Science.gov

Sample records for pressure-dependent electron attachment

  1. Pressure Dependent Electronic Properties of Organic Semiconductors from First Principles

    NASA Astrophysics Data System (ADS)

    Knuth, Franz; Carbogno, Christian; Blum, Volker; Scheffler, Matthias

    2015-03-01

    The electronic properties of organic semiconductors typically exhibit a significant dependence on the strain, stress, and pressure. In this contribution, we present the theoretical background, assessment of approximations, and results of electronic and transport properties in the framework of density-functional theory. Our implementation considers the analytical strain derivatives (stress tensor) including the contributions that stem from (a) van-der-Waals interactions and (b) the Fock-exchange in hybrid functionals. We validate our approach by investigating the geometric and electronic changes that occur in polyacetylene and anthracene under hydrostatic pressure. We show that the fraction of exact exchange included in the calculations is critical - and non-trivial to choose - for a correct description of these systems. Furthermore, we point out trends for the electrical conductivity under pressure and identify the dominant charge carriers and transport directions.

  2. Dissociative Electron Attachment

    NASA Astrophysics Data System (ADS)

    Arreola, Esmeralda; Esmeralda Arreola Collaboration; Leigh Hargreaves Collaboration

    Since the pioneering work of Boudiaffa et al., it has been understood that electrons, even with energies near or below the ionization threshold, are capable of initiating strand-breaks in human DNA. This discovery raised important questions for cancer treatments, since sub-ionizing electrons are known to be the most copiously produced secondary product of radiation therapy. But even to date these factors are largely excluded from dosimetry calculations. This lack of inclusion is, at least in part, certainly due to the dearth of fundamental data describing low-energy electron interactions with nucleotide molecules that form the basis of DNA. Understanding of how such slow electrons are able to damage DNA remains incomplete, but the strongly peaked nature of Boudiaffa et al.'s data gives strong hints at resonantly driven collision processes. DNA damage is therefore most likely driven by ``dissociative electron attachment'' (DEA). DEA is a rather complicated process to model due to the coupling of electronic and nuclear degrees of freedom in the molecule. At the California State University Fullerton, we are currently commissioning a new spectrometer to study dissociation channels, reaction rates and orientation effects in DEA collisions between slow electrons and nucleotide molecules. At the meeting we will present design parameters and commissioning data for this new apparatus.

  3. Photon Induced Electron Attachment.

    DTIC Science & Technology

    1984-12-01

    initial measure- ments was that high switch currents and long pulse durations appear to lead to substantially enhanced attachment rates in C3F8 ...similar conditions, but with 1.9 x 1015 C3F8 molecules/cm 3 added to the switch gas mixture. The initial current rise is comparable in both plots, but the...enhanced attachment during the switch opening time period. B. C0O Laser Excitation The photon enhanced attachment of the three gases NF3, C3F8 I and

  4. Electron attachment to PSCl3.

    PubMed

    Knighton, W B; Miller, Thomas M; Grimsrud, E P; Viggiano, A A

    2004-01-01

    Electron attachment to PSCl3 was studied in 133-Pa pressure of helium gas at temperatures from 298-550 K. Measurements of rate constants and branching fractions were made in a flowing-afterglow Langmuir-probe (FALP) apparatus. These experiments yielded an electron attachment rate constant of 5.1 x 10(-8) cm3 s(-1) that was found not to change significantly in the 298-550 K temperature range. This rate constant represents an attachment efficiency of about 14%. Attachment in 133 Pa of He gas yielded only the dissociative ion products PSCl2- and Cl-. The FALP data suggest that there is an activation energy of about 17 meV for production of PSCl2-. Attachment to PSCl3 was also studied at high pressure (9-93 kPa) of N2 in an ion mobility mass spectrometer, at 298 K. In contrast to the low-pressure data, the parent anion product channel (PSCl3-) was observed (along with the dissociative channels), and increased in importance with N2 pressure. Gaussian-3 (G3) calculations were carried out for PSCl3 and PSCl2 neutrals and anions to aid in interpretation of the experimental results. The calculations indicate that the electron affinity EA(PSCl2) is slightly smaller than EA(Cl), which may account for the observed branching fractions for PSCl2- and Cl- in the low-pressure experiments. A natural population analysis was performed to obtain the charges associated with each atom in the molecules in order to estimate how the attached electron is distributed. Comparison is made between the present study of electron attachment to PSCl3 and our earlier work on attachment to POCl3, and G3 calculations are reported here for neutral and anionic POCl2 and POCl3. In contrast to PSCl2, the calculations imply that EA(POCl2) is slightly greater than EA(Cl). For both PSCl3 and POCl3, the calculations show that the dissociative electron attachment process is close to thermoneutral.

  5. Electron attachment to PSCl3

    NASA Astrophysics Data System (ADS)

    Knighton, W. B.; Miller, Thomas M.; Grimsrud, E. P.; Viggiano, A. A.

    2004-01-01

    Electron attachment to PSCl3 was studied in 133-Pa pressure of helium gas at temperatures from 298-550 K. Measurements of rate constants and branching fractions were made in a flowing-afterglow Langmuir-probe (FALP) apparatus. These experiments yielded an electron attachment rate constant of 5.1×10-8cm3 s-1 that was found not to change significantly in the 298-550 K temperature range. This rate constant represents an attachment efficiency of about 14%. Attachment in 133 Pa of He gas yielded only the dissociative ion products PSCl2- and Cl-. The FALP data suggest that there is an activation energy of about 17 meV for production of PSCl2-. Attachment to PSCl3 was also studied at high pressure (9-93 kPa) of N2 in an ion mobility mass spectrometer, at 298 K. In contrast to the low-pressure data, the parent anion product channel (PSCl3-) was observed (along with the dissociative channels), and increased in importance with N2 pressure. Gaussian-3 (G3) calculations were carried out for PSCl3 and PSCl2 neutrals and anions to aid in interpretation of the experimental results. The calculations indicate that the electron affinity EA(PSCl2) is slightly smaller than EA(Cl), which may account for the observed branching fractions for PSCl2- and Cl- in the low-pressure experiments. A natural population analysis was performed to obtain the charges associated with each atom in the molecules in order to estimate how the attached electron is distributed. Comparison is made between the present study of electron attachment to PSCl3 and our earlier work on attachment to POCl3, and G3 calculations are reported here for neutral and anionic POCl2 and POCl3. In contrast to PSCl2, the calculations imply that EA(POCl2) is slightly greater than EA(Cl). For both PSCl3 and POCl3, the calculations show that the dissociative electron attachment process is close to thermoneutral.

  6. Dissociative Electron Attachment to chloroacetylene

    NASA Astrophysics Data System (ADS)

    Ngassam, V.; Orel, A. E.

    2007-06-01

    The production of two fragments with σ symmetry from electron-impact dissociation of C2H2, which has only a low lying &*circ; resonance at equilibrium geometry, has been explained by the existence of interactions with &*circ; resonances at bent geometries. We are investigating the presence of such multidimensional effects in the dissociative attachment of chloroacetylene (C2HCl). We have performed electron scattering calculations using the Complex Kohn variational method to determine the resonance energies and widths of the chloroacetylene resonances as a function of both the Cl--C2H bond distance as well as the variation with C-C stretch and bend. We will discuss our results and our prediction of the dissociation dynamics in comparison to the findings for for C2H2. This work was supported by the U.S. DOE Office of Basic Energy Sciences, Division of Chemical Sciences and the National Science Foundation, PHY-05-55401.

  7. Pressure dependence of the structure and electronic properties of Sr3Ir2O7

    NASA Astrophysics Data System (ADS)

    Donnerer, C.; Feng, Z.; Vale, J. G.; Andreev, S. N.; Solovyev, I. V.; Hunter, E. C.; Hanfland, M.; Perry, R. S.; Rønnow, H. M.; McMahon, M. I.; Mazurenko, V. V.; McMorrow, D. F.

    2016-05-01

    We study the structural evolution of Sr3Ir2O7 as a function of pressure using x-ray diffraction. At a pressure of 54 GPa at room temperature, we observe a first-order structural phase transition, associated with a change from tetragonal to monoclinic symmetry and accompanied by a 4% volume collapse. Rietveld refinement of the high-pressure phase reveals a novel modification of the Ruddlesden-Popper structure, which adopts an altered stacking sequence of the perovskite bilayers. As the positions of the oxygen atoms could not be reliably refined from the data, we use density functional theory (local-density approximation+U +spin orbit) to optimize the crystal structure and to elucidate the electronic and magnetic properties of Sr3Ir2O7 at high pressure. In the low-pressure tetragonal phase, we find that the in-plane rotation of the IrO6 octahedra increases with pressure. The calculations further indicate that a bandwidth-driven insulator-metal transition occurs at ˜20 GPa, along with a quenching of the magnetic moment. In the high-pressure monoclinic phase, structural optimization resulted in complex tilting and rotation of the oxygen octahedra and strongly overlapping t2 g and eg bands. The t2 g bandwidth renders both the spin-orbit coupling and electronic correlations ineffectual in opening an electronic gap, resulting in a robust metallic state for the high-pressure phase of Sr3Ir2O7 .

  8. Dissociative electron attachment to water

    NASA Astrophysics Data System (ADS)

    Haxton, Daniel James

    Dissociative electron attachment to water, H2O+e-→ H+OH-3.27eV H2+O-3.56eV H-+OHX P2 4.35eVH+H+O-8.04e VH-+OH* S2 8.38eVH-+H+O 8.75eV 0.1 is a physical process that has been studied since 1930[1]. It may be viewed as an inherently is non-Born-Oppenheimer process, for the initial state belongs to the electronic continuum, and the final state is electronically bound. As such, it presents a particular challenge for theory. We present a first-principles theoretical treatment of this process, in which we calculate the cross sections for production of the three major atom - diatom products observed by experiment, H2 + O-, H- + OH (X 2pi), and H- + OH (2Sigma). These states comprise the bulk of the experimentally determined cross section. In the present work we employ a Born-Oppenheimer expansion of the wavefunction for nuclear and electronic motion, and treat both quantum mechanically. The adiabatic treatment of the electronic motion incorporates multiconfiguration, correlated wavefunctions and includes an explicit treatment of the electronic continuum. For the nuclear dynamics we incorporate the full dimensionality of nuclear motion, including the three internal degrees of freedom and the effect of rotation. This is the first ab initio treatment of dissociative electron attachment which incorporates more than one degree of freedom in the nuclear dynamics. The first step in our Born-Oppenheimer treatment is to calculate adiabatic potential energy surfaces for the three metastable electronic states which are involved, the 2B1, 2A1, and 2B 2 electronic Feshbach resonances. Global potential energy surfaces are defined which incorporate the results of fixed-nuclei, ab initio calculations: quantum-mechanical electron scattering calculations using the complex Kohn method are performed and augmented by the results of large-scale configuration-interaction calculations performed in a restricted Hilbert space. The global surfaces are defined by a very accurate fit combining a 35

  9. Pressure dependence in the methyl vinyl ketone + OH and methacrolein + OH oxidation reactions: an electronic structure study.

    PubMed

    Ochando-Pardo, Montserrat; Nebot-Gil, Ignacio; González-Lafont, Angels; Lluch, José M

    2005-08-12

    High-level electronic structure calculations were carried out for the study of the reaction pathways in the OH-initiated oxidations of methyl vinyl ketone (MVK) and methacrolein (MACR). For the two conformers of MVK (called synperiplanar and antiperiplanar), the addition channels of OH to the terminal and central carbon atom of the double bond dominate the overall rate constant, whereas the abstraction of the methyl hydrogen atoms has no significant kinetic role. In the case of MACR, only the antiperiplanar conformer is important in its reactivity. In addition, the lower Gibbs free energy barrier for MACR corresponds to the aldehydic hydrogen abstraction reaction, which will be somewhat more favorable than the addition processes. The subtle balance between the different pathways (additions versus abstractions) serves to give an understanding of the pressure dependence of the rate constants of these tropospheric oxidation processes.

  10. Pressure dependence of electronic properties of BaI{sub 2}

    SciTech Connect

    Kumar, Pradeep; Vedeshwar, Agnikumar G.

    2015-08-28

    We present Density Functional Theoretical (DFT) calculations of the electronic properties of scintillator material BaI{sub 2} under pressure which were carried out using Perdew-Burke-Ernzerhof genralized gradient approximation. We found that BaI{sub 2} is a direct band gap material with band gap calculated as 3.35 eV. The pressure effect on BaI{sub 2} indicates a linear monotonously decreasing band gap and increasing valence band width with pressure. We have observed the shifting of band extrema from the Γ point with pressure. The pressure coefficient of band gap is found to be −0.047 eV/GPa. The interatomic ionicity factor of BaI{sub 2} is found to be 0.51. Trends in bonding and ionicity under pressure are also discussed.

  11. Investigation of Electron Attachment in Polyatomic Molecules.

    DTIC Science & Technology

    1980-05-30

    ELECTRON TRAP ........ ..................... ... 41 APPENDIX B - INITIAL INVESTIGATION OF ELECTRON ATTACHMENT IN MOLYBDENUM HEXAFLUORIDE AND TUNGSTEN ...A13, 1000 (1976). 4 • 48 APPENDIX B INITIAL INVESTIGATION OF ELECTRON ATTACHMENT IN MOLYBDENUM HEXAFLUORIDE AND TUNGSTEN HEXAFLUORIDE B1. INTRODUCTION...22 5.1 SULFUR HEXAFLUORIDE . ............................... 22 5.2 MOLYBDENUM HEXAFLUORIDE

  12. Investigation of electron attachment in polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Dowell, J. T.

    1980-05-01

    Electron attachment to polyatomic molecules was studied using molecular beams of variable temperature crossed with an electron of high energy resolution. Species investigated include sulfur hexafluoride, molybdenum hexafluoride, and tungsten oxide polymers. New results were obtained in sulfur hexafluoride demonstrating importance of internal energy for the dissociative attachment in molybdenum hexafluoride. Tungsten oxide vapor exhibits both monomer and dimer negative ion formation near zero energy, apparently from dissociative attachment to the trimer.

  13. Vibrationally Resolved Electron Attachment to Oxygen Clusters

    NASA Astrophysics Data System (ADS)

    Matejcik, S.; Kiendler, A.; Stampfli, P.; Stamatovic, A.; Märk, T. D.

    1996-10-01

    Highly monochromatized electrons (with 30 meV FWHM) are used in a crossed beam experiment to investigate electron attachment to oxygen clusters \\(O2\\)n at electron energies from approximately 0 to 2 eV. At energies close to zero, the attachment cross section for the reaction \\(O2\\)n+e-->O-2 rises strongly with decreasing electron energy compatible with s-wave electron capture to \\(O2\\)n. Peaks in the attachment cross section present at higher energies can be ascribed to vibrational levels of the oxygen anion. The vibrational spacings observed can be quantitatively accounted for by model calculations.

  14. Electron attachment to SF6 at high temperatures

    NASA Astrophysics Data System (ADS)

    Miller, T. M.; Friedman, J. F.; Viggiano, A. A.; Troe, J.

    2008-10-01

    We have recently reported flowing-afterglow Langmuir-probe experiments on electron attachment to SF6, thermal electron detachment from SF6^-, and the pressure dependence of the processes involved, in the temperature range 300-670 K, including theoretical analysis of the possible outcomes of the electron-SF6 interaction, with modeling of the data. One significant result of that work was the finding that the electron affinity of SF6 is 1.20 ± 0.05 eV.ootnotetextA. A. Viggiano et al., J. Chem. Phys. 127, 244303, (2007). We have now extended the temperature range up to 1300 K. The electron attachment rate constant at 700 K is 1.7 x 10-7 cm^3 s-1 (yielding SF5^- and SF6^- product), and the thermal detachment rate constant for SF6^- is 580 s-1. F^- becomes a major ion product at 1000 K and above. We suspect that in this temperature range the SF6 molecules are decomposing, because the SF5^- ion product disappears above 1100 K, and only the F^- ion product remains. Further work must be carried out to determine the origin of the F^-, whether from decomposition or a surface-ionization effect.

  15. Miniature Reversal Electron-Attachment Detector

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara

    1994-01-01

    Miniature reversal electron-attachment detector (miniREAD) enables direct injection of air or vapor at atmospheric pressure from monitored area into mass-spectrometric instrument to detect explosives, narcotics, or other substances, vapors of which suspected of being present in low concentrations. In comparison with older reversal electron-attachment detector, miniREAD simpler in design; more rugged; and easier to build, repair, and maintain. In addition, probably more sensitive.

  16. Electron Attachment to Molecules at Low Electron Energies

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Garscadden, A.; Wadehra, J. M.

    1994-01-01

    One of the most efficient ways of producing negative ions is by the process of dissociative electron attachment to molecules. Here, a diatomic or polyatomic molecule dissociates, by the impact of a low energy electron, into component atoms (or smaller molecular species) while the incident electron attaches itself to one of the dissociating fragments.

  17. Thermal electron attachment to SO3

    SciTech Connect

    Miller, T.M.; Viggiano, A.A.; Arnold, S.T.; Jayne, J.T.

    1995-04-15

    The rate constant for electron attachment to SO3 is 3 + or - 1 x 10(exp-9) cu cm/s at 300 K, measured in helium gas at pressures from 53 to 160 Pa (0.4 to 1.2 torr). The sole product of attachment is SO3(-) under these conditions. The same rate constant and ionic product were obtained at 400 and 505 K. The measurements were carried out using a flowing-afterglow Langmuir-probe apparatus.

  18. Thermal electron attachment to SO3

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Viggiano, A. A.; Arnold, Susan T.; Jayne, John T.

    1995-04-01

    The rate constant for electron attachment to SO3 is 3±1×10-9 cm3 s-1 at 300 K, measured in helium gas at pressures from 53 to 160 Pa (0.4 to 1.2 torr). The sole product of attachment is SO-3 under these conditions. The same rate constant and ionic product were obtained at 400 and 505 K. The measurements were carried out using a flowing-afterglow Langmuir-probe apparatus.

  19. Note: Theoretical study on the gas pressure dependence of x-ray yield in TE{sub 111} cavity based electron cyclotron resonance x-ray source

    SciTech Connect

    Selvakumaran, T. S. Sen, Soubhadra; Baskaran, R.

    2014-11-15

    Adopting Langevin methodology, a pressure dependent frictional force term which represents the collisional effect is added to the Lorentz equation. The electrons are assumed to be starting from the uniformly distributed co-ordinates on the central plane. The trajectory of each electron is numerically simulated by solving the modified Lorentz equation for a given pressure. The Bremsstrahlung x-ray energy spectrum for each electron crossing the cavity wall boundary is obtained using the Duane-Hunt law. The total x-ray yield is estimated by adding the spectral contribution of each electron. The calculated yields are compared with the experimental results and a good agreement is found.

  20. Dynamics of dissociative electron attachment to ammonia

    NASA Astrophysics Data System (ADS)

    Rescigno, T. N.; Trevisan, C. S.; Orel, A. E.; Slaughter, D. S.; Adaniya, H.; Belkacem, A.; Weyland, Marvin; Dorn, Alexander; McCurdy, C. W.

    2016-05-01

    Ab initio theoretical studies and momentum-imaging experiments are combined to provide a consistent picture of the dynamics of dissociative electron attachment to ammonia through its 5.5- and 10.5-eV resonance channels. The present study clarifies the character and symmetry of the anion states involved and the dynamics that leads to the observed fragment-ion channels, their branching ratios, and angular distributions.

  1. Electron attachment to halomethanes at high temperatures

    NASA Astrophysics Data System (ADS)

    Miller, T. M.; Friedman, J. F.; Schaffer, L. C.; Viggiano, A. A.

    2009-10-01

    We have modified our high-temperature flowing-afterglow apparatus to include a movable Langmuir probe, a 4-needle reactant gas inlet, and a microwave discharge plasma source for the purpose of measuring electron attachment rate constants at high temperatures. We have focused initially on molecules which have very small attachment rate constants, ka, at room temperature to see if their behavior at high temperatures can be described in Arrhenius fashion. We have reported ka for CH3Cl, but only above 600 K, because the value at 600 K was quite small: 5.8 x10-12 cm^3 s-1. The Arrhenius plot for these data imply ka = 10-17 cm^3 s-1 at 300 K, a value that is so small as to be immeasurable with any current apparatus. We now have ka for other halomethanes, CF3Cl, CF2Cl2, and CH2Cl2. The halomethane data cover seven orders-of-magnitude in ka. Electron attachment to CF3Cl is endothermic by 143 meV at 300 K, but our measurements indicate that there is a barrier of about 400 meV, probably related to the energy at which the anion surface crosses that of the neutral. The reactions for CH3Cl, CF2Cl2, and CH2Cl2 are exothermic, but our data again indicate large barriers to attachment which accounts for the extremely slow attachment at 300 K. From these data and literature measurements at 300 K, one can make educated guesses as to the behavior of ka for other halomethanes.

  2. Thermal electron attachment to F2

    NASA Astrophysics Data System (ADS)

    Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, Albert A.; Fabrikant, Ilya I.

    2013-12-01

    Rate constants have been measured from 300 to 700 K for thermal electron attachment to F2 using two flowing afterglow-Langmuir probe apparatuses. Dissociative attachment yielding F- is observed with a rate constant of 5.0 ± 1.3 × 10-9 cm3 s-1 at 300 K, rising to 9.6 ± 2.4 × 10-9 cm3 s-1 at 700 K, well below the previously accepted values of McCorkle [D. L. McCorkle, L. G. Christophorou, A. A. Christodoulides, and L. Pichiarella, J. Chem. Phys.JCPSA60021-960610.1063/1.451139 85, 1966 (1986)]. The absolute concentration of F2 reaching the afterglow is verified by measuring the near-collisional rate constant (4.5 ± 1.5 × 10-10 cm3 s-1) for Ar+ + F2→ArF+ + F. Prior attempts to apply R-matrix calculations to the F2 + e- system have failed to explain previously reported thermal and nonthermal attachment rate constants along with high-resolution, low-energy attachment cross sections. The present results are reproduced exceptionally well by R-matrix calculations employing previously calculated resonance widths without adjustment.

  3. Dissociative Electron Attachment of Water Molecules

    NASA Astrophysics Data System (ADS)

    Belkacem, Ali; Adaniya, Hidehito; Osipov, Timur; Weber, Thorsten; Lee, Sun Y.; Hertlein, Marcus; Rudek, Benedikt

    2008-05-01

    A Coltrims method is developed to measure the kinetic energy and angular distribution of fragment negative ions arising from dissociative electron attachment of molecules. A low energy pulsed electron gun is used in combination with pulsing the extraction plates of the Coltrims spectrometer. This technique is applied to study the negative oxygen anion channel for the three resonances, ^2B1, ^2A1, and ^2B2 resonances of water. The measured kinetic energy of the O- fragment gives a good measure of the two-body channel versus three-body channel for each resonance. The angular distribution of the O- fragments with respect tom the electron beam direction is found reflect well the symmetry of the resonance state. The experimental results are compared to the theoretical predictions.

  4. Dissociative electron attachment studies on acetone

    NASA Astrophysics Data System (ADS)

    Prabhudesai, Vaibhav S.; Tadsare, Vishvesh; Ghosh, Sanat; Gope, Krishnendu; Davis, Daly; Krishnakumar, E.

    2014-10-01

    Dissociative electron attachment (DEA) to acetone is studied in terms of the absolute cross section for various fragment channels in the electron energy range of 0-20 eV. H- is found to be the most dominant fragment followed by O- and OH- with only one resonance peak between 8 and 9 eV. The DEA dynamics is studied by measuring the angular distribution and kinetic energy distribution of fragment anions using Velocity Slice Imaging technique. The kinetic energy and angular distribution of H- and O- fragments suggest a many body break-up for the lone resonance observed. The ab initio calculations show that electron is captured in the multi-centered anti-bonding molecular orbital which would lead to a many body break-up of the resonance.

  5. Dissociative electron attachment studies on acetone

    SciTech Connect

    Prabhudesai, Vaibhav S. Tadsare, Vishvesh; Ghosh, Sanat; Gope, Krishnendu; Davis, Daly; Krishnakumar, E.

    2014-10-28

    Dissociative electron attachment (DEA) to acetone is studied in terms of the absolute cross section for various fragment channels in the electron energy range of 0–20 eV. H{sup −} is found to be the most dominant fragment followed by O{sup −} and OH{sup −} with only one resonance peak between 8 and 9 eV. The DEA dynamics is studied by measuring the angular distribution and kinetic energy distribution of fragment anions using Velocity Slice Imaging technique. The kinetic energy and angular distribution of H{sup −} and O{sup −} fragments suggest a many body break-up for the lone resonance observed. The ab initio calculations show that electron is captured in the multi-centered anti-bonding molecular orbital which would lead to a many body break-up of the resonance.

  6. Electron attachment to trans-azobenzene.

    PubMed

    Modelli, Alberto; Burrow, Paul D

    2009-10-14

    The temporary anion states of gas-phase trans-azobenzene are characterised by means of electron transmission spectroscopy (ETS) in the 0-6 eV range. The measured energies of vertical electron attachment are compared with the energies of the pi* virtual orbitals of the neutral molecule supplied by HF (at MP2 optimized geometries) and B3LYP calculations. The calculated energies, scaled with empirical equations, reproduce quantitatively the energies of the corresponding spectral features and predict a positive vertical electron affinity of 0.83 eV. The total anion current at the walls of the collision chamber and the mass-selected molecular anion current are also reported as a function of the impact electron energy. In agreement with previous data, long-lived (>1 mus) parent molecular anions are detected at zero eV and near 1 eV. The close similarity of the electron transmission spectrum with the derivatives with respect to energy of the anion currents suggests strongly that shape resonances produced by electron capture into empty pi* orbitals are the initial step in formation of the long lived molecular anions. This appears to rule out mechanisms in which direct formation of core-excited anion states are invoked. However, according to DFT calculations, conversion of the shape resonances around 1 eV to longer-lived sigma-pi* core-excited doublet anion states is possible on energetic grounds.

  7. Electron attachment to indole and related molecules

    SciTech Connect

    Modelli, Alberto; Jones, Derek; Pshenichnyuk, Stanislav A.

    2013-11-14

    Gas-phase formation of temporary negative ion states via resonance attachment of low-energy (0–6 eV) electrons into vacant molecular orbitals of indoline (I), indene (II), indole (III), 2-methylen-1,3,3-trimethylindoline (IV), and 2,3,3-trimethyl-indolenine (V) was investigated for the first time by electron transmission spectroscopy (ETS). The description of their empty-level structures was supported by density functional theory and Hartree-Fock calculations, using empirically calibrated linear equations to scale the calculated virtual orbital energies. Dissociative electron attachment spectroscopy (DEAS) was used to measure the fragment anion yields generated through dissociative decay channels of the parent molecular anions of compounds I-V, detected with a mass filter as a function of the incident electron energy in the 0–14 eV energy range. The vertical and adiabatic electron affinities were evaluated at the B3LYP/6-31+G(d) level as the anion/neutral total energy difference. The same theoretical method is also used for evaluation of the thermodynamic energy thresholds for production of the negative fragments observed in the DEA spectra. The loss of a hydrogen atom from the parent molecular anion ([M-H]{sup −}) provides the most intense signal in compounds I-IV. The gas-phase DEAS data can provide support for biochemical reaction mechanisms in vivo involving initial hydrogen abstraction from the nitrogen atom of the indole moiety, present in a variety of biologically important molecules.

  8. Electron attachment and detachment: Electron affinities of isomers of trifluoromethylbenzonitrile

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Viggiano, A. A.; Friedman, Jeffrey F.; Van Doren, Jane M.

    2004-11-01

    Rate constants for electron attachment to the three isomers of trifluoromethylbenzonitrile [(CF3)(CN)C6H4, or TFMBN] were measured over the temperature range of 303-463 K in a 133-Pa He buffer gas, using a flowing-afterglow Langmuir-probe apparatus. At 303 K, the measured attachment rate constants are 9.0×10-8 (o-TFMBN), 5.5×10-8 (m-TFMBN), and 8.9×10-8 cm3 s-1 (p-TFMBN), estimated accurate to ±25%. The attachment process formed only the parent anion in all three cases. Thermal electron detachment was observed for all three anion isomers, and rate constants for this reverse process were also measured. From the attachment and detachment results, the electron affinities of the three isomers of TFMBN were determined to be 0.70(o-TFMBN), 0.67(m-TFMBN), and 0.83 eV (p-TFMBN), all ±0.05 eV. G3(MP2) [Gaussian-3 calculations with reduced Møller-Plesset orders (MP2)] calculations were carried out for the neutrals and anions. Electron affinities derived from these calculations are in good agreement with the experimental values.

  9. Electron attachment and detachment: electron affinities of isomers of trifluoromethylbenzonitrile.

    PubMed

    Miller, Thomas M; Viggiano, A A; Friedman, Jeffrey F; Van Doren, Jane M

    2004-11-22

    Rate constants for electron attachment to the three isomers of trifluoromethylbenzonitrile [(CF(3))(CN)C(6)H(4), or TFMBN] were measured over the temperature range of 303-463 K in a 133-Pa He buffer gas, using a flowing-afterglow Langmuir-probe apparatus. At 303 K, the measured attachment rate constants are 9.0 x 10(-8) (o-TFMBN), 5.5 x 10(-8) (m-TFMBN), and 8.9 x 10(-8) cm(3) s(-1) (p-TFMBN), estimated accurate to +/-25%. The attachment process formed only the parent anion in all three cases. Thermal electron detachment was observed for all three anion isomers, and rate constants for this reverse process were also measured. From the attachment and detachment results, the electron affinities of the three isomers of TFMBN were determined to be 0.70(o-TFMBN), 0.67(m-TFMBN), and 0.83 eV (p-TFMBN), all +/-0.05 eV. G3(MP2) [Gaussian-3 calculations with reduced Møller-Plesset orders (MP2)] calculations were carried out for the neutrals and anions. Electron affinities derived from these calculations are in good agreement with the experimental values.

  10. Pressure dependence of electronic structure and superconductivity of the MnX (X = N, P, As, Sb)

    PubMed Central

    Chong, XiaoYu; Jiang, YeHua; Zhou, Rong; Feng, Jing

    2016-01-01

    A recently experimental discovered (Cheng et al., Phys. Rev. Lett. 114, 117001 (2015)) of superconductivity on the border of long-range magnetic order in the itinerant-electron helimagnet MnP via the application of high pressure makes MnP the first Mn-based superconductor. In this paper, we carry out first-principles calculations on MnX (X = N, P, As, Sb) and find superconducting critical temperature TC of MnP sharply increases near the critical pressure PC ≈ 8 GPa, which is in good agreement with the experiments. Electron-phonon coupling constant λ and electronic density of states at the Fermi level N (EF) are found to increase with pressure for MnP, which lead to the increase of TC of MnP. Moreover, we also find that the TC of MnAs and MnSb are higher than MnP, implying that the MnAs and MnSb may be the more potential Mn-based superconducting materials. PMID:26902857

  11. Pressure dependence of electronic structure and superconductivity of the MnX (X = N, P, As, Sb).

    PubMed

    Chong, XiaoYu; Jiang, YeHua; Zhou, Rong; Feng, Jing

    2016-02-23

    A recently experimental discovered (Cheng et al., Phys. Rev. Lett. 114, 117001 (2015)) of superconductivity on the border of long-range magnetic order in the itinerant-electron helimagnet MnP via the application of high pressure makes MnP the first Mn-based superconductor. In this paper, we carry out first-principles calculations on MnX (X = N, P, As, Sb) and find superconducting critical temperature TC of MnP sharply increases near the critical pressure PC ≈ 8 GPa, which is in good agreement with the experiments. Electron-phonon coupling constant λ and electronic density of states at the Fermi level N (EF) are found to increase with pressure for MnP, which lead to the increase of TC of MnP. Moreover, we also find that the TC of MnAs and MnSb are higher than MnP, implying that the MnAs and MnSb may be the more potential Mn-based superconducting materials.

  12. Deep electronic levels at growth interrupted interfaces in low-temperature-grown GaAs and the pressure dependence of these levels

    SciTech Connect

    Samara, G.A. ); Vook, D.W.; Gibbons, J.F. )

    1992-02-15

    Deep electronic energy levels associated with defects confined to interrupted growth interfaces of thin GaAs layers grown by low-temperature (720 K) metalorganic chemical vapor deposition using tertiarybutylarsine and subsequently annealed at 920 K for about 2 min were investigated by transient capacitance spectroscopy at both atmospheric pressure (1 bar) and hydrostatic pressures to 8 kbar. Samples grown under widely different As/Ga ratios in the gas phase were compared, and this ratio was found to have a strong influence on the levels observed. Most of these levels are characteristic of levels seen in GaAs grown from the vapor phase. Analysis of the pressure dependencies of the electron emission rates and capture cross sections shows that most of the levels move higher in energy with pressure and yields the activation volume which accompanies electron emission or capture. These features are unique signatures of the levels and provide new insights into the physics involved. One of the levels is identified as the midgap donor EL2. Its energy exhibits a relatively large increase with pressure, and a large inward (outward) volume relaxation accompanies electron emission (capture) of electrons from (by) it.

  13. Threshold electron attachment and electron impact ionization involving oxygen dimers

    NASA Astrophysics Data System (ADS)

    Kreil, J.; Ruf, M.-W.; Hotop, H.; Ettischer, I.; Buck, U.

    1998-12-01

    Using two different crossed-beams machines we have carried out the first quantitative study of threshold electron attachment and electron impact-induced ionization and fragmentation involving oxygen dimers (O 2) 2. In the electron attachment experiment we study electron transfer from state-selected Ar **(20d) Rydberg atoms to O 2 molecules and dimers in a skimmed supersonic beam at variable nozzle temperatures ( T0) and stagnation pressures ( p0). The relative dimer density is determined through measurements of Penning ionization by metastable Ne *(3s 3P2,0) atoms and used to estimate the absolute cross-section for O 2- formation in collisions of Ar **(20d) Rydberg atoms with O 2 dimers to be nearly 10 -17 m 2, almost four orders of magnitude larger than that for O 2- formation in collisions of Ar **(20d) Rydberg atoms with O 2 monomers. The fragmentation of the oxygen cluster beam is quantitatively characterized by the transverse helium beam scattering method which allows us to spatially separate different clusters. It is shown that in 70 eV electron impact of (O 2) 2 only 3.6(4)% of the dimers are detected as dimer ions (O 2) 2+. In additional experiments involving SF 6 clusters we show that SF 6 dimers fragment nearly completely upon 70 eV electron impact, yielding SF 5+ ions (probability for (SF 6)·SF 5+ production at most 0.3%).

  14. Investigations Of Electron Attachment To Nitro-Compounds Towards Explosives

    SciTech Connect

    Mauracher, A.; Denifl, S.; Probst, M.; Maerk, T. D.; Scheier, P.

    2009-05-02

    Electron attachment to gas phase nitrobenzene, all three isomers of mononitrotoluene and 2,4,6-trinitrotoluene is studied by means of two crossed electron-molecular beam experiments. We point out the formation of long-lived metastable parent anions and the most abundant anions produced via dissociative electron attachment (DEA). The experimental results are supported by quantum-chemical calculations, to determine the electronic configuration of selected molecular orbitals or the electrostatic potential mapped on an isosurface of the total electron density to find preferential sites of electron attachment.

  15. Date attachable offline electronic cash scheme.

    PubMed

    Fan, Chun-I; Sun, Wei-Zhe; Hau, Hoi-Tung

    2014-01-01

    Electronic cash (e-cash) is definitely one of the most popular research topics in the e-commerce field. It is very important that e-cash be able to hold the anonymity and accuracy in order to preserve the privacy and rights of customers. There are two types of e-cash in general, which are online e-cash and offline e-cash. Both systems have their own pros and cons and they can be used to construct various applications. In this paper, we pioneer to propose a provably secure and efficient offline e-cash scheme with date attachability based on the blind signature technique, where expiration date and deposit date can be embedded in an e-cash simultaneously. With the help of expiration date, the bank can manage the huge database much more easily against unlimited growth, and the deposit date cannot be forged so that users are able to calculate the amount of interests they can receive in the future correctly. Furthermore, we offer security analysis and formal proofs for all essential properties of offline e-cash, which are anonymity control, unforgeability, conditional-traceability, and no-swindling.

  16. Date Attachable Offline Electronic Cash Scheme

    PubMed Central

    Sun, Wei-Zhe; Hau, Hoi-Tung

    2014-01-01

    Electronic cash (e-cash) is definitely one of the most popular research topics in the e-commerce field. It is very important that e-cash be able to hold the anonymity and accuracy in order to preserve the privacy and rights of customers. There are two types of e-cash in general, which are online e-cash and offline e-cash. Both systems have their own pros and cons and they can be used to construct various applications. In this paper, we pioneer to propose a provably secure and efficient offline e-cash scheme with date attachability based on the blind signature technique, where expiration date and deposit date can be embedded in an e-cash simultaneously. With the help of expiration date, the bank can manage the huge database much more easily against unlimited growth, and the deposit date cannot be forged so that users are able to calculate the amount of interests they can receive in the future correctly. Furthermore, we offer security analysis and formal proofs for all essential properties of offline e-cash, which are anonymity control, unforgeability, conditional-traceability, and no-swindling. PMID:24982931

  17. Applying a Trochoidal Electron Monochromator in Dissociative Electron Attachment Scattering

    NASA Astrophysics Data System (ADS)

    Arreola, Esmeralda

    2016-03-01

    Since the pioneering work of Boudiaffa et al., it has been understood that electrons, even with energies near or below the ionization threshold, are capable of initiating strand-breaks in human DNA. This discovery raised important questions for cancer treatments, since sub-ionizing electrons are known to be the most copiously produced secondary product of radiation therapy. But even to date these factors are largely excluded from dosimetry calculations. This lack of inclusion is, at least in part, certainly due to the dearth of fundamental data describing low-energy electron interactions with nucleotide molecules that form the basis of DNA. Understanding of how such slow electrons are able to damage DNA remains incomplete, but the strongly peaked nature of Boudiaffa et al.'s data gives strong hints at resonantly driven collision processes. DNA damage is therefore most likely driven by ``dissociative electron attachment'' (DEA). DEA is a rather complicated process to model due to the coupling of electronic and nuclear degrees of freedom in the molecule. At the California State University Fullerton, we are currently commissioning a new spectrometer to study dissociation channels, reaction rates and orientation effects in DEA collisions between slow electrons and nucleotide molecules. At the meeting we will present design parameters and commissioning data for this new apparatus.

  18. Imaging the molecular dynamics of dissociative electron attachment to water

    SciTech Connect

    Adaniya, Hidihito; Rudek, B.; Osipov, Timur; Haxton, Dan; Weber, Thorsten; Rescigno, Thomas N.; McCurdy, C.W.; Belkacem, Ali

    2009-10-19

    Momentum imaging experiments on dissociative electron attachment to the water molecule are combined with ab initio theoretical calculations of the angular dependence of the quantum mechanical amplitude for electron attachment to provide a detailed picture of the molecular dynamics of dissociation attachment via the two lowest energy Feshbach resonances. The combination of momentum imaging experiments and theory can reveal dissociation dynamics for which the axial recoil approximation breaks down and thus provides a powerful reaction microscope for DEA to polyatomics.

  19. Upper critical field, pressure-dependent superconductivity and electronic anisotropy of Sm4Fe2As2Te(1-x)O(4-y)F(y).

    PubMed

    Pisoni, A; Katrych, S; Szirmai, P; Náfrádi, B; Gaál, R; Karpinski, J; Forró, L

    2016-03-23

    We present a detailed study of the electrical transport properties of a recently discovered iron-based superconductor: Sm4Fe2As2Te0.72O2.8F1.2. We followed the temperature dependence of the upper critical field by resistivity measurement of single crystals in magnetic fields up to 16 T, oriented along the two main crystallographic directions. This material exhibits a zero-temperature upper critical field of 90 T and 65 T parallel and perpendicular to the Fe2As2 planes, respectively. An unprecedented superconducting magnetic anisotropy γH=H(c2)(ab)/H(c2)(c) ~ 14 is observed near Tc, and it decreases at lower temperatures as expected in multiband superconductors. Direct measurement of the electronic anisotropy was performed on microfabricated samples, showing a value of ρ(c)/ρ(ab)(300K) ~ 5 that rises up to 19 near Tc . Finally, we have studied the pressure and temperature dependence of the in-plane resistivity. The critical temperature decreases linearly upon application of hydrostatic pressure (up to 2 GPa) similarly to overdoped cuprate superconductors. The resistivity shows saturation at high temperatures, suggesting that the material approaches the Mott-Ioffe-Regel limit for metallic conduction. Indeed, we have successfully modelled the resistivity in the normal state with a parallel resistor model that is widely accepted for this state. All the measured quantities suggest strong pressure dependence of the density of states.

  20. BEHAVIOR OF EXCESS ELECTRONS IN SUPERCRITICAL FLUIDS - ELECTRON ATTACHMENT

    SciTech Connect

    NISHIKAWA,M.; HOLROYD,R.A.; ITOH,K.

    1999-07-01

    The behavior of excess electrons in supercritical ethane was investigated by measuring mobility and reaction rates. Mobilities were measured by means of a time-of-flight method at 306--320K as a function of pressure. Mobility values decreased at all temperatures with increasing pressure, but showed a small minimum or a shoulder at the pressure where the compressibility {chi}{sub T} has a peak. Electron attachment to CO{sub 2}, NO, pyrimidine and C{sub 2}F{sub 4} over the same temperature range was studied as a function of pressure. Both attachment rate constants k{sub a} for NO and C{sub 2}F{sub 4}, and equilibrium constants K({double_bond}k{sub a}/k{sub d}) for CO{sub 2} and pyrimidine increased sharply at pressures of {chi}{sub T} peaks. Activation volumes V{sub a}* and reaction volumes {Delta}V{sub r} are very large and negative in the critical region. The volume change is mainly due to electrostriction around ions formed. The results are compared to volume changes predicted by, a compressible continuum model.

  1. Electron attachment to propargyl chloride, 305-540 K

    NASA Astrophysics Data System (ADS)

    Bopp, Joseph C.; Miller, Thomas M.; Friedman, Jeffrey F.; Shuman, Nicholas S.; Viggiano, A. A.

    2010-10-01

    Electron attachment to propargyl chloride (HC≡C-CH2Cl) was studied in a flowing-afterglow Langmuir-probe apparatus from 305 to 540 K. The sole ion product in this temperature range is Cl-. Electron attachment is very inefficient, requiring correction for a competing process of electron recombination with molecular cations produced in reaction between Ar+ and propargyl chloride and subsequent ion-molecule reactions. The electron attachment rate coefficient was measured to be 1.6×10-10 cm3 s-1 at 305 K and increased to 1.1×10-9 cm3 s-1 at 540 K.

  2. Electron attachment to propargyl chloride, 305-540 K.

    PubMed

    Bopp, Joseph C; Miller, Thomas M; Friedman, Jeffrey F; Shuman, Nicholas S; Viggiano, A A

    2010-10-21

    Electron attachment to propargyl chloride (HC≡C-CH(2)Cl) was studied in a flowing-afterglow Langmuir-probe apparatus from 305 to 540 K. The sole ion product in this temperature range is Cl(-). Electron attachment is very inefficient, requiring correction for a competing process of electron recombination with molecular cations produced in reaction between Ar(+) and propargyl chloride and subsequent ion-molecule reactions. The electron attachment rate coefficient was measured to be 1.6×10(-10)cm(3) s(-1) at 305 K and increased to 1.1×10(-9)cm(3) s(-1) at 540 K.

  3. Measuring Traces Of Oxygen By Resonant Electron Attachment

    NASA Technical Reports Server (NTRS)

    Man, Kin Fung; Boumsellek, Said; Chutjian, Ara

    1995-01-01

    Method of detecting trace amounts of oxygen based on dissociative attachment of electrons to oxygen molecules followed by measurement of resulting flux of negative oxygen ions in mass spectrometer. High sensitivity achieved in method by exploiting resonance in dissociative attachment of electrons to oxygen molecules: electron-attachment cross section rises to high peak at incident electron kinetic energy of 6.2 eV. Relative concentrations below 1 ppb detected. Devised to increase sensitivity of detection of oxygen in processing chambers in which oxygen regarded as contaminant; for example, chambers used in making semiconductor devices and in growing high-purity crystals.

  4. Electron attachment to chlorine azide at 298 and 400 K

    NASA Astrophysics Data System (ADS)

    Freel, Keith; Friedman, Jeffrey F.; Miller, Thomas M.; Heaven, Michael C.; Viggiano, A. A.

    2010-04-01

    Electron attachment to chlorine azide (ClN3) was studied using a flowing-afterglow Langmuir-probe apparatus. Electron attachment rates were measured to be 3.5×10-8 and 4.5×10-8 cm3 s-1 at 298 and 400 K, respectively, with an estimated 35% absolute accuracy. Cl- was the sole ion product of the attachment reaction; weak ion signals were observed for other anions and attributed to impurities and secondary ion-molecule reactions. Assuming a relative uncertainty of ±10% for these data, an activation energy for the attachment reaction may be given as 24±10 meV.

  5. Electron attachment to chlorine azide at 298 and 400 K.

    PubMed

    Freel, Keith; Friedman, Jeffrey F; Miller, Thomas M; Heaven, Michael C; Viggiano, A A

    2010-04-07

    Electron attachment to chlorine azide (ClN(3)) was studied using a flowing-afterglow Langmuir-probe apparatus. Electron attachment rates were measured to be 3.5x10(-8) and 4.5x10(-8) cm(3) s(-1) at 298 and 400 K, respectively, with an estimated 35% absolute accuracy. Cl(-) was the sole ion product of the attachment reaction; weak ion signals were observed for other anions and attributed to impurities and secondary ion-molecule reactions. Assuming a relative uncertainty of +/-10% for these data, an activation energy for the attachment reaction may be given as 24+/-10 meV.

  6. Upper critical field, pressure-dependent superconductivity and electronic anisotropy of Sm4Fe2As2Te1-x O4-y F y

    NASA Astrophysics Data System (ADS)

    Pisoni, A.; Katrych, S.; Szirmai, P.; Náfrádi, B.; Gaál, R.; Karpinski, J.; Forró, L.

    2016-03-01

    We present a detailed study of the electrical transport properties of a recently discovered iron-based superconductor: Sm4Fe2As2Te0.72O2.8F1.2. We followed the temperature dependence of the upper critical field by resistivity measurement of single crystals in magnetic fields up to 16 T, oriented along the two main crystallographic directions. This material exhibits a zero-temperature upper critical field of 90 T and 65 T parallel and perpendicular to the Fe2As2 planes, respectively. An unprecedented superconducting magnetic anisotropy {γH}=Hc2ab/Hc2c˜ 14 is observed near T c , and it decreases at lower temperatures as expected in multiband superconductors. Direct measurement of the electronic anisotropy was performed on microfabricated samples, showing a value of {ρc}/{ρab}≤ft(300 \\text{K}\\right)˜ 5 that rises up to 19 near T c . Finally, we have studied the pressure and temperature dependence of the in-plane resistivity. The critical temperature decreases linearly upon application of hydrostatic pressure (up to 2 GPa) similarly to overdoped cuprate superconductors. The resistivity shows saturation at high temperatures, suggesting that the material approaches the Mott-Ioffe-Regel limit for metallic conduction. Indeed, we have successfully modelled the resistivity in the normal state with a parallel resistor model that is widely accepted for this state. All the measured quantities suggest strong pressure dependence of the density of states.

  7. Low-energy behavior of exothermic dissociative electron attachment

    NASA Astrophysics Data System (ADS)

    Fabrikant, Ilya I.; Hotop, Hartmut

    2001-02-01

    We discuss two models for electron attachment to molecules: the Vogt-Wannier model for capture into a polarization well and the resonance model for dissociative attachment. The Vogt-Wannier model is generalized for the case of a target with a permanent dipole moment, and results are presented for dissociative attachment to CH3I. It is shown that the resonance theory should incorporate in this case a weakly bound dipole-supported state of CH3I-, whereas the generalized Vogt-Wannier theory gives a reasonable estimate for the cross section in the meV and sub-meV region. The Vogt-Wannier model is also applied to the process of attachment to SF6, CCl4, and C60. In the first case the s-wave capture model provides a satisfactory description of the experimental data for energies below the first vibrational excitation threshold, whereas for CCl4 it underestimates the attachment cross section by a factor of 2 in the sub-meV region. For C60 we suggest that electron attachment is dominated by s-wave capture in the region below 2 meV and by p-wave capture in the energy range above 4 meV. Our model reproduces data for Rydberg electron and free-electron attachment observed in beam experiments. It is, however, at variance with the strong rise of the attachment rate coefficients with electron temperature observed in flowing afterglow-Langmuir probe measurements.

  8. Dissociative attachment of electrons to N2O

    NASA Technical Reports Server (NTRS)

    Krishnakumar, E.; Srivastava, S. K.

    1990-01-01

    Cross sections for the production of O(-) from N2O by the process of dissociative electron attachment have been measured for electron-impact energies ranging from 0 to 50 eV. Three new O(-) peaks are observed. The present data above 5-eV electron-impact energy differ considerably from the previous measurements.

  9. High-resolution threshold photoelectron spectroscopy by electron attachment

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.; Chutjian, A.

    1976-01-01

    A new technique for measuring high-resolution threshold photoelectron spectra of atoms, molecules, and radicals is described. It involves photoionization of a gaseous species, attachment of the threshold, or nearly zero electron to some trapping molecule (here SF6 or CFCl3), and mass detection of the attachment product (SF6/-/ or Cl/-/ respectively). This technique of threshold photoelectron spectroscopy by electron attachment was used to measure the spectra of argon and xenon at 11 meV (FWHM) resolution, and was also applied to CFCl3.

  10. Electron attachment to haloacetonitriles, 295-556 K

    NASA Astrophysics Data System (ADS)

    van Doren, Jane M.; Foley, William M.; McClellan, Joseph E.; Miller, Thomas M.; Kowalak, Albert D.; Viggiano, A. A.

    1995-11-01

    Electron attachment to the haloacetonitriles FCH2CN, ClCH2CN, and BrCH2CN have been studied over the temperature range 295-556K, using a flowing-afterglow Langmuir-probe apparatus. No attachment is observed for FCH2CN; dissociative electron attachment to FCH2CN is presumably endothermic. Electron attachment to CICH2CN produces only Cl- ion product over the temperature range studied. The attachment rate constant is ka(ClCH2CN) = 3.9 ± 1.3 × 10-8 cm3 s-1 at 295K, and increases with temperature to a value of 9.7 ± 3.4 × 10-8 cm3 s-1 at 556K. Electron attachment to BrCH2CN produces only Br- ion product over the temperature range studied. The attachment rate constant is ka(BrCH2CN) = 1.9 ± 0.7 × 10-7 cm-3 s-1 at 295 K, becoming temperature independent at 2.4 ± 0.8 × 10-7 cm3 s-1 in the range 475-556 K.

  11. Electron attachment to ? and ? in the gas phase

    NASA Astrophysics Data System (ADS)

    Smith, David; Spanel, Patrik

    1996-11-01

    The fullerene molecule 0953-4075/29/21/030/img3 is known to attach several electrons in the solid phase, but only recently has it been recognized that it can also attach electrons in the gas phase. The first electron - molecular beam results showed that 0953-4075/29/21/030/img3 and 0953-4075/29/21/030/img5 molecules non-dissociatively attached a single electron over the unusually wide electron energy range from near thermal to about 10 eV, but these studies were not able to provide either the magnitude of the cross sections or describe the low-energy attachment behaviour. But using our flowing afterglow - Langmuir probe (FALP) apparatus we have been able to determine the absolute attachment rate coefficients for both 0953-4075/29/21/030/img3 and 0953-4075/29/21/030/img5 over the electron temperature range 300 - 4500 K. These FALP experiments have shown that attachment to 0953-4075/29/21/030/img3 at low electron energies (<1 eV) proceeds predominantly by p-wave electron capture, and that a centrifugal barrier of 0.26 eV is evident which was corroborated by subsequent theory. A similar situation is observed for attachment to 0953-4075/29/21/030/img5 except that for this fullerene molecule there is evidence that at very low electron energies (< 0.05 eV) inefficient s-wave capture may also occur. These FALP data further indicate that at energies above about 0.3 eV extraordinarily efficient electron attachment occurs to both 0953-4075/29/21/030/img3 and 0953-4075/29/21/030/img5, and when the mean thermal cross sections derived from these FALP data are used to normalize the crossed electron - molecular beam data at the common low energies accessible in both experiments, it is clear that electron attachment to these fullerene molecules is very efficient over a wide electron energy range from about 0.3 - 10 eV above which electron thermionic emission occurs from the hot 0953-4075/29/21/030/img12 and 0953-4075/29/21/030/img13 nascent negative ions.

  12. Theory of dissociative electron attachment: Biomolecules and clusters

    NASA Astrophysics Data System (ADS)

    Fabrikant, Ilya I.

    2015-01-01

    Very broad σ∗ resonances, which are responsible for threshold structures and dissociative attachment in electron collisions with hydrogen halides, are also important in electron-impact bond-breaking in nucleobases and amino acids. We investigate this mechanism in more detail by carrying out model calculations of the N-H bond breaking in the uracil molecule. Although the σ∗ resonance is extremely broad at the equilibrium nuclear geometry, it is stabilized fast when the N-H bond is stretched, and this produces a substantial dissociative attachment cross section. In addition, very pronounced vibrational Feshbach resonances are seen below vibrational excitation thresholds. To incorporate the effect of a cluster environment in the dissociative electron attachment process, we develop further the multiple scattering theory for this process and calculate the dissociative attachment cross section for the CF3Cl molecule embedded in the (H2O)6 cluster.

  13. Electron attachment to ClONO2 at 300 K

    NASA Astrophysics Data System (ADS)

    Van Doren, Jane M.; McClellan, Joseph; Miller, Thomas M.; Paulson, John F.; Viggiano, A. A.

    1996-07-01

    A flowing-afterglow Langmuir probe apparatus with mass spectral analysis has been used to measure the rate constant for electron attachment to ClONO2 at 300 K. Electron attachment is efficient with a rate constant of 1.1 (±50%)×10-7 cm3 s-1 and proceeds principally through dissociative channels to produce the major product ions NO-2 (˜50%), NO-3 (˜30%), and ClO- (˜20%). The parent ion ClONO-2 and Cl- are also observed in the mass spectra but are at most minor products in the attachment process, ≤2% and ≤6%, respectively. A description of the secondary ion-molecule chemistry that takes place following electron attachment is given.

  14. Dissociative attachment reactions of electrons with gas phase superacids

    SciTech Connect

    Liu, X.

    1992-01-01

    Using the flowing afterglow Langmuir probe (FALP) technique, dissociative attachment coefficients [beta] for reactions of electrons with gas phase superacids HCo(PF[sub 3])[sub 4], HRh(PF[sub 3])[sub 4] and carbonyl hydride complexes HMn(CO)[sub 5], HRe(CO)[sub 5] have been determined under thermal conditions over the approximate temperature range 300[approximately]550 K. The superacids react relatively slowly (<1/20 of [beta][sub max]) with free electrons in a thermal plasma, and the values of [beta] obtained this far do not show a correlation between acidity and [beta]. The pioneer researchers in this field had speculated that any superacid would be a rapid attacher of electrons; it was found that this speculation is not true in general. The product distribution of electron attachment reaction to HCo(PF[sub 3])[sub 4] was found to be independent of temperature even though the [beta][HCo(PF[sub 3])[sub 4

  15. Electron attachment to propargyl chloride, 305-540 K

    SciTech Connect

    Bopp, Joseph C.; Miller, Thomas M.; Friedman, Jeffrey F.; Shuman, Nicholas S.; Viggiano, A. A.

    2010-10-21

    Electron attachment to propargyl chloride (HC{identical_to}C-CH{sub 2}Cl) was studied in a flowing-afterglow Langmuir-probe apparatus from 305 to 540 K. The sole ion product in this temperature range is Cl{sup -}. Electron attachment is very inefficient, requiring correction for a competing process of electron recombination with molecular cations produced in reaction between Ar{sup +} and propargyl chloride and subsequent ion-molecule reactions. The electron attachment rate coefficient was measured to be 1.6x10{sup -10} cm{sup 3} s{sup -1} at 305 K and increased to 1.1x10{sup -9} cm{sup 3} s{sup -1} at 540 K.

  16. Measurements of electron attachment by oxygen molecule in proportional counter

    NASA Astrophysics Data System (ADS)

    Tosaki, M.; Kawano, T.; Isozumi, Y.

    2013-11-01

    We present pulse height measurements for 5-keV Auger electrons from a radioactive 55Fe source mounted at the inner cathode surface of cylindrical proportional counter, which is operated with CH4 admixed dry air or N2. A clear shift of the pulse height has been observed by varying the amount of the admixtures; the number of electrons, created in the primary ionization by Auger electrons, is decreased by the electron attachment of the admixtures during their drift from the place near the source to the anode wire. The large gas amplification (typically 104) in the secondary ionization of proportional counter makes it possible to investigate a small change in the number of primary electrons. The electron attenuation cross-section of O2 has been evaluated by analyzing the shifts of the pulse height caused by the electron attachment to dry air and N2.

  17. Electron attachment to the phthalide molecule

    SciTech Connect

    Asfandiarov, N. L.; Pshenichnyuk, S. A.; Vorob’ev, A. S.; Nafikova, E. P.; Lachinov, A. N.; Kraikin, V. A.; Modelli, A.

    2015-05-07

    Phthalide, the simplest chain of conductive polymer thin film, was investigated by means of Electron Transmission Spectroscopy, Negative Ion Mass Spectrometry, and density functional theory quantum chemistry. It has been found that formation of gas-phase long-lived molecular anions of phthalide around 0.7 eV takes place through cleavage of a C–O bond of the pentacyclic ring of the parent molecular anion to give a vibrationally excited (electronically more stable) open-ring molecular anion. The energy of the transition state for ring opening of the parent negative ion is calculated to be 0.65 eV above the neutral ground state of the molecule. The energy (2.64 eV) evaluated for the corresponding transition state in the neutral molecule is much higher, so that the process of electron detachment from the anion must lead to a neutral molecule with its initial pentacyclic structure. The average lifetime of the molecular negative ions formed at an electron energy of 0.75 eV and 80 °C is measured to be about 100 μs. The known switching effect of thin phthalide films could stem from the presence of a similar open/closed transition state also in the polymer.

  18. Electron attachment to chlorine azide at 298 and 400 K

    SciTech Connect

    Freel, Keith; Friedman, Jeffrey F.; Miller, Thomas M.; Viggiano, A. A.; Heaven, Michael C.

    2010-04-07

    Electron attachment to chlorine azide (ClN{sub 3}) was studied using a flowing-afterglow Langmuir-probe apparatus. Electron attachment rates were measured to be 3.5x10{sup -8} and 4.5x10{sup -8} cm{sup 3} s{sup -1} at 298 and 400 K, respectively, with an estimated 35% absolute accuracy. Cl{sup -} was the sole ion product of the attachment reaction; weak ion signals were observed for other anions and attributed to impurities and secondary ion-molecule reactions. Assuming a relative uncertainty of {+-}10% for these data, an activation energy for the attachment reaction may be given as 24{+-}10 meV.

  19. Electron Scattering Resonances and Dissociative Attachment in Polyatomic Molecules.

    NASA Astrophysics Data System (ADS)

    Olthoff, James Kenneth

    The electronic structure and bonding character of a molecule may be understood from the energies of the frontier molecular orbitals. Photoelectron spectroscopy has produced a wealth of information about the occupied molecular orbitals, but the unoccupied molecular orbitals have, until recently, been largely ignored. A relatively new technique, electron transmission spectroscopy, is now being used to investigate the unoccupied valence molecular orbitals of many chemical compounds. Electron transmission spectroscopy measures the energy of negative ion states which arise from electron capture into unoccupied molecular orbitals. Additional information about the unoccupied orbitals may be obtained if the negative ion decays by way of dissociation. Determination of the identity, kinetic energy, and production rates of stable ion fragments supplies information about the shape and position of the potential energy curves which describe the electronic states of the molecule and the anion. Used together, photoelectron, electron transmission, and dissociation data can produce a complete picture of a molecule's valence electronic structure. For this work a time-of-flight mass spectrometer has been attached to an electron transmission spectrometer to observe negative ion fragments due to dissociative attachment. The mass spectrometer measures the identity and kinetic energy of stable negative ions as a function of incident electron energy. Electron transmission spectra and ion production data have been acquired for many compounds in four chemical categories. Halogen-substituted unsaturated hydrocarbons have been studied to determine the relation between (pi)* anion states and stable ion production. Halogen substituted methanes were examined to determine how (sigma) bonding affects dissociative attachment. Spectra for a series of boron trihalides were obtained to determine correlations between electron transmission data and Lewis acidity. Lastly, substituted metal carbonyls were

  20. Monte Carlo simulations of electron transport in strongly attaching gases

    NASA Astrophysics Data System (ADS)

    Petrovic, Zoran; Miric, Jasmina; Simonovic, Ilija; Bosnjakovic, Danko; Dujko, Sasa

    2016-09-01

    Extensive loss of electrons in strongly attaching gases imposes significant difficulties in Monte Carlo simulations at low electric field strengths. In order to compensate for such losses, some kind of rescaling procedures must be used. In this work, we discuss two rescaling procedures for Monte Carlo simulations of electron transport in strongly attaching gases: (1) discrete rescaling, and (2) continuous rescaling. The discrete rescaling procedure is based on duplication of electrons randomly chosen from the remaining swarm at certain discrete time steps. The continuous rescaling procedure employs a dynamically defined fictitious ionization process with the constant collision frequency chosen to be equal to the attachment collision frequency. These procedures should not in any way modify the distribution function. Monte Carlo calculations of transport coefficients for electrons in SF6 and CF3I are performed in a wide range of electric field strengths. However, special emphasis is placed upon the analysis of transport phenomena in the limit of lower electric fields where the transport properties are strongly affected by electron attachment. Two important phenomena arise: (1) the reduction of the mean energy with increasing E/N for electrons in SF6, and (2) the occurrence of negative differential conductivity in the bulk drift velocity of electrons in both SF6 and CF3I.

  1. Thermal Electron Attachment to Ozone, 296-550 K

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; van Doren, Jane M.; Williams, Skip; Viggiano, A. A.

    2003-05-01

    The suggestion has been made that ionospheric models require re-examination as a result of the reported observation of a zero-energy resonance for electron attachment to ozone (yielding O^- ion product) in an electron-beam experiment.^1 Those results are in conflict with earlier swarm measurements which showed very weak electron attachment to ozone.^2,3 We have used a flowing afterglow Langmuir probe (FALP) apparatus to study electron attachment to ozone in a buffer gas of helium at 133 Pa pressure. We confirmed the earlier swarm results, and we have extended the measurements to 550 K. We determined an electron attachment rate constant of 7 +/- 4 x 10-12 cm^3/s at 296 K, and found that the rate constant increases with temperature. We have considered the effects of electron-ion recombination and electron detachment processes in the data analysis. ^1 G. Senn et al., Phys. Rev. Lett. 82, 5028, (1999). ^2 F. C. Fehsenfeld et al., Planet Space Sci. 15, 373 (1967) and 16, 701 (1968). ^3 D. Stelman et al., J. Chem. Phys. 56, 4183 (1972).

  2. Reversal electron attachment ionizer for detection of trace species

    NASA Technical Reports Server (NTRS)

    Bernius, Mark T. (Inventor); Chutjian, Ara (Inventor)

    1990-01-01

    An in-line reversal electron, high-current ionizer capable of focusing a beam of electrons to a reversal region and executing a reversal of said electrons, such that the electrons possess zero kinetic energy at the point of reversal, may be used to produce both negative and positive ions. A sample gas is introduced at the point of electron reversal for low energy electron-(sample gas) molecule attachment with high efficiency. The attachment process produces negative ions from the sample gas, which includes species present in trace (minute) amounts. These ions are extracted efficiently and directed to a mass analyzer where they may be detected and identified. The generation and detection of positive ions is accomplished in a similar fashion with minimal adjustment to potentials applied to the apparatus.

  3. Reversal electron attachment ionizer for detection of trace species

    NASA Technical Reports Server (NTRS)

    Bernius, Mark T. (Inventor); Chutjian, Ara (Inventor)

    1989-01-01

    An in-line reversal electron, high-current ionizer capable of focusing a beam of electrons to a reversal region and executing a reversal of the electrons, such that the electrons possess zero kinetic energy at the point of reversal, may be used to produce both negative and positive ions. A sample gas is introduced at the point of electron reversal for low energy electron-(sample gas) molecule attachment with high efficiency. The attachment process produces negative ions from the sample gas, which includes species present in trace (minute) amounts. These ions are extracted efficiently and directed to a mass analyzer where they may be detected and identified. The generation and detection of positive ions is accomplished in a similar fashion with minimal adjustment to potentials applied to the apparatus.

  4. Dissociative Electron Attachment to Rovibrationally Excited Molecules

    DTIC Science & Technology

    1987-08-31

    scatt,,;ng by argon have been - present calculations of elastic scattering of electrons and performed by Walker35 and by Fink and Yates %3 using the...A. C. Yates , At. Data 1, 385 (1970). 66p. G. Coleman and J. D. McNutt, Phys. Rev. Lett. 42, 1130 37D. G. Thompson, Proc. R. Soc. London, Ser. A 294...final I bound state, Ps. The reduced masses are gj +O, (rj)= E -H , +i i ’ (16) Pr=mMT/(m +Mr)=am Upon operating on both sides of Eq. (16) by (HI)-E

  5. Electron attachment and detachment: C6F6

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; van Doren, Jane M.; Viggiano, A. A.

