Gyrokinetic GDC turbulence simulations: confirming a new instability regime in LAPD plasmas
NASA Astrophysics Data System (ADS)
Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.
2016-10-01
Recent high-beta experiments at the LArge Plasma Device have found significant parallel magnetic fluctuations in the region of large pressure gradients. Linear gyrokinetic simulations show the dominant instability at these radii to be the gradient-driven drift coupling (GDC) mode, a non-textbook mode driven by pressure gradients and destabilized by the coupling of ExB and grad-B∥ drifts. Unlike in previous studies, the large parallel extent of the device allows for finite-kz versions of this instability in addition to kz = 0 . The locations of maximum linear growth match very well with experimentally observed peaks of B∥ fluctuations. Local nonlinear simulations reproduce many features of the observations fairly well, with the exception of Bperp fluctuations, for which experimental profiles suggest a source unrelated to pressure gradients. In toto, the results presented here show that turbulence and transport in these experiments are driven by the GDC instability, that important characteristics of the linear instability carry over to nonlinear simulations, and - in the context of validation - that the gyrokinetic framework performs surprisingly well far outside its typical area of application, increasing confidence in its predictive abilities. Supported by U.S. DOE.
Fully kinetic Biermann battery and associated generation of pressure anisotropy
NASA Astrophysics Data System (ADS)
Schoeffler, K. M.; Loureiro, N. F.; Silva, L. O.
2018-03-01
The dynamical evolution of a fully kinetic, collisionless system with imposed background density and temperature gradients is investigated analytically. The temperature gradient leads to the generation of temperature anisotropy, with the temperature along the gradient becoming larger than that in the direction perpendicular to it. This causes the system to become unstable to pressure anisotropy driven instabilities, dominantly to the electron Weibel instability. When both density and temperature gradients are present and nonparallel to each other, we obtain a Biermann-like linear-in-time magnetic field growth. Accompanying particle-in-cell numerical simulations are shown to confirm our analytical results.
Kinetic electromagnetic instabilities in an ITB plasma with weak magnetic shear
NASA Astrophysics Data System (ADS)
Chen, W.; Yu, D. L.; Ma, R. R.; Shi, P. W.; Li, Y. Y.; Shi, Z. B.; Du, H. R.; Ji, X. Q.; Jiang, M.; Yu, L. M.; Yuan, B. S.; Li, Y. G.; Yang, Z. C.; Zhong, W. L.; Qiu, Z. Y.; Ding, X. T.; Dong, J. Q.; Wang, Z. X.; Wei, H. L.; Cao, J. Y.; Song, S. D.; Song, X. M.; Liu, Yi.; Yang, Q. W.; Xu, M.; Duan, X. R.
2018-05-01
Kinetic Alfvén and pressure gradient driven instabilities are very common in magnetized plasmas, both in space and the laboratory. These instabilities will be easily excited by energetic particles (EPs) and/or pressure gradients in present-day fusion and future burning plasmas. This will not only cause the loss and redistribution of the EPs, but also affect plasma confinement and transport. Alfvénic ion temperature gradient (AITG) instabilities with the frequency ω_BAE<ω<ω_TAE and the toroidal mode numbers n=2{-}8 are found to be unstable in NBI internal transport barrier plasmas with weak shear and low pressure gradients, where ω_BAE and ω_TAE are the frequencies of the beta- and toroidicity-induced Alfvén eigenmodes, respectively. The measured results are consistent with the general fishbone-like dispersion relation and kinetic ballooning mode equation, and the modes become more unstable the smaller the magnetic shear is in low pressure gradient regions. The interaction between AITG activity and EPs also needs to be investigated with greater attention in fusion plasmas, such as ITER (Tomabechi and The ITER Team 1991 Nucl. Fusion 31 1135), since these fluctuations can be enhanced by weak magnetic shear and EPs.
NASA Astrophysics Data System (ADS)
Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team
2014-10-01
In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.
Axisymmetric magnetorotational instability in ideal and viscous laboratory plasmas
NASA Astrophysics Data System (ADS)
Mikhailovskii, A. B.; Lominadze, J. G.; Churikov, A. P.; Erokhin, N. N.; Pustovitov, V. D.; Konovalov, S. V.
2008-10-01
The original analysis of the axisymmetric magnetorotational instability (MRI) by Velikhov (Sov. Phys. JETP 9, 995 (1959)) and Chandrasekhar (Proc. Nat. Acad. Sci. 46, 253 (1960)), applied to the ideally conducting magnetized medium in the laboratory conditions and restricted to the incompressible approximation, is extended by allowing for the compressibility. Thereby, two additional driving mechanisms of MRI are revealed in addition to the standard drive due to the negative medium rotation frequency gradient (the Velikhov effect). One is due to the squared medium pressure gradient and another is a combined effect of the pressure and density gradients. For laboratory applications, the expression for the MRI boundary with all the above driving mechanisms and the stabilizing magnetoacoustic effect is derived. The effects of parallel and perpendicular viscosities on the MRI in the laboratory plasma are investigated. It is shown that, for strong viscosity, there is a family of MRI driven for the same condition as the ideal one. It is also revealed that the presence of strong viscosity leads to additional family of instabilities called the viscosity-driven MRI. Then the parallel-viscositydriven MRI looks as an overstability (oscillatory instability) possessing both the growth rate and the real part of oscillation frequency, while the perpendicular-viscosity MRI is the aperiodical instability.
NASA Astrophysics Data System (ADS)
Lee, Hae June; Mikhailenko, Vladmir; Mikhailenko, Vladimir
2017-10-01
The temporal evolution of the resistive pressure-gradient-driven mode in the sheared flow is investigated by employing the shearing modes approach. It reveals an essential difference in the processes, which occur in the case of the flows with velocity shearing rate less than the growth rate of the instability in the steady plasmas, and in the case of the flows with velocity shear larger than the instability growth rate in steady plasmas. It displays the physical content of the empirical ``quench rule'' which predicts the suppression of the turbulence in the sheared flows when the velocity shearing rate becomes larger than the maximum growth rate of the possible instability. We found that the distortion of the perturbations by the sheared flow with such velocity shear introduces the time dependencies into the governing equations, which prohibits the application of the eigenmodes formalism and requires the solution of the initial value problem.
Acoustic instability driven by cosmic-ray streaming
NASA Technical Reports Server (NTRS)
Begelman, Mitchell C.; Zweibel, Ellen G.
1994-01-01
We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) P(sub c). At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta P(sub C)/P(sub C) approximately (kL) (exp -1) much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic-ray pressure are separated by either laminar or turbulent jumps in which the thermal gas is subject to intense heating.
Particle force model effects in a shock-driven multiphase instability
NASA Astrophysics Data System (ADS)
Black, W. J.; Denissen, N.; McFarland, J. A.
2018-05-01
This work presents simulations on a shock-driven multiphase instability (SDMI) at an initial particle volume fraction of 1% with the addition of a suite of particle force models applicable in dense flows. These models include pressure-gradient, added-mass, and interparticle force terms in an effort to capture the effects neighboring particles have in non-dilute flow regimes. Two studies are presented here: the first seeks to investigate the individual contributions of the force models, while the second study focuses on examining the effect of these force models on the hydrodynamic evolution of a SDMI with various particle relaxation times (particle sizes). In the force study, it was found that the pressure gradient and interparticle forces have little effect on the instability under the conditions examined, while the added-mass force decreases the vorticity deposition and alters the morphology of the instability. The relaxation-time study likewise showed a decrease in metrics associated with the evolution of the SDMI for all sizes when the particle force models were included. The inclusion of these models showed significant morphological differences in both the particle and carrier species fields, which increased as particle relaxation times increased.
Analytic study on low- external ideal infernal modes in tokamaks with large edge pressure gradients
NASA Astrophysics Data System (ADS)
Brunetti, Daniele; Graves, J. P.; Lazzaro, E.; Mariani, A.; Nowak, S.; Cooper, W. A.; Wahlberg, C.
2018-04-01
The problem of pressure driven infernal type perturbations near the plasma edge is addressed analytically for a circular limited tokamak configuration which presents an edge flattened safety factor. The plasma is separated from a metallic wall, either ideally conducting or resistive, by a vacuum region. The dispersion relation for such types of instabilities is derived and discussed for two classes of equilibrium profiles for pressure and mass density.
NASA Astrophysics Data System (ADS)
Rogers, Barrett N.; Zhu, Ben; Francisquez, Manaure
2018-05-01
A gyrokinetic linear stability analysis of a collisionless slab geometry in the local approximation is presented. We focus on k∥=0 universal (or entropy) modes driven by plasma gradients at small and large plasma β. These are small scale non-MHD instabilities with growth rates that typically peak near k⊥ρi˜1 and vanish in the long wavelength k⊥→0 limit. This work also discusses a mode known as the Gradient Drift Coupling (GDC) instability previously reported in the gyrokinetic literature, which has a finite growth rate γ=√{β/[2 (1 +β)] }Cs/|Lp| with Cs2=p0/ρ0 for k⊥→0 and is universally unstable for 1 /Lp≠0 . We show that the GDC instability is a spurious, unphysical artifact that erroneously arises due to the failure to respect the total equilibrium pressure balance p0+B02/(8 π)=constant , which renders the assumption B0'=0 inconsistent if p0'≠0 .
A cosmic ray driven instability
NASA Technical Reports Server (NTRS)
Dorfi, E. A.; Drury, L. O.
1985-01-01
The interaction between energetic charged particles and thermal plasma which forms the basis of diffusive shock acceleration leads also to interesting dynamical phenomena. For a compressional mode propagating in a system with homogeneous energetic particle pressure it is well known that friction with the energetic particles leads to damping. The linear theory of this effect has been analyzed in detail by Ptuskin. Not so obvious is that a non-uniform energetic particle pressure can addition amplify compressional disturbances. If the pressure gradient is sufficiently steep this growth can dominate the frictional damping and lead to an instability. It is important to not that this effect results from the collective nature of the interaction between the energetic particles and the gas and is not connected with the Parker instability, nor with the resonant amplification of Alfven waves.
Dynamics of an n = 1 explosive instability and its role in high-β disruptions
NASA Astrophysics Data System (ADS)
Aydemir, A. Y.; Park, B. H.; In, Y. K.
