vertically oriented tube attached to a carriage that propelled it horizontally at speeds near 23 cm/s. The wave pattern was measured with a cinematic LIF technique. It was found that a steady solitary wave pattern can exist at speeds below the linear-theory minimum phase speed, while for speeds above the minimum, a pattern of gravity-capillary waves was produced. The solitary wave pattern, which only appeared when the pressure forcing was large, dissipated rapidly when the forcing was turned off. The streamwise dimension of the solitary wave was much smaller than the transverse dimension.

  19. Effect of anisotropic dust pressure and superthermal electrons on propagation and stability of dust acoustic solitary waves

    SciTech Connect

    Bashir, M. F.; Behery, E. E.; El-Taibany, W. F.

    2015-06-15

    Employing the reductive perturbation technique, Zakharov–Kuznetzov (ZK) equation is derived for dust acoustic (DA) solitary waves in a magnetized plasma which consists the effects of dust anisotropic pressure, arbitrary charged dust particles, Boltzmann distributed ions, and Kappa distributed superthermal electrons. The ZK solitary wave solution is obtained. Using the small-k expansion method, the stability analysis for DA solitary waves is also discussed. The effects of the dust pressure anisotropy and the electron superthermality on the basic characteristics of DA waves as well as on the three-dimensional instability criterion are highlighted. It is found that the DA solitary wave is rarefactive (compressive) for negative (positive) dust. In addition, the growth rate of instability increases rapidly as the superthermal spectral index of electrons increases with either positive or negative dust grains. A brief discussion for possible applications is included.

  20. Incommensurate atomic density waves in the high-pressure IVb phase of barium

    PubMed Central

    Arakcheeva, Alla; Bykov, Maxim; Bykova, Elena; Dubrovinsky, Leonid; Pattison, Phil; Dmitriev, Vladimir; Chapuis, Gervais

    2017-01-01

    The host–guest structures of elements at high pressure discovered a decade ago still leave many open questions due to the lack of precise models based on full exploitation of the diffraction data. This concerns in particular Ba IV, which is stable in the range 12–45 GPa. With the example of phase Ba IVb, which is characterized here for the first time, a systematic analysis is presented of possible host–guest structure models based on high-quality single-crystal diffraction data obtained with synchrotron radiation at six different pressures between 16.5 and 19.6 GPa. It is shown that a new incommensurately modulated (IM) structure model better fits the experimental data. Unlike the composite models which are commonly reported for the Ba IV phases, the IM model reveals a density wave and its pressure-dependent evolution. The crucial role played by the selected model in the interpretation of structure evolution under pressure is discussed. The findings give a new experimental basis for a better understanding of the nature of host–guest structures. PMID:28250954

  1. Incommensurate atomic density waves in the high-pressure IVb phase of barium.

    PubMed

    Arakcheeva, Alla; Bykov, Maxim; Bykova, Elena; Dubrovinsky, Leonid; Pattison, Phil; Dmitriev, Vladimir; Chapuis, Gervais

    2017-03-01

    The host-guest structures of elements at high pressure discovered a decade ago still leave many open questions due to the lack of precise models based on full exploitation of the diffraction data. This concerns in particular Ba IV, which is stable in the range 12-45 GPa. With the example of phase Ba IVb, which is characterized here for the first time, a systematic analysis is presented of possible host-guest structure models based on high-quality single-crystal diffraction data obtained with synchrotron radiation at six different pressures between 16.5 and 19.6 GPa. It is shown that a new incommensurately modulated (IM) structure model better fits the experimental data. Unlike the composite models which are commonly reported for the Ba IV phases, the IM model reveals a density wave and its pressure-dependent evolution. The crucial role played by the selected model in the interpretation of structure evolution under pressure is discussed. The findings give a new experimental basis for a better understanding of the nature of host-guest structures.

  2. Generation of shock-free pressure waves in shaped resonators by boundary driving.

    PubMed

    Luo, C; Huang, X Y; Nguyen, N T

    2007-05-01

    Investigation of high amplitude pressure oscillations generated by boundary driving in shaped resonators has been carried out both theoretically and experimentally. In the theoretical modeling, the acoustic resonance in an axisymmetric resonator is studied by the Galerkin method. The resonator is exponentially expanded and the boundary driving is provided by a piston at one end. The pressure wave forms, amplitudes, resonance frequencies, and ratio of pressures at the two ends of the resonator are calculated for various expansion flare constants and driving strengths. These results are partially compared with those generated by shaking the resonator. They are also verified in the experiment, in which an exponentially expanded resonator is connected to a speaker box functioning as the piston. The experiment is further extended to a horn-shaped resonator with a rectangular cross section. The boundary driving in this case is generated by a circular piezoelectric disk, which forms one sidewall of the resonator cavity. The characteristics of axisymmetric resonators, such as the resonance frequency and amplitude ratio of pressures at the two ends, are observed in this low aspect ratio rectangular resonator with the sidewall driving.

  3. The impact of intraocular pressure on elastic wave velocity estimates in the crystalline lens.

    PubMed

    Park, Suhyun; Yoon, Heechul; Larin, Kirill V; Emelianov, Stanislav Y; Aglyamov, Salavat R

    2016-12-20

    Intraocular pressure (IOP) is believed to influence the mechanical properties of ocular tissues including cornea and sclera. The elastic properties of the crystalline lens have been mainly investigated with regard to presbyopia, the age-related loss of accommodation power of the eye. However, the relationship between the elastic properties of the lens and IOP remains to be established. The objective of this study is to measure the elastic wave velocity, which represents the mechanical properties of tissue, in the crystalline lens ex vivo in response to changes in IOP. The elastic wave velocities in the cornea and lens from seven enucleated bovine globe samples were estimated using ultrasound shear wave elasticity imaging. To generate and then image the elastic wave propagation, an ultrasound imaging system was used to transmit a 600 µs pushing pulse at 4.5 MHz center frequency and to acquire ultrasound tracking frames at 6 kHz frame rate. The pushing beams were separately applied to the cornea and lens. IOP in the eyeballs was varied from 5 to 50 mmHg. The results indicate that while the elastic wave velocity in the cornea increased from 0.96  ±  0.30 m s(-1) to 6.27  ±  0.75 m s(-1) as IOP was elevated from 5 to 50 mmHg, there were insignificant changes in the elastic wave velocity in the crystalline lens with the minimum and the maximum speeds of 1.44  ±  0.27 m s(-1) and 2.03  ±  0.46 m s(-1), respectively. This study shows that ultrasound shear wave elasticity imaging can be used to assess the biomechanical properties of the crystalline lens noninvasively. Also, it was observed that the dependency of the crystalline lens stiffness on the IOP was significantly lower in comparison with that of cornea.

  4. The impact of intraocular pressure on elastic wave velocity estimates in the crystalline lens

    NASA Astrophysics Data System (ADS)

    Park, Suhyun; Yoon, Heechul; Larin, Kirill V.; Emelianov, Stanislav Y.; Aglyamov, Salavat R.

    2017-02-01

    Intraocular pressure (IOP) is believed to influence the mechanical properties of ocular tissues including cornea and sclera. The elastic properties of the crystalline lens have been mainly investigated with regard to presbyopia, the age-related loss of accommodation power of the eye. However, the relationship between the elastic properties of the lens and IOP remains to be established. The objective of this study is to measure the elastic wave velocity, which represents the mechanical properties of tissue, in the crystalline lens ex vivo in response to changes in IOP. The elastic wave velocities in the cornea and lens from seven enucleated bovine globe samples were estimated using ultrasound shear wave elasticity imaging. To generate and then image the elastic wave propagation, an ultrasound imaging system was used to transmit a 600 µs pushing pulse at 4.5 MHz center frequency and to acquire ultrasound tracking frames at 6 kHz frame rate. The pushing beams were separately applied to the cornea and lens. IOP in the eyeballs was varied from 5 to 50 mmHg. The results indicate that while the elastic wave velocity in the cornea increased from 0.96  ±  0.30 m s-1 to 6.27  ±  0.75 m s-1 as IOP was elevated from 5 to 50 mmHg, there were insignificant changes in the elastic wave velocity in the crystalline lens with the minimum and the maximum speeds of 1.44  ±  0.27 m s-1 and 2.03  ±  0.46 m s-1, respectively. This study shows that ultrasound shear wave elasticity imaging can be used to assess the biomechanical properties of the crystalline lens noninvasively. Also, it was observed that the dependency of the crystalline lens stiffness on the IOP was significantly lower in comparison with that of cornea.

  5. Experimental determination of radiated internal wave power without pressure field data

    SciTech Connect

    Lee, Frank M.; Morrison, P. J.; Paoletti, M. S.; Swinney, Harry L.

    2014-04-15

    We present a method to determine, using only velocity field data, the time-averaged energy flux (J) and total radiated power P for two-dimensional internal gravity waves. Both (J) and P are determined from expressions involving only a scalar function, the stream function ψ. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data.

  6. Vibration and pressure wave therapy for calf strains: a proposed treatment.

    PubMed

    Saxena, Amol; St Louis, Marie; Fournier, Magali

    2013-04-01

    Calf (lower leg) strains have a variety of treatment regimens with variable outcomes and return to activity (RTA) time frames. These injuries involve disruption of portions or the entire gastrocnemius-soleus myo-tendinous complex. Conservative treatment initially consists of rest, ice, compression, elevation (RICE). Immediately following calf injury, patients can utilize cryotherapy, massage, passive range of motion, and progressive exercise. In general, Grade I through Grade III calf strains can take up to 6 weeks before the athlete can return to training. It can also involve the loss of more than 50% of muscle integrity. Recently, vibration therapy and radial pressure waves have been utilized to treat muscular strains and other myo-tendinous injuries that involve trigger points. Studies have suggested vibration therapy with rehabilitation can increase muscle strength and flexibility in patients. Segmental vibration therapy (SVT) is treatment to a more focal area. Vibration therapy (VT) is applied directly to the area of injury. VT is a mechanical stimulus that is thought to stimulate the sensory receptors, as well as decrease inflammatory cells and receptors. Therefore, VT could be a valuable tool in treating athlete effectively and decreasing their recovery time. The purpose of this paper is to give the reader baseline knowledge of VT and propose a treatment protocol for calf strains using this technology along with radial pressure waves.

  7. Spontaneous thermal waves and exponential spectra associated with a filamentary pressure structure in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Pace, David Carl

    An experimental study of plasma turbulence and transport is performed in the fundamental geometry of a narrow pressure filament in a magnetized plasma. An electron beam is used to heat a cold background plasma in a linear device, the Large Plasma Device (LAPD-U) [W. Gekelman et al. Rev. Sci. Instrum. 62, 2875 (1991)] operated by the Basic Plasma Science Facility at the University of California, Los Angeles. This results in the generation of a filamentary structure 1000 cm in length and 1 cm in diameter) exhibiting a controllable radial temperature gradient embedded in a large plasma. The filament serves as a resonance cavity for a thermal (diffusive) wave manifested by large amplitude, coherent oscillations in electron temperature. Properties of this wave are used to determine the electron collision time of the plasma and suggest that a diagnostic method for studying plasma transport can be designed in a similar manner. For short times and low heating powers the filament conducts away thermal energy through particle collisions, consistent with classical theory. Experiments performed with longer heating times or greater injected power feature a transition from the classical transport regime to a regime of enhanced transport levels. During the anomalous transport regime, fluctuations exhibit an exponential power spectrum for frequencies below the ion cyclotron frequency. The exponential feature has been traced to the presence of solitary pulses having a Lorentzian temporal signature. These pulses arise from nonlinear interactions of drift-Alfven waves driven by the pressure gradients. The temporal width of the pulses is measured to be a fraction of a period of the drift-Alfven waves. A second experiment involves a macroscopic (3.5 cm gradient length) limiter-edge geometry in which a density gradient is established by inserting a metallic plate at the edge of the nominal plasma column of the LAPD-U. In both experiments the width of the pulses is narrowly distributed

  8. Nonlinear wave evolution in pressure-driven stratified flow of Newtonian and Herschel-Bulkley fluids

    NASA Astrophysics Data System (ADS)

    Valluri, Prashant; Sahu, Kirti; Ding, Hang; Spelt, Peter; Matar, Omar; Lawrence, Chris

    2007-11-01

    Pressure-driven stratified channel flow of a Newtonian fluid flowing over a Herschel-Bulkley (HB) fluid is considered. The effects of yield stress and shear-thinning rheology on the nonlinear wave evolution are studied using numerical simulations; the HB rheology is regularized at low shear rates using a bi-viscosity formulation. Two different numerical methods were used to carry out the computations: a level-set method (based on that by Spelt, J. Comput. Phys. 2005) and a diffuse-interface method (based on that by Ding et al., J. Comput. Phys., in press). The simulations, which account for fluid inertia, surface tension and gravity are validated against linear theory predictions at early times. The results at later times show the spatio-temporal evolution into the nonlinear regime wherein waves are strongly deformed, leading to the onset of drop entrainment. It is shown that the apparent viscosity in the region of the HB fluid directly involved in the onset of entrainment is almost constant; unyielded regions are confined to wave troughs at late stages of the nonlinear evolution.

  9. Synthesizing ocean bottom pressure records including seismic wave and tsunami contributions: Toward realistic tests of monitoring systems

    NASA Astrophysics Data System (ADS)

    Saito, Tatsuhiko; Tsushima, Hiroaki

    2016-11-01

    The present study proposes a method for synthesizing the ocean bottom pressure records during a tsunamigenic earthquake. First, a linear seismic wave simulation is conducted with a kinematic earthquake fault model as a source. Then, a nonlinear tsunami simulation is conducted using the sea bottom movement calculated in the seismic wave simulation. By using these simulation results, this method can provide realistic ocean bottom pressure change data, including both seismic and tsunami contributions. A simple theoretical consideration indicates that the dynamic pressure change caused by the sea bottom acceleration can contribute significantly until the duration of 90 s for a depth of 4000 m in the ocean. The performance of a tsunami monitoring system was investigated using the synthesized ocean bottom pressure records. It indicates that the system based on the hydrostatic approximation could not measure the actual tsunami height when the time does not elapse enough. The dynamic pressure change and the permanent sea bottom deformation inside the source region break the condition of a simple hydrostatic approximation. A tsunami source estimation method of tFISH is also examined. Even though the synthesized records contain a large dynamic pressure change, which is not considered in the algorithm, tFISH showed a satisfactory performance 5 min after the earthquake occurrence. The pressure records synthesized in this study, including both seismic wave and tsunami contributions, are more practical for evaluating the performance of our monitoring ability, whereas most tsunami monitoring tests neglect the seismic wave contribution.

  10. Morphological characterization of cardiac induced intracranial pressure (ICP) waves in patients with overdrainage of cerebrospinal fluid and negative ICP.

    PubMed

    Eide, Per Kristian; Sroka, Marek; Wozniak, Aleksandra; Sæhle, Terje

    2012-10-01

    Symptomatic overdrainage of cerebrospinal fluid (CSF) can be seen in shunted hydrocephalus patients and in non-shunted patients with spontaneous intracranial hypotension (SIH). In these patients, intracranial pressure (ICP) monitoring often reveals negative static ICP, while it is less understood how the pulsatile ICP (cardiac induced ICP waves) is affected. This latter aspect is addressed in the present study. A set of 40 ICP recordings from paediatric and adult hydrocephalus patients were randomly selected. Each cardiac induced ICP wave was automatically identified and manually verified by the beginning and ending diastolic minimum pressures and the systolic maximum pressure. The ICP wave parameters (static pressure, amplitude, rise time, rise time coefficient, downward coefficient, wave duration, and area-under-curve) were then automatically computed. The material of 40 ICP recordings provided a total of 3,192,166 cardiac induced ICP waves (1,292,522 in paediatric patients and 1,899,644 in adult patients). No apparent changes in ICP wave parameters were seen when mean ICP became negative, except that the parameters amplitude, rise time coefficient, downward coefficient and area under curve somewhat increased when mean ICP was below -15 mmHg.

  11. LIGHT PRESSURE: Theoretical study of the light pressure force acting on a spherical dielectric particle of an arbitrary size in the interference field of two plane monochromatic electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Guzatov, D. V.; Gaida, L. S.; Afanas'ev, Anatolii A.

    2008-12-01

    The light pressure force acting on a spherical dielectric particle in the interference field of two plane monochromatic electromagnetic waves is studied in detail for different particle radii and angles of incidence of waves.

  12. The relationship between gas hydrate saturation and P-wave velocity of pressure cores obtained in the Eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Konno, Y.; Yoneda, J.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Fujii, T.; Nagao, J.

    2014-12-01

    P-wave velocity is an important parameter to estimate gas hydrate saturation in sediments. In this study, the relationship between gas hydrate saturation and P-wave velocity have been analyzed using natural hydrate-bearing-sediments obtained in the Eastern Nankai Trough, Japan. The sediment samples were collected by the Hybrid Pressure Coring System developed by Japan Agency for Marine-Earth Science and Technology during June-July 2012, aboard the deep sea drilling vessel CHIKYU. P-wave velocity was measured on board by the Pressure Core Analysis and Transfer System developed by Geotek Ltd. The samples were maintained at a near in-situ pressure condition during coring and measurement. After the measurement, the samples were stored core storage chambers and transported to MHRC under pressure. The samples were manipulated and cut by the Pressure-core Non-destructive Analysis Tools or PNATs developed by MHRC. The cutting sections were determined on the basis of P-wave velocity and visual observations through an acrylic window equipped in the PNATs. The cut samples were depressurized to measure gas volume for saturation calculations. It was found that P-wave velocity correlates well with hydrate saturation and can be reproduced by the hydrate frame component model. Using pressure cores and pressure core analysis technology, nondestructive and near in-situ correlation between gas hydrate saturation and P-wave velocity can be obtained. This study was supported by funding from the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by the Ministry of Economy, Trade and Industry (METI), Japan.

  13. Experimental feasibility of investigating acoustic waves in Couette flow with entropy and pressure gradients

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.

    1990-01-01

    The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.

  14. Wave reflection and central aortic pressure are increased in response to static and dynamic muscle contraction at comparable workloads.

    PubMed

    Edwards, David G; Mastin, Corey R; Kenefick, Robert W

    2008-02-01

    We determined the effects of static and dynamic muscle contraction at equivalent workloads on central aortic pressure and wave reflection. At random, 14 healthy men and women (23 +/- 5 yr of age) performed a static handgrip forearm contraction [90 s at 30% of maximal voluntary contraction (MVC)], dynamic handgrip contractions (1 contraction/s for 180 s at 30% MVC), and a control trial. During static and dynamic trials, tension-time index was controlled by holding peak tension constant. Measurements of brachial artery blood pressure and the synthesis of a central aortic pressure waveform (by radial artery applanation tonometry and generalized transfer function) were conducted at baseline, during each trial, and during 1 min of postexercise ischemia (PEI). Aortic augmentation index (AI), an index of wave reflection, was calculated from the aortic pressure waveform. AI increased during both static and dynamic trials (static, 5.2 +/- 3.1 to 11.8 +/- 3.4%; dynamic, 5.8 +/- 3.0 to 13.3 +/- 3.4%; P < 0.05) and further increased during PEI (static, 18.5 +/- 3.1%; dynamic, 18.6 +/- 2.9%; P < 0.05). Peripheral and central systolic and diastolic pressures increased (P < 0.05) during both static and dynamic trials and remained elevated during PEI. AI and pressure responses did not differ between static and dynamic trials. Peripheral and central pressures increased similarly during static and dynamic contraction; however, the rise in central systolic pressure during both conditions was augmented by increased wave reflection. The present data suggest that wave reflection is an important determinant of the central blood pressure response during forearm muscle contractions.

  15. Shock wave equation of state experiments at multi-TPa pressures on NIF

    NASA Astrophysics Data System (ADS)

    Celliers, P. M.; Fratanduono, D. E.; Peterson, J. L.; Meezan, N. B.; MacKinnon, A. J.; Braun, D. G.; Millot, M.; Fry, J.; Boehm, K. J.; Collins, G. W.; Nikroo, A.; Fitzsimmons, P.

    2015-06-01

    The National Ignition Facility provides an unprecedented capability to generate steady, planar, ultra-high pressure shock waves (around 10 TPa) in solid samples. Building on successful laser shock equation of state experiments performed on a variety of other laser facilities, we have designed and fielded experiments to perform impedance match experiments on samples of C, Be, quartz and CH, in the range of 3 to 7 TPa. The experiments use a line-imaging VISAR as the primary diagnostic to measure the shock velocity in an Al reference standard and in an array of the four samples. Initial tests with the line-imaging VISAR show that the NIF is capable of driving shocks that are steady for several ns, with smooth planar breakout patterns over a 2 mm diameter spot. Initial results will be discussed. Prepared by LLNL under Contract DE-AC52-07NA27344.

  16. The transfer of atmospheric-pressure ionization waves via a metal wire

    SciTech Connect

    Xia, Yang; Liu, Dongping; Wang, Wenchun; Peng, Yifeng; Niu, Jinhai; Bi, Zhenhua; Ji, Longfei; Song, Ying; Wang, Xueyang; Qi, Zhihua

    2016-01-15

    Our study has shown that the atmospheric-pressure He ionization waves (IWs) may be transferred from one dielectric tube (tube 1) to the other one (tube 2) via a floating metal wire. The propagation of IWs along the two tubes is not affected by the diameter of a floating metal wire, however, their propagation is strongly dependent on the length of a floating metal wire. The propagation of one IW along the tube 1 may result in the second IW propagating reversely inside the tube in vicinity of a floating metal wire, which keeps from their further propagation through the tube 1. After they merge together as one conduction channel inside the tube 1, the transferred plasma bullet starts to propagate along the tube 2. The propagation of transferred plasma bullets along the tube 2 is mainly determined by the capacitance and inductance effects, and their velocity and density can be controlled by the length of a floating metal wire.

  17. Sensing the characteristic acoustic impedance of a fluid utilizing acoustic pressure waves

    PubMed Central

    Antlinger, Hannes; Clara, Stefan; Beigelbeck, Roman; Cerimovic, Samir; Keplinger, Franz; Jakoby, Bernhard

    2012-01-01

    Ultrasonic sensors can be used to determine physical fluid parameters like viscosity, density, and speed of sound. In this contribution, we present the concept for an integrated sensor utilizing pressure waves to sense the characteristic acoustic impedance of a fluid. We note that the basic setup generally allows to determine the longitudinal viscosity and the speed of sound if it is operated in a resonant mode as will be discussed elsewhere. In this contribution, we particularly focus on a modified setup where interferences are suppressed by introducing a wedge reflector. This enables sensing of the liquid's characteristic acoustic impedance, which can serve as parameter in condition monitoring applications. We present a device model, experimental results and their evaluation. PMID:23565036

  18. Pressure-induced quenching of the charge-density-wave state observed by x-ray diffraction

    SciTech Connect

    Sacchetti, A.

    2010-05-03

    We report an x-ray diffraction study on the charge-density-wave (CDW) LaTe{sub 3} and CeTe{sub 3} compounds as a function of pressure. We extract the lattice constants and the CDW modulation wave-vector, and provide direct evidence for a pressure-induced quenching of the CDW phase. We observe subtle differences between the chemical and mechanical compression of the lattice. We account for these with a scenario where the effective dimensionality in these CDW systems is dependent on the type of lattice compression and has a direct impact on the degree of Fermi surface nesting and on the strength of fluctuation effects.

  19. Vertical structure of pore pressure under surface gravity waves on a steep, megatidal, mixed sand-gravel-cobble beach

    NASA Astrophysics Data System (ADS)

    Guest, Tristan B.; Hay, Alex E.

    2017-01-01

    The vertical structure of surface gravity wave-induced pore pressure is investigated within the intertidal zone of a natural, steeply sloping, megatidal, mixed sand-gravel-cobble beach. Results from a coherent vertical array of buried pore pressure sensors are presented in terms of signal phase lag and attenuation as functions of oscillatory forcing frequency and burial depth. Comparison of the observations with the predictions of a theoretical poro-elastic bed response model indicates that the large observed phase lags and attenuation are attributable to interstitial trapped air. In addition to the dependence on entrapped air volume, the pore pressure phase and attenuation are shown to be sensitive to the hydraulic conductivity of the sediment, to the changing mean water depth during the tidal cycle, and to the redistribution/rearrangement of beach face material by energetic wave action during storm events. The latter result indicates that the effects on pore pressure of sediment column disturbance during instrument burial can persist for days to weeks, depending upon wave forcing conditions. Taken together, these results raise serious questions as to the practicality of using pore pressure measurements to estimate the kinematic properties of surface gravity waves on steep, mixed sand-gravel beaches.

  20. Pressure field induced in the water column by acoustic-gravity waves generated from sea bottom motion

    NASA Astrophysics Data System (ADS)

    C. A. Oliveira, Tiago; Kadri, Usama

    2016-10-01

    An uplift of the ocean bottom caused by a submarine earthquake can trigger acoustic-gravity waves that travel at near the speed of sound in water and thus may act as early tsunami precursors. We study the spatiotemporal evolution of the pressure field induced by acoustic-gravity modes during submarine earthquakes, analytically. We show that these modes may all induce comparable temporal variations in pressure at different water depths in regions far from the epicenter, though the pressure field depends on the presence of a leading acoustic-gravity wave mode. Practically, this can assist in the implementation of an early tsunami detection system by identifying the pressure and frequency ranges of measurement equipment and appropriate installation locations.

  1. Characteristic enhancement of blood pressure V-shaped waves in sinoaortic-denervated rats in a conscious and quiet state.

    PubMed

    Chang, Huan; Gu, Hong-Xia; Gong, Min; Han, Ji-Ju; Wang, Yun; Xia, Zuo-Li; Zhao, Xiao-Min

    2016-11-08

    A hemodynamic feature of chronic sinoaortic-denervated (SAD) rats is the increase in blood pressure variability (BPV) without significant changes in the average level of blood pressure (BP). The current study was designed to investigate the changes in BP V-shaped waves (V waves) in SAD rats. Sprague-Dawley (SD) rats were divided into 2 groups: SAD rats and sham-operated rats (n=13). Hemodynamics measurements were obtained in conscious, freely moving rats, four weeks after sinoaortic denervation or sham operation. V wave indices were evaluated in rats in both conscious and quiet states. Additionally, normal and high BPV was simulated by the production of V waves with different amplitudes. The results showed that the V wave amplitude was dramatically increased, with a significantly prolonged duration and reduced frequency in SAD rats. V wave BPV in SAD rats was significantly increased, though BP remained unchanged. The twenty-four hour BPV in all rats was positively correlated with amplitude, duration time and V wave BPV and negatively correlated with frequency. The systolic BP spectral powers in the low frequency range (0.38-0.45 Hz) were significantly reduced in the V waves of SAD rats. Moreover, there was a remarkable increase in mean BPV and a normal mean BP after simulating high BPV in SAD rats. These results suggest that enhancement of V waves might be a waveform character of BP in SAD rats in both the conscious and quiet states. These types of V waves appear to be related to a depression of sympathetic regulation of BP induced by sinoaortic denervation.

  2. Changes in Central Aortic Pressure Levels, Wave Components and Determinants Associated with High Peripheral Blood Pressure States in Childhood: Analysis of Hypertensive Phenotype.

    PubMed

    García-Espinosa, Victoria; Curcio, Santiago; Marotta, Marco; Castro, Juan M; Arana, Maite; Peluso, Gonzalo; Chiesa, Pedro; Giachetto, Gustavo; Bia, Daniel; Zócalo, Yanina

    2016-10-01

    The aims were to determine whether children's high peripheral blood pressure states (HBP) are associated with increased central aortic blood pressure (BP) and to characterize hemodynamic and vascular changes associated with HBP in terms of changes in cardiac output (stroke volume, SV), arterial stiffness (aortic pulse wave velocity, PWV), peripheral vascular resistances (PVR) and net and relative contributions of reflected waves to the aortic pulse amplitude. We included 154 subjects (mean age 11; range 4-16 years) assigned to one of two groups: normal peripheral BP (NBP, n = 101), defined as systolic and diastolic BP < 90th percentile, or high BP (HBP, n = 53), defined as average systolic and/or diastolic BP levels ≥90th percentile (curves for sex, age and body height). The HBP group included children with hypertensive and pre-hypertensive BP levels. After a first analysis, groups were compared excluding obese and dyslipidemic children. Peripheral and central aortic BP, PWV and pulse wave-derived parameters (augmentation index, forward and backward wave components' amplitude) were measured using gold-standard techniques, applanation tonometry (SphygmoCor) and oscillometry (Mobil-O-Graph). Independent of the presence of dyslipidemia and/or obesity, aortic systolic and pulse BP were higher in HBP than in NBP children. The increase in central BP could not be explained by an increase in the relative contribution of reflections to the aortic pressure wave, higher PVR or by an augmented peripheral reflection coefficient. Instead, the rise in central BP would be explained by an increase in the amplitude of both incident and reflected wave components.

  3. Diagnostics of surface wave driven low pressure plasmas based on indium monoiodide-argon system

    NASA Astrophysics Data System (ADS)

    Ögün, C. M.; Kaiser, C.; Kling, R.; Heering, W.

    2015-06-01

    Indium monoiodide is proposed as a suitable alternative to hazardous mercury, i.e. the emitting component inside the compact fluorescent lamps (CFL), with comparable luminous efficacy. Indium monoiodide-argon low pressure lamps are electrodelessly driven with surface waves, which are launched and coupled into the lamp by the ‘surfatron’, a microwave coupler optimized for an efficient operation at a frequency of 2.45 GHz. A non intrusive diagnostic method based on spatially resolved optical emission spectroscopy is employed to characterize the plasma parameters. The line emission coefficients of the plasma are derived by means of Abel’s inversion from the measured spectral radiance data. The characteristic plasma parameters, e.g. electron temperature and density are determined by comparing the experimentally obtained line emission coefficients with simulated ones from a collisional-radiative model. Additionally, a method to determine the absolute plasma efficiency via irradiance measurements without any goniometric setup is presented. In this way, the relationship between the plasma efficiency and the plasma parameters can be investigated systematically for different operating configurations, e.g. electrical input power, buffer gas pressure and cold spot temperature. The performance of indium monoiodide-argon plasma is compared with that of conventional CFLs.

  4. Sound wave velocities of Fe-Ni alloy at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Kantor, A.; Dubrovinsky, L.; Kantor, I.; Kurnosov, A.; Kuznetsov, A.; Dubrovinskaia, N.; Krisch, M.

    2006-12-01

    Knowledge of high-pressure and high-temperature elasticity of Fe-Ni alloy with low (5-25%) Ni content is crucial for geosciences since it is probably the major component of the core of the Earth, Mars, Mercury, Moon, satellites of Saturn and Jupiter. High-pressure and high-temperature (up to 41 GPa and 700 K) study of FeNi alloy with 22% of Ni was carried out by mean of inelastic X-ray scattering (IXS) from polycrystalline material. Two sets of experiments: at room temperature and at 700 K have been performed. Before and after every measurement (taking about 10 hours) an in-situ 1-D monochromatic X-ray diffraction pattern was collected for volume determination exactly from the sample. X-ray diffraction study revealed stability of fcc over hcp phase in the whole studied P,T range. Isothermal equation of state was derived at room temperature and at 700 K. X-ray inelastic scattering measurements allow to calculate longitudinal acoustic wave velocity VL, that gives, combined with measured equations of state, full isotropic elasticity of the material. We did not observe strong deviations of fcc iron-nickel alloy bulk elasticity from elastic properties of pure hcp iron.

  5. Optimization of pressure waveform, distribution and sequence in shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng

    This work aims to improve shock wave lithotripsy (SWL) technology by increasing stone comminution efficiency while reducing simultaneously the propensity of tissue injury. First, the mechanism of vascular injury in SWL was investigated. Based on in vitro vessel phantom experiment and theoretical calculation, it was found that SWL-induced large intraluminal bubble expansion may constitute a primary mechanism for the rupture of capillaries and small blood vessels. However, when the large intraluminal bubble expansion is suppressed by inversion of the pressure waveform of the lithotripter shock wave (LSW), rupture of a 200-mum cellulose hollow fiber vessel phantom can be avoided. Based on these experimental observations and theoretical assessment of bubble dynamics using the Gilmore model an in situ pulse superposition technique was developed to reduce tissue injury without compromising stone comminution in SWL. A thin shell ellipsoidal reflector insert was fabricated to fit snugly with the original HM-3 reflector. Using the Hamilton model, the effects of reflector geometry on the pulse profile and sequence of the shock waves were evaluated qualitatively. Guided by this analysis, the design of the reflector insert had been refined to suppress the intraluminal bubble expansion, which was confirmed by high-speed imaging of bubble dynamics both in free field and inside a vessel phantom. The pulse pressure, beam size and stone comminution efficiency of the upgraded reflector were all found to be comparable to those of the original reflector. However, the greatest difference lies in the propensity for tissue injury. At the lithotripter focus, about 30 shocks are needed to cause a rupture of the vessel phantom using the original reflector, but no rupture can be produced after 200 shocks by the upgraded reflector. Overall, the upgraded reflector could significantly reduce the propensity of vessel rupture while maintaining satisfactory stone comminution. Second, to improve

  6. Impulses and pressure waves cause excitement and conduction in the nervous system.

    PubMed

    Barz, Helmut; Schreiber, Almut; Barz, Ulrich

    2013-11-01

    It is general accepted, that nerval excitement and conduction is caused by voltage changes. However, the influx of fluid into an elastical tube releases impulses or pressure waves. Therefore an influx of ion currents, respectively fluid motions into the elastic neuronal cells and fibres also induce impulses. This motion of charge carriers are measured by voltage devices as oscillations or action potentials, but the voltage changes may be an epiphenomenon of the (mechanical) impulses. Impulse waves can have a high speed. As stiffer or inelastic a tube wall, the greater is the speed of the impulse. Myelin sheaths cause a significant stiffening of the nerve fibre wall and myelinated fibres have a conduction velocity up to 120 m/s. The influx of fluid at the nodes of Ranvier intensifies periodically the impulse wave in the nerve fibres. The authors suggest that also the muscle end-plate acts as a conductor of axonal impulses to the inner of the muscle fibres and that the exocytosis of acetylcholine into the synaptic cleft may be an amplifier of the axonal impulse. It is discussed that intracellular actin filaments may also influence motions at the neuronal membrane. Many sensory nerve cells are excited due to exogenous or endogenous mechanical impulses. It may plausible that such impulses are conducted directly to the sensory nerve cell bodies in the dorsal root ganglia without the transformation in electric energy. Excitation conduction happens without noteworthy energy consumption because the flow of ion currents through the membranes takes place equivalent to the concentration gradient. Impulse waves cause short extensions of the lipid membranes of the cell- and fibres walls and therefore they can induce opening and closing of the included ion channels. This mechanism acts to "voltage gated" and "ligand-gated" channels likewise. The concept of neuronal impulses can be helpful to the understanding of other points of neurophysiology or neuronal diseases. This includes

  7. Optimally accurate thermal-wave cavity photopyroelectric measurements of pressure-dependent thermophysical properties of air: theory and experiments.

    PubMed

    Kwan, Chi-Hang; Matvienko, Anna; Mandelis, Andreas

    2007-10-01

    An experimental technique for the measurement of thermal properties of air at low pressures using a photopyroelectric (PPE) thermal-wave cavity (TWC) was developed. In addition, two theoretical approaches, a conventional one-dimensional thermal-wave model and a three-dimensional theory based on the Hankel integral, were applied to interpret the thermal-wave field in the thermal-wave cavity. The importance of radiation heat transfer mechanisms in a TWC was also investigated. Radiation components were added to the purely conductive model by linearizing the radiation heat transfer component at the cavity boundary. The experimental results indicate that the three-dimensional model is necessary to describe the PPE signal, especially at low frequencies where thermal diffusion length is large and sideways propagation of the thermal-wave field becomes significant. Radiation is found to be the dominant contributor of the PPE signal at high frequencies and large cavity lengths, where heat conduction across the TWC length is relatively weak. The three-dimensional theory and the Downhill Simplex algorithm were used to fit the experimental data and extract the thermal diffusivity of air and the heat transfer coefficient in a wide range of pressures from 760 to 2.6 Torr. It was shown that judicious adjustments of cavity length and computational best fits to frequency-scanned data using three-dimensional photopyroelectric theory lead to optimally accurate value measurements of thermal diffusivity and heat transfer coefficient at various pressures.

  8. A new climate index controlling winter wave activity along the Atlantic coast of Europe: The West Europe Pressure Anomaly

    NASA Astrophysics Data System (ADS)

    Castelle, Bruno; Dodet, Guillaume; Masselink, Gerd; Scott, Tim

    2017-02-01

    A pioneering and replicable method based on a 66-year numerical weather and wave hindcast is developed to optimize a climate index based on the sea level pressure (SLP) that best explains winter wave height variability along the coast of western Europe, from Portugal to UK (36-52°N). The resulting so-called Western Europe Pressure Anomaly (WEPA) is based on the sea level pressure gradient between the stations Valentia (Ireland) and Santa Cruz de Tenerife (Canary Islands). The WEPA positive phase reflects an intensified and southward shifted SLP difference between the Icelandic low and the Azores high, driving severe storms that funnel high-energy waves toward western Europe southward of 52°N. WEPA outscores by 25-150% the other leading atmospheric modes in explaining winter-averaged significant wave height, and even by a largest amount the winter-averaged extreme wave heights. WEPA is also the only index capturing the 2013/2014 extreme winter that caused widespread coastal erosion and flooding in western Europe.

  9. Using line broadening to determine the electron density in an argon surface-wave discharge at atmospheric pressure

    SciTech Connect

    Christova, M.; Christov, L.; Castanos-Martinez, E.; Moisan, M.; Dimitrijevic, M. S.

    2008-10-22

    Broadening due to collisions with charged particles (Stark broadening ) and neutral atoms, was determined for Ar I 522.1, 549.6 and 603.2 nm spectral lines from the spectral series 3p{sup 5}nd-3p{sup 5}4p, in order to evaluate the electron density in a surface-wave discharge at atmospheric pressure.

  10. Application of extracorporeal shock wave lithotripter (ECSWL) in orthopaedics. II. Dose-response and pressure distribution measurements.

    PubMed

    Park, J B; Park, S H; Weinstein, J N; Loening, S; Oster, D

    1991-01-01

    In order to apply the extracorporeal shock wave lithotripter (ECSWL) technique to the loosening of the bone-cement interface for the extraction of the cement during revision arthroplasty it is essential to know the dose-response characteristics. The present study shows that the number of shocks needed to break the interface between a 2- and 6-mm-thick bovine femoral bone and bone cement is similar to the fatigue behavior of a material, that is, Log(N) = C(kV) + D, where N is the number of shock impulses, kV is the power setting of the lithotripter machine in kilovolts, and C and D are constants. Iso-pressure distribution of the traveling shock wave front through a simulated bone in a Plexiglass tube using Fuji pressure film showed quantitative pressure contours from which one can understand the effective area of shock wave and its distribution. The most effective area of the shock wave was about 1.5 cm in diameter at 23 and 25 kV with pressure at least 7.0 MPa which is more than sufficient to break the bone-cement interface in tension.

  11. Generation of sub-Mbar pressure by converging shock waves produced by the underwater electrical explosion of a wire array.

    PubMed

    Krasik, Ya E; Grinenko, A; Sayapin, A; Gurovich, V Tz; Schnitzer, I

    2006-05-01

    We report a demonstration of a generation of sub-Mbar pressure on the axis of the implosion wave produced by an underwater electrical explosion of a cylindrical wire array. The array was exploded by microsecond time scale discharge of a capacitor bank having a stored energy of 4.5 kJ and discharge current amplitude of up to 90 kA. Optical diagnostics were used to determine the time of flight and the trajectory of the converging shock wave. This data were applied for a calculation of the water flow parameters using one-dimensional (1D) and 2D hydrodynamic calculations and the Whitham method. All three methods have shown that the shock wave pressure at 0.1 mm from the axis reaches .

  12. Effects of Heat Wave on Body Temperature and Blood Pressure in the Poor and Elderly

    PubMed Central

    Kim, Soyeon; Cheong, Hae-Kwan; Ahn, Byungok; Choi, Kyusik

    2012-01-01

    Objectives We aimed to investigate the acute effects of heat stress on body temperature and blood pressure of elderly individuals living in poor housing conditions. Methods Repeated measurements of the indoor temperature, relative humidity, body temperature, and blood pressure were conducted for 20 elderly individuals living in low-cost dosshouses in Seoul during hot summer days in 2010. Changes in the body temperature, systolic blood pressure (SBP) and diastolic blood pressure (DBP) according to variations in the indoor and outdoor temperature and humidity were analyzed using a repeated-measures ANOVA controlling for age, sex, alcohol, and smoking. Results Average indoor and outdoor temperatures were 31.47℃ (standard deviation [SD], 0.97℃) and 28.15℃ (SD, 2.03℃), respectively. Body temperature increased by 0.21℃ (95% confidence interval [CI], 0.16 to 0.26℃) and 0.07℃ (95% CI, 0.04 to 0.10℃) with an increase in the indoor and outdoor temperature of 1℃. DBP decreased by 2.05 mmHg (95% CI, 0.05 to 4.05 mmHg), showing a statistical significance, as the indoor temperature increased by 1℃, while it increased by 0.20 mmHg (95% CI, -0.83 to 1.22 mmHg) as outdoor temperature increased by 1℃. SBP decreased by 1.75 mmHg (95% CI, -1.11 to 4.61 mmHg) and 0.35 mmHg (95% CI, -1.04 to 1.73 mmHg), as the indoor and outdoor temperature increased by 1℃, respectively. The effects of relative humidity on SBP and DBP were not statistically significant for both indoor and outdoor. Conclusions The poor and elderly are directly exposed to heat waves, while their vital signs respond sensitively to increase in temperature. Careful adaptation strategies to climate change considering socioeconomic status are therefore necessary. PMID:22888472

  13. Signal Analysis and Waveform Reconstruction of Shock Waves Generated by Underwater Electrical Wire Explosions with Piezoelectric Pressure Probes.