    2004-04-01

    Electron attachment to C6F6 is especially interesting because of the large change in symmetry between the neutral (D6h) and anion (C2v). We have made measurements of rate constants for electron attachment to C6F6 and thermal electron detachment from the parent anion, C6F6-, over the temperature range 297-400 K, in 133 Pa of He gas. A flowing-afterglow Langmuir probe (FALP) apparatus was used for this work. At 298 K, the electron attachment rate constant is ka=8.6+/-3.0×10-8 cm3 s-1, and the detachment rate constant kd is approximately 35 s-1. As the temperature increases kd increases rapidly, to about 3000 s-1 at 400 K. The attachment/detachment equilibrium implies that the electron affinity of C6F6 is 0.53+/-0.05 eV. Density functional calculations were carried out in order to obtain thermal quantities needed to convert the equilibrium constant ka/kd into EA(C6F6). G3(MP2) calculations yielded an electron affinity of 0.454 eV. The fluoride affinity of C6F6 was calculated to be 1.26 eV at 298 K using this same method. We expect the G3(MP2) results to be good within 0.1 eV.

  6. Electron attachment to the SF{sub 6} molecule

    SciTech Connect

    Smirnov, B. M. Kosarim, A. V.

    2015-09-15

    Various models for transition between electron and nuclear subsystems are compared in the case of electron attachment to the SF{sub 6} molecule. Experimental data, including the cross section of electron attachment to this molecule as a function of the electron energy and vibrational temperature, the rate constants of this process in swarm experiments, and the rates of the chemionization process involving Rydberg atoms and the SF{sub 6} molecule, are collected and treated. Based on the data and on the resonant character of electron capture into an autodetachment ion state in accordance with the Breit–Wigner formula, we find that intersection of the molecule and negative ion electron terms proceeds above the potential well bottom of the molecule with the barrier height 0.05–0.1 eV, and the transition between these electron terms has both the tunnel and abovebarrier character. The limit of small electron energies e for the electron attachment cross section at room vibrational temperature takes place at ε ≪ 2 meV, while in the range 2 meV ≪ ε ≪ 80 meV, the cross section is inversely proportional to ε. In considering the attachment process as a result of the interaction between the electron and vibrational degrees of freedom, we find the coupling factor f between them to be f = aT at low vibrational temperatures T with a ≈ 3 × 10{sup −4} K{sup −1}. The coupling factor is independent of the temperature at T > 400 K.

  7. Dissociative electron attachment to the radiosensitizing chemotherapeutic agent hydroxyurea

    NASA Astrophysics Data System (ADS)

    Huber, S. E.; Śmiałek, M. A.; Tanzer, K.; Denifl, S.

    2016-06-01

    Dissociative electron attachment to hydroxyurea was studied in the gas phase for electron energies ranging from zero to 9 eV in order to probe its radiosensitizing capabilities. The experiments were carried out using a hemispherical electron monochromator coupled with a quadrupole mass spectrometer. Diversified fragmentation of hydroxyurea was observed upon low energy electron attachment and here we highlight the major dissociation channels. Moreover, thermodynamic thresholds for various fragmentation reactions are reported to support the discussion of the experimental findings. The dominant dissociation channel, which was observed over a broad range of energies, is associated with formation of NCO-, water, and the amidogen (NH2) radical. The second and third most dominant dissociation channels are associated with formation of NCNH- and NHCONH2-, respectively, which are both directly related to formation of the highly reactive hydroxyl radical. Other ions observed with significant abundance in the mass spectra were NH2-/O-, OH-, CN-, HNOH-, NCONH2-, and ONHCONH2-.

  8. Dissociative electron attachment to C2F5 radicals.

    PubMed

    Haughey, Sean A; Field, Thomas A; Langer, Judith; Shuman, Nicholas S; Miller, Thomas M; Friedman, Jeffrey F; Viggiano, A A

    2012-08-07

    Dissociative electron attachment to the reactive C(2)F(5) molecular radical has been investigated with two complimentary experimental methods; a single collision beam experiment and a new flowing afterglow Langmuir probe technique. The beam results show that F(-) is formed close to zero electron energy in dissociative electron attachment to C(2)F(5). The afterglow measurements also show that F(-) is formed in collisions between electrons and C(2)F(5) molecules with rate constants of 3.7 × 10(-9) cm(3) s(-1) to 4.7 × 10(-9) cm(3) s(-1) at temperatures of 300-600 K. The rate constant increases slowly with increasing temperature, but the rise observed is smaller than the experimental uncertainty of 35%.

  9. Dissociative electron attachment to C2F5 radicals

    NASA Astrophysics Data System (ADS)

    Haughey, Sean A.; Field, Thomas A.; Langer, Judith; Shuman, Nicholas S.; Miller, Thomas M.; Friedman, Jeffrey F.; Viggiano, A. A.

    2012-08-01

    Dissociative electron attachment to the reactive C2F5 molecular radical has been investigated with two complimentary experimental methods; a single collision beam experiment and a new flowing afterglow Langmuir probe technique. The beam results show that F- is formed close to zero electron energy in dissociative electron attachment to C2F5. The afterglow measurements also show that F- is formed in collisions between electrons and C2F5 molecules with rate constants of 3.7 × 10-9 cm3 s-1 to 4.7 × 10-9 cm3 s-1 at temperatures of 300-600 K. The rate constant increases slowly with increasing temperature, but the rise observed is smaller than the experimental uncertainty of 35%.

  10. Electron attachment to molecules in a cluster environment

    NASA Astrophysics Data System (ADS)

    Fabrikant, I. I.; Caprasecca, S.; Gallup, G. A.; Gorfinkiel, J. D.

    2012-05-01

    Low-energy dissociative electron attachment (DEA) to the CF2Cl2 and CF3Cl molecules in a water cluster environment is investigated theoretically. Calculations are performed for the water trimer and water hexamer. It is shown that the DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster, and that this cross section grows as the number of water molecules in the cluster increases. This growth is explained by a trapping effect that is due to multiple scattering by water molecules while the electron is trapped in the cluster environment. The trapping increases the resonance lifetime and the negative ion survival probability. This confirms qualitatively existing experiments on electron attachment to the CF2Cl2 molecule placed on the surface of H2O ice. The DEA cross sections are shown to be very sensitive to the position of the attaching molecule within the cluster and the orientation of the electron beam relative to the cluster.

  11. Electron attachment to oxygen in supercritical hydrocarbon fluids

    NASA Astrophysics Data System (ADS)

    Nishikawa, Masaru; Holroyd, R. A.

    1983-10-01

    The rate of attachment of electrons to oxygen was studied in methane, ethane, and propane gas above the critical temperatures up to pressures of ˜200 atm. For all three gases, the rate increases with density and levels off above N=3×1021 molecules/cm3. For ethane, there is little or no effect of temperature on the rate between 25 and 75 °C and the rate is independent of electric field (E) up to E/N=1.2×10-18 V cm2, but increases at higher values of E/N. To explain the results, it is suggested that the energetics of the attachment reaction change with density; i.e., the energy level of the electron in the media (V0) and the polarization energy (P-) of O2- change with N. The rate of attachment increases with the energy term ET=V0-P-+Ek, where Ek is the electron kinetic energy, similar to the way the attachment rate increases with electron kinetic energy in the dilute gas.

  12. Dynamics of Dissociative Electron Attachment to Uracil and Furane

    NASA Astrophysics Data System (ADS)

    Fonseca Dos Santos, Samantha; Douguet, Nicolas; Orel, Ann; Rescigno, Thomas

    2016-05-01

    We present the results of a theoretical study of dissociative electron attachment (DEA) to Uracil and Furan. In both cases we will present calculated angular distributions based on analysis of the entrance amplitudes obtained from the results of complex Kohn scattering calculations. For uracil, we will compare our results with available experimentally measured angular distributions obtained using the COLTRIMS method.

  13. High Resolution Studies of Electron Attachment to Molecules

    SciTech Connect

    Braun, M.; Ruf, M.-W.; Hotop, H.; Fabrikant, I. I.

    2009-05-02

    In this paper, we survey recent progress in studies of anion formation via (dissociative) electron attachment (DEA) to simple molecules, as measured with the laser photoelectron attachment (LPA) method at high resolution. The limiting (E{yields}0) threshold behavior of the cross sections is elucidated for s-wave and p-wave attachment. Cusps at onsets for vibrational excitation (VE), due to interaction of the DEA channnel with the VE channel, are clearly detected, and vibrational Feshbach resonances just below vibrational onsets are observed for molecules with sufficiently strong long-range attraction between the electron and the molecule. From the LPA anion yields, absolute DEA cross sections (energy range typically E = 0.001-2 eV) are determined with reference to rate coefficients for thermal electron attachment at the appropriate gas temperature (normally T{sub G} = 300 K). The experimental data are compared with theoretical cross sections, calculated within the framework of an R-matrix or an Effective Range theory approach.

  14. Electron attachment to oxygen clusters studied with high energy resolution

    NASA Astrophysics Data System (ADS)

    Matejcik, S.; Stampfli, P.; Stamatovic, A.; Scheier, P.; Märk, T. D.

    1999-08-01

    Highly monochromatized electrons (with energy distributions of less than 30 meV FWHM) are used in a crossed beam experiments to investigate electron attachment to oxygen clusters (O2)n at electron energies from approximately zero eV up to several eV. At energies close to zero the attachment cross section for the reaction (O2)n+e→(O2)m- (for m=1, 2, and 3) rises strongly with decreasing electron energy compatible with s-wave electron capture to (O2)n. Peaks in the oxygen attachment cross sections present at higher energies (≈80 meV, 193 meV, 302 meV) can be ascribed to vibrational levels of the anion populated by attachment of an electron to a single oxygen molecule within the target cluster via a direct Franck-Condon transition from the ground vibrational state v=0 to a vibrational excited state v'=7,8,9,… of the anion produced. The vibrational structures observed here for the first time can be quantitatively accounted for by model calculations using a microscopic model to examine the attachment of an electron to an oxygen molecule inside a cluster. This involves (i) molecular dynamics simulations to calculate the structure of neutral clusters prior to the attachment process and (ii) calculation of the solvation energy of an oxygen anion in the cluster from the electrostatic polarization of the molecules of the cluster. The occurrence of this polarization energy at the surface of larger clusters explains the appearance of an s-wave capturing cross section at 0 eV and the slightly smaller spacings (compared to the monomer case) between the peaks at finite energy, as observed experimentally. The relative transition probabilities from the ground state of the neutral oxygen molecule to the different vibrational levels of the anion are obtained by calculating the corresponding Franck-Condon factors thereby resulting in a reasonable theoretical fit to the observed yields of negatively charged oxygen molecules and clusters.

  15. Formation and stabilization of C6- by radiative electron attachment

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Vijayanand; Prabhakaran, Aneesh; Kafle, Bhim; Rubinstein, Hilel; Heber, Oded; Rappaport, Michael; Toker, Yoni; Zajfman, Daniel

    2017-03-01

    Radiative electron attachment (REA) plays an important role in forming molecular anions in various astrophysical environments. In this work, we determined the rate coefficient for the formation of C6- by REA based on a detailed balance approach. C6- ions are stored in an electrostatic ion beam trap and are photoexcited above their adiabatic detachment energy (4.18 eV). Due to fast internal conversion and intramolecular vibrational redistribution, photoexcitation leads to the formation of temporary negative ions (TNIs), the same as those one formed by the electron attachment. Absolute vibrational autodetachment and recurrent (or Poincaré) fluorescence (RF) rate coefficients have already been reported [V. Chandrasekaran et al., J. Phys. Chem. Lett. 5, 4078 (2014)]. Knowing the branching ratios of the various competing rate coefficients is decisive to the understanding of the formation probability of anions via REA. The radiative stabilization rate of C6-, shown to be dominated by RF, was determined to be 5 × 104 s-1 at the electron detachment energy, i.e., at least a factor of 100 faster than the stabilization by infrared transitions. The RF is found to very effectively stabilize the TNI formed by electron attachment. Using detailed balance to link the measured delayed detachment rate to the rate of electron attachment, we estimate the REA rate leading to the formation of C6- to be 3 × 10-7 cm3 s-1 at 300 K in agreement with theory (1.7 × 10-7 cm3 s-1 [R. Terzieva and E. Herbst, Int. J. Mass Spectrom. 201, 135 (2000)]). Such a high rate for REA to C6 indicates that REA may play a prominent role in the formation of anions in the interstellar medium.

  16. Enhanced negative ion formation via electron attachment to electronically-excited states

    SciTech Connect

    Pinnaduwage, L.A. |

    1995-12-31

    Recent basic studies on electron attachment to laser-excited molecules show that electron attachment to electronically-excited states can have orders of magnitude larger cross sections compared to the respective ground electronic states. Even though systematic studies have not been conducted, there are indications that electronically-excited states may play a significant role in negative ion formation in gas discharges. The high-lying Rydberg states could be of particular significance since, (i) their production efficiencies are high, and (ii) they have comparatively long lifetimes. Such states could be populated in discharge sources via direct electron impact or via excitation transfer from metastable states of inert gases.

  17. Electron Production, Electron Attachment, and Charge Recombination Process in High Pressure Gas Discharges.

    DTIC Science & Technology

    1985-09-10

    mixtures of H2 0-Ar, C3F8 -N2 and C3F8 -CH4 increase with increasing E/N. These characteristics are useful for the application of opening switchef. The...published in the Journal of Applied Physics. 4. Electron Attachment Coefficients of CqFA The electron attachment coefficients of C3F8 in buffer gases of...Ar, N2, and CH 4 were measured as a function of E/N. The 5 electron attachment rate constants of C3F8 in N2 and CR 4 increase with E/N, which are

  18. Wide temperature range electronic device with lead attachment

    NASA Technical Reports Server (NTRS)

    Farrell, R. (Inventor)

    1973-01-01

    A electronic device including lead attachment structure which permits operation of the devices over a wide temperature range is reported. The device comprises a core conductor having a thin coating of metal thereon whereby only a limited amount of coating material is available to form an alloy which bonds the core conductor to the device electrode, the electrode composition thus being affected only in the region adjacent to the lead.

  19. Ultralow Energy Electron Attachment at Sub-Millielectron Volt Resolution

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Kortyna, A.; Darrach, M. R.; Howe, P. -T.

    1999-01-01

    The technique of rare-gas photoionization has been extended by use of direct laser ionization to electron energies epsilon in the range 0-100 meV, with a resolution Delta(epsilon) of 0.4-0.5 meV (FWHM). Tunable UV light at (Lambda)276 nm is produced using a pulsed Nd:YAG laser and nonlinear mixing techniques. The beam is frequency tripled in a pulsed jet of xenon. The VUV radiation, tunable at (Lambda)92 nm, is then used to photoionize Xe at its 2P(sub 1/2) threshold (single-photon ionization). The photoelectrons produced interact with admixed target gas to generate negative ions through the s-wave capture process. Recent results in electron attachment to SF(sub 6) will be reported which show resonance structure at the opening of the ground-state vibrational channels. This structure corresponds to the process of vibrational excitation + attachment, which is superimposed on the underlying s-wave (direct) capture process. It should be a general phenomenon, present in a wide variety of zero-energy electron attaching molecules.

  20. Dissociative electron attachment to HBr: A temperature effect

    SciTech Connect

    Fedor, J.; Cingel, M.; Skalny, J. D.; Scheier, P.; Maerk, T. D.; Cizek, M.; Kolorenc, P.; Horacek, J.

    2007-02-15

    The effects of rovibrational temperature on dissociative electron attachment to hydrogen bromide has been investigated from the experimental and theoretical point of view. Theoretical calculations based on the nonlocal resonance model predict a strong temperature effect on the Br{sup -} fragment ion yield due to population of higher vibrational and rotational states. A crossed beam experimental setup consisting of a temperature controlled effusive molecular beam and a trochoidal electron monochromator has been used to confirm this prediction. The high degree of agreement between experiment and theory indicates the validity of the theoretical model and its underlying physical picture.

  1. Electron attachment to antipyretics: Possible implications of their metabolic pathways

    NASA Astrophysics Data System (ADS)

    Pshenichnyuk, Stanislav A.; Modelli, Alberto

    2012-06-01

    The empty-level structures and formation of negative ion states via resonance attachment of low-energy (0-15 eV) electrons into vacant molecular orbitals in a series of non-steroidal anti-inflammatory drugs (NSAIDs), namely aspirin, paracetamol, phenacetin, and ibuprofen, were investigated in vacuo by electron transmission and dissociative electron attachment (DEA) spectroscopies, with the aim to model the behavior of these antipyretic agents under reductive conditions in vivo. The experimental findings are interpreted with the support of density functional theory calculations. The negative and neutral fragments formed by DEA in the gas phase display similarities with the main metabolites of these commonly used NSAIDs generated in vivo by the action of cytochrome P450 enzymes, as well as with several known active agents. It is concluded that xenobiotic molecules which possess pronounced electron-accepting properties could in principle follow metabolic pathways which parallel the gas-phase dissociative decay channels observed in the DEA spectra at incident electron energies below 1 eV. Unwanted side effects as, e.g., hepatoxicity or carcinogenicity produced by the NSAIDs under study in human organism are discussed within the "free radical model" framework, reported earlier to describe the toxic action of the well-known model toxicant carbon tetrachloride.

  2. Electron attachment and positive ion chemistry of monohydrogenated fluorocarbon radicals

    SciTech Connect

    Wiens, Justin P.; Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, Albert A.

    2015-08-21

    Rate coefficients and product branching fractions for electron attachment and for reaction with Ar{sup +} are measured over the temperature range 300–585 K for three monohydrogenated fluorocarbon (HFC) radicals (CF{sub 3}CHF, CHF{sub 2}CF{sub 2}, and CF{sub 3}CHFCF{sub 2}), as well as their five closed-shell precursors (1-HC{sub 2}F{sub 4}I, 2-HC{sub 2}F{sub 4}I, 2-HC{sub 2}F{sub 4}Br, 1-HC{sub 3}F{sub 6}I, 2-HC{sub 3}F{sub 6}Br). Attachment to the HFC radicals is always fairly inefficient (between 0.1% and 10% of the Vogt–Wannier capture rate), but generally faster than attachment to analogous perfluorinated carbon radicals. The primary products in all cases are HF-loss to yield C{sub n}F{sub m−1}{sup −} anions, with only a minor branching to F{sup −} product. In all cases the temperature dependences are weak. Attachment to the precursor halocarbons is near the capture rate with a slight negative temperature dependence in all cases except for 2-HC{sub 2}F{sub 4}Br, which is ∼10% efficient at 300 K and becomes more efficient, approaching the capture rate at higher temperatures. All attachment kinetics are successfully reproduced using a kinetic modeling approach. Reaction of the HFC radicals with Ar{sup +} proceeds at or near the calculated collisional rate coefficient in all cases, yielding a wide variety of product ions.

  3. Low-energy dissociative electron attachment to CF2

    NASA Astrophysics Data System (ADS)

    Chourou, S. T.; Larson, Ã.; Orel, A. E.

    2015-08-01

    We present the results of a theoretical study of dissociative electron attachment (DEA) of low-energy electrons to CF2. We carried out electron scattering calculations using the complex Kohn variational method at the static-exchange and relaxed self-consistent field (SCF) level at the equilibrium geometry and compare our differential cross sections to other results. We then repeated these calculations as a function of the three internal degrees of freedom to obtain the resonance energy surfaces and autoionization widths. We use this data as input to form the Hamiltonian relevant to the nuclear dynamics. The multidimensional wave equation is solved using the multiconfiguration time-dependent Hartree (MCTDH) approach within the local approximation.

  4. High resolution dissociative electron attachment to gas phase adenine

    SciTech Connect

    Huber, D.; Beikircher, M.; Denifl, S.; Zappa, F.; Matejcik, S.; Bacher, A.; Grill, V.; Maerk, T. D.; Scheier, P.

    2006-08-28

    The dissociative electron attachment to the gas phase nucleobase adenine is studied using two different experiments. A double focusing sector field mass spectrometer is utilized for measurements requiring high mass resolution, high sensitivity, and relative ion yields for all the fragment anions and a hemispherical electron monochromator instrument for high electron energy resolution. The negative ion mass spectra are discussed at two different electron energies of 2 and 6 eV. In contrast to previous gas phase studies a number of new negative ions are discovered in the mass spectra. The ion efficiency curves for the negative ions of adenine are measured for the electron energy range from about 0 to 15 eV with an electron energy resolution of about 100 meV. The total anion yield derived via the summation of all measured fragment anions is compared with the total cross section for negative ion formation measured recently without mass spectrometry. For adenine the shape of the two cross section curves agrees well, taking into account the different electron energy resolutions; however, for thymine some peculiar differences are observed.

  5. Near 0 eV electrons attach to nucleotides.

    PubMed

    Gu, Jiande; Xie, Yaoming; Schaefer, Henry F

    2006-02-01

    To elucidate the mechanism of the nascent stage of DNA strand breakage by low-energy electrons, theoretical investigations of electron attachment to nucleotides have been performed by the reliably calibrated B3LYP/DZP++ approach (Chem. Rev. 2002, 102, 231). The 2'-deoxycytidine-3'-monophosphate (3'-dCMPH) and its phosphate-deprotonated anion (3'-dCMP(-)) have been selected herein as models. This investigation reveals that 3'-dCMPH is able to capture near 0 eV electrons to form a radical anion which has a lower energy than the corresponding neutral species in both the gas phase and aqueous solution. The excess electron density is primarily located on the base of the nucleotide radical anion. The electron detachment energy of this pyrimidine-based radical anion is high enough that subsequent phosphate-sugar C-O sigma bond breaking or glycosidic bond cleavage is feasible. Although the phosphate-centered radical anion of 3'-dCMPH is not stable in the gas phase, it may be stable in aqueous solution. However, an incident electron with kinetic energy less than 4 eV might not be able to effectively produce the phosphate-centered radical anion either in solution or in the gas phase. This research also suggests that the electron affinity of the nucleotides is independent of the counterion in aqueous solution.

  6. Revealing Dissociative Electron Attachment Dynamics in Polyatomic Molecules Using Momentum Imaging Experiments and Electron Scattering Calculations

    NASA Astrophysics Data System (ADS)

    Belkacem, Ali; Slaughter, Daniel

    2015-05-01

    Understanding electron-driven chemical reactions is important for improving a variety of technological applications such as materials processing and the important role they play in the radiation damage in bulk matter. Furthermore, dissociative electron attachment often exhibits site-selective bond cleavage, which holds promise for prediction and precise control of electron-driven chemical reactions. Recent dynamical studies of these reactions have demonstrated that an understanding of anion dissociation dynamics beyond simple one-dimensional models is crucial in interpreting the measured fragment angular distributions. We combine ion fragment momentum imaging experiments with electron attachment entrance amplitude calculations to interrogate the non-Born-Oppenheimer dynamics of dissociative electron attachment in polyatomic molecules. We will report recent experimental developments in molecules of technological interest including methanol, methane and uracil. Work supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.

  7. Dissociative attachment reactions of electrons with strong acid molecules

    SciTech Connect

    Adams, N.G.; Smith, D.; Viggiano, A.A.; Paulson, J.F.; Henchman, M.J.

    1986-06-15

    Using the flowing afterglow/Langmuir probe (FALP) technique, we have determined (at variously 300 and 570 K) the dissociative attachment coefficients ..beta.. for the reactions of electrons with the common acids HNO/sub 3/ (producing NO/sup -//sub 2/) and H/sub 2/SO/sub 4/ (HSO/sup -//sub 4/), the superacids FSO/sub 3/H (FSO/sup -//sub 3/), CF/sub 3/SO/sub 3/H (CF/sub 3/SO/sup -//sub 3/), ClSO/sub 3/H (ClSO/sup -//sub 3/,Cl/sup -/), the acid anhydride (CF/sub 3/SO/sub 2/)/sub 2/O (CF/sub 3/SO/sup -//sub 3/), and the halogen halides HBr (Br/sup -/) and HI (I/sup -/). The anions formed in the reactions are those given in the parentheses. The reactions with HF and HCl were investigated, but did not occur at a measurable rate since they are very endothermic. Dissociative attachment is rapid for the common acids, the superacids, and the anhydride, the measured ..beta.. being appreciable fractions of the theoretical maximum ..beta.. for such reactions, ..beta../sub max/. The HI reaction is very fast ( ..beta..approx...beta../sub max/) but the HBr reaction occurs much more slowly because it is significantly endothermic. The data indicate that the extreme acidity of the (Bronsted-type) superacids has its equivalence in the very efficient gas-phase dissociative attachment which these species undergo when reacting with free electrons. The anions of the superacids generated in these reactions, notably FSO/sup -//sub 3/ and CF/sub 3/SO/sup -//sub 3/, are very stable (unreactive) implying exceptionally large electron affinities for the FSO/sub 3/ and CF/sub 3/SO/sub 3/ radicals.

  8. The pressure dependence of Tc in the infinite-layer electron-doped compound Sr 0.84Nd 0.16CuO 2

    NASA Astrophysics Data System (ADS)

    Wooten, C. L.; Beom-hoan, O.; Markert, J. T.; Smith, M. G.; Manthiram, A.; Zhou, J.; Goodenough, J. B.

    1992-03-01

    We report the effect of nearly hydrostatic pressure in the range 0-20 kbar on the resistively determined superconducting transition temperature Tc of the recently discovered infinite-layer electron-doped copper-oxide compound Sr 0.84ND 0.16CuO 2. In contrast to other electron-doped copper oxides, we observe a positive and appreciable change in Tc with pressure with value {dT c}/{dP }=+0.06±0.02 K/kbar. Thus the sign and magnitude of {dT c}/{dP} are not dominated by the carrier type; in this compound, we suggest they are determined by a pressure-induced enhancement of the interlayer coupling.

  9. Functional group dependent dissociative electron attachment to simple organic molecules

    NASA Astrophysics Data System (ADS)

    Prabhudesai, Vaibhav S.; Nandi, Dhananjay; Kelkar, Aditya H.; Krishnakumar, E.

    2008-04-01

    Dissociative electron attachment (DEA) cross sections for simple organic molecules, namely, acetic acid, propanoic acid, methanol, ethanol, and n-propyl amine are measured in a crossed beam experiment. We find that the H- ion formation is the dominant channel of DEA for these molecules and takes place at relatively higher energies (>4eV) through the core excited resonances. Comparison of the cross sections of the H- channel from these molecules with those from NH3, H2O, and CH4 shows the presence of functional group dependence in the DEA process. We analyze this new phenomenon in the context of the results reported on other organic molecules. This discovery of functional group dependence has important implications such as control in electron induced chemistry and understanding radiation induced damage in biological systems.

  10. Detection of New Dissociative Electron Attachment Channels in NO

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Chutjian, A.

    1995-01-01

    Three dissociative electron attachment channels have been detected and identified in NO via measurement of the O minus (exp 2)P fragment energy. In addition to the known N((exp 2 D(exp 0)) + O minus (exp 2)P channel, two new channels N((exp 1 S(exp 0)) + 0 (2 P) and N(exp 2)P(exp 0) + O(exp 2)P were detected. Cross sections for each of the channels are reported by normalizing the scattering intensities to previously measured total cross sections. The experimental approach uses solenoidal magnetic confinement of the electrons and ions, and trochoidal energy analysis of the low-energy ions.

  11. Dissociative electron attachment to the gas-phase nucleobase hypoxanthine

    SciTech Connect

    Dawley, M. Michele; Tanzer, Katrin; Denifl, Stephan E-mail: Sylwia.Ptasinska.1@nd.edu; Carmichael, Ian; Ptasińska, Sylwia E-mail: Sylwia.Ptasinska.1@nd.edu

    2015-06-07

    We present high-resolution measurements of the dissociative electron attachment (DEA) to isolated gas-phase hypoxanthine (C{sub 5}H{sub 4}N{sub 4}O, Hyp), a tRNA purine base. The anion mass spectra and individual ion efficiency curves from Hyp were measured as a function of electron energy below 9 eV. The mass spectra at 1 and 6 eV exhibit the highest anion yields, indicating possible common precursor ions that decay into the detectable anionic fragments. The (Hyp − H) anion (C{sub 5}H{sub 3}N{sub 4}O{sup −}) exhibits a sharp resonant peak at 1 eV, which we tentatively assign to a dipole-bound state of the keto-N1H,N9H tautomer in which dehydrogenation occurs at either the N1 or N9 position based upon our quantum chemical computations (B3LYP/6-311+G(d,p) and U(MP2-aug-cc-pVDZ+)) and prior studies with adenine. This closed-shell dehydrogenated anion is the dominant fragment formed upon electron attachment, as with other nucleobases. Seven other anions were also observed including (Hyp − NH){sup −}, C{sub 4}H{sub 3}N{sub 4}{sup −}/C{sub 4}HN{sub 3}O{sup −}, C{sub 4}H{sub 2}N{sub 3}{sup −}, C{sub 3}NO{sup −}/HC(HCN)CN{sup −}, OCN{sup −}, CN{sup −}, and O{sup −}. Most of these anions exhibit broad but weak resonances between 4 and 8 eV similar to many analogous anions from adenine. The DEA to Hyp involves significant fragmentation, which is relevant to understanding radiation damage of biomolecules.

  12. Thermal electron attachment to oxygen and van der Waals molecules containing oxygen

    NASA Astrophysics Data System (ADS)

    Shimamori, Hiroshi; Fessenden, Richard W.

    1981-01-01

    Thermal electron attachment to O2 has been studied for pure O2 (16O2 and 18O2), O2-N2, O2-CO, and O2-n-C4H10 (16O2 and 18O2) systems at temperatures from ˜330 down to 78° K using pulse radiolysis and microwave conductivity. For pure O2, O2-N2, and O2-CO mixtures, the electron attachment rates showed three-body pressure dependences at all temperatures over the pressure range studied (PO2<10Torr, PN2<60 Torr, PCO<40 Torr). The three-body rate constant of 16O2 decreases from ˜2.4×10-30 cm6 molecule-2 sec-1 at 330 °K to about 0.9×10-30 cm6 molecule-2 sec-1 at ˜ 140 °K but unexpectedly increases again to about 1.7×10-30 cm6 molecule-2 sec-1 at 79 °K. Similarly, the three-body rate constant of 18O2 decreases from 5.1×10-30 cm6 molecule-2 sec-1 at 300 °K to 1.8×10-30 cm6 molecule-2 sec-1 at ˜110 °K but increases to 2.3×10-30 cm6 molecule-2 sec-1 at 80 °K. The three-body rate constant of N2 shows a more dramatic monotonic increase from 0.9×10-31 cm6 molecule-2 sec-1 at 300 °K to 9.4×10-31 cm6 molecule-2 sec-1 at 78 °K. In the case of CO, the three-body rate constant appears to have a very shallow minimum around 170 °K and again increases with further decrease of temperature. Since theory predicts a simple decrease in rate constant with reduced temperature, an extra contribution to the rate constant which increases with lowered temperature is evident. Electron attachment to the van der Waals molecules (O2)2, (O2ṡN2), and (O2ṡCO) is proposed to account for this behavior. It has been found that the dependence of the excess rate on temperature follows rather closely the predicted concentration of van der Waals molecules. Qualitatively, this observation suggests that the rate constant for electron attachment to the van der Waals molecules is only weakly dependent on temperature. The estimated rate constants for this attachment are nearly two orders of magnitude larger than for O2 itself. A discussion of possible reasons for this large increase is given

  13. Isotope effect in dissociative electron attachment to HCN

    SciTech Connect

    Chourou, S. T.; Orel, A. E.

    2011-03-15

    We performed nuclear dynamics calculations on HCN and DCN to study the isotope effect in dissociative electron attachment. Our previous calculations at 333 K led to a ratio {sigma}{sup (CN-/HCN)}/{sigma}{sup (CN-/DCN)} of about 13, which is significantly higher than recent experimental findings. This discrepancy is attributed to the neglect of correlation and polarization effects in the scattering calculation performed. We carried out a relaxed-self-consistent field calculation to determine the variation of the resonance parameters under these effects. We observe a shift in the positions of the shape resonance as well as a narrowing of the autoionization widths resulting in an isotope ratio of 3.2 at T=333 K; in closer agreement with the measured value.

  14. Ion Momentum Imaging of Dissociative Electron Attachment to Small Molecules

    NASA Astrophysics Data System (ADS)

    Fogle, Michael

    2015-09-01

    In recent years, low energy dissociative electron attachment (DEA) interactions have been of interest to varying biological and technological applications. To study the dynamics resulting from DEA, we used an ion-momentum imaging apparatus based on the Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) technique in which a molecular beam is crossed by a pulsed electron beam. The beam interaction takes place in a 4 π pulsed electrostatic spectrometer that collects the anion fragments resulting from DEA. The molecular beam is formed by a supersonic expansion which results in a well-localized and cold target. Using this apparatus we have investigated the DEA dynamics for several small molecules: CO2 at the 4 eV shape resonance and the 8 eV Feshbach resonance; N2O at the 2.3 eV shape resonance; HCCH at the 3 eV shape resonance; and CF4 near the 7 eV resonance. An overview of these experimental ion-momentum results will be compared to ab initio electronic structure and fixed-nuclei scattering calculations to gauge the resulting dynamics driven by DEA. In many cases, conical intersections play a pivotal role in driving the dynamics. Some of these systems exhibit non-axial recoil conditions indicative of a bending dynamics in the transitory negative ion state while others exhibit a direct axial recoil dissociation without any bending. This work is supported by the National Science Foundation under Contract NSF-PHYS1404366.

  15. Chiral Sensitivity in the Dissociative Electron Attachment of Halocamphor Molecules

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan

    2016-05-01

    We have demonstrated chirally-dependent molecular destruction when incident longitudinally-spin-polarized (chiral) electrons break bonds in chiral molecules. This chiral sensitivity was observed through an asymmetry in the dissociative electron attachment (DEA) reaction rate with chiral 3-bromocamphor (C10 H15 BrO). Such an observation provides an unambiguous demonstration of the idea underlying the Vester-Ulbricht hypothesis, which attempts to explain the origins of the homochirality that is observed in many biological systems. While the lack of inversion symmetry in these reactions allows the effects we observe to occur, their dynamic causes are poorly understood. We have further studied the asymmetries in the DEA rates for two additional halocamphor molecules, 3-iodocamphor (C10 H15 IO) and 10-iodocamphor, in a systematic effort to illuminate the mechanisms responsible for the chiral sensitivity. The DEA signal depends on the sign of the incident electron helicity for a given target handedness in all molecules, and it varies with both the atomic number and the location of the heaviest atom in the molecule. Surprisingly, the DEA asymmetries for 10-iodocamphor, in which the heaviest atom is farther from a chiral center than for the other molecules, produced the largest asymmetries. This work was performed at the University of Nebraska-Lincoln. This project was funded by NSF Grant PHY-1206067.

  16. Thermal electron attachment to chlorinated alkenes in the gas phase

    NASA Astrophysics Data System (ADS)

    Wnorowski, K.; Wnorowska, J.; Michalczuk, B.; Jówko, A.; Barszczewska, W.

    2017-01-01

    This paper reports the measurements of the rate coefficients and the activation energies of the electron capture processes with various chlorinated alkenes. The electron attachment processes in the mixtures of chlorinated alkenes with carbon dioxide have been investigated using a Pulsed Townsend technique. This study has been performed in the temperature range (298-378) K. The obtained rate coefficients more or less depended on temperature in accordance to Arrhenius equation. The activation energies (Ea's) were determined from the fit to the experimental data points with function ln(k) = ln(A) - Ea/kBT. The rate coefficients at 298 K were equal to 1.0 × 10-10 cm3 s-1, 2.2 × 10-11 cm3 s-1, 1.6 × 10-9 cm3 s-1, 4.4 × 10-8 cm3 s-1, 2.9 × 10-12 cm3 s-1 and 7.3 × 10-12 cm3 s-1 and activation energies were: 0.27 eV, 0.26 eV, 0.25 eV, 0.21 eV, 0.55 eV and 0.42 eV, for trans-1,2-dichloroethylene, cis-1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, 2-chloropropene, 3-chloropropene respectively.

  17. Dissociative electron attachment to CO2 produces molecular oxygen

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Dong; Gao, Xiao-Fei; Xuan, Chuan-Jin; Tian, Shan Xi

    2016-03-01

    Until recently, it was widely regarded that only one reaction pathway led to the production of molecular oxygen in Earth's prebiotic primitive atmosphere: a three-body recombination reaction of two oxygen atoms and a third body that removes excess energy. However, an additional pathway has recently been observed that involves the photodissociation of CO2 on exposure to ultraviolet light. Here we demonstrate a further pathway to O2 production, again from CO2, but via dissociative electron attachment (DEA). Using anion-velocity image mapping, we provide experimental evidence for a channel of DEA to CO2 that produces O2(X3Σ-g) + C-. This observed channel coexists in the same energy range as the competitive three-body dissociation of CO2 to give O + O + C-. The abundance of low-energy electrons in interstellar space and the upper atmosphere of Earth suggests that the contributions of these pathways are significant and should be incorporated into atmospheric chemistry models.

  18. Nuclear Quantum Effects on Aqueous Electron Attachment and Redox Properties.

    PubMed

    Rybkin, Vladimir V; VandeVondele, Joost

    2017-04-06

    Nuclear quantum effects (NQEs) on the reduction and oxidation properties of small aqueous species (CO2, HO2, and O2) are quantified and rationalized by first-principles molecular dynamics and thermodynamic integration. Vertical electron attachment, or electron affinity, and detachment energies (VEA and VDE) are strongly affected by NQEs, decreasing in absolute value by 0.3 eV going from a classical to a quantum description of the nuclei. The effect is attributed to NQEs that lessen the solvent response upon oxidation/reduction. The reduction of solvent reorganization energy is expected to be general for small solutes in water. In the thermodynamic integral that yields the free energy of oxidation/reduction, these large changes enter with opposite sign, and only a small net effect (0.1 eV) remains. This is not obvious for CO2, where the integrand is strongly influenced by NQEs due to the onset of interaction of the reduced orbital with the conduction band of the liquid during thermodynamic integration. We conclude that NQEs might not have to be included in the computation of redox potentials, unless high accuracy is needed, but are important for VEA and VDE calculations.

  19. Electron Attachment and Detachment, and the Electron Affinities of C(5)F(5)N and C(5)HF(4)N

    DTIC Science & Technology

    2005-09-19

    detachment rate at 303 K was 520 ± 180 s-1. The attachment/detachment equilibrium yielded experimental electron affinities EA(CsF 5N) = 0.70-0.05 eV and EA...are in good agreement with the present experimental results. 15. SUBJECT TERMS Electron attachment Electron affinity Electron detachment Rate constant...attachment/detachment equilibrium yielded experimental electron affinities EA(C5F5 N)=0.70±0.05 eV and EA(2,3,5,6-C5HF 4N)=0.40±0.08 eV. Electronic

  20. Dissociative electron attachment to methylacetylene and dimethylacetylene: Symmetry versus proximity

    NASA Astrophysics Data System (ADS)

    Janečková, R.; May, O.; Fedor, J.

    2012-11-01

    We have measured absolute dissociative electron attachment (DEA) cross sections in methylacetylene (propyne, C3H4) and dimethylacetylene (but-2-yne, C4H6). The main feature in the low-energy DEA spectrum is a π* shape resonance giving rise to fragments at 3.4 eV in C3H4 and 4.0 eV in C4H6. The process C3H4+e→ C3H3-+H proceeds via abstraction of the acetylenic hydrogen which is mediated by effective vibronic coupling. The abstraction of methyl group hydrogen, which does not require symmetry lowering of the transient negative ion, was not observed; the spatial separation of the bond from the resonance decreases the cross section dramatically. The presence of the methyl group further influences the DEA cross sections via change of the resonance's position and via blocking one or both of the DEA active sites in acetylene. No cleavage of the C-methyl bond has been observed, and reasons for this effect are discussed. Additionally, several higher-lying resonances (6 to 15 eV) leading to production of an H- fragment were observed and assigned.

  1. Production of and Dissociative Electron Attachment to the Simplest Criegee Intermediate in an Afterglow.

    PubMed

    Wiens, Justin P; Shuman, Nicholas S; Viggiano, Albert A

    2015-02-05

    The simplest Criegee intermediate, CH2OO, has been produced in a flowing afterglow using a novel technique. CH2I is produced by dissociative electron attachment to CH2I2, leading to the established reaction CH2I + O2 → CH2OO + I. The presence of CH2OO is established by observation of dissociative electron attachment to yield O(-) using the variable electron and neutral density attachment mass spectrometry (VENDAMS) technique. The measurements establish the electron attachment rate coefficient of thermal electrons at 300 K to CH2OO as 1.2 ± 0.3 × 10(-8) cm(3) s(-1). Thermal electron attachment is solely dissociative and is not a promising route to producing stable CH2OO(-). The results open the possibility of measuring ion-molecule chemistry involving Criegee intermediates, as well as the reactivity of other unstable radicals produced in an analogous manner.

  2. Investigation of electron attachment in polyatomic molecules. Final report 1 Apr 77-31 Mar 80

    SciTech Connect

    Dowell, J.T.

    1980-05-30

    Electron attachment to polyatomic molecules was studied using molecular beams of variable temperature crossed with an electron of high energy resolution. Species investigated include sulfur hexafluoride, molybdenum hexafluoride, and tungsten oxide polymers. New results were obtained in sulfur hexafluoride demonstrating importance of internal energy for the dissociative attachment in molybdenum hexafluoride. Tungsten oxide vapor exhibits both monomer and dimer negative ion formation near zero energy, apparently from dissociative attachment to the trimer.

  3. Detection of explosives, nerve agents, and illicit substances by zero-energy electron attachment

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Darrach, M. R.

    2000-01-01

    The Reversal Electron Attachment Detection (READ) method, developed at JPL/Caltech, has been used to detect a variety of substances which have electron-attachment resonances at low and intermediate electron energies. In the case of zero-energy resonances, the cross section (hence attachment probability and instrument sensitivity) is mediated by the so-called s-wave phenomenon, in which the cross sections vary as the inverse of the electron velocity. Hence this is, in the limit of zero electron energy or velocity, one of the rare cases in atomic and molecular physics where one carries out detection via infinite cross sections.

  4. Electron attachment and detachment and the electron affinity of cyclo-C4F8

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Friedman, Jeffrey F.; Viggiano, A. A.

    2004-04-01

    New measurements have been made of rate constants for electron attachment to c-C4F8 (octafluorocyclobutane) and thermal electron detachment from the parent anion, c-C4F8-, over the temperature range 298-400 K in 133 Pa of He gas in a flowing-afterglow Langmuir-probe apparatus. From these data the electron affinity for c-C4F8 was determined, EA(c-C4F8)=0.63±0.05 eV. The motivation was to resolve a discrepancy between our earlier EA estimate and a higher value (EA=1.05±0.10 eV) reported from a recent experiment of Hiraoka et al. [J. Chem. Phys. 116, 7574 (2002)]. The electron attachment rate constant is 9.3±3.0×10-9 cm3 s-1 at 298 K. The electron detachment rate constant is negligible at room temperature but climbs to 1945±680 s-1 at 400 K. G3(MP2) calculations were carried out for the neutral (D2d, 1A1) and anion (D4h, 2A2u) and yielded EA(c-C4F8-)=0.595 eV. Bond energies were also calculated for loss of F from c-C4F8 and loss of F or F- from c-C4F8-. From these, dissociative electron attachment is found to be endothermic by at least 1.55 eV.

  5. Electron attachment and detachment and the electron affinity of cyclo-C4F8.

    PubMed

    Miller, Thomas M; Friedman, Jeffrey F; Viggiano, A A

    2004-04-15

    New measurements have been made of rate constants for electron attachment to c-C(4)F(8) (octafluorocyclobutane) and thermal electron detachment from the parent anion, c-C(4)F(8) (-), over the temperature range 298-400 K in 133 Pa of He gas in a flowing-afterglow Langmuir-probe apparatus. From these data the electron affinity for c-C(4)F(8) was determined, EA(c-C(4)F(8))=0.63+/-0.05 eV. The motivation was to resolve a discrepancy between our earlier EA estimate and a higher value (EA=1.05+/-0.10 eV) reported from a recent experiment of Hiraoka et al. [J. Chem. Phys. 116, 7574 (2002)]. The electron attachment rate constant is 9.3+/-3.0x10(-9) cm(3) s(-1) at 298 K. The electron detachment rate constant is negligible at room temperature but climbs to 1945+/-680 s(-1) at 400 K. G3(MP2) calculations were carried out for the neutral (D(2d), (1)A(1)) and anion (D(4h), (2)A(2u)) and yielded EA(c-C(4)F(8) (-))=0.595 eV. Bond energies were also calculated for loss of F from c-C(4)F(8) and loss of F or F(-) from c-C(4)F(8) (-). From these, dissociative electron attachment is found to be endothermic by at least 1.55 eV.

  6. Obtaining electron attachment cross sections by means of linear inversion of swarm parameters

    NASA Astrophysics Data System (ADS)

    Rabie, M.; Haefliger, P.; Chachereau, A.; Franck, C. M.

    2015-02-01

    We investigate electron attachment to strongly attaching gases as a function of the electron energy. The total electron attachment cross section of this electronegative sample gas is determined from the effective ionization rate constant νeff/N measured in a swarm experiment using the buffer gases N2 and CO2 with minor proportions (≲0.8%) of the sample gas SF6, and C3F8 respectively. The measured rate constants νeff/N for varying reduced electric field strengths E/N are unfolded from the electron energy distribution of the buffer gases. Different unfolding routines for so-called ill-posed problems are tested to find robust solutions for the attachment cross section. Finally, we propose Tikhonov regularization, which is a well defined algorithm for discrete linear inversion problems, as most efficient. Our method gives rise to an approximate and clearly defined solution for the attachment cross section, and it is described in detail.

  7. Small-scale plasma irregularities produced during electron attachment chemical releases

    NASA Technical Reports Server (NTRS)

    Scales, W. A.; Bernhardt, P. A.; Ganguli, G.; Siefring, C. L.; Rodriguez, P.

    1994-01-01

    In situ measurements of small-scale plasma density irregularities made during sounding rocket experiments that released electron attachment materials into the ionosphere are presented. A 2D electrostatic simulation model that includes attachment chemistry is used to study the source and evolution of these irregularities. The simulation shows (1) that large electron flow velocity shears develop on the boundary of the electron depletion and (2) these shears drive a plasma instability that is the likely source of the irregularities.

  8. Solvent effects in thermal electron attachment to clusters containing molecular oxygen

    NASA Astrophysics Data System (ADS)

    Desfrançois, Ch.; Schermann, J. P.

    1993-03-01

    Thermal electron attachment to oxygen is strongly modified when this molecule is bound in heterogenous van der Waals clusters. With the help of a laser-excited Rydberg electron source, we investigate the influence upon electron capture of the solvent nature by comparing O2(H2O)N and O2(C6H6)N attachment rate constants, and we observe size effects down to nearly zero energy.

  9. Electron Attachment to SF(6) Under Well Defined Conditions: Comparison of Statistical Modeling Results to Experiments

    DTIC Science & Technology

    2007-08-01

    Avogadro constant , EA is the electron affinity (at 0 K, by definition), AS" is the entropy change due to electron attachment at temperature T, and...measure rate constants for electron attachment to SF6 and thermal detachment from SF6’. In a recent series of papers, these results were combined...hexafluoride Statistical theory Rate constants 16. SECURITY CLASSIFICATION OF: a. REPORT UNCL b. ABSTRACT UNCL c. THIS PAGE UNCL 17. LIMITATION OF

  10. Electron affinity of trans-2-C4F8 from electron attachment-detachment kinetics.

    PubMed

    Van Doren, Jane M; Condon, Laura R; DeSouza-Goding, Antonet; Miller, Thomas M; Bopp, Joseph C; Viggiano, A A

    2010-01-28

    Electron attachment and detachment kinetics of 2-C(4)F(8) were studied over the temperature range 298-487 K with a flowing-afterglow Langmuir-probe apparatus. Only parent anions were formed in the attachment process throughout this temperature range. At the highest temperatures, thermal electron detachment of the parent anions is important. Analysis of the 2-C(4)F(8) gas showed an 82/18 mixture of trans/cis isomers. The kinetic data at the higher temperatures were used to determine the electron affinity EA(trans-2-C(4)F(8)) = 0.79 +/- 0.06 eV after making some reasonable assumptions. The same quantity was calculated using the G3(MP2) compound method, yielding 0.74 eV. The kinetic data were not sufficient to establish a reliable value for EA(cis-2-C(4)F(8)), but G3(MP2) calculations give a value 0.017 eV greater than that for trans-2-C(4)F(8). MP2 and density functional theory were used to study the structural properties of the neutral and anion isomers.

  11. Predictive a priori pressure-dependent kinetics.

    PubMed

    Jasper, Ahren W; Pelzer, Kenley M; Miller, James A; Kamarchik, Eugene; Harding, Lawrence B; Klippenstein, Stephen J

    2014-12-05

    The ability to predict the pressure dependence of chemical reaction rates would be a great boon to kinetic modeling of processes such as combustion and atmospheric chemistry. This pressure dependence is intimately related to the rate of collision-induced transitions in energy E and angular momentum J. We present a scheme for predicting this pressure dependence based on coupling trajectory-based determinations of moments of the E,J-resolved collisional transfer rates with the two-dimensional master equation. This completely a priori procedure provides a means for proceeding beyond the empiricism of prior work. The requisite microcanonical dissociation rates are obtained from ab initio transition state theory. Predictions for the CH4 = CH3 + H and C2H3 = C2H2 + H reaction systems are in excellent agreement with experiment.

  12. Attachment cooling of electrons in oxygen-argon and SF6-argon mixtures

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia; Kim, Sung Jin; Park, Gan Young; Lee, Jae Koo

    2004-09-01

    In e-beam sustained plasma different electron temperature can be obtained. Thus, in plasma of capacitive RF discharges in inert gases typical electron temperature is of the order of 2-3 eV. At certain conditions, in plasma of electronegative gases electron temperature can approach ion/neutral temperature. We consider e-beam sustained plasma of electronegative gases and their mixtures with argon where the main mechanism of plasma neutralization is connected with electron-molecule attachment. In such plasma, due to retardation of fast electrons of e-beam secondary electrons are created which loose their energy due to attachment. It is shown, that at certain conditions (in dependence of the e-beam intensity and spectrum of secondary electrons) electron temperature can obtain the values comparable or even less than temperature of neutral component. The effect can be explained by the increase of attachment rate coefficient with the increase of electron temperature (mean electron energy). Such a dependence leads to attachment of the fastest plasma electrons and selective loss of electrons whose energy exceeds the mean electron energy and, as a result, to effective electron cooling. The theoretical and numerical analysis of the problem has been conducted. The numerical results obtained using ELENDIF code are compared with Particle-in-cell/Monte Carlo simulations under similar conditions.

  13. Substrate dependence of electron-stimulated O - yields from dissociative electron attachment to physisorbed O2

    NASA Astrophysics Data System (ADS)

    Huels, M. A.; Parenteau, L.; Sanche, L.

    1994-03-01

    We present measurements of O- electron stimulated desorption yields obtained under identical experimental conditions from 0.15 monolayers (ML) of O2 deposited onto disordered substrates consisting of 4 ML of either Kr, Xe, C2H6, C2H4, N2O, CH3Cl, or H2O, all condensed on Pt (polycrystalline). The resulting O- yield functions, for incident electron energies below 20 eV, are compared to that obtained from the O2/Kr solid; this allows us to assess the order of magnitude effects of the local substrate environment on dissociative electron attachment (DEA) via the 2Πu and gas phase forbidden 2Σ+g,u resonances of O-2. We note that, in addition to electron energy losses in the substrate prior to DEA to O2 and post-dissociation interactions of the O- with the substrate molecules, charge or energy transfer from the O-2 transient anion to a substrate molecule, and capture of the incident electron into a dissociative anion resonance of the substrate molecule may contribute to a reduced O- yield from the physisorbed O2. In the case of O2 deposited on amorphous ice, we find that the O- signal from DEA to O2 is completely absent for electron energies below 14 eV; we attribute this to a complete quenching of the dissociative O-2(2Πu, 2Σ+) resonances by the adjacent water molecules.

  14. Electron attachment to Ni(PF(3))(4) and Pt(PF(3))(4).

    PubMed

    Friedman, Jeffrey F; Miller, Thomas M; Friedman-Schaffer, Jessica K; Viggiano, A A; Rekha, G K; Stevens, Amy E

    2008-03-14

    An experimental study has been made of thermal electron attachment to the transition-metal trifluorophosphine complexes Ni(PF(3))(4) and Pt(PF(3))(4) using a flowing-afterglow Langmuir-probe apparatus. Both complexes are efficient at electron attachment, although the rate constants are somewhat less than collisional. The rate constant for electron attachment to Ni(PF(3))(4) is 1.9 x 10(-7) cm(3) s(-1) at room temperature, about a factor of 2 less than collisional. The activation energy is 39+/-5 meV for the attachment reaction. The rate constant for electron attachment to Pt(PF(3))(4) is 5.4 x 10(-8) cm(3) s(-1) at room temperature, and the activation energy is 84+/-8 meV. For both complexes, a PF(3) ligand is lost on electron attachment, and only the M(PF(3))(3)(-) ion is observed in the negative-ion mass spectrum. Density functional calculations were carried out on Ni(PF(3))(4) and various fragments in order to describe the thermochemistry of the attachment reaction.

  15. Electron attachment to Ni(PF3)4 and Pt(PF3)4

    NASA Astrophysics Data System (ADS)

    Friedman, Jeffrey F.; Miller, Thomas M.; Friedman-Schaffer, Jessica K.; Viggiano, A. A.; Rekha, G. K.; Stevens, Amy E.

    2008-03-01

    An experimental study has been made of thermal electron attachment to the transition-metal trifluorophosphine complexes Ni(PF3)4 and Pt(PF3)4 using a flowing-afterglow Langmuir-probe apparatus. Both complexes are efficient at electron attachment, although the rate constants are somewhat less than collisional. The rate constant for electron attachment to Ni(PF3)4 is 1.9×10-7cm3s-1 at room temperature, about a factor of 2 less than collisional. The activation energy is 39±5meV for the attachment reaction. The rate constant for electron attachment to Pt(PF3)4 is 5.4×10-8cm3s-1 at room temperature, and the activation energy is 84±8meV. For both complexes, a PF3 ligand is lost on electron attachment, and only the M(PF3)3- ion is observed in the negative-ion mass spectrum. Density functional calculations were carried out on Ni(PF3)4 and various fragments in order to describe the thermochemistry of the attachment reaction.

  16. Cross sections for H(-) and Cl(-) production from HCl by dissociative electron attachment

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Srivastava, S. K.

    1985-01-01

    A crossed target beam-electron beam collision geometry and a quadrupole mass spectrometer have been used to conduct dissociative electron attachment cross section measurements for the case of H(-) and Cl(-) production from HCl. The relative flow technique is used to determine the absolute values of cross sections. A tabulation is given of the attachment energies corresponding to various cross section maxima. Error sources contributing to total errors are also estimated.

  17. Electron attachment to Cl2 from 300 to 1100 K: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Friedman, Jeffrey F.; Miller, Thomas M.; Schaffer, Linda C.; Viggiano, A. A.; Fabrikant, Ilya I.

    2009-03-01

    Rate constants for dissociative electron attachment to Cl2 have been measured from 300 to 1100 K in a high-temperature flowing-afterglow Langmuir-probe apparatus. R -matrix calculations have been carried out which compare well with the present measurements with possible deviation at the highest temperatures. The attachment rate constants do not show Arrhenius behavior. The temperature dependence of the calculated rate constants for successive vibrational levels provides insight as to this behavior. While the lowest vibrational level of Cl2 dominates attachment at low temperatures, the rate constant is not flat with temperature because of the p -wave character of the attachment process. The non-Arrhenius behavior is due to a conflict between the increase in attachment cross section with vibrational level (temperature) and the decline in the cross section with electron energy above 50 meV.

  18. Electron attachment to molecules and clusters of atmospheric relevance: oxygen and ozone

    NASA Astrophysics Data System (ADS)

    Matejcik, S.; Kiendler, A.; Cicman, P.; Skalny, J.; Stampfli, P.; Illenberger, E.; Chu, Y.; Stamatovic, A.; Märk, T. D.

    1997-05-01

    Highly monochromatized electrons are used in a crossed beams experiment to investigate electron attachment to oxygen clusters 0963-0252/6/2/007/img1 at electron energies from approximately zero up to 2 eV. At energies close to zero the attachment cross section for the reaction 0963-0252/6/2/007/img2 varies inversely with the electron energy, indicative of s-wave electron capture to 0963-0252/6/2/007/img1. Peaks in the attachment cross section present at higher energies can be ascribed to vibrational levels of the oxygen anion. The vibrational spacings observed can be quantitatively accounted for. In addition, electron attachment to ozone and mixed oxygen/ozone clusters has been studied in the energy range up to 4 eV. Absolute attachment cross sections for both fragment ions, 0963-0252/6/2/007/img4 and 0963-0252/6/2/007/img5, from ozone could be deduced. Moreover, despite the initially large excess of oxygen molecules in the neutral oxygen/ozone clusters the dominant attachment products are undissociated clusters ions 0963-0252/6/2/007/img6 including the 0963-0252/6/2/007/img7 monomer while oxygen ions 0963-0252/6/2/007/img8 appear with comparatively low intensity.

  19. Measurement of electron-attachment line shapes, cross sections, and rate constants in HI and DI at ultralow electron energies

    NASA Technical Reports Server (NTRS)

    Alajajian, S. H.; Chutjian, A.

    1988-01-01

    Electron-attachment cross sections are reported in the electron energy range 0-150 MeV, at an energy resolution of 6.5 MeV (full width at half maximum) for the molecules HI and DI. Use is made of the Kr photoionization method to obtain cross sections for HI, and a signal intercomparison technique to obtain cross sections and the thermal-attachment rate constant for DI. Attachment properties of the two molecules are very similar. The ratio of attachment cross sections is discussed in terms of the reduced-mass dependence of the dissociation width and the survival probability, and in terms of spectroscopic thresholds and rotational populations for attachment at 300 K. Approximate potential-energy curves for the lowest states of the neutral molecule and negative ion are given.

  20. Irreversible electron attachment--a key to DNA damage by solvated electrons in aqueous solution.

    PubMed

    Westphal, K; Wiczk, J; Miloch, J; Kciuk, G; Bobrowski, K; Rak, J

    2015-11-07

    The TYT and TXT trimeric oligonucleotides, where X stands for a native nucleobase, T (thymine), C (cytosine), A (adenine), or G (guanine), and Y indicates a brominated analogue of the former, were irradiated with ionizing radiation generated by a (60)Co source in aqueous solutions containing Tris as a hydroxyl radical scavenger. In the past, these oligomers were bombarded with low energy electrons under an ultra-high vacuum and significant damage to TXT trimers was observed. However, in aqueous solution, hydrated electrons do not produce serious damage to TXT trimers although the employed radiation dose exceeded many times the doses used in radiotherapy. Thus, our studies demonstrate unequivocally that hydrated electrons, which are the major form of electrons generated during radiotherapy, are a negligible factor in damage to native DNA. It was also demonstrated that all the studied brominated nucleobases have a potential to sensitize DNA under hypoxic conditions. Strand breaks, abasic sites and the products of hydroxyl radical attachment to nucleobases have been identified by HPLC and LC-MS methods. Although all the bromonucleobases lead to DNA damage under the experimental conditions of the present work, bromopyrimidines seem to be the radiosensitizers of choice since they lead to more strand breaks than bromopurines.

  1. Thermal electron attachment to NF3, PF3, and PF5

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Friedman, Jeffrey F.; Stevens Miller, Amy E.; Paulson, John F.

    1995-11-01

    A flowing-afterglow Langmuir-probe apparatus was used to measure rate constants (ka) for electron attachment to NF3 and PF5 over the temperature range T = 300-550 K. Electron attachment to NF3 is dissociative and produces only F- ionic product in the temperature range studied. At room temperature, ka(NF3) = 7 ± 4 × 10-12 cm3 s-1. The temperature dependence of ka(NF3) above 340 K is characterized by an activation energy of 0.30 ± 0.06 eV. Attachment to PF5 is nondissociative in a helium buffer at pressures in the range 53-160 Pa (0.4-1.2 Torr). The rate constant ka(PF5) is 1.0 ± 0.4 × 10-10 cm3 s-1 at 300 K and is approximately temperature independent over much of the temperature range studied. PF3 does not attach electrons in this temperature range. Upper limits to ka(PF3) were determined (and attributed to impurities): ka < 1 × 10-12 cm3 s-1 at 296 K and ka < 1 × 10-10 cm3 s-1 at 550 K. The electron attachment rate constants measured in the present work are so small that corrections were required to account for electron/ion recombination contribution to the observed decay of the electron density in the plasma.

  2. Electron attachment to PCl3 and POCl3, 296-552 K

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Seeley, John V.; Knighton, W. B.; Meads, Roger F.; Viggiano, A. A.; Morris, Robert A.; Van Doren, Jane M.; Gu, Jiande; Schaefer, Henry F.

    1998-07-01

    Rate constants for electron attachment to PCl3 and POCl3 have been measured over the temperature range 296-552 K in 135 Pa of helium gas, using a flowing-afterglow Langmuir-probe apparatus. Electron attachment to PCl3 is dissociative, producing only Cl- ions in this temperature range. The rate constant is 6.4±1.6×10-8 cm3 s-1 at 296 K and increases with temperature in a way that may be described by an activation energy of 43±10 meV. Electron attachment to POCl3 is a richer process in which a nondissociative channel (POCl3-) competes with two dissociative ones (POCl2- and Cl-). The rate constant for electron attachment to POCl3 is 1.8±0.4×10-7 cm3 s-1 at 296 K and is relatively temperature independent in our temperature range. POCl2- is the major product over the entire temperature range. Ab initio MP2 and MP4 calculations have been carried out on ground-state neutral and anionic PCln and POCln for n=1-3. The calculated adiabatic electron affinities agree with experimental estimates where available. The calculations yield C3v structural symmetries for PCl3 and POCl3, and Cs symmetries for PCl3- and POCl3-. The degree of distortion between the respective neutrals and anions is explored in the calculations, and the implications for electron attachment reactions are outlined.

  3. Low-energy electron attachment and detachment in vibrationally excited oxygen

    NASA Astrophysics Data System (ADS)

    Aleksandrov, N. L.; Anokhin, E. M.

    2009-11-01

    Three-body electron attachment to O2 molecules and electron detachment from O_{2}^{-} ions have been theoretically studied in vibrationally excited oxygen and O2-containing mixtures. Assuming that electron attachment and detachment proceed via the formation of vibrationally excited temporary O_{2}^{-} ions, the rates of these processes were determined on the basis of the statistical approach for the vibrational transfer and relaxation in collisions between O_{2}^{-} ions and O2 molecules. The calculated attachment and detachment rate constants turned out to agree well with available measurements in unexcited oxygen. This method was extended to calculate attachment and detachment rates in vibrationally excited oxygen. It was shown that the effect of vibrational excitation on electron detachment is profound, whereas attachment of low-energy electrons to vibrationally excited O2 is inefficient. The calculated vibrational distribution of stable O_{2}^{-} ions turned out to be non-equilibrium in an excited gas and the effective vibrational temperature of the ions was much lower than the vibrational temperature of molecules. An analytical method was suggested to determine this distribution and the effective vibrational temperature. The calculated rate constants were used to simulate the formation and decay of an electron-beam-generated plasma in N2 : O2 mixtures at elevated vibrational temperatures. The calculations showed that vibrational excitation of molecules leads to orders of magnitude increase in the plasma density and in the plasma lifetime, in agreement with available observations.

  4. High resolution threshold photoelectron spectroscopy by electron attachment

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Ajello, J. M. (Inventor)

    1979-01-01

    A system is provided for determining the stable energy levels of a species ion, of an atomic, molecular, or radical type, by application of ionizing energy of a predetermined level, such as through photoionization. The system adds a trapping gas to the gaseous species to provide a technique for detection of the energy levels. The electrons emitted from ionized species are captured by the trapping gas, only if the electrons have substantially zero kinetic energy. If the electrons have nearly zero energy, they are absorbed by the trapping gas to produce negative ions of the trapping gas that can be detected by a mass spectrometer. The applied energies (i.e. light frequencies) at which large quantities of trapping gas ions are detected, are the stable energy levels of the positive ion of the species. SF6 and CFCl3 have the narrowest acceptance bands, so that when they are used as the trapping gas, they bind electrons only when the electrons have very close to zero kinetic energy.

  5. Dynamics of Low Energy Electron Attachment to Formic Acid

    SciTech Connect

    Rescigno, Thomas N.; Trevisan, Cynthia S.; Orel, Ann E.

    2006-04-03

    Low-energy electrons (<2 eV) can fragment gas phaseformic acid (HCOOH) molecules through resonant dissociative attachmentprocesses. Recent experiments have shown that the principal reactionproducts of such collisions are formate ions (HCOO-) and hydrogen atoms.Using first-principles electron scattering calculations, we haveidentified the responsible negative ion state as a transient \\pi* anion.Symmetry considerations dictate that the associated dissociation dynamicsare intrinsically polyatomic: a second anion surface, connected to thefirst by a conical intersection, is involved in the dynamics and thetransient anion must necessarily deform to non-planar geometries beforeit can dissociate to the observed stable products.

  6. Note: Coherent resonances observed in the dissociative electron attachment to carbon monoxide.

    PubMed

    Wang, Xu-Dong; Xuan, Chuan-Jin; Luo, Yi; Tian, Shan Xi

    2015-08-14

    Succeeding our previous finding about coherent interference of the resonant states of CO(-) formed by the low-energy electron attachment [Tian et al. Phys. Rev. A 88, 012708 (2013)], here we provide further evidence of the coherent interference. The completely backward distributions of the O(-) fragment of the temporary CO(-) are observed with anion velocity map imaging technique in an electron energy range of 11.3-12.6 eV and explained as the results of the coherent interferences of three resonant states. Furthermore, the state configuration of the interference is changed with the increase of electron attachment energy.

  7. Electron impact ionization and attachment cross sections for H2S. [in comet and planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Srivastava, S. K.

    1993-01-01

    Experiments were performed to measure, by electron impact, appearance potentials and the cross sections for ionization, dissociative ionization, and electron attachment for H2S. Results are presented, and discussed individually, for both positive and negative ions. A schematic diagram of the experimental setup is included.