2018-01-01
Some low-n kink-ballooning modes not far from marginal stability are shown to exhibit a bifurcation between two very distinct nonlinear paths that depends sensitively on the background transport levels and linear perturbation amplitudes. The particular instability studied in this work is an n=1 mode dominated by an m/n=2/1 component. It is driven by a large pressure gradient in weak magnetic shear and can appear in various high- \
Interaction of Energetic Particles with Discontinuities Upstream of Strong Shocks
NASA Astrophysics Data System (ADS)
Malkov, Mikhail; Diamond, Patrick
2008-11-01
Acceleration of particles in strong astrophysical shocks is known to be accompanied and promoted by a number of instabilities which are driven by the particles themselves. One of them is an acoustic (also known as Drury's) instability driven by the pressure gradient of accelerated particles upstream. The generated sound waves naturally steepen into shocks thus forming a shocktrain. Similar magnetoacoustic or Alfven type structures may be driven by pick-up ions, for example. We consider the solutions of kinetic equation for accelerated particles within the shocktrain. The accelerated particles are assumed to be coupled to the flow by an intensive pitch-angle scattering on the self-generated Alfven waves. The implications for acceleration and confinement of cosmic rays in this shock environment will be discussed.
Initial Edge Stability Observations in the PEGASUS Toroidal Experiment
NASA Astrophysics Data System (ADS)
Bongard, M. W.; Battaglia, D. J.; Garstka, G. D.; Sontag, A. C.; Unterberg, E. A.
2007-11-01
Edge stability is an important consideration for design of fusion experiments, as transient heat loads generated by edge instabilities may damage the first wall. Such instabilities are now believed to include peeling (current driven) and ballooning (pressure driven) components. Peeling instability may be expected for high values of edge j||/B and low edge pressure gradient. This matches the operating space of Pegasus, with typical
Waves and instabilities in high β, warm ion plasmas in LAPD
NASA Astrophysics Data System (ADS)
Carter, T. A.; Dorfman, S. E.; Rossi, G.; Guice, D.
2014-12-01
The LArge Plasma Device (LAPD) has been upgraded with a second LaB6 cathode plasma source that permits the creation of higher density (~ 3×1013 cm-3), higher temperature (Te ~ 12eV), warm ion (Ti ~ 6eV) plasmas. Along with lowered magnetic field, significant increases in plasma β can be achieved with this new source (e.g. at B=100G, β~1). These new plasma conditions permit a range of new experimental opportunities on LAPD including: linear and nonlinear studies of Alfvén waves in warm ion, high β plasmas; pressure-gradient driven instabilities in increased β plasmas and electromagnetic modifications to turbulence and transport; instabilities driven by ion temperature anisotropies (e.g. firehose and mirror instabilities). The characteristics of the new plasma will be presented along with a discussion of these new research areas.
Waves and instabilities in high β, warm ion plasmas in LAPD
NASA Astrophysics Data System (ADS)
Carter, Troy; Dorfman, Seth; Rossi, Giovanni; Guice, Daniel; Gekelman, Walter; Klein, Kris; Howes, Greg
2014-10-01
The LArge Plasma Device (LAPD) has been upgraded with a second LaB6 cathode plasma source that permits the creation of higher density (~ 3 ×1013 cm-3), higher temperature (Te ~ 12 eV), warm ion (Ti ~ 6 eV) plasmas. Along with lowered magnetic field, significant increases in plasma β can be achieved with this new source (e.g. at B = 100 G , β ~ 1). These new plasma conditions permit a range of new experimental opportunities on LAPD including: linear and nonlinear studies of Alfvén waves in warm ion, high β plasmas; pressure-gradient driven instabilities in increased β plasmas and electromagnetic modifications to turbulence and transport; instabilities driven by ion temperature anisotropies (e.g. firehose and mirror instabilities). The characteristics of the new plasma will be presented along with a discussion of these new research areas.
A basic plasma test for gyrokinetics: GDC turbulence in LAPD
NASA Astrophysics Data System (ADS)
Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.
2017-02-01
Providing an important step towards validating gyrokinetics under comparatively little-explored conditions, simulations of pressure-gradient-driven plasma turbulence in the Large Plasma Device (LAPD) are compared with experimental observations. The corresponding signatures confirm the existence of a novel regime of turbulence, based on the recently-discovered gradient-driven drift coupling (GDC) instability, which is thus confirmed as a candidate mechanism for turbulence in basic, space and astrophysical plasmas. Despite the limitations of flux-tube gyrokinetics for this scenario, when accounting for box size scaling by applying a scalar factor η =6, agreement between simulations and experiment improves to within a factor of two for key observables: compressional magnetic, density, and temperature fluctuations, both in amplitude and structure. Thus, a first, strong indication is presented that the GDC instability seen in gyrokinetics appears to operate in the experiment and that the essential instability physics is present in the numerical model. Overall, the gyrokinetic framework and its numerical implementation in the Gene code therefore perform well for LAPD plasmas very different from their brethren in fusion experiments.
Secondary subharmonic instability of boundary layers with pressure gradient and suction
NASA Technical Reports Server (NTRS)
El-Hady, Nabil M.
1988-01-01
Three-dimensional linear secondary instability is investigated for boundary layers with pressure gradient and suction in the presence of a finite amplitude TS wave. The focus is on principal parametric resonance responsible for a strong growth of subharmonics in a low disturbance environment. Calculations are presented for the effect of pressure gradients and suction on controlling the onset and amplification of the secondary instability.
NASA Astrophysics Data System (ADS)
Wang, W. P.; Shen, B. F.; Xu, Z. Z.
2017-05-01
The accelerating gradient of a proton beam is crucial for stable radiation pressure acceleration (RPA) because the multi-dimensional instabilities increase γ times slower in the relativistic region. In this paper, a shape-tailored laser is proposed to significantly accelerate the ions in a controllable high accelerating gradient. In this method, the fastest ions initially rest in the middle of the foil are controlled to catch the compressed electron layer at the end of the hole-boring stage, thus the light-sail stage can start as soon as possible. Then the compressed electron layer is accelerated tightly together with the fastest ions by the shaped laser intensity, which further increases the accelerating gradient in the light-sail stage. Such tailored pulse may be beneficial for the RPA driven by the 10-fs 10 petawatt laser in the future.
Myra, James R.; D'Ippolito, Daniel A.; Russell, David A.; ...
2016-04-11
Sheared flows perpendicular to the magnetic field can be driven by the Reynolds stress or ion pressure gradient effects and can potentially influence the stability and turbulent saturation level of edge plasma modes. On the other hand, such flows are subject to the transverse Kelvin- Helmholtz (KH) instability. Here, the linear theory of KH instabilities is first addressed with an analytic model in the asymptotic limit of long wavelengths compared with the flow scale length. The analytic model treats sheared ExB flows, ion diamagnetism (including gyro-viscous terms), density gradients and parallel currents in a slab geometry, enabling a unified summarymore » that encompasses and extends previous results. In particular, while ion diamagnetism, density gradients and parallel currents each individually reduce KH growth rates, the combined effect of density and ion pressure gradients is more complicated and partially counteracting. Secondly, the important role of realistic toroidal geometry is explored numerically using an invariant scaling analysis together with the 2DX eigenvalue code to examine KH modes in both closed and open field line regions. For a typical spherical torus magnetic geometry, it is found that KH modes are more unstable at and just outside the separatrix as a result of the distribution of magnetic shear. Lastly implications for reduced edge turbulence modeling codes are discussed.« less
Gyrokinetic stability of electron-positron-ion plasmas
NASA Astrophysics Data System (ADS)
Mishchenko, A.; Zocco, A.; Helander, P.; Könies, A.
2018-02-01
The gyrokinetic stability of electron-positron plasmas contaminated by an ion (proton) admixture is studied in a slab geometry. The appropriate dispersion relation is derived and solved. Stable K-modes, the universal instability, the ion-temperature-gradient-driven instability, the electron-temperature-gradient-driven instability and the shear Alfvén wave are considered. It is found that the contaminated plasma remains stable if the contamination degree is below some threshold and that the shear Alfvén wave can be present in a contaminated plasma in cases where it is absent without ion contamination.
Regulation of pressure anisotropy in the solar wind: processes within inertial range of turbulence
NASA Astrophysics Data System (ADS)
Strumik, M.; Schekochihin, A. A.; Squire, J.; Bale, S. D.
2016-12-01
Dynamics of weakly collisional plasmas may lead to thermal pressure anisotropies that are driven by velocity shear, plasma expansion/compression or temperature gradients. The pressure anisotropies can provide free energy for the growth of micro-scale instabilities, like the mirror of firehose instabilities, that are commonly believed to constrain the pressure anisotropy in the solar wind if appropriate thresholds are exceeded. We discuss possible alternative mechanisms of regulation of the pressure anisotropy in the inertial range of solar wind turbulence that provide β-dependent constraints on the amplitude of fluctuations of pressure components and other quantities. In particular it is shown that double-adiabatic (CGL) closure for magnetohydrodynamic regime leads to 1/β scaling of the amplitude of the pressure component fluctuations and the pressure anisotropy. Both freely decaying and forced turbulence are discussed based on results of 3D numerical simulations and analytical theoretical predictions. The theoretical results are contrasted with WIND spacecraft measurements.
Stability of magnetohydrodynamic Dean Flow as applied to centrifugally confined plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassam, A.B.
1999-10-01
Dean Flow is the azimuthal flow of fluid between static concentric cylinders. In a magnetized plasma, there may also be radial stratification of the pressure. The ideal magnetohydrodynamic stability of such a flow in the presence of a strong axial magnetic field and an added radial gravitational force is examined. It is shown that both the Kelvin{endash}Helmholtz instability and pressure-gradient-driven interchanges can be stabilized if the flow is driven by a unidirectional external force and if the plasma annulus is sufficiently thin (large aspect ratio). These results find application in schemes using centrifugal confinement of plasma for fusion. {copyright} {italmore » 1999 American Institute of Physics.}« less
Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Delamere, P. A.; Stauffer, B. H.; Ma, X.
2017-12-01
Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.
Instability of Non-uniform Toroidal Magnetic Fields in Accretion Disks
NASA Astrophysics Data System (ADS)
Hirabayashi, Kota; Hoshino, Masahiro
2016-05-01
We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of this growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.