    PubMed

    Zhou, Haibin; Zhang, Yongmin; Han, Ruoyu; Jing, Yan; Wu, Jiawei; Liu, Qiaojue; Ding, Weidong; Qiu, Aici

    2016-04-22

    Underwater shock waves (SWs) generated by underwater electrical wire explosions (UEWEs) have been widely studied and applied. Precise measurement of this kind of SWs is important, but very difficult to accomplish due to their high peak pressure, steep rising edge and very short pulse width (on the order of tens of μs). This paper aims to analyze the signals obtained by two kinds of commercial piezoelectric pressure probes, and reconstruct the correct pressure waveform from the distorted one measured by the pressure probes. It is found that both PCB138 and Müller-plate probes can be used to measure the relative SW pressure value because of their good uniformities and linearities, but none of them can obtain precise SW waveforms. In order to approach to the real SW signal better, we propose a new multi-exponential pressure waveform model, which has considered the faster pressure decay at the early stage and the slower pressure decay in longer times. Based on this model and the energy conservation law, the pressure waveform obtained by the PCB138 probe has been reconstructed, and the reconstruction accuracy has been verified by the signals obtained by the Müller-plate probe. Reconstruction results show that the measured SW peak pressures are smaller than the real signal. The waveform reconstruction method is both reasonable and reliable.

  14. Signal Analysis and Waveform Reconstruction of Shock Waves Generated by Underwater Electrical Wire Explosions with Piezoelectric Pressure Probes

    PubMed Central

    Zhou, Haibin; Zhang, Yongmin; Han, Ruoyu; Jing, Yan; Wu, Jiawei; Liu, Qiaojue; Ding, Weidong; Qiu, Aici

    2016-01-01

    Underwater shock waves (SWs) generated by underwater electrical wire explosions (UEWEs) have been widely studied and applied. Precise measurement of this kind of SWs is important, but very difficult to accomplish due to their high peak pressure, steep rising edge and very short pulse width (on the order of tens of μs). This paper aims to analyze the signals obtained by two kinds of commercial piezoelectric pressure probes, and reconstruct the correct pressure waveform from the distorted one measured by the pressure probes. It is found that both PCB138 and Müller-plate probes can be used to measure the relative SW pressure value because of their good uniformities and linearities, but none of them can obtain precise SW waveforms. In order to approach to the real SW signal better, we propose a new multi-exponential pressure waveform model, which has considered the faster pressure decay at the early stage and the slower pressure decay in longer times. Based on this model and the energy conservation law, the pressure waveform obtained by the PCB138 probe has been reconstructed, and the reconstruction accuracy has been verified by the signals obtained by the Müller-plate probe. Reconstruction results show that the measured SW peak pressures are smaller than the real signal. The waveform reconstruction method is both reasonable and reliable. PMID:27110789

  15. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    NASA Astrophysics Data System (ADS)

    de Vries, N.; Palomares, J. M.; Iordanova, E. I.; van Veldhuizen, E. M.; van der Mullen, J. J. A. M.

    2008-10-01

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, ne, is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, Te, is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the ne values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 ± 0.5) × 1019 m-3, whereas the ne value (2 ± 0.5) × 1019 m-3 obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high (~1020 m-3). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the Te values obtained with TS are equal to 13 400 ± 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  16. Shock wave equation of state experiments at multi-TPa pressures on NIF

    NASA Astrophysics Data System (ADS)

    Celliers, P. M.; Fratanduono, D. E.; Peterson, J. L.; Meezan, N. B.; MacKinnon, A. J.; Braun, D. G.; Millot, M.; Fry, J.; Boehm, K. J.; Sterne, P. A.; Collins, G. W.; Nikroo, A.; Fitzsimmons, P.

    2015-11-01

    The National Ignition Facility provides an unprecedented capability to generate steady, planar, ultra-high pressure shock waves (up to 10 TPa or more) in solid samples. Building on successful laser shock equation of state experiments performed on a variety of other laser facilities, we have designed and fielded experiments to perform impedance match experiments on samples of C, Be, SiO2 and CH, in the range of 3 to 7 TPa. The experiments use a line-imaging VISAR as the primary diagnostic to measure the shock velocity in an Al reference standard and in an array of the four samples. Initial tests with the line-imaging VISAR show that the NIF is capable of driving shocks that are steady to better than 2% in velocity for several ns, with smooth planar breakout patterns over a 2 mm diameter spot. Hugoniot data points will be compared to current equation-of-state models for the various materials under study. This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344.

  17. Modeling of Megabar Pressure Waves Through Low Density Foams Filled with Liquid Deuterium

    NASA Astrophysics Data System (ADS)

    Dahlburg, J. P.; Gardner, J. H.; Sethian, J. D.; Colombant, D.

    1997-07-01

    We have performed simulations of low density foam targets, evacuated or filled with liquid deuterium, that have been irradiated by the NRL Nike KrF laser at laser intensities from 5 × 10^13 to 1 × 10^14 W/cm^2. The simulations provide predictions for the resulting megabar pressure waves that are generated in these targets, target acceleration time histories, and the times that the shocks break out of the rear surface of the targets. Good agreement is obtained between the predicted break-out times and those measured from an experiment which will be described in a companion paper. Predictions for the Rayleigh-Taylor stability of these targets will also be shown. Our simulation tool, FAST2D, is a multidimensional hydrodynamics code with multigroup radiation transport. The code includes FCT advection, classical Spitzer-Harm electron thermal conduction, inverse bremsstrahlung laser deposition, a table look-up equation of state, and opacities supplied by the NRL-STA code.

  18. Acoustic model of micro-pressure wave emission from a high-speed train tunnel

    NASA Astrophysics Data System (ADS)

    Miyachi, T.

    2017-03-01

    The micro-pressure wave (MPW) radiated from a tunnel portal can, if audible, cause serious problems around tunnel portals in high-speed railways. This has created a need to develop an acoustic model that considers the topography around a radiation portal in order to predict MPWs more accurately and allow for higher speed railways in the future. An acoustic model of MPWs based on linear acoustic theory is developed in this study. First, the directivity of sound sources and the acoustical effect of topography are investigated using a train launcher facility around a portal on infinitely flat ground and with an infinite vertical baffle plate. The validity of linear acoustic theory is then discussed through a comparison of numerical results obtained using the finite difference method (FDM) and experimental results. Finally, an acoustic model is derived that considers sound sources up to the second order and Green's function to represent the directivity and effect of topography, respectively. The results predicted by this acoustic model are shown to be in good agreement with both numerical and experimental results.

  19. Effect of Pressure Gradients on the Initiation of PBX-9502 via Irregular (Mach) Reflection of Low Pressure Curved Shock Waves

    SciTech Connect

    Hull, Lawrence Mark; Miller, Phillip Isaac; Moro, Erik Allan

    2016-11-28

    In the instance of multiple fragment impact on cased explosive, isolated curved shocks are generated in the explosive. These curved shocks propagate and may interact and form irregular or Mach reflections along the interaction loci, thereby producing a single shock that may be sufficient to initiate PBX-9501. However, the incident shocks are divergent and their intensity generally decreases as they expand, and the regions behind the Mach stem interaction loci are generally unsupported and allow release waves to rapidly affect the flow. The effects of release waves and divergent shocks may be considered theoretically through a “Shock Change Equation”.

  20. Investigation on the generation characteristic of pressure pulse wave signal during the measurement-while-drilling process

    NASA Astrophysics Data System (ADS)

    Changqing, Zhao; Kai, Liu; Tong, Zhao; Takei, Masahiro; Weian, Ren

    2014-04-01

    The mud-pulse logging instrument is an advanced measurement-while-drilling (MWD) tool and widely used by the industry in the world. In order to improve the signal transmission rate, ensure the accurate transmission of information and address the issue of the weak signal on the ground of oil and gas wells, the signal generator should send out the strong mud-pulse signals with the maximum amplitude. With the rotary valve pulse generator as the study object, the three-dimensional Reynolds NS equations and standard k - ɛ turbulent model were used as a mathematical model. The speed and pressure coupling calculation was done by simple algorithms to get the amplitudes of different rates of flow and axial clearances. Tests were done to verify the characteristics of the pressure signals. The pressure signal was captured by the standpiece pressure monitoring system. The study showed that the axial clearances grew bigger as the pressure wave amplitude value decreased and caused the weakening of the pulse signal. As the rate of flow got larger, the pressure wave amplitude would increase and the signal would be enhanced.

  1. Numerical simulation of the nonlinear ultrasonic pressure wave propagation in a cavitating bubbly liquid inside a sonochemical reactor.

    PubMed

    Dogan, Hakan; Popov, Viktor

    2016-05-01

    We investigate the acoustic wave propagation in bubbly liquid inside a pilot sonochemical reactor which aims to produce antibacterial medical textile fabrics by coating the textile with ZnO or CuO nanoparticles. Computational models on acoustic propagation are developed in order to aid the design procedures. The acoustic pressure wave propagation in the sonoreactor is simulated by solving the Helmholtz equation using a meshless numerical method. The paper implements both the state-of-the-art linear model and a nonlinear wave propagation model recently introduced by Louisnard (2012), and presents a novel iterative solution procedure for the nonlinear propagation model which can be implemented using any numerical method and/or programming tool. Comparative results regarding both the linear and the nonlinear wave propagation are shown. Effects of bubble size distribution and bubble volume fraction on the acoustic wave propagation are discussed in detail. The simulations demonstrate that the nonlinear model successfully captures the realistic spatial distribution of the cavitation zones and the associated acoustic pressure amplitudes.

  2. Determination of the specific area of liquid gas and the velocity of weak pressure waves in aqueous foams

    NASA Technical Reports Server (NTRS)

    Saint-Cloud, Jean; Guerraud, Claude; Moreau, Michel; Manson, Numa

    1988-01-01

    The specific area of an aqueous foam contained in a tube is obtained by determining the fraction of the quantity of light emitted by a source and diffused by the specific area of the column of the foam. The velocity of the waves of weak pressure (which propagate in the air with the velocity of sound) is measured by noticing the moment when the wave penetrates the column and the moment when, having reached the opposite side, it determines a variation of the light diffused by the area of the latter.

  3. Pressure waves in liquid mercury target from pulsed heat loads and the possible way controlling their effects

    SciTech Connect

    Ni, L.; Skala, K.

    1996-06-01

    In ESS project liquid metals are selected as the main target for the pulsed spallation neutron source. Since the very high instantaneous energy is deposited on the heavy molten target in a very short period time, pressure waves are generated. They travel through the liquid and cause high stress in the container. Also, additional stress should be considered in the wall which is the result of direct heating of the target window. These dynamic processes were simulated with computational codes with the static response being analized first. The total resulting dynamic wall stress has been found to have exceeded the design stress for the selected container material. Adding a small amount of gas bubbles in the liquid could be a possible way to reduce the pressure waves.

  4. Turbulent Heating and Wave Pressure in Solar Wind Acceleration Modeling: New Insights to Empirical Forecasting of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Woolsey, L. N.; Cranmer, S. R.

    2013-12-01

    The study of solar wind acceleration has made several important advances recently due to improvements in modeling techniques. Existing code and simulations test the competing theories for coronal heating, which include reconnection/loop-opening (RLO) models and wave/turbulence-driven (WTD) models. In order to compare and contrast the validity of these theories, we need flexible tools that predict the emergent solar wind properties from a wide range of coronal magnetic field structures such as coronal holes, pseudostreamers, and helmet streamers. ZEPHYR (Cranmer et al. 2007) is a one-dimensional magnetohydrodynamics code that includes Alfven wave generation and reflection and the resulting turbulent heating to accelerate solar wind in open flux tubes. We present the ZEPHYR output for a wide range of magnetic field geometries to show the effect of the magnetic field profiles on wind properties. We also investigate the competing acceleration mechanisms found in ZEPHYR to determine the relative importance of increased gas pressure from turbulent heating and the separate pressure source from the Alfven waves. To do so, we developed a code that will become publicly available for solar wind prediction. This code, TEMPEST, provides an outflow solution based on only one input: the magnetic field strength as a function of height above the photosphere. It uses correlations found in ZEPHYR between the magnetic field strength at the source surface and the temperature profile of the outflow solution to compute the wind speed profile based on the increased gas pressure from turbulent heating. With this initial solution, TEMPEST then adds in the Alfven wave pressure term to the modified Parker equation and iterates to find a stable solution for the wind speed. This code, therefore, can make predictions of the wind speeds that will be observed at 1 AU based on extrapolations from magnetogram data, providing a useful tool for empirical forecasting of the sol! ar wind.

  5. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    DOEpatents

    Efthimion, Philip C.; Helfritch, Dennis J.

    1989-11-28

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  6. Experimental study of the use of vortex generators to reduce fluctuating pressure loads in shock wave turbulent boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Barter, John W.; Dolling, David S.

    1995-01-01

    Fluctuating wall pressure measurements have been made in a separated shock wave/turbulent boundary layer interaction produced by an unswept compression corner in a Mach 5 flow. Wheeler doublet vortex generators were placed 15.8 boundary layer thicknesses upstream of the corner to study their effect on the fluctuating pressure loads produced by the translating separation shock. The vortex generators produced significant three-dimensionality in an otherwise two-dimensional interaction. They reduced the upstream influence and the length of the region of shock motion by 60% and 64%, respectively, decreased the maximum wall pressure rms by 23%, and shifted the fluctuations to a higher frequency band. The maximum fraction of energy in the 100-500 Hz frequency band is decreased by 11%. These changes are due to a fuller boundary layer profile, a weaker separation shock, and increased boundary layer turbulence causing increased separation shock jitter.

  7. SMALL-SCALE PRESSURE-BALANCED STRUCTURES DRIVEN BY OBLIQUE SLOW MODE WAVES MEASURED IN THE SOLAR WIND

    SciTech Connect

    Yao Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.

    2013-09-01

    Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B{sub 0}) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B{sub 0}(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P{sub th} and the magnetic pressure P{sub B}, distributing against the temporal scale and the angle {theta}{sub xB} between B{sub 0}(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of {theta}{sub xB}. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B{sub 0}(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T{sub Parallel-To} derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.

  8. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.

    PubMed

    Ikenaga, Yuki; Nishi, Shohei; Komagata, Yuka; Saito, Masashi; Lagrée, Pierre-Yves; Asada, Takaaki; Matsukawa, Mami

    2013-11-01

    A pulse wave is the displacement wave which arises because of ejection of blood from the heart and reflection at vascular bed and distal point. The investigation of pressure waves leads to understanding the propagation characteristics of a pulse wave. To investigate the pulse wave behavior, an experimental study was performed using an artificial polymer tube and viscous liquid. A polyurethane tube and glycerin solution were used to simulate a blood vessel and blood, respectively. In the case of the 40 wt% glycerin solution, which corresponds to the viscosity of ordinary blood, the attenuation coefficient of a pressure wave in the tube decreased from 4.3 to 1.6 dB/m because of the tube stiffness (Young's modulus: 60 to 200 kPa). When the viscosity of liquid increased from approximately 4 to 10 mPa·s (the range of human blood viscosity) in the stiff tube, the attenuation coefficient of the pressure wave changed from 1.6 to 3.2 dB/m. The hardening of the blood vessel caused by aging and the increase of blood viscosity caused by illness possibly have opposite effects on the intravascular pressure wave. The effect of the viscosity of a liquid on the amplitude of a pressure wave was then considered using a phantom simulating human blood vessels. As a result, in the typical range of blood viscosity, the amplitude ratio of the waves obtained by the experiments with water and glycerin solution became 1:0.83. In comparison with clinical data, this value is much smaller than that seen from blood vessel hardening. Thus, it can be concluded that the blood viscosity seldom affects the attenuation of a pulse wave.

  9. On the Role of Osmosis for Non-Linear Shock Waves f Pressure and Solute in Porous Media

    NASA Astrophysics Data System (ADS)

    Kanivesky, Roman; Salusti, Ettore; Caserta, Arrigo

    2013-04-01

    A novel non-Osanger model focusing on non-linear mechanic and chemo-poroelastic coupling of fluids and solute in porous rocks is developed based on the modern wave theory. Analyzing in 1-D a system of two adjacent rocks with different conditions we obtain two coupled non-linear equations for fluid pressure and solute (salt or pollutants) concentration, evolving under the action of strong stress from one "source" rock towards the other rock. Their solutions allow to identify quick non-linear solitary (Burgers) waves of coupled fluid pressure and solute density, that are different from diffusive or perturbative solutions found in other analyses. The strong transient waves for low permeability porous media, such as clay and shale, are analyzed in detail. For medium and high-permeability porous media (sandstones) this model is also tentatively applied. Indeed in recent works of Alexander (1990) and Hart(2009) is supported the presence of small osmotic phenomena in other rocks where osmosis was previously ignored. An attempt to apply our model to soils in Calabria (Italy), such as clastic marine and fluvial deposits as well as discontinuous remnants of Miocene and Pliocene carbonate and terrigeneous deposits, is also discussed.

  10. Analysis of reflected blast wave pressure profiles in a confined room

    NASA Astrophysics Data System (ADS)

    Sauvan, P. E.; Sochet, I.; Trélat, S.

    2012-05-01

    To understand the blast effects of confined explosions, it is necessary to study the characteristic parameters of the blast wave in terms of overpressure, impulse and arrival time. In a previous study, experiments were performed using two different scales of a pyrotechnic workshop. The main purpose of these experiments was to compare the TNT equivalent for solid and gaseous explosives in terms of mass to define a TNT equivalent in a reflection field and to validate the similitude between real and small scales. To study the interactions and propagations of the reflected shock waves, the present study was conducted by progressively building a confined volume around the charge. In this way, the influence of each wall and the origins of the reflected shock waves can be determined. The purpose of this paper is to report the blast wave interactions that resulted from the detonation of a stoichiometric propane-oxygen mixture in a confined room.

  11. Extreme storm wave influence on sandy beach macrofauna with distinct human pressures.

    PubMed

    Machado, Phillipe M; Costa, Leonardo L; Suciu, Marjorie C; Tavares, Davi C; Zalmon, Ilana R

    2016-06-15

    We evaluated the influence of storm waves on the intertidal community structure of urbanized and non-urbanized areas of a sandy beach on the northern coast of Rio de Janeiro, Brazil. The macrofauna was sampled before (PREV) and after two storm wave events (POEV I; POEV II) in 2013 and 2014. Significant differences in community structure between PREV and POEV I in the urbanized sector demonstrate higher macrofauna vulnerability, and the community recovery within 41days on this scenario of less frequent events in 2013. On the other hand, significant differences in the macrofauna only in the urbanized sector between PREV and POEV II also highlight macrofauna vulnerability and community recovery failure within 42days on this scenario of more frequent storm in 2014. Urbanization and wave height were the variables that most influenced species, indicating that high storm wave events and increasing urbanization synergism are a threat to the macrofauna.

  12. Simultaneous structure and elastic wave velocity measurement of SiO2 glass at high pressures and high temperatures in a Paris-Edinburgh cell.

    PubMed

    Kono, Yoshio; Park, Changyong; Sakamaki, Tatsuya; Kenny-Benson, Curtis; Shen, Guoyin; Wang, Yanbin

    2012-03-01

    An integration of multi-angle energy-dispersive x-ray diffraction and ultrasonic elastic wave velocity measurements in a Paris-Edinburgh cell enabled us to simultaneously investigate the structures and elastic wave velocities of amorphous materials at high pressure and high temperature conditions. We report the first simultaneous structure and elastic wave velocity measurement for SiO(2) glass at pressures up to 6.8 GPa at around 500°C. The first sharp diffraction peak (FSDP) in the structure factor S(Q) evidently shifted to higher Q with increasing pressure, reflecting the shrinking of intermediate-range order, while the Si-O bond distance was almost unchanged up to 6.8 GPa. In correlation with the shift of FSDP position, compressional wave velocity (Vp) and Poisson's ratio increased markedly with increasing pressure. In contrast, shear wave velocity (Vs) changed only at pressures below 4 GPa, and then remained unchanged at ~4.0-6.8 GPa. These observations indicate a strong correlation between the intermediate range order variations and Vp or Poisson's ratio, but a complicated behavior for Vs. The result demonstrates a new capability of simultaneous measurement of structures and elastic wave velocities at high pressure and high temperature conditions to provide direct link between microscopic structure and macroscopic elastic properties of amorphous materials.

  13. Simultaneous structure and elastic wave velocity measurement of SiO[subscript 2] glass at high pressures and high temperatures in a Paris-Edinburgh cell

    SciTech Connect

    Kono, Yoshio; Park, Changyong; Sakamaki, Tatsuya; Kenny-Benson, Curtis; Shen, Guoyin; Wang, Yanbin

    2015-02-19

    An integration of multi-angle energy-dispersive x-ray diffraction and ultrasonic elastic wave velocity measurements in a Paris-Edinburgh cell enabled us to simultaneously investigate the structures and elastic wave velocities of amorphous materials at high pressure and high temperature conditions. We report the first simultaneous structure and elastic wave velocity measurement for SiO{sub 2} glass at pressures up to 6.8 GPa at around 500 C. The first sharp diffraction peak (FSDP) in the structure factor S(Q) evidently shifted to higher Q with increasing pressure, reflecting the shrinking of intermediate-range order, while the Si-O bond distance was almost unchanged up to 6.8 GPa. In correlation with the shift of FSDP position, compressional wave velocity (Vp) and Poisson's ratio increased markedly with increasing pressure. In contrast, shear wave velocity (Vs) changed only at pressures below 4 GPa, and then remained unchanged at {approx}4.0-6.8 GPa. These observations indicate a strong correlation between the intermediate range order variations and Vp or Poisson's ratio, but a complicated behavior for Vs. The result demonstrates a new capability of simultaneous measurement of structures and elastic wave velocities at high pressure and high temperature conditions to provide direct link between microscopic structure and macroscopic elastic properties of amorphous materials.

  14. Determining arterial wave transit time from a single aortic pressure pulse in rats: vascular impulse response analysis

    PubMed Central

    Chang, Ru-Wen; Chang, Chun-Yi; Lai, Liang-Chuan; Wu, Ming-Shiou; Young, Tai-Horng; Chen, Yih-Sharng; Wang, Chih-Hsien; Chang, Kuo-Chu

    2017-01-01

    Arterial wave transit time (τw) in the lower body circulation is an effective biomarker of cardiovascular risk that substantially affects systolic workload imposed on the heart. This study evaluated a method for determining τw from the vascular impulse response on the basis of the measured aortic pressure and an assumed triangular flow (Qtri). The base of the unknown Qtri was constructed with a duration set equal to ejection time. The timing of the peak triangle was derived using a fourth-order derivative of the pressure waveform. Values of τws obtained using Qtri were compared with those obtained from the measure aortic flow wave (Qm). Healthy rats (n = 27), rats with chronic kidney disease (CKD; n = 22), and rats with type 1 (n = 22) or type 2 (n = 11) diabetes were analyzed. The cardiovascular conditions in the CKD rats and both diabetic groups were characterized by a decrease in τws. The following significant relation was observed (P < 0.0001): τwtriQ = −1.5709 + 1.0604 × τwmQ (r2 = 0.9641). Our finding indicates that aortic impulse response can be an effective method for the estimation of arterial τw by using a single pressure recording together with the assumed Qtri. PMID:28102355

  15. Determining arterial wave transit time from a single aortic pressure pulse in rats: vascular impulse response analysis.

    PubMed

    Chang, Ru-Wen; Chang, Chun-Yi; Lai, Liang-Chuan; Wu, Ming-Shiou; Young, Tai-Horng; Chen, Yih-Sharng; Wang, Chih-Hsien; Chang, Kuo-Chu

    2017-01-19

    Arterial wave transit time (τw) in the lower body circulation is an effective biomarker of cardiovascular risk that substantially affects systolic workload imposed on the heart. This study evaluated a method for determining τw from the vascular impulse response on the basis of the measured aortic pressure and an assumed triangular flow (Q(tri)). The base of the unknown Q(tri) was constructed with a duration set equal to ejection time. The timing of the peak triangle was derived using a fourth-order derivative of the pressure waveform. Values of τws obtained using Q(tri) were compared with those obtained from the measure aortic flow wave (Q(m)). Healthy rats (n = 27), rats with chronic kidney disease (CKD; n = 22), and rats with type 1 (n = 22) or type 2 (n = 11) diabetes were analyzed. The cardiovascular conditions in the CKD rats and both diabetic groups were characterized by a decrease in τws. The following significant relation was observed (P < 0.0001): τw(triQ) = -1.5709 + 1.0604 × τw(mQ) (r(2) = 0.9641). Our finding indicates that aortic impulse response can be an effective method for the estimation of arterial τw by using a single pressure recording together with the assumed Q(tri).

  16. Space and time structure of helium pulsed surface-wave discharges at intermediate pressures (5-50 Torr)

    NASA Astrophysics Data System (ADS)

    Hamdan, Ahmad; Valade, Fabrice; Margot, Joëlle; Vidal, François; Matte, Jean-Pierre

    2017-01-01

    In this paper, the ignition and development of a plasma created by pulsed surface wave discharges (PSWDs) was experimentally investigated using time-resolved imaging techniques and optical spectroscopy in helium at intermediate gas pressures between 5 and 50 Torr. We found that the ionization front moves at a few km s-1 during the ignition phase and decreases to hundreds of m s-1 after only some tens of µs. Once the plasma has reached a sufficient length, a standing wave pattern is observed in the light emission of the discharge. We attribute its formation to the reflection of the surface wave on the ionization front, which results in a pattern of nodes and antinodes. We have also determined the time and space evolution of the gas temperature. It is shown that the gas temperature increases from the room temperature value to a plateau at several hundreds of degrees over a short time (typically 100 µs). These results supports those obtained by light emission imaging and also show that the standing wave pattern does not affect the gas temperature.

  17. Roles of positively charged heavy ions and degenerate plasma pressure on cylindrical and spherical ion acoustic solitary waves

    NASA Astrophysics Data System (ADS)

    Hossen, M. R.; Nahar, L.; Sultana, S.; Mamun, A. A.

    2014-09-01

    The properties of heavy-ion-acoustic (HIA) solitary structures associated with the nonlinear propagation of cylindrical and spherical electrostatic perturbations in an unmagnetized, collisionless dense plasma system has been investigated theoretically. Our considered model contains degenerate electron and inertial light ion fluids, and positively charged static heavy ions, which is valid for both of the non-relativistic and ultra-relativistic limits. The Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations have been derived by employing the reductive perturbation method, and numerically examined in order. It has been found that the effect of degenerate pressure and number density of electron and inertial light ion fluids, and positively charged static heavy ions significantly modify the basic features of HIA solitary waves. It is also noted that the inertial light ion fluid is the source of dispersion for HIA waves and is responsible for the formation of solitary waves. The basic features and the underlying physics of HIA solitary waves, which are relevant to some astrophysical compact objects, are briefly discussed.

  18. Fluctuations of wall pressure and heat transfer rate in the interacting regions of oblique shock waves and turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Aso, Shigeru; Hayashi, Masanori; Tan, Anzhong

    Fluctuations of wall pressure (WP) and heat transfer rate (HTR) have been measured in the regions of interaction between oblique incident shock waves and turbulent boundary layers. Experiments were made at a nominal Mach number of 4, and Reynolds number of 1.26 x 10 to the 7th (based on the distance from the leading edge of the flat plate), and under cold-wall conditions. When the boundary layer is unseparated, fluctuations of WP and HTR get strong near the impingement point of the incident shock wave, and no intermittency is observed. When the boundary layer is separated, significant fluctuations of WP and HTR are observed throughout the interaction region, particularly near the separation point and near the reattachment point. Near the separation point, remarkable intermittency is observed in the fluctuations of WP and HTR.

  19. Tracking Ocean Gravity Waves in Real-time: Highlights of Bottom Pressure Data Recorded on Ocean Networks Canada's NEPTUNE observatory

    NASA Astrophysics Data System (ADS)

    Heesemann, Martin; Mihaly, Steve; Gemmrich, Johannes; Davis, Earl; Thomson, Richard; Dewey, Richard

    2016-04-01

    Ocean Networks Canada operates two cabled ocean observatories off Vancouver Island on Canada's west coast. The regional NEPTUNE observatory spans the entire Juan de Fuca tectonic plate from the coast across the subduction zone to the hydrothermally active Endeavour Segment of the Juan de Fuca Ridge Segment while the VENUS observatory focuses on coastal processes. Both observatories collect data on physical, chemical, biological, and geological aspects of the ocean over long time periods, supporting research on complex earth processes. High-precision bottom pressure recorders (BPR) deployed on the NEPTUNE observatory are capable of detecting a wide range of phenomena related to sea level variations. The observatory BPRs provide observations of nano-resolution (with respect to full scale of the instrument) pressure variations which correspond to sub-millimeter scale surface water displacements in several kilometers of water. Detected signals include tides, tsunamis, infragravity waves, swell, wave-induced microseisms, storm surge, and seismic signals. Spectral analysis reveals many of these phenomena with periods ranging from a few seconds to many hours. Dispersion patterns from distant swells are prominent in the swell and microseism bands. By comparing the difference of arrival times between longer period waves, which arrive first, and shorter period waves we can estimate the distance the swells travelled since they were generated. Using this information, swell can be tracked back to specific storms across the Pacific. The presentation will high-light some examples of the mentioned phenomena in the continuous time-series that in some instances are more than seven years long.

  20. Dependencies of pore pressure on elastic wave velocities and Vp/Vs ratio for thermally cracked gabbro

    NASA Astrophysics Data System (ADS)

    Nishimura, K.; Uehara, S. I.; Mizoguchi, K.

    2015-12-01

    Marine seismic refraction have found that there are high Vp/Vs ratio regions in oceanic crusts at subducting oceanic plates (e.g, Cascadia subduction zone (2.0-2.8) (Audet et al., 2009)). Previous studies based on laboratory measurements indicated that Vp/Vs ratio is high when porosity and/or pore pressure is high (Christensen, 1984; Peacock et al., 2011). Although several studies have investigated the relationships between fracture distributions and Vp, Vs (e.g., Wang et al., 2012; Blake et al., 2013), the relationships for rocks (e.g., gabbro and basalt) composing oceanic crust are still unclear. This study reports the results of laboratory measurements of Vp, Vs (transmission method) at controlled confining and pore pressure and estimation of Vp/Vs ratio for thermally cracked gabbro which mimic highly fractured rocks in the high Vp/Vs ratio zone, in order to declare the dependence of fracture distributions on Vp/Vs. For the measurements, we prepared three type specimens; a non-heated intact specimen, specimens heated up to 500 °C and 700 °C for 24 hours. Porosities of intact, 500 °C and 700 °C specimens measured under the atmospheric pressure are 0.5, 3.4 and 3.5%, respectively. Measurements were conducted at a constant confining pressure of 50 MPa, with decreasing pore pressure from 49 to 0.1 MPa and then increasing to 49 MPa. While Vp/Vs for the intact specimen is almost constant at elevated pore pressure, the Vp/Vs values for the thermally cracked ones were 2.0~2.2 when pore pressure was larger than 30 MPa. In future, we will reveal the relationship between the measured elastic wave velocities and the characteristics of the microfracture distribution. This work was supported by JSPS Grant-in-Aid for Scientific Research (Grant Number 26400492).

  1. Investigations of High Pressure Acoustic Waves in Resonators with Seal-like Features

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher; Steinetz, Bruce; Finkbeiner, Joshua

    2003-01-01

    A conical resonator (having a dissonant acoustic design) was tested in four configurations: (1) baseline resonator with closed ends and no blockage, (2) closed resonator with internal blockage, (3) ventilated resonator with no blockage, and (4) ventilated resonator with an applied pressure differential. These tests were conducted to investigate the effects of blockage and ventilation holes on dynamic pressurization. Additionally, the investigation was to determine the ability of acoustic pressurization to impede flow through the resonator. In each of the configurations studied, the entire resonator was oscillated at the gas resonant frequency while dynamic pressure, static pressure, and temperature of the fluid were measured. In the final configuration, flow through the resonator was recorded for three oscillation conditions. Ambient condition air was used as the working fluid.

  2. PRESSURE TRANSDUCER RESEARCH.

    DTIC Science & Technology

    PIEZOELECTRIC TRANSDUCERS, PRESSURE), UNDERGROUND EXPLOSIONS, ELECTRICAL RESISTANCE, SEEBECK EFFECT , PRESSURE GAGES, SHOCK WAVES, STRESSES, COMPUTER PROGRAMMING, NUCLEAR EXPLOSIONS, NUCLEAR RADIATION.

  3. Study of atmospheric gravity waves and infrasonic sources using the USArray Transportable Array pressure data

    NASA Astrophysics Data System (ADS)

    Hedlin, Michael; de Groot-Hedlin, Catherine; Hoffmann, Lars; Alexander, M. Joan; Stephan, Claudia

    2016-04-01

    The upgrade of the USArray Transportable Array (TA) with microbarometers and infrasound microphones has created an opportunity for a broad range of new studies of atmospheric sources and the large- and small-scale atmospheric structure through which signals from these events propagate. These studies are akin to early studies of seismic events and the Earth's interior structure that were made possible by the first seismic networks. In one early study with the new dataset we use the method of de Groot-Hedlin and Hedlin (2015) to recast the TA as a massive collection of 3-element arrays to detect and locate large infrasonic events. Over 2,000 events have been detected in 2013. The events cluster in highly active regions on land and offshore. Stratospherically ducted signals from some of these events have been recorded more than 2,000 km from the source and clearly show dispersion due to propagation through atmospheric gravity waves. Modeling of these signals has been used to test statistical models of atmospheric gravity waves. The network is also useful for making direct observations of gravity waves. We are currently studying TA and satellite observations of gravity waves from singular events to better understand how the waves near ground level relate to those observed aloft. We are also studying the long-term statistics of these waves from the beginning of 2010 through 2014. Early work using data bandpass filtered from 1-6 hr shows that both the TA and satellite data reveal highly active source regions, such as near the Great Lakes. de Groot-Hedlin and Hedlin, 2015, A method for detecting and locating geophysical events using clusters of arrays, Geophysical Journal International, v203, p960-971, doi: 10.1093/gji/ggv345.

  4. Numerical survey of pressure wave propagation around and inside an underground cavity with high order FEM

    NASA Astrophysics Data System (ADS)

    Esterhazy, Sofi; Schneider, Felix; Schöberl, Joachim; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    The research on purely numerical methods for modeling seismic waves has been more and more intensified over last decades. This development is mainly driven by the fact that on the one hand for subsurface models of interest in exploration and global seismology exact analytic solutions do not exist, but, on the other hand, retrieving full seismic waveforms is important to get insides into spectral characteristics and for the interpretation of seismic phases and amplitudes. Furthermore, the computational potential has dramatically increased in the recent past such that it became worthwhile to perform computations for large-scale problems as those arising in the field of computational seismology. Algorithms based on the Finite Element Method (FEM) are becoming increasingly popular for the propagation of acoustic and elastic waves in geophysical models as they provide more geometrical flexibility in terms of complexity as well as heterogeneity of the materials. In particular, we want to demonstrate the benefit of high-order FEMs as they also provide a better control on the accuracy. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Further we are interested in the generation of synthetic seismograms including direct, refracted and converted waves in correlation to the presence of an underground cavity and the detailed simulation of the comprehensive wave field inside and around such a cavity that would have been created by a nuclear explosion. The motivation of this application comes from the need to find evidence of a nuclear test as they are forbidden by the Comprehensive Nuclear-Test Ban Treaty (CTBT). With this approach it is possible for us to investigate the wave field over a large bandwidth of wave numbers. This again will help to provide a better understanding on the characteristic signatures of an underground cavity, improve the protocols for

  5. Simultaneous disappearances of plasmaspheric hiss, exohiss, and chorus waves triggered by a sudden decrease in solar wind dynamic pressure

    NASA Astrophysics Data System (ADS)

    Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.; Funsten, H. O.; Wygant, J. R.

    2017-01-01

    Magnetospheric whistler mode waves are of great importance in the radiation belt electron dynamics. Here on the basis of the analysis of a rare event with the simultaneous disappearances of whistler mode plasmaspheric hiss, exohiss, and chorus triggered by a sudden decrease in the solar wind dynamic pressure, we provide evidences for the following physical scenarios: (1) nonlinear generation of chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss from chorus, and (3) leakage of plasmaspheric hiss into exohiss. Following the reduction of the solar wind dynamic pressure, the dayside geomagnetic field configuration with the enhanced inhomogeneity became unfavorable for the generation of chorus, and the quenching of chorus directly caused the disappearances of plasmaspheric hiss and then exohiss.

  6. Effects of bleed-hole geometry and plenum pressure on three-dimensional shock-wave/boundary-layer/bleed interactions

    NASA Technical Reports Server (NTRS)

    Chyu, Wei J.; Rimlinger, Mark J.; Shih, Tom I.-P.

    1993-01-01

    A numerical study was performed to investigate 3D shock-wave/boundary-layer interactions on a flat plate with bleed through one or more circular holes that vent into a plenum. This study was focused on how bleed-hole geometry and pressure ratio across bleed holes affect the bleed rate and the physics of the flow in the vicinity of the holes. The aspects of the bleed-hole geometry investigated include angle of bleed hole and the number of bleed holes. The plenum/freestream pressure ratios investigated range from 0.3 to 1.7. This study is based on the ensemble-averaged, 'full compressible' Navier-Stokes (N-S) equations closed by the Baldwin-Lomax algebraic turbulence model. Solutions to the ensemble-averaged N-S equations were obtained by an implicit finite-volume method using the partially-split, two-factored algorithm of Steger on an overlapping Chimera grid.

  7. Continuous-wave far-infrared ESR spectrometer for high-pressure measurements.

    PubMed

    Náfrádi, Bálint; Gaál, Richárd; Sienkiewicz, Andrzej; Fehér, Titusz; Forró, László

    2008-12-01

    We present a newly-developed microwave probe for performing sensitive high-field/multi-frequency electron spin resonance (ESR) measurements under high hydrostatic pressures. The system consists of a BeCu-made pressure-resistant vessel, which accommodates the investigated sample and a diamond microwave coupling window. The probe's interior is completely filled with a pressure-transmitting fluid. The setup operates in reflection mode and can easily be assembled with a standard oversized microwave circuitry. The probe-head withstands hydrostatic pressures up to 1.6 GPa and interfaces with our home-built quasi-optical high-field ESR facility, operating in a millimeter/submillimeter frequency range of 105-420 GHz and in magnetic fields up to 16 T. The overall performance of the probe was tested, while studying the pressure-induced changes in the spin-relaxation mechanisms of a quasi-1D conducting polymer, KC(60). The preliminary measurements revealed that the probe yields similar signal-to-noise ratio to that of commercially available low-frequency ESR spectrometers. Moreover, by observing the conduction electron spin resonance (CESR) linewidth broadening for KC(60) in an unprecedented microwave frequency range of 210-420 GHz and in the pressure range of up to 1.6 GPa, we demonstrate that a combination of high-pressure ESR probe and high-field/multi-frequency spectrometer allows us to measure the spin relaxation rates in conducting spin systems, like the quasi-1D conductor, KC(60).

  8. Measurements of blast waves from bursting frangible spheres pressurized with flash-evaporation vapor or liquid

    NASA Technical Reports Server (NTRS)

    Esparaza, E. D.; Baker, W. E.

    1977-01-01

    Incident overpressure data from frangible spheres pressurized with a flash-evaporating fluid in liquid and vapor form were obtained in laboratory experiments. Glass spheres under higher than ambient internal pressure of Freon-12 were purposely burst to obtain time histories of overpressure. Nondimensional peak pressures, arrival and duration times, and impulses are presented, and whenever possible plotted and compared with compiled data for Pentolite high-explosive. The data are generally quite repeatable and show differences from blast data produced by condensed high-explosives.

  9. Workbook for predicting pressure wave and fragment effects of exploding propellant tanks and gas storage vessels

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Kulesz, J. J.; Ricker, R. E.; Bessey, R. L.; Westine, P. S.; Parr, V. B.; Oldham, G. A.