  8. Electron attachment to the interhalogens ClF, ICl, and IBr

    NASA Astrophysics Data System (ADS)

    Miller, T. M.; Wiens, J. P.; Sawyer, J. C.; Shuman, N. S.; Viggiano, A. A.; Khamesian, M.; Kokoouline, V.; Fabrikant, I. I.

    2016-05-01

    Electron attachment rate coefficients have been measured for the interhalogens ClF, ICl, and IBr over the range 300-900 K using a flowing-afterglow Langmuir-probe apparatus. The ClF case was also studied theoretically. ClF was found to attach electrons somewhat inefficiently with a rate coefficient of 7.5x 10-9 cm3/s at 300 K, doubling by 700 K. Even so, attachment to ClF is more efficient than seen earlier for F2 and Cl2, which brings up the interesting distinction that attachment to F2 and Cl2 is known to have p-wave threshold behavior, while in ClF the inversion symmetry is broken, allowing an s-wave component. The increase in the rate coefficient for attachment to ClF with temperature was found to be less pronounced than with F2 and Cl2. Ab initio potential energy curves were calculated for ClF and ClF-, and R-matrix theory was used to obtain the resonance widths and energies for the ground state curve crossing, which takes place near the equilibrium internuclear separation in ClF. A local complex potential model was used to calculate attachment cross sections and thermal rate coefficients. There is reasonable agreement between theory and experiment within the estimated 25% uncertainties in the data. Cl- is the only product ion from thermal electron attachment to ClF. Attachment to ICl is even less efficient by almost an order of magnitude than to ClF, namely, 9.5x 10-10 cm3/s at 300 K. Attachment to IBr is small enough that we place an upper limit of < 10-10 cm3/s at 300 K. Supported by AFOSR, DOE, and NSF.

  9. Electron attachment to Fe(CO)n (n = 0-5).

    PubMed

    Shuman, Nicholas S; Miller, Thomas M; Friedman, Jeffrey F; Viggiano, Albert A

    2013-02-14

    The rate constants of thermal electron attachment at 300 and 400 K to Fe(CO)(n) (n = 0-5) have been measured using a flowing afterglow Langmuir probe apparatus. The stable species Fe(CO)(5) was studied using the traditional method of monitoring electron depletion as a function of reaction time, and the remaining short-lived species were studied using the variable electron and neutral density attachment mass spectrometry (VENDAMS) technique. Attachment to Fe(CO)(5) is purely dissociative and about 20% efficient with a rate constant of (7.9 ± 1.4) × 10(-8) cm(3) s(-1) at 300 K and (8.8 ± 2) × 10(-8) cm(3) s(-1) at 400 K. The attachment rate constants decrease significantly as each CO ligand is removed, with Fe(CO)(n) (n = 4 to 1) attaching with efficiencies on the order of 10%, 1%, 0.1%, and 0.01% respectively. Under the conditions here, attachment to Fe(CO)(4) and Fe(CO)(3) are likely entirely dissociative, whereas attachment to Fe(CO)(2) and Fe(CO) are almost entirely associative. A statistical kinetic modeling approach is used to explain the strong dependence of the attachment rate constant on the number of ligands present in the neutral species through a combination of increasing autodetachment rates and decreasing exothermicities to dissociative attachment. The VENDAMS data also define the 300 K mutual neutralization rate constant of Fe(CO)(4)(-) + Ar(+) to be (5.0 ± 0.8) × 10(-8) cm(3) s(-1) with an upper limit to branching fraction of 0.5 to yield Fe(CO)(4), indicating that significant fragmentation to smaller Fe(CO)(n) occurs.

  10. A coordinated flowing afterglow and crossed beam study of electron attachment to CCl3Br

    NASA Astrophysics Data System (ADS)

    Spanel, P.; Smith, D.; Matejcik, S.; Kiendler, A.; Mark, T. D.

    1997-11-01

    Dissociative electron attachment to CCl3Br has been studied using a flowing afterglow/Langmuir probe (FALP) and a crossed beam technique. In the FALP experiment the overall attachment rate coefficients and the branching ratio into the Cl- and the Br- product channels, R = Cl-/(Cl- + Br-), were measured as a function of the gas temperature, Tg, in the range of 300-540K and the electron temperatures, Te, from Tg to 4000K indicating that R approached the statistical value of 0.75 at the highest Tg. At Tg = 540K both Cl2-1 and ClBr- molecular ions were observed at about the 2% level. An apparent activation energy of 55 meV for the overall attachment reaction was derived using a model developed previously to describe the dependence of dissociative electron attachment rates on Tg and Te. The crossed beam experiment provided relative attachment cross-sections for the production of Cl- and Br- as a function of electron energy, E, from near zero up to ~2 eV at several Tg within the range 311-423 K. The absolute cross-sections at Tg = 311K were obtained from the FALP value using a calibration procedure. At low E the overall attachment cross-section varies as E-1 in accordance with s-wave capture theory. In accordance with the FALP data R increases from 0.2 at low E and the lowest Tg to the statistical value of 0.75 at high E and high Tg. A peak observed in the cross-section at an E of about 0.7 eV is tentatively attributed to p-wave electron attachment. The rapid decrease of this peak cross-section with Tg is ascribed to autodetachment.

  11. Electron attachment mass spectrometry as a diagnostics for electronegative gases and plasmas

    NASA Astrophysics Data System (ADS)

    Stoffels, E.; Stoffels, W. W.; Tachibana, K.

    1998-01-01

    Electron attachment mass spectrometry (EAMS) has been developed to study mixtures of electronegative gases and plasmas. A quadrupole mass spectrometer (QMS) has been used to detect negative ions, formed from sampled species by attachment of low energy electrons. Varying the electron energy allows to collect the attachment cross section of the considered species. EAMS appears to be a very powerful technique to study the chemistry of electronegative gases. Unlike ionization mass spectrometry, where cross sections are low at the threshold and rather flat over a broad range of electron energies, attachment resonances are sharp and distinct. Also very limited fragmentation of the parent negative ion occurs, so a given molecule yields only a few different negative ions. This facilitates identification of components in a gas mixture. It is particularly advantageous for detection of large, fragile molecules, which break up after ionization, but can be easily transformed into large negative ions. Moreover, sensitive detection of active species is possible due to their relatively high attachment cross sections. A particularly important application of EAMS is the determination of an effective attachment cross section in a plasma. Recording this cross section allows to decide on the actual negative ion formation mechanism in the plasma environment, where active products of plasma conversion can significantly alter the negative ion production channels and consequently the whole balance of charged particles. Examples of EAMS applications to fluorocarbon gases and low-pressure radio-frequency plasmas are discussed. In a CF4 discharge conversion of the parent gas into species like C2F6 and C3F8 is easily visualized. The dominant mechanism of negative ion formation in the plasma is electron attachment to these minority species and not to the parent gas. Also larger polymers are readily formed in fluorocarbon plasmas. In a C2F6 discharge molecules with up to ten carbon atoms (the

  12. Pressure dependence of electrical conductivity in forsterite

    NASA Astrophysics Data System (ADS)

    Yoshino, Takashi; Zhang, Baohua; Rhymer, Brandon; Zhao, Chengcheng; Fei, Hongzhan

    2017-01-01

    Electrical conductivity of dry forsterite has been measured in muli-anvil apparatus to investigate the pressure dependence of ionic conduction in forsterite. The starting materials for the conductivity experiments were a synthetic forsterite single crystal and a sintered forsterite aggregate synthesized from oxide mixture. Electrical conductivities were measured at 3.5, 6.7, 9.6, 12.1, and 14.9 GPa between 1300 and 2100 K. In the measured temperature range, the conductivity of single crystal forsterite decreases in the order of [001], [010], and [100]. In all cases, the conductivity decreases with increasing pressure and then becomes nearly constant for [100] and [001] and slightly increases above 7 GPa for [010] orientations and a polycrystalline forsterite sample. Pressure dependence of forsterite conductivity was considered as a change of the dominant conduction mechanism composed of migration of both magnesium and oxygen vacancies in forsterite. The activation energy (ΔE) and activation volume (ΔV) for ionic conduction due to migration of Mg vacancy were 1.8-2.7 eV and 5-19 cm3/mol, respectively, and for that due to O vacancy were 2.2-3.1 eV and -1.1 to 0.3 cm3/mol, respectively. The olivine conductivity model combined with small polaron conduction suggests that the most part of the upper mantle is controlled by ionic conduction rather than small polaron conduction. The previously observed negative pressure dependence of the conductivity of olivine with low iron content (Fo90) can be explained by ionic conduction due to migration of Mg vacancies, which has a large positive activation volume.

  13. The observation of unusual resonance channels in the electron attachment to mixed argon-oxygen clusters

    NASA Astrophysics Data System (ADS)

    Foltin, M.; Grill, V.; Märk, T. D.

    1992-01-01

    An additional electron attachment resonance peak, not observable in pure oxygen cluster anions, has been found at an energy of about 11.5 eV for both the stoichiometric Ar m(O 2) n- and the nonstoichiometric Ar m(O 2) n-1 O - cluster anions (produced by electron attachment to mixed argon-oxygen clusters). Two possible competing mechanisms are proposed to explain the appearance of these resonance peaks, i.e. the multiple-collision electron-scavenging mechanism and the core-excited resonance attachment mechanism. From the peak-width analysis it follows that in Ar m(O 2) 2- the first mechanism is dominant, while in Ar m(O 2) n-1 O - the second mechanism seems to be the only one occurring.

  14. Dissociative electron attachment to dinitrogen pentoxide, N{sub 2}O{sub 5}

    SciTech Connect

    Cicman, P.; Buchanan, G.A.; Marston, G.; Gulejova, B.; Skalny, J.D.; Mason, N.J.; Scheier, P.; Maerk, T.D.

    2004-11-22

    Electron attachment was studied in gaseous dinitrogen pentoxide, N{sub 2}O{sub 5}, for incident electron energies between a few meV and 10 eV. No stable parent anion N{sub 2}O{sub 5}{sup -} was observed but several anionic fragments (NO{sub 3}{sup -}, NO{sub 2}{sup -}, NO{sup -}, O{sup -}, and O{sub 2}{sup -}) were detected using quadrupole mass spectrometry. Many of these dissociative pathways were found to be coupled and provide detailed information on the dynamics of N{sub 2}O{sub 5} fragmentation. Estimates of the cross sections for production of each of the anionic fragments were made and suggest that electron attachment to N{sub 2}O{sub 5} is amongst the most efficient attachment reactions recorded for nonhalogenated polyatomic systems.

  15. Electron attachment induced proton transfer in a DNA nucleoside pair: 2'-deoxyguanosine-2'-deoxycytidine

    NASA Astrophysics Data System (ADS)

    Gu, Jiande; Xie, Yaoming; Schaefer, Henry F.

    2007-10-01

    To elucidate electron attachment induced damage in the DNA double helix, electron attachment to the 2'-deoxyribonucleoside pair dG:dC has been studied with the reliably calibrated B3LYP /DZP++ theoretical approach. The exploration of the potential energy surface of the neutral and anionic dG:dC pairs predicts a positive electron affinity for dG:dC [0.83eV for adiabatic electron affinity (EAad) and 0.16eV for vertical electron affinity (VEA)]. The substantial increases in the electron affinity of dG:dC (by 0.50eV for EAad and 0.23eV for VEA) compared to those of the dC nucleoside suggest that electron attachment to DNA double helices should be energetically favored with respect to the single strands. Most importantly, electron attachment to the dC moiety in the dG:dC pair is found to be able to trigger the proton transfer in the dG :dC-• pair, surprisingly resulting in the lower energy distonic anionic complex d(G-H )-:d(C+H)•. The negative charge for the latter system is located on the base of dC in the dG :dC-• pair, while it is transferred to d(G-H) in d(G-H )-:d(C+H)•, accompanied by the proton transfer from N1(dG) to N3(dC). The low energy barrier (2.4kcal/mol) for proton transfer from dG to dC-• suggests that the distonic d(G-H )-:d(C+H)• pair should be one of the important intermediates in the process of electron attachment to DNA double helices. The formation of the neutral nucleoside radical d(C +H)• is predicted to be the direct result of electron attachment to the DNA double helices. Since the neutral radical d(C +H)• nucleotide is the key element in the formation of this DNA lesion, electron attachment might be one of the important factors that trigger the formation of abasic sites in DNA double helices.

  16. Electron attachment induced proton transfer in a DNA nucleoside pair: 2'-deoxyguanosine-2'-deoxycytidine.

    PubMed

    Gu, Jiande; Xie, Yaoming; Schaefer, Henry F

    2007-10-21

    To elucidate electron attachment induced damage in the DNA double helix, electron attachment to the 2'-deoxyribonucleoside pair dG:dC has been studied with the reliably calibrated B3LYP/DZP++ theoretical approach. The exploration of the potential energy surface of the neutral and anionic dG:dC pairs predicts a positive electron affinity for dG:dC [0.83 eV for adiabatic electron affinity (EAad) and 0.16 eV for vertical electron affinity (VEA)]. The substantial increases in the electron affinity of dG:dC (by 0.50 eV for EAad and 0.23 eV for VEA) compared to those of the dC nucleoside suggest that electron attachment to DNA double helices should be energetically favored with respect to the single strands. Most importantly, electron attachment to the dC moiety in the dG:dC pair is found to be able to trigger the proton transfer in the dG:dC- pair, surprisingly resulting in the lower energy distonic anionic complex d(G-H)-:d(C+H).. The negative charge for the latter system is located on the base of dC in the dG:dC- pair, while it is transferred to d(G-H) in d(G-H)-:d(C+H)., accompanied by the proton transfer from N1(dG) to N3(dC). The low energy barrier (2.4 kcal/mol) for proton transfer from dG to dC- suggests that the distonic d(G-H)-:d(C+H). pair should be one of the important intermediates in the process of electron attachment to DNA double helices. The formation of the neutral nucleoside radical d(C+H). is predicted to be the direct result of electron attachment to the DNA double helices. Since the neutral radical d(C+H). nucleotide is the key element in the formation of this DNA lesion, electron attachment might be one of the important factors that trigger the formation of abasic sites in DNA double helices.

  17. Pressure dependence of the c-axis resistivity of graphite

    SciTech Connect

    Uher, C.; Hockey, R.L.; Ben-Jacob, E.

    1987-03-15

    The c-axis resistivity of highly oriented pyrolytic graphite has been measured from 2 to 300 K under hydrostatic pressures of up to 40 kbar. A resistivity peak near 40 K, typical for this type of graphite at ambient pressure, rapidly diminishes with increasing pressure but does not shift its position with respect to temperature. This observation suggests that the origin of the resistivity peak is not in a strong electron-phonon interaction but is associated with a particular structural matrix of these artificially produced graphites. A model is proposed, based on tunneling between microcrystallites, which accounts for the peculiar temperature and pressure dependence of the resistivity.

  18. Effect of cluster environment on the electron attachment to 2-nitrophenol*

    NASA Astrophysics Data System (ADS)

    Kočišek, Jaroslav; Grygoryeva, Kateryna; Lengyel, Jozef; Fárník, Michal; Fedor, Juraj

    2016-04-01

    Effect of cluster environment on the electron attachment to 2-nitrophenol (2NP) is studied in homogeneous 2NP clusters and heterogeneous clusters of 2NP, argon and water. The cluster environment significantly reduces fragmentation of 2NP after electron attachment. Parent cluster anions 2NPn- are primary reaction products in both, homogeneous and heterogeneous clusters. Non-dissociative electron attachment to homogeneous clusters proceeds at low energies <2 eV, presumably via dipole-supported states. In heterogeneous clusters, the interaction with low energy (<2 eV) electrons is shielded by the solvent. Surprisingly, the energetic threshold for the electron attachment rises with the number (n) of 2NP molecules in the cluster (2NP)n-. This rise can be either due to a strong change of the 2NP conformation induced by the cluster environment or due to the the competition with electron autodetachment after proton transfer that has been first observed by Allan in the formic acid dimer [M. Allan, Phys. Rev. Lett. 98, 123201 (2007)]. We observe the same threshold rise for complex Arm·(2NP)n- and H2O·(2NP)n- anions. This indicates that the electron attachment to 2-nitrophenol in cluster environment is more influenced by the solute - solute interaction compared to the solute - solvent interaction. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70074-0

  19. Dissociative electron attachment and vibrational excitation of CF3Cl: Effect of two vibrational modes revisited

    NASA Astrophysics Data System (ADS)

    Tarana, Michal; Houfek, Karel; Horáček, Jiří; Fabrikant, Ilya I.

    2011-11-01

    We present a study of dissociative electron attachment and vibrational excitation processes in electron collisions with the CF3Cl molecule. The calculations are based on the two-dimensional nuclear dynamics including the C-Cl symmetric stretch coordinate and the CF3 symmetric deformation (umbrella) coordinate. The complex potential energy surfaces are calculated using the ab initio R-matrix method. The results for dissociative attachment and vibrational excitation of the umbrella mode agree quite well with experiment whereas the cross section for excitation of the C-Cl symmetric stretch vibrations is about a factor-of-three too low in comparison with experimental data.

  20. Dissociative attachment of electrons to vibronically excited SO{sub 2}

    SciTech Connect

    Kumar, S.V.K.; Ashoka, V.S.; Krishnakumar, E.

    2004-11-01

    Dissociative electron attachment (DEA) to vibronically excited SO{sub 2} in the Clements' band in the 288 to 298 nm region has been studied. The O{sup -} ion yield, to a first approximation, follows the photo absorption spectrum in this range indicating the DEA process to be independent of the vibrational levels in this band. This is in contrast to what is generally observed for vibrational level dependence from the electronic ground state. The current measurements also do not show any qualitative change in the dissociative attachment process due to change of symmetry as one moves from the peaks to the valleys of the Clements band.

  1. A study of electron attachment to C70 using the FALP technique

    NASA Astrophysics Data System (ADS)

    Spanel, Patrik; Smith, David

    1994-10-01

    The absolute reaction rate coefficients for electron attachment to C70 have been measured in the electron temperature, T(sub e), range from 300 to 4500 K using the flowing-afterglow/Langmuir probe technique. A detailed comparison of the electron attaching properties of C70 with C60 is made. Thus, whilst electron capture to C60 occurs only in the p-wave channel at these T(sub e), it is tentatively reasoned that electron capture by C70 proceeds preferentially in the s-wave channel below a T(sub e) of about 1000 K and in the p-wave channel and/or the s-wave channel at the higher T(sub e).

  2. Ion-momentum imaging of dissociative attachment of electrons to molecules

    NASA Astrophysics Data System (ADS)

    Slaughter, D. S.; Belkacem, A.; McCurdy, C. W.; Rescigno, T. N.; Haxton, D. J.

    2016-11-01

    We present an overview of experiments and theory relevant to dissociative electron attachment studied by momentum imaging. We describe several key examples of characteristic transient anion dynamics in the form of small polyatomic electron-molecule systems. In each of these examples the so-called axial recoil approximation is found to break down due to correlation of the electronic and nuclear degrees of freedom of the transient anion. Guided by anion fragment momentum measurements and predictions of the electron scattering attachment probability in the molecular frame, we demonstrate that accurate predictions of the dissociation dynamics can be achieved without a detailed investigation of the surface topology of the relevant electronic states or the fragment trajectories on those surfaces.

  3. Efficient Production of O- by Dissociative Attachment of Slow Electrons to Highly Excited Metastable Oxygen Molecules

    NASA Astrophysics Data System (ADS)

    Hayashi, Daiyu; Kadota, Kiyoshi

    1999-01-01

    In this paper, the mechanism for efficient production of O- in the afterglow of a low-pressure and high-density oxygen plasma has been described. We proposed a new production process, the dissociative attachment of slow electrons to highly excited metastable oxygen molecules O2 (A3 Σu+, A'3Δu, c1Σu-). The electron attachment frequency has been obtained from the experimental results, and was significantly high for the electron temperature of less than 2 eV. The cross section, σDA, for this process was evaluated by a quantum mechanical approach. σDA at 0.1 eV was larger by two-orders of magnitude than the peak value at 6.7 eV for the ground state O2 (X3Σg+). The enhancement of the electron attachment frequency at low temperature can be explained by dissociative attachment of slow electrons to O2 (A3Σu+, A'3Δu, c1Σu-).

  4. Electron Attachment to Oxygen and Nitric-Oxide Clusters with High Energy Resolution

    NASA Astrophysics Data System (ADS)

    Scheier, P.; Senn, G.; Stampfli, P.; Mńrk, T. D.; Chu, Y.; Matejcik, S.; Stamatovic, A.; Illenberger, E.

    Highly monochrornatized electrons (with energy distributions of less than 15 meV FWHM) are used in a crossed beams experiment to investigate electron attachment to oxygen clusters (O2)n and nitric-oxide clusters (NO)n at electron energies from approximately zero eV up to several eV. At energies close to zero the attachment cross section for the reaction (X)n + e → X- (for X=O2 and NO, respectively) rises strongly with decreasing electron energy compatible with s-wave electron capture to Xn. Peaks in the oxygen attachment cross sections present at higher energies (80 meV, 193 meV,…) can be ascribed to vibrational levels of the anion. The vibrational spacings observed can be quantitatively accounted for by model calculations. In contrast, peaks at higher energies (220 meV, 440 meV,…) in the dissociative attachment cross sections for NOn are due to direct excitation of the vibrational levels in neutral NO prior to localization of the excess charge in the cluster (vibrational autoscavenging).

  5. Electron Affinity of trans-2-C4F8 from Electron Attachment-Detachment Kinetics

    DTIC Science & Technology

    2009-09-04

    over the temperature range employed in the present study. B. Kinetics Experiments. A flowing - afterglow Langmuir - probe (FALP) apparatus was used for... afterglow Langmuir - probe apparatus. Only parent anions were formed in the attachment process throughout this temperature range. At the highest... afterglow Langmuir - probe apparatus. Only parent anions were formed in the attachment process throughout this temperature range. At the highest

  6. Electron attachment to the cytosine-centered DNA single strands: does base stacking matter?

    PubMed

    Gu, Jiande; Wang, Jing; Leszczynski, Jerzy

    2012-02-02

    Electron attachment to the trimer of nucleotide, dGpdCpdG, has been investigated by a quantum mechanical approach at a reliable level of theory. The study of the electron attached dGpdCpdG species demonstrates that cytosine contained DNA single strands have a strong tendency to capture low-energy electrons and to form electronically stable cytosine-centered radical anions. The comparative study of the model molecules pdCpdG and dGpdCp reveals that base stacking has little contribution to the adiabatic electron affinity (AEA) of cytosine in DNA single strands. Additionally, the base-base stacking does not affect the vertical detachment energy (VDE) of the cytosine-centered radicals. Intrastrand H-bonding is found to be critical in increasing the values of the AEA and VDE. However, base-base stacking is revealed to be important in enlarging the vertical electron affinity (VEA) of cytosine. The electron attachment to the cytosine moiety intensifies the intrastrand H-bonding between the neighboring G and C bases. This process disrupts the base-base stacking interaction in the radical anion of dGpdCpdG.

  7. Low-energy electron attachment to the dichlorodifluoromethane (CCl2F2) molecule.

    PubMed

    Graupner, K; Haughey, S A; Field, T A; Mayhew, C A; Hoffmann, T H; May, O; Fedor, J; Allan, M; Fabrikant, I I; Illenberger, E; Braun, M; Ruf, M-W; Hotop, H

    2010-01-28

    Results from a joint experimental study of electron attachment to dichlorodifluoromethane (CCl(2)F(2)) molecules in the gas phase are reported. In a high resolution electron beam experiment involving two versions of the laser photoelectron attachment method, the relative cross section for formation of the dominant anion Cl(-) was measured over the energy range 0.001-1.8 eV at the gas temperature T(G) = 300 K. It exhibits cusp structure at thresholds for vibrational excitation of the nu(3)(a(1)) mode due to interaction with the attachment channels. With reference to the thermal attachment rate coefficient k(T = 300 K) = 2.2(8) x 10(-9) cm(3) s(-1) (fitted average from several data), a new highly resolved absolute attachment cross section for T(G) = 300 K was determined. Partial cross sections for formation of the anions Cl(-), Cl(2)(-), F(-), ClF(-), and CCl(2)F(-) were measured over the range 0-12 eV, using three different electron beam experiments of medium energy resolution. The dependence of the attachment rate coefficient k(T(e);T(G) = 300 K) on electron temperature T(e) was calculated over the range 50-15 000 K, based on a newly constructed total cross section for anion formation at T(G) = 300 K. R-matrix calculations for Cl(-) production have been carried out for comparison with the experimental data. The R-matrix results are in line with the main experimental observations and predict the dependence of the DEA cross section on the initial vibrational level nu(3)() and on the vibrational temperature. Furthermore, the cross section for vibrational excitation of the nu(3) mode has been computed.

  8. Dissociative electron attachment to C{sub 2}F{sub 5} radicals

    SciTech Connect

    Haughey, Sean A.; Field, Thomas A.; Langer, Judith; Shuman, Nicholas S.; Miller, Thomas M.; Friedman, Jeffrey F.; Viggiano, A. A.

    2012-08-07

    Dissociative electron attachment to the reactive C{sub 2}F{sub 5} molecular radical has been investigated with two complimentary experimental methods; a single collision beam experiment and a new flowing afterglow Langmuir probe technique. The beam results show that F{sup -} is formed close to zero electron energy in dissociative electron attachment to C{sub 2}F{sub 5}. The afterglow measurements also show that F{sup -} is formed in collisions between electrons and C{sub 2}F{sub 5} molecules with rate constants of 3.7 Multiplication-Sign 10{sup -9} cm{sup 3} s{sup -1} to 4.7 Multiplication-Sign 10{sup -9} cm{sup 3} s{sup -1} at temperatures of 300-600 K. The rate constant increases slowly with increasing temperature, but the rise observed is smaller than the experimental uncertainty of 35%.

  9. Electron thermalization and attachment in pulse-irradiated oxygen studied by time-resolved microwave conductivity

    NASA Astrophysics Data System (ADS)

    Warman, John M.; Cooper, Ronald

    The microwave conductivity of oxygen gas following nanosecond pulsed irradiation has been studied for pressures from 5 to 50 torr. The conductivity is found to decrease by a factor of approx. 20 in the early stages ( tN < 2 x 10 11 s cm -3) following the pulse. This is attributed to a decrease in the electron collision frequency as the initial excess energy of the electrons becomes degraded. A further decrease found at longer times is due to the three-body attachment of electrons to O 2 with a rate constant of 2.4 x 10 -30 cm 6s -1. Above a pressure of approx. 30 torr significant attachment begins to occur while electrons are still superthermal. The time at which the microwave signal is within 10% of the value corresponding to thermal energies is given by τ thP ≈ 15 μs.torr.

  10. Heavy-Rydberg ion-pair formation in Rydberg atom collisions: Probing dissociative electron attachment

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Buathong, Sitti; Dunning, F. Barry

    2015-05-01

    While electron transfer in Rydberg atom collisions with attaching targets forms a valuable technique with which to create heavy-Rydberg ion pairs to examine their properties, we demonstrate here that measurements of their velocity distributions can also provide insights into the behavior of the excited intermediates formed through initial electron transfer. The experimental results are analyzed with the aid of a Monte Carlo collision code that models the details of electron transfer reactions. Results for a variety of targets are presented that demonstrate the use of this approach to examine the dynamics of dissociative electron attachment, the lifetimes of the intermediates created, and the channels by which they decay. Research supported by the Robert A. Welch Foundation under Grant C-0734.

  11. Dissociative Electron Attachment to Carbon Dioxide via the 8.2 eV Feshbach resonance

    SciTech Connect

    Slaughter, Dan; Adaniya, Hidihito; Rescigno, Tom; Haxton, Dan; Orel, Ann; McCurdy, Bill; Belkacem, Ali

    2011-08-17

    Momentum imaging experiments on dissociative electron attachment (DEA) to CO{sub 2} are combined with the results of ab initio calculations to provide a detailed and consistent picture of the dissociation dynamics through the 8.2 eV resonance, which is the major channel for DEA in CO{sub 2}. The present study resolves several puzzling misconceptions about this system.

  12. Electron attachment to SF6 under well defined conditions: comparison of statistical modeling results to experiments

    NASA Astrophysics Data System (ADS)

    Miller, T. M.; Viggiano, A. A.; Troe, J.

    2008-05-01

    Experiments were carried out using a flowing-afterglow Langmuir-probe apparatus to measure rate constants for electron attachment to SF6 and thermal detachment from SF6-. In a recent series of papers, these results were combined with new and existing data on nondissociative and dissociative attachment to SF6 and compared to statistical modeling of the various processes involved in the stabilization of the ionic products of attachment. This paper gives a summary of those findings. The major conclusions are: (a) only the ground electronic state of SF6- needs to be invoked to explain available data; (b) the electron affinity of SF6 is higher than previously thought, namely, EA(SF6) = 1.20 (± 0.05) eV; (c) the endothermicity of the dissociative electron attachment reaction that yields SF5- is 0.41 eV (± 0.05) eV at 0 K; (d) combining these two numbers gives the bond energy D0o(F—SF5-) = 1.61 (± 0.05) eV.

  13. Electron attachment to anthracene. A FALP measurement of the rate coefficient at room temperature

    NASA Astrophysics Data System (ADS)

    Canosa, A.; Parent, D. C.; Pasquerault, D.; Au; Gomet, J. C.; Laubé, S.; Rowe, B. R.

    1994-09-01

    The rate coefficient β for electron attachment to anthracene has been measured at room temperature using a flowing afterglow Langmuir probe mass spectrometer. A value of 1 × 10 -9 cm 3 s -1 (30% uncertainty) was found, indicating that an activation energy barrier might exist.

  14. Electron attachment of oxygen in a drift chamber filled with xenon + 10% methane

    NASA Astrophysics Data System (ADS)

    Chiba, Y.; Hayashibara, I.; Ohsugi, T.; Sakanoue, T.; Taketani, A.; Terunuma, N.; Suzuki, Y.; Tsukamoto, A.; Yamamoto, H.; Fukushima, Y.; Kohriki, T.; Nakamura, S.; Sakuda, M.; Watase, Y.

    1988-06-01

    The existence of O 2 contamination attenuates the pulse height and degrades its resolution in a drift chamber filled with xenon-methane (90/10) gas. The first measurement of the electron attachment coefficient due to oxygen in such a mixture is reported.

  15. Electronic Communications Technologies and the Transition to College: Links to Parent-Child Attachment and Adjustment

    ERIC Educational Resources Information Center

    Sarigiani, Pamela A.; Trumbell, Jill M.; Camarena, Phame M.

    2013-01-01

    Electronic communications technologies (ECTs) help college students and parents remain in contact. Because recent reports have emphasized a link between ECTs, helicopter parenting, and autonomy issues, this study focused on the significance of contact patterns for attachment and student adjustment. First-semester college students (199 female, 81…

  16. Implications of electron attachment to highly-excited states in pulsed-power discharges

    SciTech Connect

    Pinnaduwage, L.A. |

    1997-08-01

    The author points out the possible implications of electron attachment to highly-excited states of molecules in two pulsed power technologies. One involves the pulsed H{sub 2} discharges used for the generation of H ion beams for magnetic fusion energy and particle accelerators. The other is the power modulated plasma discharges used for material processing.

  17. Enhanced Electron Attachment to Highly-Excited Molecules and Its Applications in Pulsed Plasmas

    SciTech Connect

    Ding, W.X.; Ma, C.Y.; McCorkle, D.L.; Pinnaduwage, L.A.

    1999-06-27

    Studies conducted over the past several years have shown that electron attachment to highly-excited states of molecules have extremely large cross sections. We will discuss the implications of this for pulsed discharges used for H- generation, material processing, and plasma remediation.

  18. Early time evolution of negative ion clouds and electron density depletions produced during electron attachment chemical release experiments

    NASA Technical Reports Server (NTRS)

    Scales, W. A.; Bernhardt, P. A.; Ganguli, G.

    1994-01-01

    Two-dimensional electrostatic particle-in-cell simulations are used to study the early time evolution of electron depletions and negative ion clouds produced during electron attachment chemical releases in the ionosphere. The simulation model considers the evolution in the plane perpendicular to the magnetic field and a three-species plasma that contains electrons, positive ions, and also heavy negative ions that result as a by-product of the electron attachment reaction. The early time evolution (less than the negative ion cyclotron period) of the system shows that a negative charge surplus initially develops outside of the depletion boundary as the heavy negative ions move across the boundary. The electrons are initially restricted from moving into the depletion due to the magnetic field. An inhomogenous electric field develops across the boundary layer due to this charge separation. A highly sheared electron flow velocity develops in the depletion boundary due to E x B and Delta-N x B drifts that result from electron density gradients and this inhomogenous electric field. Structure eventually develops in the depletion boundary layer due to low-frequency electrostatic waves that have growth times shorter than the negative ion cyclotron period. It is proposed that these waves are most likely produced by the electron-ion hybrid instability that results from sufficiently large shears in the electron flow velocity.

  19. Electron attachment to oxygen, water, and methanol, in various drift chamber gas mixtures

    NASA Astrophysics Data System (ADS)

    Huk, M.; Igo-Kemenes, P.; Wagner, A.

    1988-04-01

    Attachment of electrons to oxygen, water, and methanol molecules has been studied in various gas mixtures based on argon, methane and isobutane, a class of gases often used to operate large drift chambers. The measurements were performed using a drift chamber in which the conditions prevailing in large experiments could be closely reproduced. Attachment coefficients were extracted as a function of the gas composition and pressure, the drift field, and the concentration of the molecules under investigation. The observed effects are compared to other measurements, and are discussed within the frame of physical models.

  20. Dissociative Electron Attachment to Phosphoric Acid Esters: The Direct Mechanism for Single Strand Breaks in DNA

    SciTech Connect

    Koenig, Constanze; Kopyra, Janina; Bald, Ilko; Illenberger, Eugen

    2006-07-07

    We use dibutyl phosphate to simulate the behavior of the phosphate group in DNA towards the attack of low energy electrons. We find that the compound undergoes effective dissociative electron attachment within a low energy resonant feature at 1 eV and a further resonance peaking at 8 eV. The dissociative electron attachment (DEA) reactions are associated with the direct cleavage of the C-O and the P-O bond but also the excision of the PO{sup -}, PO{sub 3}{sup -}, H{sub 2}PO{sub 3}{sup -} units. For the phosphate group coupled in the DNA network these reactions represent single strand breaks. We hence propose that the most direct mechanism of single strand breaks occurring in DNA at subexcitation energies (<4 eV) is due to DEA directly to the phosphate group.

  1. Enhanced electron attachment to Rydberg states in molecular hydrogen volume discharges

    SciTech Connect

    Pinnaduwage, L.A.; Ding, W.X.; McCorkle, D.L.; Lin, S.H.; Mebel, A.M.; Garscadden, A.

    1999-05-01

    We review recent studies on negative ion formation and studies in other areas that are relevant to the role of high-Rydberg states of H{sub 2} and H{sub 3} in hydrogen negative ion sources. Possible mechanisms for the formation of these excited states are discussed, including the formation of long-lived superexcited (core-excited) Rydberg states. Experimental evidence for negative ion formation via electron attachment to core-excited Rydberg states in a glow discharge apparatus is presented. An expression for the dissociative electron attachment rate constant for Rydberg molecules is derived based on electron capture by a Rydberg molecule due to polarization interaction. {copyright} {ital 1999 American Institute of Physics.}

  2. Rate coefficients for dissociative attachment and resonant electron-impact dissociation involving vibrationally excited O{sub 2} molecules

    SciTech Connect

    Laporta, V.; Celiberto, R.; Tennyson, J.

    2014-12-09

    Rate coefficients for dissociative electron attachment and electron-impact dissociation processes, involving vibrationally excited molecular oxygen, are presented. Analytical fits of the calculated numerical data, useful in the applications, are also provided.

  3. Electron attachment to 14 halogenated alkenes and alkanes, 300-600 K.

    PubMed

    Shuman, Nicholas S; Friedman, Jeffrey F; Miller, Thomas M; Viggiano, A A

    2012-10-28

    Thermal electron attachment to 14 alkenes and alkanes with bromine, fluorine, and iodine substituents has been studied over the temperature range 300-600 K using a flowing-afterglow Langmuir-probe apparatus. Rate coefficients and anion products are reported, most for the first time. Among these were 3 isomers of C(3)F(5)Br and the 2 isomers of C(3)F(7)I. Four dibromide compounds were studied, all of which yield Br(2)(-) product in addition to Br(-) product. The results are analyzed using a statistical kinetic modeling approach, which is able to reproduce both attachment rate coefficients and product branching ratios within experimental uncertainty. The kinetic modeling indicates that factor of 2 differences in attachment rate coefficients to the isomeric species can be explained by subtle variations in the potential surfaces.

  4. Electron attachment to 14 halogenated alkenes and alkanes, 300-600 K

    NASA Astrophysics Data System (ADS)

    Shuman, Nicholas S.; Friedman, Jeffrey F.; Miller, Thomas M.; Viggiano, A. A.

    2012-10-01

    Thermal electron attachment to 14 alkenes and alkanes with bromine, fluorine, and iodine substituents has been studied over the temperature range 300-600 K using a flowing-afterglow Langmuir-probe apparatus. Rate coefficients and anion products are reported, most for the first time. Among these were 3 isomers of C3F5Br and the 2 isomers of C3F7I. Four dibromide compounds were studied, all of which yield Br2- product in addition to Br- product. The results are analyzed using a statistical kinetic modeling approach, which is able to reproduce both attachment rate coefficients and product branching ratios within experimental uncertainty. The kinetic modeling indicates that factor of 2 differences in attachment rate coefficients to the isomeric species can be explained by subtle variations in the potential surfaces.

  5. 46 CFR 67.218 - Optional filing of instruments in portable document format as attachments to electronic mail.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... format as attachments to electronic mail. 67.218 Section 67.218 Shipping COAST GUARD, DEPARTMENT OF... format as attachments to electronic mail. (a) Any instrument identified as eligible for filing and... mail (e-mail) for filing at the National Vessel Documentation Center. The e-mail address to be used...

  6. Anomalously Large Chiral Sensitivity in the Dissociative Electron Attachment of 10-Iodocamphor

    NASA Astrophysics Data System (ADS)

    Dreiling, J. M.; Lewis, F. W.; Mills, J. D.; Gay, T. J.

    2016-03-01

    We have studied dissociative electron attachment (DEA) between low energy (≤0.6 eV ) longitudinally polarized electrons and gas-phase chiral targets of 3-bromocamphor (C10 H15 BrO ), 3-iodocamphor (C10 H15 IO ), and 10-iodocamphor. The DEA rate depends on the sign of the incident electron helicity for a given target handedness, and it varies with both the atomic number (Z ) and location of the heaviest atom in the molecule. While simple dynamic mechanisms can account for the asymmetry dependence on Z , they fail to explain the large asymmetry variation with the heavy atom location.

  7. Low-energy electron attachment to mixed ozone/oxygen clusters

    NASA Astrophysics Data System (ADS)

    Matejcik, S.; Cicman, P.; Kiendler, A.; Skalny, J. D.; Illenberger, E.; Stamatovic, A.; Märk, T. D.

    1996-10-01

    Electron attachment to a cluster beam formed by adiabatic expansion of a mixture of O 3 (1%) and O 2 (99%) is studied in the energy range 0-4 eV. Despite the initial large excess of oxygen molecules, the dominant attachment products are undissociated cluster ions (O 3) m- including the monomer O 3-, while oxygen cluster ions (O 2) n- appear with comparatively low intensity. This behaviour is explained by an enrichment of ozone in the cluster formation process and the preferential formation of O 3- from mixed clusters. The structured energy dependence of the cross section of O 3- formation is interpreted in terms of three different mechanisms, in the low-energy region by s-wave capture, around 1 eV via Feshbach resonances, and above 1.5 eV by self-scavenging, i.e. inelastic scattering of the primary electron involving low-lying electronic states of neutral ozone and subsequent attachment of the slowed-down electron to another ozone molecule in the same cluster.

  8. A new instrument for thermal electron attachment at high temperature: NF3 and CH3Cl attachment rate constants up to 1100 K

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Friedman, Jeffrey F.; Williamson, John S.; Schaffer, Linda C.; Viggiano, A. A.

    2009-03-01

    A new high temperature flowing afterglow Langmuir probe (HT-FALP) apparatus is described. A movable Langmuir probe and a four-needle reactant gas inlet were fitted to an existing high temperature flowing afterglow apparatus. The instrument is suitable for study of electron attachment from 300-1200 K, the upper limit set to avoid softening of the quartz flow tube. We present results for two reactions over extended ranges: NF3 (300-900 K) and CH3Cl (600-1100 K). Electron attachment rate constants for NF3 had been measured earlier using our conventional FALP apparatus. Those measurements were repeated with the FALP and then extended to 900 K with the HT-FALP. CH3Cl attaches electrons too weakly to study with the low temperature FALP but reaches a value of ˜10-9 cm3 s-1 at 1100 K. F- is produced in NF3 attachment at all temperatures and Cl- in CH3Cl attachment, as determined by a quadrupole mass spectrometer at the end of the flow tube. Future modifications to increase the plasma density should allow study of electron-ion recombination at high temperatures.

  9. A new instrument for thermal electron attachment at high temperature: NF3 and CH3Cl attachment rate constants up to 1100 K.

    PubMed

    Miller, Thomas M; Friedman, Jeffrey F; Williamson, John S; Schaffer, Linda C; Viggiano, A A

    2009-03-01

    A new high temperature flowing afterglow Langmuir probe (HT-FALP) apparatus is described. A movable Langmuir probe and a four-needle reactant gas inlet were fitted to an existing high temperature flowing afterglow apparatus. The instrument is suitable for study of electron attachment from 300-1200 K, the upper limit set to avoid softening of the quartz flow tube. We present results for two reactions over extended ranges: NF(3) (300-900 K) and CH(3)Cl (600-1100 K). Electron attachment rate constants for NF(3) had been measured earlier using our conventional FALP apparatus. Those measurements were repeated with the FALP and then extended to 900 K with the HT-FALP. CH(3)Cl attaches electrons too weakly to study with the low temperature FALP but reaches a value of approximately 10(-9) cm(3) s(-1) at 1100 K. F(-) is produced in NF(3) attachment at all temperatures and Cl(-) in CH(3)Cl attachment, as determined by a quadrupole mass spectrometer at the end of the flow tube. Future modifications to increase the plasma density should allow study of electron-ion recombination at high temperatures.

  10. A new instrument for thermal electron attachment at high temperature: NF{sub 3} and CH{sub 3}Cl attachment rate constants up to 1100 K

    SciTech Connect

    Miller, Thomas M.; Friedman, Jeffrey F.; Williamson, John S.; Viggiano, A. A.; Schaffer, Linda C.

    2009-03-15

    A new high temperature flowing afterglow Langmuir probe (HT-FALP) apparatus is described. A movable Langmuir probe and a four-needle reactant gas inlet were fitted to an existing high temperature flowing afterglow apparatus. The instrument is suitable for study of electron attachment from 300-1200 K, the upper limit set to avoid softening of the quartz flow tube. We present results for two reactions over extended ranges: NF{sub 3} (300-900 K) and CH{sub 3}Cl (600-1100 K). Electron attachment rate constants for NF{sub 3} had been measured earlier using our conventional FALP apparatus. Those measurements were repeated with the FALP and then extended to 900 K with the HT-FALP. CH{sub 3}Cl attaches electrons too weakly to study with the low temperature FALP but reaches a value of {approx}10{sup -9} cm{sup 3} s{sup -1} at 1100 K. F{sup -} is produced in NF{sub 3} attachment at all temperatures and Cl{sup -} in CH{sub 3}Cl attachment, as determined by a quadrupole mass spectrometer at the end of the flow tube. Future modifications to increase the plasma density should allow study of electron-ion recombination at high temperatures.

  11. Associative and dissociative electron attachment by SF/sub 6/ and SF/sub 5/Cl

    SciTech Connect

    Fenzlaff, M.; Gerhard, R.; Illenberger, E.

    1988-01-01

    Electron attachment by SF/sub 6/ and SF/sub 5/Cl in the energy range 0--20 eV has been studied in a beam experiment at room temperature. At low energies (approx. =0 eV) electron attachment to SF/sub 6/ yields the well known parent anion SF/sup -//sup *//sub 6/ (associative attachment) and SF/sup -//sub 5/ (dissociative attachment), while other negative ion fragments (F/sup -/, F/sup -//sub 2/ , SF/sup -//sub 2/ , SF/sup -//sub 3/ , and SF/sup -//sub 4/) are generated with comparably low cross sections from various resonances at higher energies. In contrast to that, negative ion formation in SF/sub 5/Cl is dominated by dissociative channels (F/sup -/, Cl/sup -/, FCl/sup -/, and SF/sup -//sub 5/ ) and only a weak SF/sub 5/Cl/sup -/ signal is observed. A time-of-flight analysis of the ionic fragments reveals that the decomposition of all resonances is characterized by a low translational excess energy release indicating effective energy randomization in the parent ion prior to dissociation. The present results are compared with negative ion formation in halogenated hydrocarbons.

  12. Three-body breakup in dissociative electron attachment to the water molecule

    SciTech Connect

    Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William

    2008-08-28

    We report the results of {\\em ab initio} calculations on dissociative electron attachment (DEA) to water that demonstrate the importance of including three-body breakup in the dissociation dynamics. While three-body breakup is ubiquitous in the analogous process of dissociative recombination, its importance in low-energy dissociative electron attachment to a polyatomic target has not previously been quantified. Our calculations, along with our earlier studies of DEA into two-body channels, indicate that three-body breakup is a major component of the observed O- cross section. The local complex potential model provides a generally accurate picture of the experimentallyobserved features in this system, reproducing some quantitatively, others qualitatively, and one not at all.

  13. Electron attachment to the interhalogen compounds ClF, ICl, and IBr

    NASA Astrophysics Data System (ADS)

    Wiens, Justin P.; Sawyer, Jordan C.; Miller, Thomas M.; Shuman, Nicholas S.; Viggiano, Albert A.; Khamesian, Marjan; Kokoouline, Viatcheslav; Fabrikant, Ilya I.

    2016-03-01

    Thermal electron attachment rate coefficients for three interhalogen compounds (ClF, ICl, IBr) have been measured from 300 to 900 K at pressures of 1-2 Torr using a flowing afterglow-Langmuir probe apparatus. ClF attaches somewhat inefficiently (k =7.5 ×10-9c m3s-1 ) at 300 K, with the rate coefficient rising to 1.7 ×10-8c m3s-1 at 700 K. At higher temperatures the apparent rate coefficient falls steeply; however, this is interpreted as an artifact due to decomposition on the walls of the inlet line. ICl attaches with even lower efficiency (k =9.5 ×10-10c m3s-1 at 300 K) and a less steep increase with temperature. Attachment to IBr is too slow to confidently measure with the present experiment, with an upper limit on the rate coefficient of 10-10c m3s-1 from 300 to 600 K. Both ClF and ICl attach dissociatively to yield C l- , likely exclusively, though F- or I- may be produced with limits of <2 % and <5 % , respectively. The ClF attachment was further explored through ab initio calculation of the ClF and Cl F- potential energy curves and R -matrix calculations of the resonance parameters which were used then for calculations of the dissociative attachment cross sections and rate coefficients. While the magnitude of the attachment rate coefficient for ClF is similar to those for both C l2 and F2, the calculated cross sections show qualitatively different threshold behavior due to the s -wave contribution allowed by the lack of inversion symmetry. The v =1 and 2 vibrational modes of ClF attach about three to four times faster than v =0 and 3 at energies lower than ˜0.2 eV . The calculated rate coefficients are in good agreement with the experiment at 300 K and increase moderately less steeply with temperature.

  14. Resonance electron attachment to plant hormones and its likely connection with biochemical processes

    NASA Astrophysics Data System (ADS)

    Pshenichnyuk, Stanislav A.; Modelli, Alberto

    2014-01-01

    Gas-phase formation of temporary negative ion states via resonance attachment of low-energy (0-6 eV) electrons into vacant molecular orbitals of salicylic acid (I) and its derivatives 3-hydroxy- (II) and 4-hydroxybenzoic acid (III), 5-cloro salicylic acid (IV) and methyl salicylate (V) was investigated for the first time by electron transmission spectroscopy. The description of their empty-level structures was supported by density functional theory and Hartree-Fock calculations, using empirically calibrated linear equations to scale the calculated virtual orbital energies. Dissociative electron attachment spectroscopy (DEAS) was used to measure the fragment anion yields generated through dissociative decay channels of the parent molecular anions of compounds I-V, detected with a mass filter as a function of the incident electron energy in the 0-14 eV energy range. The most intense negative fragment produced by DEA to isomers I-III is the dehydrogenated molecular anion [M-H]-, mainly formed at incident electron energies around 1 eV. The vertical and adiabatic electron affinities were evaluated at the B3LYP/6-31+G(d) level as the anion/neutral total energy difference. The same theoretical method was also used for evaluation of the thermodynamic energy thresholds for production of the negative fragments observed in the DEA spectra. The gas-phase DEAS data can provide support for biochemical reaction mechanisms in vivo.

  15. Resonance electron attachment to plant hormones and its likely connection with biochemical processes

    SciTech Connect

    Pshenichnyuk, Stanislav A.; Modelli, Alberto

    2014-01-21

    Gas-phase formation of temporary negative ion states via resonance attachment of low-energy (0–6 eV) electrons into vacant molecular orbitals of salicylic acid (I) and its derivatives 3-hydroxy- (II) and 4-hydroxybenzoic acid (III), 5-cloro salicylic acid (IV) and methyl salicylate (V) was investigated for the first time by electron transmission spectroscopy. The description of their empty-level structures was supported by density functional theory and Hartree-Fock calculations, using empirically calibrated linear equations to scale the calculated virtual orbital energies. Dissociative electron attachment spectroscopy (DEAS) was used to measure the fragment anion yields generated through dissociative decay channels of the parent molecular anions of compounds I–V, detected with a mass filter as a function of the incident electron energy in the 0–14 eV energy range. The most intense negative fragment produced by DEA to isomers I–III is the dehydrogenated molecular anion [M–H]{sup −}, mainly formed at incident electron energies around 1 eV. The vertical and adiabatic electron affinities were evaluated at the B3LYP/6-31+G(d) level as the anion/neutral total energy difference. The same theoretical method was also used for evaluation of the thermodynamic energy thresholds for production of the negative fragments observed in the DEA spectra. The gas-phase DEAS data can provide support for biochemical reaction mechanisms in vivo.

  16. Resonance electron attachment to plant hormones and its likely connection with biochemical processes.

    PubMed

    Pshenichnyuk, Stanislav A; Modelli, Alberto

    2014-01-21

    Gas-phase formation of temporary negative ion states via resonance attachment of low-energy (0-6 eV) electrons into vacant molecular orbitals of salicylic acid (I) and its derivatives 3-hydroxy- (II) and 4-hydroxybenzoic acid (III), 5-cloro salicylic acid (IV) and methyl salicylate (V) was investigated for the first time by electron transmission spectroscopy. The description of their empty-level structures was supported by density functional theory and Hartree-Fock calculations, using empirically calibrated linear equations to scale the calculated virtual orbital energies. Dissociative electron attachment spectroscopy (DEAS) was used to measure the fragment anion yields generated through dissociative decay channels of the parent molecular anions of compounds I-V, detected with a mass filter as a function of the incident electron energy in the 0-14 eV energy range. The most intense negative fragment produced by DEA to isomers I-III is the dehydrogenated molecular anion [M-H](-), mainly formed at incident electron energies around 1 eV. The vertical and adiabatic electron affinities were evaluated at the B3LYP/6-31+G(d) level as the anion/neutral total energy difference. The same theoretical method was also used for evaluation of the thermodynamic energy thresholds for production of the negative fragments observed in the DEA spectra. The gas-phase DEAS data can provide support for biochemical reaction mechanisms in vivo.

  17. Dissociative electron attachment to water molecule: Experimental study of the dissociation dynamics

    NASA Astrophysics Data System (ADS)

    Adaniya, H.; Rudek, B.; Osipov, T.; Weber, T.; Lee, S.; Hertlein, M.; Schoeffler, M.; Prior, M.; Belkacem, A.

    2009-11-01

    The dynamics of the dissociative electron attachment(DEA)to water(H2O, D2O)via three resonances, 2B1, 2A1, 2B2, are investigated using the modified Coltrims spectrometer. The angular dependence of the negative ion shows unique distribution in each resonance indicating the three resonances involve different dissociation dynamics. The energy distribution among the fragments shows considerable amount of three body break.

  18. Electron Attachment to Cl2 from 300 to 1100 K: Experiment and Theory

    DTIC Science & Technology

    2009-03-01

    a high-temperature flowing - afterglow Langmuir - probe apparatus. /?-matrix calculations of the rate constants have been extended to 1100 K. Experi... afterglow Langmuir - probe apparatus, /{-matrix calculations have been carried out which compare well with the present measurements with possible...ABSTRACT Rate constants for dissociative electron attachment to Cl2 have been measured from 300 to 1100 K in a high-temperature flowing - afterglow

  19. Electron attachment and detachment, and the electron affinities of C5F5N and C5HF4N

    NASA Astrophysics Data System (ADS)

    Van Doren, Jane M.; Kerr, Donna M.; Miller, Thomas M.; Viggiano, A. A.

    2005-09-01

    Rate constants have been measured for electron attachment to C5F5N (297-433K) and to 2,3,5,6-C5HF4N (303K) using a flowing-afterglow Langmuir-probe apparatus (at a He gas pressure of 133Pa). In both cases only the parent anion was formed in the attachment process. The attachment rate constants measured at room temperature are 1.8±0.5×10-7 and 7±3×10-10cm-3s-1, respectively. Rate constants were also measured for thermal electron detachment from the parent anions of these molecules. For C5F5N- detachment is negligible at room temperature, but increases to 2530±890s-1 at 433K. For 2,3,5,6-C5HF4N-, the detachment rate at 303K was 520±180s-1. The attachment/detachment equilibrium yielded experimental electron affinities EA(C5F5N )=0.70±0.05eV and EA(2,3,5,6-C5HF4N )=0.40±0.08eV. Electronic structure calculations were carried out for these molecules and related C5HxF5-xN using density-functional theory and the G3(MP2)‖B3LYP compound method. The EAs are found to decrease by 0.25eV, on average, with each F substitution by H. The calculated EAs are in good agreement with the present experimental results.

  20. Electron attachment and detachment, and the electron affinities of C5F5N and C5HF4N.

    PubMed

    Van Doren, Jane M; Kerr, Donna M; Miller, Thomas M; Viggiano, A A

    2005-09-15

    Rate constants have been measured for electron attachment to C5F5N (297-433 K) and to 2, 3, 5, 6-C5HF4N (303 K) using a flowing-afterglow Langmuir-probe apparatus (at a He gas pressure of 133 Pa). In both cases only the parent anion was formed in the attachment process. The attachment rate constants measured at room temperature are 1.8 +/- 0.5 X 10(-7) and 7 +/- 3 X 10(-10) cm(-3) s(-1), respectively. Rate constants were also measured for thermal electron detachment from the parent anions of these molecules. For C5F5N- detachment is negligible at room temperature, but increases to 2530 +/- 890 s(-1) at 433 K. For 2, 3, 5, 6-C5HF4N-, the detachment rate at 303 K was 520 +/- 180 s(-1). The attachment/detachment equilibrium yielded experimental electron affinities EA(C5F5N)=0.70 +/- 0.05 eV and EA(2, 3, 5, 6-C5HF4N)=0.40 +/- 0.08 eV. Electronic structure calculations were carried out for these molecules and related C5HxF5-xN using density-functional theory and the G3(MP2)//B3LYP compound method. The EAs are found to decrease by 0.25 eV, on average, with each F substitution by H. The calculated EAs are in good agreement with the present experimental results.

  1. Dissociative electron attachments to ethanol and acetaldehyde: A combined experimental and simulation study

    SciTech Connect

    Wang, Xu-Dong; Xuan, Chuan-Jin; Feng, Wen-Ling; Tian, Shan Xi

    2015-02-14

    Dissociation dynamics of the temporary negative ions of ethanol and acetaldehyde formed by the low-energy electron attachments is investigated by using the anion velocity map imaging technique and ab initio molecular dynamics simulations. The momentum images of the dominant fragments O{sup −}/OH{sup −} and CH{sub 3}{sup −} are recorded, indicating the low kinetic energies of O{sup −}/OH{sup −} for ethanol while the low and high kinetic energy distributions of O{sup −} ions for acetaldehyde. The CH{sub 3}{sup −} image for acetaldehyde also shows the low kinetic energy. With help of the dynamics simulations, the fragmentation processes are qualitatively clarified. A new cascade dissociation pathway to produce the slow O{sup −} ion via the dehydrogenated intermediate, CH{sub 3}CHO{sup −} (acetaldehyde anion), is proposed for the dissociative electron attachment to ethanol. After the electron attachment to acetaldehyde molecule, the slow CH{sub 3}{sup −} is produced quickly in the two-body dissociation with the internal energy redistributions in different aspects before bond cleavages.

  2. Successive attachment of electrons to protonated Guanine: (G+H)* radicals and (G+H)- anions.

    PubMed

    Zhang, Jun D; Xie, Yaoming; Schaefer, Henry F

    2006-11-02

    The structures, energetics, and vibrational frequencies of nine hydrogenated 9H-keto-guanine radicals (G+H)(*) and closed-shell anions (G+H)(-) are predicted using the carefully calibrated (Chem. Rev. 2002, 102, 231) B3LYP density functional method in conjunction with a DZP++ basis set. These radical and anionic species come from consecutive electron attachment to the corresponding protonated (G+H)(+) cations in low pH environments. The (G+H)(+) cations are studied using the same level of theory. The proton affinity (PA) of guanine computed in this research (228.1 kcal/mol) is within 0.7 kcal/mol of the latest experiment value. The radicals range over 41 kcal/mol in relative energy, with radical r1, in which H is attached at the C8 site of guanine, having the lowest energy. The lowest energy anion is a2, derived by hydride ion attachment at the C2 site of guanine. No stable N2-site hydride should exist in the gas phase. Structure a9 was predicted to be dissociative in this research. The theoretical adiabatic electron affinities (AEA), vertical electron affinities, and vertical detachment energies were computed, with AEAs ranging from 0.07 to 3.12 eV for the nine radicals.

  3. Studying dissociative electron attachment through formation of heavy-Rydberg ion-pair states

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Buathong, Sitti; Dunning, F. Barry

    2016-05-01

    Following dissociative electron transfer in collisions between Rydberg atoms and electron-attaching targets, it is possible for the resulting pair of ions to remain electrostatically bound, forming heavy-Rydberg ion-pair states. Precise measurement of the velocity distributions of such ion-pair states provides information concerning the dissociation dynamics of the excited intermediates initially created by electron transfer. Here, electric-field-induced dissociation is used to detect the product ion pairs and observe their velocity distributions. These distributions are analyzed with the aid of a Monte Carlo collision code that models the electron transfer. Measurements with a number of different target species show that through this analysis, dissociation energetics, the branching ratios into different dissociation products, and the lifetimes of the excited intermediates can be examined. Research supported by the Robert A. Welch Foundation.

  4. Oxygen Attachment on Alkanethiolate SAMs Induced by Low-Energy Electron Irradiation

    PubMed Central

    Massey, Sylvain; Bass, Andrew D.; Steffenhagen, Marie; Sanche, Léon

    2013-01-01

    Reactions of 18O2 with self-assembled monolayer (SAM) films of 1-dodecanethiol, 1-octadecanethiol, 1-butanethiol, and benzyl mercaptan chemisorbed on gold, were studied by the electron stimulated desorption (ESD) of anionic fragments over the incident electron energy range 2–20 eV. Dosing the SAMs with 18O2 at 50 K, results in the ESD of 18O− and 18OH−. Electron irradiation of samples prior to 18O2 deposition demonstrates that intensity of subsequent 18O− and 18OH− desorption signals increase with electron fluence and that absent electron pre-irradiation, no 18O− and 18OH− ESD signals are observed, since oxygen is unable to bind to the SAMs. A minimum incident electron energy of 6–7 eV is required to initiate the binding of 18O2 to the SAMs. O2 binding is proposed to proceed by the formation of CHx−1• radicals via resonant dissociative electron attachment and non-resonant C–H dissociation processes. The weaker signals of 18O− and 18OH− from short-chain SAMs are related to the latter’s resistance to electron induced damage, due to the charge-image dipole quenching and electron delocalization. Comparison between the present results and those for DNA oligonucleotides self-assembled on Au [Mirsaleh-Kohan, N. et al. J. Chem. Phys. 2012, 136, 235104] indicates that the oxygen binding mechanism is common to both systems. PMID:23537075

  5. Simulation of high-speed (orbital) releases of electron attachment materials in the ionosphere

    NASA Technical Reports Server (NTRS)

    Scales, W. A.; Bernhardt, P. A.

    1991-01-01

    The dynamics of ionospheric plasma irregularities produced by the release of electron attachment materials at orbital velocities across the geomagnetic field is studied. A two-dimensional electrostatic fluid model which includes electron attachment and mutual neutralization chemistry, self-consistent electric fields, and three-species transport is developed. Numerical simulations are performed to study the behavior at early and at late times after the release. At early times, of the order of or less than the attachment material neutral collision time, the negative ion cloud produced by the release may structure owing to the shear in the E x B velocity within the cloud. At high altitudes the cloud may bifurcate and form vortices on the back. At lower altitudes where ion-neutral collisional effects dominate, this structuring is suppressed. At late times, after a plasma depletion has formed due to neutralization chemistry, the cloud structures by the E x B interchange instability. Depending on the release altitude, the depletion structures by the collisional or inertial limit of this instability.

  6. Electron attachment to sulfur oxyhalides: SOF2, SOCl2, SO2F2, SO2Cl2, and SO2FCl attachment rate coefficients, 300-900 K.

    PubMed

    Miller, Thomas M; Friedman, Jeffrey F; Caples, Connor M; Shuman, Nicholas S; Van Doren, Jane M; Bardaro, Michael F; Nguyen, Pho; Zweiben, Cindy; Campbell, Matthew J; Viggiano, A A

    2010-06-07

    Electron attachment to SOF(2), SOCl(2), SO(2)F(2), SO(2)FCl, and SO(2)Cl(2) was studied with two flowing-afterglow Langmuir-probe apparatuses over the temperature range 300-900 K. Attachment rate coefficients at 300 K are k(a) = 2.6+/-0.8x10(-10)(SOF(2)), 1.8+/-0.5x10(-8)(SOCl(2)), 4.8+/-0.7x10(-10)(SO(2)F(2)), 2.4+/-0.7x10(-9)(SO(2)Cl(2)), and 2.0+/-0.6x10(-7) cm(3) s(-1)(SO(2)FCl). Arrhenius plots of the data imply activation energies of 56+/-22 meV(SOF(2)), 92+/-40(SO(2)F(2)), 44+/-22 meV(SOCl(2)), and 29+/-15 meV(SO(2)Cl(2)). The rate coefficients for SO(2)FCl decrease slightly with temperature, commensurate with the decrease in the capture rate coefficient. Electron attachment to SOF(2) and SO(2)F(2) is nondissociative, while reaction with SOCl(2), SO(2)FCl, and SO(2)Cl(2) is dissociative. Dissociative attachment is dominated by channels arising from S-Cl bond cleavage but also includes a minor channel forming a dihalide product ion. Branching fraction data are reported for the dissociative attachment channels.

  7. Electron attachment to sulfur oxyhalides: SOF2, SOCl2, SO2F2, SO2Cl2, and SO2FCl attachment rate coefficients, 300-900 K

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Friedman, Jeffrey F.; Caples, Connor M.; Shuman, Nicholas S.; Van Doren, Jane M.; Bardaro, Michael F.; Nguyen, Pho; Zweiben, Cindy; Campbell, Matthew J.; Viggiano, A. A.

    2010-06-01

    Electron attachment to SOF2, SOCl2, SO2F2, SO2FCl, and SO2Cl2 was studied with two flowing-afterglow Langmuir-probe apparatuses over the temperature range 300-900 K. Attachment rate coefficients at 300 K are ka=2.6±0.8×10-10(SOF2), 1.8±0.5×10-8(SOCl2), 4.8±0.7×10-10(SO2F2), 2.4±0.7×10-9(SO2Cl2), and 2.0±0.6×10-7 cm3 s-1(SO2FCl). Arrhenius plots of the data imply activation energies of 56±22 meV(SOF2), 92±40(SO2F2), 44±22 meV(SOCl2), and 29±15 meV(SO2Cl2). The rate coefficients for SO2FCl decrease slightly with temperature, commensurate with the decrease in the capture rate coefficient. Electron attachment to SOF2 and SO2F2 is nondissociative, while reaction with SOCl2, SO2FCl, and SO2Cl2 is dissociative. Dissociative attachment is dominated by channels arising from S-Cl bond cleavage but also includes a minor channel forming a dihalide product ion. Branching fraction data are reported for the dissociative attachment channels.

  8. Low energy electron attachment to cyanamide (NH{sub 2}CN)

    SciTech Connect

    Tanzer, Katrin; Denifl, Stephan E-mail: Stephan.Denifl@uibk.ac.at; Pelc, Andrzej E-mail: Stephan.Denifl@uibk.ac.at; Huber, Stefan E.; Czupyt, Z.

    2015-01-21

    Cyanamide (NH{sub 2}CN) is a molecule relevant for interstellar chemistry and the chemical evolution of life. In the present investigation, dissociative electron attachment to NH{sub 2}CN has been studied in a crossed electron–molecular beams experiment in the electron energy range from about 0 eV to 14 eV. The following anionic species were detected: NHCN{sup −}, NCN{sup −}, CN{sup −}, NH{sub 2}{sup −}, NH{sup −}, and CH{sub 2}{sup −}. The anion formation proceeds within two broad electron energy regions, one between about 0.5 and 4.5 eV and a second between 4.5 and 12 eV. A discussion of possible reaction channels for all measured negative ions is provided. The experimental results are compared with calculations of the thermochemical thresholds of the anions observed. For the dehydrogenated parent anion, we explain the deviation between the experimental appearance energy of the anion with the calculated corresponding reaction threshold by electron attachment to the isomeric form of NH{sub 2}CN—carbodiimide.