INSTABILITY OF NON-UNIFORM TOROIDAL MAGNETIC FIELDS IN ACCRETION DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp
We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of thismore » growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.« less
BUOYANCY INSTABILITIES IN A WEAKLY COLLISIONAL INTRACLUSTER MEDIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunz, Matthew W.; Stone, James M.; Bogdanovic, Tamara
2012-08-01
The intracluster medium (ICM) of galaxy clusters is a weakly collisional plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign: the magnetothermal instability (MTI) in the outskirts of clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena magnetohydrodynamic code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e., Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We find that, in all but the innermost regions of cool-coremore » clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal to the temperature gradient. Thus, while radio-mode feedback appears necessary in the central few Multiplication-Sign 10 kpc, heat conduction may be capable of offsetting radiative losses throughout most of a cool core over a significant fraction of the Hubble time. Magnetically aligned cold filaments are then able to form by local thermal instability. Viscous dissipation during cold filament formation produces accompanying hot filaments, which can be searched for in deep Chandra observations of cool-core clusters. In the case of MTI, anisotropic viscosity leads to a nonlinear state with a folded magnetic field structure in which field-line curvature and field strength are anti-correlated. These results demonstrate that, if the HBI and MTI are relevant for shaping the properties of the ICM, one must self-consistently include anisotropic viscosity in order to obtain even qualitatively correct results.« less
Transport barriers in bootstrap-driven tokamaks
NASA Astrophysics Data System (ADS)
Staebler, G. M.; Garofalo, A. M.; Pan, C.; McClenaghan, J.; Van Zeeland, M. A.; Lao, L. L.
2018-05-01
Experiments have demonstrated improved energy confinement due to the spontaneous formation of an internal transport barrier in high bootstrap fraction discharges. Gyrokinetic analysis, and quasilinear predictive modeling, demonstrates that the observed transport barrier is caused by the suppression of turbulence primarily from the large Shafranov shift. It is shown that the Shafranov shift can produce a bifurcation to improved confinement in regions of positive magnetic shear or a continuous reduction in transport for weak or negative magnetic shear. Operation at high safety factor lowers the pressure gradient threshold for the Shafranov shift-driven barrier formation. Two self-organized states of the internal and edge transport barrier are observed. It is shown that these two states are controlled by the interaction of the bootstrap current with magnetic shear, and the kinetic ballooning mode instability boundary. Election scale energy transport is predicted to be dominant in the inner 60% of the profile. Evidence is presented that energetic particle-driven instabilities could be playing a role in the thermal energy transport in this region.
Numerical Simulation of Atmospheric Response to Pacific Tropical Instability Waves(.
NASA Astrophysics Data System (ADS)
Small, R. Justin; Xie, Shang-Ping; Wang, Yuqing
2003-11-01
Tropical instability waves (TIWs) are 1000-km-long waves that appear along the sea surface temperature (SST) front of the equatorial cold tongue in the eastern Pacific. The study investigates the atmospheric planetary boundary layer (PBL) response to TIW-induced SST variations using a high-resolution regional climate model. An investigation is made of the importance of pressure gradients induced by changes in air temperature and moisture, and vertical mixing, which is parameterized in the model by a 1.5-level turbulence closure scheme. Significant turbulent flux anomalies of sensible and latent heat are caused by changes in the air sea temperature and moisture differences induced by the TIWs. Horizontal advection leads to the occurrence of the air temperature and moisture extrema downwind of the SST extrema. High and low hydrostatic surface pressures are then located downwind of the cold and warm SST patches, respectively. The maximum and minimum wind speeds occur in phase with SST, and a thermally direct circulation is created. The momentum budget indicates that pressure gradient, vertical mixing, and horizontal advection dominate. In the PBL the vertical mixing acts as a frictional drag on the pressure-gradient-driven winds. Over warm SST the mixed layer deepens relative to over cold SST. The model simulations of the phase and amplitude of wind velocity, wind convergence, and column-integrated water vapor perturbations due to TIWs are similar to those observed from satellite and in situ data.
Microscale electrokinetic transport and stability
NASA Astrophysics Data System (ADS)
Chen, Chuan-Hua
Electrokinetics is a leading mechanism for transport and separation of biochemical samples in microdevices due to its favorable scaling at small scales. However, electrokinetic systems can become highly unstable, and this instability adversely affects key processes such as sample stacking and electrophoretic separation. This dissertation deals with two major topics: a novel planar micropump exploiting the favorable scaling of electroosmosis at the microscale, and a fundamental study of electrokinetic flow instabilities induced by electrical conductivity gradients. Electroosmotic micropumps use field-induced ion drag to drive liquids and achieve high pressures in a compact design with no moving parts. An analytical model applicable to planar, etched-structure micropumps was developed to guide the geometrical design and working fluid selection. Standard microlithography and wet etching techniques were used to fabricate a pump 1 mm long along the flow direction and 0.9 mum by 38 mm in cross section. The pump produced a maximum pressure of 0.33 atm and a maximum flow rate of 15 mul/min at 1 kV applied potential with deionized water as working fluid. The pump performance agreed well with the theoretical model. Electrokinetic flow instabilities occur under high electric field in the presence of electrical conductivity gradients. In a microfluidic T-junction 11 mum by 155 mum in cross section, aqueous electrolytes of 10:1 conductivity ratio were electrokinetically driven into a common mixing channel. Convectively unstable waves were observed at 0.5 kV/cm, and upstream propagating waves at 1.5 kV/cm. A physical model for this instability has been developed. A linear stability analysis of the governing equations in the thin-layer limit predicts both qualitative trends and quantitative features that agree well with experimental data. Briggs-Bers criteria were applied to select physically unstable modes and determine the nature of instability. Conductivity gradients and bulk charge accumulation are a crucial factor in the instability. The role of electroosmotic flow is mainly as a convecting medium. The instability is governed by two key controlling parameters: the ratio of dynamic to dissipative forces which determines the onset of instability, and the ratio of electroviscous to electroosmotic velocities which governs the convective versus absolute nature of instability.
Dynamics of Mesoscale Magnetic Field in Diffusive Shock Acceleration
NASA Astrophysics Data System (ADS)
Diamond, P. H.; Malkov, M. A.
2007-01-01
We present a theory for the generation of mesoscale (krg<<1, where rg is the cosmic-ray gyroradius) magnetic fields during diffusive shock acceleration. The decay or modulational instability of resonantly excited Alfvén waves scattering off ambient density perturbations in the shock environment naturally generates larger scale fields. For a broad spectrum of perturbations, the physical mechanism of energy transfer is random refraction, represented by the diffusion of Alfvén wave packets in k-space. The scattering field can be produced directly by the decay instability or by the Drury instability, a hydrodynamic instability driven by the cosmic-ray pressure gradient. This process is of interest to acceleration since it generates waves of longer wavelength, and so enables the confinement and acceleration of higher energy particles. This process also limits the intensity of resonantly generated turbulent magnetic fields on rg scales.
Sirmas, N; Radulescu, M I
2015-02-01
Previous experiments have revealed that shock waves driven through dissipative gases may become unstable, for example, in granular gases and in molecular gases undergoing strong relaxation effects. The mechanisms controlling these instabilities are not well understood. We successfully isolated and investigated this instability in the canonical problem of piston-driven shock waves propagating into a medium characterized by inelastic collision processes. We treat the standard model of granular gases, where particle collisions are taken as inelastic, with a constant coefficient of restitution. The inelasticity is activated for sufficiently strong collisions. Molecular dynamic simulations were performed for 30,000 particles. We find that all shock waves investigated become unstable, with density nonuniformities forming in the relaxation region. The wavelength of these fingers is found to be comparable to the characteristic relaxation thickness. Shock Hugoniot curves for both elastic and inelastic collisions were obtained analytically and numerically. Analysis of these curves indicates that the instability is not of the Bethe-Zeldovich-Thompson or D'yakov-Kontorovich type. Analysis of the shock relaxation rates and rates for clustering in a convected fluid element with the same thermodynamic history ruled out the clustering instability of a homogeneous granular gas. Instead, wave reconstruction of the early transient evolution indicates that the onset of instability occurs during repressurization of the gas following the initial relaxation of the medium behind the lead shock. This repressurization gives rise to internal pressure waves in the presence of strong density gradients. This indicates that the mechanism of instability is more likely of the vorticity-generating Richtmyer-Meshkov type, relying on the action of the inner pressure wave development during the transient relaxation.
Hydrodynamic Model for Density Gradients Instability in Hall Plasmas Thrusters
NASA Astrophysics Data System (ADS)
Singh, Sukhmander
2017-10-01
There is an increasing interest for a correct understanding of purely growing electromagnetic and electrostatic instabilities driven by a plasma gradient in a Hall thruster devices. In Hall thrusters, which are typically operated with xenon, the thrust is provided by the acceleration of ions in the plasma generated in a discharge chamber. The goal of this paper is to study the instabilities due to gradients of plasma density and conditions for the growth rate and real part of the frequency for Hall thruster plasmas. Inhomogeneous plasmas prone a wide class of eigen modes induced by inhomogeneities of plasma density and called drift waves and instabilities. The growth rate of the instability has a dependences on the magnetic field, plasma density, ion temperature and wave numbers and initial drift velocities of the plasma species.
Instability of a shear layer between multicomponent fluids at supercritical pressure
NASA Astrophysics Data System (ADS)
Fu, Qing-fei; Zhang, Yun-xiao; Mo, Chao-jie; Yang, Li-jun
2018-04-01
The temporal instability of a thin shear layer lying between streams of two components of fluids has been studied. The effects of density profile of the layer on the instability behavior were mainly considered. The detailed density profile was obtained through Linear Gradient Theory. The eigenvalue problem was calculated, and the temporal instability curves were obtained for the thermodynamic parameters, e.g. pressure and temperature. The results show that, increase of pressure leads to the increase of the maximum growth rate. However, increasing pressure has opposite effects on the disturbances with small and large wave length. The increase of temperature causes the decrease of disturbance growth rate. The instability behavior of the shear layers was determined mainly by the interval between the inflections of the velocity and density profiles, and the maximum density gradient. The total effects, determined by coupling density stratification, and interval between the inflections of the velocity and density profiles, were quite distinct for different ranges of temperature and pressure.