    1975-01-01

    Technology needed to predict damage and hazards from explosions of propellant tanks and bursts of pressure vessels, both near and far from these explosions is introduced. Data are summarized in graphs, tables, and nomographs.

  10. Generation of ion-acoustic waves in an inductively coupled, low-pressure discharge lamp

    SciTech Connect

    Camparo, J. C.; Klimcak, C. M.

    2006-04-15

    For a number of years it has been known that the alkali rf-discharge lamps used in atomic clocks can exhibit large amplitude intensity oscillations. These oscillations arise from ion-acoustic plasma waves and have typically been associated with erratic clock behavior. Though large amplitude ion-acoustic plasma waves are clearly deleterious for atomic clock operation, it does not follow that small amplitude oscillations have no utility. Here, we demonstrate two easily implemented methods for generating small amplitude ion-acoustic plasma waves in alkali rf-discharge lamps. Furthermore, we demonstrate that the frequency of these waves is proportional to the square root of the rf power driving the lamp and therefore that their examination can provide an easily accessible parameter for monitoring and controlling the lamp's plasma conditions. This has important consequences for precise timekeeping, since the atomic ground-state hyperfine transition, which is the heart of the atomic clock signal, can be significantly perturbed by changes in the lamp's output via the ac-Stark shift.

  11. Nonlinear Acoustics in a Dispersive Continuum: Random Waves, Radiation Pressure, and Quantum Noise.

    DTIC Science & Technology

    1983-03-01

    Karpman , Nonlinear Waves in Dispersive Media, Pergamon Press, New York, 1975, p. 76. 26. R. Beyers, Nonlinear Acoustics, U.S. Government Printing...20301 U. S. Army Research nffice 2 copies Box 12211 Research Triangle Park tlorth Carolina 27709 Defense Technical Information Center 12 copies Cameron

  12. The Effect of CardioWaves Interval Training on Resting Blood Pressure, Resting Heart Rate, and Mind-Body Wellness

    PubMed Central

    NIELSON, CAMILLA M.; LOCKHART, BARBARA D.; HAGER, RONALD L.; GEORGE, JAMES D.; EGGETT, DENNIS L.; STEFFEN, PATRICK R.; MITCHELL, ULRIKE H.; BAILEY, BRUCE W.

    2016-01-01

    An experimental study to examine the effects of CardioWaves interval training (CWIT) and continuous training (CT) on resting blood pressure, resting heart rate, and mind-body wellness. Fifty-two normotensive (blood pressure <120/80 mmHg), pre-hypertensive (120–139/80–89 mmHg), and hypertensive (>140/90 mmHg) participants were randomly assigned and equally divided between the CWIT and CT groups. Both groups participated in the assigned exercise protocol 30 minutes per day, four days per week for eight weeks. Resting blood pressure, resting heart rate, and mind-body wellness were measured pre- and post-intervention. A total of 47 participants (15 females and 32 males) were included in the analysis. The CWIT group had a non-significant trend of reduced systolic blood pressure (SBP) and increased diastolic blood pressure (DBP) while the CT group had a statistically significant decrease in awake SBP (p = 0.01) and total SBP (p = 0.01) and a non-significant decrease in DBP. With both groups combined, the female participants had a statistically significant decrease in awake SBP (p = 0.002), asleep SBP (p = 0.01), total SBP (p = 0.003), awake DBP (p = 0.02), and total DBP (p = 0.05). The male participants had an increase in SBP and DBP with total DBP showing a statistically significant increase (p = 0.05). Neither group had a consistent change in resting heart rate. Both groups showed improved mind-body wellness. CWIT and CT reduced resting blood pressure, with CT having a greater effect. Resting heart rate did not change in either group. Additionally, both CWIT and CT improved mind-body wellness. PMID:27182421

  13. Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 2: Mechanisms for the pathogenesis of syringomyelia.

    PubMed

    Carpenter, P W; Berkouk, K; Lucey, A D

    2003-12-01

    Our aim in this paper is to use a simple theoretical model of the intraspinal cerebrospinal-fluid system to investigate mechanisms proposed for the pathogenesis of syringomyelia. The model is based on an inviscid theory for the propagation of pressure waves in co-axial, fluid-filled, elastic tubes. According to this model, the leading edge of a pressure pulse tends to steepen and form an elastic jump, as it propagates up the intraspinal cerebrospinal-fluid system. We show that when an elastic jump is incident on a stenosis of the spinal subarachnoid space, it reflects to form a transient, localized region of high pressure within the spinal cord that for a cough-induced pulse is estimated to be 50 to 70 mm Hg or more above the normal level in the spinal subarachnoid space. We propose this as a new mechanism whereby pressure pulses created by coughing or sneezing can generate syrinxes. We also use the same analysis to investigate Williams' suck mechanism. Our results do not support his concept, nor, in cases where the stenosis is severe, the differential-pressure-propagation mechanism recently proposed by Greitz et al. Our analysis does provide some support for the piston mechanism recently proposed by Oldfield et al. and Heiss et al. For instance, it shows clearly how the spinal cord is compressed by the formation of elastic jumps over part of the cardiac cycle. What appears to be absent for this piston mechanism is any means whereby the elastic jumps can be focused (e.g., by reflecting from a stenosis) to form a transient, localized region of high pressure within the spinal cord. Thus it would seem to offer a mechanism for syrinx progression, but not for its formation.

  14. The Effect of CardioWaves Interval Training on Resting Blood Pressure, Resting Heart Rate, and Mind-Body Wellness.

    PubMed

    Nielson, Camilla M; Lockhart, Barbara D; Hager, Ronald L; George, James D; Eggett, Dennis L; Steffen, Patrick R; Mitchell, Ulrike H; Bailey, Bruce W

    An experimental study to examine the effects of CardioWaves interval training (CWIT) and continuous training (CT) on resting blood pressure, resting heart rate, and mind-body wellness. Fifty-two normotensive (blood pressure <120/80 mmHg), pre-hypertensive (120-139/80-89 mmHg), and hypertensive (>140/90 mmHg) participants were randomly assigned and equally divided between the CWIT and CT groups. Both groups participated in the assigned exercise protocol 30 minutes per day, four days per week for eight weeks. Resting blood pressure, resting heart rate, and mind-body wellness were measured pre- and post-intervention. A total of 47 participants (15 females and 32 males) were included in the analysis. The CWIT group had a non-significant trend of reduced systolic blood pressure (SBP) and increased diastolic blood pressure (DBP) while the CT group had a statistically significant decrease in awake SBP (p = 0.01) and total SBP (p = 0.01) and a non-significant decrease in DBP. With both groups combined, the female participants had a statistically significant decrease in awake SBP (p = 0.002), asleep SBP (p = 0.01), total SBP (p = 0.003), awake DBP (p = 0.02), and total DBP (p = 0.05). The male participants had an increase in SBP and DBP with total DBP showing a statistically significant increase (p = 0.05). Neither group had a consistent change in resting heart rate. Both groups showed improved mind-body wellness. CWIT and CT reduced resting blood pressure, with CT having a greater effect. Resting heart rate did not change in either group. Additionally, both CWIT and CT improved mind-body wellness.

  15. Ultrahigh-pressure acoustic wave velocities of SiO2-Al2O3 glasses up to 200 GPa

    NASA Astrophysics Data System (ADS)

    Ohira, Itaru; Murakami, Motohiko; Kohara, Shinji; Ohara, Koji; Ohtani, Eiji

    2016-12-01

    Extensive experimental studies on the structure and density of silicate glasses as laboratory analogs of natural silicate melts have attempted to address the nature of dense silicate melts that may be present at the base of the mantle. Previous ultrahigh-pressure experiments, however, have been performed on simple systems such as SiO2 or MgSiO3, and experiments in more complex system have been conducted under relatively low-pressure conditions below 60 GPa. The effect of other metal cations on structural changes that occur in dense silicate glasses under ultrahigh pressures has been poorly understood. Here, we used a Brillouin scattering spectroscopic method up to pressures of 196.9 GPa to conduct in situ high-pressure acoustic wave velocity measurements of SiO2-Al2O3 glasses in order to understand the effect of Al2O3 on pressure-induced structural changes in the glasses as analogs of aluminosilicate melts. From 10 to 40 GPa, the transverse acoustic wave velocity ( V S ) of Al2O3-rich glass (SiO2 + 20.5 mol% Al2O3) was greater than that of Al2O3-poor glass (SiO2 + 3.9 mol% Al2O3). This result suggests that SiO2-Al2O3 glasses with higher proportions of Al ions with large oxygen coordination numbers (5 and 6) become elastically stiffer up to 40 GPa, depending on the Al2O3 content, but then soften above 40 GPa. At pressures from 40 to ~100 GPa, the increase in V S with increasing pressure became less steep than below 40 GPa. Above ~100 GPa, there were abrupt increases in the P-V S gradients ( dV S /dP) at 130 GPa in Al2O3-poor glass and at 116 GPa in Al2O3-rich glass. These changes resemble previous experimental results on SiO2 glass and MgSiO3 glass. Given that changes of dV S / dP have commonly been related to changes in the Si-O coordination states in the glasses, our results, therefore, may indicate a drastic structural transformation in SiO2-Al2O3 glasses above 116 GPa, possibly associated with an average Si-O coordination number change to higher than 6. Compared

  16. Dependence of P-wave dispersion on mean arterial pressure as an independent hemodynamic variable in school children

    PubMed Central

    González, Emilio F.; Llanes, María del Carmen; Llanes, Merlin Garí; García, Yosvany

    2013-01-01

    Introduction: The relationship between diastolic dysfunction and P-wave dispersion (PWD) in the electrocardiogram has been studied for some time. In this regard, echocardiography is emerging as a diagnostic tool to improve risk stratification for mild hypertension. Objective: To determine the dependence of PWD on the electrocardiogram and on echocardiographic variables in a pediatric population. Methods: 515 children from three elementary schools were studied from a total of 565 children. Those whose parents did not want them to take part in the study, as well as those with known congenital diseases, were excluded. Tests including 12-lead surface ECGs and 4 blood pressure (BP) measurements were performed. Maximum and minimum P-values were measured, and the PWD on the electrocardiogram was calculated. Echocardiography for structural measurements and the pulsed Doppler of mitral flow were also performed. Results: A significant correlation in statistical variables was found between PWD and mean BP for pre-hypertensive and hypertensive children, i.e., r = 0.32, p <0.01 and r = 0.33, p <0.01, respectively. There was a significant correlation found between PWD and the left atrial area (r = 0.45 and p <0.01). Conclusions: We highlight the dependency between PWD, the electrocardiogram and mean blood pressure. We also draw attention to the dependence of PWD on the duration of the mitral inflow A-wave. This result provides an explanation for earlier changes in atrial electrophysiological and hemodynamic characteristics in pediatric patients. PMID:24892616

  17. Model of a surface-wave discharge at atmospheric pressure with a fixed profile of the gas temperature

    NASA Astrophysics Data System (ADS)

    Nikovski, M.; Kiss'ovski, Zh; Tatarova, E.

    2016-03-01

    We present a 3D model of a surface-wave-sustained discharge at 2.45 GHz at atmospheric pressure. A small plasma source creates a plasma column in a dielectric tube and a plasma torch is observed above the top. The plasma parameters and the axial profile of the gas temperature are significantly changed in the presence of the substrate above the plasma torch. The Boltzmann equation for electrons under the local approximation is solved, together with the heavy particle balance equations at a fixed axial profile of the gas temperature. The model of this finite length plasma column includes also the dispersion relation of azimuthally-symmetric surface waves. A detailed collisional-radiative model is also implemented for argon discharge at atmospheric pressure, which includes 21 rate balance equations for excited Ar atoms [(Ar(1s5-1s2), Ar(2p10-2p1), Ar(2s3d), Ar(3p)], for positive Ar+ and Ar2 + ions and for excited molecules. The changes in the EEDF shape and the mean electron energy along the plasma column are investigated and the axial structures of the discharge and plasma parameters are obtained.

  18. Black Tea Lowers Blood Pressure and Wave Reflections in Fasted and Postprandial Conditions in Hypertensive Patients: A Randomised Study

    PubMed Central

    Grassi, Davide; Draijer, Richard; Desideri, Giovambattista; Mulder, Theo; Ferri, Claudio

    2015-01-01

    Hypertension and arterial stiffening are independent predictors of cardiovascular mortality. Flavonoids may exert some vascular protection. We investigated the effects of black tea on blood pressure (BP) and wave reflections before and after fat load in hypertensives. According to a randomized, double-blind, controlled, cross-over design, 19 patients were assigned to consume black tea (129 mg flavonoids) or placebo twice a day for eight days (13 day wash-out period). Digital volume pulse and BP were measured before and 1, 2, 3 and 4 h after tea consumption. Measurements were performed in a fasted state and after a fat load. Compared to placebo, reflection index and stiffness index decreased after tea consumption (p < 0.0001). Fat challenge increased wave reflection, which was counteracted by tea consumption (p < 0.0001). Black tea decreased systolic and diastolic BP (−3.2 mmHg, p < 0.005 and −2.6 mmHg, p < 0.0001; respectively) and prevented BP increase after a fat load (p < 0.0001). Black tea consumption lowers wave reflections and BP in the fasting state, and during the challenging haemodynamic conditions after a fat load in hypertensives. Considering lipemia-induced impairment of arterial function may occur frequently during the day, our findings suggest regular consumption of black tea may be relevant for cardiovascular protection. PMID:25658240

  19. Unusual properties of high-compliance porosity extracted from measurements of pressure-dependent wave velocities in rocks

    NASA Astrophysics Data System (ADS)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Pasternak, Elena; Dyskin, Arcady

    2016-04-01

    Conventionally the interpretation of wave velocities and their variations under load is conducted assuming that closable cracks have simple planar shapes, like the popular model of penny-shape cracks. For such cracks, the proportion between complementary variations in different elastic parameters of rocks (such as S- and P-wave velocities) is strictly pre-determined, in particular, it is independent of the crack aspect ratio and rather weakly dependent on the Poisson's ratio of the intact rock. Real rocks, however, contain multitude of cracks of different geometry. Faces of such cracks can exhibit complex modes of interaction when closed by external load, which may result in very different ratios between normal- and shear compliances of such defects. In order to describe the reduction of different elastic moduli, we propose a model in which the compliances of crack-like defects are explicitly decoupled and are not predetermined, so that the ratio q between total normal- and shear- compliances imparted to the rock mass (as well as individual values of these compliances) can be estimated from experimental data on reduction of different elastic moduli (e.g., pressure dependences of P- and S-wave velocities). Physically, the so-extracted ratio q can be interpreted as intrinsic property of individual crack-like defects similar to each other, or as a characteristic of proportion between concentrations of pure normal cracks with very large q and pure shear cracks with q→0. The latter case can correspond, e.g., to saturated cracks in which weakly-compressible liquid prevents crack closing under normal loading. It can be shown that for conventional dry planar cracks, the compliance ratio is q ˜2. The developed model applied to the data on wave-velocity variations with external pressure indicates that elastic properties of the real crack-like defects in rocks can differ considerably from the usually assumed ones. Comparison with experimental data on variations P- and S-wave

  20. Electron energy distribution functions in low-pressure oxygen plasma columns sustained by propagating surface waves

    SciTech Connect

    Stafford, L.; Margot, J.; Moisan, M.; Khare, R.; Donnelly, V. M.

    2009-01-12

    Electron energy distribution functions (EEDFs) were measured in a 50 mTorr oxygen plasma column sustained by propagating surface waves. Trace-rare-gas-optical-emission spectroscopy was used to derive EEDFs by selecting lines to extract ''electron temperature''(T{sub e}) corresponding to either lower energy electrons that excite high-lying levels through stepwise excitation via metastable states or higher energy electrons that excite emission directly from the ground state. Lower energy T{sub e}'s decreased from 8 to 5.5 eV with distance from the wave launcher, while T{sub e}{approx_equal}6 eV for higher energy electrons and T{sub e}>20 eV for a high-energy tail. Mechanisms for such EEDFs are discussed.

  1. Optimized Shapes of Ocsillating Resonators for Generating High-Amplitude Pressure Waves

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Finkbeiner, Joshua; Daniels, Christopher; Steinetz, Bruce M.

    2003-01-01

    It is well known that the resonator geometry strongly influences the resonant frequencies of an acoustical resonator and the generated nonlinear standing pressure waveform. Maximizing the ratio of maximum to minimum gas pressure at an end of an oscillating resonator by optimizing the cavity contour is investigated numerically. A quasi-Newton type scheme is used to find optimized axisymmetric resonator shapes to achieve the maximum pressure compression ratio. The acoustical field is solved using a one-dimensional model, and the resonance frequency shift and hysteresis effects are obtained through an automation scheme based on continuation methods. Results are presented from optimizing cone, horn-cone, and cosine resonator geometries. Significant performance improvement is found in the optimized shapes over others previously published. Different optimized shapes are found when starting with different initial guesses, indicating multiple local extrema. The numerical model is validated by comparing with the experimental results of a horn-cone shaped resonator.

  2. Experimental and numerical characterization of the sound pressure in standing wave acoustic levitators.

    PubMed

    Stindt, A; Andrade, M A B; Albrecht, M; Adamowski, J C; Panne, U; Riedel, J

    2014-01-01

    A novel method for predictions of the sound pressure distribution in acoustic levitators is based on a matrix representation of the Rayleigh integral. This method allows for a fast calculation of the acoustic field within the resonator. To make sure that the underlying assumptions and simplifications are justified, this approach was tested by a direct comparison to experimental data. The experimental sound pressure distributions were recorded by high spatially resolved frequency selective microphone scanning. To emphasize the general applicability of the two approaches, the comparative studies were conducted for four different resonator geometries. In all cases, the results show an excellent agreement, demonstrating the accuracy of the matrix method.

  3. Abnormal intra-aural pressure waves associated with death in African children with acute nontraumatic coma

    PubMed Central

    Gwer, Samson; Kazungu, Michael; Chengo, Eddie; Ohuma, Eric O.; Idro, Richard; Birch, Tony; Marchbanks, Robert; Kirkham, Fenella J.; Newton, Charles R.

    2015-01-01

    Background: We explored the relationship between tympanic membrane displacement (TMD) measurements, a tool to monitor intracranial pressure noninvasively, and clinical features and death in children with acute coma in Kilifi, Kenya. Methods: Between November 2007 and September 2009, we made serial TMD measurements and clinical observations on children with acute coma (Blantyre coma score (BCS) ≤ 2) on the pediatric high dependency unit of Kilifi District Hospital, and on well children presenting to the hospital's outpatient department for routine follow-up. We examined middle ear function using tympanometry and measured cardiac pulse (CPA) and respiratory pulse pressure amplitudes (RPA) using the TMD analyzer. Results: We recruited 75 children (32 (43%) females; median age 3.3 (IQR: 2.0, 4.3) years). Twenty-one (28%) children died. Higher TMD measurements predicted death. Adjusting for diagnosis, every 50 nl rise in both semirecumbent and recumbent CPA was associated with increased odds of death associated with intracranial herniation (OR: 1.61, 95% confidence interval (CI): 1.07, 2.41; P = 0.02 and OR: 1.35, 95% CI: 1.10, 1.66; P ≤ 0.01 respectively). Conclusion: Raised TMD pulse pressure measurements are associated with death and may be useful in detecting and monitoring risk of intracranial herniation and intracranial pressure in childhood coma. PMID:25790276

  4. Methane oxidation behind reflected shock waves: Ignition delay times measured by pressure and flame band emission

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Robertson, T. F.

    1986-01-01

    Ignition delay data were recorded for three methane-oxygen-argon mixtures (phi = 0.5, 1.0, 2.0) for the temperature range 1500 to 1920 K. Quiet pressure trances enabled us to obtain delay times for the start of the experimental pressure rise. These times were in good agreement with those obtained from the flame band emission at 3700 A. The data correlated well with the oxygen and methane dependence of Lifshitz, but showed a much stronger temperature dependence (phi = 0.5 delta E = 51.9, phi = 1.0 delta = 58.8, phi = 2.0 delta E = 58.7 Kcal). The effect of probe location on the delay time measurement was studied. It appears that the probe located 83 mm from the reflecting surface measured delay times which may not be related to the initial temperature and pressure. It was estimated that for a probe located 7 mm from the reflecting surface, the measured delay time would be about 10 microseconds too short, and it was suggested that delay times less than 100 microsecond should not be used. The ignition period was defined as the time interval between start of the experimental pressure rise and 50 percent of the ignition pressure. This time interval was measured for three gas mixtures and found to be similar (40 to 60 micro sec) for phi = 1.0 and 0.5 but much longer (100 to 120) microsecond for phi = 2.0. It was suggested that the ignition period would be very useful to the kinetic modeler in judging the agreement between experimental and calculated delay times.

  5. On the Stability of Wave Disturbances in Non-Pressure Round-Cylindrical Channels

    NASA Astrophysics Data System (ADS)

    Gagoshidze, Shalva

    2015-04-01

    In hydraulic engineering practice, is well know of and take into account the fact that for a nearly fully filled gravity-flow tunnel with a circular cross section the water flows with shocks, i.e. unstable. Such a phenomenon also occurs when emptying a bottle, but no mathematical confirmation has so far been found for it. In the paper, the estimate of the flow stability is obtained for two limiting cases: - when the channel of circular cross-section is nearly fully filled with water and when it is nearly empty, i.e. the water flow in the channel has a small depth as compared with the radius of the water conduit. Wave equations written in a cylindrical system of coordinates x,r,θ where the x- axis coincides with the axis of the channel; r is the radius vector, θ is the angle counted off from the equatorial plane of the channel upward (with sign "+') and downward (with sign "-') are simplified by neglecting the change of the polar angle (π 2 -θ)in limit of a small width of the free surface of the flow. As a result of this simplification the Helmholtz equation for the wave potential reduces to a Bessel equation with respect to the function ψ(r) not depending on the angle θ and its asymptotic solution will be expressed by the relation ° -- R0 ψ(r) = C -r-cosh k(R0 - r). (1) Dispersion relations will take the form σ = kU0 ± i°gk-tanh-k(R0--h) (2) - for channels with nearly full filling, and ° -------- σ = kU0 ± gktanhk(R0 - h) (3) - for round-cylindrical channels with a small water depth. In these relations, R0 is the radius of the channel, U0 is the stationary water flow velocity, i is the imaginary unit, h is the distance between the horizontal axis and the water level in the channel, σ is the wave disturbance frequency, k is the wave number, C is an arbitrary constant. In the first case, the relation (2) indicates the occurrence of Helmholtz instability of wave disturbances independently of a velocity value of stationary water flow. This result fully

  6. Pyroxenes and olivines: Structural implications of shock-wave data for high pressure phases

    NASA Technical Reports Server (NTRS)

    Jeanloz, R.; Ahrens, T. J.

    1975-01-01

    The nature of the shock-induced, high-pressure phases of olivine and pyroxene rocks is examined in the light of data for the densities of a new class of perovskite-related silicate structures. Also examined are some new Hugoniot and release adiabat data for bronzite. Reexamining available shock data for magnesian pyroxenes and olivines leads to the conclusion that they define a mixed phase (or disequilibrium) region to about the 100 GPa range, related to the kinetics of phase transformation in these silicates. By recognizing this point, certain discrepancies in previous interpretations of shock data can be explained. A set of theoretical Hugonoits for pyroxene and olivine stoichiometry, perovskite-bearing assemblages was constructed based on their properties deduced from high-pressure work, showing that the shock data is compatible with transformations to perovskites in the 45-7GPa region. Finally, the shock data indicate very similar properties for olivine and pyroxene at high pressures making them both equally likely candidates for the lower mantle.

  7. Diagnostic study of four-wave-mixing-based electric-field measurements in high-pressure nitrogen plasmas.

    PubMed

    Lempert, Walter R; Kearney, Sean P; Barnat, Edward V

    2011-10-10

    We present the results of a diagnostic study of the use of coherent four wave mixing for in situ measurement of an electric field in air or in nitrogen-containing plasmas. Static electric fields in air at a nominal pressure of 625 Torr and temperature of 300 K are detected using vibrational CARS of nitrogen. It is shown that the ratio of the infrared signal to the vibrational N(2) CARS signal is equal to approximately 10(-8) at 8.33 kV/cm, a factor of approximately 50 less than that predicted assuming equal third-order nonlinear susceptibilities. It is also shown that the spatial resolution of a typical collinear geometry measurement is approximately 1 cm. Finally, it is shown that achieving sensitivities of the order of 1 kV/cm requires that the coherent Raman pumping be performed in the highly saturated and Stark broadened regime.

  8. Experimental study of propagation characteristics of a pulse-modulated surface-wave argon plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Jie; Li, Shou-Zhe; Wu, Yue; Li, Zhen-Ye; Zhang, Jialiang; Wang, Yong-Xing

    2016-12-01

    An atmospheric-pressure, pulse-modulated surface wave argon plasma is investigated with respect to its propagation of the ionization front. The time-resolved photographs about the advance of the ionization front are taken using a high speed camera. The ionization front velocity and its rise time when propagating along the discharge tube are measured with respect to a series of values of input power, duty ratio, and the pulse repetition frequency. The interpretations are given on the basis of the ionization and diffusion processes. And it is also found that the reduced electric field and memory effect from previous discharge impose the influence on both the ionization front velocity and its rise time strongly.

  9. Measurement of high-pressure shock waves in cryogenic deuterium-tritium ice layered capsule implosions on NIF.

    PubMed

    Robey, H F; Moody, J D; Celliers, P M; Ross, J S; Ralph, J; Le Pape, S; Berzak Hopkins, L; Parham, T; Sater, J; Mapoles, E R; Holunga, D M; Walters, C F; Haid, B J; Kozioziemski, B J; Dylla-Spears, R J; Krauter, K G; Frieders, G; Ross, G; Bowers, M W; Strozzi, D J; Yoxall, B E; Hamza, A V; Dzenitis, B; Bhandarkar, S D; Young, B; Van Wonterghem, B M; Atherton, L J; Landen, O L; Edwards, M J; Boehly, T R

    2013-08-09

    The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique.

  10. A boundary integral approach to analyze the viscous scattering of a pressure wave by a rigid body

    PubMed Central

    Homentcovschi, Dorel; Miles, Ronald N.

    2008-01-01

    The paper provides boundary integral equations for solving the problem of viscous scattering of a pressure wave by a rigid body. By using this mathematical tool uniqueness and existence theorems are proved. Since the boundary conditions are written in terms of velocities, vector boundary integral equations are obtained for solving the problem. The paper introduces single-layer viscous potentials and also a stress tensor. Correspondingly, a viscous double-layer potential is defined. The properties of all these potentials are investigated. By representing the scattered field as a combination of a single-layer viscous potential and a double-layer viscous potential the problem is reduced to the solution of a singular vectorial integral equation of Fredholm type of the second kind. In the case where the stress vector on the boundary is the main quantity of interest the corresponding boundary singular integral equation is proved to have a unique solution. PMID:18709178

  11. Surface Acoustic Wave Based Pressure Sensor with Ground Shielding over Cavity on 41° YX LiNbO3

    NASA Astrophysics Data System (ADS)

    Lee, Keekeun; Wang, Wen; Kim, Geunyoung; Yang, Sangsik

    2006-07-01

    A surface acoustic wave (SAW)-based pressure sensor was fabricated for stable mechanical compression force measurement. A single phase unidirectional transducer (SPUDT) and two acoustic tracks were employed to minimize inherent insertion loss and improve reflectivity from the reflectors. The coupling of modes (COM) theory and finite element methods (FEMs) were used to determine optimal design parameters. A LiNbO3 diaphragm was bonded to a heavily doped silicon substrate with a cavity of ˜250 μm deep, in which gold was lined all over the inner cavity to reduce the coupling loss of SAW energy to the surrounding atmosphere. As a mechanical compression force was applied to the diaphragm, the diaphragm bent, resulting in phase shifts of the reflected peaks. The phase shifts were modulated depending on the amount of mechanical compression applied. The measured reflection coefficient S11 showed good agreement with simulated results.

  12. Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma

    SciTech Connect

    Stranak, Vitezslav; Herrendorf, Ann-Pierra; Drache, Steffen; Bogdanowicz, Robert; Hippler, Rainer; Cada, Martin; Hubicka, Zdenek; Tichy, Milan

    2012-11-01

    This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a high concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.

  13. Measurement of High-Pressure Shock Waves in Cryogenic Deuterium-Tritium Ice Layered Capsule Implosions on NIF

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Moody, J. D.; Celliers, P. M.; Ross, J. S.; Ralph, J.; Le Pape, S.; Berzak Hopkins, L.; Parham, T.; Sater, J.; Mapoles, E. R.; Holunga, D. M.; Walters, C. F.; Haid, B. J.; Kozioziemski, B. J.; Dylla-Spears, R. J.; Krauter, K. G.; Frieders, G.; Ross, G.; Bowers, M. W.; Strozzi, D. J.; Yoxall, B. E.; Hamza, A. V.; Dzenitis, B.; Bhandarkar, S. D.; Young, B.; Van Wonterghem, B. M.; Atherton, L. J.; Landen, O. L.; Edwards, M. J.; Boehly, T. R.

    2013-08-01

    The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique.

  14. Influence of viscosity on the scattering of an air pressure wave by a rigid body: a regular boundary integral formulation

    PubMed Central

    Homentcovschi, Dorel

    2008-01-01

    This paper gives a regular vector boundary integral equation for solving the problem of viscous scattering of a pressure wave by a rigid body. Firstly, single-layer viscous potentials and a generalized stress tensor are introduced. Correspondingly, generalized viscous double-layer potentials are defined. By representing the scattered field as a combination of a single-layer viscous potential and a generalized viscous double-layer potential, the problem is reduced to the solution of a vectorial Fredholm integral equation of the second kind. Generally, the vector integral equation is singular. However, there is a particular stress tensor, called pseudostress, which yields a regular integral equation. In this case, the Fredholm alternative applies and permits a direct proof of the existence and uniqueness of the solution. The results presented here provide the foundation for a numerical solution procedure. PMID:19865494

  15. Using the pressure transmission coefficient of a transmitted wave to evaluate some of the mechanical properties of refractory metals.

    PubMed

    Mohammed, Arshed Abdulhamed; Haris, Sallehuddin Mohamed; Nuawi, Mohd Zaki

    2015-01-01

    Refractory metals have attracted increasing interest in recent years because of their use in many high-temperature applications. However, the characteristics of these metals calculated using loaded tests (such as tensile strength tests) differ considerably from those calculated using one of the most famous methods in NDT which is called time of flying of the wave (TOF).The present study presents two solutions based on calculating the pressure transmission coefficient (PTC) of the transmitted wave between the test sample and magnesium metal. The first is based on the development of a highly accurate algorithm that lowers the cost by determining the acoustic impedance of the test specimen to calculating mechanical properties. Up to 26 theoretical tests were done (10 of these tests for refractory materials) according to their known mechanical properties to verify the accuracy of the algorithm. The convergence in results ranged from 92% to 99%. The second solution was designed to solve the same problem for specimens with a thickness of less than 1mm. Eight experimental tests were done (five using refractory materials) to verify the accuracy of the second solution, with the convergence in the results ranging from 94% to 97%. The relationships of the Vrms measured from the oscilloscope with the PTC and with the Fourier transform spectrum were derived. The results of this research were closer to the standard mechanical properties for refractory metals compared with several recent acoustic tests.

  16. Multidimensional Hall magnetohydrodynamics with isotropic or anisotropic thermal pressure: Numerical scheme and its validation using solitary waves

    NASA Astrophysics Data System (ADS)

    Strumik, Marek; Stasiewicz, Krzysztof

    2017-02-01

    We present a numerical solver for plasma dynamics simulations in Hall magnetohydrodynamic (HMHD) approximation in one, two and three dimensions. We consider both isotropic and anisotropic thermal pressure cases, where a general gyrotropic approximation is used. Both explicit energy conservation equation and general polytropic state equations are considered. The numerical scheme incorporates second-order Runge-Kutta advancing in time and Kurganov-Tadmor scheme with van Leer flux limiter for the approximation of fluxes. A flux-interpolated constrained-transport approach is used to preserve solenoidal magnetic field in the simulations. The implemented code is validated using several test problems previously described in the literature. Additionally, we propose a new validation method for HMHD codes based on solitary waves that provides a possibility of quantitative rigorous testing in nonlinear (large amplitude) regime as an extension to standard tests using small-amplitude whistler waves. Quantitative tests of accuracy and performance of the implemented code show the fidelity of the proposed approach.

  17. Two-wave photon Doppler velocimetry measurements in direct impact Hopkinson pressure bar experiments

    NASA Astrophysics Data System (ADS)

    Lea, Lewis J.; Jardine, Andrew P.

    2015-09-01

    Direct impact Hopkinson pressure bar systems offer many potential advantages over split Hopkinson pressure bars, including access to higher strain rates, higher strains for equivalent striker velocity and system length, lower dispersion and faster achievement of force equilibrium. Currently advantages are gained at a significant cost: the fact that input bar data is unavailable removes all information about the striker impacted specimen face, preventing the determination of force equilibrium, and requiring approximations to be made on the sample deformation history. Recently photon Doppler velocimetry methods have been developed, which can replace strain gauges on Hopkinson bars. In this paper we discuss an experimental method and complementary data analysis for using Doppler velocimetry to measure surface velocities of the striker and output bars in a direct impact bar experiment, allowing similar data to be recorded as in a split bar system, with the same level of convenience. We discuss extracting velocity and force measurements, and improving the accuracy and convenience of Doppler velocimetry on Hopkinson bars. Results obtained using the technique are compared to equivalent split bar tests, showing improved stress measurements for the lowest and highest strains.

  18. Shock-wave properties and high-pressure equations of state of geophysically important materials. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.

    1983-01-01

    Shock wave (Hugoniot), shock temperature, and release data are presented for several geophysically important, refractory materials. A sensitive multichannel optical pyrometer was developed to measure shock temperatures (2500 to 5600 K at pressures from 48 to 117 GPa) in anorthite (CaAl2Si2O8) glass. Shock temperatures of 3750 to 6000 K at pressures from 140 to 182 GPa were measured in calcium oxide (CaO). Temperature data were used to constrain the energetics of the B1-B2 phase transition at 70 GPa in CaO, and to construct a finite strain equation of state for CaO consistent with previous Hugoniot data. The CaO equation of state was used with equation of state parameters of other oxides to construct a theoretical mixed oxide Hugoniot of anorthite, which is in agreement with new Hugoniot data above about 50 GPa, determined using experimental techniques developed. The mixed oxide model, however, overestimates the shock temperatures, and does not accurately predict measured release paths.

  19. High-pressure ultrasonic study of the commensurate-incommensurate spin-density-wave transition in an antiferromagnetic Cr-0.3 at. % Ru alloy single crystal

    NASA Astrophysics Data System (ADS)

    Cankurtaran, M.; Saunders, G. A.; Wang, Q.; Ford, P. J.; Alberts, H. L.

    1992-12-01

    A comprehensive experimental study has been made of the elastic and nonlinear acoustic behavior of a dilute Cr alloy as it undergoes a commensurate (C)-incommensurate (I) spin-density-wave transition. Simultaneous measurements of the temperature dependence of ultrasonic wave velocity and attenuation of longitudinal and shear 10-MHz ultrasonic waves propagated along both the [100] and the [110] direction of Cr-0.3 at. % Ru alloy single crystal have been made in the temperature range 200-300 K. The temperature dependence of ultrasonic attenuation for each mode is characterized by a spikelike peak centered at TCI (=238.6 K) (on cooling) and at TIC (=255.6 K) (on warming). The velocities of both longitudinal and shear ultrasonic waves exhibit a large and steep increase at TCI on cooling and a similar drop at TIC on warming with a pronounced hysteresis between TIC and TCI. These observations show that the transition between the commensurate and incommensurate phases is first order. Measurements of the effects of hydrostatic pressure (up to 0.15 GPa) on the velocities of ultrasonic waves, which were made at several fixed temperatures between 248 and 297 K, show similar features: a steep increase at PCI (increasing pressure) and a similar drop at PIC (decreasing pressure) with a well-defined hysteresis. Both TCI and TIC increase strongly and approximately linearly with pressure, the mean values of dTCI/dP and dTIC/dP being (333+/-3) K/GPa and (277+/-5) K/GPa, respectively. The pressure and temperature dependencies of the anomalies in the ultrasonic wave velocity have been used to locate both the C-I and I-C boundaries on the magnetic P-T phase diagram. There is a triple point (at about 315 K and 0.22 GPa) where the paramagnetic, commensurate, and incommensurate spin-density-wave phases coexist. Results for the complete sets of the elastic stiffness tensor components and their hydrostatic pressure derivatives have been used to evaluate the acoustic-mode Gr

  20. Harvey with a modern twist: how and why conducting arteries amplify the pressure wave originating from the heart.

    PubMed

    Schaafsma, A

    2014-05-01

    Current views on cardiovascular physiology differ little from that published by William Harvey in 1628: the heart delivers all energy for blood circulation, forcing its contents into the aorta, via arteries, arterioles and capillaries into the venous system that collects the blood and returns it to the right side of the heart. Similarly, blood from the right side passes through pulmonary arteries and arterioles to pulmonary veins before returning to the left side of the heart. However, from aorta to capillaries there is a great increase in overall cross-sectional area. The arterial system can be seen as a funnel, the heart pumping blood into its narrow end. Theoretically, this implies that pulsatile energy delivered by the heart dilutes significantly along its way through the arterial tree. Also, unfavorable tissue conditions, such as elevated pressure, impede proper perfusion when blood can pass just as easy through adjacent capillary systems. Finally, blood will experience more resistance to flow for capillary systems more distant to the heart due to its longer trajectory. This implies that capillary systems closer to the heart are more easily perfused than more distant ones. In reality, the pulse from the heart has been shown to increase and accelerate towards periphery. This, together with transcranial Doppler observations on the variation in wave morphology in intracranial arteries, for instance during CO2-reactivity testing and during cardiac arrhythmia, has led to the theory of arterial acceleration: at stroke onset, the arterial pressure wave resulting from myocardial contraction is enhanced by a short-lasting and well-synchronised contraction within the smooth muscle layers of conducting arteries. This results in a temporary 'stiffening' of the arterial tree by which cardiac pressure during early systole is amplified and distributed into all the body's capillary systems. This theory would overcome all theoretical and observational concerns sketched above

  1. Theoretical study of turbulent channel flow: Bulk properties, pressure fluctuations, and propagation of electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Hartke, G. J.; Battaglia, A.; Chasnov, J.; Albrecht, G. F.

    1988-01-01

    In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr--Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O--S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend stongly on the structure of the turbulence spectrun at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel.

  2. Theoretical study of turbulent channel flow - Bulk properties, pressure fluctuations, and propagation of electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Hartke, G. J.; Battaglia, A.; Chasnov, J.; Albrecht, G. F.

    1990-01-01

    In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr-Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O-S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend strongly on the structure of the turbulence spectrum at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel.

  3. Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock wave interference. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    1989-01-01

    The effects of cylindrical leading edge sweep on surface pressure and heat transfer rate for swept shock wave interference were investigated. Experimental tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel at a nominal Mach number of 8, nominal unit Reynolds number of 1.5 x 10 to the 6th power per foot, leading edge and incident shock generator sweep angles of 0, 15, and 30 deg, and incident shock generator angle-of-attack fixed at 12.5 deg. Detailed surface pressure and heat transfer rate on the cylindircal leading edge of a swept shock wave interference model were measured at the region of the maximum surface pressure and heat transfer rate. Results show that pressure and heat transfer rate on the cylindrical leading edge of the shock wave interference model were reduced as the sweep was increased over the range of tested parameters. Peak surface pressure and heat transfer rate on the cylinder were about 10 and 30 times the undisturbed flow stagnation point value, respectively, for the 0 deg sweep test. A comparison of the 15 and 30 deg swept results with the 0 deg swept results showed that peak pressure was reduced about 13 percent and 44 percent, respectively, and peak heat transfer rate was reduced about 7 percent and 27 percent, respectively.

  4. New investigations on shock-wave synthesized high-pressure phases in the system Si-Al-O-N

    NASA Astrophysics Data System (ADS)

    Schlothauer, T.; Greif, A.; Keller, K.; Schwarz, M. R.; Kroke, E.; Heide, G.