  9. Ion-momentum imaging of resonant dissociative-electron-attachment dynamics in methanol

    NASA Astrophysics Data System (ADS)

    Slaughter, D. S.; Haxton, D. J.; Adaniya, H.; Weber, T.; Rescigno, T. N.; McCurdy, C. W.; Belkacem, A.

    2013-05-01

    A combined experimental and theoretical investigation of the dissociative-electron-attachment (DEA) dynamics in methanol are presented for the Feshbach resonance at 6.5-eV incident electron energy. Highly differential laboratory-frame momentum distributions have been measured for each fragmentation channel using a DEA reaction microscope. These measurements are combined with calculations of the molecular-frame electron attachment probability in order to investigate the dynamics of the dissociating methanol transient negative anion. In contrast to previous comparisons between water and methanol [Curtis and Walker, J. Chem. Soc., Faraday Trans.JCFTEV0956-500010.1039/ft9928802805 88, 2805 (1992); Prabhudesai, Nandi, Kelkar, and Krishnakumar, J. Chem. Phys.JCPSA60021-960610.1063/1.2899330 128, 154309 (2008)], we find subtle differences in the dissociation dynamics of the two fragment channels that are direct evidence of planar symmetry-breaking of warm methanol in its electronic ground state. We also find that the DEA fragmentation does not strictly follow the axial recoil approximation and we describe the dynamics that enable an accurate prediction of the fragment angular distributions.

  10. Observation of the dynamics leading to a conical intersection in dissociative electron attachment to water

    SciTech Connect

    Haxton, D. J; Slaughter, D. S; Osipov, T.; Weber, T.; Rescigno, T. N; Belkacem, A.; Adaniya, H.; Rudek, B.; McCurdy, C. W

    2011-09-15

    Following prior work on the lower-energy resonances, we apply techniques of momentum imaging and ab initio scattering calculations to the process of dissociative electron attachment to water via the highest-energy {sup 2}B{sub 2} resonance. We focus on the H{sup -} anion fragment, which is produced via dynamics passing through and avoiding the conical intersection with the lower A{sub 1} state, leading to OH ({sup 2}{Pi}) and OH ({sup 2}{Sigma}), respectively. The momentum imaging technique, when combined with theoretical calculations on the attachment amplitude and dissociation dynamics, demonstrates that the angular distributions provide a signature of the location of the conical intersection in the space of nuclear configurations.

  11. Observation of the dynamics leading to a conical intersection in dissociative electron attachment to water

    SciTech Connect

    Haxton, Dan; Adaniya, Hidihito; Slaughter, Dan; Rudek, B.; Osipov, Timur; Weber, Thorsten; Rescigno, Tom; McCurdy, Bill; Belkacem, Ali

    2011-06-08

    Following prior work on the lower-energy resonances, we apply techniques of momentum imaging and ab initio scattering calculations to the process of dissociative electron attachment to water via the highest-energy {sup 2}B{sub 2} resonance. We focus on the H{sup -} anion fragment, which is produced via dynamics passing through and avoiding the conical intersection with the lower A{sub 1} state, leading to OH ((sup 2}{Pi} ) and OH ({sup 2}{Sigma} ), respectively. The momentum imaging technique, when combined with theoretical calculations on the attachment amplitude and dissociation dynamics, demonstrates that the angular distributions provide a signature of the location of the conical intersection in the space of nuclear con gurations.

  12. Low-energy electron attachment to SF6. III. From thermal detachment to the electron affinity of SF6

    NASA Astrophysics Data System (ADS)

    Viggiano, Albert A.; Miller, Thomas M.; Friedman, Jeffrey F.; Troe, Jürgen

    2007-12-01

    The thermal attachment of electrons to SF6 is measured in a flowing-afterglow Langmuir-probe apparatus monitoring electron concentrations versus axial position in the flow tube. Temperatures between 300 and 670K and pressures of the bath gas He in the range of 0.3-9Torr are employed. Monitoring the concentrations of SF6- and SF5-, the latter of which does not detach electrons under the applied conditions, an onset of thermal detachment and dissociation of SF6 at temperatures above about 530K is observed. Analysis of the mechanism allows one to deduce thermal detachment rate coefficients. Thermal dissociation rate coefficients for the reaction SF6-→SF5-+F can only be estimated by unimolecular rate theory based on the results from Part I and II of this series. Under the applied conditions they are found to be smaller than detachment rate coefficients. Combining thermal attachment and detachment rates in a third-law analysis, employing calculated vibrational frequencies of SF6 and SF6-, leads to the electron affinity (EA) of SF6-. The new value of EA =1.20(±0.05)eV is significantly higher than previous recommendations which were based on less direct methods.

  13. Low-energy electron attachment to SF6. III. From thermal detachment to the electron affinity of SF6.

    PubMed

    Viggiano, Albert A; Miller, Thomas M; Friedman, Jeffrey F; Troe, Jürgen

    2007-12-28

    The thermal attachment of electrons to SF(6) is measured in a flowing-afterglow Langmuir-probe apparatus monitoring electron concentrations versus axial position in the flow tube. Temperatures between 300 and 670 K and pressures of the bath gas He in the range of 0.3-9 Torr are employed. Monitoring the concentrations of SF(6)(-) and SF(5)(-), the latter of which does not detach electrons under the applied conditions, an onset of thermal detachment and dissociation of SF(6) at temperatures above about 530 K is observed. Analysis of the mechanism allows one to deduce thermal detachment rate coefficients. Thermal dissociation rate coefficients for the reaction SF(6)(-)-->SF(5)(-)+F can only be estimated by unimolecular rate theory based on the results from Part I and II of this series. Under the applied conditions they are found to be smaller than detachment rate coefficients. Combining thermal attachment and detachment rates in a third-law analysis, employing calculated vibrational frequencies of SF(6) and SF(6)(-), leads to the electron affinity (EA) of SF(6)(-). The new value of EA=1.20(+/-0.05) eV is significantly higher than previous recommendations which were based on less direct methods.

  14. Volume and pressure dependences of the electronic, vibrational, and crystal structures of C s2CoC l4 : Identification of a pressure-induced piezochromic phase at high pressure

    NASA Astrophysics Data System (ADS)

    Nataf, L.; Aguado, F.; Hernández, I.; Valiente, R.; González, J.; Sanz-Ortiz, M. N.; Wilhelm, H.; Jephcoat, A. P.; Baudelet, F.; Rodríguez, F.

    2017-01-01

    This work investigates the high-pressure structure of C s2CoC l4 and how it affects the electronic and vibrational properties using optical absorption, Raman spectroscopy, x-ray diffraction, and x-ray absorption in the 0-15 GPa range. In particular, we focus on the electronic and local structures of C o2 + , since compression of C s2CoC l4 yields structural transformations associated with change of coordination around C o2 + , which are eventually responsible for the intense piezochromism at 7 GPa. This study provides a complete characterization of the electronic and vibrational structures of C s2CoC l4 in the Pnma phase as a function of the cell volume and the local CoC l4 bond length, RCo-Cl, as well as its corresponding equation of state. In addition, our interest is to elucidate whether the phase transition undergone by C s2CoC l4 at 7 GPa leads to a perovskite-layer-type structure where C o2 + is sixfold coordinated, decomposes into CsCl +CsCoC l3 , or it involves an unknown phase with different coordination sites for C o2 + . We show that C o2 + is sixfold coordinated in the high-pressure phase. The analysis of optical spectra and x-ray diffraction data suggests the formation of an interconnected structure of exchange-coupled C o2 + through edge-sharing octahedra at high pressure.

  15. Electron attachment to SF{sub 4}, SF{sub 6}; PF{sub 3}, and PF {sub 5}

    SciTech Connect

    Miller, T.M.; Stevens Miller, A.E.; Paulson, J.F.

    1993-05-01

    Intriguing comparisons may be drawn between SF{sub 4} and SF{sub 6} in their interactions with photons, electrons, ions, and molecules. We have found that the temperature dependence of the rate coefficient for electron attachment to SF{sub 4} closely parallels that for attachment to SF{sub 6} over the temperature range of 300-550 K, but the attachment process is less efficient for SF{sub 4} by approximately a factor of 10. Both reactions are dominated by non-dissociative attachment in this temperature range; we find an activation energy of 0.42 eV for the production of SF{sub 5}{sup -} from attachment to SF{sub 6}. Equally interesting is a comparison between PF{sub 3} and PF{sub 5}. PF{sub 3} apparently does not attach electrons (and PF{sub 3}{sup -} has never been observed), while PF{sub 5} is found to undergo non-dissociative electron attachment at a rate 700 times slower than for SF{sub 6}. Attachment rate coefficients for SF{sub 4}, SF{sub 6}, and PF{sub 5} are nearly independent of temperature in the range studied. A flowing-afterglow Langmuir-probe apparatus was used in this work.

  16. Insensitivity of the pressure dependences of characteristic energy scales in Ce1–xRxCoIn₅ (R=Yb,Y,Gd) to the electronic configuration of the rare-earth ion

    DOE PAGES

    White, B. D.; Hamlin, J. J.; Huang, K.; ...

    2012-09-11

    Cooperative Ce and Yb valence fluctuations have recently been proposed as the mechanism responsible for stabilizing correlated electron phenomena in Ce₁₋xYbxCoIn₅ over an unexpectedly large range of concentrations. In order to better understand the origins and character of this stability, we have measured the effect of applied pressure on relevant energy scales such as the superconducting critical (Tc) and Kondo-lattice coherence (T*) temperatures of Ce₁₋xRxCoIn₅ with R=Yb, Y, and Gd. Electrical resistivity measurements were performed under applied pressure on samples doped with intermediate-valent Yb and stable-valent Gd and Y, and the responses of Tc and T* to increased pressure inmore » these systems are compared. The character of Tc(P) and T*(P) in Ce₁₋xRxCoIn₅ depends only on their respective ambient-pressure values Tc(0) and T*(0), independent of the electronic configuration of R or concentration x. The consequences of this result are discussed within the context of possible cooperative valence fluctuations in Ce₁₋xYbxCoIn₅.« less

  17. Insensitivity of the pressure dependences of characteristic energy scales in Ce1–xRxCoIn₅ (R=Yb,Y,Gd) to the electronic configuration of the rare-earth ion

    SciTech Connect

    White, B. D.; Hamlin, J. J.; Huang, K.; Shu, L.; Lum, I. K.; Baumbach, R. E.; Janoschek, M.; Maple, M. B.

    2012-09-11

    Cooperative Ce and Yb valence fluctuations have recently been proposed as the mechanism responsible for stabilizing correlated electron phenomena in Ce₁₋xYbxCoIn₅ over an unexpectedly large range of concentrations. In order to better understand the origins and character of this stability, we have measured the effect of applied pressure on relevant energy scales such as the superconducting critical (Tc) and Kondo-lattice coherence (T*) temperatures of Ce₁₋xRxCoIn₅ with R=Yb, Y, and Gd. Electrical resistivity measurements were performed under applied pressure on samples doped with intermediate-valent Yb and stable-valent Gd and Y, and the responses of Tc and T* to increased pressure in these systems are compared. The character of Tc(P) and T*(P) in Ce₁₋xRxCoIn₅ depends only on their respective ambient-pressure values Tc(0) and T*(0), independent of the electronic configuration of R or concentration x. The consequences of this result are discussed within the context of possible cooperative valence fluctuations in Ce₁₋xYbxCoIn₅.

  18. O^- channels of Dissociative Electron Attachment to water and heavy water molecules

    NASA Astrophysics Data System (ADS)

    Adaniya, Hidehito; Rudek, Benedikt; Osipov, Timur; Lee, Sun; Weber, Thorsten; Hertlein, Marcus; Schoeffler, Markus; Prior, Mike; Belkacem, Ali

    2009-05-01

    A COLTRIM technique is modified to measure the kinetic energy and angular distribution of O^- ions arising from dissociative electron attachment to water and heavy water molecules. A low energy pulsed electron, an effusive water target, a pulsed extraction plate are used in combination with the COLTRIMS spectrometer. The spectrometer carries an electrostatic lens system to compensate the effusiveness of the target. This technique is applied to study the O^- channels in the three Feshbach resonances of water and heavy water anion. The measured kinetic energy release will give the energy partitioning among the fragments, and the means to identify the two-body and three-body breakup channels. The angular distribution of the O^- ions with respect to the electron beam is found to reflect well the breakup dynamics of the H2O^- at the dissociation. The experimental results are compared with the theoretical predictions.

  19. H^- and D^- channels of Dissociative Electron Attachment to water molecules

    NASA Astrophysics Data System (ADS)

    Adaniya, Hidehito; Rudek, Benedikt; Osipov, Timur; Lee, Sun; Weber, Thorsten; Hertlein, Marcus; Schoeffler, Markus; Prior, Mike; Belkacem, Ali

    2009-05-01

    A COLTRIM technique is modified to measure the kinetic energy and angular distribution of H^- and D^- ions arising from dissociative electron attachment to water and heavy water molecules. A low energy pulsed electron, an effusive water target, a pulsed extraction plate are used in combination with the COLTRIMS spectrometer. The spectrometer carries an electrostatic lens system to compensate the effusiveness of the target. This technique is applied to study the H^- and D^- channels in the three Feshbach resonances of water and heavy water anion. The measured kinetic energy release will give the energy partitioning among the fragments, and the means to identify the two-body and three-body breakup channels. The angular distribution of the H^-(D^-) ions with respect to the electron beam is found to reflect well the breakup dynamics of the H2O^- at the dissociation. The experimental results are compared with the theoretical predictions.

  20. Electron attachment to Ni(PF{sub 3}){sub 4} and Pt(PF{sub 3}){sub 4}

    SciTech Connect

    Friedman, Jeffrey F.; Miller, Thomas M.; Friedman-Schaffer, Jessica K.; Rekha, G. K.; Stevens, Amy E.; Viggiano, A. A

    2008-03-14

    An experimental study has been made of thermal electron attachment to the transition-metal trifluorophosphine complexes Ni(PF{sub 3}){sub 4} and Pt(PF{sub 3}){sub 4} using a flowing-afterglow Langmuir-probe apparatus. Both complexes are efficient at electron attachment, although the rate constants are somewhat less than collisional. The rate constant for electron attachment to Ni(PF{sub 3}){sub 4} is 1.9x10{sup -7} cm{sup 3} s{sup -1} at room temperature, about a factor of 2 less than collisional. The activation energy is 39{+-}5 meV for the attachment reaction. The rate constant for electron attachment to Pt(PF{sub 3}){sub 4} is 5.4x10{sup -8} cm{sup 3} s{sup -1} at room temperature, and the activation energy is 84{+-}8 meV. For both complexes, a PF{sub 3} ligand is lost on electron attachment, and only the M(PF{sub 3}){sub 3}{sup -} ion is observed in the negative-ion mass spectrum. Density functional calculations were carried out on Ni(PF{sub 3}){sub 4} and various fragments in order to describe the thermochemistry of the attachment reaction.

  1. Electron attachment to oxygen in nitrogen buffer gas at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kučera, Marek; Stano, Michal; Wnorowska, Jolanta; Barszczewska, Wiesława; Loffhagen, Detlef; Matejčík, Štefan

    2013-11-01

    We have carried out experimental and theoretical studies of three body electron attachment (TBEA) to O2 in N2/O2 mixtures. We have applied three different experimental methods to determine the apparent rate constant k for TBEA to O2 for reduced electric fields E/ n from 0.5 Td up to 4.5 Td and O2 concentrations from 0.02% up to 3%. From the apparent rate constant k we have evaluated three body rate constant for electron attachment to O2 in pure O2 and in pure N2 . The comparison of present data with former studies shows that the former values of overestimated the efficiency of this reaction, while in case of we have found agreement with earlier studies. We have solved numerically the Boltzmann equation of the electrons and calculated the values of k, and using well established cross sections. Using the known collision cross section set for TBEA to O2, very good agreement between calculated and measured results for was found, while in the case of k and we had to introduce a scaling function, which describes the decrease of the efficiency of TBEA to O2 in presence of N2 and the dependence of the scaling function on E/ n was determined.

  2. Absolute cross sections for dissociative electron attachment to HCN and DCN

    SciTech Connect

    May, O.; Kubala, D.; Allan, M.

    2010-07-15

    Absolute partial cross sections for the formation of CN{sup -} in dissociative electron attachment to HCN and DCN have been measured using a time-of-flight ion spectrometer combined with a trochoidal electron monochromator to be 940pm{sup 2} for CN{sup -}/HCN and 340pm{sup 2} for CN{sup -}/DCN at peaks of the bands due to the {sup 2{Pi}}-shape resonance. The dissociative electron attachment bands were then recorded under higher resolution, 60 meV, with a trochoidal monochromator plus quadrupole mass filter combination and found to have a nearly vertical onset at the threshold energy and to peak at 1.85 eV. Broad structure was observed on the bands, assigned to formation of vibrationally excited CN{sup -}, from which the branching ratios could be determined to be 1,0.49, and 0.22 for the formation of CN{sup -} in the v=0,1, and 2 states, respectively. The results are compared to the recent multidimensional ab initio calculations of Chourou and Orel [Phys. Rev. A 80, 032709 (2009)].

  3. Rate of three-body electron attachment to an oxygen molecule in a semi-self-maintained discharge

    NASA Astrophysics Data System (ADS)

    Krasiukov, A. G.; Naumov, V. G.; Shachkin, L. V.; Shashkov, V. M.

    1981-06-01

    The rate of three-body electron attachment to an oxygen molecule has been investigated in a semi-self-maintained discharge sustained by a fast electron beam in a mixture of O2:N2 = 1:20 at atmospheric pressure. Experimental results are in good agreement with theory. It is found that the attachment rate decreases with the increasing energy input, and a qualitative explanation of this effect is presented.

  4. Experimental and theoretical investigation of electron attachment to SF5Cl

    NASA Astrophysics Data System (ADS)

    van Doren, Jane M.; Miller, Thomas M.; Viggiano, Albert A.; Španěl, Patrik; Smith, David; Bopp, Joseph C.; Troe, Jürgen

    2008-03-01

    Thermal electron attachment to SF5Cl has been studied with the flowing afterglow Langmuir probe technique. The rate coefficient is moderate, 4.8(+/-1.2)×10-8 cm3 s-1, and invariant with temperature over the temperature range of 300-550 K. The reaction is dissociative, forming mainly SF5-+Cl. Minor yields of Cl- and FCl- were also found. The yields of the minor channels increase slightly with temperature. Statistical unimolecular rate modeling is employed to elucidate the character of the dissociation pathways and to support the assumption that the dissociations involve the formation of metastable anionic SF5Cl-.

  5. Experimental and theoretical investigation of electron attachment to SF(5)Cl.

    PubMed

    Van Doren, Jane M; Miller, Thomas M; Viggiano, Albert A; Spanel, Patrik; Smith, David; Bopp, Joseph C; Troe, Jürgen

    2008-03-07

    Thermal electron attachment to SF(5)Cl has been studied with the flowing afterglow Langmuir probe technique. The rate coefficient is moderate, 4.8(+/-1.2)x10(-8) cm(3) s(-1), and invariant with temperature over the temperature range of 300-550 K. The reaction is dissociative, forming mainly SF(5) (-)+Cl. Minor yields of Cl(-) and FCl(-) were also found. The yields of the minor channels increase slightly with temperature. Statistical unimolecular rate modeling is employed to elucidate the character of the dissociation pathways and to support the assumption that the dissociations involve the formation of metastable anionic SF(5)Cl(-).

  6. Electron localization due to side-attached molecules on graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Nunez, C. D.; Orellana, P. A.; Rosales, L.

    2016-10-01

    In this work, we have studied the electron localization due to a random distribution of side-attached linear organic molecules on graphene nanoribbons. By using the Green's function formalism within a tight binding Hamiltonian approximation and considering an Anderson-like disorder, we have calculated the conductance of the systems and the corresponding localization lengths. Our results show that the localization length strongly depends on the molecular concentration and on the length of the molecules, effects that are robust for different ribbon widths. These results suggest possible applications in molecular detectors or sensors based on graphene nanoribbons.

  7. Dissociative electron attachment to N2O using velocity slice imaging.

    PubMed

    Nandi, Dhananjay; Prabhudesai, Vaibhav S; Krishnakumar, E

    2014-03-07

    The structure and dynamics of the negative ion resonances leading to dissociative electron attachment in N2O are studied using the velocity slice imaging technique. Distinct momentum distributions are observed in the O(-) channel for the dominant resonances below 4 eV which are considerably different than those reported so far. Also the relatively weak but distinct resonances at 8.1 eV and 13.2 eV are studied for their dynamics for the first time. For each of these resonances two different channels of dissociation are observed with differing angular distributions.

  8. Electron Attachment to POCl3: Measurement and Theoretical Analysis of Rate Constants and Branching Ratios as a Function of Gas Pressure and Temperature, Electron Temperature, and Electron Energy

    DTIC Science & Technology

    2006-03-31

    the pulse along the flow tube axis variation in the total rate constant with temperature.2 In con- with the Langmuir probe . In the electron-He+-Ar...calculations 5 reported in Ref. 4 and should cylindrical Langmuir probe . The plasma velocity is measured be reliable within ±0.1 eV. Electron attachment...increasing temperature decreased diffusion. the amount of parent ion substantially in flowing - afterglow In the present work, POCI3 gas was added

  9. Negative-ion formation in the explosives RDX, PETN, and TNT by using the reversal electron attachment detection technique

    NASA Technical Reports Server (NTRS)

    Boumsellek, S.; Alajajian, S. H.; Chutjian, A.

    1992-01-01

    First results of a beam-beam, single-collision study of negative-ion mass spectra produced by attachment of zero-energy electrons to the molecules of the explosives RDX, PETN, and TNT are presented. The technique used is reversal electron attachment detection (READ) wherein the zero-energy electrons are produced by focusing an intense electron beam into a shaped electrostatic field which reverses the trajectory of electrons. The target beam is introduced at the reversal point, and attachment occurs because the electrons have essentially zero longitudinal and radial velocity. The READ technique is used to obtain the 'signature' of molecular ion formation and/or fragmentation for each explosive. Present data are compared with results from atmospheric-pressure ionization and negative-ion chemical ionization methods.

  10. Electron attachment to a hydrated DNA duplex: the dinucleoside phosphate deoxyguanylyl-3',5'-deoxycytidine.

    PubMed

    Gu, Jiande; Wong, Ning-Bew; Xie, Yaoming; Schaefer, F Henry

    2010-11-22

    The minimal essential section of DNA helices, the dinucleoside phosphate deoxyguanylyl-3',5'-deoxycytidine dimer octahydrate, [dGpdC](2), has been constructed, fully optimized, and analyzed by using quantum chemical methods at the B3LYP/6-31+G(d,p) level of theory. Study of the electrons attached to [dGpdC](2) reveals that DNA double strands are capable of capturing low-energy electrons and forming electronically stable radical anions. The relatively large vertical electron affinity (VEA) predicted for [dGpdC](2) (0.38 eV) indicates that the cytosine bases are good electron captors in DNA double strands. The structure, charge distribution, and molecular orbital analysis for the fully optimized radical anion [dGpdC](2)(·-) suggest that the extra electron tends to be redistributed to one of the cytosine base moieties, in an electronically stable structure (with adiabatic electron affinity (AEA) 1.14 eV and vertical detachment energy (VDE) 2.20 eV). The structural features of the optimized radical anion [dGpdC](2)(·-) also suggest the probability of interstrand proton transfer. The interstrand proton transfer leads to a distonic radical anion [d(G-H)pdC:d(C+H)pdG](·-), which contains one deprotonated guanine anion and one protonated cytosine radical. This distonic radical anion is predicted to be more stable than [dGpdC](2)(·-). Therefore, experimental evidence for electron attachment to the DNA double helices should be related to [d(G-H)pdC:d(C+H)pdG](·-) complexes, for which the VDE might be as high as 2.7 eV (in dry conditions) to 3.3 eV (in fully hydrated conditions). Effects of the polarizable medium have been found to be important for increasing the electron capture ability of the dGpdC dimer. The ultimate AEA value for cytosine in DNA duplexes is predicted to be 2.03 eV in aqueous solution.

  11. Electron attachment in F2 - Conclusive demonstration of nonresonant, s-wave coupling in the limit of zero electron energy

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Alajajian, S. H.

    1987-01-01

    Dissociative electron attachment to F2 has been observed in the energy range 0-140 meV, at a resolution of 6 meV (full width at half maximum). Results show conclusively a sharp, resolution-limited threshold behavior consistent with an s-wave cross section varying as sq rt of epsilon. Two accurate theoretical calculations predict only p-wave behavior varying as the sq rt of epsilon. Several nonadiabatic coupling effects leading to s-wave behavior are outlined.

  12. Calculation on spectrum of direct DNA damage induced by low-energy electrons including dissociative electron attachment.

    PubMed

    Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe

    2017-03-01

    In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.

  13. Metabolic Electron Attachment as a Primary Mechanism For Toxicity Potentials of Halocarbons.

    PubMed

    Balasubramanian, Krishnan; Basak, Subhash C

    2016-01-01

    We have carried out systematic large-basis set quantum chemical computations at Møller- Plesset second-order perturbation (MP2) and couple cluster singles + doubles CCSD and CCSD(T)with triples correction levels of theories on a set of 55 halogenated carbons in the Crebelli toxicological dataset. We have computed a number of electronic properties at optimized geometries such as vertical electron affinities, HOMO-LUMO gaps, dipole moments, etc. We have provided insights into the mechanism of toxicity through electron attachment in metabolic pathways by binding to an electron donating enzyme in hepatocytes. The electron transfer from the enzyme to the halocarbon is accompanied by bond elongation resulting in autodetachment as evidenced from potential energy surfaces of the anion and neutral molecule. The autodetachment process leads to production of highly reactive free radicals, which cause tissue damage, and prolonged exposure can result in hepatocellular carcinoma depending on the hydrogen extraction propensity of the free radical and vertical electron affinity of the neutral halocarbon.

  14. Absolute cross sections for dissociative electron attachment to H2O and D2O

    NASA Astrophysics Data System (ADS)

    Rawat, Prashant; Prabhudesai, Vaibhav S.; Aravind, G.; Rahman, M. A.; Krishnakumar, E.

    2007-12-01

    The dissociative electron attachment (DEA) process to water (H2O) and heavy water (D2O) has been studied in the gas phase in a cross beam experiment for electron energies up to 20 eV. The apparatus used eliminates discrimination due to the kinetic energy and angular distribution of the ions. The cross sections are normalized to absolute values using the cross section for production of O- from O2 (Rapp and Briglia 1965 J. Chem. Phys. 43 1480). These are the first exhaustive measurements of absolute cross sections for both the H- and O- from H2O and D- and O- from D2O at all the three resonances. The results are compared with the scarce data available in the literature. Isotope effect is observed at the 12 eV resonance in the H- channel and at all the three resonances in the O- channel.

  15. Direct experimental observation of weakly-bound character of the attached electron in europium anion

    PubMed Central

    Cheng, Shi-Bo; Castleman, A. W.

    2015-01-01

    Direct experimental determination of precise electron affinities (EAs) of lanthanides is a longstanding challenge to experimentalists. Considerable debate exists in previous experiment and theory, hindering the complete understanding about the properties of the atomic anions. Herein, we report the first precise photoelectron imaging spectroscopy of europium (Eu), with the aim of eliminating prior contradictions. The measured EA (0.116 ± 0.013 eV) of Eu is in excellent agreement with recently reported theoretical predictions, providing direct spectroscopic evidence that the additional electron is weakly attached. Additionally, a new experimental strategy is proposed that can significantly increase the yield of the lanthanide anions, opening up the best opportunity to complete the periodic table of the atomic anions. The present findings not only serve to resolve previous discrepancy but also will help in improving the depth and accuracy of our understanding about the fundamental properties of the atomic anions. PMID:26198741

  16. College students' use of electronic communication with parents: links to loneliness, attachment, and relationship quality.

    PubMed

    Gentzler, Amy L; Oberhauser, Ann M; Westerman, David; Nadorff, Danielle K

    2011-01-01

    Despite the ubiquitous use of new communication technologies, gaps in our knowledge remain regarding who is likely to rely on particular technologies and potential ramifications of these forms of communication on individuals' relationships and adjustment. In an online survey, 211 college students reported on their use of electronic communication with a parent who they identified as their closest family member. Results indicated that students who report more frequent phone conversations with parents also report more satisfying, intimate, and supportive parental relationships, but those students who use a social-networking site to communicate with parents report higher levels of loneliness, anxious attachment, as well as conflict within the parental relationship. The findings offer new evidence on how electronic communication technology with parents is related to adjustment in college students. Our study also suggests that further research is needed using longitudinal designs to understand better young adults' use of technology to communicate in today's society.

  17. Ab initio calculations of dissociative attachment and dissociative recombination of electrons and polyatomic species

    NASA Astrophysics Data System (ADS)

    Haxton, Daniel

    2009-05-01

    Interactions of free electrons with neutral and positively charged molecular species play a role in various physical systems. In interstellar space, reactions such as dissociative recombination determine the balance of various charged and neutral species. In a laboratory equipped with an apparatus like a COLTRIMS device, the dissociative attachment process can be used as a microscope to study polyatomic molecular dynamics. We discuss the theoretical and numerical methods used to calculate dissociative attachment and dissociative recombination of electrons with larger molecules from first principles. Studies using these methods are complimentary to other methods that yield more approximate reaction rates at greatly lesser numerical cost; they may yield precise information about the dissociation dynamics, product distribution, and differential cross section that approximate methods cannot. We discuss calculations performed to date on the target species H2O, NO2, and LiH2^+. We discuss the scaling of our numerical methods with the number of atoms, and the prospects of applying them to tetra-atomics.

  18. Empty level structure and dissociative electron attachment cross section in (bromoalkyl)benzenes.

    PubMed

    Modelli, Alberto

    2005-07-21

    The gas-phase electron transmission (ET) and dissociative electron attachment (DEA) spectra are reported for the series of (bromoalkyl)benzenes C6H5(CH2)nBr (n = 0-3), where the bromine atom is directly bonded to a benzene ring or separated from it by 1-3 CH2 groups, and the dihalo derivative 1-Br-4-Cl-benzene. The relative DEA cross sections (essentially due to the Br- fragment) are reported, and the absolute cross sections are also evaluated. HF/6-31G and B3LYP/6-31G* calculations are employed to evaluate the virtual orbital energies (VOEs) for the optimized geometries of the neutral state molecules. The pi* VOEs, scaled with empirical equations, satisfactorily reproduce the corresponding experimental vertical electron attachment energies (VAEs). According to the calculated localization properties, the LUMO (as well as the singly occupied MO of the lowest lying anion state) of C6H5(CH2)3Br is largely localized on both the benzene ring and the C-Br bond, despite only a small pi*/sigma*C-Br interaction and in contrast to the chlorine analogue where the LUMO is predicted to possess essentially ring pi character. This would imply a less important role of intramolecular electron transfer in the bromo derivative for production of the halogen negative fragment through dissociation of the first resonant state. The VAEs calculated as the anion/neutral energy difference with the 6-31+G* basis set which includes diffuse functions are relatively close to the experimental values but do not parallel their sequence. In addition the SOMO of some compounds is not described as a valence MO with large pi* character but as a diffuse sigma* MO.

  19. Electron-Impact Ionization and Electron Attachment Cross Sections of Radicals Important in Transient Gaseous Discharges

    DTIC Science & Technology

    1990-01-25

    Semetuk. Can J Chem. ;8 455: Acknow ledgement F.A. Houle and J L. Beauchamp. J km Chem. Soc. ,2 (1979) 4067. 131 L. Friedman. FA. Long and Sl. WAolfsberg...attaIchment of1 lo\\%- energ > electrons to BCI, and in\\ N hIDepciideceo1ihw Ci niimsi nhcl1j~ ~rn stUir\\ i~et for a stifficienflk Iona time such that it

  20. Wet-electron Enhanced Surface Dissociative Electron Attachment Chemistry of Halocarbons

    DTIC Science & Technology

    2011-03-14

    photocatalysis , TiO2, decontamination, electron spectroscopy Hrvoje Petek, Xuefeng Cui, Chungwei Lin, and Jin Zhao University of Pittsburgh 123 University...reduction processes on TiO2 surfaces. Therefore it is relevant to the mechanism of photocatalytic decontamination with TiO2 photocatalysis . (a... photocatalysis  with H2O and CH3OH  overlayers.    For a clean TiO2 surface at 90 K O2 molecules do not adsorb on  stoichiometric TiO2 surfaces; they

  1. Structure and energetics in dissociative electron attachment to HFeCo3(CO)12*

    NASA Astrophysics Data System (ADS)

    P, Ragesh Kumar T.; Barth, Sven; Bjornsson, Ragnar; Ingólfsson, Oddur

    2016-08-01

    Here we report structural parameters on the heteronuclear transition metal complex HFeCo3(CO)12 and its anion formed upon electron attachment, as well as the thermochemical thresholds for sequential CO loss and the loss of the apical group (as Fe(CO)-3 and Fe(CO)-4). Geometrical parameters from single crystal X-ray diffraction are compared with calculated values from density functional theory calculations, for the neutral and anionic ground state of this transition metal cluster. Further, experimental appearance energies for sequential CO loss and the formation of Fe(CO)-3 and Fe(CO)-4 are compared to the respective calculated threshold values. Geometry optimizations were performed at the BP86/def2-TZVP level of theory while the threshold energies were calculated at the PBE0/ma-def2-TZVP level of theory. The SOMO of the anion is found to have a clear Fe-Co anti-bonding character resulting in elongation of the Fe-Co bonds and the transformation of one of the terminal Co-CO groups to a bridging Co-CO-Fe group upon electron attachment. The thermochemical threshold PBE0 calculations are concordant with the observed appearance energies and structural parameters from single crystal X-ray diffraction for the neutral molecule are well reproduced at the BP86/def2-TZVP level of theory. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70164-y

  2. Mitigation of electron attachment to oxygen in high pressure air plasmas by vibrational excitation

    NASA Astrophysics Data System (ADS)

    Frederickson, K.; Lee, W.; Palm, P.; Adamovich, I. V.; Rich, J. W.; Lempert, W. R.

    2007-05-01

    A series of time resolved microwave attenuation measurements are performed of the electron number density of an electron beam generated, CO laser excited nonequilibrium O2/N2 plasma. Resonant absorption of infrared radiation from the CO laser produces the nonequilibrium state, in which the heavy species vibrational modes are disproportionately excited, compared to the rotational and translational modes (Tvib≈2000-3000K vs TR /T≈300K). It is shown that this results in an increase in the plasma free electron lifetime by two orders of magnitude compared to the unexcited cold gas, an effect which is ascribed to complete mitigation of rapid three-body electron attachment to molecular oxygen. A series of heavy species filtered pure rotational Raman scattering measurements are also presented, which exhibit minimal temperature change (+50K), indicating that the observed lifetime increase cannot be due to heavy-species thermal effects. Finally, computational modeling results infer an increase in the rate of O2- detachment by four to five orders of magnitude, compared to the equilibrium value.

  3. Characteristics and Function of AN Electron Attachment Spectrometer: Pulse Formation Time and Gain Effects in P-10 Gas

    NASA Astrophysics Data System (ADS)

    Orchard, Gloria M.; Waker, Anthony J.

    2014-02-01

    An Electron Attachment Spectrometer (EAS) has been designed to measure electron attachment in air and other gases. The aim of the EAS is to observe how parameters such as the electric field, reduced electric field and type of gas can influence electron attachment. The overall objective of this work is to investigate if the gas-gain of a proportional counter can be optimized by minimizing electron attachment with oxygen to improve the measurement of tritium-in-air. Current research interests include the measurement of the time between the generation of the electron-ion pairs and arrival of the electrons at the wire anode. Additionally, the study of the multiplication properties of the detector as a function of pulse formation time, P-10 gas flow rate and electric field will be presented. The EAS is a cylinder with a length of approximately 92 mm and diameter of 41 mm comprised of cylindrical hollow brass electrodes and Teflon spacers. A uniform electric field within the tube is applied and guides electrons and/or ions towards their respective electrodes. A proportional counter with a 50 μm diameter wire anode is used to detect the electrons and/or ions created by an 241Am source located at the opposite end.

  4. s-wave threshold in electron attachment - Observations and cross sections in CCl4 and SF6 at ultralow electron energies

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Alajajian, S. H.

    1985-01-01

    The threshold photoionization method was used to study low-energy electron attachment phenomena in and cross sections of CCl4 and SF6 compounds, which have applications in the design of gaseous dielectrics and diffuse discharge opening switches. Measurements were made at electron energies from below threshold to 140 meV at resolutions of 6 and 8 meV. A narrow resolution-limited structure was observed in electron attachment to CCl4 and SF6 at electron energies below 10 meV, which is attributed to the divergence of the attachment cross section in the limit epsilon, l approaches zero. The results are compared with experimental collisional-ionization results, electron-swarm unfolded cross sections, and earlier threshold photoionization data.

  5. Novel Analytical Techniques Based on a Enhanced Electron Attachment Process - Final Report - 09/15/1996 - 06/15/2001

    SciTech Connect

    Pinnaduwage, Lal A.; Buchanan, Michelle V.

    2001-06-15

    Present analytical methodologies for the detection of chlorinated compounds important to DOE's environmental restoration program, such as DNAPLs [dense non-aqueous phase liquids - such as carbon tetrachloride, trichloroethylene (TCE), perchloroethylene (PCE)], polychlorinated biphenyls (PCB), and others, involve detection by negative-ion-based analytical techniques. These techniques exploit electron attachment to analyte molecules in their ground electronic states, and are limited to particular compounds with appropriate electron capture cross sections. For example, PCB contamination is detected by analysis of mixtures of chlorinated homologues of these biphenyls. Homologues with lower numbers of chlorines do not efficiently attach thermal electrons and thus are not detected by either electron capture chromatographic detectors or by negative ion chemical ionization mass spectrometry. We proposed three novel analytical techniques based on enhanced negative-ion formation via electron attachment to highly-excited electronic states of molecules. In one of the proposed techniques, the excited states of the (analyte) molecules are populated via laser excitation; the resulting negative ions are mass analyzed for identification. The other two proposed techniques utilize a specialized gas discharge for the formation of excited species (and low-energy electrons for attachment), and thus will provide a cost-effective method if successful. In one version, the negative ions will be mass analyzed -as in the laser-based technique- and in the other, the decrease in electron density due to excited state attachment will be monitored (electron capture detector mode). A plasma mixing scheme will be employed to excite the analyte molecules so that the excited states of the analyte molecules will not be destroyed by the discharge.

  6. Absolute cross sections for dissociative electron attachment to NH3 and CH4

    NASA Astrophysics Data System (ADS)

    Rawat, Prashant; Prabhudesai, Vaibhav S.; Rahman, M. A.; Ram, N. Bhargava; Krishnakumar, E.

    2008-11-01

    Dissociative electron attachment (DEA) cross sections for NH3 and CH4 are measured in a crossed beam apparatus with special care to eliminate discrimination due to kinetic energy and angular distribution of the fragment ions. The cross sections are put on absolute scale using the relative flow technique. The absolute cross sections for the formation of H- and NH2- from ammonia and H- and CH2- from methane are compared with available data from literature. It is seen that the present results are considerably different 6rom what has been reported before. We also compare the cross sections of the H- channel from these molecules along with that from H2O to those from organic molecules containing alkyl, amino and hydroxyl groups to examine the extent to which the recently observed functional group dependence in the DEA contributes.

  7. Unusual temperature dependence of the dissociative electron attachment cross section of 2-thiouracil

    SciTech Connect

    Kopyra, Janina; Abdoul-Carime, Hassan

    2016-01-21

    At low energies (<3 eV), molecular dissociation is controlled by dissociative electron attachment for which the initial step, i.e., the formation of the transient negative ion, can be initiated by shape resonance or vibrational Feshbach resonance (VFR) mediated by the formation of a dipole bound anion. The temperature dependence for shape-resonances is well established; however, no experimental information is available yet on the second mechanism. Here, we show that the dissociation cross section for VFRs mediated by the formation of a dipole bound anion decreases as a function of a temperature. The change remains, however, relatively small in the temperature range of 370-440 K but it might be more pronounced at the extended temperature range.

  8. Temperature dependence of the cross section for the fragmentation of thymine via dissociative electron attachment

    SciTech Connect

    Kopyra, Janina; Abdoul-Carime, Hassan

    2015-05-07

    Providing experimental values for absolute Dissociative Electron Attachment (DEA) cross sections for nucleobases at realistic biological conditions is a considerable challenge. In this work, we provide the temperature dependence of the cross section, σ, of the dehydrogenated thymine anion (T − H){sup −} produced via DEA. Within the 393-443 K temperature range, it is observed that σ varies by one order of magnitude. By extrapolating to a temperature of 313 K, the relative DEA cross section for the production of the dehydrogenated thymine anion at an incident energy of 1 eV decreases by 2 orders of magnitude and the absolute value reaches approximately 6 × 10{sup −19} cm{sup 2}. These quantitative measurements provide a benchmark for theoretical prediction and also a contribution to a more accurate description of the effects of ionizing radiation on molecular medium.

  9. Identification of overlapping resonances in dissociative electron attachment to chlorine molecules

    NASA Astrophysics Data System (ADS)

    Nag, Pamir; Nandi, Dhananjay

    2016-01-01

    A combined highly differential momentum imaging experiment and ab initio potential-energy curve calculation using density-functional theory (DFT) have been performed to understand the broad resonant peak around 5.7 eV due to dissociative electron attachment (DEA) to the chlorine molecule. Both the kinetic energy and angular distribution over the entire 2 π angle of the fragment negative ions have been measured. Two heavily overlapping resonances are identified for the observed broad resonant peak that could settle the long-standing debate. The symmetry of the involved two temporary negative ion (TNI) states are determined from the angular distribution data. Experimental observations are strongly supported with the computed potential-energy curve using DFT.

  10. Equation-of-motion coupled cluster method for high spin double electron attachment calculations

    SciTech Connect

    Musiał, Monika Lupa, Łukasz; Kucharski, Stanisław A.

    2014-03-21

    The new formulation of the equation-of-motion (EOM) coupled cluster (CC) approach applicable to the calculations of the double electron attachment (DEA) states for the high spin components is proposed. The new EOM equations are derived for the high spin triplet and quintet states. In both cases the new equations are easier to solve but the substantial simplification is observed in the case of quintets. Out of 21 diagrammatic terms contributing to the standard DEA-EOM-CCSDT equations for the R{sub 2} and R{sub 3} amplitudes only four terms survive contributing to the R{sub 3} part. The implemented method has been applied to the calculations of the excited states (singlets, triplets, and quintets) energies of the carbon and silicon atoms and potential energy curves for selected states of the Na{sub 2} (triplets) and B{sub 2} (quintets) molecules.

  11. Nucleophilic Aromatic Substitution Reactions Described by the Local Electron Attachment Energy.

    PubMed

    Stenlid, Joakim H; Brinck, Tore

    2017-03-17

    A local multiorbital electrophilicity descriptor, the local electron attachment energy [E(r)], is used to study the nucleophilic aromatic substitution reactions of SNAr and VNS (vicarious nucleophilic substitution). E(r) considers all virtual orbitals below the free electron limit and is determined on the molecular isodensity contour of 0.004 atomic units. Good (R(2) = 0.83) to excellent (R(2) = 0.98) correlations are found between descriptor values and experimental reactivity data for six series of electron deficient arenes. These include homo- and heteroarenes, rings of five to six atoms, and a variety of fluorine, bromine, and hydride leaving groups. The solvent, temperature, and nucleophile are in addition varied across the series. The surface E(r) [ES(r)] is shown to provide reactivity predictions better than those of transition-state calculations for a concerted SNAr reaction with a bromine nucleofug, gives correlations substantially stronger than those of LUMO energies, and is overall more reliable than the molecular electrostatic potential. With the use of ES(r), one can identify the various electrophilic sites within a molecule and correctly predict isomeric distributions. Since the calculations of ES(r) are computationally inexpensive, the descriptor offers fast but accurate reactivity predictions for the important nucleophilic aromatic substitution class of reactions. Applications in, e.g., drug discovery, synthesis, and toxicology studies are envisaged.

  12. Dissociative electron attachment in nanoscale ice films: Thickness and charge trapping effects

    SciTech Connect

    Simpson, W.C.; Orlando, T.M.

    1998-03-01

    The yield and kinetic energy (KE) distributions of D{sup {minus}} ions produced via dissociative electron attachment (DEA) resonances in nanoscale D{sub 2}O ice films are collected as a function of film thickness. The {sup 2}B{sub 1}, {sup 2}A{sub 1}, and {sup 2}B{sub 2} DEA resonances shift to higher energies and their D{sup {minus}} ion yields first increase and then decrease as the D{sub 2}O films thicken. The D{sup {minus}} KE distributions also shift to higher energy with increasing film thickness. We interpret the changes in the DEA yield and the D{sup {minus}} KE distributions in terms of modifications in the electronic and geometric structure of the surface of the film as it thickens. A small amount of charge build-up occurs following prolonged electron beam exposure at certain energies, which primarily affects the D{sup {minus}} KE distributions. Charge trapping measurements indicate that an enhancement in the trapping cross section occurs at energies near zero and between 6 and 10 eV. {copyright} {ital 1998 American Institute of Physics.}

  13. Cross sections for 14-eV e-H{sub 2} resonant collisions: Dissociative electron attachment

    SciTech Connect

    Celiberto, R.; Janev, R. K.; Wadehra, J. M.; Laricchiuta, A.

    2009-07-15

    The dissociative electron attachment (DEA) process in electron-H{sub 2} molecule collisions, involving the {sup 2}{sigma}{sub g}{sup +} excited electronic Rydberg state of molecular hydrogen ion H{sub 2}{sup -}, is investigated theoretically. The DEA cross section has been calculated within the local complex potential approximation. The convoluted cross section, which presents a peak located at the incident energy of about 14 eV, compares favorably with available experimental data.

  14. Experimental and modeling study of thermal rate coefficients and cross sections for electron attachment to C(60).

    PubMed

    Viggiano, Albert A; Friedman, Jeffrey F; Shuman, Nicholas S; Miller, Thomas M; Schaffer, Linda C; Troe, Jürgen

    2010-05-21

    Thermal electron attachment to C(60) has been studied by relative rate measurements in a flowing afterglow Langmuir probe apparatus. The rate coefficients of the attachment k(1) are shown to be close to 10(-6) cm(3) s(-1) with a small negative temperature coefficient. These results supersede measurements from the 1990s which led to much smaller values of k(1) with a large positive temperature coefficient suggesting an activation barrier. Theoretical modeling of k(1) in terms of generalized Vogt-Wannier capture theory shows that k(1) now looks more consistent with measurements of absolute attachment cross sections sigma(at) than before. The comparison of capture theory and experimental rate or cross section data leads to empirical correction factors, accounting for "intramolecular vibrational relaxation" or "electron-phonon coupling," which reduce k(1) below the capture results and which, on a partial wave-selected level, decrease with increasing electron energy.

  15. Experimental and modeling study of thermal rate coefficients and cross sections for electron attachment to C60

    NASA Astrophysics Data System (ADS)

    Viggiano, Albert A.; Friedman, Jeffrey F.; Shuman, Nicholas S.; Miller, Thomas M.; Schaffer, Linda C.; Troe, Jürgen

    2010-05-01

    Thermal electron attachment to C60 has been studied by relative rate measurements in a flowing afterglow Langmuir probe apparatus. The rate coefficients of the attachment k1 are shown to be close to 10-6 cm3 s-1 with a small negative temperature coefficient. These results supersede measurements from the 1990s which led to much smaller values of k1 with a large positive temperature coefficient suggesting an activation barrier. Theoretical modeling of k1 in terms of generalized Vogt-Wannier capture theory shows that k1 now looks more consistent with measurements of absolute attachment cross sections σat than before. The comparison of capture theory and experimental rate or cross section data leads to empirical correction factors, accounting for "intramolecular vibrational relaxation" or "electron-phonon coupling," which reduce k1 below the capture results and which, on a partial wave-selected level, decrease with increasing electron energy.

  16. Rare reaction channels in real-time time-dependent density functional theory: the test case of electron attachment

    NASA Astrophysics Data System (ADS)

    Lacombe, Lionel; Dinh, P. Huong Mai; Reinhard, Paul-Gerhard; Suraud, Eric; Sanche, Leon

    2015-08-01

    We present an extension of standard time-dependent density functional theory (TDDFT) to include the evaluation of rare reaction channels, taking as an example of application the theoretical modelling of electron attachment to molecules. The latter process is of great importance in radiation-induced damage of biological tissue for which dissociative electron attachment plays a decisive role. As the attachment probability is very low, it cannot be extracted from the TDDFT propagation whose mean field provides an average over various reaction channels. To extract rare events, we augment TDDFT by a perturbative treatment to account for the occasional jumps, namely electron capture in our test case. We apply the modelling to electron attachment to H2O, H3O+, and (H2O)2. Dynamical calculations have been done at low energy (3-16 eV). We explore, in particular, how core-excited states of the targets show up as resonances in the attachment probability. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  17. A practical approach to temperature effects in dissociative electron attachment cross sections using local complex potential theory

    NASA Astrophysics Data System (ADS)

    Sugioka, Yuji; Takayanagi, Toshiyuki

    2012-09-01

    We propose a practical computational scheme to obtain temperature dependence of dissociative electron attachment cross sections to polyatomic molecules within a local complex potential theory formalism. First we perform quantum path-integral molecular dynamics simulations on the potential energy surface for the neutral molecule in order to sample initial nuclear configurations as well as momenta. Classical trajectories are subsequently integrated on the potential energy surface for the anionic state and survival probabilities are simultaneously calculated along the obtained trajectories. We have applied this simple scheme to dissociative electron attachment processes to H2O and CF3Cl, for which several previous studies are available from both the experimental and theoretical sides.

  18. Formation of CN- , C3N- , and C5N- Molecules by Radiative Electron Attachment and their Destruction by Photodetachment

    NASA Astrophysics Data System (ADS)

    Khamesian, Marjan; Douguet, Nicolas; Fonseca dos Santos, Samantha; Dulieu, Olivier; Raoult, Maurice; Brigg, Will J.; Kokoouline, Viatcheslav

    2016-09-01

    The existence of negative ions in interstellar clouds has been associated for several decades with the process of radiative electron attachment. In this Letter, we report compelling evidence supporting the fact that the radiative attachment of a low-energy electron is inefficient to form the carbon chain anions CN- , C3N- , and C5N- detected in interstellar clouds. The validity of the approach is confirmed by good agreement with experimental data obtained for the inverse photodetachment process, which represents the major cause of anion destruction in interstellar space. As a consequence, we suggest alternative models that could explain the formation of anions.

  19. Local Electron Attachment Energy and Its Use for Predicting Nucleophilic Reactions and Halogen Bonding.

    PubMed

    Brinck, Tore; Carlqvist, Peter; Stenlid, Joakim H

    2016-12-22

    A new local property, the local electron attachment energy [E(r)], is introduced and is demonstrated to be a useful guide to predict intermolecular interactions and chemical reactivity. The E(r) is analogous to the average local ionization energy but indicates susceptibility toward interactions with nucleophiles rather than electrophiles. The functional form E(r) is motivated based on Janak's theorem and the piecewise linear energy dependence of electron addition to atomic and molecular systems. Within the generalized Kohn-Sham method (GKS-DFT), only the virtual orbitals with negative eigenvalues contribute to E(r). In the present study, E(r) has been computed from orbitals obtained from GKS-DFT computations with a hybrid exchange-correlation functional. It is shown that E(r) computed on a molecular isodensity surface, ES(r), reflects the regioselectivity and relative reactivity for nucleophilic aromatic substitution, nucleophilic addition to activated double bonds, and formation of halogen bonds. Good to excellent correlations between experimental or theoretical measures of interaction strengths and minima in ES(r) (ES,min) are demonstrated.

  20. Thermal Gas Phase Electron Attachment Reactions of Sulfuryl- and Thionyl-halides at 300 K

    NASA Astrophysics Data System (ADS)

    van Doren, Jane M.; Thompson, Matthew S.; Monaco, Elizabeth M.; Wszolek, Matthew F.

    1999-10-01

    The reactions of the sulfuryl-halides SO_2Cl_2, SO_2ClF, and SO_2F_2, and thionyl-halides SOCl2 and SOF2 were studied in the gas phase under thermal conditions at 300K with a Flowing Afterglow Langmuir Probe with mass spectrometric detection. The chloride-containing species react efficiently with electrons while the fluoride analogues react relatively inefficiently. All of these species react with electrons through cleavage of the sulfur-halide bond. Non-dissociative attachment is also observed in the reaction with sulfuryl fluoride. In the reactions of both thionyl halides as well as that of sulfuryl chloride, the only observed product ion is the atomic halogen anion. In the reaction of sulfuryl fluoride, cleavage of the sulfur-fluorine bond leads to the formation of SO_2F^- + F. Both possible primary product anions are observed for the mixed sulfuryl halide (SO_2ClF), Cl^- and SO_2F^-. Efficient secondary ion-molecule reactions were also identified and their products were characterized.

  1. Dissociative electron attachment to the H2O molecule II: nucleardynamics on coupled electronic surfaces within the local complexpotential model

    SciTech Connect

    Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William

    2006-12-21

    We report the results of a first-principles study of dissociative electron attachment (DEA) to H{sub 2}O. The cross sections were obtained from nuclear dynamics calculations carried out in full dimensionality within the local complex potential model by using the multi-configuration time-dependent Hartree method. The calculations employ our previously obtained global, complex-valued, potential energy surfaces for the three ({sup 2}B{sub 1}, {sup 2}A{sub 1}, and {sup 2}B{sub 2}) electronic Feshbach resonances involved in this process. These three metastable states of H{sub 2}O{sup -} undergo several degeneracies, and we incorporate both the Renner-Teller coupling between the {sup 2}B{sub 1} and {sup 2}A{sub 1} states, as well as the conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} states, into our treatment. The nuclear dynamics are inherently multi-dimensional and involve branching between different final product arrangements as well as extensive excitation of the diatomic fragment. Our results successfully mirror the qualitative features of the major fragment channels observed, but are less successful in reproducing the available results for some of the minor channels. We comment on the applicability of the local complex potential model to such a complicated resonant system.

  2. Probing royal demolition explosive (1,3,5-trinitro-1,3,5-triazocyclohexane) by low-energy electrons: Strong dissociative electron attachment near 0 eV.

    PubMed

    Sulzer, P; Mauracher, A; Ferreira da Silva, F; Denifl, S; Märk, T D; Probst, M; Limão-Vieira, P; Scheier, P

    2009-10-14

    Low energy electron attachment to gas phase royal demolition explosive (RDX) (and RDX-A3) has been performed by means of a crossed electron-molecular beam experiment in an electron energy range from 0 to 14 eV with an energy resolution of approximately 70 meV. The most intense signals are observed at 102 and 46 amu and assigned to C(2)H(4)N(3)O(2) (-) and NO(2) (-), respectively. Anion efficiency curves of 16 anions have been measured. Product ions are observed mainly in the low energy region, near 0 eV arising from surprisingly complex reactions associated with multiple bond cleavages and structural and electronic rearrangement. The remarkable instability of RDX to electron attachment with virtually thermal electrons reflects the highly explosive nature of this compound. The present results are compared to other explosive aromatic nitrocompounds studied in our laboratory recently.

  3. Enhancing and optimizing electronic transport in biphenyl derivative single-molecule junctions attached to carbon nanotubes electrodes

    NASA Astrophysics Data System (ADS)

    Reis-Silva, J. C.; Ferreira, D. F. S.; Leal, J. F. P.; Pinheiro, F. A.; Del Nero, J.

    2017-02-01

    We investigate, by means of ab initio calculations based on non-equilibrium Green's function method coupled to density function theory, electronic transport in molecular junctions composed of biphenyl (BP) and biphenyl within (-2H+) defect (BP2D) molecules attached to metallic (9,0) carbon nanotubes. We demonstrate that the BP2D junction exhibits unprecedented electronic transport properties, and that its conductance can be up to three orders of magnitude higher than biphenyl single-molecule junctions. These findings are explained in terms of the non-planar molecular conformation of BP2D, and of the stronger electronic coupling between the BP2D molecule and the organic electrodes, which confers high stability to the junction. Our results suggest that BP2D attached to carbon nanotubes can be explored as an efficient and highly stable platform in single-molecule electronics with extraordinary transport properties.

  4. Possibility of formation of rare-earth negative ions by attachment of [ital f] electrons to the atomic ground state

    SciTech Connect

    Datta, D.; Beck, D.R. )

    1993-06-01

    Some recent experiments indicate that certain rare-earth negative ions exist. Some local-density calculations indicate that attachment of [ital f] electrons is most favorable for Tm and Md. Here we investigate by means of relativistic configuration-interaction methods whether Tm[sup [minus

  5. Formation of carbon chain molecular anions by radiative electron attachment and their destruction by photodetachment

    NASA Astrophysics Data System (ADS)

    Khamesian, Marjan; Douguet, Nicolas; Raoult, Maurice; Dulieu, Olivier; Kokoouline, Viatcheslav

    2016-05-01

    Several negative ions Cn H- (n = 4 , 6 , 8), Cn N- (n = 1 , 3 , 5) have been recently observed in the interstellar medium (ISM). A possible mechanism of formation is radiative electron attachment (REA). In this study we develop a first principle theoretical approach to study the REA and apply the approach to the formation of the negative molecular ions CN-, C2 H-, C3 N-, C4 H-, C5 N-, C6 H-, and C8 H-. The theoretical approach is based on the UK R-matrix calculations. Cross sections and rate coefficients for formation of these ions by REA to the corresponding neutral radicals are calculated. There is no experimental data on REA of these ions. However, using a similar approach we have also calculated cross sections for photodetachment of the negative ions and compared the obtained results with available experimental data. The good agreement with photodetachment experimental data provides a confirmation that the REA cross sections obtained in this study is also reliable. NSF Grant PHYS-1506391.

  6. Dissociative electron attachment to halogen molecules: Angular distributions and nonlocal effects

    NASA Astrophysics Data System (ADS)

    Fabrikant, I. I.

    2016-11-01

    We study dissociative electron attachment (DEA) to the ClF and F2 molecules. We formulate a method for calculation of partial resonance widths and calculate the angular distributions of the products in the ClF case using the local and nonlocal versions of the complex potential theory of DEA. They show the dominance of the p wave except in a narrow energy region close to zero energy. Comparison of the local and nonlocal DEA cross sections show that the former are smaller than the latter by a factor of 2 in the energy region important for calculation of thermal rate coefficients. This result is confirmed by comparison of the local and nonlocal calculations for F2. Only at low energies below 30 meV the local cross sections exceed nonlocal due to the 1 /E divergence of the local results. On the other hand, the thermal rate coefficients generated from the local cross sections agree better with experiment than those calculated from the nonlocal cross sections. The most likely reason for this disagreement is the overestimated resonance width in the region of internuclear distances close to the point of crossing between the neutral and anion potential-energy curves.

  7. Gas Phase Dissociative Electron Attachment to Formamide Derivatives NMF and DMF

    NASA Astrophysics Data System (ADS)

    Li, Zhou; Dawley, M. Michele; Ptasinska, Sylwia

    2015-09-01

    Fragmentation of biomolecules, such as nucleobases, induced by low energy electrons can lead to the break of DNA strands. Dissociative electron attachment (DEA), which can occur due to low energy interactions, is initiated with the formation of transient negative ions which exhibit characteristic resonant profiles in the product ion yield. The consequent fragmentation process can either be as simple as a single bond cleavage or a relatively complex process involving multiple bond rearrangements. Measurements of resonant peaks in ion yields and identification of ion products provide information of the resonant energies of the parent molecules as well as the fragmentation pathways. N-methylformamide (NMF) and dimethylformamide (DMF) are both derivatives of formamide which is the simplest structure containing the peptide bond linkage. In this work we identified anion fragments and measured resonance profiles of produced anions due to DEA to NMF and DMF. The anionic species produced from the two molecules were compared as well as the resonant positions and ion yields. Based on this comparison, the DEA process to the two molecules bears similarities such as leading to breaking of peptide bonds (C-N), as well as discrepancies such as absence of OCN- in DEA to DMF. The selective property of H atom loss, which is reported in the DEA to formamide, is also justified in our experiment since no dehydrogenated DMF anion was detected. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Award Number DE-FC02-04ER15533.

  8. Negative-ion formation in the explosives RDX, PETN, and TNT using the Reversal Electron Attachment Detection (READ) technique

    NASA Technical Reports Server (NTRS)

    Chutijian, Ara; Boumsellek, S.; Alajajian, S. H.

    1992-01-01

    In the search for high sensitivity and direct atmospheric sampling of trace species, techniques have been developed such as atmospheric-sampling, glow-discharge ionization (ASGDI), corona discharge, atmospheric pressure ionization (API), electron-capture detection (ECD), and negative-ion chemical ionization (NICI) that are capable of detecting parts-per-billion to parts-per-trillion concentrations of trace species. These techniques are based on positive- or negative-ion formation via charge-transfer to the target, or electron capture under multiple-collision conditions in a Maxwellian distribution of electron energies at the source temperature. One drawback of the high-pressure, corona- or glow-discharge devices is that they are susceptible to interferences either through indistinguishable product masses, or through undesired ion-molecule reactions. The ASGDI technique is relatively immune from such interferences, since at target concentrations of less than 1 ppm the majority of negative ions arises via electron capture rather than through ion-molecule chemistry. A drawback of the conventional ECD, and possibly of the ASGDI, is that they exhibit vanishingly small densities of electrons with energies in the range 0-10 millielectron volts (meV), as can be seen from a typical Maxwellian electron energy distribution function at T = 300 K. Slowing the electrons to these subthermal (less than 10 meV) energies is crucial, since the cross section for attachment of several large classes of molecules is known to increase to values larger than 10(exp -12) sq cm at near-zero electron energies. In the limit of zero energy these cross sections are predicted to diverge as epsilon(exp -1/2), where epsilon is the electron energy. In order to provide a better 'match' between the electron energy distribution function and attachment cross section, a new concept of attachment in an electrostatic mirror was developed. In this scheme, electrons are brought to a momentary halt by

  9. Cross sections for 14-eV e-H{sub 2} resonant collisions: Isotope effect in dissociative electron attachment

    SciTech Connect

    Celiberto, R.; Janev, R. K.; Wadehra, J. M.; Laricchiuta, A.

    2011-07-15

    The process of dissociative attachment of electrons to molecular hydrogen and its isotopes in the energy range at approximately 14 eV is investigated. The dissociative electron attachment cross sections for all six hydrogen isotopes are calculated over an extended range of electron energies using the local complex potential model with the excited Rydberg {sup 2}{Sigma}{sub g}{sup +} electronic state of H{sub 2}{sup -} acting as the intermediate resonant state. A significant isotope effect in theoretical electron attachment cross sections is observed, in agreement with previous predictions and experimental observations. A two-parameter analytic expression for the cross section is derived from the theory that fits accurately the numerically calculated cross sections for all isotopes. Similarly, an analytic mass-scaling relation is derived from the theory that accurately reproduces the numerically calculated rate coefficients for all isotopes in the 0.1-1000 eV temperature range by using the rate coefficient for the H{sub 2} isotope only. The latter is represented by an analytic fit expression with two parameters only.

  10. Electron Attachment to Pentafluorobenzene, to Oxygen in a Mixture of 90% Argon and 10% Methane, and to Oxygen in Various Polar/nitrogen Mixtures.

    NASA Astrophysics Data System (ADS)

    Metcalfe, Clive, III

    By means of electron swarm experiments, electron attachment to pentafluorobenzene (C(,6)HF(,5)) in nitrogen (N(,2)) and to oxygen (O(,2)) in various gas mixtures has been studied. The variation of the electron attachment rate for C(,6)HF(,5) in N(,2) with the gas pressure and with the mean electron energy was determined. The lifetime of the species C(,6)HF(,5)('-*) against autoionization was deduced and the electron attachment cross section for C(,6)HF(,5) was calculated. The influence of the permanent electric dipole of C(,6)HF(,5) upon the electron attachment process is discussed. Electron attachment to O(,2) in P-10 (90% argon + 10% methane) and in mixtures of various polar molecules with N(,2) was investigated. As a preliminary to these studies electron drift velocities in P-10 and in the various mixtures of polar species with N(,2) were determined. These drift velocities are reported and discussed. The variation of the electron attachment rate for O(,2) in P-10 with the P-10 pressure and the mean electron energy was determined. The attachment rate as a function of mean electron energy was found to possess distinct structure. Models which account for this structure and for the variation of the attachment rate with the P-10 pressure are advanced and the corresponding reaction rate constants are presented. The electron attachment rates for O(,2) in mixtures of N(,2) with 1-butene, dimethyl amine, ammonia, trifluoromethane, and acetaldehyde were measured. Models of the variation of the attachment rate with the concentration of the polar species are advanced and the corresponding reaction rate constants are presented.

  11. Theoretical study of pressure dependence of transition temperature of In and Pb

    SciTech Connect

    Kumar, Priyank; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.

    2015-08-28

    Recently proposed structured local pseudopotential (PP) by Fiolhais et al. has been successfully used to compute superconducting state parameters (SSP): electron-phonon coupling strength (λ), Coulomb pseudopotential (μ*), critical temperature (T{sub c}), effective interaction strength (N{sub 0}V), isotopic effect parameter (α) and their pressure dependence of non-transition metals In and Pb as a test case. Pressure dependence of the Debye temperature has been computed by Gruneisen model. Present results are in good agreement with experimental and other theoretical results. Present study has been further extended to estimate volume (critical volume) at which λ=μ*, where Tc and N{sub 0}V becomes zero. The presently used model is found to be transferable at the extreme environment without any adjustment of parameters further alongwith its simplicity and predictivity.

  12. s-wave threshold in electron attachment - Results in 2-C4F6 and CFCl3 at ultra-low electron energies

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Alajajian, S. H.; Ajello, J. M.; Orient, O. J.