NASA Astrophysics Data System (ADS)
Chakraborty Thakur, Saikat; Hong, Rongjie; Tynan, George
2017-10-01
We observe axial plasma detachment in a helicon plasma device that occurs simultaneously along with a spontaneous, self-organized global transition in the plasma dynamics via a transport bifurcation with strong hysteresis, at a certain B_crit. For B
NASA Astrophysics Data System (ADS)
Liu, Tao; Qin, Weilun; Wang, Dong; Huang, Zhirong
2017-08-01
The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability. This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. Theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.
Liu, Tao; Qin, Weilun; Wang, Dong; ...
2017-08-02
The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability.more » This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. In conclusion, theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.« less
Gyrokinetic simulation of driftwave instability in field-reversed configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulton, D. P., E-mail: dfulton@trialphaenergy.com; University of California, Irvine, California 92697; Lau, C. K.
2016-05-15
Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realisticmore » pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.« less
Gyrokinetic simulation of driftwave instability in field-reversed configuration
NASA Astrophysics Data System (ADS)
Fulton, D. P.; Lau, C. K.; Schmitz, L.; Holod, I.; Lin, Z.; Tajima, T.; Binderbauer, M. W.
2016-05-01
Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realistic pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.
Flow morphologies after oblique shock acceelration of a cylindrical density interface
NASA Astrophysics Data System (ADS)
Wayne, Patrick; Simons, Dylan; Olmstead, Dell; Truman, C. Randall; Vorobieff, Peter; Kumar, Sanjay
2015-11-01
We present an experimental study of instabilities developing after an oblique shock interaction with a heavy gas column. The heavy gas in our experiments is sulfur hexafluoride infused with 11% acetone by mass. A misalignment of the pressure and density gradients results in three-dimensional vorticity deposition on the gaseous interface, dtriggering the onset of Richtmyer-Meshkov instability (RMI). Shortly thereafter, other instabilities develop along the interface, including a shear-driven instability that presents itself on the leading (with respect to the shock) and trailing edges of the column. This leads to the development of rows of co-rotating ``cat's eye'' vortices, characteristic of Kelvin-Helmholtz instability (KHI). Characteristics of the KHI, such as growth rate and wavelength, depend on several factors including the Mach number of the shock, the shock tube angle of inclination α (equal to the angle between the axis of the column and the plane of the shock), and the Atwood number. This work is supported by the US National Nuclear Security Agency (NNSA) via grant DE-NA0002913.
NASA Astrophysics Data System (ADS)
Horký, Miroslav; Omura, Yoshiharu; Santolík, Ondřej
2018-04-01
This paper presents the wave mode conversion between electrostatic and electromagnetic waves on the plasma density gradient. We use 2-D electromagnetic code KEMPO2 implemented with the generation of density gradient to simulate such a conversion process. In the dense region, we use ring beam instability to generate electron Bernstein waves and we study the temporal evolution of wave spectra, velocity distributions, Poynting flux, and electric and magnetic energies to observe the wave mode conversion. Such a conversion process can be a source of electromagnetic emissions which are routinely measured by spacecraft on the plasmapause density gradient.
Global simulation of edge pedestal micro-instabilities
NASA Astrophysics Data System (ADS)
Wan, Weigang; Parker, Scott; Chen, Yang
2011-10-01
We study micro turbulence of the tokamak edge pedestal with global gyrokinetic particle simulations. The simulation code GEM is an electromagnetic δf code. Two sets of DIII-D experimental profiles, shot #131997 and shot #136051 are used. The dominant instabilities appear to be two kinds of modes both propagating in the electron diamagnetic direction, with comparable linear growth rates. The low n mode is at the Alfven frequency range and driven by density and ion temperature gradients. The high n mode is driven by electron temperature gradient and has a low real frequency. A β scan shows that the low n mode is electromagnetic. Frequency analysis shows that the high n mode is sometimes mixed with an ion instability. Experimental radial electric field is applied and its effects studied. We will also show some preliminary nonlinear results. We thank R. Groebner, P. Snyder and Y. Zheng for providing experimental profiles and helpful discussions.
New Model for Ionospheric Irregularities at Mars
NASA Astrophysics Data System (ADS)
Keskinen, M. J.
2018-03-01
A new model for ionospheric irregularities at Mars is presented. It is shown that wind-driven currents in the dynamo region of the Martian ionosphere can be unstable to the electromagnetic gradient drift instability. This plasma instability can generate ionospheric density and magnetic field irregularities with scale sizes of approximately 15-20 km down to a few kilometers. We show that the instability-driven magnetic field fluctuation amplitudes relative to background are correlated with the ionospheric density fluctuation amplitudes relative to background. Our results can explain recent observations made by the Mars Atmosphere and Volatile EvolutioN spacecraft in the Martian ionosphere dynamo region.
Resilience of quasi-isodynamic stellarators against trapped-particle instabilities.
Proll, J H E; Helander, P; Connor, J W; Plunk, G G
2012-06-15
It is shown that in perfectly quasi-isodynamic stellarators, trapped particles with a bounce frequency much higher than the frequency of the instability are stabilizing in the electrostatic and collisionless limit. The collisionless trapped-particle instability is therefore stable as well as the ordinary electron-density-gradient-driven trapped-electron mode. This result follows from the energy balance of electrostatic instabilities and is thus independent of all other details of the magnetic geometry.
Electromagnetic turbulence and transport in increased β LAPD Plasmas
NASA Astrophysics Data System (ADS)
Rossi, Giovanni; Carter, Troy; Pueschel, Mj; Jenko, Frank; Terry, Paul; Told, Daniel
2016-10-01
The new LaB6 plasma source in LAPD has enabled the production of magnetized, increased β plasmas (up to 15%). We report on the modifications of pressure-gradient-driven turbulence and transport with increased plasma β. Density fluctuations decrease with increasing β while magnetic fluctuations increase. B ⊥ fluctuations saturate while parallel (compressional) magnetic fluctuations increase continuously with β. At the highest β values Î δ ||/ δ B ⊥ 2 and δ B/B 1%. The measurements are consistent with the excitation of the Gradient-driven Drift Coupling (GDC). This instability prefers k|| = 0 and grows in finite β plasmas due to density and temperature gradients through the production of parallel magnetic field fluctuations and resulting ⊥ B|| drifts. Comparisons between experimental measurements and theoretical predictions for the GDC will be shown. Direct measurements of electrostatic particle flux have been performed and show a strong reduction with increasing β. No evidence is found (e.g. density profile shape) of enhanced confinement, suggesting that other transport mechanisms are active. Preliminary measurements indicate that electromagnetic transport due to parallel magnetic field fluctuations at first increases with β but is subsequently suppressed at higher β values.
Design and Construction of a Shock Tube Experiment for Multiphase Instability Experiments
NASA Astrophysics Data System (ADS)
Middlebrooks, John; Black, Wolfgang; Avgoustopoulos, Constantine; Allen, Roy; Kathakapa, Raj; Guo, Qiwen; McFarland, Jacob
2016-11-01
Hydrodynamic instabilities are important phenomena that have a wide range of practical applications in engineering and physics. One such instability, the shock driven multiphase instability (SDMI), arises when a shockwave accelerates an interface between two particle-gas mixtures with differing multiphase properties. The SDMI is present in high energy explosives, scramjets, and supernovae. A practical way of studying shock wave driven instabilities is through experimentation in a shock tube laboratory. This poster presentation will cover the design and data acquisition process of the University of Missouri's Fluid Mixing Shock Tube Laboratory. In the shock tube, a pressure generated shockwave is passed through a multiphase interface, creating the SDMI instability. This can be photographed for observation using high speed cameras, lasers, and advance imaging techniques. Important experimental parameters such as internal pressure and temperature, and mass flow rates of gases can be set and recorded by remotely controlled devices. The experimental facility provides the University of Missouri's Fluid Mixing Shock Tube Laboratory with the ability to validate simulated experiments and to conduct further inquiry into the field of shock driven multiphase hydrodynamic instabilities. Advisor.
Evidence of a New Instability in Gyrokinetic Simulations of LAPD Plasmas
NASA Astrophysics Data System (ADS)
Terry, P. W.; Pueschel, M. J.; Rossi, G.; Jenko, F.; Told, D.; Carter, T. A.
2015-11-01
Recent experiments at the LArge Plasma Device (LAPD) have focused on structure formation driven by density and temperature gradients. A central difference relative to typical, tokamak-like plasmas stems from the linear geometry and absence of background magnetic shear. At sufficiently high β, strong excitation of parallel (compressional) magnetic fluctuations was observed. Here, linear and nonlinear simulations with the
Kinetic simulation of edge instability in fusion plasmas
NASA Astrophysics Data System (ADS)
Fulton, Daniel Patrick
In this work, gyrokinetic simulations in edge plasmas of both tokamaks and field reversed. configurations (FRC) have been carried out using the Gyrokinetic Toroidal Code (GTC) and A New Code (ANC) has been formulated for cross-separatrix FRC simulation. In the tokamak edge, turbulent transport in the pedestal of an H-mode DIII-D plasma is. studied via simulations of electrostatic driftwaves. Annulus geometry is used and simulations focus on two radial locations corresponding to the pedestal top with mild pressure gradient and steep pressure gradient. A reactive trapped electron instability with typical ballooning mode structure is excited in the pedestal top. At the steep gradient, the electrostatic instability exhibits unusual mode structure, peaking at poloidal angles theta=+- pi/2. Simulations find this unusual mode structure is due to steep pressure gradients in the pedestal but not due to the particular DIII-D magnetic geometry. Realistic DIII-D geometry has a stabilizing effect compared to a simple circular tokamak geometry. Driftwave instability in FRC is studied for the first time using gyrokinetic simulation. GTC. is upgraded to treat realistic equilibrium calculated by an MHD equilibrium code. Electrostatic local simulations in outer closed flux surfaces find ion-scale modes are stable due to the large ion gyroradius and that electron drift-interchange modes are excited by electron temperature gradient and bad magnetic curvature. In the scrape-off layer (SOL) ion-scale modes are excited by density gradient and bad curvature. Collisions have weak effects on instabilities both in the core and SOL. Simulation results are consistent with density fluctuation measurements in the C-2 experiment using Doppler backscattering (DBS). The critical density gradients measured by the DBS qualitatively agree with the linear instability threshold calculated by GTC simulations. One outstanding critical issue in the FRC is the interplay between turbulence in the FRC. core and SOL regions. While the magnetic flux coordinates used by GTC provide a number of computational advantages, they present unique challenges at the magnetic field separatrix. To address this limitation, a new code, capable of coupled core-SOL simulations, is formulated, implemented, and successfully verified.