    2012-12-01

    The shock-wave synthesis of nanostructured high-pressure phases at a gram-scale permits the analysis of spinel type nitrides with different chemical composition using methods not suitable for microgram amounts of material. Methods with a significant mass loss through the analytical process like TG-MS or FT-IR or bulk methods at the g-scale like 29Si-MAS-NMR or neutron diffraction were used. The synthesis of pure high-pressure modifications (gamma-phases) of different SiAlON-compounds using amorphous H-bearing precursors at pressures of 30-40 GPa is a necessary prerequisite for precise determinations of crystal chemical features. Etching with HF is a well-known method to purify the high-pressure nitrides (Sekine 2002). The etched parts were analyzed by neutron diffraction, TG-MS, and carrier gas hot extraction (CGHE). Volatile elements like H2 and Cl2, as well as non-stoichiometric oxygen and nitrogen, and NOx, H2O are enriched in the disordered rims. This degassing process ends at temperatures of approximately 600°C, while the spinel structure remains well preserved up to 1300°C. Under these conditions the gamma-phases stay unchanged under air, argon and vacuum. Furthermore chlorine, an important impurity of the H-bearing precursors neither influences the synthesized products nor the synthesis process itself. IR-spectroscopy of gamma-Si3(O,N)4 shows that peak shifts of octahedral lattice vibrations (≈ 680 cm-1) and both tetrahedral vibrations (ny3 and ny4) (Jeanloz 1980, Preudhomme & Tarte 1971) to higher frequencies with decreasing oxygen content occur. This effect is also visible in samples contaminated with impurities of low pressure modifications. The more complex structure of gamma-SiAlON and the simultaneously exchange of the cation- and the anion-positions prevents the appearance of this important feature. Yet to be synthesized pure gamma-SiAlON using similar H-bearing precursors is necessary to resolve its structure. Sekine, T., H. He, T. Kobayashi, K

  5. Vibration and acoustic properties of honeycomb sandwich structures subject to variable incident plane-wave angle pressure loads

    NASA Astrophysics Data System (ADS)

    Yan, Jiaxue

    Honeycomb structures are widely used in many areas for their material characteristics such as high strength-to-weight ratio, stiffness-to-weight, sound transmission, and other properties. Honeycomb structures are generally constructed from periodically spaced tessellations of unit cells. It can be shown that the effective stiffness and mass properties of honeycomb are controlled by the local geometry and wall thickness of the particular unit cells used. Of particular interest are regular hexagonal (6-sided) honeycomb unit cell geometries which exhibit positive effective Poisson's ratio, and modified 6-sided auxetic honeycomb unit cells with Poisson's ratio which is effectively negative; a property not found in natural materials. One important honeycomb meta-structure is sandwich composites designed with a honeycomb core bonded between two panel layers. By changing the geometry of the repetitive unit cell, and overall depth and material properties of the honeycomb core, sandwich panels with different vibration and acoustic properties can be designed to shift resonant frequencies and improve intensity and Sound Transmission Loss (STL). In the present work, a honeycomb finite element model based on beam elements is programmed in MATLAB and verified with the commercial finite element software ABAQUS for frequency extraction and direct frequency response analysis. The MATLAB program was used to study the vibration and acoustic properties of different kinds of honeycomb sandwich panels undergoing in-plane loading with different incident pressure wave angles and frequency. Results for the root mean square intensity IRMS based on normal velocity on the transmitted side of the panel measure vibration magnitude are reported for frequencies between 0 and 1000 Hz. The relationship between the sound transmission loss computed with ABAQUS and the inverse of the intensity of surface velocity is established. In the present work it is demonstrated that the general trend between the

  6. Steady normal shock wave solution tables of parahydrogen for total temperatures from 30 K to 290 K and for total pressure from 1 ATM to 10 ATM

    NASA Technical Reports Server (NTRS)

    Haut, R. C.; Adcock, J. B.

    1976-01-01

    The steady normal shock wave solutions of parahydrogen at various total pressures and total temperatures were numerically determined by iterating the upstream Mach number and by using a modified interval halving technique. The results obtained are compared with the ideal diatomic gas values and are presented in tabulated form.

  7. Effect of positive end-expiratory pressure on acoustic wave propagation in experimental porcine lung injury.

    PubMed

    Räsänen, Jukka; Nemergut, Michael E; Gavriely, Noam

    2015-03-01

    To evaluate the effect of positive end-expiratory pressure (PEEP) on sound propagation through injured lungs, we injected a multifrequency broad-band sound signal into the airway of eight anesthetized, intubated and mechanically ventilated pigs, while recording transmitted sound at three locations bilaterally on the chest wall. Oleic acid injections effected a severe pulmonary oedema predominately in the dependent lung regions, with an average increase in venous admixture from 19 ± 15 to 59 ± 14% (P < 0.001), and a reduction in dynamic respiratory system compliance from 34 ± 7 to 14 ± 4 ml cmH2 O(-1) (P < 0.001). A concomitant decrease in sound transit time was seen in the dependent lung regions (P < 0.05); no statistically significant change occurred in the lateral or non-dependent areas. The application of PEEP resulted in a decrease in venous admixture, increase in respiratory system compliance and return of the sound transit time to pre-injury levels in the dependent lung regions. Our results indicate that sound transmission velocity increases in lung tissue affected by permeability-type pulmonary oedema in a manner reversible during alveolar recruitment with PEEP.

  8. Childhood Obesity Associates Haemodynamic and Vascular Changes That Result in Increased Central Aortic Pressure with Augmented Incident and Reflected Wave Components, without Changes in Peripheral Amplification

    PubMed Central

    Castro, Juan M.; García-Espinosa, Victoria; Curcio, Santiago; Arana, Maite; Chiesa, Pedro; Giachetto, Gustavo; Zócalo, Yanina; Bia, Daniel

    2016-01-01

    The aims were to determine if childhood obesity is associated with increased central aortic blood pressure (BP) and to characterize haemodynamic and vascular changes associated with BP changes in obese children and adolescents by means of analyzing changes in cardiac output (stroke volume, SV), arterial stiffness (aortic pulse wave velocity, PWV), peripheral vascular resistances (PVR), and net and relative contributions of reflected waves to the aortic pulse wave amplitude. We included 117 subjects (mean/range age: 10 (5–15) years, 49 females), who were obese (OB) or had normal weight (NW). Peripheral and central aortic BP, PWV, and pulse wave-derived parameters (augmentation index, amplitude of forward and backward components) were measured with tonometry (SphygmoCor) and oscillometry (Mobil-O-Graph). With independence of the presence of dyslipidemia, hypertension, or sedentarism, the aortic systolic and pulse BP were higher in OB than in NW subjects. The increase in central BP could not be explained by the elevation in the relative contribution of reflections to the aortic pressure wave and higher PVR or by an augmented peripheral reflection coefficient. Instead, the rise in central BP could be explained by an increase in the amplitude of both incident and reflect wave components associated to augmented SV and/or PWV. PMID:26881081

  9. The association of 25(OH)D with blood pressure, pulse pressure and carotid-radial pulse wave velocity in African women.

    PubMed

    Kruger, Iolanthé M; Kruger, Marlena C; Doak, Colleen M; Schutte, Aletta E; Huisman, Hugo W; Van Rooyen, Johannes M; Schutte, Rudolph; Malan, Leoné; Malan, Nicolaas T; Fourie, Carla M T; Kruger, Annamarie

    2013-01-01

    High susceptibility of the African population to develop cardiovascular disease obliges us to investigate possible contributing risk factors. Our aim was to determine whether low 25(OH)D status is associated with increased blood pressure and carotid-radial pulse wave velocity in black South African women. We studied 291 urban women (mean age: 57.56±9.00 yrs.). 25(OH)D status was determined by serum 25(OH)D levels. Women were stratified into sufficient (>30 ng/ml), and insufficient/deficient (<30 ng/ml) groups. Cardiovascular variables were compared between groups. Women with low 25(OH)D levels had significantly higher SBP (150.8±27.1 vs. 137.6±21.0), DBP (94.7±14.5 vs. 89.3±12.3) and PP (53.15(50.7;55.7) vs. 46.3(29.4;84.6)) compared to women with sufficient levels. No significant difference was observed with regards to c-rPWV. ANCOVA analyses still revealed significant differences between the two groups with regards to SBP, DBP as well as PP. Partial correlations revealed significant inverse association between SBP and 25(OH)D (p = .04;r = -.12). Women with low 25(OH)D levels were ∼2 times more likely to have high SBP (95% CI: 3.23;1.05). To conclude, women with deficient/insufficient 25(OH)D had significantly higher SBP compared to women with a sufficient 25(OH) status.

  10. Comparison of blood pressure and thermal responses in rats exposed to millimeter wave energy or environmental heat.

    PubMed

    Millenbaugh, Nancy J; Kiel, Johnathan L; Ryan, Kathy L; Blystone, Robert V; Kalns, John E; Brott, Becky J; Cerna, Cesario Z; Lawrence, William S; Soza, Laura L; Mason, Patrick A

    2006-06-01

    Electromagnetic fields at millimeter wave lengths are being developed for commercial and military use at power levels that can cause temperature increases in the skin. Previous work suggests that sustained exposure to millimeter waves causes greater heating of skin, leading to faster induction of circulatory failure than exposure to environmental heat (EH). We tested this hypothesis in three separate experiments by comparing temperature changes in skin, subcutis, and colon, and the time to reach circulatory collapse (mean arterial blood pressure, 20 mmHg) in male Sprague-Dawley rats exposed to the following conditions that produced similar rates of body core heating within each experiment: (1) EH at 42 degrees C, 35 GHz at 75 mW/cm, or 94 GHz at 75 mW/cm under ketamine and xylazine anesthesia; (2) EH at 43 degrees C, 35 GHz at 90 mW/cm, or 94 GHz at 90 mW/cm under ketamine and xylazine anesthesia; and (3) EH at 42 degrees C, 35 GHz at 90 mW/cm, or 94 GHz at 75 mW/cm under isoflurane anesthesia. In all three experiments, the rate and amount of temperature increase at the subcutis and skin surface differed significantly in the rank order of 94 GHz more than 35 GHz more than EH. The time to reach circulatory collapse was significantly less only for rats exposed to 94 GHz at 90 mW/cm, the group with the greatest rate of skin and subcutis heating of all groups in this study, compared with both the 35 GHz at 90 mW/cm and the EH at 43 degrees C groups. These data indicate that body core heating is the major determinant of induction of hemodynamic collapse, and the influence of heating of the skin and subcutis becomes significant only when a certain threshold rate of heating of these tissues is exceeded.

  11. 3D velocity distribution of P- and S-waves in a biotite gneiss, measured in oil as the pressure medium: Comparison with velocity measurements in a multi-anvil pressure apparatus and with texture-based calculated data

    NASA Astrophysics Data System (ADS)

    Lokajíček, T.; Kern, H.; Svitek, T.; Ivankina, T.

    2014-06-01

    Ultrasonic measurements of the 3D velocity distribution of P- and S-waves were performed on a spherical sample of a biotite gneiss from the Outokumpu scientific drill hole. Measurements were done at room temperature and pressures up to 400 and 70 MPa, respectively, in a pressure vessel with oil as a pressure medium. A modified transducer/sample assembly and the installation of a new mechanical system allowed simultaneous measurements of P- and S-wave velocities in 132 independent directions of the sphere on a net in steps of 15°. Proper signals for P- and S-waves could be recorded by coating the sample surface with a high-viscosity shear wave gel and by temporal point contacting of the transmitter and receiver transducers with the sample surface during the measurements. The 3D seismic measurements revealed a strong foliation-related directional dependence (anisotropy) of P- and S-wave velocities, which is confirmed by measurements in a multi-anvil apparatus on a cube-shaped specimen of the same rock. Both experimental approaches show a marked pressure sensitivity of P- and S-wave velocities and velocity anisotropies. With increasing pressure, P- and S-wave velocities increase non-linearly due to progressive closure of micro-cracks. The reverse is true for velocity anisotropy. 3D velocity calculations based on neutron diffraction measurements of crystallographic preferred orientation (CPO) of major minerals show that the intrinsic bulk anisotropy is basically caused by the CPO of biotite constituting about 23 vol.% of the rock. Including the shape of biotite grains and oriented low-aspect ratio microcracks into the modelling increases bulk anisotropy. An important finding from this study is that the measurements on the sample sphere and on the sample cube displayed distinct differences, particularly in shear wave velocities. It is assumed that the differences are due to the different geometries of the samples and the configuration of the transducer-sample assembly

  12. Status of R&D on mitigating the effects of pressure waves for the Spallation Neutron Source mercury target

    NASA Astrophysics Data System (ADS)

    Riemer, Bernard W.; Wendel, Mark W.; Felde, David K.; Abdou, Ashraf A.; McClintock, David A.

    2012-12-01

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory has been conducting R&D on mitigating the effects of pressure waves in mercury spallation targets since 2001. More precisely, cavitation damage of the target vessel caused by the short beam pulse threatens to limit its lifetime more severely than radiation damage as well as limit its ultimate power capacity - and hence its neutron intensity performance. The R&D program has moved from verification of the beam-induced damage phenomena to study of material and surface treatments for damage resistance to the current emphasis on gas injection techniques for damage mitigation. Two techniques are being worked on: injection of small dispersed gas bubbles that mitigate the pressure waves volumetrically; and protective gas walls that isolate the vessel from the damaging effects of collapsing cavitation bubbles. The latter has demonstrated good damage mitigation during in-beam testing with limited pulses, and adequate gas wall coverage at the beam entrance window has been demonstrated with the SNS mercury target flow configuration using a full scale mercury test loop. A question on the required area coverage remains which depends on results from SNS target post irradiation examination. The small gas bubble technique has been less effective during past in-beam tests but those results were with un-optimized and un-verified bubble populations. Another round of in-beam tests with small gas bubbles is planned for 2011. The first SNS target was removed from service in mid 2009 and samples were cut from two locations at the target's beam entrance window. Through-wall damage was observed at the innermost mercury vessel wall (not a containment wall). The damage pattern suggested correlation with the local mercury flow condition which is nearly stagnant at the peak damage location. Detailed post irradiation examination of the samples is under way that will assess the erosion and measure irradiation-induced changes

  13. Status of R&D on Mitigating the Effects of Pressure Waves for the Spallation Neutron Source Mercury Target

    SciTech Connect

    Riemer, Bernie; Wendel, Mark W; Felde, David K; Abdou, Ashraf A; McClintock, David A

    2012-01-01

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory has been conducting R&D on mitigating the effects of pressure waves in mercury spallation targets since 2001. More precisely, cavitation damage of the target vessel caused by the short beam pulse threatens to limit its lifetime more severely than radiation damage as well as limit its ultimate power capacity and hence its neutron intensity performance. The R&D program has moved from verification of the beam-induced damage phenomena to study of material and surface treatments for damage resistance to the current emphasis on gas injection techniques for damage mitigation. Two techniques are being worked on: injection of small dispersed gas bubbles that mitigate the pressure waves volumetrically; and protective gas walls that isolate the vessel from the damaging effects of collapsing cavitation bubbles. The latter has demonstrated good damage mitigation during in-beam testing with limited pulses, and adequate gas wall coverage at the beam entrance window has been demonstrated with the SNS mercury target flow configuration using a full scale mercury test loop. A question on the required area coverage remains which depends on results from SNS target post irradiation examination. The small gas bubble technique has been less effective during past in-beam tests but those results were with un-optimized and un-verified bubble populations. Another round of in-beam tests with small gas bubbles is planned for 2011. The first SNS target was removed from service in mid 2009 and samples were cut from two locations at the target s beam entrance window. Through-wall damage was observed at the innermost mercury vessel wall (not a containment wall). The damage pattern suggested correlation with the local mercury flow condition which is nearly stagnant at the peak damage location. Detailed post irradiation examination of the samples is under way that will assess the erosion and measure irradiation-induced changes

  14. Unified Application of Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2010-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  15. Unified Application Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2008-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  16. Small Gas Bubble Experiment for Mitigation of Cavitation Damage and Pressure Waves in Short-pulse Mercury Spallation Targets

    SciTech Connect

    Wendel, Mark W; Felde, David K; Sangrey, Robert L; Abdou, Ashraf A; West, David L; Shea, Thomas J; Hasegawa, Shoichi; Kogawa, Hiroyuki; Naoe, Dr. Takashi; Farny, Dr. Caleb H.; Kaminsky, Andrew L

    2014-01-01

    Populations of small helium gas bubbles were introduced into a flowing mercury experiment test loop to evaluate mitigation of beam-pulse induced cavitation damage and pressure waves. The test loop was developed and thoroughly tested at the Spallation Neutron Source (SNS) prior to irradiations at the Los Alamos Neutron Science Center - Weapons Neutron Research Center (LANSCE-WNR) facility. Twelve candidate bubblers were evaluated over a range of mercury flow and gas injection rates by use of a novel optical measurement technique that accurately assessed the generated bubble size distributions. Final selection for irradiation testing included two variations of a swirl bubbler provided by Japan Proton Accelerator Research Complex (J-PARC) collaborators and one orifice bubbler developed at SNS. Bubble populations of interest consisted of sizes up to 150 m in radius with achieved gas void fractions in the 10^-5 to 10^-4 range. The nominal WNR beam pulse used for the experiment created energy deposition in the mercury comparable to SNS pulses operating at 2.5 MW. Nineteen test conditions were completed each with 100 pulses, including variations on mercury flow, gas injection and protons per pulse. The principal measure of cavitation damage mitigation was surface damage assessment on test specimens that were manually replaced for each test condition. Damage assessment was done after radiation decay and decontamination by optical and laser profiling microscopy with damaged area fraction and maximum pit depth being the more valued results. Damage was reduced by flow alone; the best mitigation from bubble injection was between half and a quarter that of flow alone. Other data collected included surface motion tracking by three laser Doppler vibrometers (LDV), loop wall dynamic strain, beam diagnostics for charge and beam profile assessment, embedded hydrophones and pressure sensors, and sound measurement by a suite of conventional and contact microphones.

  17. Ultrasonic characterization of the nonlinear properties of canine livers by measuring shear wave speed and axial strain with increasing portal venous pressure.

    PubMed

    Rotemberg, Veronica; Byram, Brett; Palmeri, Mark; Wang, Michael; Nightingale, Kathryn

    2013-07-26

    Elevated hepatic venous pressure is the primary source of complications in advancing liver disease. Ultrasound imaging is ideal for potential noninvasive hepatic pressure measurements as it is widely used for liver imaging. Specifically, ultrasound based stiffness measures may be useful for clinically monitoring pressure, but the mechanism by which liver stiffness increases with hepatic pressure has not been well characterized. This study is designed to elucidate the nonlinear properties of the liver during pressurization by measuring both hepatic shear wave speed (SWS) and strain with increasing pressure. Tissue deformation during hepatic pressurization was tracked in 8 canine livers using successively acquired 3-D B-mode volumes and compared with concurrently measured SWS. When portal venous pressure was increased from clinically normal (0-5mmHg) to pressures representing highly diseased states at 20mmHg, the liver was observed to expand with axial strain measures up to 10%. At the same time, SWS estimates were observed to increase from 1.5-2m/s at 0-5mmHg (baseline) to 3.25-3.5m/s at 20mmHg.

  18. Experimental determination of blast-wave pressure loading, thermal radiation protection, and electrical transmission loss for parabolic antenna models in simulated nuclear blast environments

    SciTech Connect

    George, J.H.

    1991-01-01

    A twelve-inch-diameter parabolic antenna model instrumented with eleven differential pressure sensors was tested at the Ballistics Research Laboratory, Aberdeen Proving Ground, Maryland. Transient pressure loading was determined for 37 different antenna model angular positions with respect to the direction of the blast wave at a peak overpressure of 3.0 pounds per square inch; limited data at 4.5 and 6.0 pounds per square inch were also investigated. The first millisecond of shock-wave interaction with the antenna features the most prominent fully reversed triangular pressure pulse. A blast function, F, was developed that accurately approximates the transient behavior of the blast wave resultant force and moment loading on the antenna model. The resultant blast force on the antenna model is minimized when the axis of the paraboloid of the model is rotated 82{degree} with respect to the direction of the blast wave. Four different thermal protective coatings were tested to evaluate the effects of coating color and thickness. Transmission-loss measurements were completed on eight different quartz-polyimide antenna models coated with Caapcoat and Ocean 477 thermal protective coatings.

  19. Method of optical self-mixing for pulse wave transit time in comparison with other methods and correlation with blood pressure

    NASA Astrophysics Data System (ADS)

    Meigas, Kalju; Lass, Jaanus; Kattai, Rain; Karai, Deniss; Kaik, Juri

    2004-07-01

    This paper is a part of research to develop convenient method for continuous monitoring of arterial blood pressure by non-invasive and non-oscillometric way. A simple optical method, using self-mixing in a diode laser, is used for detection of skin surface vibrations near the artery. These vibrations, which can reveal the pulsate propagation of blood pressure waves along the vasculature, are used for pulse wave registration. The registration of the Pulse Wave Transit Time (PWTT) is based on computing the time delay in different regions of the human body using an ECG as a reference signal. In this study, the comparison of method of optical self-mixing with other methods as photoplethysmographic (PPG) and bioimpedance (BI) for PWTT is done. Also correlation of PWTT, obtained with different methods, with arterial blood pressure is calculated. In our study, we used a group of volunteers (34 persons) who made the bicycle exercise test. The test consisted of cycling sessions of increasing workloads during which the HR changed from 60 to 180 beats per minute. In addition, a blood pressure (NIBP) was registered with standard sphygmomanometer once per minute during the test and all NIBP measurement values were synchronized to other signals to find exact time moments where the systolic blood pressure was detected (Korotkoff sounds starting point). Computer later interpolated the blood pressure signal in order to get individual value for every heart cycle. The other signals were measured continuously during all tests. At the end of every session, a recovery period was included until person's NIBP and heart rate (HR) normalized. As a result of our study it turned out that time intervals that were calculated from plethysmographic (PPG) waveforms were in the best correlation with systolic blood pressure. The diastolic pressure does not correlate with any of the parameters representing PWTT. The pulse wave signals measured by laser and piezoelectric transducer are very similar

  20. Continuously phase-modulated standing surface acoustic waves for separation of particles and cells in microfluidic channels containing multiple pressure nodes

    NASA Astrophysics Data System (ADS)

    Lee, Junseok; Rhyou, Chanryeol; Kang, Byungjun; Lee, Hyungsuk

    2017-04-01

    This paper describes continuously phase-modulated standing surface acoustic waves (CPM-SSAW) and its application for particle separation in multiple pressure nodes. A linear change of phase in CPM-SSAW applies a force to particles whose magnitude depends on their size and contrast factors. During continuous phase modulation, we demonstrate that particles with a target dimension are translated in the direction of moving pressure nodes, whereas smaller particles show oscillatory movements. The rate of phase modulation is optimized for separation of target particles from the relationship between mean particle velocity and period of oscillation. The developed technique is applied to separate particles of a target dimension from the particle mixture. Furthermore, we also demonstrate human keratinocyte cells can be separated in the cell and bead mixture. The separation technique is incorporated with a microfluidic channel spanning multiple pressure nodes, which is advantageous over separation in a single pressure node in terms of throughput.

  1. Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2 H -TaS2 and 2 H -TaSe2

    NASA Astrophysics Data System (ADS)

    Freitas, D. C.; Rodière, P.; Osorio, M. R.; Navarro-Moratalla, E.; Nemes, N. M.; Tissen, V. G.; Cario, L.; Coronado, E.; García-Hernández, M.; Vieira, S.; Núñez-Regueiro, M.; Suderow, H.

    2016-05-01

    We present measurements of the superconducting and charge-density-wave (CDW) critical temperatures (Tc and TCDW) as a function of pressure in the transition metal dichalchogenides 2 H -TaSe2 and 2 H -TaS2 . Resistance and susceptibility measurements show that Tc increases from temperatures below 1 K up to 8.5 K at 9.5 GPa in 2 H -TaS2 and 8.2 K at 23 GPa in 2 H -TaSe2 . We observe a kink in the pressure dependence of TCDW at about 4 GPa that we attribute to the lock-in transition from incommensurate CDW to commensurate CDW. Above this pressure, the commensurate TCDW slowly decreases, coexisting with superconductivity within our full pressure range.

  2. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 1: Pressure distribution. Part 2: Wall shear stress. Part 3: Simplified formulas for the prediction of surface pressures and skin friction

    NASA Technical Reports Server (NTRS)

    Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.

    1980-01-01

    An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.

  3. Abnormal Central Pulsatile Hemodynamics in Adolescents With Obesity: Higher Aortic Forward Pressure Wave Amplitude Is Independently Associated With Greater Left Ventricular Mass.

    PubMed

    Pierce, Gary L; Pajaniappan, Mohanasundari; DiPietro, Amy; Darracott-Woei-A-Sack, Kathryn; Kapuku, Gaston K

    2016-11-01

    We hypothesized that increased aortic forward pressure wave amplitude (Pf), which is determined by characteristic impedance (Zc) in the proximal aorta, is the primary hemodynamic determinant of obesity-associated higher left ventricular (LV) mass in adolescents. Aortic pulsatile hemodynamics were measured noninvasively in 60 healthy adolescents (age 14-19 years; 42% male; 50% black) by sequential recordings of pulse waveforms via tonometry, brachial blood pressure, and pulsed Doppler and diameter of the LV outflow tract using 2-dimensional echocardiography. Adolescents who were overweight/obese (n=23; age 16.0±0.3 years; body mass index ≥85th percentile) had higher LV mass index, brachial and carotid systolic blood pressure and pulse pressure, normalized Zc and Pf compared with adolescents with healthy weight (n=37; 16.7±0.3 years; body mass index <85th percentile, all P<0.01). In contrast, there was no difference in mean or diastolic blood pressure, carotid-femoral pulse wave velocity, carotid augmentation index, or aortic backward wave amplitude (all P>0.05). Stepwise multiple linear regression analysis that included age, sex, race, normalized Zc, and brachial systolic blood pressure revealed that body mass index (B±SE; 0.49±0.20, P=0.02, R(2)=0.26), aortic Pf (0.22±0.07; P<0.02, R(2) change=0.11), and cardiac output (2.82±1.02, P<0.01; R(2) change=0.08) were significant correlates of LV mass index (total R(2)=0.44, P<0.01). These findings suggest that higher aortic Pf is a major hemodynamic determinant of increased LV mass in adolescents with elevated adiposity. Improper matching between aortic diameter and pulsatile flow during early systole potentially contributes to the early development of LV hypertrophy in childhood obesity.

  4. The generation of gravity-capillary solitary waves by a pressure source moving at a trans-critical speed

    NASA Astrophysics Data System (ADS)

    Masnadi, Naeem; Duncan, James H.

    2017-01-01

    The unsteady response of a water free surface to a localized pressure source moving at constant speed $U$ in the range $0.95c_\\mathrm{min} \\lesssim U \\leq 1.02 c_\\mathrm{min}$, where $c_\\mathrm{min}$ is the minimum phase speed of linear gravity-capillary waves in deep water, is investigated through experiments and numerical simulations. This unsteady response state, which consists of a V-shaped pattern behind the source and features periodic shedding of pairs of depressions from the tips of the V, was first observed qualitatively by Diorio et al. (Phys. Rev. Let., 103, 214502, 2009) and called state III. In the present investigation, cinematic shadowgraph and refraction-based techniques are utilized to measure the temporal evolution of the free surface deformation pattern downstream of the source as it moves along a towing tank, while numerical simulations of the model equation described by Cho et al. (J. Fluid Mech., 672, 288-306, 2011) are used to extend the experimental results over longer times than are possible in the experiments. From the experiments, it is found that the speed-amplitude characteristics and the shape of the depressions are nearly the same as those of the freely propagating gravity-capillary lumps of inviscid potential theory. The decay rate of the depressions is measured from their height-time characteristics, which are well fitted by an exponential decay law with an order 1 decay constant. It is found that the shedding period of the depression pairs decreases with increasing source strength and speed. As the source speed approaches $c_\\mathrm{min}$, this period tends to about 1~s for all source magnitudes. At the low-speed boundary of state III, a new response with unsteady asymmetric shedding of depressions is found. This response is also predicted by the model equation.

  5. Megabar Pressure Waves Through Low Density Foams And Low Density Foams Filled With Liquid Deuterium(Supported By U.S. Department of Energy)

    NASA Astrophysics Data System (ADS)

    Sethian, J. D.; Bodner, S. E.; Dahlburg, J. P.; Gerber, K. A.; McLean, E. A.; Obenschain, S. P.; Pawley, C. J.; Serlin, V.; Sullivan, C. A.; Gardner, J. H.; Chan, Y.

    1997-07-01

    We are using the Nike KrF laser (248 nm) to generate megabar pressure waves in low density Resorcinol-Formaldehyde foams. Peak intensity on target is between 0.8 and 1.1 x 10^14 W/cm^3 with less than 0.3non-uniformities in the focal plane. The foam density ranges from 40 - 100 mg/cm^3). The foams are either evacuated or filled with liquid deuterium. The front of the foam has a thin (approx. 2 μ m) foil or a relatively thick (60 μ m) aluminum plate to allow us to distinguish between a wave that is driven directly by the laser from one driven solely by a hydrodynamic piston. The wave velocity is determined by measuring the onset of visible light from the rear surfaces of the target. Our results will be compared with modeling in a companion paper at this meeting.

  6. The behavior of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient. Ph.D. Thesis - Washington Univ., Seattle, Aug. 1972

    NASA Technical Reports Server (NTRS)

    Rose, W. C.

    1973-01-01

    The results of an experimental investigation of the mean- and fluctuating-flow properties of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient are presented. The turbulent boundary layer developed on the wall of an axially symmetric nozzle and test section whose nominal free-stream Mach number and boundary-layer thickness Reynolds number were 4 and 100,000, respectively. The adverse pressure gradient was induced by an externally generated conical shock wave. Mean and time-averaged fluctuating-flow data, including the complete experimental Reynolds stress tensor and experimental turbulent mass- and heat-transfer rates are presented for the boundary layer and external flow, upstream, within and downstream of the pressure gradient. The mean-flow data include distributions of total temperature throughout the region of interest. The turbulent mixing properties of the flow were determined experimentally with a hot-wire anemometer. The calibration of the wires and the interpretation of the data are discussed. From the results of the investigation, it is concluded that the shock-wave - boundary-layer interaction significantly alters the turbulent mixing characteristics of the boundary layer.

  7. Measured temperature and pressure dependence of compressional (Vp) and shear (Vs) wave speeds in compacted, polycrystalline ice lh

    USGS Publications Warehouse

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2003-01-01

    We report on laboratory measurements of compressional- and shear-wave speeds in a compacted, polycrystalline ice-Ih sample. The sample was made from triply distilled water that had been frozen into single crystal ice, ground into small grains, and sieved to extract the 180-250 ??m diameter fraction. Porosity was eliminated from the sample by compacting the granular ice between a hydraulically driven piston and a fixed end plug, both containing shear-wave transducers. Based on simultaneous compressional- and shear-wave-speed measurements, we calculated Poisson's ratio and compressional-wave, bulk, and shear moduli from -20 to -5??C and 22 to 33 MPa.

  8. Broadband hydroseismograms observed by closed borehole wells in the Kamioka mine, central Japan: Response of pore pressure to seismic waves from 0.05 to 2 Hz

    NASA Astrophysics Data System (ADS)

    Kano, Yasuyuki; Yanagidani, Takashi

    2006-03-01

    We obtained broadband hydroseismograms by monitoring the pore pressure changes of a rock mass in the Kamioka mine, using borehole wells. The wellhead was sealed to maintain an undrained condition, under which there is no flow of water through the interface between the well and the rock mass. This reduces the wellbore storage effect, which can cause a high-frequency cutoff response for systems of conventional open wells and rock mass. Using these closed borehole wells, 16 hydroseismograms were recorded for earthquakes in a range of magnitudes of 4.5-7.9 and epicentral distances of 1.0°-71.6°. Direct P waves, SV waves converted to P, and Rayleigh phases are clearly observed on the hydroseismograms. The similarity between hydroseismograms and seismograms reveals a clear relationship between radial ground velocity and pore pressure. The relationship is expressed as a zero-order system, which is characterized by no distortion or time lag between the input and output, and the pore pressure has no coupling with shear deformation. These results are consistent with an undrained constitutive relation of linear poroelastic theory and confirm that the relation is valid for the seismic frequency range. We determined in situ values of pore pressure sensitivity to volumetric change of the rock mass, which were then used to estimate in situ Skempton coefficients with values of 0.70-0.85.

  9. Ultrasonic P-wave velocity measurements with variable effective pressure at the boundary between slope basin sediments and the accretionary prism: IODP Expedition 315 Site C0001

    NASA Astrophysics Data System (ADS)

    Hashimoto, Y.; Knuth, M. W.; Tobin, H. J.; 314/315/316 Scientist, I.

    2008-12-01

    IODP Expedition 315 Site C0001 is located on the hanging wall of the midslope megasplay fault in the Nankai subduction zone off Kii peninsula (SW Japan), and penetrated an unconformity between ~200 m thick slope basin sediments and the accretionary prism. While a down-section porosity increase was clearly observed at the boundary from ~50% to ~60%, logging velocity does not appear to decrease at the boundary, which suggests that different diagenetic processes might exist above and below the boundary. In this study, we conducted ultrasonic P-wave velocity measurements with pore pressure control. We also conducted observations of sediment and chemical analysis. We examined the relationships between the acoustic properties, sediment textures, logging data from IODP Expedition 314 Site C0001 and data from shipboard core analysis. The ultrasonic P-wave velocity measurements were conducted under constant pore pressure (500 kPa) and varying confining pressure to control effective pressure. The confining pressure ranges from 550 kPa to a maximum calculated from the density of overlying sediments (lithostatic pressure - hydrostatic pressure). 8 samples were analyzed, located from ~70 m to ~450 m below the sea floor. P-wave velocity ranges from ~1620 m/s to ~1990 m/s under the hydrostatic pressure condition. These velocities are in good agreement with the logging data. Porosity-velocity relationship in the analyzed data also coincide with that observed in the logging data. Samples shallower than ~300 m fall within previously-defined empirical relationships for normal- and high- consolidation. The deeper samples (at ~370 m and ~450 m below sea floor) show much higher velocity than that predicted by the empirical relationship, suggesting that significant cementation is present in those samples. The textural observations of sediments indicate a decrease in pore space with depth. Quartz and feldspar grains are surrounded by clay mineral matrices. Grain size seems to be almost

  10. Evaluation of the Colin STBP-680 at rest and during exercise: an automated blood pressure monitor using R-wave gating.

    PubMed

    Bond, V; Bassett, D R; Howley, E T; Lewis, J; Walker, A J; Swan, P D; Tearney, R J; Adams, R G

    1993-06-01

    The application of automated blood pressure measurement during exercise has been limited by inaccuracies introduced by the effects of accompanying motion and noise. We evaluated a newly developed automated blood pressure monitor for measuring exercise blood pressure (Colin STBP-680; Colin, San Antonio, Texas, USA). The STBP-680 uses acoustic transduction with the assistance of the electrocardiogram R-wave to trigger the sampling period for blood pressure measurement. The automated monitor readings were compared with simultaneous technician mercury sphygmomanometric readings in the same arm. Blood pressure was measured in 18 men at rest and during exercise at 40% VO2 peak, (low intensity), 70% VO2 peak (moderate intensity) and VO2 peak (high intensity) on the cycle ergometer. Mean(s.d.) systolic blood pressure difference between the automated monitor and mercury manometer readings at rest and during exercise at low, moderate and high work intensities were 3(0) mmHg, 3(2) mmHg, 1(1) mmHg, and 0(11) mmHg respectively (analysis of variance; P > 0.05). Resting diastolic blood pressure obtained with the STBP-680 was similar to the mercury manometer readings (78(10) versus 81(7) mmHg (P > 0.05). Exercise diastolic pressure at the low level of work intensity was almost identical between the automated monitor and mercury manometer readings (64(8) versus 65(10) mmHg (not significant)). Diastolic blood pressure readings between the STBP-680 and mercury manometer showed a greater difference at the moderate and high workloads (11 mmHg and 9 mmHg, respectively), but this difference was not significant (P > 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Pressure dependence of the charge-density-wave and superconducting states in GdTe3, TbTe3, and DyTe3

    DOE PAGES

    Zocco, D. A.; Hamlin, J. J.; Grube, K.; ...

    2015-05-14

    Here, we present electrical resistivity and ac-susceptibility measurements of GdTe3, TbTe3 and DyTe3 performed under pressure. An upper charge-density-wave (CDW) is suppressed at a rate of dTCW,1/dP~ –85K/GPa. For TbTe3 and DyTe3, a second CDW below TCDW,2 increases with pressure until it reaches the TCDW,1(P) line. For GdTe3, the lower CDW emerges as pressure is increased above ~1GPa. As these two CDW states are suppressed with pressure, superconductivity (SC) appears in the three compounds at lower temperatures. Ac-susceptibility experiments performed on TbTe3 provide compelling evidence for bulk SC in the low-pressure region of the phase diagram. We provide measurements ofmore » superconducting critical fields and discuss the origin of a high-pressure superconducting phase occurring above 5 GPa.« less

  12. Characterization of a low-pressure chlorine plasma column sustained by propagating surface waves using phase-sensitive microwave interferometry and trace-rare-gas optical emission spectroscopy

    SciTech Connect

    Mattei, S.; Boudreault, O.; Stafford, L.; Khare, R.; Donnelly, V. M.

    2011-06-01

    Phase-sensitive microwave interferometry and trace-rare-gas optical emission spectroscopy were used to measure the line-integrated electron density, n{sub e}, and electron temperature, T{sub e}, in a high-density chlorine plasma sustained in a quartz discharge tube (inner diameter = 6 mm) by an electromagnetic surface wave at 2.45 GHz. For pressures in the 0.1-1 Torr range, n{sub e} decreased nearly linearly along the tube's z-axis down to the critical density for surface wave propagation, where the plasma decayed abruptly. At lower pressures (< 50 mTorr), however, the plasma extended well beyond this critical point, after which n{sub e} decreased quasiexponentially toward the end of the plasma column. The length of this expansion region increased with decreasing pressure, going from {approx}8 cm at 5 mTorr to {approx}1 cm at 50 mTorr. T{sub e} was nearly independent of the axial position in the main plasma region and strongly decreased in the expansion region at lower pressures. The Cl{sub 2} percent dissociation, {tau}{sub D}, obtained from the calibrated Cl{sub 2} (306 nm)-to-Xe (828 nm) emission ratio, displayed behavior similar to that of n{sub e} and T{sub e}. For example, at 5 mTorr, {tau}{sub D} was close to 100% near the wave launcher and {approx}70% at 0.5 cm from the end of the plasma column.

  13. Quantification of the Effect of Pressure Wire Drift on the Diagnostic Performance of Fractional Flow Reserve, Instantaneous Wave-Free Ratio, and Whole-Cycle Pd/Pa

    PubMed Central

    Ahmad, Yousif; Shun-Shin, Matthew J.; Nijjer, Sukhjinder; Petraco, Ricardo; Al-Lamee, Rasha; Mayet, Jamil; Francis, Darrel P.; Sen, Sayan; Davies, Justin E.

    2016-01-01

    Background— Small drifts in intracoronary pressure measurements (±2 mm Hg) can affect stenosis categorization using pressure indices. This has not previously been assessed for fractional flow reserve (FFR), instantaneous wave-free ratio (iFR), and whole-cycle distal pressure/proximal pressure (Pd/Pa) indices. Methods and Results—Four hundred forty-seven stenoses were assessed with FFR, iFR, and whole-cycle Pd/Pa. Cut point values for significance were predefined as ≤0.8, <0.90, and <0.93, respectively. Pressure wire drift was simulated by offsetting the distal coronary pressure trace by ±2 mm Hg. FFR, iFR, and whole-cycle Pd/Pa indices were recalculated and stenosis misclassification quantified. Median (±median absolute deviation) values for FFR, iFR, and whole-cycle Pd/Pa were 0.81 (±0.11), 0.90 (±0.07), and 0.93 (±0.06), respectively. For the cut point of FFR, iFR, and whole-cycle Pd/Pa, 34.6% (155), 50.1% (224), and 62.2% (278) of values, respectively, lay within ±0.05 U. With ±2 mm Hg pressure wire drift, 21% (94), 25% (110), and 33% (148) of the study population were misclassified with FFR, iFR, and whole-cycle Pd/Pa, respectively. Both FFR and iFR had significantly lower misclassification than whole-cycle Pd/Pa (P<0.001). There was no statistically significant difference between the diagnostic performance of FFR and iFR (P=0.125). Conclusions— In a substantial proportion of cases, small amounts of pressure wire drift are enough to cause stenoses to change classification. Whole-cycle Pd/Pa is more vulnerable to such reclassification than FFR and iFR. PMID:27076571

  14. A Fast Multimodal Ectopic Beat Detection Method Applied for Blood Pressure Estimation Based on Pulse Wave Velocity Measurements in Wearable Sensors

    PubMed Central

    Pflugradt, Maik; Geissdoerfer, Kai; Goernig, Matthias; Orglmeister, Reinhold

    2017-01-01

    Automatic detection of ectopic beats has become a thoroughly researched topic, with literature providing manifold proposals typically incorporating morphological analysis of the electrocardiogram (ECG). Although being well understood, its utilization is often neglected, especially in practical monitoring situations like online evaluation of signals acquired in wearable sensors. Continuous blood pressure estimation based on pulse wave velocity considerations is a prominent example, which depends on careful fiducial point extraction and is therefore seriously affected during periods of increased occurring extrasystoles. In the scope of this work, a novel ectopic beat discriminator with low computational complexity has been developed, which takes advantage of multimodal features derived from ECG and pulse wave relating measurements, thereby providing additional information on the underlying cardiac activity. Moreover, the blood pressure estimations’ vulnerability towards ectopic beats is closely examined on records drawn from the Physionet database as well as signals recorded in a small field study conducted in a geriatric facility for the elderly. It turns out that a reliable extrasystole identification is essential to unsupervised blood pressure estimation, having a significant impact on the overall accuracy. The proposed method further convinces by its applicability to battery driven hardware systems with limited processing power and is a favorable choice when access to multimodal signal features is given anyway. PMID:28098831

  15. Nonlinear Waves

    DTIC Science & Technology

    1989-06-15

    following surprising situation. Namely associated with the integrable nonlinear Schrodinger equations are standard numerical schemes which exhibit at...36. An Initial Boundary Value Problem for the Nonlinear Schrodinger Equations , A.S. Fokas, Physica D March 1989. 37. Evolution Theory, Periodic... gravity waves and wave excitation phenomena related to moving pressure distributions; numerical approximation and computation; nonlinear optics; and

  16. On the response of a water surface to a surface pressure source moving at trans-critical gravity-capillary wave speeds

    NASA Astrophysics Data System (ADS)

    Masnadi, Naeem; Cho, Yeunwoo; Duncan, James H.; Akylas, Triantaphyllos

    2015-11-01

    The non-linear response of a water free surface to a pressure source moving at speeds near the minimum speed of linear gravity-capillary waves (Cmin ~ 23 cm/s) is investigated with experiments and theory. In the experiments, waves are generated by a vertically oriented air-jet that moves at a constant speed over the water surface in a long tank. The 3-D surface shape behind the air-jet is measured using a cinematic refraction-based technique combined with an LIF technique. At towing speeds just below Cmin, an unsteady pattern is formed where localized depressions periodically appear in pairs and move away from the source along the arms of a downstream V-shaped pattern. This behavior is analogous to the periodic shedding of solitary waves upstream of a source moving at the maximum wave speed in shallow water. The gravity-capillary depressions are rapidly damped by viscosity and their speed-amplitude characteristics closely match those from inviscid calculations of gravity-capillary lumps. The shedding frequency of the lumps in the present experiments increases with both increasing towing speed and air-flow rate. Predictions of this behavior using a model equation that incorporates damping and a quadratic nonlinearity are in good agreement with the experiments. The partial support of the National Science Foundation under grant OCE0751853 is gratefully acknowledged.