    1984-01-01

    Electron attachment lineshapes and cross sections are reported for the processes 2-C4F6(-)/2-C4F6 and Cl(-)/CFCl3 at electron energies of 0-120 and 0-140 meV, and at resolutions of 6 and 7 meV (FWHM), respectively. As in previous measurements in CCl4 and SF6, the results show resolution-limited narrow structure in the cross section at electron energies below 15 meV. This structure arises from the divergence of the s-wave cross section in the limit of zero electron energy. Comparisons are given with swarm-measured results, and with collisional ionization (high-Rydberg attachment) data in this energy range.

  13. Mechanistic investigation on pressure dependency of Heckel parameter.

    PubMed

    Patel, Sarsvatkumar; Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2010-04-15

    This work proposed to study the influence of varying compaction pressure on the plastic energy, elasticity (Young's modulus), particle yield strength, strain hardening, and applied pressures on derived Heckel parameter using material with different densification and deformation mechanisms: ibuprofen (IBN), paracetamol (PCM) (elastic behavior), methyl cellulose (Me-Cel), microcrystalline cellulose (MCC), sodium chloride (NaCl) (plastic behavior), and dicalcium phosphate (DCP) (brittle fracture). Force-displacement data were captured during in-die compaction for all materials having different deformation behavior. The apparent mean yield pressure (Py), plastic energy, Young's moduli, strain hardening parameter and rate of increase in Py were calculated from force-displacement compaction profiles obtained across a pressure range of 65-260 MPa. Materials under confined compression loading showed pressure dependent biphasic behavior in Py upon increasing pressure from 65 MPa to 260 MPa. IBN and PCM showed pressure dependency due to simultaneous elasticity and strain hardening upon increasing applied pressure. Me-Cel, MCC, and NaCl showed lower pressure dependency while DCP showed higher change in Py upon increasing pressure as a result of higher yield strength of DCP particles. Apparent mean yield pressure from Heckel analysis was significantly affected by the applied pressure, viscoelastic behavior, particle yield strength, and strain hardening. The simultaneously occurring events of elastic deformation and strain hardening give a false increase in Py at higher applied pressures.

  14. Pressure-Dependent Criegee Intermediate Stabilization from Alkene Ozonolysis.

    PubMed

    Hakala, Jani P; Donahue, Neil M

    2016-04-14

    We explored the pressure dependence of acetone oxide (stabilized Criegee Intermediate, sCI) formation from 2,3-dimethyl-2-butene ozonolysis between 50 and 900 Torr using a new, highly accurate technique. We exploited the ability of the sCI to oxidize SO2 to H2SO4, which we measured with a chemical ionization mass spectrometer. We produced the Criegee intermediates (CI) in a high-pressure flow reactor via ozonolysis of 2,3-dimethyl-2-butene (tetramethyl ethylene, TME) and measured the relative H2SO4 concentrations with and without an added OH scavenger. Because the TME reaction with ozone forms acetone oxide (a syn-CI) with unit efficiency, we directly calculated the sCI yields at different pressures from the precisely measured ratio of the uncalibrated H2SO4 signal with and without the scavenger. We observed a linear pressure dependence between 50 and 900 Torr with a minimum stabilization of 12.7 ± 0.6% at 50 Torr and a maximum stabilization of 42 ± 2% at 900 Torr. A linear fit to the measured data points shows a zero-pressure intercept of 15 ± 2%, constraining the fraction of CI formed below the barrier for acetone oxide isomerization.

  15. A Scanning Electron Microscopic Study of Cell Attachment to Biodegradable Polymer Implants

    DTIC Science & Technology

    1988-08-15

    attachment ABSTRACT Y he biodegradable polymers, polylactic acid (PLA) and polyglycolic acid (PGA) are currently being studied as carriers for bioactive bone ...Research focuses on their use for sustained antibiotic delivery, bone fracture stabilization, moldable osseous repair materials and as vehicles for...hydrolytic scission which may be mediated by a variety of proteolytic enzymes. (1 ,7) Through this process, both lactic acid and glycolic acid , the respective

  16. Improving Attachments of Non-Invasive (Type III) Electronic Data Loggers to Cetaceans

    DTIC Science & Technology

    2011-09-30

    Voluson i portable ultrasound unit; 2-5 MHz RAB 3D/ 4D volume transducer) to acquire a baseline image. DA-PRO or shin-etsu semi-transparent cups were...some instrumented with a manometer, photography and ultrasound scanning. Method: The target area of the skin was scanned with ultrasound (GE...impression on the skin was then recorded photographically. The area where the cup had been attached and adjacent skin was then scanned with ultrasound

  17. Improving Attachments of Non-Invasive (Type 3) Electronic Data Loggers to Cetaceans

    DTIC Science & Technology

    2012-09-30

    with cyanoacrylate (Loctite liquid professional Super Glue ) are presented here. Method: An ASTM standard method (Anonymous, 1997) was used to...Objective: Utilize a rapid curing topical glue to extend the reliable longevity of noninvasive tag attachments to multiple days without harmful...before the application of the pseudobarnacles. 4 One drop (30ul) of liquid super glue was applied to the vinyl section of the pseuobarnacle, and

  18. Electron swarm properties under the influence of a very strong attachment in SF6 and CF3I obtained by Monte Carlo rescaling procedures

    NASA Astrophysics Data System (ADS)

    Mirić, J.; Bošnjaković, D.; Simonović, I.; Petrović, Z. Lj; Dujko, S.

    2016-12-01

    Electron attachment often imposes practical difficulties in Monte Carlo simulations, particularly under conditions of extensive losses of seed electrons. In this paper, we discuss two rescaling procedures for Monte Carlo simulations of electron transport in strongly attaching gases: (1) discrete rescaling, and (2) continuous rescaling. The two procedures are implemented in our Monte Carlo code with an aim of analyzing electron transport processes and attachment induced phenomena in sulfur-hexafluoride (SF6) and trifluoroiodomethane (CF3I). Though calculations have been performed over the entire range of reduced electric fields E/n 0 (where n 0 is the gas number density) where experimental data are available, the emphasis is placed on the analysis below critical (electric gas breakdown) fields and under conditions when transport properties are greatly affected by electron attachment. The present calculations of electron transport data for SF6 and CF3I at low E/n 0 take into account the full extent of the influence of electron attachment and spatially selective electron losses along the profile of electron swarm and attempts to produce data that may be used to model this range of conditions. The results of Monte Carlo simulations are compared to those predicted by the publicly available two term Boltzmann solver BOLSIG+. A multitude of kinetic phenomena in electron transport has been observed and discussed using physical arguments. In particular, we discuss two important phenomena: (1) the reduction of the mean energy with increasing E/n 0 for electrons in \\text{S}{{\\text{F}}6} and (2) the occurrence of negative differential conductivity (NDC) in the bulk drift velocity only for electrons in both \\text{S}{{\\text{F}}6} and CF3I. The electron energy distribution function, spatial variations of the rate coefficient for electron attachment and average energy as well as spatial profile of the swarm are calculated and used to understand these phenomena.

  19. Theoretical study of radiative electron attachment to CN, C{sub 2}H, and C{sub 4}H radicals

    SciTech Connect

    Douguet, Nicolas; Fonseca dos Santos, S.; Orel, Ann E.; Raoult, Maurice; Dulieu, Olivier

    2015-06-21

    A first-principle theoretical approach to study the process of radiative electron attachment is developed and applied to the negative molecular ions CN{sup −}, C{sub 4}H{sup −}, and C{sub 2}H{sup −}. Among these anions, the first two have already been observed in the interstellar space. Cross sections and rate coefficients for formation of these ions by direct radiative electron attachment to the corresponding neutral radicals are calculated. For the CN molecule, we also considered the indirect pathway, in which the electron is initially captured through non-Born-Oppenheimer coupling into a vibrationally resonant excited state of the anion, which then stabilizes by radiative decay. We have shown that the contribution of the indirect pathway to the formation of CN{sup −} is negligible in comparison to the direct mechanism. The obtained rate coefficients for the direct mechanism at 30 K are 7 × 10{sup −16} cm{sup 3}/s for CN{sup −}, 7 × 10{sup −17} cm{sup 3}/s for C{sub 2}H{sup −}, and 2 × 10{sup −16} cm{sup 3}/s for C{sub 4}H{sup −}. These rates weakly depend on temperature between 10 K and 100 K. The validity of our calculations is verified by comparing the present theoretical results with data from recent photodetachment experiments.

  20. Electron Attachment to Halomethanes at High Temperature: CH2CI2, CF2CI2, CH3CI, and CF3CI Attachment Rate Constants up to 1100 K

    DTIC Science & Technology

    2009-08-01

    49 meV for hydrogen- containing molecules. Thus, on the basis of G3 calculations, Eq. (2) cannot be said to be definitely exothermic . However, the...reaction is exothermic . Fabrikant and Hotop gave an analysis of Arrhenius plots for dissociative electron attachment. For our sole endothermic case...CH2CI2, CF3CI, and CF2C12. Two of these cases, as with CH,CI, are exothermic toward electron attachment. e" + CF3CI-+CF3 + CP - 143 meV. (4) e

  1. Pressure-dependent photoluminescence study of ZnO nanowires

    SciTech Connect

    Shan, W.; Walukiewicz, W.; Ager III, J.W.; Yu, K.M.; Zhang, Y.; Mao, S.S.; Kling, R.

    2004-09-13

    The pressure dependence of the photoluminescence (PL) transition associated with the fundamental band gap of ZnO nanowires has been studied at pressures up to 15 GPa. ZnO nanowires are found to have a higher structural phase transition pressure around 12 GPa as compared to 9.0 GPa for bulk ZnO. The pressure-induced energy shift of the near band-edge luminescence emission yields a linear pressure coefficient of 29.6 meV/GPa with a small sublinear term of -0.43 meV/GPa{sup 2}. An effective hydrostatic deformation potential -3.97 eV for the direct band gap of the ZnO nanowires is derived from the result.

  2. Improving Attachments of Non-Invasive (Type III) Electronic Data Loggers to Cetaceans

    DTIC Science & Technology

    2013-09-30

    neoprene rubber (a stand in for cetacean skin. A normal force was applied to the sample using a flat box with weight, and the pull force was created... neoprene with a normal force FN = 0.74 N (76 g load) and pull force FPull = 0.83 N (85 g load). For silicone samples, a more appropriate normal force...attachment The neoprene surface has random low aspect ratio surface texturing that does not match up with the urethane ridges nor the silicone pillars. This

  3. Photon-Enhanced Electron Attachment Processes in Discharge-Opening Switches.

    DTIC Science & Technology

    1987-02-01

    SUBJECT TERMS (ContinueO n rverSe if neceSsary and identify by block number) ED GROUP SUB- GROUP 19 ABk7RACT (Coninu~e on reverse it necessary and identify...BUFFER GASPRSSURE S The lower data group corresponds to drssocsatrve slcfron attachmenr for ih’o groun sIJ’e of vtnyichoe doata kox FIGURE 3-31 9% _ ,i • i...of helium buffer gas and 100 mTorr of TFE. The attachment to ground state TFE is described by the lower group of points in the "/P versus E/N graph

  4. Low energy (0-4 eV) electron impact to N{sub 2}O clusters: Dissociative electron attachment, ion-molecule reactions, and vibrational Feshbach resonances

    SciTech Connect

    Vizcaino, Violaine; Denifl, Stephan; Maerk, Tilmann D.; Scheier, Paul; Illenberger, Eugen

    2010-10-21

    Electron attachment to clusters of N{sub 2}O in the energy range of 0-4 eV yields the ionic complexes [(N{sub 2}O){sub n}O]{sup -}, [(N{sub 2}O){sub n}NO]{sup -}, and (N{sub 2}O){sub n}{sup -} . The shape of the ion yields of the three homologous series differs substantially reflecting the different formation mechanisms. While the generation of [(N{sub 2}O){sub n}O]{sup -} can be assigned to dissociative electron attachment (DEA) of an individual N{sub 2}O molecule in the target cluster, the formation of [(N{sub 2}O){sub n}NO]{sup -} is interpreted via a sequence of ion molecule reactions involving the formation of O{sup -} via DEA in the first step. The nondecomposed complexes (N{sub 2}O){sub n}{sup -} are preferentially formed at very low energies (below 0.5 eV) as a result of intramolecular stabilization of a diffuse molecular anion at low energy. The ion yields of [(N{sub 2}O){sub n}O]{sup -} and (N{sub 2}O){sub n}{sup -} versus electron energy show sharp peaks at the threshold region, which can be assigned to vibrational Feshbach resonances mediated by the diffuse anion state as already observed in an ultrahigh resolution electron attachment study of N{sub 2}O clusters [E. Leber, S. Barsotti, J. Boemmels, J. M. Weber, I. I. Fabrikant, M.-W. Ruf, and H. Hotop, Chem. Phys. Lett. 325, 345 (2000)].

  5. Modulation instability and dissipative rogue waves in ion-beam plasma: Roles of ionization, recombination, and electron attachment

    SciTech Connect

    Guo, Shimin Mei, Liquan

    2014-11-15

    The amplitude modulation of ion-acoustic waves is investigated in an unmagnetized plasma containing positive ions, negative ions, and electrons obeying a kappa-type distribution that is penetrated by a positive ion beam. By considering dissipative mechanisms, including ionization, negative-positive ion recombination, and electron attachment, we introduce a comprehensive model for the plasma with the effects of sources and sinks. Via reductive perturbation theory, the modified nonlinear Schrödinger equation with a dissipative term is derived to govern the dynamics of the modulated waves. The effect of the plasma parameters on the modulation instability criterion for the modified nonlinear Schrödinger equation is numerically investigated in detail. Within the unstable region, first- and second-order dissipative ion-acoustic rogue waves are present. The effect of the plasma parameters on the characteristics of the dissipative rogue waves is also discussed.

  6. Periodicity in Attachment Organelle Revealed by Electron Cryotomography Suggests Conformational Changes in Gliding Mechanism of Mycoplasma pneumoniae

    PubMed Central

    Kawamoto, Akihiro; Matsuo, Lisa; Kato, Takayuki; Yamamoto, Hiroki

    2016-01-01

    ABSTRACT Mycoplasma pneumoniae, a pathogenic bacterium, glides on host surfaces using a unique mechanism. It forms an attachment organelle at a cell pole as a protrusion comprised of knoblike surface structures and an internal core. Here, we analyzed the three-dimensional structure of the organelle in detail by electron cryotomography. On the surface, knoblike particles formed a two-dimensional array, albeit with limited regularity. Analyses using a nonbinding mutant and an antibody showed that the knoblike particles correspond to a naplike structure that has been observed by negative-staining electron microscopy and is likely to be formed as a complex of P1 adhesin, the key protein for binding and gliding. The paired thin and thick plates feature a rigid hexagonal lattice and striations with highly variable repeat distances, respectively. The combination of variable and invariant structures in the internal core and the P1 adhesin array on the surface suggest a model in which axial extension and compression of the thick plate along a rigid thin plate is coupled with attachment to and detachment from the substrate during gliding. PMID:27073090

  7. Enhancements in dissociative electron attachment to CF4, chlorofluorocarbons and hydrochlorofluorocarbons adsorbed on H2O ice.

    PubMed

    Lu, Q-B; Sanche, L

    2004-02-01

    We report that the absolute cross sections for dissociative attachment of approximately 0 eV electrons to chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are strongly enhanced by the presence of H2O ice. The absolute cross sections for CFCl3, CHF2Cl, and CH3CF2Cl on water ice are measured to be approximately 8.9 x 10(-14), approximately 5.1 x 10(-15), and approximately 4.9 x 10(-15) cm2 at approximately 0 eV, respectively. The former value is about 1 order of magnitude higher than that in the gas phase, while the latter two are 3-4 orders higher. In contrast, the resonances at electron energies > or = 2.0 eV are strongly suppressed either for CFCs and HCFCs or for CF4 adsorbed on H2O ice. The cross-section enhancement is interpreted to be due to electron transfer from precursor states of the solvated electron in ice to an unfilled molecular orbital of CFCs or HCFCs followed by its dissociation. This study indicates that electron-induced dissociation is a significant process leading to CFC and HCFC fragmentation on ice surfaces.

  8. Electron attachment to hydrated oligonucleotide dimers: guanylyl-3',5'-cytidine and cytidylyl-3',5'-guanosine.

    PubMed

    Gu, Jiande; Xie, Yaoming; Schaefer, Henry F

    2010-05-03

    The dinucleoside phosphate deoxycytidylyl-3',5'-deoxyguanosine (dCpdG) and deoxyguanylyl-3',5'-deoxycytidine (dGpdC) systems are among the largest to be studied by reliable theoretical methods. Exploring electron attachment to these subunits of DNA single strands provides significant progress toward definitive predictions of the electron affinities of DNA single strands. The adiabatic electron affinities of the oligonucleotides are found to be sequence dependent. Deoxycytidine (dC) on the 5' end, dCpdG, has larger adiabatic electron affinity (AEA, 0.90 eV) than dC on the 3' end of the oligomer (dGpdC, 0.66 eV). The geometric features, molecular orbital analyses, and charge distribution studies for the radical anions of the cytidine-containing oligonucleotides demonstrate that the excess electron in these anionic systems is dominantly located on the cytosine nucleobase moiety. The pi-stacking interaction between nucleobases G and C seems unlikely to improve the electron-capturing ability of the oligonucleotide dimers. The influence of the neighboring base on the electron-capturing ability of cytosine should be attributed to the intensified proton accepting-donating interaction between the bases. The present investigation demonstrates that the vertical detachment energies (VDEs) of the radical anions of the oligonucleotides dGpdC and dCpdG are significantly larger than those of the corresponding nucleotides. Consequently, reactions with low activation barriers, such as those for O-C sigma bond and N-glycosidic bond breakage, might be expected for the radical anions of the guanosine-cytosine mixed oligonucleotides.

  9. Comparative electron paramagnetic resonance investigation of reduced graphene oxide and carbon nanotubes with different chemical functionalities for quantum dot attachment

    SciTech Connect

    Pham, Chuyen V.; Krueger, Michael E-mail: emre.erdem@physchem.uni-freiburg.de; Eck, Michael; Weber, Stefan; Erdem, Emre E-mail: emre.erdem@physchem.uni-freiburg.de

    2014-03-31

    Electron paramagnetic resonance (EPR) spectroscopy has been applied to different chemically treated reduced graphene oxide (rGO) and multiwalled carbon nanotubes (CNTs). A narrow EPR signal is visible at g = 2.0029 in both GO and CNT-Oxide from carbon-related dangling bonds. EPR signals became broader and of lower intensity after oxygen-containing functionalities were reduced and partially transformed into thiol groups to obtain thiol-functionalized reduced GO (TrGO) and thiol-functionalized CNT (CNT-SH), respectively. Additionally, EPR investigation of CdSe quantum dot-TrGO hybrid material reveals complete quenching of the TrGO EPR signal due to direct chemical attachment and electronic coupling. Our work confirms that EPR is a suitable tool to detect spin density changes in different functionalized nanocarbon materials and can contribute to improved understanding of electronic coupling effects in nanocarbon-nanoparticle hybrid nano-composites promising for various electronic and optoelectronic applications.

  10. Experimental SF6/-//SF6 and Cl/-//CFC13 electron-attachment cross sections in the energy range 0-200 meV

    NASA Technical Reports Server (NTRS)

    Chutjian, A.

    1981-01-01

    Experimental cross sections for the electron-attachment processes for SF6(-)/SF6 and Cl(-)/CFl3 are reported in the energy range 0-200 meV by normalizing each attachment line shape to measurement of a thermal rate coefficient. When the same ion states are detected, good agreement is found between present values, for which a monoenergetic electron source is used, and swarm-unfolded results. The present data constitute a new limit for cross sections reported at high resolution at the lowest electron energy.

  11. Observation of dihalide elimination upon electron attachment to oxalyl chloride and oxalyl bromide, 300-550 K

    SciTech Connect

    Van Doren, Jane M.; Hogan, Kathleen B.; Miller, Thomas M.; Viggiano, A.A.

    2006-05-14

    Rate coefficients have been measured for electron attachment to oxalyl chloride [ClC(O)C(O)Cl] and oxalyl bromide [BrC(O)C(O)Br] in He gas at 133 Pa pressure over the temperature range of 300-550 K. With oxalyl chloride, the major ion product of attachment is Cl{sub 2}{sup -} at all temperatures (66% at 300 K); its importance increases slightly as temperature increases. Two other product ions formed are Cl{sup -} (18% at 300 K) and the phosgene anion CCl{sub 2}O{sup -} (16% at 300 K) and appear to arise from a common mechanism. With oxalyl bromide, the Br{sub 2}{sup -} channel represents almost half of the ion product of attachment, independent of temperature. Br{sup -} accounts for the remainder. For oxalyl chloride, the attachment rate coefficient is small [(1.8{+-}0.5)x10{sup -8} cm{sup 3} s{sup -1} at 300 K], and increases with temperature. The attachment rate coefficient for oxalyl bromide [(1.3{+-}0.4)x10{sup -7} cm{sup 3} s{sup -1} at 300 K] is nearly collisional and increases only slightly with temperature. Stable parent anions C{sub 2}Cl{sub 2}O{sub 2}{sup -} and C{sub 2}Br{sub 2}O{sub 2}{sup -} and adduct anions Cl{sup -}(C{sub 2}Cl{sub 2}O{sub 2}) and Br{sup -}(C{sub 2}Br{sub 3}O{sub 2}) were observed but are not primary attachment products. G2 and G3 theories were applied to determine geometries of products and energetics of the electron attachment and ion-molecule reactions studied. Electron attachment to both oxalyl halide molecules leads to a shorter C-C bond and longer C-Cl bond in the anions formed. Trans and gauche conformers of the neutral and anionic oxalyl halide species have similar energies and are more stable than the cis conformer, which lies 100-200 meV higher in energy. For C{sub 2}Cl{sub 2}O{sub 2}, C{sub 2}Cl{sub 2}O{sub 2}{sup -}, and C{sub 2}Br{sub 2}O{sub 2}{sup -}, the trans conformer is the most stable conformation. The calculations are ambiguous as to the oxalyl bromide geometry (trans or gauche), the result depending on the

  12. Plane wave density functional theory studies of the structural and the electronic properties of amino acids attached to graphene oxide via peptide bonding

    NASA Astrophysics Data System (ADS)

    Min, Byeong June; Jeong, Hae Kyung; Lee, ChangWoo

    2015-08-01

    We studied via plane wave pseudopotential total-energy calculations within the local spin density approximation (LSDA) the electronic and the structural properties of amino acids (alanine, glycine, and histidine) attached to graphene oxide (GO) by peptide bonding. The HOMO-LUMO gap, the Hirshfeld charges, and the equilibrium geometrical structures exhibit distinctive variations that depend on the species of the attached amino acid. The GO-amino acid system appears to be a good candidate for a biosensor.

  13. Investigation of the Mechanism of Electron Capture and Electron Transfer Dissociation of Peptides with a Covalently Attached Free Radical Hydrogen Atom Scavenger.

    PubMed

    Sohn, Chang Ho; Yin, Sheng; Peng, Ivory; Loo, Joseph A; Beauchamp, J L

    2015-11-15

    The mechanisms of electron capture and electron transfer dissociation (ECD and ETD) are investigated by covalently attaching a free-radical hydrogen atom scavenger to a peptide. The 2,2,6,6-tetramethylpiperidin-l-oxyl (TEMPO) radical was chosen as the scavenger due to its high hydrogen atom affinity (ca. 280 kJ/mol) and low electron affinity (ca. 0.45 ev), and was derivatized to the model peptide, FQX(TEMPO)EEQQQTEDELQDK. The X(TEMPO) residue represents a cysteinyl residue derivatized with an acetamido-TEMPO group. The acetamide group without TEMPO was also examined as a control. The gas phase proton affinity (882 kJ/mol) of TEMPO is similar to backbone amide carbonyls (889 kJ/mol), minimizing perturbation to internal solvation and sites of protonation of the derivatized peptides. Collision induced dissociation (CID) of the TEMPO tagged peptide dication generated stable odd-electron b and y type ions without indication of any TEMPO radical induced fragmentation initiated by hydrogen abstraction. The type and abundance of fragment ions observed in the CID spectra of the TEMPO and acetamide tagged peptides are very similar. However, ECD of the TEMPO labeled peptide dication yielded no backbone cleavage. We propose that a labile hydrogen atom in the charge reduced radical ions is scavenged by the TEMPO radical moiety, resulting in inhibition of N-Cα backbone cleavage processes. Supplemental activation after electron attachment (ETcaD) and CID of the charge-reduced precursor ion generated by electron transfer of the TEMPO tagged peptide dication produced a series of b + H (b(H)) and y + H (y(H)) ions along with some c ions having suppressed intensities, consistent with stable O-H bond formation at the TEMPO group. In summary, the results indicate that ECD and ETD backbone cleavage processes are inhibited by scavenging of a labile hydrogen atom by the localized TEMPO radical moiety. This observation supports the conjecture that ECD and ETD processes involve long

  14. Equation of motion coupled cluster methods for electron attachment and ionization potential in polyacenes

    SciTech Connect

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Jarrell, Mark; Moreno, Juana; Shelton, William A.

    2015-11-05

    Polyacenes have attracted considerable attention due to their use in organic based optoelectronic materials. Polyacenes are polycyclic aromatic hydrocarbons composed of fused benzene rings. Key to understanding and design of new functional materials is an understanding of their excited state properties starting with their electron affinity (EA) and ionization potential (IP). We have developed a highly accurate and com- putationally e*fficient EA/IP equation of motion coupled cluster singles and doubles (EA/IP-EOMCCSD) method that is capable of treating large systems and large basis set. In this study we employ the EA/IP-EOMCCSD method to calculate the electron affinity and ionization potential of naphthalene, anthracene, tetracene, pentacene, hex- acene and heptacene. We have compared our results with other previous theoretical studies and experimental data. Our EA/IP results are in very good agreement with experiment and when compared with the other theoretical investigations our results represent the most accurate calculations as compared to experiment.

  15. Computational study of dissociative electron attachment to π-allyl ruthenium (II) tricarbonyl bromide

    NASA Astrophysics Data System (ADS)

    Thorman, Rachel M.; Bjornsson, Ragnar; Ingólfsson, Oddur

    2016-08-01

    Motivated by the current interest in low energy electron induced fragmentation of organometallic complexes in focused electron beam induced deposition (FEBID) we have evaluated different theoretical protocols for the calculation of thermochemical threshold energies for DEA to the organometallic complex π-allyl ruthenium (II) tricarbonyl bromide. Several different computational methods including density functional theory (DFT), hybrid-DFT and coupled cluster were evaluated for their ability to predict these threshold energies and compared with the respective experimental values. Density functional theory and hybrid DFT methods were surprisingly found to have poor reliability in the modelling of several DEA reactions; however, the coupled cluster method LPNO-pCCSD/2a was found to produce much more accurate results. Using the local correlation pair natural orbital (LPNO) methodology, high level coupled cluster calculations for open-shell systems of this size are now affordable, paving the way for reliable theoretical DEA predictions of such compounds.

  16. Improving Attachments of Non-Invasive (Type III) Electronic Data Loggers to Cetaceans

    DTIC Science & Technology

    2015-09-30

    Electronic Data Loggers to Cetaceans Michael Moore, Alex Shorter, Tom Hurst, and Alessandro Bocconcelli Woods Hole Oceanographic Institution Woods Hole...under pressure loading. This system uses stereoscopic cameras and digital image correlation to make full-field deformation and strain maps of the skin...in place of the single point measurements made using the SSCUP. Method: Digital image correlation (DIC) tracks unique features on the surface of

  17. An All-Elastomeric Transparent and Stretchable Temperature Sensor for Body-Attachable Wearable Electronics.

    PubMed

    Trung, Tran Quang; Ramasundaram, Subramaniyan; Hwang, Byeong-Ung; Lee, Nae-Eung

    2016-01-20

    A transparent stretchable (TS) gated sensor array with high optical transparency, conformality, and high stretchability of up to 70% is demonstrated. The TS-gated sensor array has high responsivity to temperature changes in objects and human skin. This unprecedented TS-gated sensor array, as well as the integrated platform of the TS-gated sensor with a transparent and stretchable strain sensor, show great potential for application to wearable skin electronics for recognition of human activity.

  18. Electron attachment to solvated dGpdG: effects of stacking on base-centered and phosphate-centered valence-bound radical anions.

    PubMed

    Gu, Jiande; Liang, Guoming; Xie, Yaoming; Schaefer, Henry F

    2012-04-23

    To explore the nature of electron attachment to guanine-centered DNA single strands in the presence of a polarizable medium, a theoretical investigation of the DNA oligomer dinucleoside phosphate deoxyguanylyl-3',5'-deoxyguanosine (dGpdG) was performed by using density functional theory. Four different electron-distribution patterns for the radical anions of dGpdG in aqueous solution have been located as local minima on the potential energy surface. The excess electron is found to reside on the proton of the phosphate group (dGp(H-)dG), or on the phosphate group (dGp(.-)dG), or on the nucleobase at the 5' position (dG(.-)pdG), or on the nucleobase at the 3' position (dGpdG(.-)), respectively. These four radical anions are all expected to be electronically viable species under the influence of the polarizable medium. The predicted energetics of the radical anions follows the order dGp(.-)dG>dG(.-)pdG>dGpdG(.-)>dGp(H-)dG. The base-base stacking pattern in DNA single strands seems unaffected by electron attachment. On the contrary, intrastrand H-bonding is greatly influenced by electron attachment, especially in the formation of base-centered radical anions. The intrastrand H-bonding patterns revealed in this study also suggest that intrastrand proton transfer might be possible between successive guanines due to electron attachment to DNA single strands.

  19. Barrier-free intermolecular proton transfer in the uracil-glycine complex induced by excess electron attachment

    NASA Astrophysics Data System (ADS)

    Gutowski, M.; Dąbkowska, I.; Rak, J.; Xu, S.; Nilles, J. M.; Radisic, D.; Bowen, K. H., Jr.

    2002-09-01

    The photoelectron spectra (PES) of anions of uracil-glycine and uracil-phenylalanine complexes reveal broad features with maxima at 1.8 and 2.0 eV. The results of ab initio density functional B3LYP and second order Møller-Plesset theory calculations indicate that the excess electron occupies a π^* orbital localized on uracil. The excess electron attachment to the complex can induce a barrier-free proton transfer (BFPT) from the carboxylic group of glycine to the O8 atom of uracil. As a result, the four most stable structures of the anion of uracil-glycine complex can be characterized as the neutral radical of hydrogenated uracil solvated by the anion of deprotonated glycine. The similarity between the PES spectra for the uracil complexes with glycine and phenylalanine suggests that the BFPT is also operative in the case of the latter anionic species. The BFPT to the O8 atom of uracil may be related to the damage of nucleic acid bases by low energy electrons because the O8 atom is involved in a hydrogen bond with adenine in the standard Watson-Crick pairing scheme.

  20. Electron angular distributions and attachment rates in o-Benzyne and Phenyl aromatic molecules: the effect of the permanent dipoles

    NASA Astrophysics Data System (ADS)

    Carelli, Fabio; Gianturco, Franco A.

    2013-12-01

    Free, gas-phase polycyclic aromatic hydrocarbons (PAHs) and related species are currently considered to play an important role in the interstellar/circumstellar medium as they are thought to significantly contribute to both Diffuse and Unidentified infrared interstellar bands. They are also considered fundamental blocks of the interstellar dust and several formation mechanisms were proposed with regard to their interstellar/circumstellar synthesis. In this paper we therefore present and discuss the results obtained from ab initio quantum scattering calculations of the response from neutral polar aromatic single-ring species to low-energies electron collisions. Our main purpose is here to provide new values for the rate constants for electron attachment to orthobenzyne and to phenyl molecules by discussing in detail the effects of the long-range dipole interaction in the framework of the Born perturbative approximation at the first order. We shall further discuss the specific behavior of the electrons' diffusion by such molecules, especially in the low-energy range of the scattered particles' energies as guided by their permanent dipole moments. We shall also provide accurate numerical fittings for both rates and give explicitly the fitting parameters for their possible use in evolutionary models.

  1. Barrier-Free Intermolecular Proton Transfer Induced by Excess Electron Attachment to the Complex of Alanine with Uracil

    SciTech Connect

    Dabkowska, Iwona; Rak, Janusz; Gutowski, Maciej S.; Nilles, J.M.; Stokes, Sarah; Bowen, Kit H.

    2004-04-01

    The photoelectron spectrum of the uracil-alanine anionic complex (UA)- has been recorded with 2.540 eV photons. This spectrum reveals a broad feature with a maximum between 1.6-2.1 eV. The vertical electron detachment energy is too large to be attributed to an (UA)- anionic complex in which an intact uracil anion is solvated by alanine, or vice versa. The neutral and anionic complexes of uracil and alanine were studied at the B3LYP and second order Moeller-Plesset level of theory with 6-31++G** basis sets. The neutral complexes form cyclic hydrogen bonds and the three most stable neutral complexes are bound by 0.72, 0.61 and 0.57 eV. The electron hole in complexes of uracil with alaninie is localized on uracil, but the formation of a complex with alanine strongly modulates the vertical ionization energy of uracil. The theoretical results indicate that the excess electron in (UA)- occupies a p* orbital localized on uracil. The excess electron attachment to the complex can induce a barrier-free proton transfer (BFPT) from the carboxylic group of alanine to the O8 atom of uracil. As a result, the four most stable structures of the uracil-alanine anionic complex can be characterized as the neutral radical of hydrogenated uracil solvated by the anion of deprotonated alanine. Our current results for the anionic complex of uracil with alanine are similar to our previous results for the anion of uracil with glycine [Eur. Phys. J. D 20, 431 (2002)], and together they indicate that the BFPT process is not very sensitive to the nature of the amino acid's hydrophobic residual group. The BFPT to the O8 atom of uracil may be relevant to the damage suffered by nucleic acid bases due to exposure to low energy electrons.

  2. Electron attachment to SF5CF3 (296-563 K) and calculations of the neutral and anion thermochemistry

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Arnold, Susan T.; Viggiano, A. A.; Knighton, W. B.

    2002-04-01

    Møller-Plesset (MP) perturbation theory and density functional theory (DFT) were used to examine the structure and bonding of trifluoromethyl sulfurpentafluoride, SF5CF3, and the corresponding anion, SF5CF3-. The structural parameters, charge analysis, and energetics are all consistent with the anion having ion-dipole character (i.e., SF5--CF3). Results from G2(MP2) theory yield a neutral D2980(SF5-CF3)=301 kJ mol-1 (3.12 eV), anion D2980(SF5--CF3)=21.5 kJ mol-1 (0.22 eV), EA(SF5CF3)=119 kJ mol-1 (1.24 eV), ΔfH2980(SF5CF3)=-1639 kJ mol-1, and ΔfH298(SF5CF3-)=-1750 kJ mol-1. The calculated value for the standard enthalpy of formation for SF5CF3 differs from the previous estimate by 78 kJ mol-1. DFT was found to perform poorly for quantities related to the neutral SF5-CF3 bond. Calculations were also carried out for SF5, SF5-, CF3, and CF3- fragments, and both DFT and G2(MP2) methods performed well for these open-shell species. Rate constants for electron attachment to SF5CF3 were measured over the temperature range 296-563 K in 133 Pa helium gas using a flowing afterglow Langmuir probe apparatus. The 296 K rate constant is (8.6±2.2)×10-8 cm3 s-1, which agrees within uncertainties with the estimate reported by Kennedy and Mayhew [Int. J. Mass Spectrom. 206, i-iv (2001)]. The only ionic product of attachment is SF5-. The temperature dependence of the electron attachment rate constant implies an activation energy of 25 meV. Implications of this work for estimating the atmospheric lifetime of SF5CF3 are discussed.

  3. Arrhenius Behavior of Electron Attachment to CH3Br from 303 to 1100 K

    DTIC Science & Technology

    2013-12-21

    dissociating state grows. Among otable experimental results are early evidence by Wentworth t al. [2], Bansal and Fessenden [3], and Mothes [4] that...et al.) [7], 6.0×10−12 (293K, Levy et al.) [8], 7.0×10−12 (298K, Bansal and Fessenden) [3], 3.6×10−12 (300K, Mothes et al.) [4], and1.0×10−11 (Schindler...quoted by Mothes et al.) [4]. Many older reports do not specify an uncertainty. The electron capture rate coefficientmaybe calculated [28] as ka

  4. Measurements of electron attachment lineshapes and cross sections at ultralow electron energies for c-C6F10, c-C6F12, C8F16 and 1,1,2-C2Cl3F3

    NASA Technical Reports Server (NTRS)

    Alajajian, S. H.; Chutjian, A.

    1986-01-01

    Electron attachment cross sections are reported in the electron energy range 0-160 meV and at energy resolutions of 4.5-7.5 meV (FWHM) for the molecules c-C6F10 (perfluorocyclohexene), c-C6F12 (perfluoro-1,2-dimethylcyclobutane), C8F16 (perfluoro-1,3-dimethylcyclohexane) and 1,1,2-C2Cl3F3 (1,1,2-trichlorotrifluoroethane). Use is made of the Kr photoionization technique, and measured attachment lineshapes are converted to cross sections by normalization through attachment rate constants. Comparisons are made with attachment cross sections derived from swarm-measured rate constants. Similar to previous results in eight other molecules, the present four molecules exhibit resolution-limited onsets at a threshold consistent with an s-wave attachment behavior and with a neutral-negative-ion curve crossing at zero energy.

  5. Experimental verification of the ablation pressure dependence upon the laser intensity at pulsed irradiation of metals

    NASA Astrophysics Data System (ADS)

    Krasyuk, I. K.; Semenov, A. Yu; Stuchebryukhov, I. A.; Khishchenko, K. V.

    2016-11-01

    Experiments for verification of a functional dependence of the ablation pressure on the irradiated surface of a target upon the laser intensity in a range from 1.2 to 350 TW/cm2 have been carried out. For that, at some intensities of the laser irradiation, time intervals between the laser pulse maximum and the moment of the shock-wave front arrival to the rear surface of the target were measured, which are dependent on the ablation pressure. Two schemes of the measurements were used. At the first scheme, at higher laser intensities, the front arrival moment is determined via an electron-optical camera when the rear surface begins glowing. At the second scheme, the front arrival moment is recorded when a probe laser pulse changes the character of the reflection by the rear surface of the irradiated target. Results of measurements are in agreement with the ablation pressure dependence upon the laser pulse intensity within 20%.

  6. Neutron depolarization imaging of the hydrostatic pressure dependence of inhomogeneous ferromagnets

    NASA Astrophysics Data System (ADS)

    Schulz, M.; Neubauer, A.; Böni, P.; Pfleiderer, C.

    2016-05-01

    The investigation of fragile and potentially inhomogeneous forms of ferromagnetic order under extreme conditions, such as low temperatures and high pressures, is of central interest for areas such as geophysics, correlated electron systems, as well as the optimization of materials synthesis for applications where particular material properties are required. We report neutron depolarization imaging measurements on the weak ferromagnet Ni3Al under pressures up to 10 kbar using a Cu:Be clamp cell. Using a polychromatic neutron beam with wavelengths λ ≥ 4 Å in combination with 3He neutron spin filter cells as polarizer and analyzer, we were able to track differences of the pressure response in inhomogeneous samples by virtue of high resolution neutron depolarization imaging. This provides spatially resolved and non-destructive access to the pressure dependence of the magnetic properties of inhomogeneous ferromagnetic materials.

  7. Current-pressure dependencies of dc magnetron discharge in inert gases

    NASA Astrophysics Data System (ADS)

    Serov, A. O.; Mankelevich, Yu A.; Pal, A. F.; Ryabinkin, A. N.

    2016-11-01

    The current-pressure (I-P) characteristics of dc magnetron discharge in inert gases (Ar, Kr and Xe) for various constant discharge voltages were measured. Under certain conditions on I-P characteristic, the nonmonotonic region of local maximum followed by a minimum is observed. It is found that increasing mass of the working gas ions results in a shift of the local maximum to lower pressures. The spatial distribution of ions in the plasma was studied by optical emission spectroscopy. Transformation of the discharge spatial structure with pressure was observed. A qualitative model of the observed trends is presented. It takes into account the pressure dependence of the discharge spatial structure, the capturing of secondary electrons by the cathode and charge exchange effects.

  8. Pressure dependence of critical temperature of bulk FeSe from spin fluctuation theory

    NASA Astrophysics Data System (ADS)

    Hirschfeld, Peter; Kreisel, Andreas; Wang, Yan; Tomic, Milan; Jeschke, Harald; Jacko, Anthony; Valenti, Roser; Maier, Thomas; Scalapino, Douglas

    2013-03-01

    The critical temperature of the 8K superconductor FeSe is extremely sensitive to pressure, rising to a maximum of 40K at about 10GPa. We test the ability of the current generation of fluctuation exchange pairing theories to account for this effect, by downfolding the density functional theory electronic structure for each pressure to a tight binding model. The Fermi surface found in such a procedure is then used with fixed Hubbard parameters to determine the pairing strength using the random phase approximation for the spin singlet pairing vertex. We find that the evolution of the Fermi surface captured by such an approach is alone not sufficient to explain the observed pressure dependence, and discuss alternative approaches. PJH, YW, AK were supported by DOE DE-FG02-05ER46236, the financial support of MT, HJ, and RV from the DFG Schwerpunktprogramm 1458 is kindly acknowledged.

  9. Electron attachment to halomethanes at high temperature: CH2Cl2, CF2Cl2, CH3Cl, and CF3Cl attachment rate constants up to 1100 K

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Friedman, Jeffrey F.; Schaffer, Linda C.; Viggiano, A. A.

    2009-08-01

    We have used a high-temperature flowing-afterglow Langmuir-probe apparatus to measure rate constants for electron attachment to halomethanes which attach electrons very inefficiently at room temperature, yielding Cl- ion product. We studied CH2Cl2 (495-973 K), CF2Cl2 (291-1105 K), and CF3Cl (524-1004 K) and include our recent measurement for CH3Cl (700-1100 K) in the discussion of the electron attachment results. The measured attachment rate constants show Arrhenius behavior in the temperature ranges examined, from which estimates of rate constants at 300 K may be made: CH2Cl2 (1.8×10-13 cm3 s-1), CH3Cl (1.1×10-17 cm3 s-1), and CF3Cl (4.2×10-14 cm3 s-1), all of which are difficult to measure directly. In the case of CF2Cl2, the room temperature rate constant was sufficiently large to be measured (1.6×10-9 cm3 s-1). The Arrhenius plots yield activation energies for the attachment reactions: 390±50 meV (CH2Cl2), 124±20 meV (CF2Cl2), 670±70 meV (CH3Cl), and 406±50 meV (CF3Cl). Comparisons are made with existing data where available. G3 calculations were carried out to obtain reaction energetics. They show that the parent anions of CH2Cl2 CF2Cl2, CH3Cl, and CF3Cl are stable, though CH3Cl- exists only as an electrostatically bound complex.

  10. Electron attachment to halomethanes at high temperature: CH(2)Cl(2), CF(2)Cl(2), CH(3)Cl, and CF(3)Cl attachment rate constants up to 1100 K.

    PubMed

    Miller, Thomas M; Friedman, Jeffrey F; Schaffer, Linda C; Viggiano, A A

    2009-08-28

    We have used a high-temperature flowing-afterglow Langmuir-probe apparatus to measure rate constants for electron attachment to halomethanes which attach electrons very inefficiently at room temperature, yielding Cl(-) ion product. We studied CH(2)Cl(2) (495-973 K), CF(2)Cl(2) (291-1105 K), and CF(3)Cl (524-1004 K) and include our recent measurement for CH(3)Cl (700-1100 K) in the discussion of the electron attachment results. The measured attachment rate constants show Arrhenius behavior in the temperature ranges examined, from which estimates of rate constants at 300 K may be made: CH(2)Cl(2) (1.8x10(-13) cm(3) s(-1)), CH(3)Cl (1.1x10(-17) cm(3) s(-1)), and CF(3)Cl (4.2x10(-14) cm(3) s(-1)), all of which are difficult to measure directly. In the case of CF(2)Cl(2), the room temperature rate constant was sufficiently large to be measured (1.6x10(-9) cm(3) s(-1)). The Arrhenius plots yield activation energies for the attachment reactions: 390+/-50 meV (CH(2)Cl(2)), 124+/-20 meV (CF(2)Cl(2)), 670+/-70 meV (CH(3)Cl), and 406+/-50 meV (CF(3)Cl). Comparisons are made with existing data where available. G3 calculations were carried out to obtain reaction energetics. They show that the parent anions of CH(2)Cl(2) CF(2)Cl(2), CH(3)Cl, and CF(3)Cl are stable, though CH(3)Cl(-) exists only as an electrostatically bound complex.

  11. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna

    NASA Astrophysics Data System (ADS)

    Hamad-Schifferli, Kimberly; Schwartz, John J.; Santos, Aaron T.; Zhang, Shuguang; Jacobson, Joseph M.

    2002-01-01

    Increasingly detailed structural and dynamic studies are highlighting the precision with which biomolecules execute often complex tasks at the molecular scale. The efficiency and versatility of these processes have inspired many attempts to mimic or harness them. To date, biomolecules have been used to perform computational operations and actuation, to construct artificial transcriptional loops that behave like simple circuit elements and to direct the assembly of nanocrystals. Further development of these approaches requires new tools for the physical and chemical manipulation of biological systems. Biomolecular activity has been triggered optically through the use of chromophores, but direct electronic control over biomolecular `machinery' in a specific and fully reversible manner has not yet been achieved. Here we demonstrate remote electronic control over the hybridization behaviour of DNA molecules, by inductive coupling of a radio-frequency magnetic field to a metal nanocrystal covalently linked to DNA. Inductive coupling to the nanocrystal increases the local temperature of the bound DNA, thereby inducing denaturation while leaving surrounding molecules relatively unaffected. Moreover, because dissolved biomolecules dissipate heat in less than 50picoseconds (ref. 16), the switching is fully reversible. Inductive heating of macroscopic samples is widely used, but the present approach should allow extension of this concept to the control of hybridization and thus of a broad range of biological functions on the molecular scale.

  12. Electron attachment to CF3 and CF3Br at temperatures up to 890 K: Experimental test of the kinetic modeling approach

    NASA Astrophysics Data System (ADS)

    Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, Albert A.; Troe, Jürgen

    2013-05-01

    Thermal rate constants and product branching fractions for electron attachment to CF3Br and the CF3 radical have been measured over the temperature range 300-890 K, the upper limit being restricted by thermal decomposition of CF3Br. Both measurements were made in Flowing Afterglow Langmuir Probe apparatuses; the CF3Br measurement was made using standard techniques, and the CF3 measurement using the Variable Electron and Neutral Density Attachment Mass Spectrometry technique. Attachment to CF3Br proceeds exclusively by the dissociative channel yielding Br-, with a rate constant increasing from 1.1 × 10-8 cm3 s-1 at 300 K to 5.3 × 10-8 cm3 s-1 at 890 K, somewhat lower than previous data at temperatures up to 777 K. CF3 attachment proceeds through competition between associative attachment yielding CF3- and dissociative attachment yielding F-. Prior data up to 600 K showed the rate constant monotonically increasing, with the partial rate constant of the dissociative channel following Arrhenius behavior; however, extrapolation of the data using a recently proposed kinetic modeling approach predicted the rate constant to turn over at higher temperatures, despite being only ˜5% of the collision rate. The current data agree well with the previous kinetic modeling extrapolation, providing a demonstration of the predictive capabilities of the approach.

  13. Electron attachment to CF3 and CF3Br at temperatures up to 890 K: experimental test of the kinetic modeling approach.

    PubMed

    Shuman, Nicholas S; Miller, Thomas M; Viggiano, Albert A; Troe, Jürgen

    2013-05-28

    Thermal rate constants and product branching fractions for electron attachment to CF3Br and the CF3 radical have been measured over the temperature range 300-890 K, the upper limit being restricted by thermal decomposition of CF3Br. Both measurements were made in Flowing Afterglow Langmuir Probe apparatuses; the CF3Br measurement was made using standard techniques, and the CF3 measurement using the Variable Electron and Neutral Density Attachment Mass Spectrometry technique. Attachment to CF3Br proceeds exclusively by the dissociative channel yielding Br(-), with a rate constant increasing from 1.1 × 10(-8) cm(3) s(-1) at 300 K to 5.3 × 10(-8) cm(3) s(-1) at 890 K, somewhat lower than previous data at temperatures up to 777 K. CF3 attachment proceeds through competition between associative attachment yielding CF3 (-) and dissociative attachment yielding F(-). Prior data up to 600 K showed the rate constant monotonically increasing, with the partial rate constant of the dissociative channel following Arrhenius behavior; however, extrapolation of the data using a recently proposed kinetic modeling approach predicted the rate constant to turn over at higher temperatures, despite being only ~5% of the collision rate. The current data agree well with the previous kinetic modeling extrapolation, providing a demonstration of the predictive capabilities of the approach.

  14. Development of a Pressure-Dependent Constitutive Model with Combined Multilinear Kinematic and Isotropic Hardening

    NASA Technical Reports Server (NTRS)

    Allen Phillip A.; Wilson, Christopher D.

    2003-01-01

    The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.

  15. Electron Paramagnetic Resonance of a Single NV Nanodiamond Attached to an Individual Biomolecule

    NASA Astrophysics Data System (ADS)

    Teeling-Smith, Richelle M.; Jung, Young Woo; Scozzaro, Nicolas; Cardellino, Jeremy; Rampersaud, Isaac; North, Justin A.; Šimon, Marek; Bhallamudi, Vidya P.; Rampersaud, Arfaan; Johnston-Halperin, Ezekiel; Poirier, Michael G.; Hammel, P. Chris

    2016-05-01

    A key limitation of electron paramagnetic resonance (EPR), an established and powerful tool for studying atomic-scale biomolecular structure and dynamics is its poor sensitivity, samples containing in excess of 10^12 labeled biomolecules are required in typical experiments. In contrast, single molecule measurements provide improved insights into heterogeneous behaviors that can be masked by ensemble measurements and are often essential for illuminating the molecular mechanisms behind the function of a biomolecule. We report EPR measurements of a single labeled biomolecule that merge these two powerful techniques. We selectively label an individual double-stranded DNA molecule with a single nanodiamond containing nitrogen-vacancy (NV) centers, and optically detect the paramagnetic resonance of NV spins in the nanodiamond probe. Analysis of the spectrum reveals that the nanodiamond probe has complete rotational freedom and that the characteristic time scale for reorientation of the nanodiamond probe is slow compared to the transverse spin relaxation time. This demonstration of EPR spectroscopy of a single nanodiamond labeled DNA provides the foundation for the development of single molecule magnetic resonance studies of complex biomolecular systems.

  16. Electron Paramagnetic Resonance of a Single NV Nanodiamond Attached to an Individual Biomolecule.

    PubMed

    Teeling-Smith, Richelle M; Jung, Young Woo; Scozzaro, Nicolas; Cardellino, Jeremy; Rampersaud, Isaac; North, Justin A; Šimon, Marek; Bhallamudi, Vidya P; Rampersaud, Arfaan; Johnston-Halperin, Ezekiel; Poirier, Michael G; Hammel, P Chris

    2016-05-10

    Electron paramagnetic resonance (EPR), an established and powerful methodology for studying atomic-scale biomolecular structure and dynamics, typically requires in excess of 10(12) labeled biomolecules. Single-molecule measurements provide improved insights into heterogeneous behaviors that can be masked in ensemble measurements and are often essential for illuminating the molecular mechanisms behind the function of a biomolecule. Here, we report EPR measurements of a single labeled biomolecule. We selectively label an individual double-stranded DNA molecule with a single nanodiamond containing nitrogen-vacancy centers, and optically detect the paramagnetic resonance of nitrogen-vacancy spins in the nanodiamond probe. Analysis of the spectrum reveals that the nanodiamond probe has complete rotational freedom and that the characteristic timescale for reorientation of the nanodiamond probe is slow compared with the transverse spin relaxation time. This demonstration of EPR spectroscopy of a single nanodiamond-labeled DNA provides the foundation for the development of single-molecule magnetic resonance studies of complex biomolecular systems.

  17. Time-resolved radiation chemistry: Dynamics of electron attachment to uracil following UV excitation of iodide-uracil complexes

    SciTech Connect

    King, Sarah B.; Yandell, Margaret A.; Stephansen, Anne B.; Neumark, Daniel M.

    2014-12-14

    Electron attachment to uracil was investigated by applying time-resolved photoelectron imaging to iodide-uracil (I{sup –}U) complexes. In these studies, an ultraviolet pump pulse initiated charge transfer from the iodide to the uracil, and the resulting dynamics of the uracil temporary negative ion were probed. Five different excitation energies were used, 4.00 eV, 4.07 eV, 4.14 eV, 4.21 eV, and 4.66 eV. At the four lowest excitation energies, which lie near the vertical detachment energy of the I{sup –}U complex (4.11 eV), signatures of both the dipole bound (DB) as well as the valence bound (VB) anion of uracil were observed. In contrast, only the VB anion was observed at 4.66 eV, in agreement with previous experiments in this higher energy range. The early-time dynamics of both states were highly excitation energy dependent. The rise time of the DB anion signal was ∼250 fs at 4.00 eV and 4.07 eV, ∼120 fs at 4.14 eV and cross-correlation limited at 4.21 eV. The VB anion rise time also changed with excitation energy, ranging from 200 to 300 fs for excitation energies 4.00–4.21 eV, to a cross-correlation limited time at 4.66 eV. The results suggest that the DB state acts as a “doorway” state to the VB anion at 4.00–4.21 eV, while direct attachment to the VB anion occurs at 4.66 eV.

  18. Electron Attachment in Low-Energy Electron Elastic Collisions with Au and Pt Atoms: Identification of Excited Anions

    NASA Astrophysics Data System (ADS)

    Msezane, A. Z.; Eure, A.; Felfli, Z.; Sokolovski, D.

    2009-11-01

    The recent Regge-pole methodology has been benchmarked [1] on the accurately measured binding energies of the excited Ge= and Sn= anions [2] through the binding energies (BEs) extracted from the Regge-pole calculated elastic total cross sections (TCSs). Here the methodology is applied together with a Thomas-Fermi type potential that incorporates the vital core polarization interaction to investigate the possibility of forming excited Au= and Pt= anions in low-energy electron elastic collisions with Au and Pt atoms. From the positions of the characteristic extremely narrow resonances in the total cross sections, we extract the binding energies of the excited Au= and Pt= anions formed as Regge resonances during the collisions. The angular life of the complexes thus formed is used to differentiate the stable excited bound states of the anions from the shape resonances [3]. The BEs for the excited Au= and Pt= anions are found to be 0.475eVand 0.543eV, respectively, challenging both theory and experiment to verify. [1] A. Msezane et al, Phys. Rev. A, Submitted (2009) [2] M. Scheer et al, Phys. Rev. A 58, 2844 (1998) [3] Z. Felfli et al, Phys. Rev. A 79, 012714 (2009)

  19. Kinetics of electron attachment to OH and HNO3 and mutual neutralization of Ar+ with NO2- and NO3- at 300 and 500 K

    NASA Astrophysics Data System (ADS)

    Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, A. A.

    2012-03-01

    The electron attachment rate constant to nitric acid (HNO3) has been measured in a flowing afterglow-Langmuir probe (FALP) apparatus at 300 and 500 K using three independent methods: the traditional FALP technique of monitoring electron depletion, "one-gas" VENDAMS (variable electron and neutral density attachment mass spectrometry), and "two-gas" VENDAMS. The three measurements are in agreement with a 300 K weighted average of 1.4 ± 0.3 × 10-7 cm3 s-1, 2 to 10 times higher than previously reported values. Attachment is primarily dissociative yielding NO2- as previously reported, but for the first time a small endothermic channel to produce OH- was also observed at 500 K. From the one-gas VENDAMS data, associative attachment to the OH produced in the primary attachment was found to occur with an effective two body rate constant of 1.2 ± _{0.7}^3 × 10-11 cm3 s-1 at 300 K, the first reported rate constant for this radical species. Finally, ion-ion neutralization rate constants of NO2- and NO3- with Ar+ were determined to be 5.2 ± _{2.5}^{1.5} × 10-8 and 4.5 ± 2.5 × 10-8 cm3 s-1 at 300 K, respectively.

  20. Kinetics of electron attachment to OH and HNO3 and mutual neutralization of Ar+ with NO2(-) and NO3(-) at 300 and 500 K.

    PubMed

    Shuman, Nicholas S; Miller, Thomas M; Viggiano, A A

    2012-03-28

    The electron attachment rate constant to nitric acid (HNO(3)) has been measured in a flowing afterglow-Langmuir probe (FALP) apparatus at 300 and 500 K using three independent methods: the traditional FALP technique of monitoring electron depletion, "one-gas" VENDAMS (variable electron and neutral density attachment mass spectrometry), and "two-gas" VENDAMS. The three measurements are in agreement with a 300 K weighted average of 1.4 ± 0.3 × 10(-7) cm(3) s(-1), 2 to 10 times higher than previously reported values. Attachment is primarily dissociative yielding NO(2)(-) as previously reported, but for the first time a small endothermic channel to produce OH(-) was also observed at 500 K. From the one-gas VENDAMS data, associative attachment to the OH produced in the primary attachment was found to occur with an effective two body rate constant of 1.2±(0.7) (3)×10(-11) cm(3) s(-1) at 300 K, the first reported rate constant for this radical species. Finally, ion-ion neutralization rate constants of NO(2)(-) and NO(3)(-) with Ar(+) were determined to be 5.2±(2.5) (1.5) × 10(-8) and 4.5 ± 2.5 × 10(-8) cm(3) s(-1) at 300 K, respectively.

  1. Pressure dependence of Se absorption lines in AlSb

    SciTech Connect

    Hsu, L. |; Haller, E.E.; Ramdas, A.K.

    1996-09-01

    Using far infrared absorption spectroscopy, the authors have investigated electronic transition spectra of Se donors in AlSb as a function of hydrostatic pressure. At least two distinct ground to bound excited state transition lines, which depend quadratically on the pressure, can be seen. At pressures between 30 and 50 kbar, evidence of an anti-crossing between one of the electronic transitions and a peak which they attribute to the 2 zone center LO phonon mode can be seen.

  2. Pressure dependence on partition coefficients for trace elements between olivine and the coexisting melts

    NASA Astrophysics Data System (ADS)

    Taura, Hiroshi; Yurimoto, Hisayoshi; Kurita, Kei; Sueno, Shigeho

    Partition coefficients between olivine and melt at upper mantle conditions, 3 to 14 GPa, have been determined for 27 trace elements (Li, Be, B, Na, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rb, Sr, Y, Zr, Cs, Ba, La and Ce) using secondary-ion mass-spectrometry (SIMS) and electron-probe microanalysis (EPMA). The general pattern of olivine/melt partitioning on Onuma diagrams resembles those reported previously for natural systems. This agreement strongly supports the argument that partitioning is under structural control of olivine even at high pressure. The partition coefficients for mono- and tri-valent cations show significant pressure dependence, both becoming larger with pressure, and are strongly correlated with coupled substitution into cation sites in the olivine structure. The dominant type of trace element substitution for mono- and tri-valent cations into olivine changes gradually from (Si, Mg)<-->(Al, Cr) at low pressure to (Si, Mg)<-->(Al, Al) and (Mg, Mg)<-->(Na, Al) at high pressure. The change in substitution type results in an increase in partition coefficients of Al and Na with pressure. An inverse correlation between the partition coefficients for divalent cations and pressure has been observed, especially for Ni, Co and Fe. The order of decreasing rate of partition coefficient with pressure correlates to strength of crystal field effect of the cation. The pressure dependence of olivine/melt partitioning can be attributed to the compression of cation polyhedra induced by pressure and the compensation of electrostatic valence by cation substitution.

  3. The Pressure Dependence of the Pyroelectric Response of Poly(Vinylidene Fluoride) Films.

    DTIC Science & Technology

    The pressure dependence of the pyroelectric coefficient, Py, was determined from atmospheric pressure to 7Kbar over a temperature range from -80...pressure is compared to the pressure dependence of the glass transition temperature obtained from dielectric studies. The radio of d(p prime) the

  4. Dissociative electron attachment to the H2O molecule. II. Nuclear dynamics on coupled electronic surfaces within the local complex potential model

    NASA Astrophysics Data System (ADS)

    Haxton, Daniel J.; Rescigno, T. N.; McCurdy, C. W.

    2007-01-01

    We report the results of a first-principles study of dissociative electron attachment to H2O . The cross sections were obtained from nuclear dynamics calculations carried out in full dimensionality within the local complex potential model by using the multiconfiguration time-dependent Hartree method. The calculations employ our previously obtained global, complex-valued, potential-energy surfaces for the three ( B12 , A12 , and B22 ) electronic Feshbach resonances involved in this process. These three metastable states of H2O- undergo several degeneracies, and we incorporate both the Renner-Teller coupling between the B12 and A12 states as well as the conical intersection between the A12 and B22 states into our treatment. The nuclear dynamics are inherently multidimensional and involve branching between different final product arrangements as well as extensive excitation of the diatomic fragment. Our results successfully mirror the qualitative features of the major fragment channels observed, but are less successful in reproducing the available results for some of the minor channels. We comment on the applicability of the local complex potential model to such a complicated resonant system.

  5. Anisotropic physical properties and pressure dependent magnetic ordering of CrAuTe4

    DOE PAGES

    Jo, Na Hyun; Kaluarachchi, Udhara S.; Wu, Yun; ...

    2016-11-11

    Systematic measurements of temperature-dependent magnetization, resistivity, and angle-resolved photoemission spectroscopy (ARPES) at ambient pressure as well as resistivity under pressures up to 5.25 GPa were conducted on single crystals of CrAuTe4. Magnetization data suggest that magnetic moments are aligned antiferromagnetically along the crystallographic c axis below TN = 255 K. ARPES measurements show band reconstruction due to the magnetic ordering. Magnetoresistance data show clear anisotropy, and, at high fields, quantum oscillations. The Néel temperature decreases monotonically under pressure, decreasing to TN = 236 K at 5.22 GPa. The pressure dependencies of (i) TN, (ii) the residual resistivity ratio, and (iii)more » the size and power-law behavior of the low-temperature magnetoresistance all show anomalies near 2 GPa suggesting that there may be a phase transition (structural, magnetic, and/or electronic) induced by pressure. Lastly, for pressures higher than 2 GPa a significantly different quantum oscillation frequency emerges, consistent with a pressure induced change in the electronic states.« less

  6. Direct measurement of the thermal rate coefficient for electron attachment to ozone in the gas phase, 300-550 K: implications for the ionosphere.

    PubMed

    Van Doren, Jane M; Miller, Thomas M; Williams, Skip; Viggiano, A A

    2003-11-28

    Attachment of thermal electrons to O3 was studied in 133 Pa He between 300-550 K; the process is extremely inefficient. The rate coefficient increases sharply with temperature from 0.9 to 5 x 10(-11) cm(3) s(-1) (+/-30%) and comparison to kinetic energy measurements suggests internal energy can drive the reaction. These determinations account for competing processes of diffusion, recombination, and electron detachment reactions, and imply that no significant zero-energy resonance cross section exists, contradicting recent electron-beam results that call for substantial revision of ionospheric models.

  7. Electron attachment to CF{sub 3} and CF{sub 3}Br at temperatures up to 890 K: Experimental test of the kinetic modeling approach

    SciTech Connect

    Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, Albert A.; Troe, Juergen

    2013-05-28

    Thermal rate constants and product branching fractions for electron attachment to CF{sub 3}Br and the CF{sub 3} radical have been measured over the temperature range 300-890 K, the upper limit being restricted by thermal decomposition of CF{sub 3}Br. Both measurements were made in Flowing Afterglow Langmuir Probe apparatuses; the CF{sub 3}Br measurement was made using standard techniques, and the CF{sub 3} measurement using the Variable Electron and Neutral Density Attachment Mass Spectrometry technique. Attachment to CF{sub 3}Br proceeds exclusively by the dissociative channel yielding Br{sup -}, with a rate constant increasing from 1.1 Multiplication-Sign 10{sup -8} cm{sup 3} s{sup -1} at 300 K to 5.3 Multiplication-Sign 10{sup -8} cm{sup 3} s{sup -1} at 890 K, somewhat lower than previous data at temperatures up to 777 K. CF{sub 3} attachment proceeds through competition between associative attachment yielding CF{sub 3}{sup -} and dissociative attachment yielding F{sup -}. Prior data up to 600 K showed the rate constant monotonically increasing, with the partial rate constant of the dissociative channel following Arrhenius behavior; however, extrapolation of the data using a recently proposed kinetic modeling approach predicted the rate constant to turn over at higher temperatures, despite being only {approx}5% of the collision rate. The current data agree well with the previous kinetic modeling extrapolation, providing a demonstration of the predictive capabilities of the approach.

  8. SURFACE FINISHES ON STAINLESS STEEL REDUCE BACTERIAL ATTACHMENT AND EARLY BIOFILM FORMATION: SCANNING ELECTRON AND ATOMIC FORCE MICROSCOPY STUDY

    EPA Science Inventory

    Three common finishing treatments of stainless steel that are used for equipment during poultry processing were tested for resistance to bacterial contamination. Methods were developed to measure attached bacteria and to identify factors that make surface finishes susceptible or ...

  9. Improving Attachments of Non-Invasive (Type III) Electronic Data Loggers to Cetaceans - Year Two Progress Report

    DTIC Science & Technology

    2012-09-30

    rapid curing topical glue to extend the reliable longevity of noninvasive tag attachments to multiple days without harmful effects to the animal. Test...results from shear and tensile adhesive failure of pseudobarnacles (Figure 12) attached to dolphin skin (Tursiops truncatus) with cyanoacrylate ...Loctite liquid professional Super Glue ) are presented here. Method: An ASTM standard method (Anonymous, 1997) was used to determine removal force in

  10. Pressure Dependence of Excitation Cross Sections for Resonant Levels of Rare Gases

    NASA Astrophysics Data System (ADS)

    Stewart, Michael D.; Chilton, J. Ethan; Lin, Chun C.