Stabilizing effect of helical current drive on tearing modes
NASA Astrophysics Data System (ADS)
Yuan, Y.; Lu, X. Q.; Dong, J. Q.; Gong, X. Y.; Zhang, R. B.
2018-01-01
The effect of helical driven current on the m = 2/n = 1 tearing mode is studied numerically in a cylindrical geometry using the method of reduced magneto-hydro-dynamic simulation. The results show that the local persistent helical current drive from the beginning time can be applied to control the tearing modes, and will cause a rebound effect called flip instability when the driven current reaches a certain value. The current intensity threshold value for the occurrence of flip instability is about 0.00087I0. The method of controlling the development of tearing mode with comparative economy is given. If the local helical driven current is discontinuous, the magnetic island can be controlled within a certain range, and then, the tearing modes stop growing; thus, the flip instability can be avoided. We also find that the flip instability will become impatient with delay injection of the driven current because the high order harmonics have been developed in the original O-point. The tearing mode instability can be controlled by using the electron cyclotron current drive to reduce the gradient of the current intensity on the rational surfaces.
Confinement effects in premelting dynamics
NASA Astrophysics Data System (ADS)
Pramanik, Satyajit; Wettlaufer, John
2017-11-01
We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films studied in a wide variety of materials using a power law and we examine the consequent evolution of the elastic wall. We treat (i) a range of interactions that are known to underlie interfacial premelting and (ii) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at larger temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.
Confinement effects in premelting dynamics
NASA Astrophysics Data System (ADS)
Pramanik, Satyajit; Wettlaufer, John S.
2017-11-01
We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films, studied in a wide variety of materials, using a power law and we examine the consequent evolution of the confining elastic wall. We treat (1) a range of interactions that are known to underlie interfacial premelting and (2) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at higher temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.
Zonostrophic instability driven by discrete particle noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
St-Onge, D. A.; Krommes, J. A.
The consequences of discrete particle noise for a system possessing a possibly unstable collective mode are discussed. It is argued that a zonostrophic instability (of homogeneous turbulence to the formation of zonal flows) occurs just below the threshold for linear instability. The scenario provides a new interpretation of the random forcing that is ubiquitously invoked in stochastic models such as the second-order cumulant expansion or stochastic structural instability theory; neither intrinsic turbulence nor coupling to extrinsic turbulence is required. A representative calculation of the zonostrophic neutral curve is made for a simple two-field model of toroidal ion-temperature-gradient-driven modes. To themore » extent that the damping of zonal flows is controlled by the ion-ion collision rate, the point of zonostrophic instability is independent of that rate. Published by AIP Publishing.« less
Zonostrophic instability driven by discrete particle noise
St-Onge, D. A.; Krommes, J. A.
2017-04-01
The consequences of discrete particle noise for a system possessing a possibly unstable collective mode are discussed. It is argued that a zonostrophic instability (of homogeneous turbulence to the formation of zonal flows) occurs just below the threshold for linear instability. The scenario provides a new interpretation of the random forcing that is ubiquitously invoked in stochastic models such as the second-order cumulant expansion or stochastic structural instability theory; neither intrinsic turbulence nor coupling to extrinsic turbulence is required. A representative calculation of the zonostrophic neutral curve is made for a simple two-field model of toroidal ion-temperature-gradient-driven modes. To themore » extent that the damping of zonal flows is controlled by the ion-ion collision rate, the point of zonostrophic instability is independent of that rate. Published by AIP Publishing.« less
Flux tube gyrokinetic simulations of the edge pedestal
NASA Astrophysics Data System (ADS)
Parker, Scott; Wan, Weigang; Chen, Yang
2011-10-01
The linear instabilities of DIII-D H-mode pedestal are studied with gyrokinetic micro-turbulence simulations. The simulation code GEM is an electromagnetic δf code with global tokamak geometry in the form of Miller equilibrium. Local flux tube simulations are carried out for multiple positions of two DIII-D profiles: shot #98889 and shot #131997. Near the top of the pedestal, the instability is clearly ITG. The dominant instability of the pedestal appears at the steep gradient region, and it is identified as a low frequency mode mostly driven by electron temperature gradient. The mode propagates along the electron diamagnetic direction for low n and may propagate along the ion direction for high n. At some positions near the steep gradient region, an ion instability is found which shows some characteristics of kinetic ballooning mode (KBM). These results will be compared to the results of E. Wang et al. and D. Fulton et al. in the same session. We thank R. Groebner and P. Snyder for providing experimental profiles and helpful discussions.
Generation of Plasma Density Irregularities in the Midlatitude/Subauroral F Region
NASA Astrophysics Data System (ADS)
Mishin, E. V.
2017-12-01
A concise review is given of the current state of the theoretical understanding of the creation of small- and meso-scale plasma density irregularities in the midlatitude/subauroral F region during quiet and disturbed periods. The former are discussed in terms of the temperature gradient instability (TGI) in the vicinity of the ionospheric projection of the plasmapause and the Perkins instability. During active conditions some part of the midlatitude ionosphere becomes the subauroral region dominated by enhanced westward flows (SAPS and SAID) driven by poleward electric fields. Their irregular, often nonlinear wave structure leads to the formation of plasma density irregularities in the plasmasphere and conjugate ionosphere. Here, meso-scale irregularities are due to the positive feedback magnetosphere-ionosphere coupling instability, while small scales resulted from the gradient drift instability (GDI), temperature GDI, and the ion frictional heating instability. The theoretical predictions are compared with satellite observations in the perturbed subauroral geospace.
Thermonuclear instabilities and plasma edge transport in tokamaks
NASA Astrophysics Data System (ADS)
Fulop, Tunde Maria
High-energy ions generated by fusion reactions in a burning fusion plasma may give rise to different types of wave instabilities. The present thesis investigates two types of such instabilities which recently have been observed in fusion experiments: the Toroidal Alfvén Eigenmode (TAE) instability and the magnetoacoustic cyclotron instability (MCI) which is predicted to give rise to ion cyclotron emission (ICE). The TAE instability may degrade the confinement of fusion-produced high energy alpha particles and adversely affect the possibilities of reaching ignition. The present work derives it generalized expression for the linear growth rate of the instability, by including the effects of finite orbit width and finite Larmor radius of energetic particles, as well as the effects of mode localization and the possible mode excitation by both passing and trapped energetic ions. ICE does not threaten the plasma performance, but it might be useful as a fast ion diagnostic. The ICE originates from the MCI involving fast magnetoacoustic waves driven unstable by toroidicity-affected cyclotron resonance with fast ions. In the present thesis a detailed numerical and analytical investigation of this instability is presented, that explains most of the experimental ICE features observed in JET and TFTR. Moreover, the radial and poloidal localization of the fast magnetoacoustic eigenmodes is investigated, including the effects of toroidicity, ellipticity, the presence of a subpopulation of high energy ions and various profiles of the bulk ion density. In a fusion reactor, the transport of the particles near the edge have a strong influence on the global confinement of the plasma. In the edge region, where neutral atoms and impurity ions are abundant and the temperature and density gradients are large, the assumptions of the standard neoclassical theory break down. In this thesis, we explore the effect of neutral particles on the ion flow shear in the edge region. Furthermore, the neoclassical transport theory in an impure, toroidally rotating plasma is extended to allow for steeper pressure and temperature gradients than are usually considered.
Particle drift model for Z-pinch-driven magneto-Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Dan, Jia Kun; Xu, Qiang; Wang, Kun Lun; Ren, Xiao Dong; Huang, Xian Bin
2016-09-01
A theoretical model of Z-pinch driven magneto-Rayleigh-Taylor instability is proposed based on the particle drift point of view, which can explain the helical instability structure observed in premagnetized imploding liner experiments. It is demonstrated that all possible drift motions, including polarization drift, gradient drift, and curvature drift, which can lead to charge separations, each will attribute to an effective gravity acceleration. Theoretical predictions given by this model are dramatically different from those given by previous theories which have been readily recovered in the theory presented here as a limiting case. The theory shows qualitative agreement with available experimental data of the pitch angle and provides certain predictions to be verified.
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
NASA Astrophysics Data System (ADS)
Duff, James
2016-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.
NONLINEAR EVOLUTION OF THE RADIATION-DRIVEN MAGNETO-ACOUSTIC INSTABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Rodrigo; Socrates, Aristotle
2013-04-20
We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux-the radiation-driven magneto-acoustic instability (RMI, a.k.a. the ''photon bubble'' instability). The RMI may serve as a persistent source of density, radiative flux, and magnetic field fluctuations in stably stratified, optically thick media. The conditions for instability are present in a variety of astrophysical environments and do not require the radiation pressure to dominate or the magnetic field to be strong. Here, we numerically study the saturation properties of the RMI, covering three orders of magnitude in the relative strength of radiation, magnetic field, and gas energies.more » Two-dimensional, time-dependent radiation-magnetohydrodynamic simulations of local, stably stratified domains are conducted with Zeus-MP in the optically thick, highly conducting limit. Our results confirm the theoretical expectations of Blaes and Socrates in that the RMI operates even in gas-pressure-dominated environments that are weakly magnetized. The saturation amplitude is a monotonically increasing function of the ratio of radiation to gas pressure. Keeping this ratio constant, we find that the saturation amplitude peaks when the magnetic pressure is comparable to the radiation pressure. We discuss the implications of our results for the dynamics of magnetized stellar envelopes, where the RMI should act as a source of sub-photospheric perturbations.« less
Suppression of Electron Thermal Conduction in the Intracluster Medium
NASA Astrophysics Data System (ADS)
Roberg-Clark, Gareth; Drake, James; Swisdak, M.; Reynolds, Christopher S.