  17. Helicon wave coupling in KSTAR plasmas for off-axis current drive in high electron pressure plasmas

    NASA Astrophysics Data System (ADS)

    Wang, S. J.; Wi, H. H.; Kim, H. J.; Kim, J.; Jeong, J. H.; Kwak, J. G.

    2017-04-01

    A helicon wave current drive is proposed as an efficient off-axis current drive in the high electron β plasmas that are expected in fusion reactors. A high frequency helicon wave coupling was analyzed using the surface impedance at a plasma boundary. A slow wave coupling, which may compete with the helicon wave coupling at a frequency of 500 MHz, is estimated to be lower than the fast wave coupling by an order of magnitude in the KSTAR edge plasma density and in practical Faraday shield misalignment with the magnetic pitch. A traveling wave antenna, which is a two port combline antenna, was analyzed using a simplified lumped element model. The results show that the traveling wave antenna provides load resiliency because of its insensitivity to loading resistance, provided that the loading resistance at a radiating element is limited within a practical range. The combline antenna is attractive because it does not require a matching system and exhibits a high selectivity of parallel refractive index. Based on the analysis, a seven element combline antenna was fabricated and installed at an off-mid-plane offset of 30 cm from the mid-plane in KSTAR. The low power RF characteristics measured during several plasma discharges showed no evidence of slow wave coupling. This is consistent with the expectation made through the surface impedance analysis which predicted low slow wave coupling. The wave coupling to the plasma is easily controlled by a radial outer-gap control and gas puffing. No plasma confinement degradation was observed during the radial outer-gap control of up to 3 cm in H-mode discharges. In a ELMy plasmas, only a small reflection peak was observed during a very short portion of the ELM bursting period. If the number of radiating elements is increased for high power operation, then complete load resiliency can be expected. A very large coupling can be problematic for maintaining a parallel refractive index, although this issue can be mitigated by

  18. Pressure dependency of aortic pulse wave velocity in vivo is not affected by vasoactive substances that alter aortic wall tension ex vivo.

    PubMed

    Butlin, Mark; Lindesay, George; Viegas, Kayla D; Avolio, Alberto P

    2015-05-15

    Aortic stiffness, a predictive parameter in cardiovascular medicine, is blood pressure dependent and experimentally requires isobaric measurement for meaningful comparison. Vasoactive drug administration to change peripheral resistance and blood pressure allows such isobaric comparison but may alter large conduit artery wall tension, directly changing aortic stiffness. This study quantifies effects of sodium nitroprusside (SNP, vasodilator) and phenylephrine (PE, vasoconstrictor) on aortic stiffness measured by aortic pulse wave velocity (aPWV) assessed by invasive pressure catheterization in anaesthetized Sprague-Dawley rats (n = 7). This was compared with nondrug-dependent alteration of blood pressure through reduced venous return induced by partial vena cava occlusion. In vivo drug concentration was estimated by modeling clearance rates. Ex vivo responses of excised thoracic and abdominal aortic rings to drugs was measured using myography. SNP administration did not alter aPWV compared with venous occlusion (P = 0.21-0.87). There was a 5% difference in aPWV with PE administration compared with venous occlusion (P < 0.05). The estimated in vivo maximum concentration of PE (7.0 ± 1.8 ×10(-7) M) and SNP (4.2 ± 0.6 ×10(-7) M) caused ex vivo equivalent contraction of 52 mmHg (thoracic) and 112 mmHg (abdominal) and relaxation of 96% (both abdominal and thoracic), respectively, despite having a negligible effect on aPWV in vivo. This study demonstrates that vasoactive drugs administered to alter systemic blood pressure have a negligible effect on aPWV and provide a useful tool to study pressure-normalized and pressure-dependent aPWV in large conduit arteries in vivo. However, similar drug concentrations affect aortic ring wall tension ex vivo. Future studies investigating in vivo and ex vivo kinetics will need to elucidate mechanisms for this marked difference.

  19. Role of anion ordering and effective pressure in the field-induced spin-density-wave phase of (TMTSF)2X

    NASA Astrophysics Data System (ADS)

    Minamidate, T.; Matsunaga, N.; Nomura, K.; Sasaki, T.

    2016-08-01

    Magnetoresistance and Hall resistance measurements were conducted in the field-induced spin-density-wave (FISDW) phase of (TMTSF)2ReO4 above 1.0 GPa, with an anion ordering specified by Q_\\text{AO}=(0, 1/2, 1/2) . The quantized Hall resistance shows the sequence N = 0, 1, 2, -2, 4, -4, -6, -8, \\cdots , with decreasing field that is successfully explained by the “extended standard model”. Consequently, we demonstrate that the difference between the chemical and hydrostatic pressures is linked to the appearance of the peculiar FISDW phase of the TMTSF salts with Q_\\text{AO}=(0, 1/2, *) .

  20. The Role of Sub-Target in the Transversely Excited Atmospheric Pressure CO 2 Laser-Induced Shock-Wave Plasma

    NASA Astrophysics Data System (ADS)

    Suliyanti, Maria; Hedwig, Rinda; Kurniawan, Hendrik; Kagawa, Kiichiro

    1998-12-01

    A transversely excited atmospheric pressure (TEA) CO2 laser pulse (50 mJ, 100 ns) was focused on silicon grease which is painted on a copper plate as a subtarget with a power density of 6 GW/cm2 under reduced pressure. The comparison of the characteristics of the induced laser plasma between two cases, with subtarget and without subtarget was made. It is proved that the emission spectrum assigned to the silicon atom can be detected only for the case with the subtarget. It is also proved that in the absence of the subtarget, the gushing speed of the atom is very low, while for the case with subtarget, the gushing speed of atoms becomes very fast. It is shown that the setting of subtarget is very effective for producing laser-induced shock wave plasma and it is very effective for the realize quantitative analysis of a soft material.

  1. Source duration of stress and water-pressure induced seismicity derived from experimental analysis of P wave pulse width in granite

    NASA Astrophysics Data System (ADS)

    Masuda, K.

    2013-12-01

    Pulse widths of P waves in granite, measured in the laboratory, were analyzed to investigate source durations of rupture processes for water-pressure induced and stress-induced microseismicity. Much evidence suggests that fluids in the subsurface are intimately linked to faulting processes. Studies of seismicity induced by water injection are thus important for understanding the trigger mechanisms of earthquakes as well as for engineering applications such as hydraulic fracturing of rocks at depth for petroleum extraction. Determining the cause of seismic events is very important in seismology and engineering; however, water-pressure induced seismic events are difficult to distinguish from those induced by purely tectonic stress. To investigate this problem, we analyzed the waveforms of acoustic emissions (AEs) produced in the laboratory by both water-pressure induced and stress-induced microseismicity. We used a cylinder (50 mm in diameter and 100 mm in length) of medium-grained granite. We applied a differential stress of about 70% of fracture strength, to the rock sample under 40 MPa confining pressure and held it constant throughout the experiment. When the primary creep stage and acoustic emissions (AEs) caused by the initial loading had ceased, we injected distilled water into the bottom end of the sample at a constant pressure of 17 MPa until macroscopic fracture occurred. We analysed AE waveforms produced by stress-induced AEs which occurred before the water-injection and by water-pressure induced AEs which occurred after the water-injection. Pulse widths were measured from the waveform traces plotted from the digital data. To investigate the source duration of the rupture process, we estimated the pulse width at the source and normalized by event magnitude to obtain a scaled pulse width at the source. After the effects of event size and hypocentral distance were removed from observed pulse widths, the ratio of the scaled source durations of water-pressure

  2. Effect of modest salt reduction on blood pressure, urinary albumin, and pulse wave velocity in white, black, and Asian mild hypertensives.

    PubMed

    He, Feng J; Marciniak, Maciej; Visagie, Elisabeth; Markandu, Nirmala D; Anand, Vidya; Dalton, R Neil; MacGregor, Graham A

    2009-09-01

    A reduction in salt intake lowers blood pressure. However, most previous trials were in whites with few in blacks and Asians. Salt reduction may also reduce other cardiovascular risk factors (eg, urinary albumin excretion, arterial stiffness). However, few well-controlled trials have studied these effects. We carried out a randomized double-blind crossover trial of salt restriction with slow sodium or placebo, each for 6 weeks, in 71 whites, 69 blacks, and 29 Asians with untreated mildly raised blood pressure. From slow sodium to placebo, urinary sodium was reduced from 165+/-58 (+/-SD) to 110+/-49 mmol/24 hours (9.7 to 6.5 g/d salt). With this reduction in salt intake, there was a significant decrease in blood pressure from 146+/-13/91+/-8 to 141+/-12/88+/-9 mm Hg (P<0.001), urinary albumin from 10.2 (IQR: 6.8 to 18.9) to 9.1 (6.6 to 14.0) mg/24 hours (P<0.001), albumin/creatinine ratio from 0.81 (0.47 to 1.43) to 0.66 (0.44 to 1.22) mg/mmol (P<0.001), and carotid-femoral pulse wave velocity from 11.5+/-2.3 to 11.1+/-1.9 m/s (P<0.01). Subgroup analysis showed that the reductions in blood pressure and urinary albumin/creatinine ratio were significant in all groups, and the decrease in pulse wave velocity was significant in blacks only. These results demonstrate that a modest reduction in salt intake, approximately the amount of the current public health recommendations, causes significant falls in blood pressure in all 3 ethnic groups. Furthermore, it reduces urinary albumin and improves large artery compliance. Although both could be attributable to the falls in blood pressure, they may carry additional benefits on reducing cardiovascular disease above that obtained from the blood pressure falls alone.

  3. Breaking and Non-Breaking Solitary Wave Impact Pressures on a Cylinder Over a 3-D Bathymetry

    DTIC Science & Technology

    2005-01-01

    the Morison equation applied to case 2 ................................... 78 6.3 Cross approximation for case 1...showing the wedge angle of the incoming bore approaching the wall, Cross (1967...increasing cross -shore distance at pressure sensor 2

  4. Microfluidic waves

    PubMed Central

    Utz, Marcel; Begley, Matthew R.; Haj-Hariri, Hossein

    2012-01-01

    The propagation of pressure waves in fluidic channels with elastic covers is discussed in view of applications to flow control in microfluidic devices. A theory is presented which describes pressure waves in the fluid that are coupled to bending waves in the elastic cover. At low frequencies, the lateral bending of the cover dominates over longitudinal bending, leading to propagating, non-dispersive longitudinal pressure waves in the channel. The theory addresses effects due to both the finite viscosity and compressibility of the fluid. The coupled waves propagate without dispersion, as long as the wave length is larger than the channel width. It is shown that in channels of typical microfluidic dimensions, wave velocities in the range of a few 10 m s−1 result if the channels are covered by films of a compliant material such as PDMS. The application of this principle to design microfluidic band pass filters based on standing waves is discussed. Characteristic frequencies in the range of a few kHz are readily achieved with quality factors above 30. PMID:21966667

  5. Toward comprehensive studies of liquids at high pressures and high temperatures: Combined structure, elastic wave velocity, and viscosity measurements in the Paris-Edinburgh cell

    NASA Astrophysics Data System (ADS)

    Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin; Wang, Yanbin

    2014-03-01

    Techniques for measuring liquid structure, elastic wave velocity, and viscosity under high pressure have been integrated using a Paris-Edinburgh cell at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The Paris-Edinburgh press allows for compressing large volume samples (up to 2 mm in both diameter and length) up to ∼7 GPa and 2000 °C. Multi-angle energy dispersive X-ray diffraction provides structure factors of liquid to a large Q of ∼19 Å. Ultrasonic techniques have been developed to investigate elastic wave velocity of liquids combined with the X-ray imaging. Falling sphere viscometry, using high-speed X-ray radiography (>1000 frames/s), enables us to investigate a wide range of viscosity, from those of high viscosity silicates or oxides melts to low viscosity (<1 mPa s) liquids and fluids such as liquid metals or salts. The integration of these multiple techniques has promoted comprehensive studies of structure and physical properties of liquids as well as amorphous materials at high pressures and high temperatures, making it possible to investigate correlations between structure and physical properties of liquids in situ.

  6. Toward comprehensive studies of liquids at high pressures and high temperatures: Combined structure, elastic wave velocity, and viscosity measurements in the Paris-Edinburgh cell

    SciTech Connect

    Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin; Wang, Yanbin

    2014-08-19

    Techniques for measuring liquid structure, elastic wave velocity, and viscosity under high pressure have been integrated using a Paris–Edinburgh cell at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The Paris–Edinburgh press allows for compressing large volume samples (up to 2 mm in both diameter and length) up to ~7 GPa and 2000 °C. Multi-angle energy dispersive X-ray diffraction provides structure factors of liquid to a large Q of ~19 Å. Ultrasonic techniques have been developed to investigate elastic wave velocity of liquids combined with the X-ray imaging. Falling sphere viscometry, using high-speed X-ray radiography (>1000 frames/s), enables us to investigate a wide range of viscosity, from those of high viscosity silicates or oxides melts to low viscosity (<1 mPa s) liquids and fluids such as liquid metals or salts. The integration of these multiple techniques has promoted comprehensive studies of structure and physical properties of liquids as well as amorphous materials at high pressures and high temperatures, making it possible to investigate correlations between structure and physical properties of liquids in situ.

  7. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    SciTech Connect

    Efthimion, P.C.; Helfritch, D.J.

    1989-11-28

    This paper describes an apparatus which creates a plasma for chemical processing of gaseous fluid. It comprises an electro-magnetic resonator cavity having first and second conductive walls and a resonant frequency; an electro-magnetic energy source which produces electro-magnetic energy having a frequency corresponding to the resonant frequency and a power level sufficient for breaking down the gaseous fluid and creating a plasma within the electro-magnetic resonator cavity; an electro-magnetic wave guiding structure connecting the electro-magnetic energy source to the first wall of the electro-magnetic cavity; the wave guiding structure having an intake port for introducing the gaseous fluid into the wave guiding structure; the second wall of the resonator cavity having an exhaust port for discharging processed gaseous fluid in the form of a plasma from the cavity; and plasma confinement means for causing the gaseous fluid to flow into the electro-magnetic resonator cavity through the aperture along with the electro-magnetic energy for confining and stabilizing the plasma within the electro-magnetic resonator cavity.

  8. Ambulatory aortic blood pressure, wave reflections and pulse wave velocity are elevated during the third in comparison to the second interdialytic day of the long interval in chronic haemodialysis patients

    PubMed Central

    Koutroumbas, Georgios; Georgianos, Panagiotis I.; Sarafidis, Pantelis A.; Protogerou, Athanase; Karpetas, Antonios; Vakianis, Pantelis; Raptis, Vassilios; Liakopoulos, Vassilios; Panagoutsos, Stylianos; Syrganis, Christos; Passadakis, Ploumis

    2015-01-01

    Background Increased arterial stiffness and aortic blood pressure (BP) are independent predictors of cardiovascular outcomes in end-stage renal disease. The 3-day interdialytic interval is associated with elevated risk of cardiovascular morbidity and mortality in haemodialysis. This study investigated differences in ambulatory aortic BP and arterial stiffness between the second and third day of the long interdialytic interval. Methods Ambulatory BP monitoring with Mobil-O-Graph monitor (IEM, Stolberg, Germany) was performed in 55 haemodialysis patients during a 3-day interval. Mobil-O-Graph records oscillometric brachial BP and pulse waves and calculates aortic BP and augmentation index (AIx) as measure of wave reflections, and pulse wave velocity (PWV) as measure of arterial stiffness. Results Ambulatory aortic systolic blood pressure (SBP) and diastolic blood pressure (DBP) were higher during the third versus second interdialytic day (123.6 ± 17.0 versus 118.5 ± 17.1 mmHg, P < 0.001; 81.5 ± 11.8 versus 78 ± 11.9 mmHg, P < 0.001, respectively). Similar differences were noted for brachial BP. Ambulatory AIx and PWV were also significantly increased during the third versus second day (30.5 ± 9.9 versus 28.8 ± 9.9%, P < 0.05; 9.6 ± 2.3 versus 9.4 ± 2.3 m/s, P < 0.001, respectively). Differences between Days 2 and 3 remained significant when day-time and night-time periods were compared separately. Aortic SBP and DBP, AIx and PWV showed gradual increases from the end of dialysis session onwards. Interdialytic weight gain was a strong determinant of the increase in the above parameters. Conclusions This study showed significantly higher ambulatory aortic BP, AIx and PWV levels during the third compared with the second interdialytic day. These findings support a novel pathway for increased cardiovascular risk during the third interdialytic day in haemodialysis. PMID:25920919

  9. Investigation of the effect of a bend in a transfer line that separates a pulse tube cold head and a pressure wave generator

    NASA Astrophysics Data System (ADS)

    Dev, A. A.; Atrey, M. D.; Vanapalli, S.

    2017-02-01

    A transfer line between a pulse tube cold head and a pressure wave generator is usually required to isolate the cold head from the vibrations of the compressor. Although it is a common practice to use a thin and narrow straight tube, a bent tube would allow design flexibility and easy mounting of the cold head, such as in a split Stirling type pulse tube cryocooler. In this paper, we report a preliminary investigation on the effect of the bending of the tube on the flow transfer characteristics. A numerical study using commercial computational fluid dynamics model is performed to gain insight into the flow characteristics in the bent tube. Oscillating flow experiments are performed with a straight and a bent tube at a filling pressure of 15 bar and an operating frequency of 40, 50 and 60 Hz. The data and the corresponding numerical simulations point to the hypothesis that the secondary flow in the bent tube causes a decrease in flow at a fixed pressure amplitude.

  10. Central blood pressure estimation by using N-point moving average method in the brachial pulse wave.

    PubMed

    Sugawara, Rie; Horinaka, Shigeo; Yagi, Hiroshi; Ishimura, Kimihiko; Honda, Takeharu

    2015-05-01

    Recently, a method of estimating the central systolic blood pressure (C-SBP) using an N-point moving average method in the radial or brachial artery waveform has been reported. Then, we investigated the relationship between the C-SBP estimated from the brachial artery pressure waveform using the N-point moving average method and the C-SBP measured invasively using a catheter. C-SBP using a N/6 moving average method from the scaled right brachial artery pressure waveforms using VaSera VS-1500 was calculated. This estimated C-SBP was compared with the invasively measured C-SBP within a few minutes. In 41 patients who underwent cardiac catheterization (mean age: 65 years), invasively measured C-SBP was significantly lower than right cuff-based brachial BP (138.2 ± 26.3 vs 141.0 ± 24.9 mm Hg, difference -2.78 ± 1.36 mm Hg, P = 0.048). The cuff-based SBP was significantly higher than invasive measured C-SBP in subjects with younger than 60 years old. However, the estimated C-SBP using a N/6 moving average method from the scaled right brachial artery pressure waveforms and the invasively measured C-SBP did not significantly differ (137.8 ± 24.2 vs 138.2 ± 26.3 mm Hg, difference -0.49 ± 1.39, P = 0.73). N/6-point moving average method using the non-invasively acquired brachial artery waveform calibrated by the cuff-based brachial SBP was an accurate, convenient and useful method for estimating C-SBP. Thus, C-SBP can be estimated simply by applying a regular arm cuff, which is greatly feasible in the practical medicine.

  11. Dynamic Pressure Impulse for Near-Ideal and Non-Ideal Blast Waves -- Height of Burst Charts

    DTIC Science & Technology

    1981-05-15

    deviations from the group curve. However, the group 47 UNCLASSIFIED UNCLASSIFIED curve served as an excellent guide in all cases; in many cases there...Airblast Precursor Dynamic Pressures Related to Surface Parameters", ARBRL-CR-00415, March 1980. 7. E. J. Bryant and J. H. Keefer, " Basic Airblast...The shots involved in this section were all part of Operation Teapot. We used two basic procedures and some variants of these to determine dynamic

  12. Birch's law for high-pressure metals and ionic solids: Sound velocity data comparison between shock wave experiments and recent diamond anvil cell experiments

    NASA Astrophysics Data System (ADS)

    Boness, David A.; Ware, Lucas

    2017-01-01

    Sound velocity-density systematics has long been a fruitful way to take shock wave measurements on elements, alloys, oxides, rocks, and other materials, and allow reasonable extrapolation to densities found deep in the Earth. Recent detection of super-Earths has expanded interest in terrestrial planetary interiors to an even greater range of materials and pressures. Recent published diamond anvil cell (DAC) experimental measurements of sound velocities in iron and iron alloys, relevant to planetary cores, are inconsistent with each other with regard to the validity of Birch's Law, a linear relation between sound velocity and density. We examine the range of validity of Birch's Law for several shocked metallic elements, including iron, and shocked ionic solids and make comparisons to the recent DAC data.

  13. Non-β-blocking R-carvedilol enantiomer suppresses Ca2+ waves and stress-induced ventricular tachyarrhythmia without lowering heart rate or blood pressure.

    PubMed

    Zhang, Jingqun; Zhou, Qiang; Smith, Chris D; Chen, Haiyan; Tan, Zhen; Chen, Biyi; Nani, Alma; Wu, Guogen; Song, Long-Sheng; Fill, Michael; Back, Thomas G; Chen, S R Wayne

    2015-09-01

    Carvedilol is the current β-blocker of choice for suppressing ventricular tachyarrhythmia (VT). However, carvedilol's benefits are dose-limited, attributable to its potent β-blocking activity that can lead to bradycardia and hypotension. The clinically used carvedilol is a racemic mixture of β-blocking S-carvedilol and non-β-blocking R-carvedilol. We recently reported that novel non-β-blocking carvedilol analogues are effective in suppressing arrhythmogenic Ca(2+) waves and stress-induced VT without causing bradycardia. Thus, the non-β-blocking R-carvedilol enantiomer may also possess this favourable anti-arrhythmic property. To test this possibility, we synthesized R-carvedilol and assessed its effect on Ca(2+) release and VT. Like racemic carvedilol, R-carvedilol directly reduces the open duration of the cardiac ryanodine receptor (RyR2), suppresses spontaneous Ca(2+) oscillations in human embryonic kidney (HEK) 293 cells, Ca(2+) waves in cardiomyocytes in intact hearts and stress-induced VT in mice harbouring a catecholaminergic polymorphic ventricular tachycardia (CPVT)-causing RyR2 mutation. Importantly, R-carvedilol did not significantly alter heart rate or blood pressure. Therefore, the non-β-blocking R-carvedilol enantiomer represents a very promising prophylactic treatment for Ca(2+)- triggered arrhythmia without the bradycardia and hypotension often associated with racemic carvedilol. Systematic clinical assessments of R-carvedilol as a new anti-arrhythmic agent may be warranted.

  14. Non-β-blocking R-carvedilol enantiomer suppresses Ca2+ waves and stress-induced ventricular tachyarrhythmia without lowering heart rate or blood pressure

    PubMed Central

    Zhang, Jingqun; Zhou, Qiang; Smith, Chris D.; Chen, Haiyan; Tan, Zhen; Chen, Biyi; Nani, Alma; Wu, Guogen; Song, Long-Sheng; Fill, Michael; Back, Thomas G.; Wayne Chen, S.R.

    2016-01-01

    Carvedilol is the current β-blocker of choice for suppressing ventricular tachyarrhythmia (VT). However, carvedilol’s benefits are dose-limited, attributable to its potent β-blocking activity that can lead to bradycardia and hypotension. The clinically used carvedilol is a racemic mixture of β-blocking S-carvedilol and non-β-blocking R-carvedilol. We recently reported that novel non-β-blocking carvedilol analogues are effective in suppressing arrhythmogenic Ca2+ waves and stress-induced VT without causing bradycardia. Thus, the non-β-blocking R-carvedilol enantiomer may also possess this favourable anti-arrhythmic property. To test this possibility, we synthesized R-carvedilol and assessed its effect on Ca2+ release and VT. Like racemic carvedilol, R-carvedilol directly reduces the open duration of the cardiac ryanodine receptor (RyR2), suppresses spontaneous Ca2+ oscillations in human embryonic kidney (HEK) 293 cells, Ca2+ waves in cardiomyocytes in intact hearts and stress-induced VT in mice harbouring a catecholaminergic polymorphic ventricular tachycardia (CPVT)-causing RyR2 mutation. Importantly, R-carvedilol did not significantly alter heart rate or blood pressure. Therefore, the non-β-blocking R-carvedilol enantiomer represents a very promising prophylactic treatment for Ca2+-triggered arrhythmia without the bradycardia and hypotension often associated with racemic carvedilol. Systematic clinical assessments of R-carvedilol as a new anti-arrhythmic agent may be warranted. PMID:26348911

  15. Dispersion and attenuation on the Brillouin sound waves of a lubricant: Di(2-ethylhexyl) sebacate under high pressures

    NASA Astrophysics Data System (ADS)

    Fujita, Yoshitaka; Kobayashi, Hiroshi

    2011-08-01

    The Brillouin spectra of di(2-ethylhexyl) sebacate, which is a liquid lubricant known as DOS, were measured at up to 5 GPa at 25 °C and up to 2.5 GPa at 80 °C. At 25 °C, the Brillouin frequency linewidth (acoustic attenuation) has a large maximum at 0.1 MPa, and at 80 °C, it has a large broad maximum at 0.8 GPa. The Brillouin frequency shift (sound velocity) and linewidth obtained indicate that the large dispersion of the sound velocities of DOS occurs from 0.1 MPa at 25 °C and from 0.8 GPa at 80 °C. The origins of this attenuation and dispersion are discussed on the basis of the theory for a viscoelastic liquid. It is proposed that the large acoustic attenuation and dispersion of DOS are due to the production of higher-rank structures with nano-order domains in a polymeric liquid by pressurization. The results show that DOS is strongly viscoelastic above 0.8 GPa at 80 °C, but it is not viscous below 0.8 GPa at 80 °C, with the disappearance of the frequency dispersion. The result obtained is used to explain a limiting shear stress observed in a traction oil. Above a given sliding speed, the oil reaches the region of temperature and pressure in which its viscosity decreases with increasing shear rate and conveys a constant torque above some high shear rate. Then, the oil flows as a plastic solid at a limiting shear stress. These findings regarding the dynamical properties of DOS under high pressures are very useful for the production and analysis of lubricants and traction oils.

  16. Effects of Acupuncture Stimulation on the Radial artery’s Pressure Pulse Wave in Healthy Young Participants: Protocol for a prospective, single-Arm, Exploratory, Clinical Study

    PubMed Central

    Shin, Jae-Young; Lee, Jun-Hwan; Ku, Boncho; Bae, Jang Han; un, Min-Ho; Kim, Jaeuk U.; Kim, Tae-Hun

    2016-01-01

    Introduction: This study aims to investigate the effects of acupuncture stimulation on the radial artery’s pressure pulse wave, along with various hemodynamic parameters, and to explore the possible underlying mechanism of pulse diagnosis in healthy participants in their twenties. Methods and analysis: This study is a prospective, single-arm, exploratory clinical study. A total of 25 healthy participants, without regard to gender, in their twenties will be recruited by physicians. Written informed consent will be obtained from all participants. The participants will receive acupuncture once at ST36 on both sides. The radial arterial pulse waves will be measured on the left arm of the subjects by using an applicable pulse tonometric device (KIOM-PAS). On the right arm (appearing twice), electrocardiogram (ECG), photoplethysmogram (PPG), respiration and cardiac output (CO) signals, will be measured using a physiological data acquisition system (Biopac module), while the velocity of blood flow, and the diameter and the depth of the blood vessel will be measured using an ultrasonogram machine on the right arm (appearing twice). All measurements will be conducted before, during, and after acupuncture. The primary outcome will be the spectral energy at high frequencies above 10 Hz (SE10-30Hz) calculated from the KIOM-PAS device signal. Secondary outcomes will be various variables obtained from the KIOM-PAS device, ECG, PPG, impedance cardiography modules, and an ultrasonogram machine. Discussion: The results of this trial will provide information regarding the physiological and the hemodynamic mechanisms underlying acupuncture stimulation and clinical evidence for the influence of acupuncture on the pressure pulse wave in the radial artery. Ethics and dissemination: This study was approved by the Institutional Review Board (IRB) of Kyung Hee University’s Oriental Medical Center, Seoul, Korea (KOMCIRB-150818-HR-030). The study findings will be published in peer

  17. Effect of excited nitrogen atoms on inactivation of spore-forming microorganisms in low pressure N2/O2 surface-wave plasma

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoli; Chang, Xijiang; Tei, Reitou; Nagatsu, Masaaki

    2016-06-01

    Using a vacuum ultraviolet (VUV) absorption spectroscopy with a compact low pressure plasma light source, the absolute nitrogen atom density was measured to study its role in the spore inactivation with low pressure N2/O2 gas mixture surface-wave plasmas (SWPs). Self-absorption effect of the resonance emission lines of nitrogen atoms near 120 nm was minimized by optimizing its discharge conditions of the plasma light source. Experimental results showed that excited nitrogen atom densities monotonically decreased with the decrease of N2 gas percentage in N2/O2 gas mixture SWPs, concomitantly with similar decrease of VUV/UV emission intensities of nitrogen atoms and molecules. In the pure N2 gas SWPs, it was confirmed that a dominant lethal factor was VUV/UV emission generated by N2 plasma, while spore etching occurred via physical and chemical interactions with nitrogen species. With an addition of O2 gas, significant spore etching by excited oxygen atoms made it much easier for the VUV/UV photons emitted by nitrogen atoms, N2 and NO molecules to penetrate through the etched spore coats to the core and cause the fatal DNA damage of the microorganisms. As a result, more rapid inactivation was achieved in the middle region of N2/O2 gas mixture ratio, such as 30-80% O2 gas addition, in the present N2/O2 gas mixture SWPs.

  18. High-efficiency generation of pulsed Lyman-α radiation by resonant laser wave mixing in low pressure Kr-Ar mixture.

    PubMed

    Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Louchev, Oleg A; Iwasaki, Masahiko; Wada, Satoshi

    2016-04-04

    We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10-3 with the output pulse energy 3.6 μJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 μJ.

  19. Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination

    PubMed Central

    Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li

    2016-01-01

    Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5–2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery. PMID:27295608

  20. Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination

    NASA Astrophysics Data System (ADS)

    Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li

    2016-06-01

    Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5–2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery.

  1. Effect of the thermal pressure on upward plasma fluxes due to ponderomotive force of Alfvén ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Nekrasov, Anatoly; Feygin, Felix

    2010-05-01

    In a number of papers devoted to the effect of the ponderomotive force of Alfvén ion cyclotron waves on plasma fluxes in the Earth's magnetosphere, it was shown that the plasma density increases in the vicinity of the equator (e.g. Guglielmi et al. 1993). The increase of density takes place as a result of plasma fluxes flowing upward along the magnetic field lines under the action of the ponderomotive force. This force emerges due to inhomogeneity of the background number density and magnetic field (Guglielmi et al. 1993, Nekrasov and Feygin 2005). However, the experimental data by Olsen (1992) show that the plasma density accumulation at the equator is not observed. On the contrary, the density at the equator is lower than outside of it. In the present paper, we show that the quasi-stationary density evolution always tends to decrease under the action of the ponderomotive force. This decrease is proportional to the local wave amplitude, i.e. it is deeper in regions, where the wave amplitude is larger. As a result, the thermal pressure prevents the flux from flowing upward and the stationary state is settled. A typical time of this process is the ratio of the wave amplitude inhomogeneity length to the sound speed. In the stationary state, the flux is equal to zero. As it is known, a part of the ponderomotive force is proportional to the nonlinear magnetic moment of the medium and gradient of the background magnetic field. We show that the well-known Pitayevsky's formula for the magnetic moment in the cold plasma (Pitayevsky 1960) is not complete. This formula does not take into account the part of the magnetic moment induced by the nonlinear current connected with the quasi-stationary velocities of charged species. References Guglielmi, A. V., O. A. Pokhotelov, L. Stenflo, and P. K. Shukla, Astrophys. Space Sci. 200, 91 (1993). Nekrasov, A. K. and F. Z. Feygin, Physica Scripta 71, 310 (2005). Olsen, R. C., J. Geophys. Res. 97, 1135 (1992). Pitayevsky, L. P

  2. Oceanic-wave-measurement system

    NASA Technical Reports Server (NTRS)

    Holmes, J. F.; Miles, R. T.

    1980-01-01

    Barometer mounted on bouy senses wave heights. As wave motion raises and lowers barometer, pressure differential is proportional to wave height. Monitoring circuit samples barometer output every half cycle of wave motion and adds magnitudes of adjacent positive and negative peaks. Resulting output signals, proportional to wave height, are transmitted to central monitoring station.

  3. Patterns of Low-Frequency Monthly Sea Level Pressure Variability (1899-1986) and Associated Wave Cyclone Frequencies.

    NASA Astrophysics Data System (ADS)

    Rogers, Jeffery C.

    1990-12-01

    Spatial patterns of low-frequency sea level pressure (SLP) variability are identified by performing rotated principal component analysis (RPCA) on a long-term (1899-1986) Northern Hemisphere gridded dataset. The analysis is limited to the region 160°E eastward to 40°E due to missing data early in the century. The objective is to identify a comprehensive set of highly recurrent SLP teleconnection patterns; to examine some aspects of their seasonality; and to identify the associated mean winter pressure fields and cyclone frequencies occurring at times of opposite eigenvector polarity. The results are further described in the context of the Southern Oscillation and known midtropospheric teleconnection patterns.Four low-frequency variability patterns are identified over the Atlantic-European sector, including (i) the North Atlantic 0scillation (NAO), and spatial patterns with SLP variability centers over (ii) the eastern Atlantic (EATL), (iii) southern Europe and the northern Mediterranean basin (SENA). and (iv) Scandinavia (SCAN). The Pacific sector low-frequency variability patterns include the (v) North Pacific Oscillation (NPO), and patterns with centers over (vi) the north-central Pacific (PAC) and (vii) the Bering Sea (BER). The EATL, SENA, SCAN and BER patterns have not been identified in previous SLP RPCA studies. Seasonal variations take place in the location of the primary and secondary centre of SLP variability in each teleconnection.Each of the Atlantic teleconnections have at least one polarity mode in which cyclones migrate toward Greenland and Iceland. However, the opposite modes in the NAO and EATL are associated with distinct zonally oriented cyclone tracks along latitudes 40°-45°N. One mode of each Pacific pattern is characterized by a zonally oriented cyclone track but the opposite modes are characterized by cyclone maxima in the eastern Pacific (NPO), the western Bering Sea (PAC) and another track that turns northward toward the Bering Sea

  4. Sound wave velocities of fcc Fe Ni alloy at high pressure and temperature by mean of inelastic X-ray scattering

    NASA Astrophysics Data System (ADS)

    Kantor, Anastasia P.; Kantor, Innokenty Yu.; Kurnosov, Alexander V.; Kuznetsov, Alexei Yu.; Dubrovinskaia, Natalia A.; Krisch, Michael; Bossak, Alexei A.; Dmitriev, Vladimir P.; Urusov, Vadim S.; Dubrovinsky, Leonid S.

    2007-09-01

    Knowledge of the high-pressure and high-temperature elasticity of Fe-Ni alloy with low (5-25%) Ni content is crucial for geosciences since it is probably the major component of the cores of the terrestrial planets and the Moon. Here we present a study of a FeNi alloy with 22 at.% of Ni to 72 GPa and 715 K, using inelastic X-ray scattering (IXS) and X-ray powder diffraction from polycrystalline material. The X-ray diffraction (XRD) study revealed stability of the face centred cubic (fcc) over the hexagonal close packed (hcp) phase in the whole investigated pressure-temperature range. The study presents first investigations of elasticity of fcc phase of iron-nickel Fe 0.78Ni 0.22 alloy. The isothermal equations of state were derived at room temperature and at 715 K ( K300 = 162(1) GPa, K300=4.97(1), V300 = 6.89(1) cm 3/mol; K715 = 160(1) GPa, K715=4.97(2), V715 = 6.96(1) cm 3/mol). Inelastic X-ray measurements allow the determination of the longitudinal acoustic wave velocity VP, and provide, combined with the measured equations of state, the full isotropic elasticity of the material. We found that within experimental errors our data follow the Birch's law. We did not observe any significant deviations for fcc Fe 0.78Ni 0.22 from elastic properties of pure ɛ-iron.

  5. Atmospheric Waves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    With its Multispectral Visible Imaging Camera (MVIC), half of the Ralph instrument, New Horizons captured several pictures of mesoscale gravity waves in Jupiter's equatorial atmosphere. Buoyancy waves of this type are seen frequently on Earth - for example, they can be caused when air flows over a mountain and a regular cloud pattern forms downstream. In Jupiter's case there are no mountains, but if conditions in the atmosphere are just right, it is possible to form long trains of these small waves. The source of the wave excitation seems to lie deep in Jupiter's atmosphere, below the visible cloud layers at depths corresponding to pressures 10 times that at Earth's surface. The New Horizons measurements showed that the waves move about 100 meters per second faster than surrounding clouds; this is about 25% of the speed of sound on Earth and is much greater than current models of these waves predict. Scientists can 'read' the speed and patterns these waves to learn more about activity and stability in the atmospheric layers below.

  6. Development of numerical model to investigate the laser driven shock waves from aluminum target into ambient air at atmospheric pressure and its comparison with experiment

    NASA Astrophysics Data System (ADS)

    Shiva, S. Sai; Leela, Ch.; Chaturvedi, S.; Sijoy, C. D.; Kiran, P. Prem

    2017-01-01

    A one-dimensional, three-temperature (electron, ion and thermal radiation) numerical model was developed to study the laser induced shock wave (LISW) propagation from aluminum target in ambient air at atmospheric pressure. The hydrodynamic equations of mass, momentum and energy are solved by using an implicit scheme in Lagrangian form. The model considers the laser absorption to take place via inverse-bremsstrahlung due to electron-ion (e-i) process. The flux limited electron thermal energy transport due e-i and e-n thermal energy relaxation equations are solved implicitly. The experimental characterization of spatio-temporal evolution of the LISW in air generated by focusing a second harmonic (532 nm, 7ns) of Nd:YAG laser on to surface of Al is performed using shadowgraphy technique with a temporal resolution of 1.5 ns. The velocity of SW observed in the experiments over 0.2 µs-8 µs time scales was compared with the numerical results to understand the SW transition from planar to spherical evolution.

  7. Calculation Of Pneumatic Attenuation In Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.

    1991-01-01

    Errors caused by attenuation of air-pressure waves in narrow tubes calculated by method based on fundamental equations of flow. Changes in ambient pressure transmitted along narrow tube to sensor. Attenuation of high-frequency components of pressure wave calculated from wave equation derived from Navier-Stokes equations of viscous flow in tube. Developed to understand and compensate for frictional attenuation in narrow tubes used to connect aircraft pressure sensors with pressure taps on affected surfaces.