    2000-06-01

    In the rare gases, the excited n'p^5ns and n'p^5nd levels with J = 1 are optically coupled to ground as well as lower lying p levels. Resonant photons emitted when the atom decays to ground can be reabsorbed by another ground-state atom. At low gas pressures this reabsorption occurs infrequently, but at higher pressures becomes increasingly likely until the resonant transition is completely suppressed. This enhances the cascade transitions into lower p levels, resulting in pressure dependent optical emission cross sections. This reabsorption process can be understood quantitatively with a model developed by Heddle et al(D. W. O. Heddle and N. J. Samuel, J. Phys. B 3), 1593 (1970).. The radiation from transitions into the nonresonant levels often lie in the ir, while the resonant radiation is always in the uv spectral region. Using a Fourier-transform spectrometer, one can measure the cross sections for the ir transitions as a function of pressure. The Heddle model can be fit to these data with the use of theoretical values for the Einstein A coefficients. This provides a test of the accuracy of calculated A values. Discussion will include cross section measurements for Ne, Ar, and Kr excited by electron impact over a range of gas pressures.

  11. Interesting pressure dependence of power factor in BiTeI

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong; Wang, Jian-Li

    2016-06-01

    We investigate pressure dependence of electronic structures and thermoelectric properties in BiTeI by using a modified Becke and Johnson exchange potential. Spin-orbit coupling (SOC) effects are also included due to giant Rashba splitting. Thermoelectric properties are illuminated through solving Boltzmann transport equations within the constant scattering time approximation. The calculated energy band gap of 0.36 eV agrees well with the experimental value of 0.38 eV. As the pressure increases, the energy band gap first decreases, and then increases. The Rashba energy has the opposite trend with the energy band gap. SOC has obvious detrimental influence on the power factor in both n-type and p-type doping. For low doping concentration, the power factor has the same trend with the energy band gap with increasing pressure, but shows a monotonic changing trend in high doping. It is found that the pressure can induce a significantly enhanced power factor in high n-type doping, which can be understood as pressure leading to two-dimensional-like density of states in the conduction bands. These results suggest that BiTeI may be a potential candidate for efficient thermoelectricity in n-type doping by pressure, turning an ordinary insulator into a topological insulator.

  12. Absolute pressure dependence of the second ionization level of EL2 in GaAs

    SciTech Connect

    Bliss, D.E.; Walukiewicz, W.; Nolte, D.D.; Haller, E.E.

    1989-11-01

    We report the results of DLTS experiments under uniaxial stress on the second ionization level of EL2(++/+) in p-type GaAs. We measured the shift in the hole emission rate as a function of stress applied in the (100) and (110) directions. By modeling the valence band with two independently displacing bands and appropriately derived effective masses, we obtain a small absolute hydrostatic pressure derivative for the defect, 39 {plus minus} 15 MeV GPa{sup {minus}1}. The shear contribution is negligible. This result is very different than for the first ionization level, EL2(+/o) with a emission energy pressure derivative of 90 {plus minus} 15 MeV GPa{sup {minus}1}. The difference can be accounted for by the pressure dependence of the electron capture barrier of EL2(+/o), 49 {plus minus} 15 MeV GPa{sup {minus}1}. The absolute pressure derivatives of the two levels are then comparable and in good agreement with simple theory for Ga site point defects. 20 refs., 2 figs.

  13. Calculation of SF6-/SF6 and Cl-/CFCl3 electron attachment cross sections in the energy range 0-100 meV

    NASA Technical Reports Server (NTRS)

    Chutjian, A.

    1982-01-01

    Electron attachment cross sections for the processes SF6-/SF6 and Cl-/CFCl3 are calculated in a local theory using a model in which diatomic-like potential energy curves for the normal modes are constructed from available spectroscopic data. Thermally populated vibrational and rotational levels are included. Good agreement is found with experimental cross sections in the energy range 5-100 meV for a particular choice of potential energy curve parameters.

  14. Pressure-Dependent Changes in the Release of GABA by Cerebrocortical Synaptosomes

    DTIC Science & Technology

    1989-01-01

    DTICL9? Undersea Biomedical Research, Vol. 16, No. 3. 1989 N V918f, NOV09198 B U Pressure-dependent changes in the release of GABA 1 by...Center, Bothesda. Maryland 20814-5055 Gilman SC, Colton JS, Dutka AJ. Pressure-dependent changes in the release of GABA by cerebrocortical synaptosomes...evoked [3H]--aminobutyric acid ( GABA ) release from isolated presynaptic terminals (synaptosomes) (15, 16). The current study was designed to evaluate

  15. 46 CFR 67.218 - Optional filing of instruments in portable document format as attachments to electronic mail.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... mail (e-mail) for filing at the National Vessel Documentation Center. The e-mail address to be used for..., and submitted as an attachment to e-mail. (c) The e-mail required by paragraph (b) should indicate: (1) The name, address, telephone number, and e-mail address of the person submitting the instrument...

  16. 46 CFR 67.218 - Optional filing of instruments in portable document format as attachments to electronic mail.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... mail (e-mail) for filing at the National Vessel Documentation Center. The e-mail address to be used for..., and submitted as an attachment to e-mail. (c) The e-mail required by paragraph (b) should indicate: (1) The name, address, telephone number, and e-mail address of the person submitting the instrument...

  17. 46 CFR 67.218 - Optional filing of instruments in portable document format as attachments to electronic mail.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... mail (e-mail) for filing at the National Vessel Documentation Center. The e-mail address to be used for..., and submitted as an attachment to e-mail. (c) The e-mail required by paragraph (b) should indicate: (1) The name, address, telephone number, and e-mail address of the person submitting the instrument...

  18. 46 CFR 67.218 - Optional filing of instruments in portable document format as attachments to electronic mail.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... mail (e-mail) for filing at the National Vessel Documentation Center. The e-mail address to be used for..., and submitted as an attachment to e-mail. (c) The e-mail required by paragraph (b) should indicate: (1) The name, address, telephone number, and e-mail address of the person submitting the instrument...

  19. Calculation of rate constants for dissociative attachment of low-energy electrons to hydrogen halides HCl, HBr, and HI and their deuterated analogs

    SciTech Connect

    Houfek, Karel; Cizek, Martin; Horacek, Jiri

    2002-12-01

    Calculations of rate constants for the process of dissociative attachment of low-energy electrons to hydrogen halides HCl, HBr, and HI and for the reverse process of associative detachment based on the nonlocal resonance model are reported. The calculated data are of importance for the modeling of plasma processes, environmental chemistry, etc. The calculated dissociative attachment rate constants are found to be in good agreement with existing experimental data. It is shown that at low temperatures the rate constants are very sensitive to small changes of the parameters of the nonlocal resonance model used for the calculation of the rate constants and represent a severe test of the theory. The isotopic effect and its dependence on the temperature is also discussed. The calculations of rate constants for the reverse process of associative detachment are also reported and discussed.

  20. Dissociative electron attachment to DNA-diamine thin films: Impact of the DNA close environment on the OH- and O- decay channels

    NASA Astrophysics Data System (ADS)

    Boulanouar, Omar; Fromm, Michel; Mavon, Christophe; Cloutier, Pierre; Sanche, Léon

    2013-08-01

    We measure the desorption of anions stimulated by the impact of 0-20 eV electrons on highly uniform thin films of plasmid DNA-diaminopropane. The results are accurately correlated with film thickness and composition by AFM and XPS measurements, respectively. Resonant structures in the H-, O-, and OH- yield functions are attributed to the decay of transient anions into the dissociative electron attachment (DEA) channel. The diamine induces ammonium-phosphate bridges along the DNA backbone, which suppresses the DEA O- channel and in counter-part increases considerably the desorption of OH-. The close environment of the phosphate groups may therefore play an important role in modulating the rate and type of DNA damages induced by low energy electrons.

  1. Dissociative electron attachment to DNA-diamine thin films: Impact of the DNA close environment on the OH{sup −} and O{sup −} decay channels

    SciTech Connect

    Boulanouar, Omar; Fromm, Michel; Mavon, Christophe; Cloutier, Pierre; Sanche, Léon

    2013-08-07

    We measure the desorption of anions stimulated by the impact of 0–20 eV electrons on highly uniform thin films of plasmid DNA-diaminopropane. The results are accurately correlated with film thickness and composition by AFM and XPS measurements, respectively. Resonant structures in the H{sup −}, O{sup −}, and OH{sup −} yield functions are attributed to the decay of transient anions into the dissociative electron attachment (DEA) channel. The diamine induces ammonium-phosphate bridges along the DNA backbone, which suppresses the DEA O{sup −} channel and in counter-part increases considerably the desorption of OH{sup −}. The close environment of the phosphate groups may therefore play an important role in modulating the rate and type of DNA damages induced by low energy electrons.

  2. Influence of the pressure dependent coefficient of friction on deep drawing springback predictions

    NASA Astrophysics Data System (ADS)

    Gil, Imanol; Galdos, Lander; Mendiguren, Joseba; Mugarra, Endika; Sáenz de Argandoña, Eneko

    2016-10-01

    This research studies the effect of considering an advanced variable friction coefficient on the springback prediction of stamping processes. Traditional constant coefficient of friction considerations are being replaced by more advanced friction coefficient definitions. The aim of this work is to show the influence of defining a pressure dependent friction coefficient on numerical springback predictions of a DX54D mild steel, a HSLA380 and a DP780 high strength steel. The pressure dependent friction model of each material was fitted to the experimental data obtained by Strip Drawing tests. Then, these friction models were implemented in a numerical simulation of a drawing process of an industrial automotive part. The results showed important differences between defining a pressure dependent friction coefficient or a constant friction coefficient.

  3. Attachment Disorganization.

    ERIC Educational Resources Information Center

    Solomon, Judith, Ed.; George, Carol, Ed.

    Disorganized attachment relationships were first formally identified on the basis of the anomalous behavior of some infants during laboratory separations and reunions with the parent. This book presents new research and theory on the topic of attachment disorganization, an area of investigation that is of increasing importance in the study of…

  4. A systematically generated, pressure-dependent mechanism for high-conversion ethane pyrolysis. 2. Radical disproportionations, missing reaction families, and the consequences of pressure dependence.

    PubMed

    Matheu, David M; Grenda, Jeffrey M

    2005-06-23

    A previous, companion paper of this work (preceding paper in this issue) systematically developed a pressure-dependent reaction mechanism for the high-conversion pyrolysis of ethane, as studied experimentally by Glasier and Pacey. By combining conventional equilibrium, sensitivity, and reaction pathway analyses, that study identified a complex set of reaction pathways governing the formation and destruction of the important minor products acetylene, propylene, 1,3-butadiene, and benzene, which are pyrocarbon deposition precursors. To more confidently understand, and potentially manipulate, the complex chemistry governing deposition precursors, this work examines in more detail (1) the role of large sets of radical disproportionation reactions in forming the minor products, (2) the consequence of ignoring certain reactions during mechanism construction, (3) the appropriateness of the plug flow assumption used to model the reactor, and (4) the importance of reaction pressure dependence to the predictions of the minor product concentrations. We find that the predicted benzene concentration is sensitive to the presence of a specific, large collection of radical disproportionation reactions, typically neglected in most modeling efforts and of consequence only in the aggregate. Reaction families allowing Diels-Alder reaction, ene reaction, and triplet ethylene formation are safely ignored during model construction for the experimental conditions, but two specific reactions proposed in the literature, which rapidly convert fulvene to benzene, potentially explain the underprediction of benzene by the generated model. However, the rates proposed for these reactions are either unrealistically fast, or unconfirmed. We find the plug flow assumption reasonable in most respects, but its neglect of H-atom diffusion could explain the mechanism's systematic underprediction of hydrogen concentration at longer residence times. Finally, we demonstrate that accurate predictions of the

  5. Electron attachment to C7F14, thermal detachment from C7F14(-), the electron affinity of C7F14, and neutralization of C7F14(-) by Ar+.

    PubMed

    Miller, Thomas M; Friedman, Jeffrey F; Shuman, Nicholas S; Ard, Shaun G; Melko, Joshua J; Viggiano, A A

    2012-10-25

    Rate coefficients and branching fractions have been measured for electron attachment to perfluoromethylcyclohexane, C(7)F(14), along with thermal detachment rate coefficients for C(7)F(14)(-), from 300 to 630 K, using a flowing-afterglow Langmuir-probe apparatus. The attachment rate coefficient at room temperature is 4.5 ± 1.2 × 10(-8) cm(3) s(-1) and increases with temperature at a rate described by an activation energy of 50 ± 25 meV. Thermal electron detachment is negligible at room temperature, but measurable at 600 K and above, reaching 2300 ± 1300 s(-1) at 630 K. Analysis of the attachment-detachment equilibrium yields EA(C(7)F(14)) = 1.02 ± 0.06 eV, in agreement with the literature value while more than halving the uncertainty. Implications of the measurement for the electron affinity of SF(6) are discussed. The dominant product of electron attachment is the parent anion, but C(6)F(11)(-) and C(7)F(13)(-) are also observed at very low levels (<0.1%) at room temperature and increase in importance as the temperature is increased, reaching ~10% each at 630 K. In the course of this work we have also measured rate coefficients for the neutralization of C(7)F(14)(-) by Ar(+) at 300, 400, and 500 K: 4.8, 3.5, and 3.1 × 10(-8) cm(3) s(-1), respectively, with uncertainties of ±5 × 10(-9) cm(3) s(-1).

  6. Pressure dependence of intramolecular mode frequencies in solid N2, O2, and CO2

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Helmy, A.

    1983-01-01

    A microscopic description of the pressure dependence of intramolecular vibrational modes in simple molecular crystals has been formulated using a classical perturbation theory. Quantitative agreement with experiment is demonstrated and it is shown that frequency changes at phase transitions are large enough to be observed optically.

  7. Presolvated Low Energy Electron Attachment to Peptide Methyl esters in Aqueous Solution: C-O Bond Cleavage at 77K

    PubMed Central

    Kheir, Jeanette; Chomicz, Lidia; Engle, Alyson; Rak, Janusz; Sevilla, Michael D.

    2013-01-01

    In this study, the reactions of presolvated electrons with glycine methyl ester and N-acetylalanylalanine methyl ester (N-aAAMe) are investigated by electron spin resonance (ESR) spectroscopy and DFT calculations. Electrons were produced by gamma irradiation in neutral 7.5 M LiCl-D2O aqueous glasses at low temperatures. For glycine methyl ester electron addition at 77K results in both N-terminal deamination to form a glycyl radical and C-O ester bond cleavage to form methyl radicals. For samples of N-acetylalanylalanine methyl ester electrons are found to add to the peptide bonds at 77K and cleave the carboxyl ester groups to produce methyl radicals. On annealing to 160K electron adducts at the peptide links undergo chain scission to produce alanyl radicals and further annealing to 170K α-carbon peptide backbone radicals are produced by hydrogen abstraction. DFT calculations for electron addition to the methyl ester portion of N-aAAMe show the cleavage reaction is highly favorable (free energy equals to −30.7 kcal/mol) with the kinetic barrier of only 9.9 kcal/mol. A substantial electron affinity of the ester link (38.0 kcal/mol) provides more than sufficient energy to overcome this small barrier. Protonated peptide bond electron adducts, also show favorable N-C chain cleavage reactions of −12.7 to −15.5 kcal/mol with a barrier from 7.4 to 10.0 kcal/mol. The substantial adiabatic electron affinity (AEA) of the peptide bond and ester groups provides sufficient energy for the bond dissociation. PMID:23406302

  8. Presolvated low energy electron attachment to peptide methyl esters in aqueous solution: C-O bond cleavage at 77 K.

    PubMed

    Kheir, Jeanette; Chomicz, Lidia; Engle, Alyson; Rak, Janusz; Sevilla, Michael D

    2013-03-14

    In this study, the reactions of presolvated electrons with glycine methyl ester and N-acetylalanylalanine methyl ester (N-aAAMe) are investigated by electron spin resonance (ESR) spectroscopy and DFT calculations. Electrons were produced by γ-irradiation in neutral 7.5 M LiCl-D2O aqueous glasses at low temperatures. For glycine methyl ester, electron addition at 77 K results in both N-terminal deamination to form a glycyl radical and C-O ester bond cleavage to form methyl radicals. For samples of N-acetylalanylalanine methyl ester, electrons are found to add to the peptide bonds at 77 K and cleave the carboxyl ester groups to produce methyl radicals. On annealing to 160 K, electron adducts at the peptide links undergo chain scission to produce alanyl radicals and on further annealing to 170 K α-carbon peptide backbone radicals are produced by hydrogen abstraction. DFT calculations for electron addition to the methyl ester portion of N-aAAMe show the cleavage reaction is highly favorable (free energy equals to -30.7 kcal/mol) with the kinetic barrier of only 9.9 kcal/mol. A substantial electron affinity of the ester link (38.0 kcal/mol) provides more than sufficient energy to overcome this small barrier. Protonated peptide bond electron adducts also show favorable N-C chain cleavage reactions of -12.7 to -15.5 kcal/mol with a barrier from 7.4 to 10.0 kcal/mol. The substantial adiabatic electron affinity (AEA) of the peptide bond and ester groups provides sufficient energy for the bond dissociation.

  9. The effects of various nucleotides on the structure of actin-attached myosin subfragment-1 studied by quick-freeze deep-etch electron microscopy.

    PubMed

    Katayama, E

    1989-11-01

    Stereo electron microscopy of negatively stained images showed that myosin heads in acto-subfragment-1 (S1) covalently cross-linked with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide were predominantly short and round when ATP was added, in contrast to their uniform tilted appearance in the rigor state. As an attempt to exclude molecules which were actually dissociated but still tethered to actin by artificial cross-links, quick-freeze deep-etch electron microscopy was coupled with the mica flake method to observe uncross-linked native acto-S1 in the presence of ATP. To maintain the low affinity S1 associated to actin in the presence of ATP, a high concentration of acto-S1 was applied to mica flakes whose absorption had been chemically modified. The image of acto-S1 with added ATP agreed well with the expected time-course of reversible dissociation and reassociation, confirming the applicability of this approach to examination of the structural changes of acto-S1. S1 molecules attached to F-actin under rigor conditions or in the presence of ADP were elongated, with the long axis tilted to F-actin. Actin-attached S1 became short and round upon addition of ATP or ADP-inorganic vanadate. Adenyl-5'-yl imidodiphosphate and inorganic pyrophosphate each partially dissociated S1 from actin, as expected.

  10. Intermolecular proton transfer induced by excess electron attachment to adenine(formic acid)n (n = 2, 3) hydrogen-bonded complexes

    SciTech Connect

    Mazurkiewicz, Kamil; Haranczyk, Maciej; Storoniak, Piotr; Gutowski, Maciej S.; Rak, Janusz; Radisic, Dunja; Eustis, Soren; Wang, Di; Bowen, Kit H.

    2007-12-06

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The propensity of the neutral complexes between both adenine and 9-methyladenine (A/MA) with formic acid (FA) in 1:2 and 1:3 stoichiometries to bind an excess electron was studied using photoelectron spectroscopy and quantum chemistry computational methods. Although an isolated canonical adenine does not support bound valence anions, solvation by one formic acid molecule stabilizes the excess electron on adenine. The adiabatic electron affinities of the A/MA(FA)2,3 complexes span a range of 0.8–1.23 eV indicating that the anions of 1:2 and 1:3 stoichiometries are substantially more stable than the anionic A–FA dimer (EA = 0.67 eV), which we studied previously and an attachment of electron triggers double-BFPT, confirmed at the MPW1K level of theory, in all the considered systems. Hence, the simultaneous involvement of several molecules capable of forming cyclic hydrogen bonds with adenine remarkably increases its ability to bind an excess electron. The calculated vertical detachment energies for the most stable anions correspond well with those obtained using photoelectron spectroscopy. The possible biological significance of our findings is briefly discussed.

  11. Noncovalent functionalization of graphene attaching [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and application as electron extraction layer of polymer solar cells.

    PubMed

    Qu, Shuxuan; Li, Minghua; Xie, Lixin; Huang, Xiao; Yang, Jinguo; Wang, Nan; Yang, Shangfeng

    2013-05-28

    A new graphene-fullerene composite (rGO-pyrene-PCBM), in which [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was attached onto reduced graphene oxide (rGO) via the noncovalent functionalization approach, was reported. The pyrene-PCBM moiety was synthesized via a facile esterification reaction, and pyrene was used as an anchoring bridge to link rGO and PCBM components. FTIR, UV-vis, and XPS spectroscopic characterizations were carried out to confirm the hybrid structure of rGO-pyrene-PCBM, and the composite formation is found to improve greatly the dispersity of rGO in DMF. The geometric configuration of rGO-pyrene-PCBM was studied by Raman, SEM, and AFM analyses, suggesting that the C60 moiety is far from the graphene sheet and is bridged with the graphene sheet via the pyrene anchor. Finally rGO-pyrene-PCBM was successfully applied as electron extraction layer for P3HT:PCBM bulk heterojunction polymer solar cell (BHJ-PSC) devices, affording a PCE of 3.89%, which is enhanced by ca. 15% compared to that of the reference device without electron extraction layer (3.39%). Contrarily, the comparative devices incorporating the rGO or pyrene-PCBM component as electron extraction layer showed dramatically decreased PCE, indicating the importance of composite formation between rGO and pyrene-PCBM components for its electron extraction property.

  12. Low-energy dissociative electron attachment to CH2Br2, CHClBr2, and CCl3Br: Intermediate lifetimes and decay energetics

    NASA Astrophysics Data System (ADS)

    Parthasarathy, R.; Finch, C. D.; Wolfgang, J.; Nordlander, P.; Dunning, F. B.

    1998-11-01

    Dissociative electron attachment to the brominated methanes CH2Br2, CHClBr2, and CCl3Br is investigated by measuring the velocity and angular distributions of negative ions produced through electron transfer in collisions with velocity selected K(np) Rydberg atoms. The data are analyzed with the aid of a Monte Carlo collision code that models the detailed kinematics of the reactions. Measurements with CH2Br2 show that essentially all the excess energy of reaction appears in translation, indicating that the electron is captured directly into an antibonding orbital. Data for CHClBr2 show that reaction proceeds by two channels: in the first, essentially all the excess energy appears in translation; in the second, limited conversion of the excess energy to internal motions occurs, pointing to a CHClBr2-* intermediate lifetime of ˜0.1 to 1 ps. In the case of CCl3Br, electron transfer leads to the formation of both Br- and Cl- ions. Br- production is again associated with two channels: in one, essentially all the excess energy appears in translation; in the other, near statistical redistribution of the excess energy occurs prior to dissociation, pointing to a relatively long-lived (τ˜several ps) CCl3Br-* intermediate. Data for Cl- production suggest only limited energy transfer to internal motions. Possible reaction mechanisms for the various channels are discussed with the aid of ab initio calculations.

  13. Electron attachment line shapes, cross sections, and rate constants at ultralow energies in CF3SO3H, (CF3SO2)2O, and CF3I

    NASA Technical Reports Server (NTRS)

    Alajajian, S. H.; Man, K.-F.; Chutjian, A.

    1991-01-01

    Electron attachment cross sections are reported in the energy range 0-160 meV, and at resolutions of 6.0-6.5 meV (FWHM) for the molecules CF3SO3H (triflic acid), (CF3SO2)2O (triflic anhydride), and CF3I (methyl iodide). Use is made of the Kr photoionization method. Attachment line shapes are deconvoluted from the spectral slit (electron energy) function, and are converted to cross sections by normalization to thermal attachment rate constants at 300 K. Rate constants as a function of mean electron energy are calculated from the cross sections using a Maxwellian electron energy distribution function. Present data are compared with flowing-afterglow, Langmuir-probe results in triflic acid and anhydride, and with high-Rydberg ionization results in CF3I.

  14. Electronically Integrated Active Compliant Transmission (ACT) Actuation Technologies Proof-of-Concept Investigation of Active Velcro for Smart Attachment Mechanisms

    DTIC Science & Technology

    2006-05-31

    down and be in the center position when off, the current amplification systems that exploit very high energy density materials (such as EC98 by EDO ...project was the synergistic development of complete piezoelectric actuation systems with integrated electronic drivers, material transduction and Active...4 1.2.1. INSTAR System Description

  15. Experimental and theoretical investigation of pressure-dependent Raman spectra of triaminotrinitrobenzene (TATB) at high pressures

    NASA Astrophysics Data System (ADS)

    Landerville, Aaron C.; Crowhurst, Jonathan C.; Grant, Christian D.; Zaug, Joseph M.; Oleynik, Ivan

    2017-01-01

    The experimental pressure dependent Raman spectra of triamino-trinitrobenzene (TATB) are determined up to 24.5 GPa, and compared with those obtained using density functional theory (DFT) up to 27 GPa. The density functional theory calculations include the Grimme empirical van der Waals correction, as well as corrections for both thermal and zero-point energy contributions to pressure. DFT-predicted crystal structure of TATB at ambient conditions, the equation of state, and Raman spectra up to 24.5 GPa are in good agreement with experiment. Pressure-dependence of specific vibrational modes is discussed in detail. Further, the comparison of experimental and calculated Raman spectra of TATB offers evidence that no first-order polymorphic phase transition occurs at least up to 27 GPa.

  16. First-principles characterisation of the pressure-dependent elastic anisotropy of SnO2 polymorphs

    NASA Astrophysics Data System (ADS)

    Das, Pratik Kumar; Chowdhury, Anjan; Mandal, Nibir; Arya, A.

    2016-06-01

    Using DFT calculations, this study investigates the pressure-dependent variations of elastic anisotropy in the following SnO2 phases: rutile-type (tetragonal; P42/mnm), CaCl2-type (orthorhombic; Pnnm)-, α-PbO2-type (orthorhombic; Pbcn)- and fluorite-type (cubic; Fm-3m). Experimentally, these polymorphs undergo sequential structural transitions from rutile-type → CaCl2-type → α-PbO2-type → fluorite-type with increasing pressure at 11.35, 14.69 and 58.22 GPa, respectively. We estimate the shear anisotropy (A1 and A3) on {1 0 0} and {0 0 1} crystallographic planes of the tetragonal phase and (A1, A2 and A3) on {1 0 0}, {0 1 0} and {0 0 1} crystallographic planes of the orthorhombic phases. The rutile-type phase shows strongest shear anisotropy on the {0 0 1} planes (A2 > 4.8), and the degree of anisotropy increases nonlinearly with pressure. In contrast, the anisotropy is almost absent on the {1 0 0} planes (ie A1 1) irrespective of the pressure. The CaCl2-type phase exhibits similar shear anisotropy behaviour preferentially on {0 0 1} (A3 > 5), while A1 and A2 remain close to 1. The α-PbO2-type phase shows strikingly different elastic anisotropy characterised by a reversal in anisotropy (A3 > 1 to < 1) with increasing pressure at a threshold value of 38 GPa. We provide electronic density of states and atomic configuration to account for this pressure-dependent reversal in shear anisotropy. Our study also analyses the directional Young's moduli for the tetragonal and orthorhombic phases as a function of pressure. Finally, we estimate the band gaps of these four SnO2 phases as a function of pressure which are in agreement with the previous results.

  17. Electron attachment and detachment: C6 F5 Cl , C6 F5 Br , and C6 F5 I and the electron affinity of C6 F5 Cl

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Viggiano, A. A.

    2005-01-01

    Measurements are reported of rate constants for electron attachment to C6F5X (X=Cl,Br,I) and thermal electron detachment from C6F5Cl- over the temperature range 300-550K in 133Pa of He gas in a flowing-afterglow Langmuir-probe apparatus. This is the first case we know of where the parent anion has sufficiently low electron detachment energy that detachment (from C6F5Cl- in this case) has been observed in competition with a channel for dissociative electron attachment yielding a thermally stable anion (here, Cl- ). Because of this competition, it is shown that a simple mass spectrometric determination of the product branching fractions at long times will lead to erroneous results at elevated temperatures. The electron density profiles provide evidence for a new plasma decay process involving the detaching and nondetaching anions trapped in the space charge field of the positive ions. Electron attachment rate constants were found to be 1.0×10-7 , 1.1×10-7 , and 2.0×10-7cm3s-1 , at 300K , for C6F5Cl , C6F5Br , and C6F5I , respectively, estimated accurate to ±25% except for C6F5I , where there is ±30% uncertainty. Rate constants for C6F5Cl changed little over our temperature range, while those for C6F5Br , and C6F5I increased with temperature. Electron detachment occurred only for C6F5Cl- in our temperature range. Detachment rate constants were immeasurable at room temperature but approached 4000s-1 at 550K . From these data the electron affinity (EA) for C6F5Cl was determined, EA (C6F5Cl)=0.75±0.08eV . G3(MP2) calculations (based on Møller-Plesset perturbation theory) were carried out for the neutral and anion and yielded EA(C6F5Cl)=0.728eV .

  18. THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS

    SciTech Connect

    Stamenkovic, Vlada; Noack, Lena; Spohn, Tilman; Breuer, Doris E-mail: Lena.Noack@dlr.de E-mail: Tilman.Spohn@dlr.de

    2012-03-20

    We study the thermal evolution of super-Earths with a one-dimensional (1D) parameterized convection model that has been adopted to account for a strong pressure dependence of the viscosity. A comparison with a 2D spherical convection model shows that the derived parameterization satisfactorily represents the main characteristics of the thermal evolution of massive rocky planets. We find that the pressure dependence of the viscosity strongly influences the thermal evolution of super-Earths-resulting in a highly sluggish convection regime in the lower mantles of those planets. Depending on the effective activation volume and for cooler initial conditions, we observe with growing planetary mass even the formation of a conductive lid above the core-mantle boundary (CMB), a so-called CMB-lid. For initially molten planets our results suggest no CMB-lids but instead a hot lower mantle and core as well as sluggish lower mantle convection. This implies that the initial interior temperatures, especially in the lower mantle, become crucial for the thermal evolution-the thermostat effect suggested to regulate the interior temperatures in terrestrial planets does not work for massive planets if the viscosity is strongly pressure dependent. The sluggish convection and the potential formation of the CMB-lid reduce the convective vigor throughout the mantle, thereby affecting convective stresses, lithospheric thicknesses, and heat fluxes. The pressure dependence of the viscosity may therefore also strongly affect the propensity of plate tectonics, volcanic activity, and the generation of a magnetic field of super-Earths.

  19. Calculation of cross sections for vibrational excitation and dissociative attachment in electron collisions with HBr and DBr

    SciTech Connect

    Horacek, J. |||; Domcke, W. ||

    1996-04-01

    The nonlocal resonance model developed earlier for the description of low-energy inelastic and reactive electron-HCl collisions has been adapted to the electron-HBr collision system. The parameters of the model have been determined by fitting the eigenphase sum in the fixed-nuclei approximation to the data of an {ital ab} {ital initio} {ital R}-matrix calculation of Morgan, Burke, and collaborators. The Schwinger-Lanczos method has been employed to solve the nuclear scattering problem with a nonlocal, complex, and energy-dependent effective potential. Fully converged cross sections have been obtained on a dense grid of energies for many vibrational excitation, deexcitation, and dissociative channels in both HBr and DBr. The computed cross sections are generally in good agreement with experiment as far as data are available. {copyright} {ital 1996 The American Physical Society.}

  20. Investigation of dissociative electron attachment to 2'-deoxycytidine-3'-monophosphate using DFT method and time dependent wave packet approach

    NASA Astrophysics Data System (ADS)

    Bhowmick, Somnath; B, Renjith; Mishra, Manoj K.; Sarma, Manabendra

    2012-08-01

    Effect of electron correlation on single strand breaks (SSBs) induced by low energy electron (LEE) has been investigated in a fragment excised from a DNA, viz., 2'-deoxycytidine-3'-monophosphate [3'-dCMPH] molecule in gas phase at DFT-B3LYP/6-31+G(d) accuracy level and using local complex potential based time dependent wave packet (LCP-TDWP) approach. The results obtained, in conjunction with our earlier investigation, show the possibility of SSB at very low energy (0.15 eV) where the LEE transfers from π* to σ* resonance state which resembles a SN2 type mechanism. In addition, for the first time, an indication of quantum mechanical tunneling in strand breaking is seen from the highest anionic bound vibrational state (χ5), which may have a substantial role during DNA damage.

  1. State selectivity and dynamics in dissociative electron attachment to CF₃I revealed through velocity slice imaging.

    PubMed

    Ómarsson, Frímann H; Mason, Nigel J; Krishnakumar, E; Ingólfsson, Oddur

    2014-11-03

    In light of its substantially more environmentally friendly nature, CF3I is currently being considered as a replacement for the highly potent global-warming gas CF4, which is used extensively in plasma processing. In this context, we have studied the electron-driven dissociation of CF3I to form CF3(-) and I, and we compare this process to the corresponding photolysis channel. By using the velocity slice imaging (VSI) technique we can visualize the complete dynamics of this process and show that electron-driven dissociation proceeds from the same initial parent state as the corresponding photolysis process. However, in contrast to photolysis, which leads nearly exclusively to the (2)P(1/2) excited state of iodine, electron-induced dissociation leads predominantly to the (2)P(3/2) ground state. We believe that the changed spin state of the negative ion allows an adiabatic dissociation through a conical intersection, whereas this path is efficiently repressed by a required spin flip in the photolysis process.

  2. Angular dependence of dissociative electron attachment topolyatomic molecules: application to the 2B1 metastable state of the H2Oand H2S anions

    SciTech Connect

    Haxton, Daniel J.; McCurdy, C. William; Rescigno, Thomas N.

    2006-01-12

    The angular dependence of dissociative electron attachment (DEA) to polyatomic targets is formulated in the local complex potential model, under the assumption that the axial recoil approximation describes the dissociation dynamics. An additional approximation, which is found to be valid in the case of H2O but not in the case of H2S, makes it possible to describe the angular dependence of DEA solely from an analysis of the fixed-nuclei entrance amplitude, without carrying out nuclear dynamics calculations. For H2S, the final-vibrational-state-specific angular dependence of DEA is obtained by incorporating the variation of the angular dependence of the entrance amplitude with nuclear geometry into the nuclear dynamics. Scattering calculations using the complex Kohn method and, for H2S, full quantum calculations of the nuclear dynamics using the Multi-Configuration Time-Dependent Hartree method, are performed.

  3. Response analysis of electron attachment rates to C3F8 and SF6 in buffer gases

    NASA Astrophysics Data System (ADS)

    Dahl, Dominik A.; Franck, Christian M.

    2013-11-01

    Electron swarm methods are applied for investigating the effects of small amounts (⩽1.5%) of a strongly electronegative sample gas in the buffer gases Ar, N2 or CO2. A pulsed Townsend method, a Monte Carlo swarm method, and a solution of the Boltzmann equation are used to determine the effective ionization rate constants of the gas mixtures. The sensitivity of the effective ionization rate constant to changes of the mixing ratio is evaluated. Our methods are benchmarked with the analysis of Ar-SF6 and N2-SF6 mixtures, and subsequently used for the analysis of gas mixtures containing C3F8. The results based on the recommended C3F8 cross sections are shown to be inconsistent with the experimental data for N2-C3F8 and CO2-C3F8 mixtures.

  4. Spin-orbit coupling with approximate equation-of-motion coupled-cluster method for ionization potential and electron attachment

    NASA Astrophysics Data System (ADS)

    Cao, Zhanli; Wang, Fan; Yang, Mingli

    2016-10-01

    Various approximate approaches to calculate cluster amplitudes in equation-of-motion coupled-cluster (EOM-CC) approaches for ionization potentials (IP) and electron affinities (EA) with spin-orbit coupling (SOC) included in post self-consistent field (SCF) calculations are proposed to reduce computational effort. Our results indicate that EOM-CC based on cluster amplitudes from the approximate method CCSD-1, where the singles equation is the same as that in CCSD and the doubles amplitudes are approximated with MP2, is able to provide reasonable IPs and EAs when SOC is not present compared with CCSD results. It is an economical approach for calculating IPs and EAs and is not as sensitive to strong correlation as CC2. When SOC is included, the approximate method CCSD-3, where the same singles equation as that in SOC-CCSD is used and the doubles equation of scalar-relativistic CCSD is employed, gives rise to IPs and EAs that are in closest agreement with those of CCSD. However, SO splitting with EOM-CC from CC2 generally agrees best with that with CCSD, while that of CCSD-1 and CCSD-3 is less accurate. This indicates that a balanced treatment of SOC effects on both single and double excitation amplitudes is required to achieve reliable SO splitting.

  5. Electronic transport in oligo-para-phenylene junctions attached to carbon nanotube electrodes: Transition-voltage spectroscopy and chirality

    SciTech Connect

    Brito Silva, C. A. Jr.; Silva, S. J. S. da; Leal, J. F. P.; Pinheiro, F. A.; Del Nero, J.

    2011-06-15

    We have investigated, by means of a nonequilibrium Green's function method coupled to density functional theory, the electronic transport properties of molecular junctions composed of oligo-para-phenylene (with two, three, four, and five phenyl rings) covalently bridging the gap between metallic carbon nanotubes electrodes. We have found that the current is strongly correlated to a purely geometrical chiral parameter, both on-resonance and off-resonance. The Fowler-Nordheim plot exhibits minima, V{sub min}, that occur whenever the tail of a resonant transmission peak enters in the bias window. This result corroborates the scenario in which the coherent transport model gives the correct interpretation to transition voltage spectroscopy (TVS). We have shown that V{sub min} corresponds to voltages where a negative differential resistance (NDR) occurs. The finding that V{sub min} corresponds to voltages that exhibit NDR, which can be explained only in single-molecule junctions within the coherent transport model, further confirms the applicability of such models to adequately interpret TVS. The fact that the electrodes are organic is at the origin of differences in the behavior of V{sub min} if compared to the case of molecular junctions with nonorganic contacts treated so far.

  6. Specific anion effects on the pressure dependence of the protein-protein interaction potential.

    PubMed

    Möller, Johannes; Grobelny, Sebastian; Schulze, Julian; Steffen, Andre; Bieder, Steffen; Paulus, Michael; Tolan, Metin; Winter, Roland

    2014-04-28

    We present a study on ion specific effects on the intermolecular interaction potential V(r) of dense protein solutions under high hydrostatic pressure conditions. Small-angle X-ray scattering in combination with a liquid-state theoretical approach was used to determine the effect of structure breaking/making salt anions (Cl(-), SO4(2-), PO4(3-)) on the intermolecular interaction of lysozyme molecules. It was found that besides the Debye-Hückel charge screening effect, reducing the repulsiveness of the interaction potential V(r) at low salt concentrations, a specific ion effect is observed at high salt concentrations for the multivalent kosmotropic anions, which modulates also the pressure dependence of the protein-protein interaction potential. Whereas sulfate and phosphate strongly influence the pressure dependence of V(r), chloride anions do not. The strong structure-making effect of the multivalent anions, dominating for the triply charged PO4(3-), renders the solution structure less bulk-water-like at high salt concentrations, which leads to an altered behavior of the pressure dependence of V(r). Hence, the particular structural properties of the salt solutions are able to influence the spatial organization and the intermolecular interactions of the proteins, in particular upon compression. These results are of interest for exploring the combined effects of ionic strength, temperature and pressure on the phase behavior of protein solutions, but may also be of relevance for understanding pressure effects on the hydration behavior of biological matter under extreme environmental conditions.

  7. Electronic grade and flexible semiconductor film employing oriented attachment of colloidal ligand-free PbS and PbSe nanocrystals at room temperature.

    PubMed

    Shanker, G Shiva; Swarnkar, Abhishek; Chatterjee, Arindom; Chakraborty, S; Phukan, Manabjyoti; Parveen, Naziya; Biswas, Kanishka; Nag, Angshuman

    2015-05-28

    Electronic grade semiconductor films have been obtained via the sintering of solution processed PbS and PbSe nanocrystals at room temperature. Prior attempts to achieve similar films required the sintering of nanocrystals at higher temperatures (>350 °C), which inhibits the processing of such films on a flexible polymer substrate, and it is also expensive. We reduced the sintering temperature by employing two important strategies: (i) use of ligand-free nanocrystals and (ii) oriented attachment of nanocrystals. Colloidal ligand-free PbS and PbSe nanocrystals were synthesized at 70 °C with high yield (∼70%). However, these nanocrystals start to agglomerate with time in formamide, and upon the removal of the solvation energy, nanocrystals undergo oriented attachment, forming larger elongated crystals. PbS and PbSe nanocrystal films made on both glass and flexible substrates at room temperature exhibit Ohmic behavior with optimum DC conductivities of 0.03 S m(-1) and 0.08 S m(-1), respectively. Mild annealing of the films at 150 °C increases the conductivity values to 1.1 S m(-1) and 137 S m(-1) for PbS and PbSe nanocrystal films, respectively. AC impedance was measured to distinguish the contributions from grain and grain boundaries to the charge transport mechanism. Charge transport properties remain similar after the repeated bending of the film on a flexible polymer substrate. Reasonably high thermoelectric Seebeck coefficients of 600 μV K(-1) and 335 μV K(-1) for PbS and PbSe nanocrystal pellets, respectively, were obtained at room temperature.

  8. Acetone photolysis at 248 nm revisited: pressure dependence of the CO and CO2 quantum yields.

    PubMed

    Somnitz, H; Ufer, T; Zellner, R

    2009-10-14

    Pressure dependent CO and CO2 quantum yields in the laser pulse photolysis of acetone at 248 nm and T = 298 K have been measured directly using quantitative infrared diode laser absorption. The experiments cover the pressure range from 50 to 900 mbar. It is found that the quantum yields show a significant dependence on total pressure, with Phi(CO) decreasing from around 0.5 at 20 mbar to approximately 0.3 at 900 mbar. The corresponding CO2 yields as observed when O2 exists in the reaction mixture, exhibit exactly the opposite behaviour. For the sum of both a value of 1.05(-0.05)(+0.02) independent of pressure is obtained, showing that the sum of (Phi(CO) + Phi(CO2)) is a measure for the primary quantum yield in the photolysis of acetone. In addition, CO quantum yields and corresponding pressure dependences were measured in experiments using different bath gases including He, Ar, Kr, SF6, and O2 as third body colliders. The theoretical framework in which we discuss these data is based on our previous findings that the pressure dependence of the CO yield is a consequence of a stepwise fragmentation mechanism during which acetone decomposes initially into methyl and a vibrationally 'hot' acetyl radical, with the latter being able to decompose promptly into methyl plus CO. The pressure dependence of the CO yield then originates from the second step and is modelled quantitatively via statistical dynamical calculations using a combination of RRKM theory with a time-dependent master equation (ME) approach. From a comparison of experiment with theory the amount of excess energy in the vibrationally hot acetyl radicals (E* approximately 65 kJ mol(-1)) as well as the characteristic collision parameters for interaction of acetyl with the different bath gases were derived. Values of 90, 280, 310, 545, 550 and 1800 cm(-1) for the average energy transferred per downward collision for the bath gases He, Ar, Kr, O2, N2, and SF6, respectively, are obtained. The calculations also

  9. Pressure dependence of structural and dynamical properties in melt sulfur: Evidence for two successive chain breakages

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Mu, H. F.

    2014-11-01

    Using ab initio molecular dynamics simulations, the pressure dependence of structural and dynamical properties in melt sulfur along 1085 K isotherm was studied with pressure range from 4.18 to 15.8 GPa. It was found that the atomic chains in melt sulfur abruptly break twice with increasing pressure. The electric density of state near EF and the diffusion coefficient both show abrupt increase along with these two times of breakages. These changes would strongly influence the physical properties such as conductivity and viscosity. However, the density discontinuity along the isotherm, indication of a first-order phase transition, was not found.

  10. Electron attachment to MoF6, ReF6, and WF6; reaction of MoF6(-) with ReF6 and reaction of Ar+ with MoF6.

    PubMed

    Friedman, Jeffrey F; Stevens, Amy E; Miller, Thomas M; Viggiano, A A

    2006-06-14

    Rate constants were measured for electron attachment to MoF(6), ReF(6), and WF(6) in 133 Pa of helium gas using a flowing-afterglow Langmuir-probe apparatus. The experiment is a thorny one because the molecules tend to form oxide impurities on feedline surfaces and because of thermal decomposition of MoF(6) on surfaces as the gas temperature is increased. The electron attachment rate constant for MoF(6) is (2.3+/-0.8)x10(-9) cm(3) s(-1) at 297 K; only MoF(6) (-) is formed in the temperature range of 297-385 K. The rate constant increases with temperature up to the point where decomposition becomes apparent. Electron attachment to ReF(6) occurs with a rate constant of (2.4+/-0.8)x10(-9) cm(3) s(-1) at 297 K; only ReF(6) (-) is produced. MoF(6) (-) reacts with ReF(6) to form ReF(6) (-) on essentially every collision, showing definitively that the electron affinity of ReF(6) is greater than that of MoF(6). A rate constant of (5.0+/-1.3)x10(-10) cm(3) s(-1) was measured for this ion-molecule reaction at 304 K. The reverse reaction is not observed. The reaction of Ar(+) with MoF(6) was found to produce MoF(5) (+)+F, with a rate constant of (1.8+/-0.5)x10(-9) cm(3) s(-1). WF(6) attaches electrons so slowly at room temperature that the attachment rate was below detection level (< or =10(-12) cm(3) s(-1)). By 552 K, the attachment rate constant reaches a value of (2+/-1)x10(-10) cm(3) s(-1).

  11. Electron attachment to MoF6, ReF6, and WF6; reaction of MoF6- with ReF6 and reaction of Ar+ with MoF6

    NASA Astrophysics Data System (ADS)

    Friedman, Jeffrey F.; Stevens, Amy E.; Miller, Thomas M.; Viggiano, A. A.

    2006-06-01

    Rate constants were measured for electron attachment to MoF6, ReF6, and WF6 in 133Pa of helium gas using a flowing-afterglow Langmuir-probe apparatus. The experiment is a thorny one because the molecules tend to form oxide impurities on feedline surfaces and because of thermal decomposition of MoF6 on surfaces as the gas temperature is increased. The electron attachment rate constant for MoF6 is (2.3±0.8)×10-9cm3s-1 at 297K; only MoF6- is formed in the temperature range of 297-385K. The rate constant increases with temperature up to the point where decomposition becomes apparent. Electron attachment to ReF6 occurs with a rate constant of (2.4±0.8)×10-9cm3s-1 at 297K; only ReF6- is produced. MoF6- reacts with ReF6 to form ReF6- on essentially every collision, showing definitively that the electron affinity of ReF6 is greater than that of MoF6. A rate constant of (5.0±1.3)×10-10cm3s-1 was measured for this ion-molecule reaction at 304K. The reverse reaction is not observed. The reaction of Ar+ with MoF6 was found to produce MoF5++F, with a rate constant of (1.8±0.5)×10-9cm3s-1. WF6 attaches electrons so slowly at room temperature that the attachment rate was below detection level (⩽10-12cm3s-1). By 552K, the attachment rate constant reaches a value of (2±1)×10-10cm3s-1.

  12. Pressure dependence of the E 2 and E 1 deep levels in GaAs, GaP, and their alloys

    SciTech Connect

    Samara, G.A.; Biefeld, R.M.; Dawson, L.R.; Zipperian, T.E.; Barnes, C.E. )

    1991-03-15

    Measurements of the effects of pressure on the thermal-electron emission rate and capture cross section for the {ital E}2 and {ital E}1 deep levels in GaAs, GaP, and their alloys have yielded the pressure dependences of the energies of these levels, allowed evaluation of the breathing-mode lattice relaxations accompanying carrier emission or capture by these levels, and revealed trends that lead to new insights. The results are consistent with a model which associates {ital E}2 with the ({minus}/0) and {ital E}1 with the (2{minus}/{minus}) charge states of the As (or P) vacancy.

  13. Investigations of electron attachment to the perfluorocarbon molecules c-C4F8, 2-C4F8, 1,3 C4F6, and c-C5F8

    NASA Astrophysics Data System (ADS)

    Feil, Stefan; Märk, Tilmann D.; Mauracher, Andreas; Scheier, Paul; Mayhew, Chris A.

    2008-11-01

    Non-dissociative and dissociative electron attachment to a series of gas-phase perfluorocarbons (PFCs), namely octafluorocyclobutane, c-C4F8, octafluorobut-2-ene (perfluoro-2-butene), 2-C4F8, hexafluorobuta-1,3-diene (1,3 perfluorobutadiene), 1,3 C4F6, and octafluorocyclopentene (perfluorocyclopentene), c-C5F8, of importance to technological plasmas, have been investigated using two different, but complimentary, instruments available in Innsbruck over the electron energy range 0-20 eV. Anion yields as a function of electron energy have been recorded, with the positions and intensities of the electron attachment resonances being determined. One of these instruments is a double focusing sector field mass spectrometer (VG-ZAB-2SEQ), which has been used for measurements requiring high sensitivity and for obtaining accurate relative anion yields. It has also been used to determine the electron detachment lifetimes of the parent anions under various accelerating voltages, and these results are also presented. The second instrument (CELIA) is a trochoidal electron monochromator coupled to a quadrupole mass filter with a pulse counting system for detecting product anionic species. This provides a much higher energy resolution than the VG-ZAB, which makes it a better instrument to investigate narrow energy resonances close to 0 eV. The results of anion yields, peak positions and the relative intensities presented in this paper are compared with previous data of electron attachment to the above PFCs, including investigations by Professor Eugen Illenberger.

  14. Pressure-dependent surface viscosity and its surprising consequences in interfacial flows

    NASA Astrophysics Data System (ADS)

    Manikantan, Harishankar; Squires, Todd

    2016-11-01

    The surface shear viscosity of a surfactant monolayer almost always depends strongly on surface pressure, and this oft-ignored rheological feature significantly alters fluid flow and dynamics of particles on the interface. In order to illustrate the qualitatively new phenomena that arise out of pressure-dependent rheology, we focus here on a series of analytically tractable yet paradigmatic examples of lubrication geometries. Thin-gap flows naturally amplify pressure changes, and thus exemplify the effects of pressure-dependent viscosity. We show that much of the mathematical machinery from Newtonian lubrication analyses can be modified in a relatively straightforward manner in such systems. Our analysis reveals novel features such as a self-limiting flux when a surfactant is pumped through a narrow channel, a maximum approach velocity in squeeze flows due to divergent inter-particle forces, and forces perpendicular to the direction of motion that breaks symmetries associated with Newtonian analogs. We discuss the broader implications of these phenomena, especially with regard to interfacial suspension mechanics for which these lubrication geometries provide a convenient limit.

  15. Pressure Dependent Magnetoluminescence of Semiconductor Quantum Wells in CW and Pulsed Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Jones, E. D.; Kim, Y.; Perry, C. H.; Tozer, S.; Rickel, D. G.

    1996-03-01

    We report on low-temperature pressure dependent magnetoluminescence measurements of a In_0.2Ga_0.8As/GaAs 80Åwide n-type single-strained-quantum well in cw (max 18T) and pulsed (max 60T) magnetic fields using a miniture diamond anvil cell. Landau level shifts were studied at 4 and 76 K with pressures ranging from ambient to about 40 kbar. The nc = 0 to nv = 0 Landau level transition was linear in magnetic field for all pressures, but there is evidence of a slope change for fields of about 20T. The pressure coefficients of the bandgap energy are the expected 9-10 meV/kbar. Also observed was the Γ-X pressure induced transition between the InGaAs Γ-point and the GaAs barrier X-point at the highest pressures. The pressure dependence of the conduction- and valence-band masses will also be discussed.

  16. Pressure dependence of the local structure of iridium ditelluride across the structural phase transition

    NASA Astrophysics Data System (ADS)

    Paris, E.; Joseph, B.; Iadecola, A.; Marini, C.; Ishii, H.; Kudo, K.; Pascarelli, S.; Nohara, M.; Mizokawa, T.; Saini, N. L.

    2016-04-01

    The local structure of IrTe2 has been studied by iridium L3-edge x-ray absorption spectroscopy (XAS) measurements as a function of pressure, performed at two temperatures (100 and 295 K) across the structural phase transition at ˜270 K. Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectra show pressure-dependent anomalies, suggesting phase transitions that are characterized by different local atomic displacements. The high-temperature phase of IrTe2 (trigonal at 295 K) reveals a clear anomaly in the Ir-Te correlations at ˜4 GPa, while the low-temperature phase (at 100 K) shows a smaller change at ˜6 GPa, likely to be associated with transitions in lower-symmetry phases. XANES spectra, measuring higher-order atomic correlations, also show nonlinear pressure dependence in the local geometry at the anomalous pressures. These nonlinear changes suggest that IrTe2 goes through lower local symmetry phases with increasing pressure.

  17. Elastic bounded diffusion and electron propagation: dynamics of the wiring of a self-assembly of immunoglobulins bearing terminally attached ferrocene poly(ethylene glycol) chains according to a spatially controlled organization.

    PubMed

    Anne, A; Demaille, C; Moiroux, J

    2001-05-23

    Molecular monolayers of immunoglobulins bearing terminally attached ferrocene poly(ethylene glycol) chains (IgG-PEG-Fc) were self-assembled at an electrode surface in a step-by-step manner involving antigen-antibody recognition reactions. The total number N of assembled IgG-PEG-Fc monolayers and the number of spacers n(i) separating two successive IgG-PEG-Fc monolayers were controlled and varied. Electron transport through the protein assembly involves the dynamics of the terminally attached PEG chains and isotopic electron exchange between ferrocene heads belonging to successive IgG-PEG-Fc monolayers. The model of elastic bounded diffusion enabled us to analyze quantitatively the dependence of the rate of electron transport on N, n(i), and the rate constant (k(e)) of isotopic electron exchange. Wiring of a molecular monolayer of redox enzyme is also quantitatively characterized.

  18. Mesospheric removal of very long-lived greenhouse gases SF6 and CFC-115 by metal reactions, Lyman-α photolysis, and electron attachment.

    PubMed

    Totterdill, Anna; Kovács, Tamás; Gómez Martín, Juan Carlos; Feng, Wuhu; Plane, John M C

    2015-03-12

    The fluorinated gases SF6 and C2F5Cl (CFC-115) are chemically inert with atmospheric lifetimes of many centuries which, combined with their strong absorption of IR radiation, results in unusually high global warming potentials. Very long lifetimes imply that mesospheric sinks could make important contributions to their atmospheric removal. In order to investigate this, the photolysis cross sections at the prominent solar Lyman-α emission line (121.6 nm), and the reaction kinetics of SF6 and CFC-115 with the neutral meteoric metal atoms Na, K, Mg, and Fe over large temperature ranges, were measured experimentally. The Na and K reactions exhibit significant non-Arrhenius behavior; quantum chemistry calculations of the potential energy surfaces for the SF6 reactions indicate that the Na and K reactions with SF6 are probably activated by vibrational excitation of the F-SF5 (v3) stretching mode. A limited set of kinetic measurements on Na + SF5CF3 are also presented. The atmospheric removal of these long-lived gases by a variety of processes is then evaluated. For SF6, the removal processes in decreasing order of importance are electron attachment, VUV photolysis, and reaction with K, Na, and H. For CFC-115, the removal processes in decreasing order of importance are reaction with O((1)D), VUV photolysis, and reaction with Na, K, and H.

  19. Monte Carlo simulations of the pressure dependence of the water-acid gas interfacial tensions.

    PubMed

    Biscay, F; Ghoufi, A; Lachet, V; Malfreyt, P

    2009-10-29

    We report two-phase Monte Carlo (MC) simulations of the binary water-acid gas mixtures at high temperature and high pressure. Simulations are performed in the Np(N)AT ensemble in order to reproduce the pressure dependence of the interfacial tensions of the water-CO(2) and water-H(2)S mixtures. The interfacial tension of the binary water-CO(2) mixture is determined from 5 to 45 MPa along the isotherm T = 383 K. Water-H(2)S interfacial tensions are computed along one supercritical isotherm (T = 393 K) in a pressure range of 1-15 MPa. The temperature and pressure conditions investigated here by the MC simulations are typical of the geological storage conditions of these acid gases. The coexisting densities and the compositions of the water-rich and acid-gas-rich phases are compared with experiments and with data calculated from Gibbs ensemble Monte Carlo (GEMC) simulations.

  20. Pressure dependence on the reaction propagation rate of PETN at high pressure

    SciTech Connect

    Foltz, M.F.

    1993-04-01

    The reaction propagation rate (RPR) of the sensitive high explosive pentaerythritol tetranitrate (PETN) was measured in a diamond anvil cell (DAC) over the pressure range of 2--20 GPa. The experimental technique used is the same as that previously reported. The RPR data shows that it burns one to two orders of magnitude faster in the DAC than 1,3,5,-triamino-2,4,6-trinitrobenzene (TATB) and nitromethane (CH{sub 3}NO{sub 2}) respectively. The PETN RPR curve did not show sample pressure-dependent behavior like that of nitromethane, but instead varied abruptly like the RPR curve of TATB. In order to interpret these changes, static-pressure DAC mid-IR FTIR spectra were taken of micro-pellets of PETN embedded in KBr. The relationship between changes in the spectra, the RPR curve, and published single crystal PETN wedge test data are discussed.

  1. Comparison of radiative-convective models with constant and pressure-dependent lapse rates

    NASA Technical Reports Server (NTRS)

    Hummel, J. R.; Kuhn, W. R.

    1981-01-01

    One of the most commonly used models for studying climatic processes is the convective adjustment radiation model. In current radiation models, stable temperature profiles are maintained with a convective adjustment in which the temperature lapse rate is set equal to a critical lapse rate whenever the computed lapse rates exceed the critical value. First introduced by Manabe and Strickler (1964), a variety of convective adjustment models are now in use. It is pointed out that on a global scale, moist adiabatic processes, and thus moist adiabatic lapse rates, approximate the atmospheric temperature profile. Comparisons of profiles from a one-dimensional-radiative-convective model have been made using the conventional 6.5 K/km as the critical lapse rate and the pressure-dependent moist adiabatic lapse rates. For a clear sky and a single effective cloud the surface temperatures are 1 to 3 K higher with the constant 6.5 K/km critical lapse rate.

  2. Pressure-dependent surface viscosity and its surprising consequences in interfacial lubrication flows

    NASA Astrophysics Data System (ADS)

    Manikantan, Harishankar; Squires, Todd M.

    2017-02-01

    The surface shear rheology of many insoluble surfactants depends strongly on the surface pressure (or concentration) of that surfactant. Here we highlight the dramatic consequences that surface-pressure-dependent surface viscosities have on interfacially dominant flows, by considering lubrication-style geometries within high Boussinesq (Bo) number flows. As with three-dimensional lubrication, high-Bo surfactant flows through thin gaps give high surface pressures, which in turn increase the local surface viscosity, further amplifying lubrication stresses and surface pressures. Despite their strong nonlinearity, the governing equations are separable, so that results from two-dimensional Newtonian lubrication analyses may be immediately adapted to treat surfactant monolayers with a general functional form of ηs(Π ) . Three paradigmatic systems are analyzed to reveal qualitatively new features: a maximum, self-limiting value for surfactant fluxes and particle migration velocities appears for Π -thickening surfactants, and kinematic reversibility is broken for the journal bearing and for suspensions more generally.

  3. Pressure dependent Raman spectra used to validate DFT EOS of hexanitrostilbene (HNS)

    NASA Astrophysics Data System (ADS)

    Farrow, Darcie; Alam, Kathy; Martin, Laura; Wixom, Ryan

    2017-01-01

    Due to its thermal stability and low vapor pressure, Hexanitrostilbene (HNS) is often used in high-temperature or vacuum applications as a detonator explosive or in mild detonating fuse. Toward improving the accuracy of the equation of state used in hydrodynamic simulations of the performance of HNS, we have measured the spe ctra of this material under static pressure in a diamond anvil cell. Density functional theory calculations were used to simulate the pressure dependence of the Raman spectra along the Hugoniot and 300K isotherm for comparison and to aid in interpreting the data. We discuss changes in vibrational signatures of HNS under pressure, comparison with simulated spectra, and using this data as a basis for understanding future pulsed Raman measurements on dynamically compressed HNS samples.

  4. Pressure-dependent kinetics of initial reactions in iso-octane pyrolysis.

    PubMed

    Ning, HongBo; Gong, ChunMing; Li, ZeRong; Li, XiangYuan

    2015-05-07

    This study focuses on the studies of the main pressure-dependent reaction types of iso-octane (iso-C8H18) pyrolysis, including initial C-C bond fission of iso-octane, isomerization, and β-scission reactions of the alkyl radicals produced by the C-C bond fission of iso-octane. For the C-C bond fission of iso-octane, the minimum energy potentials are calculated at the CASPT2(2e,2o)/6-31+G(d,p)//CAS(2e,2o)/6-31+G(d,p) level of theory. For the isomerization and the β-scission reactions of the alkyl radicals, the optimization of the geometries and the vibrational frequencies of the reactants, transition states, and products are performed at the B3LYP/CBSB7 level, and their single point energies are calculated by using the composite CBS-QB3 method. Variable reaction coordinate transition state theory (VRC-TST) is used for the high-pressure limit rate constant calculation and Rice-Ramsperger-Kassel-Marcus/master equation (RRKM/ME) is used to calculate the pressure-dependent rate constants of these channels with pressure varying from 0.01-100 atm. The rate constants obtained in this work are in good agreement with those available from literatures. We have updated the rate constants and thermodynamic parameters for species involved in these reactions into a current chemical kinetic mechanism and also have improved the concentration profiles of main products such as C3H6 and C4H6 in the shock tube pyrolysis of iso-octane. The results of this study provide insight into the pyrolysis of iso-octane and will be helpful in the future development of branched paraffin kinetic mechanisms.

  5. Pressure dependence of the compressibility of a micelle and a protein: insights from cavity formation analysis

    NASA Astrophysics Data System (ADS)

    Pereira, Brian; Jain, Sandeep; Sarupria, Sapna; Yang, Lu; Garde, Shekhar

    We present results from molecular dynamics simulations of a spherical micelle comprising 80 non-ionic C8E5 surfactants in water, a protein staphylococcal nuclease in water, and bulk n-hexane and water liquids over a range of hydrostatic pressures. We focus specifically on the pressure dependence of the volumetric properties - the partial molar volume and partial molar compressibility - of the micelle, the protein, and bulk liquids. We find that the micelle interior displays properties similar to liquid alkanes over a range of pressures and has a compressibility of ˜100-110×10-6 bar-1 under ambient conditions, which is more than twice that of liquid water. In contrast, the pressure dependence of the protein interior resembles that of solid organic polymeric materials and has a compressibility of ˜ 5-10×10-6 bar-1. We performed extensive analysis of cavity formation in all systems. Interestingly, it is not the average cavity size but the width of the cavity size distribution in a given medium that correlates with the compressibility of that medium over a broad range of pressures up to several kilobars. Correspondingly, the cavity size distribution is most sharply defined in protein interiors and is broadest in the micelle interior and in n-hexane. To explore the correlation between cavity formation and compressibility, we present preliminary calculations using the information theory approach in the bulk water phase. Analysis of cavity formation and, especially, the nature of the cavity size distribution may provide a sensitive probe of the compressibility and flexibility of local molecular environments in inhomogeneous condensed media.

  6. Temperature and pressure dependences of kimberlite melts viscosity (experimental-theoretical study)

    NASA Astrophysics Data System (ADS)

    Persikov, Eduard; Bykhtiyarov, Pavel; Cokol, Alexsander

    2016-04-01

    Experimental data on temperature and pressure dependences of viscosity of model kimberlite melts (silicate 82 + carbonate 18, wt. %, 100NBO/T = 313) have been obtained for the first time at 100 MPa of CO2 pressure and at the lithostatic pressures up to 7.5 GPa in the temperature range 1350 oC - 1950 oC using radiation high gas pressure apparatus and press free split-sphere multi - anvil apparatus (BARS). Experimental data obtained on temperature and pressure dependences of viscosity of model kimberlite melts at moderate and high pressures is compared with predicted data on these dependences of viscosity of basaltic melts (100NBO/T = 58) in the same T, P - range. Dependences of the viscosity of model kimberlite and basaltic melts on temperature are consistent to the exponential Arrenian equation in the T, P - range of experimental study. The correct values of activation energies of viscous flow of kimberlite melts have been obtained for the first time. The activation energies of viscous flow of model kimberlite melts exponentially increase with increasing pressure and are equal: E = 130 ± 1.3 kJ/mole at moderate pressure (P = 100 MPa) and E = 160 ± 1.6 kJ/mole at high pressure (P = 5.5 GPa). It has been established too that the viscosity of model kimberlite melts exponentially increases on about half order of magnitude with increasing pressures from 100 MPa to 7.5 GPa at the isothermal condition (1800 oC). It has been established that viscosity of model kimberlite melts at the moderate pressure (100 MPa) is lover on about one order of magnitude to compare with the viscosity of basaltic melts, but at high pressure range (5.5 - 7.5 GPa), on the contrary, is higher on about half order of magnitude at the same values of the temperatures. Here we use both a new experimental data on viscosity of kimberlite melts and our structural chemical model for calculation and prediction the viscosity of magmatic melts [1] to determine the fundamental features of viscosity of

  7. Lower mantle dynamics and the role of pressure-dependent thermodynamic and transport properties

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Yuen, D. A.; Cadek, O.

    2010-12-01

    We have carried out numerical simulations of large aspect-ratio 2-D mantle convection that feature pressure-dependent thermal expansivity and conductivity along with the major mantle phase transitions, including the deep phase change from perovskite (pv) to post-perovskite (ppv). The rheological law is Newtonian and has both temperature- and pressure-dependences, while the extended Boussinesq approximation is assumed for the energetics. We have analyzed the combined effects of a strongly decreasing thermal expansivity, according to the diffraction experiments on pv by Katsura et al. (2009), and steeply increasing lattice thermal conductivity based on different models obtained from experiments (Ohta, 2010) and first principles (de Koker, 2010; Tang and Dong, 2010). Since ppv is expected to have a relatively weak rheology with respect to pv (Hunt et al., 2009; Ammann et al., 2010) and a large thermal conductivity (Ohta, 2010), we have also assumed that the transition from pv to ppv is accompanied by both a reduction in viscosity by 1 order of magnitude and by a 50% increase in conductivity. As long as the thermal expansivity and conductivity are constant, ppv exerts small but noticeable effects: it destabilizes the D" layer, causes focusing of the heat flux peaks and a slight increase of the average mantle temperature and of the temporal and spatial frequency of upwellings. The destabilizing character of ppv is strong enough to affect the stability of mantle plumes even in the presence of a large decrease of the thermal expansivity which otherwise, without ppv, delivers remarkably stable large upwellings. However we have found that if a sufficiently large thermal conductivity near the core-mantle is also accounted for, lower mantle plumes are stabilized for a geologically long time-span in excess of billion of years, even in the presence of the disturbances induced by the pv-ppv transition. Preliminary results confirm the validity of these findings even for thermo

  8. Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hariri, Sepideh; Johnstone, Murray; Jiang, Yi; Padilla, Steven; Zhou, Zhehai; Reif, Roberto; Wang, Ruikang K.