2017-08-01
The Intracluster Medium (ICM) contains high-temperature dilute plasma in which the quantity beta, defined as the ratio of the thermal pressure of the gas to the local magnetic field pressure, is much larger than unity. In addition, the collisional mean free path of particles in the ICM is typically large compared to the magnetic gyro-radius of individual particles. These conditions allow for the growth of robust microinstabilities that can significantly alter the transport of particles and heat along the local magnetic field line. Here we explore such an instability using driven two-dimensional Particle-In-Cell simulations of a magnetized plasma with a temperature gradient imposed at the boundaries. The system is highly unstable and develops large-amplitude magnetic fluctuations that effectively scatter the orbits of electrons crossing the simulation domain, resulting in a collisionless suppression of thermal conduction across the temperature gradient and magnetic field. The results suggest that the spontaneous development of small-scale plasma turbulence in the ICM may play a pivotal role in determining the thermal conductivity of ICM-like plasmas.
On the Fundamental Cause of River Meanders
NASA Astrophysics Data System (ADS)
Sahagian, D. L.; Diplas, P.
2017-12-01
River meandering has been attributed to the erosion and deposition of sediments along river banks, yet the fundamental cause of the instability has not been heretofore identified. In this conceptual study, we address the conditions that lead to the meander instability, in effect "upstream" of the many previous and thorough analyses of hydraulics and the alternating erosional/depositional pattern that ensues once such conditions exist. Rivers are only one of many fluid systems that exhibit meandering behavior, and no other involves sediments at all. Other examples include the gulf stream, glacial meltwater, the jet stream, channels in submarine fans, water falling directly down from a faucet, derailed trains and even tractor trailer trucks. As such, a universal criterion is needed to explain meandering in general. We show that meandering in all systems is driven by the existence of an adverse pressure gradient, such that the resulting deceleration imposed upon the fluid causes it to be energetically favorable to divert the flow to either side of its original direction. This universal framework makes it possible to determine under what conditions the meandering instability will be manifest in altered flow/channel morphology.
NASA Technical Reports Server (NTRS)
Bennett, James; Hall, Philip
1988-01-01
There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmien-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poiseuille flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.
NASA Technical Reports Server (NTRS)
Bennett, James; Hall, Philip
1986-01-01
There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmein-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poisseulle flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.
Ion temperature gradient mode driven solitons and shocks
NASA Astrophysics Data System (ADS)
Zakir, U.; Adnan, Muhammad; Haque, Q.; Qamar, Anisa; Mirza, Arshad M.
2016-04-01
Ion temperature gradient (ITG) driven solitons and shocks are studied in a plasma having gradients in the equilibrium number density and equilibrium ion temperature. In the linear regime, it is found that the ion temperature and the ratio of the gradient scale lengths, ηi=Ln/LT , affect both the real frequency and the growth rate of the ITG driven wave instability. In the nonlinear regime, for the first time we derive a Korteweg de Vries-type equation for the ITG mode, which admits solitary wave solution. It is found that the ITG mode supports only compressive solitons. Further, it is noticed that the soliton amplitude and width are sensitive to the parameter ηi=Ln/LT . Second, in the presence of dissipation in the system, we obtain a Burger type equation, which admits the shock wave solution. This work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron-ion plasma having density and ion temperature gradients. For illustration, the model has been applied to tokamak plasma.
Active suppression of vortex-driven combustion instability using controlled liquid-fuel injection
NASA Astrophysics Data System (ADS)
Pang, Bin
Combustion instabilities remain one of the most challenging problems encountered in developing propulsion and power systems. Large amplitude pressure oscillations, driven by unsteady heat release, can produce numerous detrimental effects. Most previous active control studies utilized gaseous fuels to suppress combustion instabilities. However, using liquid fuel to suppress combustion instabilities is more realistic for propulsion applications. Active instability suppression in vortex-driven combustors using a direct liquid fuel injection strategy was theoretically established and experimentally demonstrated in this dissertation work. Droplet size measurements revealed that with pulsed fuel injection management, fuel droplet size could be modulated periodically. Consequently, desired heat release fluctuation could be created. If this oscillatory heat release is coupled with the natural pressure oscillation in an out of phase manner, combustion instabilities can be suppressed. To identify proper locations of supplying additional liquid fuel for the purpose of achieving control, the natural heat release pattern in a vortex-driven combustor was characterized in this study. It was found that at high Damkohler number oscillatory heat release pattern closely followed the evolving vortex front. However, when Damkohler number became close to unity, heat release fluctuation wave no longer coincided with the coherent structures. A heat release deficit area was found near the dump plane when combustor was operated in lean premixed conditions. Active combustion instability suppression experiments were performed in a dump combustor using a controlled liquid fuel injection strategy. High-speed Schlieren results illustrated that vortex shedding plays an important role in maintaining self-sustained combustion instabilities. Complete combustion instability control requires total suppression of these large-scale coherent structures. The sound pressure level at the excited dominant frequency was reduced by more than 20 dB with controlled liquid fuel injection method. Scaling issues were also investigated in this dump combustor to test the effectiveness of using pulsed liquid fuel injection strategies to suppress instabilities at higher power output conditions. With the liquid fuel injection control method, it was possible to suppress strong instabilities with initial amplitude of +/-5 psi down to the background noise level. The stable combustor operating range was also expanded from equivalence ratio of 0.75 to beyond 0.9.
Kinetic effects on turbulence driven by the magnetorotational instability in black hole accretion
NASA Astrophysics Data System (ADS)
Sharma, Prateek
Many astrophysical objects (e.g., spiral galaxies, the solar system, Saturn's rings, and luminous disks around compact objects) occur in the form of a disk. One of the important astrophysical problems is to understand how rotationally supported disks lose angular momentum, and accrete towards the bottom of the gravitational potential, converting gravitational energy into thermal (and radiation) energy. The magnetorotational instability (MRI), an instability causing turbulent transport in ionized accretion disks, is studied in the kinetic regime. Kinetic effects are important because radiatively inefficient accretion flows (RIAFs), like the one around the supermassive black hole in the center of our Galaxy, are collisionless. The ion Larmor radius is tiny compared to the scale of MHD turbulence so that the drift kinetic equation (DKE), obtained by averaging the Vlasov equation over the fast gyromotion, is appropriate for evolving the distribution function. The kinetic MHD formalism, based on the moments of the DKE, is used for linear and nonlinear studies. A Landau fluid closure for parallel heat flux, which models kinetic effects like collisionless damping, is used to close the moment hierarchy. We show, that the kinetic MHD and drift kinetic formalisms give the same set of linear modes for a Keplerian disk. The BGK collision operator is used to study the transition of the MRI from kinetic to the MHD regime. The ZEUS MHD code is modified to include the key kinetic MHD terms: anisotropy, pressure tensor and anisotropic thermal conduction. The modified code is used to simulate the collisionless MRI in a local shearing box. As magnetic field is amplified by the MRI, pressure anisotropy ( p [perpendicular] > p || ) is created because of the adiabatic invariance (m 0( p [perpendicular] / B ). Larmor radius scale instabilities---mirror, ion-cyclotron, and firehose---are excited even at small pressure anisotropies (D p/p ~ 1/b). Pressure isotropization due to pitch angle scattering by these instabilities is included as a subgrid model. A key result of the kinetic MHD simulations is that the anisotropy stress can be as large as the Maxwell stress. It is shown, with the help of simple tests, that the centered differencing of anisotropic thermal conduction can cause the heat to flow from lower to higher temperatures, giving negative temperatures in regions with large temperature gradients. A new method, based on limiting the transverse temperature gradient, allows heat to flow only from higher to lower temperatures. Several tests and convergence studies are presented to compare the different methods.
Direct Numerical Simulation of Fingering Instabilities in Coating Flows
NASA Astrophysics Data System (ADS)
Eres, Murat H.; Schwartz, Leonard W.
1998-11-01
We consider stability and finger formation in free surface flows. Gravity driven downhill drainage and temperature gradient driven climbing flows are two examples of such problems. The former situation occurs when a mound of viscous liquid on a vertical wall is allowed to flow. Constant surface shear stress due to temperature gradients (Marangoni stress) can initiate the latter problem. The evolution equations are derived using the lubrication approximation. We also include the effects of finite-contact angles in the evolution equations using a disjoining pressure model. Evolution equations for both problems are solved using an efficient alternating-direction-implicit method. For both problems a one-dimensional base state is established, that is steady in a moving reference frame. This base state is unstable to transverse perturbations. The transverse wavenumbers for the most rapidly growing modes are found through direct numerical solution of the nonlinear evolution equations, and are compared with published experimental results. For a range of finite equilibrium contact angles, the fingers can grow without limit leading to semi-finite steady fingers in a moving coordinate system. A computer generated movie of the nonlinear simulation results, for several sets of input parameters, will be shown.
Mechanism of nonlinear flow pattern selection in moderately non-Boussinesq mixed convection.
Suslov, Sergey A
2010-02-01
Nonlinear (non-Boussinesq) variations in fluid's density, viscosity, and thermal conductivity caused by a large temperature gradient in a flow domain lead to a wide variety of instability phenomena in mixed convection channel flow of a simple gas such as air. It is known that in strongly nonisothermal flows, the instabilities and the resulting flow patterns are caused by competing buoyancy and shear effects [see S. A. Suslov and S. Paolucci, J. Fluid Mech. 302, 91 (1995)]. However, as is the case in the Boussinesq limit of small temperature gradients, in moderately non-Boussinesq regimes, only a shear instability mechanism is active. Yet in contrast to Boussinesq flows, multiple instability modes are still detected. By reducing the system of full governing Navier-Stokes equations to a dynamical system of coupled Landau-type disturbance amplitude equations we compute a comprehensive parametric map of various shear-driven instabilities observed in a representative moderately non-Boussinesq regime. Subsequently, we analyze nonlinear interaction of unstable modes and reveal physical reasons for their appearance.
NASA Astrophysics Data System (ADS)
Hammett, G. W.; Peterson, J. L.; Granstedt, E. M.; Bell, R.; Guttenfelder, W.; Kaye, S.; Leblanc, B.; Mikkelsen, D. R.; Smith, D. R.; Yuh, H. Y.; Candy, J.