  8. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources

    SciTech Connect

    Shavorskiy, Andrey; Slaughter, Daniel S.; Zegkinoglou, Ioannis; Rude, Bruce S.; Bluhm, Hendrik; Neppl, Stefan; Cryan, James P.; Siefermann, Katrin R.; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P.; Fraund, Matthew W.; Khurmi, Champak; Wright, Travis W.; Schoenlein, Robert W.; Gessner, Oliver; Hertlein, Marcus P.; Tyliszczak, Tolek; Huse, Nils; and others

    2014-09-15

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ∼0.1 mm spatial resolution and ∼150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E{sub p} = 150 eV and an electron kinetic energy range KE = 503–508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ∼9 ns at a pass energy of 50 eV and ∼1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular

  9. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources

    NASA Astrophysics Data System (ADS)

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S.; Cryan, James P.; Siefermann, Katrin R.; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P.; Zegkinoglou, Ioannis; Fraund, Matthew W.; Khurmi, Champak; Hertlein, Marcus P.; Wright, Travis W.; Huse, Nils; Schoenlein, Robert W.; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A.; Rude, Bruce S.; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ˜0.1 mm spatial resolution and ˜150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy Ep = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ˜9 ns at a pass energy of 50 eV and ˜1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  10. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources.

    PubMed

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S; Cryan, James P; Siefermann, Katrin R; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P; Zegkinoglou, Ioannis; Fraund, Matthew W; Khurmi, Champak; Hertlein, Marcus P; Wright, Travis W; Huse, Nils; Schoenlein, Robert W; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A; Rude, Bruce S; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ~0.1 mm spatial resolution and ~150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E(p) = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ~9 ns at a pass energy of 50 eV and ~1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  11. Syn-eruptive, soft-sediment deformation of dilute pyroclastic density current deposits: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

    NASA Astrophysics Data System (ADS)

    Douillet, Guilhem Amin; Kueppers, Ulrich; Taisne, Benoit; Tsang-Hin-Sun, Ève; Müller, Sebastian K.; Dingwell, Donald B.

    2015-04-01

    Dilute pyroclastic density currents (PDCs) represent peculiar transport mechanisms sharing similarities with turbidity currents, wind-blown transport and granular flows. Outcrops of syn-eruptive, soft-sediment deformation are compiled from seven volcanic centers in order to provide a broad perspective on the variety of structures: Ubehebe craters (USA), Tungurahua (Ecuador), Soufrière Hills (Montserrat), Laacher See (Germany), Lago di Albano (Italy), Tower Hill and Purrumbete lake (both Australia). The interpretation of the variety of triggers enlightens the understanding of the sedimentary environment and basal boundary processes for PDCs: 1/ Isolated, cm-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. 2/ The occurrence of degassing pipes together with basal intrusive dikes suggest fluidization during flow stages. This, in turn, can facilitate the development of Kelvin-Helmholtz structures. The occurrence of injection dikes at the base of flow units in some outcrops compared with suction-driven local uplifts in others indicates the role of dynamic pore pressure and local changes between depletive and accumulative dynamics of flows. 3/ Isolated slumps as well as sinking pseudonodules are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. 4/ Impact of ballistic blocks can trigger local displacement or liquefaction. Based on the deformation depth, these can yield precise insights into depositional unit boundaries. Such impact structures may also be at the origin of some of the steep truncation planes visible at the base of the so-called "chute and pool" structures. 5/ Finally, the passage of shock waves emanating from the vent may be preserved in the form of trains of isolated, fine-grained overturned beds, which may disturb

  12. Nonlinear thermal surface waves

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Stenflo, L.

    1984-09-01

    It is shown that density profile modifications near a plasma surface can survive at moving localized spots because of the radiation pressure of leaking wave field fluctuations. The properties of these luminous surface cavitons are studied.

  13. Central blood pressure and pulse wave velocity: relationship to target organ damage and cardiovascular morbidity-mortality in diabetic patients or metabolic syndrome. An observational prospective study. LOD-DIABETES study protocol

    PubMed Central

    2010-01-01

    Background Diabetic patients show an increased prevalence of non-dipping arterial pressure pattern, target organ damage and elevated arterial stiffness. These alterations are associated with increased cardiovascular risk. The objectives of this study are the following: to evaluate the prognostic value of central arterial pressure and pulse wave velocity in relation to the incidence and outcome of target organ damage and the appearance of cardiovascular episodes (cardiovascular mortality, myocardial infarction, chest pain and stroke) in patients with type 2 diabetes mellitus or metabolic syndrome. Methods/Design Design: This is an observational prospective study with 5 years duration, of which the first year corresponds to patient inclusion and initial evaluation, and the remaining four years to follow-up. Setting: The study will be carried out in the urban primary care setting. Study population: Consecutive sampling will be used to include patients diagnosed with type 2 diabetes between 20-80 years of age. A total of 110 patients meeting all the inclusion criteria and none of the exclusion criteria will be included. Measurements: Patient age and sex, family and personal history of cardiovascular disease, and cardiovascular risk factors. Height, weight, heart rate and abdominal circumference. Laboratory tests: hemoglobin, lipid profile, creatinine, microalbuminuria, glomerular filtration rate, blood glucose, glycosylated hemoglobin, blood insulin, fibrinogen and high sensitivity C-reactive protein. Clinical and 24-hour ambulatory (home) blood pressure monitoring and self-measured blood pressure. Common carotid artery ultrasound for the determination of mean carotid intima-media thickness. Electrocardiogram for assessing left ventricular hypertrophy. Ankle-brachial index. Retinal vascular study based on funduscopy with non-mydriatic retinography and evaluation of pulse wave morphology and pulse wave velocity using the SphygmoCor system. The medication used for

  14. Wave Engine Topping Cycle Assessment

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping

  15. Experimental Study on Thermal-Hydraulics During Start-Up in the Natural Circulation Boiling Water Reactor Concept: Effects of System Pressure and Increasing Heat Flux on the Geysering and Density Wave Oscillation

    SciTech Connect

    Hadid Subki, M.; Masanori Aritomi; Noriyuki Watanabe; Chaiwat Muncharoen

    2002-07-01

    The feasibility study in thermal-hydraulics for the future light water reactor concept is carried out. One of the essential studies is the two-phase flow instability during start-up in the natural circulation boiling water reactor (BWR) concept. It is anticipated that the occurrence of the two-phase flow instabilities during start-up significantly affects the feasibility concept, since it would cause the complexity in raising and maneuvering the power output. The purpose of the current study is to experimentally investigate the driving mechanism of the geysering and density wave oscillation in the natural circulation loop, induced by a range of system operating pressure and increasing heat flux in vertical parallel channels. The pressure range of atmospheric up to about 4 bars, and the input heat flux range of 0 up to 577 kW/m{sup 2} are applied in these experiments. An experimental apparatus of twin boiling upflow channels to simulate natural circulation flow loop has been designed, constructed and operated. The natural circulation in the loop occurs due to the density difference between two-phase region in the channels and the single-phase liquid in the downcomer. The objective of the study is to propose a rational start-up procedure in which the geysering and density wave oscillation can be prevented during startup, according to its system pressure and heat flux. Previous studies have clarified that three (3) kinds of thermo-hydraulics instabilities may occur during start-up in the natural circulation BWR depending on its procedure and reactor configuration, which are (1) geysering induced by condensation, (2) natural circulation induced by hydrostatic head fluctuation in steam separator, and (3) density wave oscillation. (authors)

  16. A New Fast, Accurate and Non-Oscillatory Numerical Approach for Wave Propagation Problems in Solids Application to High-frequency Pulse Propagation in the Hopkinson Pressure Bar

    DTIC Science & Technology

    2015-09-16

    frequency Pulse Propagation in the Hopkinson Pressure Bar Alexander ldesman TEXAS TECH UNIVERSITY SYSTEM 09/ 16/2015 Final Report DISTRIBUTION A...5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) TEXAS TECH UNIVERSITY 2500 BROADWAY...Solids: Application to High-Frequency Pulse Propagation in the Hopkinson Pressure Bar Alexander Idesman Texas Tech University Final report The

  17. Verification of the plasma diffusion-wave propagation in an atmospheric-pressure plasma jet with the solution of a diffusion equation

    NASA Astrophysics Data System (ADS)

    Cho, Guangsup; Uhm, Han Sup

    2016-10-01

    The time-dependent solution of diffusion equation by the Fourier integration provides the axial diffusion velocity of a plasma packet, which is a key element of the plasma propagation in a plasma jet operated by the several tens of kHz. The plasma diffusion velocity is higher than the order of un ˜ 10 m/s at a high electric-field region of plasma generation and it is about the order of un ˜ 10 m/s at the plasma column of a low field region in a jet-nozzle inside. Meanwhile, the diffusion velocity is slower than the order of un ˜ 10 m/s in the open-air space where the plasma density flattens due to its radial expansion. Using these diffusion velocity data, the group-velocity of plasma diffusion wave-packet is given by ug ˜ cs2/un, a combination of the diffusion velocity un and the acoustic velocity cs. The experimental results of the plasma propagation can be verified with the plasma propagation in a form of the wave-packet whose propagation velocity is 104 m/s in a tube inside and is as fast as 105 m/s in the open-air space, thereby reconfirming that the theory of a plasma diffusion-wave is the origin of the plasma propagation in a plasma jet.

  18. Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter

    NASA Astrophysics Data System (ADS)

    Huber, Peter; Jöchle, Knut; Debus, Jürgen

    1998-10-01

    Monitoring the generation of cavitation is of great interest for diagnostic and therapeutic use of ultrasound in medicine, since cavitation is considered to play a major role in nonthermal ultrasound interactions with tissue. Important parameters are the number of cavitation events and the energy released during the bubble collapse. This energy is correlated to the maximum bubble radius which is related to the cavitation lifespan. The aim of this study was therefore to investigate the influence of the acoustic pressure amplitude and the pulse repetition frequency (PRF) in the field of a lithotripter (Lithostar, Siemens) on the number, size and lifespan of transient cavitation bubbles in water. We used scattered laser light recorded by a photodiode and stroboscopic photographs to monitor the cavitation activity. We found that PRF (range 0.5-5 Hz) had no influence on the cavitation bubble lifespan and size, whereas lifespan and size increased with the acoustic pressure amplitude. In contrast, the number of cavitation events strongly increased with PRF, whereas the pressure amplitude had no significant influence on the number of cavitation events. Thus, by varying the pressure amplitude and PRF, it might be possible to deliver a defined relative number of cavitations at a defined relative energy level in a defined volume. This seems to be relevant to further studies that address the biological effects of transient cavitation occurring in the fields of lithotripters.

  19. Understanding the Effects of Blast Wave on the Intracranial Pressure and Traumatic Brain Injury in Rodents and Humans Using Experimental Shock Tube and Numerical Simulations

    DTIC Science & Technology

    2014-07-01

    tube system, (b) realistic explosive surrogate (RED) head with hybrid III neck inside 28 in. shock tube, (c) head with hybrid III neck outside 9 in...Chapter 4 describes the experiments of the blast response of a surrogate head. the pressure-acceleration response of a head- neck human surrogate RED...the neck . The loading had an initial acceleration phase followed by deceleration. During both acceleration and deceleration phases, high shear

  20. Modeling Seismic Noise Body Waves

    NASA Astrophysics Data System (ADS)

    Stutzmann, E.; Farra, V.; Gualtieri, L.; Schimmel, M.; Ardhuin, F.

    2014-12-01

    Secondary microseismic noise is generated by non-linear interactions between ocean waves at the ocean surface. The sources correspond to pressure fluctuations close to the ocean surface. They generate acoustic waves in the ocean, which are then converted into P, SV, and Rayleigh waves in the deeper Earth layers. Rayleigh waves are the most energetic noise signal but body wave amplitude can be extracted using beamforming analysis. We analyze several typhoons recorded by the Southern California Seismic Network and we show that the detected P-wave amplitudes are frequency dependent. In order to understand the body wave generation mechanism, we model the P-wave amplitude. The sources are the power spectral density of the pressure derived from the ocean wave interaction model. They are distributed along the ocean surface and they are frequency dependent. We then compute the site effect of the ocean layer upon body waves generated by the noise sources. The site effect can be described as the constructive interference of multiply reflected P waves in the ocean that are then converted to P waves at the ocean-crust interface. It varies with frequency and ocean depth. Finally we compute the propagation from the source area to the network by taking into account seismic attenuation and geometrical spreading. We show that the modeled P-wave amplitude reproduce well the frequency dependent variations of the measured P-wave. This frequency dependent effect is due to both the source and site effect. We define the effective source as the product of the power spectral density of the pressure close to the surface and the site effect. We show that its maximum is consistent with the source location obtained by back projecting the slowness derived from the beamforming analysis. Finally, we show that body wave analysis enable to efficiently constrain the amount of sources generated by ocean wave reflected at the coast.

  1. Hemodynamic Correlates of Blood Pressure Across the Adult Age Spectrum: Noninvasive Evaluation in the Framingham Heart Study

    PubMed Central

    Mitchell, Gary F.; Wang, Na; Palmisano, Joseph N.; Larson, Martin G.; Hamburg, Naomi M.; Vita, Joseph A.; Levy, Daniel; Benjamin, Emelia J.; Vasan, Ramachandran S.

    2010-01-01

    Background Systolic blood pressure and pulse pressure are substantially higher in older adults. The relative contributions of increased forward versus reflected pressure wave amplitude or earlier arrival of the reflected wave to elevated pulse pressure remain controversial. Methods and Results We measured proximal aortic pressure and flow, forward pressure wave amplitude, global wave reflection, reflected wave timing and pulse wave velocity noninvasively in 6417 (age range, 19 to 90 years; 53% women) Framingham Heart Study Third Generation and Offspring participants. Variation in forward wave amplitude paralleled pulse pressure throughout adulthood. In contrast, wave reflection and pulse pressure were divergent across adulthood: in younger participants, pulse pressure was lower and wave reflection higher with advancing age whereas in older participants, pulse pressure was higher and wave reflection lower with age. Reflected wave timing differed modestly across age groups despite considerable differences in pulse wave velocity. Forward wave amplitude explained 80% (central) and 66% (peripheral) of the variance in pulse pressure in younger participants (<50 years) and 90% and 84% in the older participants (≥50 years, all P<0.0001). In a stepwise model that evaluated age-pulse pressure relations in the full sample, the late accelerated increases in central and peripheral pulse pressure were markedly attenuated when variation in forward wave amplitude was considered. Conclusions Higher pulse pressure at any age and higher pulse pressure with advancing age is predominantly associated with a larger forward pressure wave. The influence of wave reflection on age-related differences in pulse pressure was minor. PMID:20855656

  2. Continuous wave dye-laser technique for simultaneous, spatially resolved measurements of temperature, pressure, and velocity of NO in an underexpanded free jet

    NASA Technical Reports Server (NTRS)

    Di Rosa, Michael D.; Chang, Albert Y.; Hanson, Ronald K.

    1993-01-01

    Gas dynamic quantities within an underexpanded nitrogen free jet, seeded with 0.5 percent NO, were measured nonintrusively by using an intracavity-doubled, rapid-tuning, CW ring dye laser. The UV beam passed obliquely through the jet axis, and its frequency repetitively scanned across adjacent rotational lines in the NO gamma band near 225 nm at a rate of 4 kHz. Spatially resolved excitation scans were obtained by monitoring the induced broadband fluoresence. Modeling the Doppler-shifted excitation scans with Voigt profiles permitted simultaneous determinations of NO velocity, rotational temperature, and pressure. Zero Doppler shift was referenced to an absorption trace obtained across a static cell and recorded concurrently with the excitation scan. Typically, the measured and predicted axial distributions agreed within 10 percent. At high Mach numbers there was evidence of rotational freezing of NO.

  3. A MATLAB toolbox and Excel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature

    NASA Astrophysics Data System (ADS)

    Abers, Geoffrey A.; Hacker, Bradley R.

    2016-02-01

    To interpret seismic images, rock seismic velocities need to be calculated at elevated pressure and temperature for arbitrary compositions. This technical report describes an algorithm, software, and data to make such calculations from the physical properties of minerals. It updates a previous compilation and Excel® spreadsheet and includes new MATLAB® tools for the calculations. The database of 60 mineral end-members includes all parameters needed to estimate density and elastic moduli for many crustal and mantle rocks at conditions relevant to the upper few hundreds of kilometers of Earth. The behavior of α and β quartz is treated as a special case, owing to its unusual Poisson's ratio and thermal expansion that vary rapidly near the α-β transition. The MATLAB tools allow integration of these calculations into a variety of modeling and data analysis projects.

  4. Two-phase flow model for energetic proton beam induced pressure waves in mercury target systems in the planned European Spallation Source

    NASA Astrophysics Data System (ADS)

    Barna, I. F.; Imre, A. R.; Rosta, L.; Mezei, F.

    2008-12-01

    Two-phase flow calculations are presented to investigate the thermo-hydraulical effects of the interaction between 2 ms long 1.3 GeV proton pulses with a closed mercury loop which can be considered as a model system of the target of the planned European Spallation Source (ESS) facility. The two-fluid model consists of six first-order partial differential equations that present one dimensional mass, momentum and energy balances for mercury vapor and liquid phases are capable to describe quick transients like cavitation effects or shock waves. The absorption of the proton beam is represented as instantaneous heat source in the energy balance equations. Densities and internal energies of the mercury liquid-vapor system is calculated from the van der Waals equation, but general method how to obtain such properties using arbitrary equation of state is also presented. A second order accurate high-resolution shock-capturing numerical scheme is applied with different kind of limiters in the numerical calculations. Our analysis show that even 75 degree temperature heat shocks cannot cause considerable cavitation effects in mercury.

  5. Internal Waves in Straits (IWISE): Observations of Wave Generation

    DTIC Science & Technology

    2012-09-30

    deployment of a 2-D array of pressure-sensor-equipped inverted echo sounders (PIES) so as to observe the generation of internal waves by tidal...east of the strait to the westernmost deployments. Fig. 1 Deployment locations of Pressure sensor equipped Inverted Echo Sounders [PIES] in South...measurements of nonlinear internal waves using the inverted echo sounder , J. Atmos. Oceanic Technology, 26, 2228−2242. David M Farmer, Li, Qiang & Jae-Hun

  6. The role of Biot slow waves in electroseismic wave phenomena.

    PubMed

    Pride, Steven R; Garambois, Stéphane

    2002-02-01

    The electromagnetic fields that are generated as a spherical seismic wave (either P or S) traverses an interface separating two porous materials are numerically modeled both with and without the generation of Biot slow waves at the interface. In the case of an incident fast-P wave, the predicted electric-field amplitudes when slow waves are neglected can easily be off by as much as an order of magnitude. In the case of an incident S wave, the error is much smaller (typically on the order of 10% or less) because not much S-wave energy gets converted into slow waves. In neglecting the slow waves, only six plane waves (reflected and transmitted fast-P, S, and EM waves) are available with which to match the eight continuity conditions that hold at each interface. This overdetermined problem is solved by placing weights on the eight continuity conditions so that those conditions that are most important for obtaining the proper response are emphasized. It is demonstrated that when slow waves are neglected, it is best to also neglect the continuity of the Darcy flow and fluid pressure across an interface. The principal conclusion of this work is that to properly model the electromagnetic (EM) fields generated at an interface by an incident seismic wave, the full Biot theory that allows for generation of slow waves must be employed.

  7. Independent and Joint Effect of Brachial-Ankle Pulse Wave Velocity and Blood Pressure Control on Incident Stroke in Hypertensive Adults.

    PubMed

    Song, Yun; Xu, Benjamin; Xu, Richard; Tung, Renee; Frank, Eric; Tromble, Wayne; Fu, Tong; Zhang, Weiyi; Yu, Tao; Zhang, Chunyan; Fan, Fangfang; Zhang, Yan; Li, Jianping; Bao, Huihui; Cheng, Xiaoshu; Qin, Xianhui; Tang, Genfu; Chen, Yundai; Yang, Tianlun; Sun, Ningling; Li, Xiaoying; Zhao, Lianyou; Hou, Fan Fan; Ge, Junbo; Dong, Qiang; Wang, Binyan; Xu, Xiping; Huo, Yong

    2016-07-01

    Pulse wave velocity (PWV) has been shown to influence the effects of antihypertensive drugs in the prevention of cardiovascular diseases. Data are limited on whether PWV is an independent predictor of stroke above and beyond hypertension control. This longitudinal analysis examined the independent and joint effect of brachial-ankle PWV (baPWV) with hypertension control on the risk of first stroke. This report included 3310 hypertensive adults, a subset of the China Stroke Primary Prevention Trial (CSPPT) with baseline measurements for baPWV. During a median follow-up of 4.5 years, 111 participants developed first stroke. The risk of stroke was higher among participants with baPWV in the highest quartile than among those in the lower quartiles (6.3% versus 2.4%; hazard ratio, 1.66; 95% confidence interval, 1.06-2.60). Similarly, the participants with inadequate hypertension control had a higher risk of stroke than those with adequate control (5.1% versus 1.8%; hazard ratio, 2.32; 95% confidence interval, 1.49-3.61). When baPWV and hypertension control were examined jointly, participants in the highest baPWV quartile and with inadequate hypertension control had the highest risk of stroke compared with their counterparts (7.5% versus 1.3%; hazard ratio, 3.57; 95% confidence interval, 1.88-6.77). There was a significant and independent effect of high baPWV on stroke as shown among participants with adequate hypertension control (4.2% versus 1.3%; hazard ratio, 2.29, 95% confidence interval, 1.09-4.81). In summary, among hypertensive patients, baPWV and hypertension control were found to independently and jointly affect the risk of first stroke. Participants with high baPWV and inadequate hypertension control had the highest risk of stroke compared with other groups.

  8. Particle-Wave Micro-Dynamics in Nonlinear Self-Excited Dust Acoustic Waves

    SciTech Connect

    Tsai, C.-Y.; Teng, L.-W.; Liao, C.-T.; I Lin

    2008-09-07

    The large amplitude dust acoustic wave can be self-excited in a low-pressure dusty plasma. In the wave, the nonlinear wave-particle interaction determines particle motion, which in turn determines the waveform and wave propagation. In this work, the above behaviors are investigated by directly tracking particle motion through video-microscopy. A Lagrangian picture for the wave dynamics is constructed. The wave particle interaction associated with the transition from ordered to disordered particle oscillation, the wave crest trapping and wave heating are demonstrated and discussed.

  9. Wave turbulence

    NASA Astrophysics Data System (ADS)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  10. Wave/current interaction model

    NASA Technical Reports Server (NTRS)

    Liu, A. K.

    1988-01-01

    The wave-current interaction for the application to remote sensing data via numerical simulations and data comparison is modelled. Using the field data of surface current shear, wind condition and ambient wave spectrum, the numerical simulations of directional wave spectrum evolution were used to interpret and to compare with the aircraft data from Radar Ocean Wave Spectrometer (ROWS) and Surface Contour Radar (SCR) across the front during Frontal Air Sea Interaction Experiment (FASINEX). The wave-ice interaction was inspired by the observation of large amplitude waves hundreds of kms inside the ice pack in the Weddell Sea, resulting in breakup of the ice pack. The developed analysis of processes includes the refraction of waves at the pack edge, the effects of pack compression on wave propagation, wave train stability and buckling stability in the ice pack. Sources of pack compression and interaction between wave momentum and pack compression are investigated. Viscous camping of propagating waves in the marginal ice zone are also studied. The analysis suggests an explanation for the change in wave dispersion observed from the ship and the sequence of processes that cause ice pack breakup, pressure ridge formation and the formation of open bands of water.

  11. High-Resolution Numerical Simulation and Analysis of Mach Reflection Structures in Detonation Waves in Low-Pressure H 2 –O 2 –Ar Mixtures: A Summary of Results Obtained with the Adaptive Mesh Refinement Framework AMROC

    DOE PAGES

    Deiterding, Ralf

    2011-01-01

    Numerical simulation can be key to the understanding of the multidimensional nature of transient detonation waves. However, the accurate approximation of realistic detonations is demanding as a wide range of scales needs to be resolved. This paper describes a successful solution strategy that utilizes logically rectangular dynamically adaptive meshes. The hydrodynamic transport scheme and the treatment of the nonequilibrium reaction terms are sketched. A ghost fluid approach is integrated into the method to allow for embedded geometrically complex boundaries. Large-scale parallel simulations of unstable detonation structures of Chapman-Jouguet detonations in low-pressure hydrogen-oxygen-argon mixtures demonstrate the efficiency of the described techniquesmore » in practice. In particular, computations of regular cellular structures in two and three space dimensions and their development under transient conditions, that is, under diffraction and for propagation through bends are presented. Some of the observed patterns are classified by shock polar analysis, and a diagram of the transition boundaries between possible Mach reflection structures is constructed.« less

  12. Peer Pressure

    MedlinePlus

    ... Surgery? A Week of Healthy Breakfasts Shyness Peer Pressure KidsHealth > For Teens > Peer Pressure A A A ... for the school play. previous continue When the Pressure's On Sometimes, though, the stresses in your life ...

  13. Blood pressure

    MedlinePlus Videos and Cool Tools

    Normal blood pressure is important for proper blood flow to the body's organs and tissues. The force of the blood on the walls of the arteries is called blood pressure. Blood pressure is measured both as the heart ...

  14. Gravity Waves

    Atmospheric Science Data Center

    2013-04-19

    article title:  Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...

  15. Ionospheric Stimulation By High Power Radio Waves

    NASA Astrophysics Data System (ADS)

    Minami, S.; Nishino, M.; Suzuki, Y.; Sato, S.; Tanikawa, T.; Nakamura, Y.; Wong, A. Y.

    1999-01-01

    We have performed an experiment to artificially stimulate the ionosphere using higher power radio waves at the HIPAS (High Power Auroral Stimulation) facility in Alaska. A radio transmission of 2.85 MHz was made at 80 MW (ERP). Diagnostics were made at the other site located 35 km from the transmission site. The results of cross-correlating the excited HF wave and observed with an 8 channel, 30 MHz scanning cosmic radio noise absorption records revealed the excited height of 90 km. Also atmospheric pressure waves observed on the ground show evident propagation of pressure waves which are generated in the ionosphere by the high-power HF wave. The results determine the excitation height of 90 km in the ionosphere and show evidence of the pressure wave coupling between the ionosphere and the lower atmosphere for periods of 10 min

  16. Refrigeration system having standing wave compressor

    DOEpatents

    Lucas, Timothy S.

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  17. Estimation of central systolic blood pressure using an oscillometric blood pressure monitor.

    PubMed

    Cheng, Hao-Min; Wang, Kang-Ling; Chen, Ying-Hwa; Lin, Shing-Jong; Chen, Lung-Ching; Sung, Shih-Hsien; Ding, Philip Yu-An; Yu, Wen-Chung; Chen, Jaw-Wen; Chen, Chen-Huan

    2010-06-01

    Current noninvasive techniques for assessing central aortic pressure require the recording of an arterial pressure wave using a high-fidelity applanation tonometer. We therefore developed and validated a novel method to estimate the central aortic systolic pressure using an oscillometric blood pressure monitor alone. Invasive high-fidelity right brachial and central aortic pressure waves, and left-brachial pulse volume plethysmography from an oscillometric blood pressure monitor, were obtained at baseline and 3 min after administration of sublingual nitroglycerin in 100 patients during cardiac catheterization. In the initial 50 patients (Generation Group), Central systolic blood pressure was predicted by a multi-variate prediction model generated from the comprehensive analysis of the invasive brachial pressure wave, including brachial late-systolic shoulder pressure value and parameters related to wave reflection and arterial compliance. Another prediction model was similarly constructed from the noninvasively calibrated pulse volume plethysmography. Both models were validated in the subsequent 50 patients (Validation Group) with results: r=0.98 (P<0.001) and mean difference=0.5+/-4.5 (95% confidence interval -8.3 to 9.3) mm Hg for the invasive model, and r=0.93 (P<0.001) and mean difference=-0.1+/-7.6 (95% confidence interval -15.0 to 14.8) mm Hg for the noninvasive model. Thus, our results indicate that central aortic systolic blood pressure could be estimated by analysis of the noninvasive brachial pressure wave alone from an oscillometric blood pressure monitor.

  18. Standing wave compressor

    DOEpatents

    Lucas, Timothy S.

    1991-01-01

    A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

  19. Deflagration Wave Profiles

    SciTech Connect

    Menikoff, Ralph

    2012-04-03

    Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.

  20. Making waves

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten

    2017-01-01

    Traveling waves propagating along surfaces play an important role for intracellular organization. Such waves can appear spontaneously in reaction-diffusion systems, but only few general criteria for their existence are known. Analyzing the dynamics of the Min proteins in Escherichia coli, Levine and Kessler (2016 New J. Phys. 18 122001) now identified a new mechanism for the emergence of traveling waves that relies on conservation laws. From their analysis one can expect traveling waves to be a generic feature of systems made of proteins that have a cytoplasmic and a membrane-bound state.

  1. Preliminary investigation on the relation between maximum wave height and wave spectra

    NASA Astrophysics Data System (ADS)

    Tao, Aifeng; Wen, Cheng; Wu, Yuqing; Wu, Haoran; Li, Shuo; Cao, Guangsui

    2016-04-01

    The maximum wave height is important not only for the determination of design wave parameters but also for the marine disaster defense. While it cannot be predicted straightforwardly at present, since the general numerical models for wave forecasting are all based on phase averaged spectra model. Then it becomes very useful to make clear the relationship between the maximum wave height and wave spectra parameters, such as average wave steepness, spectra width and spectra type, such as one single peak spectra or multi peaks spectra. In order to perform this research procedure, plenty of observed wave data are required. We collected ten years wave data measured from a ship in North Sea, one year wave pressure data from nine points around Korea, four years buoy data from three points along Chinese coast. The preliminary investigation results on the relations between maximum waves and spectra via the mention observed data will be present here.

  2. Internal Wave Generation in Straits

    DTIC Science & Technology

    2013-09-30

    echo sounders (PIESs) so as to observe the generation of internal waves by tidal interaction with topography in Luzon Strait (Fig. 1), and to...Pressure sensor equipped Inverted Echo Sounders [PIES] (see Li et al. 2009). Five instruments were deployed in a pilot study and 13 were deployed at the...internal waves using the inverted echo sounder , J. Atmos. Oceanic Technology, 26, 2228−2242. Li Qiang & David M Farmer (2011), The Generation and

  3. Pressure Sores

    MedlinePlus

    Pressure sores are areas of damaged skin caused by staying in one position for too long. They ... wheelchair, or are unable to change your position. Pressure sores can cause serious infections, some of which ...

  4. Barometric pressure

    NASA Technical Reports Server (NTRS)

    Billings, C. E.

    1973-01-01

    The effects of alterations in barometric pressure on human beings are described. Human tolerances for gaseous environments and low and high barometric pressure are discussed, including effects on specific areas, such as the ear, lungs, teeth, and sinuses. Problems due to trapped gas within the body, high dynamic pressures on the body, and blasts are also considered.

  5. Pulse Wave Well Development Demonstration

    SciTech Connect

    Burdick, S.

    2001-02-23

    Conventional methods of well development at the Savannah River Site generate significant volumes of investigative derived waste (IDW) which must be treated and disposed of at a regulated Treatment, Storage, or Disposal (TSD) facility. Pulse Wave technology is a commercial method of well development utilizing bursts of high pressure gas to create strong pressure waves through the well screen zone, extending out into the formation surrounding the well. The patented process is intended to reduce well development time and the amount of IDW generated as well as to micro-fracture the formation to improve well capacity.

  6. Pressure dependence of the charge-density-wave and superconducting states in GdTe3, TbTe3, and DyTe3

    SciTech Connect

    Zocco, D. A.; Hamlin, J. J.; Grube, K.; Chu, J. -H.; Kuo, H. -H.; Fisher, I. R.; Maple, M. B.

    2015-05-14

    Here, we present electrical resistivity and ac-susceptibility measurements of GdTe3, TbTe3 and DyTe3 performed under pressure. An upper charge-density-wave (CDW) is suppressed at a rate of dTCW,1/dP~ –85K/GPa. For TbTe3 and DyTe3, a second CDW below TCDW,2 increases with pressure until it reaches the TCDW,1(P) line. For GdTe3, the lower CDW emerges as pressure is increased above ~1GPa. As these two CDW states are suppressed with pressure, superconductivity (SC) appears in the three compounds at lower temperatures. Ac-susceptibility experiments performed on TbTe3 provide compelling evidence for bulk SC in the low-pressure region of the phase diagram. We provide measurements of superconducting critical fields and discuss the origin of a high-pressure superconducting phase occurring above 5 GPa.

  7. Simulation of turbulent wall pressure

    NASA Technical Reports Server (NTRS)

    Ash, R. L.

    1978-01-01

    A Monte Carlo procedure was developed to simulate turbulent boundary layer wall pressure fluctuations. The approach utilizes much of the newly available conditional sampling information to construct the required distribution functions. Various disturbance wave forms were examined, as well as the effect of frequency-dependent decay. Good agreement between the simulation and experimental data was achieved for root mean square pressure level, power spectrum, and space time correlation.

  8. Double Alfvén waves

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Hu, Q.; Dasgupta, B.; Zank, G. P.

    2012-02-01

    Double Alfvén wave solutions of the magnetohydrodynamic equations in which the physical variables (the gas density ρ, fluid velocity u, gas pressure p, and magnetic field induction B) depend only on two independent wave phases ϕ1(x,t) and ϕ2(x,t) are obtained. The integrals for the double Alfvén wave are the same as for simple waves, namely, the gas pressure, magnetic pressure, and group velocity of the wave are constant. Compatibility conditions on the evolution of the magnetic field B due to changes in ϕ1 and ϕ2, as well as constraints due to Gauss's law ∇ · B = 0 are discussed. The magnetic field lines and hodographs of B in which the tip of the magnetic field B moves on the sphere |B| = B = const. are used to delineate the physical characteristics of the wave. Hamilton's equations for the simple Alfvén wave with wave normal n(ϕ), and with magnetic induction B(ϕ) in which ϕ is the wave phase, are obtained by using the Frenet-Serret equations for curves x=X(ϕ) in differential geometry. The use of differential geometry of 2D surfaces in a 3D Euclidean space to describe double Alfvén waves is briefly discussed.

  9. Infragravity waves across the oceans

    NASA Astrophysics Data System (ADS)

    Rawat, Arshad; Ardhuin, Fabrice; Aucan, Jerome

    2014-05-01

    The propagation of transoceanic Infragravity (IG) wave was investigated using a global spectral wave model together with deep-ocean pressure recorders. IG waves are generated mostly at the shorelines due to non-linear hydrodynamic effects that transfer energy from the main windsea and swell band, with periods of 1 to 25 s, to periods up to 500 s. IG waves are important for the study of near-shore processes and harbor agitation, and can also be a potential source of errors in satellite altimetry measurements. Setting up a global IG model was motivated by the investigation of these errors for the future planned SWOT mission. Despite the fact that the infragravity waves exhibit much smaller vertical amplitudes than the usual high frequency wind-driven waves, of the order of 1 cm in the deep oceans, their propagation throughout the oceans and signature in the wave spectrum can be clearly observed. Using a simplified empirical parameterization of the nearshore source of free IG waves as a function of the incoming wave parameters we extended to WAVEWATCH III model, used so far for windseas and swell, to the IG band, up to periods of 300 s. The spatial and temporal variability of the modeled IG energy was well correlated to the DART station records, making it useful to interpret the records of IG waves. Open ocean IG wave records appear dominated by trans-oceanic events with well defined sources concentrated on a few days, usually on West coasts, and affecting the entire ocean basin, with amplitude patterns very similar to those of tsunamis. Three particular IG bursts during 2008 are studied, 2 in the Pacific Ocean and 1 in the North Atlantic. It was observed that the liberated IG waves can travel long distances often crossing whole oceans with negligible dissipation. The IG signatures are clearly observed at sensors along their propagation paths.

  10. Wave potential and the one-dimensional windkessel as a wave-based paradigm of diastolic arterial hemodynamics.

    PubMed

    Mynard, Jonathan P; Smolich, Joseph J

    2014-08-01

    Controversy exists about whether one-dimensional wave theory can explain the "self-canceling" waves that accompany the diastolic pressure decay and discharge of the arterial reservoir. Although it has been proposed that reservoir and wave effects be treated as separate phenomena, thus avoiding the issue of self-canceling waves, we have argued that reservoir effects are a phenomenological and mathematical subset of wave effects. However, a complete wave-based explanation of self-canceling diastolic expansion (pressure-decreasing) waves has not yet been advanced. These waves are present in the forward and backward components of arterial pressure and flow (P ± and Q ±, respectively), which are calculated by integrating incremental pressure and flow changes (dP ± and dQ ±, respectively). While the integration constants for this calculation have previously been considered arbitrary, we showed that physiologically meaningful constants can be obtained by identifying "undisturbed pressure" as mean circulatory pressure. Using a series of numeric experiments, absolute P ± and Q ± values were shown to represent "wave potential," gradients of which produce propagating wavefronts. With the aid of a "one-dimensional windkessel," we showed how wave theory predicts discharge of the arterial reservoir. Simulated data, along with hemodynamic recordings in seven sheep, suggested that self-canceling diastolic waves arise from repeated and diffuse reflection of the late systolic forward expansion wave throughout the arterial system and at the closed aortic valve, along with progressive leakage of wave potential from the conduit arteries. The combination of wave and wave potential concepts leads to a comprehensive one-dimensional (i.e., wave-based) explanation of arterial hemodynamics, including the diastolic pressure decay.

  11. Acoustic field distribution of sawtooth wave with nonlinear SBE model

    SciTech Connect

    Liu, Xiaozhou Zhang, Lue; Wang, Xiangda; Gong, Xiufen

    2015-10-28

    For precise prediction of the acoustic field distribution of extracorporeal shock wave lithotripsy with an ellipsoid transducer, the nonlinear spheroidal beam equations (SBE) are employed to model acoustic wave propagation in medium. To solve the SBE model with frequency domain algorithm, boundary conditions are obtained for monochromatic and sawtooth waves based on the phase compensation. In numerical analysis, the influence of sinusoidal wave and sawtooth wave on axial pressure distributions are investigated.

  12. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  13. Moreton Waves

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.

    1999-01-01

    "Moreton waves," named for the observer who popularized them, are a solar phenomenon also known in scientific literature as "Moreton-Ramsey wave," "flare waves," "flare-associated waves," "MHD blast waves," "chromospheric shock fronts" and various other combinations of terms which connote violently propagating impulsive disturbances. It is unclear whether all of the observations to which these terms have been applied pertain to a single physical phenomenon: there has perhaps been some overlap between the observations and the assumed physical properties of the observed occurrence. Moreton waves are ideally observed in the wings of H alpha, and appear as semi-circular fronts propagating at speeds ranging from several hundred to over a thousand km/sec. They form an arc, or "brow shape" which can span up to 180 degrees. Extrapolating the speed and locations of the arc indicates that the phenomenon's origin intersects well with the impulsive phase of the associated H alpha flare (if the flare exhibits an impulsive phase). However, the arc may not form or may not be observable until it is tens of megameters from the flaring region, and subsequently can propagate to distances exceeding 100 megameters. The high speeds and distances of propagation, plus the associated radio and energetic particle observations, provided strong evidence of a coronal, rather than a chromospheric origin. The H alpha manifestation of the wave is assumed to be the "ground track" or "skirt" of a three-dimensional disturbance.

  14. Population Pressures Abroad and Immigration Pressures at Home.

    ERIC Educational Resources Information Center

    Population Crisis Committee, Washington, DC.

    This report discusses population trends abroad and their relation to immigration pressures and policies in the United States. The following sections are included: (1) "Two Major Waves of Immigration"; (2) "The U.S.--A Major Host Nation for Permanent Immigrants"; (3) "Changing Sources of Immigrants to the United…

  15. Pressure gauge

    SciTech Connect

    Morita, S.

    1985-04-02

    A pressure receiving element for receiving an external pressure is attached to one end of a body and a temperature compensating diaphragm is attached to the other end of the body. A coupling shaft disposed in the body is fixed at both ends to the pressure receiving element and the diaphragm, respectively. A liquid is sealed in the body and means is provided for detecting displacement or force applied to the coupling shaft in accordance with a pressure received by the pressure receiving element. The diaphragm has corrugations of concentric circles and the crests of a plurality of them are made flat and one of the flat crests is fixed to the body. The effective area of the diaphragm inside of the flat crest that is fixed to the body is selected substantially to be equal to the effective area of the pressure receiving element.

  16. Arctic Climate and Atmospheric Planetary Waves

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Haekkinen, S.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave 1 pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach for determining significant forcing patterns of sea ice and high-latitude variability.

  17. Arctic Climate and Atmospheric Planetary Waves

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Haekkinen, S.

    2000-01-01

    Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave I pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach to determine significant forcing patterns of sea ice and high-latitude variability.