    2014-10-01

    The aqueous outflow system (AOS) is responsible for maintaining normal intraocular pressure (IOP) in the eye. Structures of the AOS have an active role in regulating IOP in healthy eyes and these structures become abnormal in the eyes with glaucoma. We describe a newly developed system platform to obtain high-resolution images of the AOS structures. By incorporating spectral domain optical coherence tomography (SD-OCT), the platform allows us to systematically control, image, and quantitate the responses of AOS tissue to pressure with a millisecond resolution of pulsed flow. We use SD-OCT to image radial limbal segments from the surface of the trabecular meshwork (TM) with a spatial resolution of ˜5 μm in ex vivo nonhuman primate eyes. We carefully insert a cannula into Schlemm's canal (SC) to control both pressures and flow rates. The experimental results demonstrate the capability of the platform to visualize the unprecedented details of AOS tissue components comparable to that delivered by scanning electron microscopy, as well as to delineate the complex pressure-dependent relationships among the TM, structures within the SC, and collector channel ostia. The described technique provides a new means to characterize the anatomic and pressure-dependent relationships of SC structures, particularly the active motion of collagenous elements at collector channel ostia; such relationships have not previously been amenable to study. Experimental findings suggest that continuing improvements in the OCT imaging of the AOS may provide both insights into the glaucoma enigma and improvements in its management.

  9. Laminar and blazed type holographic gratings for a versatile soft x-ray spectrograph attached to an electron microscope and their evaluation in the 50-200 eV range.

    PubMed

    Imazono, Takashi; Koike, Masato; Kawachi, Tetsuya; Hasegawa, Noboru; Koeda, Masaru; Nagano, Tetsuya; Sasai, Hiroyuki; Oue, Yuki; Yonezawa, Zeno; Kuramoto, Satoshi; Terauchi, Masami; Takahashi, Hideyuki; Handa, Nobuo; Murano, Takanori; Sano, Kazuo

    2012-05-01

    Laminar and blazed type holographic varied-line-spacing spherical gratings for use in a versatile soft x-ray flat-field spectrograph attached to an electron microscope are designed, fabricated, and evaluated. The absolute diffraction efficiencies of laminar (or blazed) master and replica gratings at 86.00° incidence evaluated by synchrotron radiation show over 5% (or 8%) in the 50-200 eV range with the maxima of 22% (or 26%-27%). Also the resolving power evaluated by a laser produced plasma source is in excess of 700 at the energy near the K emission spectrum of lithium (~55 eV) for all gratings. Moreover, the K emission spectrum of metallic Li with high spectral resolution is successfully observed with the spectrograph attached to a transmission electron microscope.

  10. Pressure dependence of the contact angle in a CO2-H2O-coal system.

    PubMed

    Siemons, Nikolai; Bruining, Hans; Castelijns, Hein; Wolf, Karl-Heinz

    2006-05-15

    Carbon dioxide injection into coal layers serves the dual purpose to enhance coal bed methane production (ECBM) and to store CO2. The efficiency of this process is expected to be much higher if water is the non-wetting phase in the coal-water-gas system. Therefore, contact angles in the coal-water-CO2 system have been measured using the captive bubble technique in the pressure range between atmospheric pressure and 141 bar at a temperature of 45 degrees C. At atmospheric pressure the contact angle of a shrinking CO2 droplet increases with time, but stays below 90 degrees . At higher pressures (>2.6 bar) the contact angle increases beyond 90 degrees . The pressure dependence of the contact can be represented by theta=(111 degrees +/-10.5 degrees )+(0.17+/-0.14)P [bar]. The exceptional behavior at atmospheric pressure is possibly related to the stability of water patches on the coal surface. It is concluded that water is the non-wetting phase in this coal-water-CO2 system.

  11. Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation

    PubMed Central

    Li, Suyi; Wang, K. W.

    2015-01-01

    Inspired by the impulsive movements in plants, this research investigates the physics of a novel fluidic origami concept for its pressure-dependent multi-stability. In this innovation, fluid-filled tubular cells are synthesized by integrating different Miura-Ori sheets into a three-dimensional topological system, where the internal pressures are strategically controlled similar to the motor cells in plants. Fluidic origami incorporates two crucial physiological features observed in nature: one is distributed, pressurized cellular organization, and the other is embedded multi-stability. For a single fluidic origami cell, two stable folding configurations can coexist due to the nonlinear relationships among folding, crease material deformation and internal volume change. When multiple origami cells are integrated, additional multi-stability characteristics could occur via the interactions between pressurized cells. Changes in the fluid pressure can tailor the existence and shapes of these stable folding configurations. As a result, fluidic origami can switch between being mono-stable, bistable and multi-stable with pressure control, and provide a rapid ‘snap-through’ type of shape change based on the similar principles as in plants. The outcomes of this research could lead to the development of new adaptive materials or structures, and provide insights for future plant physiology studies at the cellular level. PMID:26400197

  12. The Pressure Dependency of Stabilized Criegee Intermediate Yields of Selected Ozone-Alkene Reactions

    NASA Astrophysics Data System (ADS)

    Hakala, J. P.; Donahue, N. M.

    2014-12-01

    Stabilized Criegee Intermediates (SCI) play an important role as an oxidizing species in atmospheric reactions. The ozonolysis of alkenes in the atmosphere, i.e. the mechanism by which the SCIs are produced, is a major pathway to the formation of Secondary Organic Aerosols (SOA) in the atmosphere. Just how much SCIs contribute to the SOA formation is not well known and fundamental research in the kinetics of SCI formation need to be performed to shed light on this mystery. The alkene ozonolysis is highly exothermic reaction, so a third body is needed for stabilizing the SCI, thus making the SCI yield pressure dependent. We studied the production of SCIs at different pressures by studying their ability to oxidize sulfur dioxide in a pressure controlled flow reactor. We used a mixture of ultra-high purity nitrogen, oxygen, and a selective scavenger for hydroxyl radical (OH) as a carrier gas, and injected a mixture of nitrogen, sulfur dioxide and selected alkene to the center of the flow for ozonolysis to take place. With the OH radical scavenged, the SCI yield of the reaction was measured by measuring the amount of sulfuric acid formed in the reaction between SCI and sulfur dioxide with a Chemical Ionization Mass Spectrometer (CIMS). This work was supported by NASA/ROSES grant NNX12AE54G to CMU and Academy of Finland Center of Excellence project 1118615.

  13. Pressure-dependent optical investigations of Fabre salts in the charge-ordered state

    NASA Astrophysics Data System (ADS)

    Voloshenko, Ievgen; Herter, Melina; Beyer, Rebeca; Pustogow, Andrej; Dressel, Martin

    2017-03-01

    In a comprehensive infrared study, the molecular vibrational features of (TMTTF)2SbF6, (TMTTF)2AsF6 and (TMTTF)2PF6 single crystals have been measured down to temperatures as low as 7 K by applying hydrostatic pressure up to 11 kbar. We follow the charge disproportionation below the critical temperatures T CO as pressure increases, and determine the critical pressure values p CO at which the charge-ordered phase is suppressed. The coexistence of the spin-Peierls phase with charge order is explored at low temperatures, and the competition of these two phases is observed. Based on our measurements we construct a generic phase diagram of the Fabre salts with centrosymmetric anions. The pressure-dependent anion and methyl-group dynamics in these quasi-one-dimensional charge transfer compounds yields information about the interplay of the organic molecules in the stacks and the anions, and how this interaction varies upon the transition to the charge-ordered state.

  14. Pressure-dependent studies on hydration of the C-H group in formic acid

    NASA Astrophysics Data System (ADS)

    Chang, Hai-Chou; Jiang, Jyh-Chiang; Chao, Ming-Chi; Lin, Ming-Shan; Lin, Sheng Hsien; Chen, Hsin-Yen; Hsueh, Hung-Chung

    2001-11-01

    The infrared spectroscopic profiles of HCOOD/D2O mixtures were measured as a function of pressure and concentration. The C-H bond of HCOOD shortens as the pressure is elevated, while the increase in C-H bond length upon diluting HCOOD with D2O was observed. Based on the experimental results, the shift in frequency of C-H stretching band is concluded to relate to the mechanism of the hydration of the C-H group and the water structure in the vicinity of the C-H group. The pressure-dependent results can be attributed to the strengthening of C-H---O electrostatic/dispersion interaction upon increasing pressure. The observations are in accord with ab initio calculation forecasting a blueshift of the C-H stretching mode via C-H---O interaction in HCOOD-water/(HCOOD)2-(D2O) complexes relative to the noninteracting monomer/dimer. Hydrogen-bonding nonadditivity and the size of water clusters are suggested to be responsible to cause the redshift in C-H stretching mode upon dilution HCOOD with D2O.

  15. Focal cartilage defect compromises fluid-pressure dependent load support in the knee joint.

    PubMed

    Dabiri, Yaghoub; Li, LePing

    2015-06-01

    A focal cartilage defect involves tissue loss or rupture. Altered mechanics in the affected joint may play an essential role in the onset and progression of osteoarthritis. The objective of the present study was to determine the compromised load support in the human knee joint during defect progression from the cartilage surface to the cartilage-bone interface. Ten normal and defect cases were simulated with a previously tested 3D finite element model of the knee. The focal defects were considered in both condyles within high load-bearing regions. Fluid pressurization, anisotropic fibril-reinforcement, and depth-dependent mechanical properties were considered for the articular cartilages and menisci. The results showed that a small cartilage defect could cause 25% reduction in the load support of the knee joint due to a reduced capacity of fluid pressurization in the defect cartilage. A partial-thickness defect could cause a fluid pressure decrease or increase in the remaining underlying cartilage depending on the defect depth. A cartilage defect also increased the shear strain at the cartilage-bone interface, which was more significant with a full-thickness defect. The effect of cartilage defect on the fluid pressurization also depended on the defect sites and contact conditions. In conclusion, a focal cartilage defect causes a fluid-pressure dependent load reallocation and a compromised load support in the joint, which depend on the defect depth, site, and contact condition.

  16. Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation.

    PubMed

    Li, Suyi; Wang, K W

    2015-10-06

    Inspired by the impulsive movements in plants, this research investigates the physics of a novel fluidic origami concept for its pressure-dependent multi-stability. In this innovation, fluid-filled tubular cells are synthesized by integrating different Miura-Ori sheets into a three-dimensional topological system, where the internal pressures are strategically controlled similar to the motor cells in plants. Fluidic origami incorporates two crucial physiological features observed in nature: one is distributed, pressurized cellular organization, and the other is embedded multi-stability. For a single fluidic origami cell, two stable folding configurations can coexist due to the nonlinear relationships among folding, crease material deformation and internal volume change. When multiple origami cells are integrated, additional multi-stability characteristics could occur via the interactions between pressurized cells. Changes in the fluid pressure can tailor the existence and shapes of these stable folding configurations. As a result, fluidic origami can switch between being mono-stable, bistable and multi-stable with pressure control, and provide a rapid 'snap-through' type of shape change based on the similar principles as in plants. The outcomes of this research could lead to the development of new adaptive materials or structures, and provide insights for future plant physiology studies at the cellular level.

  17. A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys.

    PubMed

    Ashrafi, M J; Arghavani, J; Naghdabadi, R; Sohrabpour, S

    2015-02-01

    Porous shape memory alloys (SMAs) exhibit the interesting characteristics of porous metals together with shape memory effect and pseudo-elasticity of SMAs that make them appropriate for biomedical applications. In this paper, a 3-D phenomenological constitutive model for the pseudo-elastic behavior and shape memory effect of porous SMAs is developed within the framework of irreversible thermodynamics. Comparing to micromechanical and computational models, the proposed model is computationally cost effective and predicts the behavior of porous SMAs under proportional and non-proportional multiaxial loadings. Considering the pressure dependency of phase transformation in porous SMAs, proper internal variables, free energy and limit functions are introduced. With the aim of numerical implementation, time discretization and solution algorithm for the proposed model are also presented. Due to lack of enough experimental data on multiaxial loadings of porous SMAs, we employ a computational simulation method (CSM) together with available experimental data to validate the proposed constitutive model. The method is based on a 3-D finite element model of a representative volume element (RVE) with random pores pattern. Good agreement between the numerical predictions of the model and CSM results is observed for elastic and phase transformation behaviors in various thermomechanical loadings.

  18. Reliability analysis of water distribution networks in consideration of equity, redistribution, and pressure-dependent demand

    NASA Astrophysics Data System (ADS)

    Fujiwara, Okitsugu; Li, Jun

    A goal programming model has been developed to analyze the system behavior for the water distribution networks under contingency situations due to failures of pipes and pumps, taking into account three aspects: (1) equity, or sharing inconvenience equally among consumers; (2) redistribution of the network flows to reduce the negative consequences of a failure of one portion on other portions of the network; and (3) consideration of pressure-dependent demand delivery due to insufficient head, namely, if a nodal head falls below a desired level, the flow delivered to that node is reduced. The first priority of the goal program is to maximize the lowest nodal demand supply ratio (or the ratio of actually delivered demand to the required demand at a node). The second priority is to maximize the system demand supply ratio (or the ratio of actually delivered water to the required total system demand). Link flow directions in the model are not fixed but are determined by a set of criteria. The system behaviors with respect to the three aspects of reliability factors are examined through extensive numerical experiments. The impact of equity requirements on redistribution of network flows, link flow directions, nodal demand supply ratio, and system demand supply ratio when failure events become serious is examined in particular detail. It is found that equity requirements can satisfactorily bring about fair sharing of inconvenience among consumers. The model proposed also suggests that network operations should reverse some link flow directions in order to meet equity requirements under severe contingencies.

  19. Paternal Attachment, Parenting Beliefs and Children's Attachment

    ERIC Educational Resources Information Center

    Howard, Kimberly S.

    2010-01-01

    Relationships between fathers' romantic attachment style, parenting beliefs and father-child attachment security and dependence were examined in a diverse sample of 72 fathers of young children. Paternal romantic attachment style was coded based on fathers' endorsement of a particular style represented in the Hazan and Shaver Three-Category…

  20. Modelling the role of electron attachment rates on column density ratios for C n H-/C n H (n=4,6,8) in dense molecular clouds

    NASA Astrophysics Data System (ADS)

    Gianturco, F. A.; Grassi, T.; Wester, R.

    2016-10-01

    The fairly recent detection of a variety of anions in the interstellar molecular clouds have underlined the importance of realistically modelling the processes governing their abundance. To pursue this task, our earlier calculations for the radiative electron attachment (REA) rates for C4H-, C6H-, and C8H- are employed in the present work, within a broad network of other concurrent reactions, to generate the corresponding column density ratios of anion/neutral (A/N) relative abundances. The latter are then compared with those obtained in recent years from observational measurements. The calculations involved the time-dependent solutions of a large network of chemical processes over an extended time interval and included a series of runs in which the values of REA rates were repeatedly scaled over several orders of magnitude. Macroscopic parameters for the Clouds’ modelling were also varied to cover a broad range of physical environments. It was found that, within the range and quality of the processes included in the present network,and selected from state-of-the-art astrophysical databases, the REA values required to match the observed A/N ratios needed to be reduced by orders of magnitude for C4H- case, while the same rates for C6H- and C8H- only needed to be scaled by much smaller factors. The results suggest that the generally proposed formation of interstellar anions by REA mechanism is overestimated by current models for the C4H- case, for which is likely to be an inefficient path to formation. This path is thus providing a rather marginal contribution to the observed abundances of C4H-, the latter being more likely to originate from other chemical processes in the network, as we discuss in some detail in the present work. Possible physical reasons for the much smaller differences against observations found instead for the values of the (A/N) ratios in two other, longer members of the series are put forward and analysed within the evolutionary modelling

  1. Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces

    SciTech Connect

    Pham, An; Kim, BoHung; Barisik, Murat

    2013-12-28

    We conducted non-equilibrium molecular dynamics simulations to investigate Kapitza length at solid/liquid interfaces under the effects of bulk liquid pressures. Gold and silicon were utilized as hydrophilic and hydrophobic solid walls with different wetting surface behaviors, while the number of confined liquid water molecules was adjusted to obtain different pressures inside the channels. The interactions of solid/liquid couples were reparameterized accurately by measuring the water contact angle of solid substrates. In this paper, we present a thorough analysis of the structure, normal stress, and temperature distribution of liquid water to elucidate thermal energy transport across interfaces. Our results demonstrate excellent agreement between the pressures of liquid water in nano-channels and published thermodynamics data. The pressures measured as normal stress components were characterized using a long cut-off distance reinforced by a long-range van der Waals tail correction term. To clarify the effects of bulk liquid pressures on water structure at hydrophilic and hydrophobic solid surfaces, we defined solid/liquid interface spacing as the distance between the surface and the peak value of the first water density layer. Near the gold surface, we found that interface spacing and peak value of first water density layer were constant and did not depend on bulk liquid pressure; near the silicon surface, those values depended directly upon bulk liquid. Our results reveal that the pressure dependence of Kapitza length strongly depends on the wettability of the solid surface. In the case of the hydrophilic gold surface, Kapitza length was stable despite increasing bulk liquid pressure, while it varied significantly at the hydrophobic silicon surface.

  2. Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes.

    PubMed

    Drozd, Greg T; Donahue, Neil M

    2011-05-05

    Ozonolysis is a key reaction in atmospheric chemistry, although important details of the behavior of the ozonolysis intermediates are not known. The key intermediate in ozonolysis, the Criegee intermeiate (CI), is known to quickly isomerize, with the favored unimolecular pathway depending on the relative barriers to isomerization. Stabilized Criegee intermediates (SCI), those with energy below any barriers to isomerization, may result from initial formation with low energy or collisional stabilization of high energy CI. Bimolecular reactions of SCI have been proposed to play a role in OH formation and nucleation of new particles, but unimolecular reactions of SCI may well be too fast for these to be significant. We present measurements of the pressure dependence of SCI formation for a set of alkenes utilizing a hexafluoroacetone scavenger. We studied four alkenes (2,3-dimethyl-2-butene (TME), trans-5-decene, cyclohexene, α-pinene) to characterize how size and cyclization (endo vs exo) affect the stability of Criegee intermediates formed in ozonolysis. SCI yields in ozonolysis were measured in a high pressure flow reactor within a range of 30-750 Torr. The linear alkenes show considerable stabilization with trans-5-decene showing 100% stabilization at ∼400 Torr and TME having 65% stabilization at 710 Torr. Extrapolation of the yields for linear alkenes to 0 Torr shows yields significantly above zero, indicating that a fraction of their CI are formed below the barrier to isomerization. CI from endocyclic alkenes show little to no stabilization and appear to have neglible stabilization at 0 Torr. Cyclohexene derived CI showed no stabilization even at 650 Torr, while α-pinene CI had ∼15% stabilization at 740 Torr. Our results show a strong dependence of SCI formation on carbon number; adding just 2 to 3 CI carbons in linear alkenes increases stabilization by a factor of 10. Stabilization for endocyclic alkenes, at atmospheric pressure, begins to occur at a carbon

  3. Pressure-Dependent Yields and Product Branching Ratios in the Broadband Photolysis of Chlorine Nitrate

    NASA Technical Reports Server (NTRS)

    Nickolaisen, Scott L.; Sander, Stanley P.; Friedl, Randall R.

    1996-01-01

    The photolysis of chlorine nitrate was studied using broadband flash photolysis coupled with long-path ultraviolet-visible absorption spectroscopy. Branching ratios for the Cl + NO3 and ClO + NO2 product channels were determined from time-dependent measurements of ClO and NO3 concentrations. Yields of the ClO and NO3 products displayed a dependence on the bath gas density and the spectral distribution of the photolysis pulse. Product yields decreased with increasing bath gas density regardless of the spectral distribution of the photolysis pulse; however, the decrease in product yield was much more pronounced when photolysis was limited to longer wavelengths. For photolysis in a quartz cell (lambda > 200 nm) the yield decreased by a factor of 2 over the pressure 10-100 Torr. In a Pyrex cell (lambda > 300 nm), the yield decreased by a factor of 50 over the same pressure range. When photolysis was limited to lambda > 350 nm, the yield decreased by a factor of 250. Branching ratios for the photolysis channels [ClONO2 + h.nu yields ClO + NO2 (1a) and ClONO2 + h.nu yields Cl + NO3 (lb)] were determined from the relative ClO and NO3 product yields at various pressures. Although the absolute product yield displayed a pressure dependence, the branching between the two channels was independent of pressure. The relative branching ratios (assuming negligible contributions from other channels) are 0.61 +/- 0.20 for channel 1a and 0.39 +/- 0.20 for channel lb for photolysis with lambda > 200 nm and 0.44 +/- 0.08 for channel 1a and 0.56 +/- 0.08 for channel 1b for photolysis with lambda > 300 nm. The implications of these results for the chemistry of the lower stratosphere are discussed.

  4. Pressure-dependent DLTS (Deep Level Transient Spectroscopy) experiments on Si-doped AlGaAs

    NASA Astrophysics Data System (ADS)

    Farmer, J. W.; Hjalmarson, H. P.; Samara, G. A.

    Pressure dependent Deep Level Transient Spectroscopy (DLTS) experiments are used to measure the properties of the deep donors (DX-centers) responsible for the persistent photoconductivity effect in Si-doped AlGaAs. The sample dependence of the DLTS spectra shows evidence for a defect complex involved in the DX-center.

  5. A Pressure-dependent Model for the Regulation of Lipoprotein Lipase by Apolipoprotein C-II*

    PubMed Central

    Meyers, Nathan L.; Larsson, Mikael; Olivecrona, Gunilla; Small, Donald M.

    2015-01-01

    Apolipoprotein C-II (apoC-II) is the co-factor for lipoprotein lipase (LPL) at the surface of triacylglycerol-rich lipoproteins. LPL hydrolyzes triacylglycerol, which increases local surface pressure as surface area decreases and amphipathic products transiently accumulate at the lipoprotein surface. To understand how apoC-II adapts to these pressure changes, we characterized the behavior of apoC-II at multiple lipid/water interfaces. ApoC-II adsorption to a triacylglycerol/water interface resulted in large increases in surface pressure. ApoC-II was exchangeable at this interface and desorbed on interfacial compressions. These compressions increase surface pressure and mimic the action of LPL. Analysis of gradual compressions showed that apoC-II undergoes a two-step desorption, which indicates that lipid-bound apoC-II can exhibit at least two conformations. We characterized apoC-II at phospholipid/triacylglycerol/water interfaces, which more closely mimic lipoprotein surfaces. ApoC-II had a large exclusion pressure, similar to that of apoC-I and apoC-III. However, apoC-II desorbed at retention pressures higher than those seen with the other apoCs. This suggests that it is unlikely that apoC-I and apoC-III inhibit LPL via displacement of apoC-II from the lipoprotein surface. Upon rapid compressions and re-expansions, re-adsorption of apoC-II increased pressure by lower amounts than its initial adsorption. This indicates that apoC-II removed phospholipid from the interface upon desorption. These results suggest that apoC-II regulates the activity of LPL in a pressure-dependent manner. ApoC-II is provided as a component of triacylglycerol-rich lipoproteins and is the co-factor for LPL as pressure increases. Above its retention pressure, apoC-II desorbs and removes phospholipid. This triggers release of LPL from lipoproteins. PMID:26026161

  6. Pressure-dependent compatibility of iron in garnet: Insights into the origin of ferropicritic melt

    NASA Astrophysics Data System (ADS)

    Zhang, JunBo; Liu, YongSheng; Ling, WenLi; Gao, Shan

    2017-01-01

    Iron-rich silicate melts in the Earth's deep mantle have been seismologically and geochemically inferred in recent years. The origin of local enrichments in iron and low-velocity seismic anomalies that have been detected in dense mantle domains are critical to understanding the mantle's evolution, which has been canonically explained by long-term chemical reactions between the Earth's silicate mantle and its liquid iron outer core. However, the Pleistocene alkaline ferropicrites (∼0.73 Ma) from Wudi, North China, show chemical and Sr-Nd-Os isotopic features that suggest derivation from the preferential melting of silica-deficient eclogite, a lithology of delaminated mafic lower continental crust that had stagnated at mid-upper mantle depths during the Mesozoic decratonization of the North China block. These rocks are characterized by substantial enrichment in iron (14.9-15.2 wt% Fe2O3), relative depletion in silica (40-41 wt% SiO2) and decoupled Y and heavy rare earth element (HREE) compositions. These ferropicrites have particularly higher Y/Yb ratios than the other Cenozoic basalts from North China. The pressure-dependent compatibility of Fe, Y and Yb in eclogitic garnet can adequately explain the Fe-enrichment and Y-HREE decoupling of the Wudi ferropicrites and indicates that the eclogites were melted at pressures of 5-8 GPa, as also constrained by previous high-P-T experiments. This melting depth ties together a seismically imaged high-velocity anomaly that extends from 150 km to 350 km in depth under the study area, which has been commonly interpreted as evidence for the stagnation of the missing, delaminated continental lithosphere. Our findings provide an alternative mechanism to produce an extremely iron-rich mantle reservoir in addition to core-mantle interaction. Iron-rich silicate melts that form by this process are likely to be denser than the ambient mantle peridotite (and therefore drive flow downward) and may play a more significant role in the

  7. Electron transport in {ital o}- and {ital m}-xylene under high pressure

    SciTech Connect

    Itoh, K.; Nishikawa, M.; Holroyd, R.A.

    1996-10-01

    The electron drift mobility ({mu}) was measured by a time-of-flight method in pure liquid {ital o}- and {ital m}-xylene under high pressures up to 300 MPa, and in the temperature ranges from 15 to 120{degree}C and 0 to 100{degree}C, respectively. In both liquids {mu} increases in the lower pressure region at lower temperatures. At higher pressures {mu} decreases gradually with pressure at all temperatures studied. The pressure dependence of {mu} was interpreted in terms of a two-state model and a hopping model. When {mu} increases with pressure this interpretation leads to a positive volume change upon introduction of electrons into the liquid, showing electrons reside in cavities of radius 0.31 to 0.32 nm, whereas in the high pressure region electron attachment to xylene molecules occurs, accompanied by hopping of electrons between molecules. {copyright} {ital 1996 American Institute of Physics.}

  8. 2,3-Dimethyl-2-butene (TME) ozonolysis: pressure dependence of stabilized Criegee intermediates and evidence of stabilized vinyl hydroperoxides.

    PubMed

    Drozd, Greg T; Kroll, Jesse; Donahue, Neil M

    2011-01-20

    We present measurements of the pressure dependence of stabilized Criegee intermediate (SCI) formation utilizing a hexafluoroacetone scavenger. SCI yields in the ozonolysis of 2,3-dimethyl-2-butene (TME) were measured in a high pressure flow reactor within a range of 50-710 Torr. Within this pressure range, SCI yields increase linearly with pressure. A zero pressure intercept of about 15% indicates that a significant fraction of CI are formed below the barrier to isomerization. By comparison of our results of the pressure dependence of SCI formation and both prompt and long-time OH yields, our results indicate that OH formation from ozonolysis proceeds via at least two intermediates, the SCI and presumably a vinylhydroperoxide (VHP).

  9. Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography

    PubMed Central

    Hariri, Sepideh; Johnstone, Murray; Jiang, Yi; Padilla, Steven; Zhou, Zhehai; Reif, Roberto; Wang, Ruikang K.

    2014-01-01

    Abstract. The aqueous outflow system (AOS) is responsible for maintaining normal intraocular pressure (IOP) in the eye. Structures of the AOS have an active role in regulating IOP in healthy eyes and these structures become abnormal in the eyes with glaucoma. We describe a newly developed system platform to obtain high-resolution images of the AOS structures. By incorporating spectral domain optical coherence tomography (SD-OCT), the platform allows us to systematically control, image, and quantitate the responses of AOS tissue to pressure with a millisecond resolution of pulsed flow. We use SD-OCT to image radial limbal segments from the surface of the trabecular meshwork (TM) with a spatial resolution of ∼5  μm in ex vivo nonhuman primate eyes. We carefully insert a cannula into Schlemm’s canal (SC) to control both pressures and flow rates. The experimental results demonstrate the capability of the platform to visualize the unprecedented details of AOS tissue components comparable to that delivered by scanning electron microscopy, as well as to delineate the complex pressure-dependent relationships among the TM, structures within the SC, and collector channel ostia. The described technique provides a new means to characterize the anatomic and pressure-dependent relationships of SC structures, particularly the active motion of collagenous elements at collector channel ostia; such relationships have not previously been amenable to study. Experimental findings suggest that continuing improvements in the OCT imaging of the AOS may provide both insights into the glaucoma enigma and improvements in its management. PMID:25349094

  10. Temperature and high-pressure dependent x-ray absorption of SmNiO3 at the Ni K and Sm L3 edges

    NASA Astrophysics Data System (ADS)

    Massa, Néstor E.; Ramos, Aline Y.; Tolentino, Helio C. N.; Sousa-Neto, Narcizo M.; Fonseca, Jairo, Jr.; Alonso, José Antonio

    2015-12-01

    We report on x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) measurements of SmNiO3 from 20 K to 600 K and up to 38 GPa at the Ni K and Sm L3 edges. A multiple component pre-Ni K edge tail is understood, originating from 1 s transitions to 3d-4p states while a post-edge shoulder increases distinctively smoothly, at about the insulator to metal phase transition (TIM), due to the reduction of electron-phonon interactions as the Ni 3d and O 2p band overlap triggers the metallic phase. This effect is concomitant with pressure-induced Ni-O-Ni angle increments toward more symmetric Ni3+ octahedra of the rhombohedral R¯3c space group. Room temperature pressure-dependent Ni white line peak energies have an abrupt ˜3.10 ± 0.04 GPa valence discontinuity from non-equivalent Ni3+δ + Ni3-δ charge disproportionate net unresolved absorber turning at ˜TIM into Ni3+ of the orthorhombic Pbnm metal oxide phase. At 20 K the overall white line response, still distinctive at TIM ˜8.1 ± 0.6 GPa is much smoother due to localization. Octahedral bond contraction up to 38 GPa and at 300 K and 20 K show breaks in its monotonic increase at the different structural changes. The Sm L3 edge does not show distinctive behaviors either at 300 K or 20 K up to about 35 GPa but the perovskite Sm cage, coordinated to eight oxygen atoms, undergoes strong uneven bond contractions at intermediate pressures where we found the coexistence of octahedral and rhombohedral superexchange angle distortions. We found that the white line pressure-dependent anomaly may be used as an accurate alternative for delineating pressure-temperature phase diagrams.

  11. A multilayer grating with a novel layer structure for a flat-field spectrograph attached to transmission electron microscopes in energy region of 2-4 keV

    SciTech Connect

    Imazono, T.; Koike, M.; Koeda, M.; Nagano, T.; Sasai, H.; Oue, Y.; Yonezawa, Z.; Kuramoto, S.; Terauchi, M.; Takahashi, H.; Handa, N.; Murano, T.

    2012-05-17

    A multilayer mirror with a novel layer structure to uniformly enhance the reflectivity in a few keV energy range at a fixed angle of incidence is invented and applied to a multilayer grating for use in a flat-field spectrograph attached to a conventional electron microscope. The diffraction efficiency of the fabricated multilayer grating having the new layer structure is evaluated at the angle of incidence of 88.65 deg. in the energy region of 2.1-4.0 keV. It is shown that the multilayer grating is effective to uniformly enhance the diffraction efficiency and able to be practically used in this energy region.

  12. Measurement of Pressure Dependent Fluorescence Yield of Air: Calibration Factor for UHECR Detectors

    SciTech Connect

    Belz, J.W.; Burt, G.W.; Cao, Z.; Chang, F.Y.; Chen, C.C.; Chen, C.W.; Chen, P.; Field, C.; Findlay, J.; Huntemeyer, Petra; Huang, M.A.; Hwang, W.-Y.P.; Iverson, R.; Jones, B.F.; Jui, C.C.H.; Kirn, M.; Lin, G.-L.; Loh, E.C.; Maestas, M.M.; Manago, N.; Martens, K.; /Montana U. /Utah U. /Taiwan, Natl. Taiwan U. /SLAC /Rutgers U., Piscataway

    2005-07-06

    In a test experiment at the Final Focus Test Beam of the Stanford Linear Accelerator Center, the fluorescence yield of 28.5 GeV electrons in air and nitrogen was measured. The measured photon yields between 300 and 400 nm at 1 atm and 29 C are Y(760 Torr){sup air} = 4.42 {+-} 0.73 and Y(760 Torr){sup N{sub 2}} = 29.2 {+-} 4.8 photons per electron per meter. Assuming that the fluorescence yield is proportional to the energy deposition of a charged particle traveling through air, good agreement with measurements at lower particle energies is observed.

  13. Belt attachment and system

    DOEpatents

    Schneider, Abraham D.; Davidson, Erick M.

    2016-02-02

    Disclosed herein is a belt assembly including a flexible belt with an improved belt attachment. The belt attachment includes two crossbars spaced along the length of the belt. The crossbars retain bearings that allow predetermined movement in six degrees of freedom. The crossbars are connected by a rigid body that attaches to the bearings. Implements that are attached to the rigid body are simply supported but restrained in pitching rotation.

  14. Attachment over Time.

    ERIC Educational Resources Information Center

    Lewis, Michael; Feiring, Candice; Rosenthal, Saul

    2000-01-01

    Examined continuity in attachment classification from infancy through adolescence and related it to autobiographical memories of childhood, divorce, and maladjustment in white middle-class children. Found no continuity in attachment classification from 1 to 18 years and no relation between infant attachment status and adolescent adjustment.…

  15. Pressure dependence of the quality factor of a micromachined cantilever in rarefied gases

    NASA Astrophysics Data System (ADS)

    Stifter, Michael; Sachse, Matthias; Sauter, Thilo; Hortschitz, Wilfried; Keplinger, Franz

    2012-05-01

    We present a study of the damping behavior of monocrystalline silicon cantilevers in different rarefied gas regimes. Mechanical quality factors Q were analyzed at controlled ambient pressures in the range of 0.01 Pa to 100 Pa. Emphasis was laid on the investigation of the fundamental vibration mode. Hence, the test structures were harmonically excited by the Lorentz force acting on the current carrying lead attached to the top surface of the cantilever. The micromachined clamped-free cantilevers featuring a length of 2 mm, a width of 1.5 mm and a thickness of 20 μm, were manufactured in SOI technology. The experimental results were compared with existing theories revealing an underestimate of the damping parameter for the Knudsen range Kn = 0.1 to 10. So far, squeeze-film damping by free molecular flow and kinetic damping were taken into account in damping models for the quasi-molecular regime. However, our measurements indicate that also the ongoing molecular flow around the test structures has to be considered. Hence the damping coefficient has to be calculated with methods of the free molecular aerodynamics. Thus, we used an algorithm based on the random walk model that allows the usage of already available knowledge in the field of Direct Simulation Monte Carlo. With this approach the quality factor of a squeezed-film damped cantilever in the quasi-molecular regime was derived. The results were compared with the most recent stochastic model, where the theoretical predictions and the experimental investigations indicate significant squeezing up to a Knudsen number of 10. In a superposition of both damping mechanisms, kinetic and squeeze-film damping, a satisfactory characterization of the damping behavior of an oscillating cantilever in the quasi-molecular regime with Knudsen numbers in the range of 10 down to 0.02 was achieved.

  16. Absolute cross sections of electron attachment to molecular clusters. Part II: Formation of (H2O) N - , (N2O) N - , and (N2) N -

    NASA Astrophysics Data System (ADS)

    Vostrikov, A. A.; Dubov, D. Yu.

    2006-12-01

    Absolute cross sections σ-( E, N) of electron attachment to clusters (H2O) N , (N2O) N , and (N2) N for varying electron energy E and cluster size N are measured by using crossed electron and cluster beams in a vacuum. Continua of σ-( E) are found that correlate well with the functions of electron impact excitation of molecules’ internal degrees of freedom. The electron is attached through its solvation in a cluster. In the formation of (H2O){/N -}, (N2O){/N -}, and (N2){/N -}, the curves σ-( N) have a well-defined threshold because of a rise in the electron thermalization and solvation probability with N. For (H2O)900, (N2O)350, and (N2)260 clusters at E = 0.2 eV, the energy losses by the slow electron in the cluster are estimated as 3.0 × 107, 2.7 × 107, and 6.0 × 105 eV/m, respectively. It is found that the growth of σ- with N is the fastest for (H2O) N and (N2) N clusters at E → 0 as a result of polarization capture of the s-electron. Specifically, at E = 0.1 eV and N = 260, σ- = 3.0 × 10-13 cm2 for H2O clusters, 8.0 × 10-14 cm2 for N2O clusters, and 1.4 × 10-15 cm2 for N2 clusters; at E = 11 eV, σ- = 9.0 × 10-16 cm2 for (H2O)200 clusters, 2.4 × 10-14 cm2 for (N2O)350 clusters, and 5.0 × 10-17 cm2 for (N2)260 clusters; finally, at E = 30 eV, σ- = 3.6 × 10-17 cm2 for (N2O)10 clusters and 3.0 × 10-17 cm2 for (N2)125 clusters.

  17. Constraining Data Mining with Physical Models: Voltage- and Oxygen Pressure-Dependent Transport in Multiferroic Nanostructures

    DOE PAGES

    Strelcov, Evgheni; Belianinov, Alexei; Hsieh, Ying-Hui; ...

    2015-08-27

    Development of new generation electronic devices requires understanding and controlling the electronic transport in ferroic, magnetic, and optical materials, which is hampered by two factors. First, the complications of working at the nanoscale, where interfaces, grain boundaries, defects, and so forth, dictate the macroscopic characteristics. Second, the convolution of the response signals stemming from the fact that several physical processes may be activated simultaneously. Here, we present a method of solving these challenges via a combination of atomic force microscopy and data mining analysis techniques. Rational selection of the latter allows application of physical constraints and enables direct interpretation ofmore » the statistically significant behaviors in the framework of the chosen physical model, thus distilling physical meaning out of raw data. We demonstrate our approach with an example of deconvolution of complex transport behavior in a bismuth ferrite–cobalt ferrite nanocomposite in ambient and ultrahigh vacuum environments. Measured signal is apportioned into four electronic transport patterns, showing different dependence on partial oxygen and water vapor pressure. These patterns are described in terms of Ohmic conductance and Schottky emission models in the light of surface electrochemistry. Finally and furthermore, deep data analysis allows extraction of local dopant concentrations and barrier heights empowering our understanding of the underlying dynamic mechanisms of resistive switching.« less

  18. Constraining Data Mining with Physical Models: Voltage- and Oxygen Pressure-Dependent Transport in Multiferroic Nanostructures

    SciTech Connect

    Strelcov, Evgheni; Belianinov, Alexei; Hsieh, Ying-Hui; Chu, Ying-Hao; Kalinin, Sergei V.

    2015-08-27

    Development of new generation electronic devices requires understanding and controlling the electronic transport in ferroic, magnetic, and optical materials, which is hampered by two factors. First, the complications of working at the nanoscale, where interfaces, grain boundaries, defects, and so forth, dictate the macroscopic characteristics. Second, the convolution of the response signals stemming from the fact that several physical processes may be activated simultaneously. Here, we present a method of solving these challenges via a combination of atomic force microscopy and data mining analysis techniques. Rational selection of the latter allows application of physical constraints and enables direct interpretation of the statistically significant behaviors in the framework of the chosen physical model, thus distilling physical meaning out of raw data. We demonstrate our approach with an example of deconvolution of complex transport behavior in a bismuth ferrite–cobalt ferrite nanocomposite in ambient and ultrahigh vacuum environments. Measured signal is apportioned into four electronic transport patterns, showing different dependence on partial oxygen and water vapor pressure. These patterns are described in terms of Ohmic conductance and Schottky emission models in the light of surface electrochemistry. Finally and furthermore, deep data analysis allows extraction of local dopant concentrations and barrier heights empowering our understanding of the underlying dynamic mechanisms of resistive switching.

  19. Constraining Data Mining with Physical Models: Voltage- and Oxygen Pressure-Dependent Transport in Multiferroic Nanostructures.

    PubMed

    Strelcov, Evgheni; Belianinov, Alexei; Hsieh, Ying-Hui; Chu, Ying-Hao; Kalinin, Sergei V

    2015-10-14

    Development of new generation electronic devices necessitates understanding and controlling the electronic transport in ferroic, magnetic, and optical materials, which is hampered by two factors. First, the complications of working at the nanoscale, where interfaces, grain boundaries, defects, and so forth, dictate the macroscopic characteristics. Second, the convolution of the response signals stemming from the fact that several physical processes may be activated simultaneously. Here, we present a method of solving these challenges via a combination of atomic force microscopy and data mining analysis techniques. Rational selection of the latter allows application of physical constraints and enables direct interpretation of the statistically significant behaviors in the framework of the chosen physical model, thus distilling physical meaning out of raw data. We demonstrate our approach with an example of deconvolution of complex transport behavior in a bismuth ferrite-cobalt ferrite nanocomposite in ambient and ultrahigh vacuum environments. Measured signal is apportioned into four electronic transport patterns, showing different dependence on partial oxygen and water vapor pressure. These patterns are described in terms of Ohmic conductance and Schottky emission models in the light of surface electrochemistry. Furthermore, deep data analysis allows extraction of local dopant concentrations and barrier heights empowering our understanding of the underlying dynamic mechanisms of resistive switching.

  20. Anisotropic physical properties and pressure dependent magnetic ordering of CrAuTe4

    SciTech Connect

    Jo, Na Hyun; Kaluarachchi, Udhara S.; Wu, Yun; Mou, Daixiang; Huang, Lunan; Taufour, Valentin; Kaminski, Adam; Bud'ko, Sergey L.; Canfield, Paul C.

    2016-11-11

    Systematic measurements of temperature-dependent magnetization, resistivity, and angle-resolved photoemission spectroscopy (ARPES) at ambient pressure as well as resistivity under pressures up to 5.25 GPa were conducted on single crystals of CrAuTe4. Magnetization data suggest that magnetic moments are aligned antiferromagnetically along the crystallographic c axis below TN = 255 K. ARPES measurements show band reconstruction due to the magnetic ordering. Magnetoresistance data show clear anisotropy, and, at high fields, quantum oscillations. The Néel temperature decreases monotonically under pressure, decreasing to TN = 236 K at 5.22 GPa. The pressure dependencies of (i) TN, (ii) the residual resistivity ratio, and (iii) the size and power-law behavior of the low-temperature magnetoresistance all show anomalies near 2 GPa suggesting that there may be a phase transition (structural, magnetic, and/or electronic) induced by pressure. Lastly, for pressures higher than 2 GPa a significantly different quantum oscillation frequency emerges, consistent with a pressure induced change in the electronic states.

  1. The influence of organic-film morphology on the efficient electron transfer at passivated polymer-modified electrodes to which nanoparticles are attached.

    PubMed

    Barfidokht, Abbas; Ciampi, Simone; Luais, Erwann; Darwish, Nadim; Gooding, J Justin

    2013-07-22

    The impact of polymer-film morphology on the electron-transfer process at electrode/organic insulator/nanomaterial architectures is studied. The experimental data are discussed in the context of the most recent theory modelling the nanoparticle-mediated electron-transfer process at electrode/insulator/nanomaterial architectures proposed by Chazalviel and Allongue [J. Am. Chem. Soc. 2011, 133, 762-764]. A previous report [Anal. Chem. 2013, 85, 1073-1080] by us qualitatively verified the theory and demonstrates a transition from thickness-independent to thickness-dependent electron transfer as the layer thickness exceeds a certain threshold. This follow-up study explores a different polymer, poly(phenylenediamine), and focuses on the effect of the uniformity of organic film on electron transfer at these hybrid structures. Electron-transfer kinetics of modified surfaces, which were assessed using the redox species Ru(NH3)6(3+) in aqueous solution, showed that a thickness-dependent electron-transfer regime is achieved with poly(phenylenediamine). This is attributed to the sufficiently thin films never being fabricated with this polymer. Rather, it is suggested that thin poly(phenylenediamine) layers have a globular structure with poor film homogeneity and pinhole defects.

  2. Pressure dependence of carbonate exchange with [NpO2(CO3)3]4– in aqueous solutions

    DOE PAGES

    Pilgrim, Corey D.; Zavarin, Mavrik; Casey, William H.

    2016-12-13

    Here, the rates of ligand exchange into the geochemically important [NpO2(CO3)3]4– aqueous complex are measured as a function of pressure in order to complement existing data on the isostructural [UO2(CO3)3]4– complex. Experiments are conducted at pH conditions where the rate of exchange is independent of the proton concentration. Unexpectedly, the experiments show a distinct difference in the pressure dependencies of rates of exchange for the uranyl and neptunyl complexes.

  3. Depth- and Pressure dependent Permeability in the Upper Continental Crust - data from the Urach 3 geothermal well -

    NASA Astrophysics Data System (ADS)

    Stober, I.

    2010-12-01

    Since the late seventies the 4500 m deep research borehole at Urach (South Germany) has been extensively used for hydraulic testing of the crystalline basement. The data permit a general interpretation of the hydraulic properties of the crystalline continental upper crust at different depth intervals. The typical gneissic basement contains an interconnected fluid-filled fracture system. Low-pressure hydraulic tests show that the basement on a larger scale can be described as a homogeneous, isotropic aquifer and this characteristic hydraulic behavior persists at least several hundred meters away from the borehole. This demonstrated homogeneity of the aquifer, together with the highly saline water in an interconnected system of copious fractures is characteristic of the continental upper crust in general. On a smaller scale however the fractures, crossing the uncased sections in the borehole, will define the flow-behavior in detail. So, at the beginning of a hydraulic test the pressure-data show the influence of wellbore-storage and skin, followed by a linear and a bilinear flow-period, and later on by a pseudo-radial flow-period. The transmissivity of the bulk rock will be given by evaluating the data of the pseudo-radial flow-period. Within this presentation on the one hand a compilation of existing, a description and interpretation of new hydraulic test data in the Urach 3 well are given together with a global interpretation of all test campaigns at Urach 3. Within the crystalline basement of the Urach 3 well permeability is decreasing with depth. On the other hand the pressure-dependant hydraulic phenomena is studied and an interpretation of this particular data in terms of pressure-dependant-permeability is given. In the Urach borehole a lot of high-pressure tests with well-head pressures of more than 600 bar, corresponding to an overpressure of more than 700 bar, were carried out as well. The results of these tests will be presented. The tests clearly show a

  4. Global Stability for Thermal Convection in a Couple-Stress Fluid with Temperature and Pressure Dependent Viscosity

    NASA Astrophysics Data System (ADS)

    Sunil; Choudhary, Shalu; Bharti, P. K.

    2013-09-01

    We show that the global nonlinear stability threshold for convection in a couple-stress fluid with temperature and pressure dependent viscosity is exactly the same as the linear instability boundary. This optimal result is important because it shows that linearized instability theory has captured completely the physics of the onset of convection. It has also been found that the couplestress fluid is more stable than the ordinary viscous fluid and then the effect of couple-stress parameter (F) and variable dependent viscosity (Γ) on the onset of convection is also analyzed.

  5. Vapour pressure dependence and thermodynamics of cylindrical metal-organic framework mesoparticles: an ESEM study.

    PubMed

    Sievers, Torsten K; Genre, Caroline; Bonnefond, Florent; Demars, Thomas; Ravaux, Johann; Meyer, Daniel; Podor, Renaud

    2013-10-14

    Self-assembly of neodymium nitrate and 2,5-dihydroxyl-1,4-benzoquinone (DHBQ) leads to the formation of a metal organic framework (MOF) of formula [Nd2(DHBQ)3(H2O)6]·18H2O. X-ray diffraction studies show that its crystalline structure is that of a two-dimensional coordination polymer packed in parallel sheets, with organised clusters of water molecules lying between the sheets and bridging them via a dense H-bond network. However, instead of forming faceted crystals, this MOF assembles into unusually shaped cylindrical particles of micrometre size. Scanning electron microscopy revealed that the particles are indeed mesoparticles from aggregated MOF crystalline nano-grains. The mesoparticles are stimuli-responsive and shrink in size upon exposure to reduced water vapour pressure. The shrinkage is isotropic and depends on temperature, which allows measuring the coexistence curve of water inside the particles and in the gas phase. Owing to an elaborated environmental scanning-electron microscopy (ESEM) study, it was possible to determine the association energy of water in the mesoparticles. We found a value of 16 ± 6.5 kJ mol(-1). Since the only water present in the particles is the lattice water in the nano-grains, this association energy is the lattice energy of water in the nano-sized MOF crystals. This value allowed us to draw a model for the building process of these originally shaped cylindrical mesoparticles. This is the first example of determination of a thermodynamic value by ESEM.

  6. Temperament and attachment disorders.

    PubMed

    Zeanah, Charles H; Fox, Nathan A

    2004-03-01

    Reviewed in this article is research on children with reactive attachment disorder (RAD) who exhibit specific patterns of socially aberrant behavior resulting from being maltreated or having limited opportunities to form selective attachments. There are no data explaining why 2 different patterns of the disorder, an emotionally withdrawn-inhibited pattern and an indiscriminate-disinhibited pattern, arise from similarly aberrant environments. In this article, we consider whether temperamental differences might contribute to the different manifestations of reactive attachment disorder (RAD) in the context of adverse environments. Although the association between attachment and temperament has been studied extensively and has been the subject of spirited debate within the field of child development, there are no extant data on the influence of temperament on the development of attachment disorders. We consider possible directions for research efforts designed to explore the biological underpinnings of the complex phenomenon of attachment disorders.

  7. Blade attachment assembly

    DOEpatents

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell; Miller, Diane Patricia

    2016-05-03

    An assembly and method for affixing a turbomachine rotor blade to a rotor wheel are disclosed. In an embodiment, an adaptor member is provided disposed between the blade and the rotor wheel, the adaptor member including an adaptor attachment slot that is complementary to the blade attachment member, and an adaptor attachment member that is complementary to the rotor wheel attachment slot. A coverplate is provided, having a coverplate attachment member that is complementary to the rotor wheel attachment slot, and a hook for engaging the adaptor member. When assembled, the coverplate member matingly engages with the adaptor member, and retains the blade in the adaptor member, and the assembly in the rotor wheel.

  8. Linking the pressure dependency of elastic and electrical properties of porous rocks by a dual porosity model

    NASA Astrophysics Data System (ADS)

    Han, Tongcheng; Gurevich, Boris; Pervukhina, Marina; Clennell, Michael Ben; Zhang, Junfang

    2016-04-01

    Knowledge about the pressure dependency of elastic and electrical properties is important for a variety of geophysical applications. We present a technique to invert for the stiff and compliant porosity from velocity measurements made as a function of differential pressure on saturated sandstones. A dual porosity concept is used for dry rock compressibility and a squirt model is employed for the pressure and frequency dependent elastic properties of the rocks when saturated. The total porosity obtained from inversion shows satisfactory agreement with experimental results. The electrical cementation factor was determined using the inverted porosity in combination with measured electrical conductivity. It was found that cementation factor increased exponentially with increasing differential pressure during isostatic loading. Elastic compressibility, electrical cementation factor and electrical conductivity of the saturated rocks correlate linearly with compliant porosity, and electrical cementation factor and electrical conductivity exhibit linear correlations with elastic compressibility of the saturated rocks under loading. The results show that the dual porosity concept is sufficient to explain the pressure dependency of elastic, electrical and joint elastic-electrical properties of saturated porous sandstones.

  9. Characterization of attached bacterial populations in deep granitic groundwater from the Stripa research mine by 16S rRNA gene sequencing and scanning electron microscopy.

    PubMed

    Ekendahl, S; Arlinger, J; Ståhl, F; Pedersen, K

    1994-07-01

    This paper presents the molecular characterization of attached bacterial populations growing in slowly flowing artesian groundwater from deep crystalline bed-rock of the Stripa mine, south central Sweden. Bacteria grew on glass slides in laminar flow reactors connected to the anoxic groundwater flowing up through tubing from two levels of a borehole, 812-820 m and 970-1240 m. The glass slides were collected, the bacterial DNA was extracted and the 16S rRNA genes were amplified by PCR using primers matching universally conserved positions 519-536 and 1392-1405. The resulting PCR fragments were subsequently cloned and sequenced. The sequences were compared with each other and with 16S rRNA gene sequences in the EMBL database. Three major groups of bacteria were found. Signature bases placed the clones in the appropriate systematic groups. All belonged to the proteobacterial groups beta and gamma. One group was found only at the 812-820 m level, where it constituted 63% of the sequenced clones, whereas the second group existed almost exclusively at the 970-1240 m level, where it constituted 83% of the sequenced clones. The third group was equally distributed between the levels. A few other bacteria were also found. None of the 16S rRNA genes from the dominant bacteria showed more than 88% similarity to any of the others, and none of them resembled anything in the database by more than 96%. Temperature did not seem to have any effect on species composition at the deeper level. SEM images showed rods appearing in microcolonies.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Equation of motion coupled cluster methods for electron attachment and ionization potential in fullerenes C{sub 60} and C{sub 70}

    SciTech Connect

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Moreno, Juana; Jarrell, Mark; Shelton, William A.

    2014-08-21

    In both molecular and periodic solid-state systems there is a need for the accurate determination of the ionization potential and the electron affinity for systems ranging from light harvesting polymers and photocatalytic compounds to semiconductors. The development of a Green's function approach based on the coupled cluster (CC) formalism would be a valuable tool for addressing many properties involving many-body interactions along with their associated correlation functions. As a first step in this direction, we have developed an accurate and parallel efficient approach based on the equation of motion-CC technique. To demonstrate the high degree of accuracy and numerical efficiency of our approach we calculate the ionization potential and electron affinity for C{sub 60} and C{sub 70}. Accurate predictions for these molecules are well beyond traditional molecular scale studies. We compare our results with experiments and both quantum Monte Carlo and GW calculations.

  11. Pressure dependence of the band-gap energy in BiTeI

    NASA Astrophysics Data System (ADS)

    Güler-Kılıç, Sümeyra; Kılıç, ćetin

    2016-10-01

    The evolution of the electronic structure of BiTeI, a layered semiconductor with a van der Waals gap, under compression is studied by employing semilocal and dispersion-corrected density-functional calculations. Comparative analysis of the results of these calculations shows that the band-gap energy of BiTeI decreases till it attains a minimum value of zero at a critical pressure, after which it increases again. The critical pressure corresponding to the closure of the band gap is calculated, at which BiTeI becomes a topological insulator. Comparison of the critical pressure to the pressure at which BiTeI undergoes a structural phase transition indicates that the closure of the band gap would not be hindered by a structural transformation. Moreover, the band-gap pressure coefficients of BiTeI are computed, and an expression of the critical pressure is devised in terms of these coefficients. Our findings indicate that the semilocal and dispersion-corrected approaches are in conflict about the compressibility of BiTeI, which result in overestimation and underestimation, respectively. Nevertheless, the effect of pressure on the atomic structure of BiTeI is found to be manifested primarily as the reduction of the width of the van der Waals gap according to both approaches, which also yield consistent predictions concerning the interlayer metallic bonding in BiTeI under compression. It is consequently shown that the calculated band-gap energies follow qualitatively and quantitatively the same trend within the two approximations employed here, and the transition to the zero-gap state occurs at the same critical width of the van der Waals gap.

  12. Structural phase diagram for ultra-thin epitaxial Fe3O4 / MgO(0 0 1) films: thickness and oxygen pressure dependence.

    PubMed

    Alraddadi, S; Hines, W; Yilmaz, T; Gu, G D; Sinkovic, B

    2016-03-23

    A systematic investigation of the thickness and oxygen pressure dependence for the structural properties of ultra-thin epitaxial magnetite (Fe3O4) films has been carried out; for such films, the structural properties generally differ from those for the bulk when the thickness  ⩽10 nm. Iron oxide ultra-thin films with thicknesses varying from 3 nm to 20 nm were grown on MgO (0 0 1) substrates using molecular beam epitaxy under different oxygen pressures ranging from 1  ×  10(-7) torr to 1  ×  10(-5) torr. The crystallographic and electronic structures of the films were characterized using low energy electron diffraction (LEED) and x-ray photoemission spectroscopy (XPS), respectively. The quality of the epitaxial Fe3O4 ultra-thin films was judged by magnetic measurements of the Verwey transition, along with complementary XPS spectra. It was observed that under the same growth conditions the stoichiometry of ultra-thin films under 10 nm transforms from the Fe3O4 phase to the FeO phase. In this work, a phase diagram based on thickness and oxygen pressure has been constructed to explain the structural phase transformation. It was found that high-quality magnetite films with thicknesses  ⩽20 nm formed within a narrow range of oxygen pressure. An optimal and controlled growth process is a crucial requirement for the accurate study of the magnetic and electronic properties for ultra-thin Fe3O4 films. Furthermore, these results are significant because they may indicate a general trend in the growth of other oxide films, which has not been previously observed or considered.

  13. Structural phase diagram for ultra-thin epitaxial Fe3O4 / MgO(0 01) films: thickness and oxygen pressure dependence

    DOE PAGES

    Alraddadi, S.; Hines, W.; Yilmaz, T.; ...

    2016-02-19

    A systematic investigation of the thickness and oxygen pressure dependence for the structural properties of ultra-thin epitaxial magnetite (Fe3O4) films has been carried out; for such films, the structural properties generally differ from those for the bulk when the thickness ≤10 nm. Iron oxide ultra-thin films with thicknesses varying from 3 nm to 20 nm were grown on MgO (001) substrates using molecular beam epitaxy under different oxygen pressures ranging from 1 × 10-7 torr to 1 × 10-5 torr. The crystallographic and electronic structures of the films were characterized using low energy electron diffraction (LEED) and x-ray photoemission spectroscopymore » (XPS), respectively. Moreover, the quality of the epitaxial Fe3O4 ultra-thin films was judged by magnetic measurements of the Verwey transition, along with complementary XPS spectra. We observed that under the same growth conditions the stoichiometry of ultra-thin films under 10 nm transforms from the Fe3O4 phase to the FeO phase. In this work, a phase diagram based on thickness and oxygen pressure has been constructed to explain the structural phase transformation. It was found that high-quality magnetite films with thicknesses ≤20 nm formed within a narrow range of oxygen pressure. An optimal and controlled growth process is a crucial requirement for the accurate study of the magnetic and electronic properties for ultra-thin Fe3O4 films. Furthermore, these results are significant because they may indicate a general trend in the growth of other oxide films, which has not been previously observed or considered.« less

  14. Angular dependence of dissociative electron attachment to polyatomic molecules: Application to the {sup 2}B{sub 1} metastable state of the H{sub 2}O and H{sub 2}S anions

    SciTech Connect

    Haxton, Daniel J.; McCurdy, C. William; Rescigno, Thomas N.

    2006-06-15

    The angular dependence of dissociative electron attachment (DEA) to polyatomic targets is formulated in the local complex potential model, under the assumption that the axial recoil approximation describes the dissociation dynamics. An additional approximation, which is found to be valid in the case of H{sub 2}O but not in the case of H{sub 2}S, makes it possible to describe the angular dependence of DEA solely from an analysis of the fixed-nuclei entrance amplitude, without carrying out nuclear dynamics calculations. For H{sub 2}S, the final-vibrational-state-specific angular dependence of DEA is obtained by incorporating the variation of the angular dependence of the entrance amplitude with nuclear geometry into the nuclear dynamics. Scattering calculations using the complex Kohn method and, for H{sub 2}S, full quantum calculations of the nuclear dynamics using the multiconfiguration time-dependent Hartree method, are performed.

  15. Anisotropic Hc2 , thermodynamic and transport measurements, and pressure dependence of Tc in K2Cr3As3 single crystals

    DOE PAGES

    Kong, Tai; Bud'ko, Sergey L.; Canfield, Paul C.

    2015-01-30

    We present a detailed study of single crystalline K2Cr3As3 and analyze its thermodynamic and transport properties, anisotropic Hc2(T), and initial pressure dependence of Tc. In zero field, the temperature-dependent resistivity is metallic. Deviation from a linear temperature dependence is evident below 100 K and a T3 dependence is roughly followed from just above Tc (~10K) to ~40K. Anisotropic Hc2(T) data were measured up to 140 kOe with field applied along and perpendicular to the rodlike crystals. For the applied field perpendicular to the rod, Hc2(T) is linear with a slope ~–70 kOe/K. For field applied along the rod, the slopemore » is about –120 kOe/K below 70 kOe. Above 70 kOe, the magnitude of the slope decreases to ~–70 kOe/K. The electronic specific heat coefficient γ, just above Tc, is 73 mJ/mol K2; the Debye temperature ΘD is 220 K. As a result, the specific heat jump at the superconducting transition ΔC~2.2γTc. Finally, for hydrostatic pressures up to ~7 kbar, Tc decreases under pressure linearly at a rate of –0.034K/kbar.« less

  16. Complex configuration interaction calculations of the cross section for the dissociative electron attachment process e(-) + F2 → F2(-) → F + F(-) using the complex basis function method.

    PubMed

    Honigmann, Michael; Buenker, Robert J; Liebermann, Heinz-Peter

    2012-02-05

    The F(2)(-) molecule and the corresponding dynamic processes dealing with electron scattering on the neutral F(2) species have been the subject of many theoretical and experimental investigations in the past. In the context of the Born-Oppenheimer approximation, one of the best theoretical descriptions of the electronic states involves the use of complex basis functions together with configuration interaction (CI) methods. In this work, multireference CI calculations using the complex basis function method have been carried out for the autoionizing ground state of the F(2)(-) molecule. Potential curves and vibrational levels have been obtained for the ground and various excited states of both F(2) and F(2)(-), as well as the variation of the line width of the anionic ground state for the bond distance region in which it is metastable. Cross sections for the dissociative electron attachment process e(-) + F(2) → F(2)(-) → F + F(-) have also been computed within the framework of the boomerang model, and good agreement with available experimental data has been found. In addition, some calculations for the process of vibrational excitation are included which also give good agreement with experiment.

  17. Attachment Theory and Mindfulness

    ERIC Educational Resources Information Center

    Snyder, Rose; Shapiro, Shauna; Treleaven, David

    2012-01-01

    We initiate a dialog between two central areas in the field of psychology today: attachment theory/research and mindfulness studies. The impact of the early mother-infant relationship on child development has been well established in the literature, with attachment theorists having focused on the correlation between a mother's capacity for…

  18. Attachment Line Blockage Models

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Photographs shows the attachment-line experiment model with fairing and fence for supersonic attachment-line experiments. The fairing is intended to eliminate the wing/fuselage juncture shock and align the flow for the streamlined fence. The streamlined fence traps the turbulent fuselage boundary layer to prevent turbulent contamination of the leading edge flow.

  19. Infant Feeding and Attachment.

    ERIC Educational Resources Information Center

    Ainsworth, Mary D. Salter; Tracy, Russel L.

    This paper has two major purposes: first, to consider how infant feeding behavior may fit into attachment theory; and second, to cite some evidence to show how an infant's early interaction with his mother in the feeding situation is related to subsequent development. It was found that sucking and rooting are precursor attachment behaviors that…

  20. Separation and Attachment

    ERIC Educational Resources Information Center

    Honig, Alice Sterling

    2005-01-01

    Developing secure attachments with babies gives them a very special gift--the foundation for good infant mental health! In this article, the author discusses how to develop secure attachments with babies. Babies who are in the care of others during the day often suffer from separations from their special adults. Thirteen "tips" to ensure that…

  1. Reactive Attachment Disorder.

    ERIC Educational Resources Information Center

    Chapman, Sue

    2002-01-01

    Written by a British parent, this case study tells the story of an adopted child who experienced many difficulties adjusting to life at home and school. It describes attachment disorder, possible causes of attachment difficulties, the bonding cycle, therapeutic parenting, and how schools can support the re-nurturing process. (Contains references.)…

  2. Temperament and Attachment Disorders

    ERIC Educational Resources Information Center

    Zeanah, Charles H.; Fox, Nathan A.

    2004-01-01

    Reviewed in this article is research on children with reactive attachment disorder (RAD) who exhibit specific patterns of socially aberrant behavior resulting from being maltreated or having limited opportunities to form selective attachments. There are no data explaining why 2 different patterns of the disorder, an emotionally withdrawn-inhibited…

  3. Late-life attachment.

    PubMed

    Freitas, Mélanie; Rahioui, Hassan

    2017-03-01

    Old age is likely to cause a crisis in one's life because of the vulnerabilities it brings up, acting as stressful elements disrupting the elder's feeling of security. It leads to the activation of what is called his attachment system, consisting in attachment styles and interpersonal emotional regulation strategies. To recover a higher sense of safety, the elder would refer to his attachment figures, that is to say closed people paying attention to him, showing towards him availability and consideration. However older adults particularly see their tolerance threshold lowered, regarding an accumulation of losses (true or symbolic) and stressful events within their lifetime. In a psychological and organic exhaustion phenomenon, the risk is to wear out the interpersonal emotional regulation strategies. These are as much vulnerabilities that may increase psychiatric decompensation, including depression. To resolve the tension of this period and to found a necessary secure feeling, the elder will have to redesign the attachment links previously settled and proceed to adjustments to this new context. The need of relational closeness comes back in the elders' attachment behaviour, counting on attachment figures not only to help their loneliness or dependency, but essentially to support them in a narcissist and affective way. That is why attachment theory enlightens the late life period, such as the new challenges older adults have to face. Many studies recognize its value in understanding the transition to old age, but without proposing conceptualization. We aim first to focus on attachment conception to say how much it is relevant with elderly, and then to describe specific terms of attachment within this population in order to better understand those patients. To finish, we must think about new therapeutic proposals taking into consideration the attachment perspective for a better understanding of old age transition.