2012-03-01
The National Spherical Torus Experiment (NSTX) can achieve high electron confinement regimes that are super-critically unstable to the electron temperature gradient (ETG) instability. These electron internal transport barriers (e-ITBs) occur when the magnetic shear becomes strongly negative. Using the gyrokinetic code GYRO, the first nonlinear ETG simulations of NSTX e-ITB plasmas demonstrate reduced turbulence consistent with this observation. This is qualitatively consistent with a secondary instability picture of reduced ETG turbulence at negative shear (Jenko and Dorland PRL 2002). Local simulations identify a strongly upshifted nonlinear critical gradient for thermal transport that depends on magnetic shear. Global simulations show that ETG-driven turbulence outside of the barrier is large enough to be experimentally relevant, but cannot propagate very far into the barrier. We also use GYRO to study turbulence in regimes that might be expected in the Lithium Torus eXperiment (LTX). While lithium has experimentally been shown to raise the edge temperature and improve performance, there can still be some turbulence from density-gradient-driven trapped electron modes, and a temperature pinch is found in some cases. (Supported by DOE.)
Convective Electrokinetic Instability With Conductivity Gradients
NASA Astrophysics Data System (ADS)
Chen, Chuan-Hua; Lin, Hao; Lele, Sanjiva; Santiago, Juan
2003-11-01
Electrokinetic flow instability has been experimentally identified and quantified in a glass T-junction microchannel system with a cross section of 11 um x 155 um. In this system, buffers of different conductivities were electrokinetically driven into a common mixing channel by a DC electric field. A convective instability was observed with a threshold electric field of 0.45 kV/cm for a 10:1 conductivity ratio. A physical model has been developed which consists of a modified Ohmic model formulation for electrolyte solutions and the Navier-Stokes equations with an electric body force term. The model and experiments show that bulk charge accumulation in regions of conductivity gradients is the key mechanism of such instabilities. A linear stability analysis was performed in a convective framework, and Briggs-Bers criteria were applied to determine the nature of instability. The analysis shows the instability is governed by two key parameters: the ratio of molecular diffusion to electroviscous time scale which governs the onset of instability, and the ratio of electroviscous to electroosmotic velocity which governs whether the instability is convective or absolute. The model predicted critical electric field, growth rate, wavelength, and phase speed which were comparable to experimental data.
Hydrodynamic instabilities at an oblique interface: Experiments and Simulations
NASA Astrophysics Data System (ADS)
Douglas-Mann, E.; Fiedler Kawaguchi, C.; Trantham, M. A.; Malamud, G.; Wan, W. C.; Klein, S. R.; Kuranz, C. C.
2017-10-01
Hydrodynamic instabilities are important phenomena that occur in high-energy-density systems, such as astrophysical systems and inertial confinement fusion experiments, where pressure, density, and velocity gradients are present. Using a 30 ns laser pulse from the Omega EP laser system, a steady shock wave is driven into a target. A Spherical Crystal Imager provides high-resolution x-ray radiographs to study the evolution of complex hydrodynamic structures. This experiment has a light-to-heavy interface at an oblique angle with a precision-machined perturbation. The incident shock wave deposits shear and vorticity at the interface causing the perturbation to grow via Richtmyer-Meshkov and Kelvin-Helmholtz processes. We present results from analysis of radiographic data and hydrodynamics simulations showing the evolution of the shock and unstable structure. This work is supported by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program and LILAC.
Optically driven self-oscillations of a silica nanospike at low gas pressures
NASA Astrophysics Data System (ADS)
Xie, Shangran; Pennetta, Riccardo; Noskov, Roman E.; Russell, Philip St. J.
2016-09-01
We report light-driven instability and optomechanical self-oscillation of a fused silica "nanospike" at low gas pressures. The nanospike (tip diameter 400 nm), fabricated by thermally tapering and HF-etching a single mode fiber (SMF), was set pointing at the endface of a hollow-core photonic crystal fiber (HC-PCF) into the field created by the fundamental optical mode emerging from the HC-PCF. At low pressures, the nanospike became unstable and began to self-oscillate for optical powers above a certain threshold, acting like a phonon laser or "phaser". Because the nanospike is robustly connected to the base, direct measurement of the temporal dynamics of the instability is possible. The experiment sheds light on why particles escape from optical traps at low pressures.
Gradient Drift Turbulence from Electron Bite-Outs: Dependence on Atmospheric Parameters.
NASA Astrophysics Data System (ADS)
Young, M.; Oppenheim, M. M.; Dimant, Y. S.
2017-12-01
Electron bite-outs are regions of decreased electron density without a corresponding decrease in ion density, often caused by electron attachment to dust grains. They typically occur in the upper D-/lower E-region ionosphere and the accompanying electron gradient provides free energy to drive the gradient drift instability (GDI). The major difference between classical GDI and electron bite-out driven GDI is that the instability occurs on the top side of the bite-out region in the latter, as opposed to the bottom side in the former, in the presence of a vertical background electric field. Moreover, the mobile plasma population contains a gradient in only one species while the entire system remains quasineutral. This modified geometry presents new pathways for instabilities as the ions build up near the bite-out layer, leaving behind depletions that ascend away from the layer. Previous simulation runs showed that the presence of an electron gradient drives GDI-like turbulence even when ions and electrons start in momentum balance. Furthermore, a simulation run that replaced the electron bite-out with a layer of enhanced ion density, as though ions and electrons had filled in the bite-out region, did not lead to instability. This work examines the role of atmospheric parameters at altitudes between 80-100 km in instability formation and turbulence development, including the role of collisions in impeding instability growth as altitude decreases. Key parameters include the ambient electric field, which plays a critical role in triggering the gradient-drift instability; collision frequencies and temperature, which vary with altitude and effect the turbulent growth rate; and relative charge density of the bite-out, which increases the electron gradient strength. This work provides insight into how electron bite-out layers can produce turbulence that ground-based high frequency (HF) radars may be able to observe. The upper D-/lower E-region ionosphere is generally difficult to study in situ, making simulations of ground-based observables much more important. Assuming that electron bite-out layers result from dust charging in particular will allow the community to use the predictions of this work to study the ionospheric dust population.
Prediction of gravity-driven fingering in porous media
NASA Astrophysics Data System (ADS)
Beljadid, Abdelaziz; Cueto-Felgueroso, Luis; Juanes, Ruben
2017-11-01
Gravity-driven displacement of one fluid by another in porous media is often subject to a hydrodynamic instability, whereby fluid invasion takes the form of preferential flow paths-examples include secondary oil migration in reservoir rocks, and infiltration of rainfall water in dry soil. Here, we develop a continuum model of gravity-driven two-phase flow in porous media within the phase-field framework (Cueto-Felgueroso and Juanes, 2008). We employ pore-scale physics arguments to design the free energy of the system, which notably includes a nonlinear formulation of the high-order (square-gradient) term based on equilibrium considerations in the direction orthogonal to gravity. This nonlocal term plays the role of a macroscopic surface tension, which exhibits a strong link with capillary pressure. Our theoretical analysis shows that the proposed model enforces that fluid saturations are bounded between 0 and 1 by construction, therefore overcoming a serious limitation of previous models. Our numerical simulations show that the proposed model also resolves the pinning behavior at the base of the infiltration front, and the asymmetric behavior of the fingers at material interfaces observed experimentally.
Stable solutions of inflation driven by vector fields
NASA Astrophysics Data System (ADS)
Emami, Razieh; Mukohyama, Shinji; Namba, Ryo; Zhang, Ying-li
2017-03-01
Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.
Effect of bromine-dopant on radiation-driven Rayleigh-Taylor instability in plastic foil
NASA Astrophysics Data System (ADS)
Xu, Binbin; Ma, Yanyun; Yang, Xiaohu; Tang, Wenhui; Ge, Zheyi; Zhao, Yuan; Ke, Yanzhao; Kawata, Shiego
2017-10-01
Effects of bromine (Br) dopant on the growth of radiation-driven ablative Rayleigh-Taylor instability (RTI) in plastic foils are studied by radiation hydrodynamics simulations and theoretical analysis. It is found that the Br-dopant in plastic foil reduces the seed of ablative RTI. The main reasons of the reduction are attributed to the smaller oscillation amplitude of ablative Richtmyer-Meshkov instability (RMI) induced by the smaller post-shock sound speed, and the smaller oscillation frequency of ablative RMI induced by the smaller ablation velocity and blow-off plasma velocity. The Br-dopant also decreases the linear growth rate of ablative RTI due to the smaller acceleration. Treating the perturbation growth as a function of foil’s displacement, the perturbation growth would increase in Br-doped foil at the phase of ablative RTI, which is attributed to the decrease of the ablation velocity and the density gradient scale length. The results are helpful for further understanding the influence of high-Z dopant on the radiation-driven ablative RTI.
Interaction of viscous and inviscid instability modes in separation-bubble transition
NASA Astrophysics Data System (ADS)
Brinkerhoff, Joshua R.; Yaras, Metin I.
2011-12-01
This paper describes numerical simulations that are used to examine the interaction of viscous and inviscid instability modes in laminar-to-turbulent transition in a separation bubble. The results of a direct numerical simulation are presented in which separation of a laminar boundary-layer occurs in the presence of an adverse streamwise pressure gradient. The simulation is performed at low freestream-turbulence levels and at a flow Reynolds number and pressure distribution approximating those typically encountered on the suction side of low-pressure turbine blades in a gas-turbine engine. The simulation results reveal the development of a viscous instability upstream of the point of separation which produces streamwise-oriented vortices in the attached laminar boundary layer. These vortices remain embedded in the flow downstream of separation and are carried into the separated shear layer, where they are amplified by the local adverse pressure-gradient and contribute to the formation of coherent hairpin-like vortices. A strong interaction is observed between these vortices and the inviscid instability that typically dominates the shear layer in the separated zone. The interaction is noted to determine the spanwise extent of the vortical flow structures that periodically shed from the downstream end of the separated shear layer. The structure of the shed vortical flow structures is examined and compared with the coherent structures typically observed within turbulent boundary layers.