  18. Pegasus Airwave and Bi-Wave Plus.

    PubMed

    Lowthian, P

    The Pegasus Airwave and the Bi-Wave Plus are examples of alternating-pressure air mattress (APAM) systems that are more reliable than the older generation of APAMs. The Pegasus Airwave is useful for managing severe pressure sores, as well as for preventing sores in 'high-risk' patients. The Bi-Wave Plus is more suitable for patients with a 'fairly high risk' of developing sores and some patients may find it more comfortable than the Pegasus Airwave.

  19. Passive tire pressure sensor and method

    DOEpatents

    Pfeifer, Kent Bryant; Williams, Robert Leslie; Waldschmidt, Robert Lee; Morgan, Catherine Hook

    2006-08-29

    A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.

  20. Passive tire pressure sensor and method

    DOEpatents

    Pfeifer, Kent Bryant; Williams, Robert Leslie; Waldschmidt, Robert Lee; Morgan, Catherine Hook

    2007-09-04

    A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.

  1. Tidal waves within the thermosphere. [emphasizing wave dissipation and diffusion

    NASA Technical Reports Server (NTRS)

    Volland, H.; Mayr, H. G.

    1974-01-01

    The eigenfunctions of the atmosphere (the Hough functions within the lower atmosphere below about 100 km) change their structure and their propagation characteristics within the thermosphere due to dissipation effects such as heat conduction, viscosity, and ion drag. Wave dissipation can be parameterized to a first-order approximation by a complex frequency, the imaginary term of which simulates an effective ion drag force. It is shown how the equivalent depth, the attenuation, and the vertical wavelength of the predominant symmetric diurnal tidal modes change with height as functions of effective ion drag. The boundary conditions of tidal waves are discussed, and asymptotic solutions for the wave parameters like pressure, density, temperature, and wind generated by a heat input proportional to the mean pressure are given. Finally, diffusion effects upon the minor constituents within the thermosphere are described.

  2. Boat powered by sea waves

    SciTech Connect

    Gargos, G.

    1984-11-06

    A boat having an external float pivotally fixed to the boat. Through linkage, the motion of the float relative to the boat resulting from wave motion drives a dual cylinder pump. The pump admits water from the body of water in which the boat is suspended and pressurizes that water for direction aft as a means for propulsion.

  3. Requirements for Verifying Wave-Wave Coupling at Texcoco, Valley of Mexico

    NASA Astrophysics Data System (ADS)

    Stephenson, W. R.

    2002-12-01

    A late-arriving monochromatic wave has been identified at the Texcoco accelerograph array in the Valley of Mexico, for the 2001 October 8 Coyuca, Guerrero (M 6.1) earthquake. Because this wave propagates nearly towards the epicentre, it must be locally-generated, and its combination of low velocity (160m/s phase, 60m/s group) long delay (85sec after s-wave arrival), distance from the basin margin (about 8km), and relatively high amplitude, are not consistent with current beliefs about wave attenuation in the lacustrine mud in which the wave travels. Three possibilities must be considered; that the mud does not attenuate motion as much as believed; that most of the wave energy does not travel in the mud; or that the observed wave is coupled to a less-attenuated wave so that energy lost in the mud is continually being replaced by wave-wave coupling. Wave-wave coupling is a likely mechanism because the monochromatic motion is at a frequency that differs from the readily-evaluated "layer frequency", ruling out the layer as the main determinant of frequency. Instead it is possible that the observed frequency is that at which a Rayleigh wave travels at the speed of a wave in a material below the surface (28m thick) layer. In order for wave-wave coupling to be unambiguously confirmed it is necessary to identify a layer of material which will support a wave at the observed velocity of 160m/s. Such a wave is unlikely to be a p-wave because p-waves in the profile are likely to have velocities in excess of 1500m/s. SCPT testing will readily determine whether an s-wave velocity of 160m/s is present in the profile. In the case of coupling of a Rayleigh wave to an acoustic wave it is relatively easy to identify the two waves and to ascertain that they travel at the same speed, on account of the widely differing nature of the two waves. A pressure detector will not respond to the Rayleigh wave, even though a seismometer will respond to the pressure wave. The situation is more

  4. Shock waves data for minerals

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.; Johnson, Mary L.

    1994-01-01

    Shock compression of the materials of planetary interiors yields data which upon comparison with density-pressure and density-sound velocity profiles constrain internal composition and temperature. Other important applications of shock wave data and related properties are found in the impact mechanics of terrestrial planets and solid satellites. Shock wave equation of state, shock-induced dynamic yielding and phase transitions, and shock temperature are discussed. In regions where a substantial phase change in the material does not occur, the relationship between the particle velocity, U(sub p), and the shock velocity, U(sub s), is given by U(sub s) = C(sub 0) + S U(sub p), where C(sub 0) is the shock velocity at infinitesimally small particle velocity, or the ambient pressure bulk sound velocity. Numerical values for the shock wave equation of state for minerals and related materials of the solar system are provided.

  5. Modulation of short waves by long waves. [ocean wave interactions

    NASA Technical Reports Server (NTRS)

    Reece, A. M., Jr.

    1978-01-01

    Wave-tank experiments were performed to investigate the cyclic short-wave energy changes, related in phase to an underlying long wave, which occur during active generation of the short-wave field by wind. Measurements of time series of the short-wave slope were made by a laser-optical system, where the basic long-wave parameters were controlled and wind speeds were accurately reproducible. The short-wave slope variances were found to exhibit cyclic variations that are related to the phase of the long wave. The variations result from two combined effects: (1) the short wave frequency is varied by the long-wave orbital velocity; (2) the energy of the short waves is modulated by the actions of aerodynamic and hydrodynamic couplings that operate on the short waves in a manner related to the long-wave phase.

  6. Standing wave tube electro active polymer wave energy converter

    NASA Astrophysics Data System (ADS)

    Jean, Philippe; Wattez, Ambroise; Ardoise, Guillaume; Melis, C.; Van Kessel, R.; Fourmon, A.; Barrabino, E.; Heemskerk, J.; Queau, J. P.

    2012-04-01

    Over the past 4 years SBM has developed a revolutionary Wave Energy Converter (WEC): the S3. Floating under the ocean surface, the S3 amplifies pressure waves similarly to a Ruben's tube. Only made of elastomers, the system is entirely flexible, environmentally friendly and silent. Thanks to a multimodal resonant behavior, the S3 is capable of efficiently harvesting wave energy from a wide range of wave periods, naturally smoothing the irregularities of ocean wave amplitudes and periods. In the S3 system, Electro Active Polymer (EAP) generators are distributed along an elastomeric tube over several wave lengths, they convert wave induced deformations directly into electricity. The output is high voltage multiphase Direct Current with low ripple. Unlike other conventional WECs, the S3 requires no maintenance of moving parts. The conception and operating principle will eventually lead to a reduction of both CAPEX and OPEX. By integrating EAP generators into a small scale S3, SBM achieved a world first: direct conversion of wave energy in electricity with a moored flexible submerged EAP WEC in a wave tank test. Through an extensive testing program on large scale EAP generators, SBM identified challenges in scaling up to a utility grid device. French Government supports the consortium consisting of SBM, IFREMER and ECN in their efforts to deploy a full scale prototype at the SEMREV test center in France at the horizon 2014-2015. SBM will be seeking strategic as well as financial partners to unleash the true potentials of the S3 Standing Wave Tube Electro Active Polymer WEC.

  7. Wave combustors for trans-atmospheric vehicles

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc; Bowles, Jeffrey V.

    1989-01-01

    The Wave Combustor is an airbreathing hypersonic propulsion system which utilizes shock and detonation waves to enhance fuel-air mixing and combustion in supersonic flow. In this concept, an oblique shock wave in the combustor can act as a flameholder by increasing the pressure and temperature of the air-fuel mixture and thereby decreasing the ignition delay. If the oblique shock is sufficiently strong, then the combustion front and the shock wave can couple into a detonation wave. In this case, combustion occurs almost instantaneously in a thin zone behind the wave front. The result is a shorter, lighter engine compared to the scramjet. This engine, which is called the Oblique Detonation Wave Engine (ODWE), can then be utilized to provide a smaller, lighter vehicle or to provide a higher payload capability for a given vehicle weight. An analysis of the performance of a conceptual trans-atmospheric vehicle powered by an ODWE is given here.

  8. Controlled Low-Pressure Blast-Wave Exposure Causes Distinct Behavioral and Morphological Responses Modelling Mild Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Comorbid Mild Traumatic Brain Injury-Post-Traumatic Stress Disorder.

    PubMed

    Zuckerman, Amitai; Ram, Omri; Ifergane, Gal; Matar, Michael A; Sagi, Ram; Ostfeld, Ishay; Hoffman, Jay R; Kaplan, Zeev; Sadot, Oren; Cohen, Hagit

    2017-01-01

    The intense focus in the clinical literature on the mental and neurocognitive sequelae of explosive blast-wave exposure, especially when comorbid with post-traumatic stress-related disorders (PTSD) is justified, and warrants the design of translationally valid animal studies to provide valid complementary basic data. We employed a controlled experimental blast-wave paradigm in which unanesthetized animals were exposed to visual, auditory, olfactory, and tactile effects of an explosive blast-wave produced by exploding a thin copper wire. By combining cognitive-behavioral paradigms and ex vivo brain MRI to assess mild traumatic brain injury (mTBI) phenotype with a validated behavioral model for PTSD, complemented by morphological assessments, this study sought to examine our ability to evaluate the biobehavioral effects of low-intensity blast overpressure on rats, in a translationally valid manner. There were no significant differences between blast- and sham-exposed rats on motor coordination and strength, or sensory function. Whereas most male rats exposed to the blast-wave displayed normal behavioral and cognitive responses, 23.6% of the rats displayed a significant retardation of spatial learning acquisition, fulfilling criteria for mTBI-like responses. In addition, 5.4% of the blast-exposed animals displayed an extreme response in the behavioral tasks used to define PTSD-like criteria, whereas 10.9% of the rats developed both long-lasting and progressively worsening behavioral and cognitive "symptoms," suggesting comorbid PTSD-mTBI-like behavioral and cognitive response patterns. Neither group displayed changes on MRI. Exposure to experimental blast-wave elicited distinct behavioral and morphological responses modelling mTBI-like, PTSD-like, and comorbid mTBI-PTSD-like responses. This experimental animal model can be a useful tool for elucidating neurobiological mechanisms underlying the effects of blast-wave-induced mTBI and PTSD and comorbid mTBI-PTSD.

  9. Standing Sound Waves in Air with DataStudio

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2010-01-01

    Two experiments related to standing sound waves in air are adapted for using the ScienceWorkshop data-acquisition system with the DataStudio software from PASCO scientific. First, the standing waves are created by reflection from a plane reflector. The distribution of the sound pressure along the standing wave is measured. Second, the resonance…

  10. Pressure Drop

    NASA Technical Reports Server (NTRS)

    Lawson, Mike

    2010-01-01

    Mike Lawson briefly discussed pressure drop for aerospace applications and presented short stories about adventures experienced while working at NASA and General Dynamics, including exposure to technologies like the Crew and Equipment Translation Aid (CETA) cart and the SWME.

  11. Pressure sensor

    DOEpatents

    Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.

    2015-09-29

    Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  12. Pressure regulator

    DOEpatents

    Ebeling, Jr., Robert W.; Weaver, Robert B.

    1979-01-01

    The pressure within a pressurized flow reactor operated under harsh environmental conditions is controlled by establishing and maintaining a fluidized bed of uniformly sized granular material of selected density by passing the gas from the reactor upwardly therethrough at a rate sufficient to fluidize the bed and varying the height of the bed by adding granular material thereto or removing granular material therefrom to adjust the backpressure on the flow reactor.

  13. PRESSURE TRANSDUCER

    DOEpatents

    Sander, H.H.

    1959-10-01

    A pressure or mechanical force transducer particularly adaptable to miniature telemetering systems is described. Basically the device consists of a transistor located within a magnetic field adapted to change in response to mechanical force. The conduction characteristics of the transistor in turn vary proportionally with changes in the magnetic flux across the transistor such that the output (either frequency of amplitude) of the transistor circuit is proportional to mechanical force or pressure.

  14. Rotor Blade Pressure Measurement in a Rotating Machinery Using Pressure and Temperature Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Torgerson, S.; Liu, T.; Sullivan, J.

    1998-01-01

    Pressure and temperature sensitive paints have been utilized for the measurement of blade surface pressure and temperature distributions in a high speed axial compressor and an Allied Signal F109 gas turbine engine. Alternate blades were painted with temperature sensitive paints and then pressure sensitive paint. This combination allows temperature distributions to be accounted for when determining the blade suction surface pressure distribution. Measurements were taken and pressure maps on the suction surface of a blade were obtained over a range of rotational speeds. Pressure maps of the suction surface show-strong shock waves at the higher speeds.

  15. An instrument for measuring turbulent pressure fluctuations

    NASA Astrophysics Data System (ADS)

    Papadimitrakis, Yiannis Alex; Hsu, En Yu; Street, Robert L.

    1986-04-01

    An instrument is described for laboratory measurements of the fluctuating static pressure in the turbulent boundary layer above progressive water waves. It consists of a disk-shaped sensing head properly designed to minimize the dynamic pressure variation to an acceptable level, a commercially available piezocrystal transducer housed inside a casing, and a forward-bent connecting tube. Pressure fluctuations sampled by the disk are converted into an electrical signal by the piezocrystal transducer. Through low-pass filtering, only the frequency range of interest is retained. The instrument was tested successfully for frequency response, dynamic and mechanical noise sensitivity, and response to spurious pressure fluctuations (produced when operating in a Eulerian wave-following mode) inside a cylindrical chamber and in a wind-wave facility, and some sample results along with the calibration procedures and data analysis are presented.

  16. Dynamics of explosively imploded pressurized tubes

    NASA Astrophysics Data System (ADS)

    Szirti, Daniel; Loiseau, Jason; Higgins, Andrew; Tanguay, Vincent

    2011-04-01

    The detonation of an explosive layer surrounding a pressurized thin-walled tube causes the formation of a virtual piston that drives a precursor shock wave ahead of the detonation, generating very high temperatures and pressures in the gas contained within the tube. Such a device can be used as the driver for a high energy density shock tube or hypervelocity gas gun. The dynamics of the precursor shock wave were investigated for different tube sizes and initial fill pressures. Shock velocity and standoff distance were found to decrease with increasing fill pressure, mainly due to radial expansion of the tube. Adding a tamper can reduce this effect, but may increase jetting. A simple analytical model based on acoustic wave interactions was developed to calculate pump tube expansion and the resulting effect on the shock velocity and standoff distance. Results from this model agree quite well with experimental data.

  17. Making WAVES.

    ERIC Educational Resources Information Center

    Hindes, Victoria A.; Hom, Keri; Brookshaw, Keith

    About 46% of high school graduates enrolled in California State Universities need remedial courses in both math and English to prepare them for college level. These students typically earned B averages in their high school math and English classes. In order to address this issue, Shasta College launched Operation WAVES (Win by Achieving Valuable…

  18. Modeling explosion generated Scholte waves in sandy sediments with power law dependent shear wave speed.

    PubMed

    Soloway, Alexander G; Dahl, Peter H; Odom, Robert I

    2015-10-01

    Experimental measurements of Scholte waves from underwater explosions collected off the coast of Virginia Beach, VA in shallow water are presented. It is shown here that the dispersion of these explosion-generated Scholte waves traveling in the sandy seabed can be modeled using a power-law dependent shear wave speed profile and an empirical source model that determines the pressure time-series at 1 m from the source as a function of TNT-equivalent charge weight.

  19. Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves

    DTIC Science & Technology

    2015-09-30

    Environmental and system data will also be depth-profiled, including temperature , salinity, pressure and (directly measured) sound speed, along...configurations, and an environmental sensor package [Conductivity- Temperature - Depth sensor (CTD) plus sound speed sensor (SVX)]. The system is untethered...Dispersion Relations for Sound Waves and Shear Waves Michael J. Buckingham Marine Physical Laboratory, Scripps Institution of Oceanography University

  20. Modeling deflagration waves out of hot spots

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2017-01-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.

  1. Stress wave emission from plasmonic nanobubbles

    NASA Astrophysics Data System (ADS)

    Brujan, Emil-Alexandru

    2017-01-01

    Stress wave emission from the collapse of cavitation nanobubbles, generated after irradiation of single-spherical gold nanoparticles with laser pulses, was investigated numerically. The significant parameters of this study are the nanoparticle radius, laser pulse duration, and laser fluence. For conditions comparable to those existing during plasmonic photothermal therapy, a purely compressive pressure wave is emitted during nanobubble collapse, not a shock. In the initial stage of its propagation, the stress wave amplitude is proportional to the inverse of the stress wave radius. The maximum amplitude and the duration of the stress wave decreases with the laser fluence, laser pulse duration, and gold nanoparticle radius. The full width at half maximum duration of the stress wave is almost constant up to a distance of 50 µm from the emission center. The stress wave amplitude is smaller than 5 MPa, while the stress wave duration is smaller than 35 ns. The stress wave propagation results in minor mechanical effects on biological tissue that are restricted to very small dimensions on a cellular or sub-cellular level. The stress wave is, however, able to produce breaching of the human cell membrane and bacterial wall even at distances as large as 50 µm from the emission centre. The experimentally observed melting of gold nanoparticles comes from the large temperature reached inside the nanoparticles during laser irradiation and not from the propagation of the stress wave into the surrounding liquid during nanobubble rebound.

  2. Slow wave propagation in soft adhesive interfaces.

    PubMed

    Viswanathan, Koushik; Sundaram, Narayan K; Chandrasekar, Srinivasan

    2016-11-16

    Stick-slip in sliding of soft adhesive surfaces has long been associated with the propagation of Schallamach waves, a type of slow surface wave. Recently it was demonstrated using in situ experiments that two other kinds of slow waves-separation pulses and slip pulses-also mediate stick-slip (Viswanathan et al., Soft Matter, 2016, 12, 5265-5275). While separation pulses, like Schallamach waves, involve local interface detachment, slip pulses are moving stress fronts with no detachment. Here, we present a theoretical analysis of the propagation of these three waves in a linear elastodynamics framework. Different boundary conditions apply depending on whether or not local interface detachment occurs. It is shown that the interface dynamics accompanying slow waves is governed by a system of integral equations. Closed-form analytical expressions are obtained for the interfacial pressure, shear stress, displacements and velocities. Separation pulses and Schallamach waves emerge naturally as wave solutions of the integral equations, with oppositely oriented directions of propagation. Wave propagation is found to be stable in the stress regime where linearized elasticity is a physically valid approximation. Interestingly, the analysis reveals that slow traveling wave solutions are not possible in a Coulomb friction framework for slip pulses. The theory provides a unified picture of stick-slip dynamics and slow wave propagation in adhesive contacts, consistent with experimental observations.

  3. More efficient focusing for extracorporeal shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Loske, Achim M.; Prieto, Fernando E.

    2001-10-01

    The purpose of this study was to generate alternative pressure waveforms in order to increase efficiency during non-invasive treatments of nephrolithiasis. Two new systems for electrohydraulic shock wave generators were tested. These devices generate two pressure pulses, instead of only one positive peak, followed by a trough, as in conventional systems. Pressure measurements and stone fragmentation efficiency were compared to that of conventional shock wave generators, using needle hydrophones and kidney-stone models.

  4. Slosh wave excitation and stability of spacecraft fluid systems

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.; Leslie, F. W.

    1990-01-01

    The instability of liquid and gas interface can be induced by the pressure of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have been investigated. Results show that lower frequency gravity jitters excite slosh waves with higher ratio of maximum amplitude to wave length than that of the slosh waves generated by the higher frequency gravity jitters.

  5. Gravity-jitters and excitation of slosh waves

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.; Leslie, F. W.; Wu, J. L.

    1990-01-01

    The instability of liquid and gas interface can be induced by the pressure of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have been investigated. Results show that lower frequency gravity jitters excite slosh waves with higher ratio of maximum amplitude to wave length than that of the slosh waves generated by the higher frequency gravity jitters.

  6. High Blood Pressure

    MedlinePlus

    ... this page please turn Javascript on. High Blood Pressure What Is High Blood Pressure? High blood pressure is a common disease in ... at higher than normal pressures. What Is Blood Pressure? Click for more information Blood pressure is the ...

  7. Blood pressure measurement

    MedlinePlus

    ... reading; Measuring blood pressure; Hypertension - blood pressure measurement; High blood pressure - blood pressure measurement ... High blood pressure has no symptoms so you may not know if you have this problem. High blood pressure ...

  8. On neutron surface waves

    SciTech Connect

    Ignatovich, V. K.

    2009-01-15

    It is shown that neutron surface waves do not exist. The difference between the neutron wave mechanics and the wave physics of electromagnetic and acoustic processes, which allows the existence of surface waves, is analyzed.

  9. Acoustic Remote Sensing of Rogue Waves

    NASA Astrophysics Data System (ADS)

    Parsons, Wade; Kadri, Usama

    2016-04-01

    We propose an early warning system for approaching rogue waves using the remote sensing of acoustic-gravity waves (AGWs) - progressive sound waves that propagate at the speed of sound in the ocean. It is believed that AGWs are generated during the formation of rogue waves, carrying information on the rogue waves at near the speed of sound, i.e. much faster than the rogue wave. The capability of identifying those special sound waves would enable detecting rogue waves most efficiently. A lot of promising work has been reported on AGWs in the last few years, part of which in the context of remote sensing as an early detection of tsunami. However, to our knowledge none of the work addresses the problem of rogue waves directly. Although there remains some uncertainty as to the proper definition of a rogue wave, there is little doubt that they exist and no one can dispute the potential destructive power of rogue waves. An early warning system for such extreme waves would become a demanding safety technology. A closed form expression was developed for the pressure induced by an impulsive source at the free surface (the Green's function) from which the solution for more general sources can be developed. In particular, we used the model of the Draupner Wave of January 1st, 1995 as a source and calculated the induced AGW signature. In particular we studied the AGW signature associated with a special feature of this wave, and characteristic of rogue waves, of the absence of any local set-down beneath the main crest and the presence of a large local set-up.

  10. Engineering studies of vectorcardiographs in blood pressure measuring systems, appendix 2

    NASA Technical Reports Server (NTRS)

    Mark, R. G.

    1975-01-01

    The development of a cardiovascular monitoring system to noninvasively monitor the blood pressure and heart rate using pulse wave velocity was described. The following topics were covered: (1) pulse wave velocity as a measure of arterial blood pressure, (2) diastolic blood pressure and pulse wave velocity in humans, (3) transducer development for blood pressure measuring device, and (4) cardiovascular monitoring system. It was found, in experiments on dogs, that the pulse wave velocity is linearly related to diastolic blood pressure over a wide range of blood pressure and in the presence of many physiological perturbations. A similar relationship was observed in normal, young human males over a moderate range of pressures. Past methods for monitoring blood pressure and a new method based on pulse wave velocity determination were described. Two systems were tested: a Doppler ultrasonic transducer and a photoelectric plethysmograph. A cardiovascular monitoring system was described, including operating instructions.

  11. Gravity Waves

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1985-01-01

    Atmospheric parameters fluctuate on all scales. In the mesoscale these fluctuations are occasionally sinusoidal so that they can be interpreted as gravity waves. Usually, however, the fluctuations are noise like, so that their cause is not immediately evident. Results of mesoscale observations in the 20 to 120 m altitude range that are suitable for incorporation into a model atmosphere are very limited. In the stratosphere and lower mesosphere observations are sparse and very little data has been summarized into appropriate form. There is much more data in the upper mesosphere and lower thermosphere, but again very little of it has been summarized. The available mesoscale spectra of horizontal wind u versus vertical wave number m in the 20 to 120 km altitude range are shown together with a spectrum from the lower atmosphere for comparison. Further information about these spectra is given. In spite of the large range of altitudes and latitudes, the spectra from the lower atmosphere (NASA, 1971 and DEWAN, 1984) are remarkably similar in both shape and amplitude. The mean slopes of -2.38 for the NASA spectrum and -2.7 for the Dewan spectra are supported by the mean slope of -2.75 found by ROSENBERG et al. (1974). The mesospheric spectrum is too short to establish a shape. Its amplitude is about an order of magnitude larger than the NASA spectrum in the same wave number range. The NASA and Dewan spectra suggest that the mesoscale spectra in the lower atmosphere are insensitive to meteorological conditions.

  12. Calibration apparatus for recess mounted pressure transducers

    NASA Astrophysics Data System (ADS)

    Marcolini, Michael A.; Miller, William T., Jr.; Baals, Robert A.; Martin, Ruth M.

    1992-04-01

    Measurement of surface pressure fluctuations is important in aerodynamic studies and is conventionally accomplished via thin surface mounted transducers. These transducers contaminate the airflow, leading to the use of transducers located beneath the surface and communicating thereto via a pipette. This solution creates its own problem of transducer calibration due to the structure of the pipette. A calibration apparatus and method for calibrating a pressure transducer are provided. The pressure transducer is located within a test structure having a pipette leading from an outer structure surface to the pressure transducer. The calibration apparatus defines an acoustic cavity. A first end of the acoustic cavity is adapted to fluidly communicate with the pipette leading to the pressure transducer, wherein a channel is formed from the acoustic cavity to the transducer. An acoustic driver is provided for acoustically exciting fluid in the acoustic cavity to generate pressure waves which propagate to the pressure transducer. A pressure sensing microphone is provided for sensing the pressure fluctuations in the cavity near the cavity end, whereby this sensed pressure is compared with a simultaneously pressure sensed by the pressure transducer to permit calibration of the pressure transducer sensings. Novel aspects of the present invention include its use of a calibration apparatus to permit in-situ calibration of recess mounted pressure transducers.

  13. Modelling of Breaking Waves in Tsunami and Sloshing Waves by a New Particle Method

    NASA Astrophysics Data System (ADS)

    Gao, Mimi; Koh, Chan Ghee; Luo, Min; Bai, Wei

    2014-11-01

    The recently developed Consistent Particle Method (CPM) is used to model breaking waves in tsunami and violent sloshing waves in a moving tank. Solving the Navier-Stokes equations in a semi-implicit time stepping scheme, the CPM eliminates the use of kernel function which is somewhat arbitrarily defined and used in other particle methods. It is demonstrated that the method is applicable to large amplitude free surface wave problems that involve breaking phenomenon. Tsunami wave impact on a fixed structure is modeled using CPM. The simulated results show fairly good agreement to the actual nonlinear wave motions including overturning and breaking of waves. Large amplitude sloshing waves in a moving tank are investigated with CPM. Experiment was conducted in the laboratory to verify the CPM solutions. The hydrodynamic pressure computed by the CPM agrees well with the experimental results.

  14. Elastic reverse-time migration based on amplitude-preserving P- and S-wave separation

    NASA Astrophysics Data System (ADS)

    Yang, Jia-Jia; Luan, Xi-Wu; Fang, Gang; Liu, Xin-Xin; Pan, Jun; Wang, Xiao-Jie

    2016-09-01

    Imaging the PP- and PS-wave for the elastic vector wave reverse-time migration requires separating the P- and S-waves during the wave field extrapolation. The amplitude and phase of the P- and S-waves are distorted when divergence and curl operators are used to separate the P- and S-waves. We present a P- and S-wave amplitude-preserving separation algorithm for the elastic wavefield extrapolation. First, we add the P-wave pressure and P-wave vibration velocity equation to the conventional elastic wave equation to decompose the P- and S-wave vectors. Then, we synthesize the scalar P- and S-wave from the vector Pand S-wave to obtain the scalar P- and S-wave. The amplitude-preserved separated P- and S-waves are imaged based on the vector wave reverse-time migration (RTM). This method ensures that the amplitude and phase of the separated P- and S-wave remain unchanged compared with the divergence and curl operators. In addition, after decomposition, the P-wave pressure and vibration velocity can be used to suppress the interlayer reflection noise and to correct the S-wave polarity. This improves the image quality of P- and S-wave in multicomponent seismic data and the true-amplitude elastic reverse time migration used in prestack inversion.

  15. Making Waves: Seismic Waves Activities and Demonstrations

    NASA Astrophysics Data System (ADS)

    Braile, S. J.; Braile, L. W.

    2011-12-01

    The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.

  16. Noninvasive Measurement of Central Vascular Pressures With Arterial Tonometry: Clinical Revival of the Pulse Pressure Waveform?

    PubMed Central

    Nelson, Matthew R.; Stepanek, Jan; Cevette, Michael; Covalciuc, Michael; Hurst, R. Todd; Tajik, A. Jamil

    2010-01-01

    The arterial pulse has historically been an essential source of information in the clinical assessment of health. With current sphygmomanometric and oscillometric devices, only the peak and trough of the peripheral arterial pulse waveform are clinically used. Several limitations exist with peripheral blood pressure. First, central aortic pressure is a better predictor of cardiovascular outcome than peripheral pressure. Second, peripherally obtained blood pressure does not accurately reflect central pressure because of pressure amplification. Lastly, antihypertensive medications have differing effects on central pressures despite similar reductions in brachial blood pressure. Applanation tonometry can overcome the limitations of peripheral pressure by determining the shape of the aortic waveform from the radial artery. Waveform analysis not only indicates central systolic and diastolic pressure but also determines the influence of pulse wave reflection on the central pressure waveform. It can serve as a useful adjunct to brachial blood pressure measurements in initiating and monitoring hypertensive treatment, in observing the hemodynamic effects of atherosclerotic risk factors, and in predicting cardiovascular outcomes and events. Radial artery applanation tonometry is a noninvasive, reproducible, and affordable technology that can be used in conjunction with peripherally obtained blood pressure to guide patient management. Keywords for the PubMed search were applanation tonometry, radial artery, central pressure, cardiovascular risk, blood pressure, and arterial pulse. Articles published from January 1, 1995, to July 1, 2009, were included in the review if they measured central pressure using radial artery applanation tonometry. PMID:20435839

  17. A mesoscale gravity wave event observed during CCOPE. II - Interactions between mesoscale convective systems and the antecedent waves. [Cooperative Convection Precipitation Experiment

    NASA Technical Reports Server (NTRS)

    Koch, Steven E.; Golus, Robert E.; Dorian, Paul B.

    1988-01-01

    The interactions between preexisting gravity waves and convective systems were investigated using data obtained by the Cooperative Convection Precipitation Experiment observational network in Montana on July 11-12, 1981. The results indicate that strong convection substantially affects gravity waves locally by augmenting the wave amplitude, reducing its wavelength, distorting the wave shape, altering the wave phase velocity, and greatly weakening the in-phase covariance between the perturbation wind and pressure fields. These convective effects upon gravity waves are explained in terms of hydrostatic and nonhydrostatic pressure forces and gust front processes associated with thunderstorms.

  18. Response of transonic diffuser flows to abrupt increases of back pressure: Wall pressure measurements

    NASA Astrophysics Data System (ADS)

    Bogar, T. J.; Sajben, M.

    1986-10-01

    The propagation of compression pulses in a supercritically operated transonic diffuser was investigated by use of pressure measurements along the top wall of the model. The pulses were generated at the downstream end of the diffuser by the abrupt injection of a secondary flow of air. Two types of waves were observed: (1) an upstream-traveling acoustic wave and (2) a downstream-traveling convective wave which resulted from the impingement of the acoustic wave on the shock. Wave speeds were determined for a range of diffuser pressure ratios including separated, strong-shock flows and fully attached, weak-shock flows. Streamwise distributions of initial and reflected pulse amplitudes were determined for one weak and one strong-shock case over a 3-to-1 range of initial pulse strengths.

  19. Capillary rogue waves.

    PubMed

    Shats, M; Punzmann, H; Xia, H

    2010-03-12

    We report the first observation of extreme wave events (rogue waves) in parametrically driven capillary waves. Rogue waves are observed above a certain threshold in forcing. Above this threshold, frequency spectra broaden and develop exponential tails. For the first time we present evidence of strong four-wave coupling in nonlinear waves (high tricoherence), which points to modulation instability as the main mechanism in rogue waves. The generation of rogue waves is identified as the onset of a distinct tail in the probability density function of the wave heights. Their probability is higher than expected from the measured wave background.

  20. Pressure Alopecia

    PubMed Central

    Davies, Kate E; Yesudian, PD

    2012-01-01

    Postoperative or pressure alopecia (PA) is an infrequently reported group of scarring and non-scarring alopecias. It has been reported after immobilization of the head during surgery and following prolonged stays on intensive care units, and may be analogous to a healed pressure ulcer. This review presents a summary of cases published in pediatrics and after cardiac, gynecological, abdominal and facial surgeries. PA may manifest as swelling, tenderness, and ulceration of the scalp in the first few postoperative days; in other cases, the alopecia may be the presenting feature with a history of scalp immobilization in the previous four weeks. The condition may cause considerable psychological distress in the long term. Regular head turning schedules and vigilance for the condition should be used as prophylaxis to prevent permanent alopecia. A multi-center study in high-risk patients would be beneficial to shed further light on the etiology of the condition. PMID:23180911

  1. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    PubMed

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  2. Pressure transducer

    DOEpatents

    Anderson, Thomas T.; Roop, Conard J.; Schmidt, Kenneth J.; Gunchin, Elmer R.

    1989-01-01

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output.

  3. Pressure transducer

    DOEpatents

    Anderson, T.T.; Roop, C.J.; Schmidt, K.J.; Gunchin, E.R.

    1987-02-13

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output. 7 figs.

  4. Pressurized hopper

    SciTech Connect

    Densley, P.J.; Goldmann, L.H. Jr.

    1980-04-01

    A Secure Automated Fuel Fabrication Line is being developed to reduce personnel exposure and to improve safeguards. Fertile and fissile fuel powders are blended in the line for making fuel pellets. A pressurized hopper was developed for use not only as a blender, but also as a storage and feeding device. It works with or without injection tubes to produce a well-blended powder with reduced agglomerate population. Results of blending experiments using dry Kaolin clay and Tempra pigment are given. (DLC)

  5. Nonlinear Waves.

    DTIC Science & Technology

    1986-05-27

    con- €"" straints:’. *’Permanent address: Dipartimento di Fisica . Universita di Roma 1. 00185 u 11lia. tr(a U(x)) = 0. (7a. 2469 1. Math,. PyS. 26 (10...Tenenblat Universidade de Brasilia Departamento de Matematica Brasilia, Brasil September 1985 , - . Abstract The generalized wave equation and generalized...Permanent addrems: Dipartimento di Fisica . Universita di Roma t3 U, 0. Roma. Italy The linear limit of i3) provides the most general solution ot 2614 J. MatM

  6. Wave Dissipation and Balance - NOPP Wave Project

    DTIC Science & Technology

    2014-09-30

    processes that affect wind-generated ocean gravity waves. The various dissipative processes that contribute to the spectral wave evolution are isolated...over mature ocean surface wave spectra. J. Phys. Oceanogr., 34:3345–2358, 2004. K. Hasselmann. On the non-linear energy transfer in a gravity wave...P. Giovanangeli. Air flow structure over short- gravity breaking water waves. Boundary-Layer Meteorol., 126:477–705, 2008. doi: 10.1007/s10546-007

  7. Unlimited Ion Acceleration by Radiation Pressure

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Echkina, E. Yu.; Inovenkov, I. N.; Pegoraro, F.; Korn, G.

    2010-04-02

    The energy of ions accelerated by an intense electromagnetic wave in the radiation pressure dominated regime can be greatly enhanced due to a transverse expansion of a thin target. The expansion decreases the number of accelerated ions in the irradiated region resulting in an increase in the ion energy and in the ion longitudinal velocity. In the relativistic limit, the ions become phase locked with respect to the electromagnetic wave resulting in unlimited ion energy gain.

  8. CMS-Wave

    DTIC Science & Technology

    2014-10-27

    2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE CMS -Wave 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward-marching, finite...difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction, diffraction, reflection

  9. Pressure broadening of H(2)O absorption lines in the 1.3 microm region measured by continuous wave-cavity ring-down spectroscopy: application in the trace detection of water vapor in N(2), SiH(4), CF(4), and PH(3).

    PubMed

    Fiadzomor, Phyllis A Y; Baker, Derek M; Keen, Anthony M; Grant, Robert B; Orr-Ewing, Andrew J

    2008-12-01

    A continuous wave cavity ring-down (cw-CRD) spectrometer has been developed for the measurement of trace levels of water vapor by absorption spectroscopy at wavelengths in the vicinity of 1358 nm and 1392 nm. The speed of data acquisition and selectivity make cavity ringdown spectroscopy potentially more useful than current techniques for measurement of trace water in process gases and vacuum environments used for semiconductor manufacture where water vapor contamination has a detrimental effect on the final product. The pressure broadening coefficients (gamma) for bath gases N(2), air, and Ar and semiconductor process gases SiH(4), PH(3), and CF(4) were determined for a range of absorption lines in the 2nu(1) and nu(1) + nu(3) bands of H(2)O. For the transitions investigated, the concentration of water vapor in the sample gas varied from 1.7 x 10(12) to 2.9 x 10(15) molecule cm(-3) in N(2) at a total pressure of <10 mbar and was mixed with the bath gas of increasing pressure up to approximately 200 mbar. The values of gamma quantify the reduction in peak absorption cross-sections with bath gas pressure and, thus, their effects on the detection limit of water vapor. For a CRD spectrometer with a ring-down time of tau = 12.0 mus measured with a precision of 0.6%, detection limits for the measurement of water vapor in 1 atm N(2) and of CF(4) were estimated to be 18 and 14 ppbv, respectively. Competing absorption by SiH(4) and PH(3) in the 1.3 mum wavelength region results in respective detection limits for water vapor of 98 and 319 ppbv (relative to 1 atm) in 0.2 atm SiH(4) and 0.37 atm PH(3).

  10. Wave-wave interactions and deep ocean acoustics.

    PubMed

    Guralnik, Z; Bourdelais, J; Zabalgogeazcoa, X; Farrell, W E

    2013-10-01

    Deep ocean acoustics, in the absence of shipping and wildlife, is driven by surface processes. Best understood is the signal generated by non-linear surface wave interactions, the Longuet-Higgins mechanism, which dominates from 0.1 to 10 Hz, and may be significant for another octave. For this source, the spectral matrix of pressure and vector velocity is derived for points near the bottom of a deep ocean resting on an elastic half-space. In the absence of a bottom, the ratios of matrix elements are universal constants. Bottom effects vitiate the usual "standing wave approximation," but a weaker form of the approximation is shown to hold, and this is used for numerical calculations. In the weak standing wave approximation, the ratios of matrix elements are independent of the surface wave spectrum, but depend on frequency and the propagation environment. Data from the Hawaii-2 Observatory are in excellent accord with the theory for frequencies between 0.1 and 1 Hz, less so at higher frequencies. Insensitivity of the spectral ratios to wind, and presumably waves, is indeed observed in the data.

  11. High Blood Pressure

    MedlinePlus

    ... the NHLBI on Twitter. Description of High Blood Pressure Español High blood pressure is a common disease ... arteries) at higher than normal pressures. Measuring Blood Pressure Blood pressure is the force of blood pushing ...

  12. Wave transmission characteristics and anisotropy of canine carotid arteries

    NASA Technical Reports Server (NTRS)

    Moritz, W. E.; Anliker, M.

    1974-01-01

    A method was developed to generate and record three types of small amplitude waves (pressure, torsion and axial) in the exposed carotid artery of anesthetized dogs. The pressure waves were studied with the aid of miniature pressure transducers; electro-optical tracking units monitored the axial and circumferential surface displacements. Results from 6 dogs are presented in the form of the phase velocities and attenuation of three types of waves. The data demonstrate incompatibility with an isotropic elastic model for the mechanical behavior of the artery. The measured damping appears to be primarily due to the viscoelastic properties of the vessel wall material.