  4. [Mentalization and attachment transmission].

    PubMed

    Böhmann, Johann; Fritsch, Sophia; Lück, Monika; Stumpe, Anna; Taubner, Svenja; Vesterling, Christina

    2014-01-01

    The present study was investigating the predictive role of maternal mentalizing and general as well as depressive symptom burden for attachment security at the end of the first year on a sample of 44 mother-child-dyads from a low-risk community study. Maternal mentalizing was assessed in a multidimensional way as Reflective Functioning (off-line) and Mind-Mindedness (on-line). The design was longitudinal measuring maternal Mind-Mindedness from a videotaped mother-child-play-interaction at the age of three months. General and depressive symptom burden was assessed using the SCL-90-R when the children were nine months old. Maternal attachment and Reflective-Functioning, using the Adult-Attachment-Interview, as well as children's attachment behavior, using the Strange-Situation-Test, were investigated at the age of twelve months. Secure maternal attachment was associated with higher Reflective Functioning, higher frequency of Mind-Mindedness and lower general and depressive symptom burden. A moderation-analysis showed a statistical trend (p = .08) that the interaction of the frequency of mind-related comments, general symptom severity and maternal attachment has a predictive value for infantile attachment security. Results can be tentatively interpreted that mothers with insecure attachment who had a lower general symptom burden and who related to their three-months old babies with a high frequency of mind-related-comments were more likely to have securely attached children. Thus, results may serve as a groundwork for projects aiming to prevent the transmission of insecure attachment by strengthening maternal Mind-Mindedness and working on the reduction of maternal general symptom burden.

  5. Pressure dependence of the absolute rate constant for the reaction OH + C2H2 from 228 to 413 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Payne, W. A.; Stief, L. J.; Borkowski, R. P.

    1980-01-01

    The pressure dependence of the absolute rate constant for the reaction of the hydroxyl radical with acetylene, important in both atmospheric and combustion chemistry, is determined for temperatures between 228 and 413 K. The flash photolysis-resonance fluorescence technique was employed at five temperatures over wide ranges of pressure and acetylene concentrations, with the OH produced by water photolysis and hydroxyl resonance fluorescent photons measured by multiscaling techniques. Results indicate that, except at the lowest temperature, the bimolecular rate constant for the reaction depends strongly on total pressure, with the pressure effect becoming more pronounced with increasing temperature. At limiting high pressures, the rate constant is found to be equal to 6.83 + or - 1.19 x 10 to the -12th exp (-646 + or - 47/T) cu cm/molecule per sec, where T is the temperature. Results thus demonstrate the importance of environmental conditions in theoretical studies of atmospheric and combustion product compositions

  6. Pressure dependence of Tc in LnFeAsO1-y (Ln = La, Ce, Nd, Tb)

    NASA Astrophysics Data System (ADS)

    Takeshita, N.; Miyazawa, K.; Iyo, A.; Furuta, S.; Mito, M.; Eisaki, H.

    2014-12-01

    We measured the temperature dependence of electrical resistivity of non-fluorine- substituted, oxygen-deficient LnFeAsO1-y (Ln = La, Ce, Nd, Tb) under hydrostatic high pressure up to '8 GPa in order to observe pressure dependence of superconducting transition temperature Tc. In LaFeAsO0.65, onset Tc initially enhances below 4 GPa, then decreases by applying further pressure. However, the zero-resistivity temperature does not show enhancement by applying pressure. In the case of NdFeAsO1-y and TbFeAsO1-y, Tc shows monotonic decrease as increasing pressure. Tc is much more likely to go down faster if Ln with small ionic size was taken. Therefore, the bulk superconductivity is suppressed finally at ~7 GPa in TbFeAsO0.7.

  7. Electron attachment and detachment: C{sub 6}F{sub 5}Cl, C{sub 6}F{sub 5}Br, and C{sub 6}F{sub 5}I and the electron affinity of C{sub 6}F{sub 5}Cl

    SciTech Connect

    Miller, Thomas M.; Viggiano, A.A.

    2005-01-01

    Measurements are reported of rate constants for electron attachment to C{sub 6}F{sub 5}X (X=Cl,Br,I) and thermal electron detachment from C{sub 6}F{sub 5}Cl{sup -} over the temperature range 300-550 K in 133 Pa of He gas in a flowing-afterglow Langmuir-probe apparatus. This is the first case we know of where the parent anion has sufficiently low electron detachment energy that detachment (from C{sub 6}F{sub 5}Cl{sup -} in this case) has been observed in competition with a channel for dissociative electron attachment yielding a thermally stable anion (here, Cl{sup -}). Because of this competition, it is shown that a simple mass spectrometric determination of the product branching fractions at long times will lead to erroneous results at elevated temperatures. The electron density profiles provide evidence for a new plasma decay process involving the detaching and nondetaching anions trapped in the space charge field of the positive ions. Electron attachment rate constants were found to be 1.0x10{sup -7}, 1.1x10{sup -7}, and 2.0x10{sup -7} cm{sup 3} s{sup -1}, at 300 K, for C{sub 6}F{sub 5}Cl, C{sub 6}F{sub 5}Br, and C{sub 6}F{sub 5}I, respectively, estimated accurate to {+-}25% except for C{sub 6}F{sub 5}I, where there is {+-}30% uncertainty. Rate constants for C{sub 6}F{sub 5}Cl changed little over our temperature range, while those for C{sub 6}F{sub 5}Br, and C{sub 6}F{sub 5}I increased with temperature. Electron detachment occurred only for C{sub 6}F{sub 5}Cl{sup -} in our temperature range. Detachment rate constants were immeasurable at room temperature but approached 4000 s{sup -1} at 550 K. From these data the electron affinity (EA) for C{sub 6}F{sub 5}Cl was determined, EA (C{sub 6}F{sub 5}Cl)=0.75{+-}0.08 eV. G3(MP2) calculations (based on Moeller-Plesset perturbation theory) were carried out for the neutral and anion and yielded EA(C{sub 6}F{sub 5}Cl)=0.728 eV.

  8. The neurobiology of attachment.

    PubMed

    Insel, T R; Young, L J

    2001-02-01

    It is difficult to think of any behavioural process that is more intrinsically important to us than attachment. Feeding, sleeping and locomotion are all necessary for survival, but humans are, as Baruch Spinoza famously noted, "a social animal" and it is our social attachments that we live for. Over the past decade, studies in a range of vertebrates, including humans, have begun to address the neural basis of attachment at a molecular, cellular and systems level. This review describes some of the important insights from this work.

  9. The use of electron beam lithographic graft-polymerization on thermoresponsive polymers for regulating the directionality of cell attachment and detachment.

    PubMed

    Idota, Naokazu; Tsukahara, Takahiko; Sato, Kae; Okano, Teruo; Kitamori, Takehiko

    2009-04-01

    A simple process for nano-patterned cell culture substrates by direct graft-polymerization has been developed using an electron beam (EB) lithography system requiring no photo-masks or EB-sensitive resists. The compound N-isopropylacrylamide (IPAAm) was locally polymerized and grafted directly by EB lithographic exposure onto hydrophilic polyacrylamide (PAAm)-grafted glass surfaces. The size of the surface grafted polymers was controlled by varying the area of EB dose, and a minimal stripe pattern with a 200 nm line-width could be fabricated onto the surface. On the stripe-patterned surfaces, above the lower critical solution temperature (LCST), the cells initially adhered and spread with an orientation along the pattern direction. The magnitude of the spreading angle and elongation of adhered cells depended on the pattern intervals of the grafted PIPAAm. When culture temperature was lower than the LCST, cultured cells detached from the surfaces with strong shrinkage along the pattern direction, and sometimes folded and became parallel with the stripe pattern. This patterned cell recovery technique may be useful for the construction of muscle cell sheets with efficient shrinkage/relaxation in a specific direction and spheroidal 3D cell structures, with application to tissue engineering and microfluidic cellular devices.

  10. Mirror Attachment For Borescope

    NASA Technical Reports Server (NTRS)

    Gearhart, John F.; Peloquin, James E.

    1994-01-01

    Attachment for articulated borescope provides views into small, normally inaccessible spaces. Simple small round mirror on extension arm welded to borescope head. Tilted at angle to axis of borescope head, mirror provides views sideways to borescope head. Disassembly of turbopump blades not necessary to enable fluorescent-penetrant-dye inspection. Attachment used to inspect difficult-to-reach internal parts of other assemblies. Also used for inspection with ordinary white light.

  11. Micromechanical die attachment surcharge

    DOEpatents

    Filter, William F.; Hohimer, John P.

    2002-01-01

    An attachment structure is disclosed for attaching a die to a supporting substrate without the use of adhesives or solder. The attachment structure, which can be formed by micromachining, functions purely mechanically in utilizing a plurality of shaped pillars (e.g. round, square or polygonal and solid, hollow or slotted) that are formed on one of the die or supporting substrate and which can be urged into contact with various types of mating structures including other pillars, a deformable layer or a plurality of receptacles that are formed on the other of the die or supporting substrate, thereby forming a friction bond that holds the die to the supporting substrate. The attachment structure can further include an alignment structure for precise positioning of the die and supporting substrate to facilitate mounting the die to the supporting substrate. The attachment structure has applications for mounting semiconductor die containing a microelectromechanical (MEM) device, a microsensor or an integrated circuit (IC), and can be used to form a multichip module. The attachment structure is particularly useful for mounting die containing released MEM devices since these devices are fragile and can otherwise be damaged or degraded by adhesive or solder mounting.

  12. The gas-phase reaction between silylene and 2-butyne: kinetics, isotope studies, pressure dependence studies and quantum chemical calculations.

    PubMed

    Becerra, Rosa; Cannady, J Pat; Dormer, Guy; Walsh, Robin

    2009-07-14

    Time-resolved kinetic studies of the reactions of silylene, SiH(2), and dideutero-silylene, SiD(2), generated by laser flash photolysis of phenylsilane and phenylsilane-d(3), respectively, have been carried out to obtain rate coefficients for their bimolecular reactions with 2-butyne, CH(3)C[triple bond, length as m-dash]CCH(3). The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF(6) bath gas at five temperatures in the range 294-612 K. The second-order rate coefficients, obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equations where the error limits are single standard deviations: log(k(H)(Infinity)/cm(3) molecule(-1) s(-1) = (-9.67 +/- 0.04) + (1.71 +/- 0.33) kJ mol(1)/RTIn10log(k(D)(Infinity)/cm(3) molecule(-1) s(-1) = (-9.65 +/- 0.01) + (1.92 +/- 0.13) kJ mol(-1)/RTIn10. Additionally, pressure-dependent rate coefficients for the reaction of SiH(2) with 2-butyne in the presence of He (1-100 Torr) were obtained at 301, 429 and 613 K. Quantum chemical (ab initio) calculations of the SiC(4)H(8) reaction system at the G3 level support the formation of 2,3-dimethylsilirene [cyclo-SiH(2)C(CH(3))[double bond, length as m-dash]C(CH(3))-] as the sole end product. However, reversible formation of 2,3-dimethylvinylsilylene [CH(3)CH[double bond, length as m-dash]C(CH(3))SiH] is also an important process. The calculations also indicate the probable involvement of several other intermediates, and possible products. RRKM calculations are in reasonable agreement with the pressure dependences at an enthalpy value for 2,3-dimethylsilirene fairly close to that suggested by the ab initio calculations. The experimental isotope effects deviate significantly from those predicted by RRKM theory. The differences can be explained by an isotopic scrambling mechanism, involving H-D exchange between the hydrogens of the methyl groups and the D-atoms in the ring in 2,3-dimethylsilirene-1,1-d(2). A detailed

  13. Firm but Slippery Attachment of Deinococcus geothermalis

    PubMed Central

    Kolari, M.; Schmidt, U.; Kuismanen, E.; Salkinoja-Salonen, M. S.

    2002-01-01

    Bacterial biofilms impair the operation of many industrial processes. Deinococcus geothermalis is efficient primary biofilm former in paper machine water, functioning as an adhesion platform for secondary biofilm bacteria. It produces thick biofilms on various abiotic surfaces, but the mechanism of attachment is not known. High-resolution field-emission scanning electron microscopy and atomic force microscopy (AFM) showed peritrichous adhesion threads mediating the attachment of D. geothermalis E50051 to stainless steel and glass surfaces and cell-to-cell attachment, irrespective of the growth medium. Extensive slime matrix was absent from the D. geothermalis E50051 biofilms. AFM of the attached cells revealed regions on the cell surface with different topography, viscoelasticity, and adhesiveness, possibly representing different surface layers that were patchily exposed. We used oscillating probe techniques to keep the tip-biofilm interactions as small as possible. In spite of this, AFM imaging of living D. geothermalis E50051 biofilms in water resulted in repositioning but not in detachment of the surface-attached cells. The irreversibly attached cells did not detach when pushed with a glass capillary but escaped the mechanical force by sliding along the surface. Air drying eliminated the flexibility of attachment, but it resumed after reimmersion in water. Biofilms were evaluated for their strength of attachment. D. geothermalis E50051 persisted 1 h of washing with 0.2% NaOH or 0.5% sodium dodecyl sulfate, in contrast to biofilms of Burkholderia cepacia F28L1 or the well-characterized biofilm former Staphylococcus epidermidis O-47. Deinococcus radiodurans strain DSM 20539T also formed tenacious biofilms. This paper shows that D. geothermalis has firm but laterally slippery attachment not reported before for a nonmotile species. PMID:11948162

  14. Autism and Attachment: The Attachment Q-Sort

    ERIC Educational Resources Information Center

    Rutgers, Anna H.; Van Ijzendoorn, Marinus H.; Bakermans-Kranenburg, Marian J.; Swinkels, Sophie H. N.

    2007-01-01

    Children with autism are able to show secure attachment behaviours to their parents/caregivers. Most studies on attachment in children with autism used a (modified) Strange Situation Procedure (SSP) to examine attachment security. An advantage of the Attachment Q-Sort (AQS) over the SSP is that it can be attuned to the secure-base behaviour of…

  15. Perils of Neglecting Lattice Relaxation in the Pressure Dependence of Deep Luminescence Bands in Wide Gap Semiconductors

    NASA Astrophysics Data System (ADS)

    Iota, V.; Weinstein, B. A.

    1998-03-01

    Deep defect states are often assumed to be insensitive to pressure because of their localized atomic-like character. In apparent conflict with this, experiments on widegap II-VI materials find that the pressure shifts of many 'midgap' photoluminescence (PL) bands associated with large-lattice-relaxation defects are more rapid than the shift of the bandgap(B. Weinstein, T. Ritter, et. al., Phys. Stat. Sol. (b) 198), 167 (1996). To study this, we measured the effects of pressure on the PL and PL-excitation (PLE) bands arising from the Zn-vacancy (V_Zn) and the P_Se deep acceptor centers in ZnSe. Using the observed pressure variation of the Stokes shifts and the established 1 atm. configuration coordinate (CC) models( D.Y. Jeon, H.P Gislason, G.D. Watkins, Phys. Rev. B 48), 7872 (1993), we were able to infer quantitative CC-diagrams at any pressure. Our results show that the pressure dependence of the lattice relaxation contributes a substantial fraction (several meV/kbar) to the overall shift of the PL-bands, and, hence, must be included. For the case of the V_Zn, simple calculations of the Jahn-Teller splitting using dangling-bond orbitals support this conclusion. figures

  16. Pressure dependent low temperature kinetics for CN + CH3CN: competition between chemical reaction and van der Waals complex formation.

    PubMed

    Sleiman, Chantal; González, Sergio; Klippenstein, Stephen J; Talbi, Dahbia; El Dib, Gisèle; Canosa, André

    2016-06-01

    The gas phase reaction between the CN radical and acetonitrile CH3CN was investigated experimentally, at low temperatures, with the CRESU apparatus and a slow flow reactor to explore the temperature dependence of its rate coefficient from 354 K down to 23 K. Whereas a standard Arrhenius behavior was found at T > 200 K, indicating the presence of an activation barrier, a dramatic increase in the rate coefficient by a factor of 130 was observed when the temperature was decreased from 168 to 123 K. The reaction was found to be pressure independent at 297 K unlike the experiments carried out at 52 and 132 K. The work was complemented by ab initio transition state theory based master equation calculations using reaction pathways investigated with highly accurate thermochemical protocols. The role of collisional stabilization of a CNCH3CN van der Waals complex and of tunneling induced H atom abstractions were also considered. The experimental pressure dependence at 52 and 132 K is well reproduced by the theoretical calculations provided that an anharmonic state density is considered for the van der Waals complex CH3CNCN and its Lennard-Jones radius is adjusted. Furthermore, these calculations indicate that the experimental observations correspond to the fall-off regime and that tunneling remains small in the low-pressure regime. Hence, the studied reaction is essentially an association process at very low temperature. Implications for the chemistry of interstellar clouds and Titan are discussed.

  17. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    PubMed

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.

  18. Pressure dependence of the absolute rate constant for the reaction Cl + C2H2 from 210-361 K

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L. J.

    1985-01-01

    In recent years, considerable attention has been given to the role of chlorine compounds in the catalytic destruction of stratospheric ozone. However, while some reactions have been studied extensively, the kinetic data for the reaction of Cl with C2H2 is sparse with only three known determinations of the rate constant k3. The reactions involved are Cl + C2H2 yields reversibly ClC2H2(asterisk) (3a) and ClC2H2(asterisk) + M yields ClC2H2 + M (3b). In the present study, flash photolysis coupled with chlorine atomic resonance fluorescence have been employed to determine the pressure and temperature dependence of k3 with the third body M = Ar. Room temperature values are also reported for M = N2. The pressure dependence observed in the experiments confirms the expectation that the reaction involves addition of Cl to the unsaturated C2H2 molecule followed by collisional stabilization of the resulting adduct radical.

  19. Pressure dependence of the absolute rate constant for the reaction OH + C2H2 from 228 to 413K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Borokowski, R. P.; Payne, W. A.; Stief, L. J.

    1980-01-01

    The pressure dependence of absolute rate constants for the reaction of OH + C2H2 yields products has been examined at five temperatures ranging from 228 to 413 K. The experimental techniques which was used is flash photolysis-resonance fluoresence. OH was produced by water photolysis and hydroxyl resonance fluorescent photons were measured by multiscaling techniques. The results indicate that the low pressure bimolecular rate constant is 4 x 10 the the minus 13th power cu cm molecule (-1) s(-1) over the temperature range studied. A substantial increase in the bimolecular rate constant with an increase in pressure was observed at all temperatures except 228 K. This indicates the importance of initial adduct formation and subsequent stablization. The high pressure results are well represented by the Arrhenius expression (k sub bi) sub infinity = (6.83 + or - 1.19) x 10 to the minus 12th power exp(-646 + or - 47/T)cu cm molecule (-1) s(-1). The results are compared to previous investigated and are theoretically discussed. The implications of these results on modeling of terrestrial and planetary atmospheres and also in combustion chemistry are discussed.

  20. Effects of high pressure-dependent leakoff and high process-zone stress in coal-stimulation treatments

    SciTech Connect

    Ramurthy, M.; Lyons, B.; Hendrickson, R.B.; Barree, R.D.; Magill, D.R.

    2009-08-15

    Hydraulic fracturing in coals has been studied extensively over the last two decades; however, there are factors that were often ignored or incorrectly diagnosed, resulting in screenouts. Assuming that a majority of the perforations are open and there are no problems with the stimulation fluids, screenouts during coal hydraulic-fracture treatments can be attributed to either high pressure-dependent leakoff (PDL), high process-zone stress (PZS) or in some cases both. The objective of this work is to discuss, help identify, and present solutions to address these reservoir-related issues such that screenouts can be avoided in optimized refracture treatments and new well stimulations. The tools for identifying these reservoir-related parameters include a diagnostic fracture-injection test (DFIT) and a grid-oriented fully functional 3D fracture simulator with shear decoupling. An example for each respective case is presented in this paper. In the first example, in which high PZS was considered to be the dominant reason for screenout or pressure out, the well was restimulated successfully by implementing the solutions presented in this paper. In the second example, in which high PDL was considered to be the main reason for screenout, there were several wells in the same project area that exhibited the same behavior resulting in screenouts. After implementing the solutions presented in this paper to address high PDL, all new wells were stimulated successfully without any issues.

  1. Reactive attachment disorder.

    PubMed

    Hornor, Gail

    2008-01-01

    Child abuse and neglect affects the lives of many American children and can result in physical injury and disability as well as psychological trauma. Reactive attachment disorder (RAD) is one possible psychological consequence of child abuse and neglect for very young children, younger than 5 years of age. RAD is described as markedly disturbed and developmentally inappropriate social relatedness usually beginning before age 5 years. These behavioral manifestations are the direct result of and come after pathogenic care. To better understand RAD, it is first necessary to understand attachment; therefore, attachment theory is examined. Risk factors for the development of RAD are presented. Implications for pediatric nurse practitioner practice are explored. The pediatric nurse practitioner can play a vital role in recognizing RAD and ensuring that children with this disorder receive prompt mental health assessment and therapy.

  2. Ceramic blade attachment system

    DOEpatents

    Boyd, Gary L.

    1994-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a pair of recessed portions thereon. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings have a pair of grooves therein in which are positioned a pair of pins having a generally rectangular cross-section and a reaction surface thereon. A pair of cylindrical rollers interposed respective ones of the pair of reaction surfaces and the pair of recessed portions. The attachment system or turbine assembly provides an economical, reliable and effective attachment of a component having a preestablished rate of thermal expansion to a component having a greater preestablished rate of thermal expansion.

  3. Ceramic blade attachment system

    DOEpatents

    Boyd, G.L.

    1994-12-13

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a pair of recessed portions thereon. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings have a pair of grooves therein in which are positioned a pair of pins having a generally rectangular cross-section and a reaction surface thereon. A pair of cylindrical rollers interposed respective ones of the pair of reaction surfaces and the pair of recessed portions. The attachment system or turbine assembly provides an economical, reliable and effective attachment of a component having a preestablished rate of thermal expansion to a component having a greater preestablished rate of thermal expansion. 3 figures.

  4. Ladder attachment platform

    DOEpatents

    Swygert,; Richard, W [Springfield, SC

    2012-08-28

    A ladder attachment platform is provided that includes a base for attachment to a ladder that has first and second side rails and a plurality of rungs that extend between in a lateral direction. Also included is a user platform for having a user stand thereon that is carried by the base. The user platform may be positioned with respect to the ladder so that it is not located between a first plane that extends through the first side rail and is perpendicular to the lateral direction and a second plane that extends through the second side rail and is perpendicular to the lateral direction.

  5. Internal pipe attachment mechanism

    DOEpatents

    Bast, R.M.; Chesnut, D.A.; Henning, C.D.; Lennon, J.P.; Pastrnak, J.W.; Smith, J.A.

    1994-12-13

    An attachment mechanism is described for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection. 6 figures.

  6. Internal pipe attachment mechanism

    DOEpatents

    Bast, Richard M.; Chesnut, Dwayne A.; Henning, Carl D.; Lennon, Joseph P.; Pastrnak, John W.; Smith, Joseph A.

    1994-01-01

    An attachment mechanism for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection.

  7. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  8. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1994-01-01

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly.

  9. Platinum Attachments on Iron Oxide Nanoparticle Surfaces

    SciTech Connect

    Palchoudhury, Soubantika; Xu, Yaolin; An, Wei; Turner, C. H.; Bao, Yuping

    2010-04-30

    Platinum nanoparticles supported on metal oxide surfaces have shown great potential as heterogeneous catalysts to accelerate electrochemical processes, such as the oxygen reduction reaction in fuel cells. Recently, the use of magnetic supports has become a promising research topic for easy separation and recovery of catalysts using magnets, such as Pt nanoparticles supported on iron oxide nanoparticles. The attachment of Pt on iron oxide nanoparticles is limited by the wetting ability of the Pt (metal) on ceramic surfaces. A study of Pt nanoparticle attachment on iron oxide nanoparticle surfaces in an organic solvent is reported, which addresses the factors that promote or inhibit such attachment. It was discovered that the Pt attachment strongly depends on the capping molecules of the iron oxide seeds and the reaction temperature. For example, the attachment of Pt nanoparticles on oleic acid coated iron oxide nanoparticles was very challenging, because of the strong binding between the carboxylic groups and iron oxide surfaces. In contrast, when nanoparticles are coated with oleic acid/tri-n-octylphosphine oxide or oleic acid/oleylamine, a significant increase in Pt attachment was observed. Electronic structure calculations were then applied to estimate the binding energies between the capping molecules and iron ions, and the modeling results strongly support the experimental observations.

  10. Forbidden Electron Attachment in O2

    DTIC Science & Technology

    1988-12-01

    1969). se R. J. Celotta it Ail,, Phys. Rev. A 6, 631 (1972). T . F. O’Malley, Phys. Rev. 153, 59 (1967). = S. F. Wang , M. 3. W. Boness, and G. J. Schulz...Department pennsylvania State University Rochester, New York 14627 University Park, Pennsylvania 16802 Dr. Roald Hoffmann Dr. . Rubloff Department of

  11. Day Care and Attachment

    ERIC Educational Resources Information Center

    Portnoy, Fern C.; Simmons, Carolyn H.

    1978-01-01

    The attachment behavior of 35 white, middle-class 3 1/2- to 4-year-olds who had experienced different rearing histories was observed through a series of standardized episodes involving separations and reunions with the mother and a stranger. (Author/JMB)

  12. Attachment and Personality Disorders

    ERIC Educational Resources Information Center

    Sinha, Preeti; Sharan, Pratap

    2007-01-01

    Personality disorders (PDs) arise from core psychopathology of interpersonal relationships and understanding of self and others. The distorted representations of self and others, as well as unhealthy relationships that characterize persons with various PDs, indicate the possibility that persons with PDs have insecure attachment. Insecure…

  13. Does the pressure dependence of kinetic isotope effects report usefully on dynamics in enzyme H-transfer reactions?

    PubMed

    Hoeven, Robin; Heyes, Derren J; Hay, Sam; Scrutton, Nigel S

    2015-08-01

    The temperature dependence of kinetic isotope effects (KIEs) has emerged as the main experimental probe of enzymatic H-transfer by quantum tunnelling. Implicit in the interpretation is a presumed role for dynamic coupling of H-transfer chemistry to the protein environment, the so-called 'promoting motions/vibrations hypothesis'. This idea remains contentious, and others have questioned the importance and/or existence of promoting motions/vibrations. New experimental methods of addressing this problem are emerging, including use of mass-modulated enzymes and time-resolved spectroscopy. The pressure dependence of KIEs has been considered as a potential probe of quantum tunnelling reactions, because semi-classical KIEs, which are defined by differences in zero-point vibrational energy, are relatively insensitive to kbar changes in pressure. Reported combined pressure and temperature (p-T) dependence studies of H-transfer reactions are, however, limited. Here, we extend and review the available p-T studies that have utilized well-defined experimental systems in which quantum mechanical tunnelling is established. These include flavoproteins, quinoproteins, light-activated enzymes and chemical model systems. We show that there is no clear general trend between the p-T dependencies of the KIEs in these systems. Given the complex nature of p-T studies, we conclude that computational simulations using determined (e.g. X-ray) structures are also needed alongside experimental measurements of reaction rates/KIEs to guide the interpretation of p-T effects. In providing new insight into H-transfer/environmental coupling, combined approaches that unite both atomistic understanding with experimental rate measurements will require careful evaluation on a case-by-case basis. Although individually informative, we conclude that p-T studies do not provide the more generalized insight that has come from studies of the temperature dependence of KIEs.

  14. Pharmacological modulation of transmitter release by inhibition of pressure-dependent potassium currents in vestibular hair cells.

    PubMed

    Haasler, Thorsten; Homann, Georg; Duong Dinh, Thien An; Jüngling, Eberhard; Westhofen, Martin; Lückhoff, Andreas

    2009-12-01

    Vestibular vertigo may be induced by increases in the endolymphatic pressure that activate pressure-dependent K(+) currents (I(K,p)) in vestibular hair cells. I(K,p) have been demonstrated to modulate transmitter release and are inhibited by low concentrations of cinnarizine. Beneficial effects against vestibular vertigo of cinnarizine have been attributed to its inhibition of calcium currents. Our aim was to determine the extent by which the inhibition of I(K,p) by cinnarizine may alter the voltage response to stimulating currents and to analyze whether such alterations may be sufficient to modulate the activation of Ca(2+) currents and transmitter release. Vestibular type II hair cells from guinea pigs were studied using the whole-cell patch-clamp technique. In current clamp, voltage responses to trains of stimulating currents were recorded. In voltage clamp, transmitter release was assessed from changes in the cell capacitance, as calculated from the phase shift during application of sine waves. Cinnarizine (0.05-3 microM) concentration dependently reversed the depressing effects of increases in the hydrostatic pressure (from 0.2 to 0.5 cm H(2)O) on the voltage responses to stimulating currents. Voltage protocols that simulated these responses were applied in voltage clamp and revealed a significantly enhanced transmitter release in conditions mimicking an inhibition of I(K,p). Cinnarizine (< or =0.5 microM) did not inhibit calcium currents. We conclude that cinnarizine, in pharmacologically relevant concentrations, enhances transmitter release in the presence of elevated hydrostatic pressure by an indirect mechanism, involving inhibition of I(K,p), enhancing depolarization, and increasing the voltage-dependent activation of Ca(2+) currents, without directly affecting Ca(2+) current.

  15. Ab initio molecular dynamics study of temperature and pressure-dependent infrared dielectric functions of liquid methanol

    NASA Astrophysics Data System (ADS)

    Wang, C. C.; Tan, J. Y.; Liu, L. H.

    2017-03-01

    The temperature and pressure-dependent dielectric functions of liquids are of great importance to the thermal radiation transfer and the diagnosis and control of fuel combustion. In this work, we apply the state-of-the-art ab initio molecular dynamics (AIMD) method to calculate the infrared dielectric functions of liquid methanol at 183-573 K and 0.1-160 MPa in the spectral range 10-4000 cm-1, and study the temperature and pressure effects on the dielectric functions. The AIMD approach is validated by the Infrared Variable Angle Spectroscopic Ellipsometry (IR-VASE) experimental measurements at 298 K and 0.1 MPa, and the proposed IR-VASE method is verified by comparison with paper data of distilled water. The results of the AIMD approach agrees well with the experimental values of IR-VASE. The experimental and theoretical analyses indicate that the temperature and pressure exert a noticeable influence on the infrared dielectric functions of liquid methanol. As temperature increases, the average molecular dipole moment decreases. The amplitudes of dominant absorption peaks reduce to almost one half as temperature increases from 183 to 333 K at 0.1 MPa and from 273 to 573 K at 160 MPa. The absorption peaks below 1500 cm-1 show a redshift, while those centered around 3200 cm-1 show a blueshift. Moreover, larger average dipole moments are observed as pressure increases. The amplitudes of dominant absorption peaks increase to almost two times as pressure increases from 1 to 160 MPa at 373 K.

  16. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV)

    SciTech Connect

    Francés-Monerris, Antonio; Segarra-Martí, Javier; Merchán, Manuela; Roca-Sanjuán, Daniel

    2015-12-07

    Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonical nucleobases fragmentations of N–H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N–H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π{sub 1}{sup −} and π{sub 2}{sup −} states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.

  17. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV)

    NASA Astrophysics Data System (ADS)

    Francés-Monerris, Antonio; Segarra-Martí, Javier; Merchán, Manuela; Roca-Sanjuán, Daniel

    2015-12-01

    Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonical nucleobases fragmentations of N-H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N-H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π1- and π2- states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.

  18. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV).

    PubMed

    Francés-Monerris, Antonio; Segarra-Martí, Javier; Merchán, Manuela; Roca-Sanjuán, Daniel

    2015-12-07

    Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonical nucleobases fragmentations of N-H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N-H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π1 (-) and π2 (-) states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.

  19. God attachment, mother attachment, and father attachment in early and middle adolescence.

    PubMed

    Sim, Tick Ngee; Yow, Amanda Shixian

    2011-06-01

    The present study examined the interplay of attachment to God, attachment to mother, and attachment to father with respect to adjustment (hope, self-esteem, depression) for 130 early and 106 middle adolescents in Singapore. Results showed that the parental attachments were generally linked (in expected directions) to adjustment. God attachment, however, had unique results. At the bivariate level, God attachment was only linked to early adolescents' self-esteem. When considered together with parental attachments (including interactions), God attachment did not emerge as the key moderator in attachment interactions and yielded some unexpected results (e.g., being positively linked to depression). These results are discussed viz-a-viz the secure base and safe haven functions that God and parental attachments may play during adolescence.

  20. Turbine nozzle attachment system

    DOEpatents

    Norton, P.F.; Shaffer, J.E.

    1995-10-24

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

  1. Turbine nozzle attachment system

    DOEpatents

    Norton, Paul F.; Shaffer, James E.

    1995-01-01

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

  2. Fluorescence lifetime attachment LIFA

    NASA Astrophysics Data System (ADS)

    van der Oord, Cornelius J. R.; Stoop, Karel W. J.; van Geest, Lambertus K.

    2001-05-01

    We present the Lambert Instruments Fluorescence Lifetime Attachment LIFA. LIFA enables easy to use and affordable microscopy and macroscopic FLIM. The system implements the homodyne detection scheme for measuring the fluorescence lifetime in each pixel of the image. The microscopy system features an ultra bright LED illuminator, the LI-(mu) Cam intensified CCD camera a high frequency signal generator. The illuminator replaces the excitation light source of a standard fluorescence microscopy, while the LI-(mu) CAM intensified CCD camera is attached to the photo-port. Both the illuminator and the intensifier are modulated at a frequency up to 100 MHz at a series of phase differences. The lifetime image is calculated from the series of images on a personal computer.

  3. Kinetics following addition of sulfur fluorides to a weakly ionized plasma from 300 to 500 K: Rate constants and product determinations for ion-ion mutual neutralization and thermal electron attachment to SF{sub 5}, SF{sub 3}, and SF{sub 2}

    SciTech Connect

    Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, A. A.; Hazari, Nilay; Luzik, Eddie D. Jr.

    2010-12-21

    Rate constants for several processes including electron attachment to SF{sub 2}, SF{sub 3}, and SF{sub 5} and individual product channels of ion-ion mutual neutralization between SF{sub 6}{sup -}, SF{sub 5}{sup -}, and SF{sub 4}{sup -} with Ar{sup +} were determined by variable electron and neutral density attachment mass spectrometry. The experiments were conducted with a series of related neutral precursors (SF{sub 6}, SF{sub 4}, SF{sub 5}Cl, SF{sub 5}C{sub 6}H{sub 5}, and SF{sub 3}C{sub 6}F{sub 5}) over a temperature range of 300-500 K. Mutual neutralization rate constants for SF{sub 6}{sup -}, SF{sub 5}{sup -}, and SF{sub 4}{sup -} with Ar{sup +} are reported with uncertainties of 10-25% and show temperature dependencies in agreement with the theoretical value of T{sup -0.5}. Product branching in the mutual neutralizations is temperature independent and dependent on the electron binding energy of the anion. A larger fraction of product neutrals from the SF{sub 6}{sup -} mutual neutralization (0.9 {+-}0.1) are dissociated than in the SF{sub 5}{sup -} mutual neutralization (0.65 {+-} 0.2), with the SF{sub 4}{sup -} (0.7 {+-} 0.3) likely lying in between. Electron attachment to SF{sub 5} (k= 2.0 x 10{sup -8} {+-}{sub 1}{sup 2} cm{sup 3} s{sup -1} at 300 K) and SF{sub 3} (4 {+-} 3 x 10{sup -9} cm{sup 3} s{sup -1} at 300 K) show little temperature dependence. Rate constants of electron attachment to closed-shell SF{sub n} species decrease as the complexity of the neutral decreases.

  4. Electron attachment to MoF{sub 6}, ReF{sub 6}, and WF{sub 6}; reaction of MoF{sub 6}{sup -} with ReF{sub 6} and reaction of Ar{sup +} with MoF{sub 6}

    SciTech Connect

    Friedman, Jeffrey F.; Stevens, Amy E.; Miller, Thomas M.; Viggiano, A.A.

    2006-06-14

    Rate constants were measured for electron attachment to MoF{sub 6}, ReF{sub 6}, and WF{sub 6} in 133 Pa of helium gas using a flowing-afterglow Langmuir-probe apparatus. The experiment is a thorny one because the molecules tend to form oxide impurities on feedline surfaces and because of thermal decomposition of MoF{sub 6} on surfaces as the gas temperature is increased. The electron attachment rate constant for MoF{sub 6} is (2.3{+-}0.8)x10{sup -9} cm{sup 3} s{sup -1} at 297 K; only MoF{sub 6}{sup -} is formed in the temperature range of 297-385 K. The rate constant increases with temperature up to the point where decomposition becomes apparent. Electron attachment to ReF{sub 6} occurs with a rate constant of (2.4{+-}0.8)x10{sup -9} cm{sup 3} s{sup -1} at 297 K; only ReF{sub 6}{sup -} is produced. MoF{sub 6}{sup -} reacts with ReF{sub 6} to form ReF{sub 6}{sup -} on essentially every collision, showing definitively that the electron affinity of ReF{sub 6} is greater than that of MoF{sub 6}. A rate constant of (5.0{+-}1.3)x10{sup -10} cm{sup 3} s{sup -1} was measured for this ion-molecule reaction at 304 K. The reverse reaction is not observed. The reaction of Ar{sup +} with MoF{sub 6} was found to produce MoF{sub 5}{sup +}+F, with a rate constant of (1.8{+-}0.5)x10{sup -9} cm{sup 3} s{sup -1}. WF{sub 6} attaches electrons so slowly at room temperature that the attachment rate was below detection level ({<=}10{sup -12} cm{sup 3} s{sup -1}). By 552 K, the attachment rate constant reaches a value of (2{+-}1)x10{sup -10} cm{sup 3} s{sup -1}.

  5. Attachment and Relationships: Beyond Parenting.

    ERIC Educational Resources Information Center

    Honig, Alice Sterling

    Using a question-answer format, this paper examines the concept of attachment and its importance for parents and caregivers of young children. Twenty topics are addressed through an examination of relevant theory, research findings, and clinical evidence: (1) a "who's who" list of researchers on attachment; (2) definition of attachment;…

  6. Adopting Children with Attachment Problems.

    ERIC Educational Resources Information Center

    Hughes, Daniel A.

    1999-01-01

    Notes that attachment behavior in infants is a facet of normal child development, and that children with attachment problems require special attention during and after the adoption process. Presents actions needed to increase the probability that such children can be successfully adopted, detailed attachment patterns, and parenting strategies and…

  7. Attachment Theory: Retrospect and Prospect.

    ERIC Educational Resources Information Center

    Bretherton, Inge

    1985-01-01

    Provides overview of attachment theory as parented by John Bowlby in "Attachment and Loss". Uses two major concepts from this work to interpret refinements and elaborations of attachment theory attibuted to Mary Ainsworth. Considers how recent insights into development of socioemotional understanding and development of event…

  8. Attachment: Theoretical Development and Critique

    ERIC Educational Resources Information Center

    Slater, Ruth

    2007-01-01

    Zeanah argues that ethological attachment theory, as outlined by John Bowlby, has provided one of the most important frameworks for understanding crucial risk and protective factors in social and emotional development. However, although attachment theory and the notion of attachment disorders have influenced such initiatives, many psychologists,…

  9. Attachment as Regulation: A Commentary.

    ERIC Educational Resources Information Center

    Pipp, Sandra; Harmon, Robert J.

    1987-01-01

    Discusses ways in which Myron Hofer's work (1987), which draws on studies of rodents and primates, alters the traditional perspective on human attachment. Emphasizes the importance of the component of attachment that does not develop in explaining attachment in the first six months of life. (PCB)

  10. Report of the APSAC task force on attachment therapy, reactive attachment disorder, and attachment problems.

    PubMed

    Chaffin, Mark; Hanson, Rochelle; Saunders, Benjamin E; Nichols, Todd; Barnett, Douglas; Zeanah, Charles; Berliner, Lucy; Egeland, Byron; Newman, Elana; Lyon, Tom; LeTourneau, Elizabeth; Miller-Perrin, Cindy

    2006-02-01

    Although the term attachment disorder is ambiguous, attachment therapies are increasingly used with children who are maltreated, particularly those in foster care or adoptive homes. Some children described as having attachment disorders show extreme disturbances. The needs of these children and their caretakers are real. How to meet their needs is less clear. A number of attachment-based treatment and parenting approaches purport to help children described as attachment disordered. Attachment therapy is a young and diverse field, and the benefits and risks of many treatments remain scientifically undetermined. Controversies have arisen about potentially harmful attachment therapy techniques used by a subset of attachment therapists. In this report, the Task Force reviews the controversy and makes recommendations for assessment, treatment, and practices. The report reflects American Professional Society on the Abuse of Children's (APSAC) position and also was endorsed by the American Psychological Association's Division 37 and the Division 37 Section on Child Maltreatment.

  11. Unusual properties of high-compliance porosity extracted from measurements of pressure-dependent wave velocities in rocks

    NASA Astrophysics Data System (ADS)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Pasternak, Elena; Dyskin, Arcady

    2016-04-01

    Conventionally the interpretation of wave velocities and their variations under load is conducted assuming that closable cracks have simple planar shapes, like the popular model of penny-shape cracks. For such cracks, the proportion between complementary variations in different elastic parameters of rocks (such as S- and P-wave velocities) is strictly pre-determined, in particular, it is independent of the crack aspect ratio and rather weakly dependent on the Poisson's ratio of the intact rock. Real rocks, however, contain multitude of cracks of different geometry. Faces of such cracks can exhibit complex modes of interaction when closed by external load, which may result in very different ratios between normal- and shear compliances of such defects. In order to describe the reduction of different elastic moduli, we propose a model in which the compliances of crack-like defects are explicitly decoupled and are not predetermined, so that the ratio q between total normal- and shear- compliances imparted to the rock mass (as well as individual values of these compliances) can be estimated from experimental data on reduction of different elastic moduli (e.g., pressure dependences of P- and S-wave velocities). Physically, the so-extracted ratio q can be interpreted as intrinsic property of individual crack-like defects similar to each other, or as a characteristic of proportion between concentrations of pure normal cracks with very large q and pure shear cracks with q→0. The latter case can correspond, e.g., to saturated cracks in which weakly-compressible liquid prevents crack closing under normal loading. It can be shown that for conventional dry planar cracks, the compliance ratio is q ˜2. The developed model applied to the data on wave-velocity variations with external pressure indicates that elastic properties of the real crack-like defects in rocks can differ considerably from the usually assumed ones. Comparison with experimental data on variations P- and S

  12. Anomalous pressure dependence of magnetic ordering temperature in Tb revealed by resistivity measurements to 141 GPa. Comparison with Gd and Dy

    DOE PAGES

    Lim, J.; Fabbris, G.; Haskel, D.; ...

    2015-05-26

    In previous studies the pressure dependence of the magnetic ordering temperature To of Dy was found to exhibit a sharp increase above its volume collapse pressure of 73 GPa, appearing to reach temperatures well above ambient at 157 GPa. In a search for a second such lanthanide, electrical resistivity measurements were carried out on neighboring Tb to 141 GPa over the temperature range 3.8 - 295 K. Below Tb’s volume collapse pressure of 53 GPa, the pressure dependence To(P) mirrors that of both Dy and Gd. However, at higher pressures To(P) for Tb becomes highly anomalous. This result, together withmore » the very strong suppression of superconductivity by dilute Tb ions in Y, suggests that extreme pressure transports Tb into an unconventional magnetic state with an anomalously high magnetic ordering temperature.« less

  13. Anomalous pressure dependence of magnetic ordering temperature in Tb revealed by resistivity measurements to 141 GPa. Comparison with Gd and Dy

    SciTech Connect

    Lim, J.; Fabbris, G.; Haskel, D.; Schilling, J. S.

    2015-05-26

    In previous studies the pressure dependence of the magnetic ordering temperature To of Dy was found to exhibit a sharp increase above its volume collapse pressure of 73 GPa, appearing to reach temperatures well above ambient at 157 GPa. In a search for a second such lanthanide, electrical resistivity measurements were carried out on neighboring Tb to 141 GPa over the temperature range 3.8 - 295 K. Below Tb’s volume collapse pressure of 53 GPa, the pressure dependence To(P) mirrors that of both Dy and Gd. However, at higher pressures To(P) for Tb becomes highly anomalous. This result, together with the very strong suppression of superconductivity by dilute Tb ions in Y, suggests that extreme pressure transports Tb into an unconventional magnetic state with an anomalously high magnetic ordering temperature.

  14. Conditional stability for thermal convection in a rotating couple-stress fluid saturating a porous medium with temperature and pressure dependent viscosity

    NASA Astrophysics Data System (ADS)

    Sunil; Choudhary, Shalu; Mahajan, Amit

    2013-08-01

    A nonlinear stability threshold for rotation in a couple-stress fluid heated from below saturating a porous medium with temperature and pressure dependent viscosity is exactly the same as the linear instability boundary. This optimal result is important because it shows that linearized instability theory has captured completely the physics of the onset of convection. The effects of couple-stress parameter, variable dependent viscosity, medium permeability, Taylor number and Darcy-Brinkman number on the onset of convection are also analysed.

  15. Ceramic blade attachment system

    DOEpatents

    Frey, deceased, Gary A.; Jimenez, Oscar D.

    1996-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed therebetween. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. And, a pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade.

  16. Ceramic blade attachment system

    DOEpatents

    Frey, G.A.; Jimenez, O.D.

    1996-12-03

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed between them. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. A pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade. 4 figs.

  17. Neighborhood Quality and Attachment

    PubMed Central

    Poortinga, Wouter; Calve, Tatiana; Jones, Nikki; Lannon, Simon; Rees, Tabitha; Rodgers, Sarah E.; Lyons, Ronan A.; Johnson, Rhodri

    2016-01-01

    Various studies have shown that neighborhood quality is linked to neighborhood attachment and satisfaction. However, most have relied upon residents’ own perceptions rather than independent observations of the neighborhood environment. This study examines the reliability and validity of the revised Residential Environment Assessment Tool (REAT 2.0), an audit instrument covering both public and private spaces of the neighborhood environment. The research shows that REAT 2.0 is a reliable, easy-to-use instrument and that most underlying constructs can be validated against residents’ own neighborhood perceptions. The convergent validity of the instrument, which was tested against digital map data, can be improved for a number of miscellaneous urban form items. The research further found that neighborhood attachment was significantly associated with the overall REAT 2.0 score. This association can mainly be attributed to the property-level neighborhood quality and natural elements components. The research demonstrates the importance of private spaces in the outlook of the neighborhood environment. PMID:28260806

  18. Ceramic blade attachment system

    DOEpatents

    Shaffer, James E.

    1995-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine disc having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade and forms a turbine assembly. The turbine blade has a root portion defining a pair of sides having a pair of grooves therein. The turbine assembly includes a pair of flanges between which the turbine blades are positioned. Each of the pair of flanges has a plurality of grooves defined therein. The grooves within the pair of flanges are aligned with the grooves in the blades and have a space formed therebetween. A plurality of spherical balls are positioned within the space. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade.

  19. Ceramic blade attachment system

    DOEpatents

    Shaffer, J.E.

    1995-01-10

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a first groove and a second groove therein. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings has a first groove and a second groove therein. The space or void formed between the first grooves and the second grooves has a plurality of spherical balls positioned therein. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade. 4 figures.

  20. Ceramic blade attachment system

    DOEpatents

    Shaffer, J.E.

    1995-07-11

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine disc having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade and forms a turbine assembly. The turbine blade has a root portion defining a pair of sides having a pair of grooves therein. The turbine assembly includes a pair of flanges between which the turbine blades are positioned. Each of the pair of flanges has a plurality of grooves defined therein. The grooves within the pair of flanges are aligned with the grooves in the blades and have a space formed therebetween. A plurality of spherical balls are positioned within the space. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade. 4 figs.

  1. Ceramic blade attachment system

    DOEpatents

    Shaffer, James E.

    1995-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a first groove and a second groove therein. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings has a first groove and a second groove therein. The space or void formed between the first grooves and the second grooves has a plurality of spherical balls positioned therein. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade.

  2. Sentence-Level Attachment Prediction

    NASA Astrophysics Data System (ADS)

    Albakour, M.-Dyaa; Kruschwitz, Udo; Lucas, Simon

    Attachment prediction is the task of automatically identifying email messages that should contain an attachment. This can be useful to tackle the problem of sending out emails but forgetting to include the relevant attachment (something that happens all too often). A common Information Retrieval (IR) approach in analyzing documents such as emails is to treat the entire document as a bag of words. Here we propose a finer-grained analysis to address the problem. We aim at identifying individual sentences within an email that refer to an attachment. If we detect any such sentence, we predict that the email should have an attachment. Using part of the Enron corpus for evaluation we find that our finer-grained approach outperforms previously reported document-level attachment prediction in similar evaluation settings.

  3. Study of Defect Levels in InAs/InAsSb Type-II Superlattice Using Pressure-Dependent Photoluminescence

    DTIC Science & Technology

    2015-07-07

    peak energy shift and observing a quenching of the PL intensity we have determined a crossover pressure at which we believe the T2SL electron confined... crossover pressure. These results support and are consistent with the determined values for the pressure 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE...should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 9. SPONSORING

  4. Elderly-animal postmortem attachment.

    PubMed

    Peretti, P O

    1990-01-01

    Attachment can be strong between people and their pets. The present study was conducted to determine: (1) specific variables associated with the final rite and disposition of the deceased pet, and (2) those criteria associated with emotional and social factors pertaining to elderly-animal postmortem attachment. Results suggested four most frequently stated variables of final rite and disposition, and eight emotional and social factors of elderly-animal postmortem attachment.

  5. An overview of frenal attachments

    PubMed Central

    Priyanka, M.; Sruthi, R.; Ramakrishnan, T.; Emmadi, Pamela; Ambalavanan, N.

    2013-01-01

    Frenal attachments are thin folds of mucous membrane with enclosed muscle fibers that attach the lips to the alveolar mucosa and underlying periosteum. Most often, during the oral examination of the patient the dentist gives very little importance to the frenum, for assessing its morpholology and attachment. However, it has been seen that an abnormal frenum can be an indicator of a syndrome. This paper highlights the different frenal attachments seen in association with various syndromic as well as non-syndromic conditions. PMID:23633765

  6. Pressure dependence on the kinetics of photoinduced intramolecular charge separation in 9,9 prime -bianthryl monitored by picosecond transient absorption: Comparison with electron transfer in photosynthesis

    SciTech Connect

    Lueck, H.; Windsor, M.W. ); Rettig, W. )

    1990-05-31

    Transient absorption spectra of 9,9{prime}-bianthryl (BA) in the picosecond time range have been recorded in nonpolar cyclohexane (CH), in polar acetonitrile (ACN), and in the highly viscous solvent glycerol triacetate (GTA). High pressure (0.1-300 MPa) is employed to vary the solvent properties of GTA over an unusually wide range. To our knowledge, this is the first time that picosecond absorption spectra at high pressures have been reported. Transient spectra (25-ps resolution) in GTA can be resolved into an anthracene-like band corresponding to the locally excited state (LE) and a longer wavelength band corresponding to the twisted intramolecular charge transfer state (TICT). Comparisons are made between ET in BA/GTA and ET in the photosynthetic bacterial reaction center. They suggest that the microscopic structure of the protein in which the chromophores are embedded not only induces the asymmetric charge separation but also provides a polar solvent environment optimized for fast activationless ET and preformed to stabilize the charge-separated chromophores.

  7. Protein Attachment on Nanodiamonds.

    PubMed

    Lin, Chung-Lun; Lin, Cheng-Huang; Chang, Huan-Cheng; Su, Meng-Chih

    2015-07-16

    A recent advance in nanotechnology is the scale-up production of small and nonaggregated diamond nanoparticles suitable for biological applications. Using detonation nanodiamonds (NDs) with an average diameter of ∼4 nm as the adsorbents, we have studied the static attachment of three proteins (myoglobin, bovine serum albumin, and insulin) onto the nanoparticles by optical spectroscopy, mass spectrometry, and dynamic light scattering, and electrophoretic zeta potential measurements. Results show that the protein surface coverage is predominantly determined by the competition between protein-protein and protein-ND interactions, giving each protein a unique and characteristic structural configuration in its own complex. Specifically, both myoglobin and bovine serum albumin show a Langmuir-type adsorption behavior, forming 1:1 complexes at saturation, whereas insulin folds into a tightly bound multimer before adsorption. The markedly different adsorption patterns appear to be independent of the protein concentration and are closely related to the affinity of the individual proteins for the NDs. The present study provides a fundamental understanding for the use of NDs as a platform for nanomedical drug delivery.

  8. Diode laser detection of greenhouse gases in the near-infrared region by wavelength modulation spectroscopy: pressure dependence of the detection sensitivity.

    PubMed

    Asakawa, Takashi; Kanno, Nozomu; Tonokura, Kenichi

    2010-01-01

    We have investigated the pressure dependence of the detection sensitivity of CO(2), N(2)O and CH(4) using wavelength modulation spectroscopy (WMS) with distributed feed-back diode lasers in the near infrared region. The spectral line shapes and the background noise of the second harmonics (2f) detection of the WMS were analyzed theoretically. We determined the optimum pressure conditions in the detection of CO(2), N(2)O and CH(4), by taking into consideration the background noise in the WMS. At the optimum total pressure for the detection of CO(2), N(2)O and CH(4), the limits of detection in the present system were determined.

  9. Pressure dependence of harmonic and an harmonic lattice dynamics in MgO: A first-principles calculation and implications for lattice thermal conductivity

    SciTech Connect

    Tang, Xiaoli; Dong, Jianjun

    2009-06-01

    We report a recent first-principles calculation of harmonic and anharmonic lattice dynamics of MgO. The 2nd order harmonic and 3rd order anharmonic interatomic interaction terms are computed explicitly, and their pressure dependences are discussed. The phonon mode Grueneisen parameters derived based on our calculated 3rd order lattice anharmonicity are in good agreement with those estimated using the finite difference method. The implications for lattice thermal conductivity at high pressure are discussed based on a simple kinetic transport theory.

  10. α-β Transition in Quartz: Temperature and Pressure Dependence of the Thermodynamic Quantities for β-Quartz and β-Cristobalite as Piezoelectric Materials

    NASA Astrophysics Data System (ADS)

    Lider, M. C.; Yurtseven, H.

    2014-12-01

    Temperature and pressure dependencies of the thermal expansivity (αp), isothermal compressibility (κT) and the specific heat (Cp - Cv) are studied for piezoelectric materials, in particular, for β-quartz. By analyzing the temperature (at 1 atm) and pressure (at 848 K) dependence of the observed volume V from the literature, the thermodynamic functions (αp, κT and Cp - Cv) are obtained and the Pippard relations (Cp - Cv vs. Vαp and αp vs. κT) close to the transition from the β-quartz to the β-cristobalite are examined.

  11. Ultra-sensitive pressure dependence of bandgap of rutile-GeO{sub 2} revealed by many body perturbation theory

    SciTech Connect

    Samanta, Atanu; Singh, Abhishek K.; Jain, Manish

    2015-08-14

    The reported values of bandgap of rutile GeO{sub 2} calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO{sub 2} using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p) orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion.

  12. Osmotic pressure-dependent release profiles of payloads from nanocontainers by co-encapsulation of simple salts

    NASA Astrophysics Data System (ADS)

    Behzadi, Shahed; Rosenauer, Christine; Kappl, Michael; Mohr, Kristin; Landfester, Katharina; Crespy, Daniel

    2016-06-01

    The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials.The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01882c

  13. Pressure dependency of localization degree in heavy fermion CeIn3: A density functional theory analysis.

    PubMed

    Yazdani-Kachoei, M; Jalali-Asadabadi, S; Ahmad, Iftikhar; Zarringhalam, Kourosh

    2016-08-24

    Two dramatic discrepancies between previous reliable experimental and ab initio DFT results are identified to occur at two different pressures in CeIn3, as discussed through the paper. We physically discuss sources of the phenomena and indicate how to select an appropriate functional for a given pressure. We show that these discrepancies are due to the inaccuracy of the DFT + U scheme with arbitrary Ueff and that hybrid functionals can provide better agreement with experimental data at zero pressure. The hybrid B3PW91 approach provides much better agreement with experimental data than the GGA + U. The DFT + U scheme proves to be rather unreliable since it yields completely unpredictable oscillations for the bulk modulus with increasing values of Ueff. Our B3PW91 results show that the best lattice parameter (bulk modulus) is obtained using a larger value of α parameter, 0.4 (0.3 or 0.2), than that of usually considered for the AFM phase. We find that for hybrid functionals, the amount of non-local exchange must first be calibrated before conclusions are drawn. Therefore, we first systematically optimize the α parameter and using it investigate the magnetic and electronic properties of the system. We present a theoretical interpretation of the experimental results and reproduce them satisfactorily.

  14. Pressure dependency of localization degree in heavy fermion CeIn3: A density functional theory analysis

    PubMed Central

    Yazdani-Kachoei, M.; Jalali-Asadabadi, S.; Ahmad, Iftikhar; Zarringhalam, Kourosh

    2016-01-01

    Two dramatic discrepancies between previous reliable experimental and ab initio DFT results are identified to occur at two different pressures in CeIn3, as discussed through the paper. We physically discuss sources of the phenomena and indicate how to select an appropriate functional for a given pressure. We show that these discrepancies are due to the inaccuracy of the DFT + U scheme with arbitrary Ueff and that hybrid functionals can provide better agreement with experimental data at zero pressure. The hybrid B3PW91 approach provides much better agreement with experimental data than the GGA + U. The DFT + U scheme proves to be rather unreliable since it yields completely unpredictable oscillations for the bulk modulus with increasing values of Ueff. Our B3PW91 results show that the best lattice parameter (bulk modulus) is obtained using a larger value of α parameter, 0.4 (0.3 or 0.2), than that of usually considered for the AFM phase. We find that for hybrid functionals, the amount of non-local exchange must first be calibrated before conclusions are drawn. Therefore, we first systematically optimize the α parameter and using it investigate the magnetic and electronic properties of the system. We present a theoretical interpretation of the experimental results and reproduce them satisfactorily. PMID:27553428

  15. Phenotypic variation of Pseudomonas putida and P. tolaasii affects attachment to Agaricus bisporus mycelium.

    PubMed

    Rainey, P B

    1991-12-01

    The effect of phenotypic variation on attachment of Pseudomonas tolaasii and P. putida to Agaricus bisporus mycelium was investigated. Quantitative studies demonstrated the ability of each isolate to attach rapidly and firmly to A. bisporus mycelium and significant differences in attachment of wild-type and phenotypic variant strains were observed. This was most pronounced in P. tolaasii, where the percentage attachment of the wild-type form was always greater than that of the phenotypic variant. The medium upon which the bacteria were cultured, prior to conducting an attachment assay, had a significant effect on their ability to attach. Attachment of the wild-type form of P. putida was enhanced when the assay was performed in the presence of CaCl2, suggesting the involvement of electrostatic forces. No correlation was observed between bacterial hydrophobicity and ability to attach to A. bisporus mycelium. Scanning electron microscopy confirmed the results obtained from the quantitative studies and provided further evidence for marked differences in the ability of the pseudomonads to attach to mycelium. Fibrillar structures and amorphous material were frequently associated with attached cells and appeared to anchor bacteria to each other and to the hyphal surface. A time-course study of attachment using transmission electron microscopy revealed the presence of uneven fibrillar material on the surface of cells. This material stained positive for polysaccharide and may be involved in ensuring rapid, firm attachment of the cells.

  16. Structural phase diagram for ultra-thin epitaxial Fe3O4 / MgO(0 01) films: thickness and oxygen pressure dependence

    SciTech Connect

    Alraddadi, S.; Hines, W.; Yilmaz, T.; Gu, G. D.; Sinkovic, B.

    2016-02-19

    A systematic investigation of the thickness and oxygen pressure dependence for the structural properties of ultra-thin epitaxial magnetite (Fe3O4) films has been carried out; for such films, the structural properties generally differ from those for the bulk when the thickness ≤10 nm. Iron oxide ultra-thin films with thicknesses varying from 3 nm to 20 nm were grown on MgO (001) substrates using molecular beam epitaxy under different oxygen pressures ranging from 1 × 10-7 torr to 1 × 10-5 torr. The crystallographic and electronic structures of the films were characterized using low energy electron diffraction (LEED) and x-ray photoemission spectroscopy (XPS), respectively. Moreover, the quality of the epitaxial Fe3O4 ultra-thin films was judged by magnetic measurements of the Verwey transition, along with complementary XPS spectra. We observed that under the same growth conditions the stoichiometry of ultra-thin films under 10 nm transforms from the Fe3O4 phase to the FeO phase. In this work, a phase diagram based on thickness and oxygen pressure has been constructed to explain the structural phase transformation. It was found that high-quality magnetite films with thicknesses ≤20 nm formed within a narrow range of oxygen pressure. An optimal and controlled growth process is a crucial requirement for the accurate study of the magnetic and electronic properties for ultra-thin Fe3O4 films. Furthermore, these results are significant because they may indicate a general trend in the growth of other oxide films, which has not been previously observed or considered.

  17. Hot melt adhesive attachment pad

    NASA Technical Reports Server (NTRS)

    Fox, R. L.; Frizzill, A. W.; Little, B. D.; Progar, D. J.; Coultrip, R. H.; Couch, R. H.; Gleason, J. R.; Stein, B. A.; Buckley, J. D.; St.clair, T. L. (Inventor)

    1984-01-01

    A hot melt adhesive attachment pad for releasably securing distinct elements together is described which is particularly useful in the construction industry or a spatial vacuum environment. The attachment pad consists primarily of a cloth selectively impregnated with a charge of hot melt adhesive, a thermo-foil heater, and a thermo-cooler. These components are securely mounted in a mounting assembly. In operation, the operator activates the heating cycle transforming the hot melt adhesive to a substantially liquid state, positions the pad against the attachment surface, and activates the cooling cycle solidifying the adhesive and forming a strong, releasable bond.

  18. Modulation of Candida albicans attachment to human epithelial cells by bacteria and carbohydrates.

    PubMed Central

    Centeno, A; Davis, C P; Cohen, M S; Warren, M M

    1983-01-01

    The effects of carbohydrates (mannose and dextrose). Escherichia coli 07KL. and Klebsiella pneumoniae on Candida albicans attachment to epithelial cells was studied. Dextrose had no effect on yeast attachment to epithelial cells. Conversely, mannose significantly decreased both yeast and piliated bacterial attachment (E. coli 07KL, heavily piliated K. pneumoniae) whereas having no effect on nonpiliated K. pneumoniae attachment to epithelial cells. The number of yeasts attaching to epithelial cells was enhanced by preincubation of epithelial cells with piliated strains of bacteria, whereas preincubation with nonpiliated strains of bacteria had no effect on yeast attachment. Scanning electron microscopy showed that piliated bacteria and yeasts were juxtaposed on the epithelial cell surface. These data suggest that certain piliated strains of bacteria can enhance C. albicans attachment to epithelial cells and that type 1 pili of bacteria can be a factor in the enhanced attachment of C. albicans to epithelial cells. Images PMID:6132878

  19. Phenotypes of Non-Attached Pseudomonas aeruginosa Aggregates Resemble Surface Attached Biofilm

    PubMed Central

    Alhede, Morten; Kragh, Kasper Nørskov; Qvortrup, Klaus; Allesen-Holm, Marie; van Gennip, Maria; Christensen, Louise D.; Jensen, Peter Østrup; Nielsen, Anne K.; Parsek, Matt; Wozniak, Dan; Molin, Søren; Tolker-Nielsen, Tim; Høiby, Niels; Givskov, Michael; Bjarnsholt, Thomas

    2011-01-01

    For a chronic infection to be established, bacteria must be able to cope with hostile conditions such as low iron levels, oxidative stress, and clearance by the host defense, as well as antibiotic treatment. It is generally accepted that biofilm formation facilitates tolerance to these adverse conditions. However, microscopic investigations of samples isolated from sites of chronic infections seem to suggest that some bacteria do not need to be attached to surfaces in order to establish chronic infections. In this study we employed scanning electron microscopy, confocal laser scanning microscopy, RT-PCR as well as traditional culturing techniques to study the properties of Pseudomonas aeruginosa aggregates. We found that non-attached aggregates from stationary-phase cultures have comparable growth rates to surface attached biofilms. The growth rate estimations indicated that, independently of age, both aggregates and flow-cell biofilm had the same slow growth rate as a stationary phase shaking cultures. Internal structures of the aggregates matrix components and their capacity to survive otherwise lethal treatments with antibiotics (referred to as tolerance) and resistance to phagocytes were also found to be strikingly similar to flow-cell biofilms. Our data indicate that the tolerance of both biofilms and non-attached aggregates towards antibiotics is reversible by physical disruption. We provide evidence that the antibiotic tolerance is likely to be dependent on both the physiological states of the aggregates and particular matrix components. Bacterial surface-attachment and subsequent biofilm formation are considered hallmarks of the capacity of microbes to cause persistent infections. We have observed non-attached aggregates in the lungs of cystic fibrosis patients; otitis media; soft tissue fillers and non-healing wounds, and we propose that aggregated cells exhibit enhanced survival in the hostile host environment, compared with non-aggregated bacterial

  20. Adult attachment and declining birthrates.

    PubMed

    Draper, Thomas W; Holman, Thomas B; White, Whitney; Grandy, Shannon

    2007-02-01

    Attachment scores for 658 young adults living in the U.S.A. were obtained using the Experiences in Close Relationships scale. The participants came from a subsample of the RELATE data set, who had also filled out the adult attachment measure. Those young adults living in Utah County, Utah, an area of the country with a higher than normal birthrate (88% members of the Church of Jesus Christ of Latter-day Saints), also had higher than average adult attachment scores. While the methodology was not sufficient to assess causal direction nor eliminate the possibility of unidentified influences, an undiscussed psychological factor, adult attachment, may play a role in the numerical declines observed among nonimmigrant communities in the USA and Europe.