  13. Microstructural Design for Stress Wave Energy Management

    DTIC Science & Technology

    2013-04-01

    simulations are based on elastic moduli of generic CFRP taken from literature. We ordered 8 customized 16"xl6"xl/8" panel of unidirectional CFRP from a...speed measurements. We plan to use ultrasonic transducers to measure pressure and shear wave speeds in samples taken from CFRP panel in order to find...of CFRP panel and assembling in a multilayered design. Then we will investigate wave propagation in the layered structure by sending an elastic

  14. Generation of Internal Waves by a Moving Region of Pressures in a Sea with a Discountinuity Layer (Gereratsiya Vnutrennikh voln Divzhushcheysya Oblast’yu Davleniy v More so Sloyem Skachka),

    DTIC Science & Technology

    1977-02-01

    CiCCU) Pta 77 S F DOTSENKO . L V CHERKESON LR4CLASSIFIED NISC—IRANS—3397 NL _ • .j in END DATE FILMED 4— 7 7 k -- a - - ~~~~~~~~~~~~~ _~~V~~V V V... a Discontinuity Layer (Gereratsiya~~nutrennikh vo1n~~ivzhushcheysya ~b1ast’yu ~ av1eniy v j~ore so sloyem ska~hka)~~ V — AUTHO~4~~1 ~~ F / Dotsenko ... Dotsenko , S. F., Internal waves due to moving disturbances In a sea with an inhomogeneous upper layer. In: Morskiye gidrofizicheskiye Issledovaniya, 1 (57

  15. Forward and Backward Pressure Waveform Morphology in Hypertension

    PubMed Central

    Li, Ye; Gu, Haotian; Fok, Henry; Alastruey, Jordi

    2017-01-01

    We tested the hypothesis that increased pulse wave reflection and altered backward waveform morphology contribute to increased pulse pressure in subjects with higher pulse pressure compared with lower pulse pressure and to actions of vasoactive drugs to increase pulse pressure. We examined the relationship of backward to forward wave morphology in 158 subjects who were evaluated for hypertension (including some normotensive subjects) divided into 3 groups by central pulse pressure: group 1, 33±6.5 mm Hg; group 2, 45±4.1 mm Hg; and group 3, 64±12.9 mm Hg (means±SD) and in healthy normotensive subjects during administration of inotropic and vasomotor drugs. Aortic pressure and flow in the aortic root were estimated by carotid tonometry and Doppler sonography, respectively. Morphology of the backward wave relative to the forward wave was similar in subjects in the lowest and highest tertiles of pulse pressure. Similar results were seen with the inotropic, vasopressor and vasodilator drugs, dobutamine, norepinephrine, and phentolamine, with the backward wave maintaining a constant ratio to the forward wave. However, nitroglycerin, a drug with a specific action to dilate muscular conduit arteries, reduced the amplitude of the backward wave relative to the forward wave from 0.26±0.018 at baseline to 0.19±0.019 during nitroglycerin 30 μg/min IV (P<0.01). These results are best explained by an approximately constant amount of reflection of the forward wave from the peripheral vasculature. The amount of reflection can be modified by dilation of peripheral muscular conduit arteries but contributes little to increased pulse pressure in hypertension. PMID:27920128

  16. Waves at Navigation Structures

    DTIC Science & Technology

    2014-10-27

    upgrades the Coastal Modeling System’s ( CMS ) wave model CMS -Wave, a phase-averaged spectral wave model, and BOUSS-2D, a Boussinesq-type nonlinear wave...provided by this work unit address these critical needs of the Corps’ navigation mission. Description Issue Addressed CMS -Wave application at Braddock...Bay, NY WaveNet application in Gulf of Mexico CMS -Wave and BOUSS-2D are two numerical wave models, and WaveNet and TideNet are two web-based

  17. ASTER Waves

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The pattern on the right half of this image of the Bay of Bengal is the result of two opposing wave trains colliding. This ASTER sub-scene, acquired on March 29, 2000, covers an area 18 kilometers (13 miles) wide and 15 kilometers (9 miles) long in three bands of the reflected visible and infrared wavelength region. The visible and near-infrared bands highlight surface waves due to specular reflection of sunlight off of the wave faces.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels

  18. Pressure Transfer Functions for Interfacial Fluids Problems

    NASA Astrophysics Data System (ADS)

    Chen, Robin Ming; Hur, Vera Mikyoung; Walsh, Samuel

    2017-03-01

    We make a consistent derivation, from the governing equations, of the pressure transfer function in the small-amplitude Stokes wave regime and the hydrostatic approximation in the small-amplitude solitary water wave regime, in the presence of a background shear flow. The results agree with the well-known formulae in the zero vorticity case, but they incorporate the effects of vorticity through solutions to the Rayleigh equation. We extend the results to permit continuous density stratification and to internal waves between two constant-density fluids. Several examples are discussed.

  19. Waves and Tsunami Project

    ERIC Educational Resources Information Center

    Frashure, K. M.; Chen, R. F.; Stephen, R. A.; Bolmer, T.; Lavin, M.; Strohschneider, D.; Maichle, R.; Micozzi, N.; Cramer, C.

    2007-01-01

    Demonstrating wave processes quantitatively in the classroom using standard classroom tools (such as Slinkys and wave tanks) can be difficult. For example, waves often travel too fast for students to actually measure amplitude or wavelength. Also, when teaching propagating waves, reflections from the ends set up standing waves, which can confuse…

  20. Cloaking of the momentum in acoustic waves.

    PubMed

    Sklan, Sophia

    2010-01-01

    Through an appropriate change in variables, we find that the three-dimensional acoustic wave equation is subject to the transformation media interpretation. In particular, we determine that this interpretation can be extended beyond the pressure difference to also account for the momentum transported by the wave. The suitability of momentum transport is especially interesting as it is an example where the field of interest is not governed by a wave equation. We examine how both fields behave in the case of cloaking. Explicit consideration of the boundary conditions shows that perfect cloaking is preserved, even when the incoming momentum is nonzero at the surface of the cloak.

  1. Nonlinear Landau damping and Alfven wave dissipation

    NASA Technical Reports Server (NTRS)

    Vinas, Adolfo F.; Miller, James A.

    1995-01-01

    Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.

  2. Multi-dimensional MHD simple waves

    SciTech Connect

    Webb, G. M.; Ratkiewicz, R.; Brio, M.; Zank, G. P.

    1996-07-20

    In this paper we consider a formalism for multi-dimensional simple MHD waves using ideas developed by Boillat. For simple wave solutions one assumes that all the physical variables (the density {rho}, gas pressure p, fluid velocity u, gas entropy S, and magnetic induction B in the MHD case) depend on a single phase function {phi}(r,t). The simple wave solution ansatz and the MHD equations then require that the phase function {phi} satisfies an implicit equation of the form f({phi})=r{center_dot}n({phi})-{lambda}({phi})t, where n({phi})={nabla}{phi}/|{nabla}{phi}| is the wave normal, {lambda}({phi})={omega}/k=-{phi}{sub t}/|{nabla}{phi}| is the normal speed of the wave front, and f({phi}) is an arbitrary differentiable function of {phi}. The formalism allows for more general simple waves than that usually dealt with in which n({phi}) is a constant unit vector that does not vary along the wave front. The formalism has implications for shock formation and wave breaking for multi-dimensional waves.

  3. Freak waves observations in the coastal zone of Okhotsk Sea

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Konstantin; Zaytsev, Andrey; Kostenko, Irina; Pelinovsky, Efim; Kurkin, Andrey

    2015-04-01

    Instrumental data of the long-term observation of abnormally large waves (freak waves) on the shelf of Sakhalin Island near the village Vsmorie, cape Ostriy, orifice of the Izmenchivae Lake, cape Svobodniy and cape Aniva since 2007 are adduced. These measurements were made with using bottom stations, measuring variations in bottom pressure, induced by surface waves. These sensors do not interfere with navigation and do not affect the ecology of the area. The important problem of the translation variations of bottom pressure in the vertical oscillations of the sea surface is discussed. The linear theory of water waves used here as a first approximation. About 1,400 waves that are abnormal, and their height twice the height of the background waves (amplitude criterion killer waves) are allocated from the total number of individual waves (several million). About 20 waves have a height greater than the height of the background by 2.7 times. The wave group, which was fixed for the term «three sisters» is typical form of abnormal waves. On average, two or three abnormal waves are recorded per day.

  4. Trend analysis of the wave storminess: the wave direction

    NASA Astrophysics Data System (ADS)

    Casas Prat, M.; Sierra, J. P.; Mösso, C.; Sánchez-Arcilla, A.

    2009-09-01

    Climate change has an important role in the current scientific research because of its possible future negative consequences. Concerning the climate change in the coastal engineering field, the apparent sea level rise is one of the key parameters as well as the wave height and the wave direction temporal variations. According to the IPCC (2007), during the last century the sea level has been increasing with a mean rate of 1.7 ± 0.5 mm/yr. However, at local/regional scale the tendency significantly differs from the global trend since the local pressure and wind field variations become more relevant. This appears to be particularly significant in semi-enclosed areas in the Mediterranean Sea (Cushman-Roisin et al., 2001). Even though the existing unsolved questions related to the sea level rise, the uncertainty concerning the wave height is even larger, in which stormy conditions are especially important because they are closely related to processes such as coastal erosion, flooding, etc. Therefore, it is necessary to identify possible existing tendencies of storm related parameters. In many studies, only the maximum wave height and storm duration are analysed, remaining the wave direction in a second term. Note that a possible rotation of the mean wave direction may involve severe consequences since most beach and harbour defence structures have been designed assuming a constant predominant wave incidence. Liste et al. (2004) illustrated this fact with an example in which a rotation of only 2 degrees of the mean energy flux vector could produce a beach retreat of 20 m. Another possible consequence would be a decrease of the harbour operability: increased frequency of storms in the same direction as the harbour entrance orientation would influence the navigability. The present study, which focuses in the Catalan coast (NW Mediterranean Sea), aims to improve the present knowledge of the wave storminess variations at regional scale, specially focusing on the wave

  5. Impact of calibration on estimates of central blood pressures.

    PubMed

    Soender, T K; Van Bortel, L M; Møller, J E; Lambrechtsen, J; Hangaard, J; Egstrup, K

    2012-12-01

    Using the Sphygmocor device it is recommended that the radial pressure wave is calibrated for brachial systolic blood pressure (SBP) and diastolic blood pressure (DBP). However it has been suggested that brachial-to-radial pressure amplification causes underestimation of central blood pressures (BPs) using this calibration. In the present study we examined if different calibrations had an impact on estimates of central BPs and on the clinical interpretation of our results. On the basis of ambulatory BP measurements, patients were categorized into patients with controlled, uncontrolled or resistant hypertension. We first calibrated the radial pressure wave as recommended and afterwards recalibrated the same pressure wave using brachial DBP and calculated mean arterial pressure. Recalibration of the pressure wave generated significantly higher estimates of central SBP (P=0.0003 and P<0.0001 at baseline and P=0.0001 and P=0.0002 after 6 months). Using recommended calibration we found a significant change in central SBP in both treatment groups (P=0.05 and P=0.01), however, after recalibrating significance was lost in patients with resistant hypertension (P=0.15). We conclude that calibration with DBP and mean arterial pressure produces higher estimates of central BPs than recommended calibration. The present study also shows that this difference between the two calibration methods can produce more than a systematic error and has an impact on interpretation of clinical results.

  6. Liquid sound speeds at pressure from the optical analyzer technique

    SciTech Connect

    Fritz, J.N.; Morris, C.E.; Hixson, R.S.; McQueen, R.G.

    1993-08-01

    The optical analyzer technique has proved to be a useful means of obtaining wave velocities at high pressures. Stepped wedges of the investigated material emit shock, and later, rarefaction waves into a transparent analyzer covering the material. The time interval between shock and rarefaction plotted versus wedge thickness gives a linear plot whose intercept fixes the target/driver thickness ratio for exact wave overtake, and thus gives a relation between the shock velocity and overtaking wave velocity at pressure. The slope of this line is intimately related to the wave velocity at pressure of the analyzer in front of the wedge. This aspect of the technique has not yet been exploited. We present the appropriate analysis, some data on bromoform (one of the analyzers used), and discuss some possible applications of this technique.

  7. Wave propagation in sandwich panels with a poroelastic core.

    PubMed

    Liu, Hao; Finnveden, Svante; Barbagallo, Mathias; Arteaga, Ines Lopez

    2014-05-01

    Wave propagation in sandwich panels with a poroelastic core, which is modeled by Biot's theory, is investigated using the waveguide finite element method. A waveguide poroelastic element is developed based on a displacement-pressure weak form. The dispersion curves of the sandwich panel are first identified as propagating or evanescent waves by varying the damping in the panel, and wave characteristics are analyzed by examining their motions. The energy distributions are calculated to identify the dominant motions. Simplified analytical models are also devised to show the main physics of the corresponding waves. This wave propagation analysis provides insight into the vibro-acoustic behavior of sandwich panels lined with elastic porous materials.

  8. Surface wave tomography

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1984-01-01

    Vertically polarized shear wave velocity (VSV), determined primarily from fundamental mode Rayleigh waves, and the difference between the velocity of horizontally polarized shear waves (VSH) and VSV, therefore a measure of anisotropy, are shown.

  9. Frequency and wavelength prediction of ultrasonic induced liquid surface waves.

    PubMed

    Mahravan, Ehsan; Naderan, Hamid; Damangir, Ebrahim

    2016-12-01

    A theoretical investigation of parametric excitation of liquid free surface by a high frequency sound wave is preformed, using potential flow theory. Pressure and velocity distributions, resembling the sound wave, are applied to the free surface of the liquid. It is found that for impinging wave two distinct capillary frequencies will be excited: One of them is the same as the frequency of the sound wave, and the other is equal to the natural frequency corresponding to a wavenumber equal to the horizontal wavenumber of the sound wave. When the wave propagates in vertical direction, mathematical formulation leads to an equation, which has resonance frequency equal to half of the excitation frequency. This can explain an important contradiction between the frequency and the wavelength of capillary waves in the two cases of normal and inclined interaction of the sound wave and the free surface of the liquid.

  10. Waves in periodic dissipative laminate metamaterial generated by plate impact

    NASA Astrophysics Data System (ADS)

    Navarro, Pedro Franco; Benson, David J.; Nesterenko, Vitali F.

    2017-01-01

    We investigated numerically the nature of high amplitude stress waves generated by plate impact on Al/W viscoplastic laminates with different cell sizes. Weakly attenuating localized travelling waves, closely resembling solitary waves, quickly form near the impacted surface at relatively short duration of incoming pulse. They have properties similar to solitary solutions of the Korteweg-de Vries equation with the dispersive and nonlinear parameters connected to laminate properties. The peak temperature in the localized stress wave is dramatically different than the temperature corresponding to the shock wave at the same pressure, reflecting different paths of loading. Increase of the duration of the incoming pulse results in a train of solitary pulses or in oscillatory stationary shock like stress waves. The leading front of the shock like stress wave is closely described by the rising part of solitary stress wave.

  11. Shear Wave Attenuation in Unconsolidated Laboratory Sediments.

    DTIC Science & Technology

    1983-06-01

    pressure) exponent of one-fourth for prediction of shear wave velocities in sands. This recommendation is based upon both in situ and laboratory...measurements. However, as we have seen from the data presented, there is consider- able scatter in the pressure exponent with values varying from...standard deviation of 0.98. Hamilton 5 4 takes % . -. ... .... . ...... .. ............ ...... 21 exception to this frequency exponent , pointing out

  12. Chromium at High Pressure

    NASA Astrophysics Data System (ADS)

    Jaramillo, Rafael

    2012-02-01

    Chromium has long served as the archetype of spin density wave magnetism. Recently, Jaramillo and collaborators have shown that Cr also serves as an archetype of magnetic quantum criticality. Using a combination of x-ray diffraction and electrical transport measurements at high pressures and cryogenic temperatures in a diamond anvil cell, they have demonstrated that the N'eel transition (TN) can be continuously suppressed to zero, with no sign of a concurrent structural transition. The order parameter undergoes a broad regime of exponential suppression, consistent with the weak coupling paradigm, before deviating from a BCS-like ground state within a narrow but accessible quantum critical regime. The quantum criticality is characterized by mean field scaling of TN and non mean field scaling of the transport coefficients, which points to a fluctuation-induced reconstruction of the critical Fermi surface. A comparison between pressure and chemical doping as means to suppress TN sheds light on different routes to the quantum critical point and the relevance of Fermi surface nesting and disorder at this quantum phase transition. The work by Jaramillo et al. is broadly relevant to the study of magnetic quantum criticality in a physically pure and theoretically tractable system that balances elements of weak and strong coupling. [4pt] [1] R. Jaramillo, Y. Feng, J. Wang & T. F. Rosenbaum. Signatures of quantum criticality in pure Cr at high pressure. Proc. Natl. Acad. Sci. USA 107, 13631 (2010). [0pt] [2] R. Jaramillo, Y. Feng, J. C. Lang, Z. Islam, G. Srajer, P. B. Littlewood, D. B. McWhan & T. F. Rosenbaum. Breakdown of the Bardeen-Cooper-Schrieffer ground state at a quantum phase transition. Nature 459, 405 (2009).

  13. Auroral plasma waves

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1989-01-01

    A review is given of auroral plasma wave phenomena, starting with the earliest ground-based observations and ending with the most recent satellite observations. Two types of waves are considered, electromagnetic and electrostatic. Electromagnetic waves include auroral kilometric radiation, auroral hiss, ELF noise bands, and low-frequency electric and magnetic noise. Electrostatic waves include upper hybrid resonance emissions, electron cyclotron waves, lower hybrid waves, ion cyclotron waves and broadband electrostatic noise. In each case, a brief overview is given describing the observations, the origin of the instability, and the role of the waves in the physics of the auroral acceleration region.

  14. Dispersive wave emission from wave breaking.

    PubMed

    Conforti, Matteo; Trillo, Stefano

    2013-10-01

    We show that pulses undergoing wave breaking in nonlinear weakly dispersive fibers radiate, owing to phase-matching (assisted by higher-order dispersion) of linear dispersive waves with the shock-wave front. Our theoretical results perfectly explain the radiation observed recently from pulses propagating in the normal dispersion (i.e., nonsolitonic) regime.

  15. Torsional ultrasonic wave based level measurement system

    DOEpatents

    Holcomb, David E [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN

    2012-07-10

    A level measurement system suitable for use in a high temperature and pressure environment to measure the level of coolant fluid within the environment, the system including a volume of coolant fluid located in a coolant region of the high temperature and pressure environment and having a level therein; an ultrasonic waveguide blade that is positioned within the desired coolant region of the high temperature and pressure environment; a magnetostrictive electrical assembly located within the high temperature and pressure environment and configured to operate in the environment and cooperate with the waveguide blade to launch and receive ultrasonic waves; and an external signal processing system located outside of the high temperature and pressure environment and configured for communicating with the electrical assembly located within the high temperature and pressure environment.

  16. Central blood pressure and chronic kidney disease

    PubMed Central

    Ohno, Yoichi; Kanno, Yoshihiko; Takenaka, Tsuneo

    2016-01-01

    In this review, we focused on the relationship between central blood pressure and chronic kidney diseases (CKD). Wave reflection is a major mechanism that determines central blood pressure in patients with CKD. Recent medical technology advances have enabled non-invasive central blood pressure measurements. Clinical trials have demonstrated that compared with brachial blood pressure, central blood pressure is a stronger risk factor for cardiovascular (CV) and renal diseases. CKD is characterized by a diminished renal autoregulatory ability, an augmented direct transmission of systemic blood pressure to glomeruli, and an increase in proteinuria. Any elevation in central blood pressure accelerates CKD progression. In the kidney, interstitial inflammation induces oxidative stress to handle proteinuria. Oxidative stress facilitates atherogenesis, increases arterial stiffness and central blood pressure, and worsens the CV prognosis in patients with CKD. A vicious cycle exists between CKD and central blood pressure. To stop this cycle, vasodilator antihypertensive drugs and statins can reduce central blood pressure and oxidative stress. Even in early-stage CKD, mineral and bone disorders (MBD) may develop. MBD promotes oxidative stress, arteriosclerosis, and elevated central blood pressure in patients with CKD. Early intervention or prevention seems necessary to maintain vascular health in patients with CKD. PMID:26788468

  17. A Comparison between Oceanographic Parameters and Seafloor Pressures; Measured, Theoretical and Modelled, and Terrestrial Seismic Data

    NASA Astrophysics Data System (ADS)

    Donne, Sarah; Bean, Christopher; Craig, David; Dias, Frederic; Christodoulides, Paul

    2016-04-01

    Microseisms are continuous seismic vibrations which propagate mainly as surface Rayleigh and Love waves. They are generated by the Earth's oceans and there are two main types; primary and secondary microseisms. Primary microseisms are generated through the interaction of travelling surface gravity ocean waves with the seafloor in shallow waters relative to the wavelength of the ocean wave. Secondary microseisms, on the other hand are generated when two opposing wave trains interact and a non-linear second order effect produces a pressure fluctuation which is depth independent. The conditions necessary to produce secondary microseisms are presented in Longuet-Higgins (1950) through the interaction of two travelling waves with the same wave period and which interact at an angle of 180 degrees. Equivalent surface pressure density (p2l) is modelled using the numerical ocean wave model Wavewatch III and this term is considered as the microseism source term. This work presents an investigation of the theoretical second order pressures generated through the interaction of travelling waves with varying wave amplitude, period and angle of incidence. Predicted seafloor pressures calculated off the Southwest coast of Ireland are compared with terrestrially recorded microseism records, measured seafloor pressures and oceanographic parameters. The work presented in this study suggests that a broad set of sea states can generate second order seafloor pressures that are consistent with seafloor pressure measurements. Local seismic arrays throughout Ireland allow us to investigate the temporal covariance of these seafloor pressures with microseism source locations.

  18. [The morphologic and functional state of the kidneys exposed to focused waves during remote nephro-lithotripsy].

    PubMed

    Gavrilevich, B A; Sergienko, N F; Kudriavtsev, Iu V; Olefir, Iu V

    2006-06-01

    Clinical and experimental research has shown that complications connected with negative influence of focused waves in distant lithotripsy in litotripters with an electrohydravlic system of focused waves generation depend on many factors, including the regime of wave generator work, an electrode interval, defocusing the wave as a result of an electrode interval center displacement, the amplitude of pressure and the length of a wave impulse in positive and negative phases. The wave impulse is distorted, which leads to kidney tissue damage.

  19. Spatiotemporal dynamics of underwater conical shock wave focusing

    NASA Astrophysics Data System (ADS)

    Hoffer, P.; Lukes, P.; Akiyama, H.; Hosseini, H.

    2016-12-01

    The paper presents an experimental study on spatiotemporal dynamics of conical shock waves focusing in water. A multichannel pulsed electrohydraulic discharge source with a cylindrical ceramic-coated electrode was used. Time-resolved visualizations revealed that cylindrical pressure waves were focused to produce conical shock wave reflection over the axis of symmetry in water. Positive and negative pressures of 372 MPa and -17 MPa at the focus with 0.48 mm lateral and 22 mm axial extension (-6 dB) were measured by a fiber-optic probe hydrophone. The results clearly show the propagation process leading to the high-intensity underwater shock wave. Such strong and sharp shock wave focusing offers better localization for extracorporeal lithotripsy or other non-invasive medical shock wave procedures.

  20. Gas Hydrate and Pore Pressure

    NASA Astrophysics Data System (ADS)

    Tinivella, Umberta; Giustiniani, Michela

    2014-05-01

    Many efforts have been devoted to quantify excess pore pressures related to gas hydrate dissociation in marine sediments below the BSR using several approaches. Dissociation of gas hydrates in proximity of the BSR, in response to a change in the physical environment (i.e., temperature and/or pressure regime), can liberate excess gas incrising the local pore fluid pressure in the sediment, so decreasing the effective normal stress. So, gas hydrate dissociation may lead to excess pore pressure resulting in sediment deformation or failure, such as submarine landslides, sediment slumping, pockmarks and mud volcanoes, soft-sediment deformation and giant hummocks. Moreover, excess pore pressure may be the result of gas hydrate dissociation due to continuous sedimentation, tectonic uplift, sea level fall, heating or inhibitor injection. In order to detect the presence of the overpressure below the BSR, we propose two approachs. The fist approach models the BSR depth versus pore pressure; in fact, if the free gas below the BSR is in overpressure condition, the base of the gas hydrate stability is deeper with respect to the hydrostatic case. This effect causes a discrepancy between seismic and theoretical BSR depths. The second approach models the velocities versus gas hydrate and free gas concentrations and pore pressure, considering the approximation of the Biot theory in case of low frequency, i.e. seismic frequency. Knowing the P and S seismic velocity from seismic data analysis, it is possibile to jointly estimate the gas hydrate and free gas concentrations and the pore pressure regime. Alternatively, if the S-wave velocity is not availbale (due to lack of OBS/OBC data), an AVO analysis can be performed in order to extract information about Poisson ratio. Our modeling suggests that the areas characterized by shallow waters (i.e., areas in which human infrastructures, such as pipelines, are present) are significantly affected by the presence of overpressure condition

  1. Augmentation pressure is influenced by ventricular contractility/relaxation dynamics: novel mechanism of reduction of pulse pressure by nitrates.

    PubMed

    Fok, Henry; Guilcher, Antoine; Li, Ye; Brett, Sally; Shah, Ajay; Clapp, Brian; Chowienczyk, Phil

    2014-05-01

    Augmentation pressure (AP), the increment in aortic pressure above its first systolic shoulder, is thought to be determined mainly by pressure wave reflection but could be influenced by ventricular ejection characteristics. We sought to determine the mechanism by which AP is selectively reduced by nitroglycerin (NTG). Simultaneous measurements of aortic pressure and flow were made at the time of cardiac catheterization in 30 subjects (11 women; age, 61±13 years [mean±SD]) to perform wave intensity analysis and calculate forward and backward components of AP generated by the ventricle and arterial tree, respectively. Measurements were made at baseline and after NTG given systemically (800 μg sublingually, n=20) and locally by intracoronary infusion (1 μg/min; n=10). Systemic NTG had no significant effect on first shoulder pressure but reduced augmentation (and central pulse pressure) by 12.8±3.1 mm Hg (P<0.0001). This resulted from a reduction in forward and backward wave components of AP by 7.0±2.4 and 5.8±1.3 mm Hg, respectively (each P<0.02). NTG had no significant effect on the ratio of amplitudes of either backward/forward waves or backward/forward compression wave energies, suggesting that effects on the backward wave were largely secondary to those on the forward wave. Time to the forward expansion wave was reduced (P<0.05). Intracoronary NTG decreased AP by 8.3±3.6 mm Hg (P<0.05) with no significant effect on the backward wave. NTG reduces AP and central pulse pressure by a mechanism that is, at least in part, independent of arterial reflections and relates to ventricular contraction/relaxation dynamics with enhanced myocardial relaxation.

  2. Detonation waves in relativistic hydrodynamics

    SciTech Connect

    Cissoko, M. )

    1992-02-15

    This paper is concerned with an algebraic study of the equations of detonation waves in relativistic hydrodynamics taking into account the pressure and the energy of thermal radiation. A new approach to shock and detonation wavefronts is outlined. The fluid under consideration is assumed to be perfect (nonviscous and nonconducting) and to obey the following equation of state: {ital p}=({gamma}{minus}1){rho} where {ital p}, {rho}, and {gamma} are the pressure, the total energy density, and the adiabatic index, respectively. The solutions of the equations of detonation waves are reduced to the problem of finding physically acceptable roots of a quadratic polynomial {Pi}({ital X}) where {ital X} is the ratio {tau}/{tau}{sub 0} of dynamical volumes behind and ahead of the detonation wave. The existence and the locations of zeros of this polynomial allow it to be shown that if the equation of state of the burnt fluid is known then the variables characterizing the unburnt fluid obey well-defined physical relations.

  3. Measurement of waves in flows across a surface

    NASA Technical Reports Server (NTRS)

    Kendall, Jr., James M. (Inventor)

    1992-01-01

    A method and apparatus for sensing wave flow across a surface wherein at least two pressure levels are sensed and combined to provide a representation of waves within the flow. In the preferred embodiment holes bored through the aircraft surface at an interval of one-half the wavelength of the flow being measured introduce pressure perturbations into a cavity so they may acoustically interfere. The interfering waveform is sensed by at least one microphone disposed in the cavity.

  4. Low Blood Pressure

    MedlinePlus

    ... a problem. Sometimes blood pressure that is too low can also cause problems. Blood pressure is the ... reading is 90/60 or lower, you have low blood pressure. Some people have low blood pressure ...

  5. Wave Directional Characteristics on a Partially Sheltered Coast.

    DTIC Science & Technology

    1982-01-01

    California Sea Grant Program, IMR Ref. 78-102. Pawka, S. S., V. Hsiao, 0. H. Shemdin , and D. L. Inman, 1978, "Comparison of wave directional spectra...Pawka, S. S., S. V. Hsiao, 0. H. Shemdin , and D. L. Inman, 1980, "Com- parisons between wave directional spectra from SAR and pressure sensor arrays...effects of wave induced airflow, are under 77 active investigation (Evans and Shemdin ,1980). Previous ground truth experiments, reported in Mcleish et al

  6. EXPERIMENTAL STUDY OF SHOCK WAVE DYNAMICS IN MAGNETIZED PLASMAS

    SciTech Connect

    Nirmol K. Podder

    2009-03-17

    In this four-year project (including one-year extension), the project director and his research team built a shock-wave-plasma apparatus to study shock wave dynamics in glow discharge plasmas in nitrogen and argon at medium pressure (1–20 Torr), carried out various plasma and shock diagnostics and measurements that lead to increased understanding of the shock wave acceleration phenomena in plasmas. The measurements clearly show that in the steady-state dc glow discharge plasma, at fixed gas pressure the shock wave velocity increases, its amplitude decreases, and the shock wave disperses non-linearly as a function of the plasma current. In the pulsed discharge plasma, at fixed gas pressure the shock wave dispersion width and velocity increase as a function of the delay between the switch-on of the plasma and shock-launch. In the afterglow plasma, at fixed gas pressure the shock wave dispersion width and velocity decrease as a function of the delay between the plasma switch-off and shock-launch. These changes are found to be opposite and reversing towards the room temperature value which is the initial condition for plasma ignition case. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas.

  7. Shock wave interactions with liquid sheets

    NASA Astrophysics Data System (ADS)

    Jeon, H.; Eliasson, V.

    2017-04-01

    Shock wave interactions with a liquid sheet are investigated by impacting planar liquid sheets of varying thicknesses with a planar shock wave. A square frame was designed to hold a rectangular liquid sheet, with a thickness of 5 or 10 mm, using plastic membranes and cotton wires to maintain the planar shape and minimize bulge. The flat liquid sheet, consisting of either water or a cornstarch and water mixture, was suspended in the test section of a shock tube. Incident shock waves with Mach numbers of M_s = 1.34 and 1.46 were considered. A schlieren technique with a high-speed camera was used to visualize the shock wave interaction with the liquid sheets. High-frequency pressure sensors were used to measure wave speed, overpressure, and impulse both upstream and downstream of the liquid sheet. Results showed that no transmitted shock wave could be observed through the liquid sheets, but compression waves induced by the shock-accelerated liquid coalesced into a shock wave farther downstream. A thicker liquid sheet resulted in a lower peak overpressure and impulse, and a cornstarch suspension sheet showed a higher attenuation factor compared to a water sheet.

  8. Multi-dimensional MHD simple waves

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Ratkiewicz, R.; Brio, M.; Zank, G. P.

    1995-01-01

    In this paper we consider a formalism for multi-dimensional simple MHD waves using ideas developed by Boillat. For simple wave solutions one assumes that all the physical variables (the density rho, gas pressure p, fluid velocity V, gas entropy S, and magnetic induction B in the MHD case) depend on a single phase function phi(r,t). The simple wave solution ansatz and the MHD equations then require that the phase function has the form phi = r x n(phi) - lambda(phi)t, where = n(phi) = Delta phi / (absolute value of Delta phi) is the wave normal and lambda(phi) = omega/k = -phi t / (absolute value of Delta phi) is the normal speed of the wave front. The formalism allows for more general simple waves than that usually dealt with in which n(phi) is a constant unit vector that does not vary along the wave front. The formalism has implications for shock formation for multi-dimensional waves.

  9. Wave rotor-enhanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Scott, Jones M.; Paxson, Daniel E.

    1995-01-01

    The benefits of wave rotor-topping in small (400 to 600 hp-class) and intermediate (3000 to 4000 hp-class) turboshaft engines, and large (80,000 to 100,000 lb(sub f)-class) high bypass ratio turbofan engines are evaluated. Wave rotor performance levels are calculated using a one-dimensional design/analysis code. Baseline and wave rotor-enhanced engine performance levels are obtained from a cycle deck in which the wave rotor is represented as a burner with pressure gain. Wave rotor-toppings is shown to significantly enhance the specific fuel consumption and specific power of small and intermediate size turboshaft engines. The specific fuel consumption of the wave rotor-enhanced large turbofan engine can be reduced while operating at significantly reduced turbine inlet temperature. The wave rotor-enhanced engine is shown to behave off-design like a conventional engine. Discussion concerning the impact of the wave rotor/gas turbine engine integration identifies tenable technical challenges.

  10. Shock wave absorber having a deformable liner

    DOEpatents

    Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.

    1983-08-26

    This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.

  11. Transformation of Waves Across the Surf Zone.

    DTIC Science & Technology

    1981-03-01

    by -2 2 -2p(H) = 2H/Hrs exp(-H /Hrs) (1) where iH is the rms wave height.rms Using pressure records in the Gulf of Mexico , Longuet- Higgins (1975...Spring, MD 20910 21. Director 2 Instituto Oceanografico de la Armada Guayaquil, Ecuador 22. Director de Educacion de la Armada Comandancia General de

  12. Diagnostic of shock wave processes

    NASA Astrophysics Data System (ADS)

    Urtiew, P. A.

    1992-05-01

    Experimental measurements of high rate processes taking place in a shock wave dynamic environment require that the diagnostic systems have fast response and high resolution. This is not a trivial requirement considering the fact that under shock loading one can expect not only sudden changes of state across the shock discontinuity but also subsequent changes in pressure, temperature and volume due to chemical reaction, phase change and other transformations which may also take place behind the shock wave. Among the various parameters which provide direct ties to theoretical studies of the equation of state and at the same time yield to relatively accurate experimental measurements are shock velocity, particle velocity and pressure. Described here are the optical techniques VISAR and Fabry Perot interferometer for observing particle and free surface velocities in transparent media as well as in situ foil gauges for measuring pressure and particle velocity within the sample. Although these techniques are not new they have been continuously improved and upgraded at our facility to yield greater accuracy, reliability and state of the art performance. The emphasis in this paper is on the operational features of the measuring techniques, but examples of experimental results are also included.

  13. Cavitation in shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Bailey, Michael R.; Crum, Lawrence A.; Sapozhnikov, Oleg A.; Evan, Andrew P.; McAteer, James A.; Colonius, Tim; Cleveland, Robin O.

    2003-10-01

    A case is presented for the important role of cavitation in stone comminution and tissue injury in shock wave lithotripsy (SWL). Confocal hydrophones and a coincidence algorithm were used to detect cavitation in kidney parenchyma. Elevated hydrostatic pressure dissolved cavitation nuclei and suppressed cell injury and stone comminution in vitro. A low-insertion-loss, thin, mylar film nearly eliminated stone erosion and crack formation only when in direct contact with the stone. This result indicates not only that cavitation is important in both cracking and erosion but also that bubbles act at the surface. Time inversion of the shock wave by use of a pressure-release reflector reduced the calculated pressure at bubble collapse and the measured depth of bubble-induced pits in aluminum. Correspondingly tissue injury in vivo was nearly eliminated. Cavitation was localized and intensified by the use of synchronously triggered, facing lithotripters. This dual pulse lithotripter enhanced comminution at its focus and reduced lysis in surrounding blood samples. The enhancement of comminution was lost when stones were placed in glycerol, which retarded bubble implosion. Thus, cavitation is important in comminution and injury and can be controlled to optimize efficacy and safety. [Work supported by NIH DK43381, DK55674, and FIRCA.

  14. Wave-current interaction in Willapa Bay

    USGS Publications Warehouse

    Olabarrieta, M.; Warner, J.C.; Kumar, N.

    2011-01-01

    This paper describes the importance of wave-current interaction in an inlet-estuary system. The three-dimensional, fully coupled, Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system was applied in Willapa Bay (Washington State) from 22 to 29 October 1998 that included a large storm event. To represent the interaction between waves and currents, the vortex-force method was used. Model results were compared with water elevations, currents, and wave measurements obtained by the U.S. Army Corp of Engineers. In general, a good agreement between field data and computed results was achieved, although some discrepancies were also observed in regard to wave peak directions in the most upstream station. Several numerical experiments that considered different forcing terms were run in order to identify the effects of each wind, tide, and wave-current interaction process. Comparison of the horizontal momentum balances results identified that wave-breaking-induced acceleration is one of the leading terms in the inlet area. The enhancement of the apparent bed roughness caused by waves also affected the values and distribution of the bottom shear stress. The pressure gradient showed significant changes with respect to the pure tidal case. During storm conditions the momentum balance in the inlet shares the characteristics of tidal-dominated and wave-dominated surf zone environments. The changes in the momentum balance caused by waves were manifested both in water level and current variations. The most relevant effect on hydrodynamics was a wave-induced setup in the inner part of the estuary. Copyright 2011 by the American Geophysical Union.

  15. Wave-current interaction in Willapa Bay

    NASA Astrophysics Data System (ADS)

    Olabarrieta, Maitane; Warner, John C.; Kumar, Nirnimesh

    2011-12-01

    This paper describes the importance of wave-current interaction in an inlet-estuary system. The three-dimensional, fully coupled, Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system was applied in Willapa Bay (Washington State) from 22 to 29 October 1998 that included a large storm event. To represent the interaction between waves and currents, the vortex-force method was used. Model results were compared with water elevations, currents, and wave measurements obtained by the U.S. Army Corp of Engineers. In general, a good agreement between field data and computed results was achieved, although some discrepancies were also observed in regard to wave peak directions in the most upstream station. Several numerical experiments that considered different forcing terms were run in order to identify the effects of each wind, tide, and wave-current interaction process. Comparison of the horizontal momentum balances results identified that wave-breaking-induced acceleration is one of the leading terms in the inlet area. The enhancement of the apparent bed roughness caused by waves also affected the values and distribution of the bottom shear stress. The pressure gradient showed significant changes with respect to the pure tidal case. During storm conditions the momentum balance in the inlet shares the characteristics of tidal-dominated and wave-dominated surf zone environments. The changes in the momentum balance caused by waves were manifested both in water level and current variations. The most relevant effect on hydrodynamics was a wave-induced setup in the inner part of the estuary.

  16. Shock Wave Technology and Application: An Update☆

    PubMed Central

    Rassweiler, Jens J.; Knoll, Thomas; Köhrmann, Kai-Uwe; McAteer, James A.; Lingeman, James E.; Cleveland, Robin O.; Bailey, Michael R.; Chaussy, Christian

    2012-01-01

    Context The introduction of new lithotripters has increased problems associated with shock wave application. Recent studies concerning mechanisms of stone disintegration, shock wave focusing, coupling, and application have appeared that may address some of these problems. Objective To present a consensus with respect to the physics and techniques used by urologists, physicists, and representatives of European lithotripter companies. Evidence acquisition We reviewed recent literature (PubMed, Embase, Medline) that focused on the physics of shock waves, theories of stone disintegration, and studies on optimising shock wave application. In addition, we used relevant information from a consensus meeting of the German Society of Shock Wave Lithotripsy. Evidence synthesis Besides established mechanisms describing initial fragmentation (tear and shear forces, spallation, cavitation, quasi-static squeezing), the model of dynamic squeezing offers new insight in stone comminution. Manufacturers have modified sources to either enlarge the focal zone or offer different focal sizes. The efficacy of extracorporeal shock wave lithotripsy (ESWL) can be increased by lowering the pulse rate to 60–80 shock waves/min and by ramping the shock wave energy. With the water cushion, the quality of coupling has become a critical factor that depends on the amount, viscosity, and temperature of the gel. Fluoroscopy time can be reduced by automated localisation or the use of optical and acoustic tracking systems. There is a trend towards larger focal zones and lower shock wave pressures. Conclusions New theories for stone disintegration favour the use of shock wave sources with larger focal zones. Use of slower pulse rates, ramping strategies, and adequate coupling of the shock wave head can significantly increase the efficacy and safety of ESWL. PMID:21354696

  17. A Simple Wave Driver

    ERIC Educational Resources Information Center

    Temiz, Burak Kagan; Yavuz, Ahmet

    2015-01-01

    This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the…

  18. Finsler p p -waves

    NASA Astrophysics Data System (ADS)

    Fuster, Andrea; Pabst, Cornelia

    2016-11-01

    In this work we present Finsler gravitational waves. These are a Finslerian version of the well-known p p -waves, generalizing the very special relativity line element. Our Finsler p p -waves are an exact solution of Finslerian Einstein's equations in vacuum and describe gravitational waves propagating in an anisotropic background.

  19. Phonons, Atoms, and Waves

    ERIC Educational Resources Information Center

    Reid, John S.

    1977-01-01

    Discussed are how the thermal vibrations of a solid are described in terms of lattice waves, how these waves interact with other waves, or with themselves, and how one is led from such a description in terms of waves to the concept of a phonon. (Author/MA)

  20. Planar shock wave sliding over a water layer

    NASA Astrophysics Data System (ADS)

    Rodriguez, V.; Jourdan, G.; Marty, A.; Allou, A.; Parisse, J.-D.

    2016-08-01

    In this work, we conduct experiments to study the interaction between a horizontal free water layer and a planar shock wave that is sliding over it. Experiments are performed at atmospheric pressure in a shock tube with a square cross section (200× 200 mm^2) for depths of 10, 20, and 30 mm; a 1500-mm-long water layer; and two incident planar shock waves having Mach numbers of 1.11 and 1.43. We record the pressure histories and high-speed visualizations to study the flow patterns, surface waves, and spray layers behind the shock wave. We observe two different flow patterns with ripples formed at the air-water interface for the weaker shock wave and the dispersion of a droplet mist for the stronger shock wave. From the pressure signals, we extract the delay time between the arrival of the compression wave into water and the shock wave in air at the same location. We show that the delay time evolves with the distance traveled over the water layer, the depth of the water layer, and the Mach number of the shock wave.