Thakur, S C; Brandt, C; Light, A; Cui, L; Gosselin, J J; Tynan, G R
2014-11-01
We use multiple-tip Langmuir probes and fast imaging to unambiguously identify and study the dynamics of underlying instabilities during the controlled route to fully-developed plasma turbulence in a linear magnetized helicon plasma device. Langmuir probes measure radial profiles of electron temperature, plasma density and potential; from which we compute linear growth rates of instabilities, cross-phase between density and potential fluctuations, Reynold's stress, particle flux, vorticity, time-delay estimated velocity, etc. Fast imaging complements the 1D probe measurements by providing temporally and spatially resolved 2D details of plasma structures associated with the instabilities. We find that three radially separated plasma instabilities exist simultaneously. Density gradient driven resistive drift waves propagating in the electron diamagnetic drift direction separate the plasma into an edge region dominated by strong, velocity shear driven Kelvin-Helmholtz instabilities and a central core region which shows coherent Rayleigh-Taylor modes propagating in the ion diamagnetic drift direction. The simultaneous, complementary use of both probes and camera was crucial to identify the instabilities and understand the details of the very rich plasma dynamics.
Stability of a jet in confined pressure-driven biphasic flows at low reynolds numbers.
Guillot, Pierre; Colin, Annie; Utada, Andrew S; Ajdari, Armand
2007-09-07
Motivated by its importance for microfluidic applications, we study the stability of jets formed by pressure-driven concentric biphasic flows in cylindrical capillaries. The specificity of this variant of the classical Rayleigh-Plateau instability is the role of the geometry which imposes confinement and Poiseuille flow profiles. We experimentally evidence a transition between situations where the flow takes the form of a jet and regimes where drops are produced. We describe this as the transition from convective to absolute instability, within a simple linear analysis using lubrication theory for flows at low Reynolds number, and reach remarkable agreement with the data.
NASA Astrophysics Data System (ADS)
Lamarche, Leslie J.; Makarevich, Roman A.
2017-03-01
We present observations of plasma density gradients, electric fields, and small-scale plasma irregularities near a polar cap patch made by the Super Dual Auroral Radar Network radar at Rankin Inlet (RKN) and the northern face of Resolute Bay Incoherent Scatter Radar (RISR-N). RKN echo power and occurrence are analyzed in the context of gradient-drift instability (GDI) theory, with a particular focus on the previously uninvestigated 2-D dependencies on wave propagation, electric field, and gradient vectors, with the latter two quantities evaluated directly from RISR-N measurements. It is shown that higher gradient and electric field components along the wave vector generally lead to the higher observed echo occurrence, which is consistent with the expected higher GDI growth rate, but the relationship with echo power is far less straightforward. The RKN echo power increases monotonically as the predicted linear growth rate approaches zero from negative values but does not continue this trend into positive growth rate values, in contrast with GDI predictions. The observed greater consistency of echo occurrence with GDI predictions suggests that GDI operating in the linear regime can control basic plasma structuring, but measured echo strength may be affected by other processes and factors, such as multistep or nonlinear processes or a shear-driven instability.
NASA Astrophysics Data System (ADS)
Žák, Jiří; Klomínský, Josef
2007-08-01
The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše-Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a "mush model" of magmatic systems.
Low Mach number fluctuating hydrodynamics of multispecies liquid mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donev, Aleksandar, E-mail: donev@courant.nyu.edu; Bhattacharjee, Amit Kumar; Nonaka, Andy
We develop a low Mach number formulation of the hydrodynamic equations describing transport of mass and momentum in a multispecies mixture of incompressible miscible liquids at specified temperature and pressure, which generalizes our prior work on ideal mixtures of ideal gases [Balakrishnan et al., “Fluctuating hydrodynamics of multispecies nonreactive mixtures,” Phys. Rev. E 89 013017 (2014)] and binary liquid mixtures [Donev et al., “Low mach number fluctuating hydrodynamics of diffusively mixing fluids,” Commun. Appl. Math. Comput. Sci. 9(1), 47-105 (2014)]. In this formulation, we combine and extend a number of existing descriptions of multispecies transport available in the literature. Themore » formulation applies to non-ideal mixtures of arbitrary number of species, without the need to single out a “solvent” species, and includes contributions to the diffusive mass flux due to gradients of composition, temperature, and pressure. Momentum transport and advective mass transport are handled using a low Mach number approach that eliminates fast sound waves (pressure fluctuations) from the full compressible system of equations and leads to a quasi-incompressible formulation. Thermal fluctuations are included in our fluctuating hydrodynamics description following the principles of nonequilibrium thermodynamics. We extend the semi-implicit staggered-grid finite-volume numerical method developed in our prior work on binary liquid mixtures [Nonaka et al., “Low mach number fluctuating hydrodynamics of binary liquid mixtures,” http://arxiv.org/abs/1410.2300 (2015)] and use it to study the development of giant nonequilibrium concentration fluctuations in a ternary mixture subjected to a steady concentration gradient. We also numerically study the development of diffusion-driven gravitational instabilities in a ternary mixture and compare our numerical results to recent experimental measurements [Carballido-Landeira et al., “Mixed-mode instability of a miscible interface due to coupling between Rayleigh–Taylor and double-diffusive convective modes,” Phys. Fluids 25, 024107 (2013)] in a Hele-Shaw cell. We find that giant nonequilibrium fluctuations can trigger the instability but are eventually dominated by the deterministic growth of the unstable mode, in both quasi-two-dimensional (Hele-Shaw) and fully three-dimensional geometries used in typical shadowgraph experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaezi, P.; Holland, C.; Thakur, S. C.
The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less
Dong, Juncai; Zhu, Hailiang; Chen, Dongliang
2015-01-01
As a fundamental property of pressure-induced amorphization (PIA) in ice and ice-like materials (notably α-quartz), the occurrence of mechanical instability can be related to violation of Born criteria for elasticity. The most outstanding elastic feature of α-quartz before PIA has been experimentally reported to be the linear softening of shear modulus C44, which was proposed to trigger the transition through Born criteria B3. However, by using density-functional theory, we surprisingly found that both C44 and C66 in α-quartz exhibit strong nonlinearity under compression and the Born criteria B3 vanishes dominated by stiffening of C14, instead of by decreasing of C44. Further studies of archetypal quartz homeotypes (GeO2 and AlPO4) repeatedly reproduced the same elastic-hardening-driven mechanical instability, suggesting a universal feature of this family of crystals and challenging the long-standing idea that negative pressure derivatives of individual elastic moduli can be interpreted as the precursor effect to an intrinsic structural instability preceding PIA. The implications of this elastic anomaly in relation to the dispersive softening of the lowest acoustic branch and the possible transformation mechanism were also discussed. PMID:26099720
Dong, Juncai; Zhu, Hailiang; Chen, Dongliang
2015-06-23
As a fundamental property of pressure-induced amorphization (PIA) in ice and ice-like materials (notably α-quartz), the occurrence of mechanical instability can be related to violation of Born criteria for elasticity. The most outstanding elastic feature of α-quartz before PIA has been experimentally reported to be the linear softening of shear modulus C44, which was proposed to trigger the transition through Born criteria B3. However, by using density-functional theory, we surprisingly found that both C44 and C66 in α-quartz exhibit strong nonlinearity under compression and the Born criteria B3 vanishes dominated by stiffening of C14, instead of by decreasing of C44. Further studies of archetypal quartz homeotypes (GeO2 and AlPO4) repeatedly reproduced the same elastic-hardening-driven mechanical instability, suggesting a universal feature of this family of crystals and challenging the long-standing idea that negative pressure derivatives of individual elastic moduli can be interpreted as the precursor effect to an intrinsic structural instability preceding PIA. The implications of this elastic anomaly in relation to the dispersive softening of the lowest acoustic branch and the possible transformation mechanism were also discussed.
NASA Astrophysics Data System (ADS)
Haque, Q.; Zakir, U.; Qamar, A.
2015-12-01
Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of ηe-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.
Progress toward Kelvin-Helmholtz instabilities in a High-Energy-Density Plasma on the Nike laser
NASA Astrophysics Data System (ADS)
Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Huntington, C. M.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.; Dwarkadas, V. V.
2008-04-01
In the realm of high-energy-density (HED) plasmas, there exist three primary hydrodynamic instabilities of concern: Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH). Although the RT and the RM instabilities have been readily observed and diagnosed in the laboratory, the KH instability remains relatively unexplored in HED plasmas. Unlike the RT and RM instabilities, the KH instability is driven by a lifting force generated by a strong velocity gradient in a stratified fluid. Understanding the KH instability mechanism in HED plasmas will provide essential insight into oblique shock systems, jets, mass stripping, and detailed RT-spike development. In addition, our KH experiment will help provide the groundwork for future transition to turbulence experiments. We present 2D FLASH simulations and experimental data from our initial attempts to create a pure KH system using the Nike laser at the Naval Research Laboratory.
A Geophysical Flow Experiment in a Compressible Critical Fluid
NASA Technical Reports Server (NTRS)
Hegseth, John; Garcia, Laudelino
1996-01-01
The first objective of this experiment is to build an experimental system in which, in analogy to a geophysical system, a compressible fluid in a spherical annulus becomes radially stratified in density through an A.C. electric field. When this density gradient is demonstrated, the system will be augmented so that the fluid can be driven by heating and rotation and tested in preparation for a microgravity experiment. This apparatus consists of a spherical capacitor filled with critical fluid in a temperature controlled environment. To make the fluid critical, the apparatus will be operated near the critical pressure, critical density, and critical temperature of the fluid. This will result in a highly compressible fluid because of the properties of the fluid near its critical point. A high voltage A.C. source applied across the capacitor will create a spherically symmetric central force because of the dielectric properties of the fluid in an electric field gradient. This central force will induce a spherically symmetric density gradient that is analogous to a geophysical fluid system. To generate such a density gradient the system must be small (approx. 1 inch diameter). This small cell will also be capable of driving the critical fluid by heating and rotation. Since a spherically symmetric density gradient can only be made in microgravity, another small cell, of the same geometry, will be built that uses incompressible fluid. The driving of the fluid by rotation and heating in these small cells will be developed. The resulting instabilities from the driving in these two systems will then be studied. The second objective is to study the pattern forming instabilities (bifurcations) resulting from the well controlled experimental conditions in the critical fluid cell. This experiment will come close to producing conditions that are geophysically similar and will be studied as the driving parameters are changed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Lee, Hae June, E-mail: haejune@pusan.ac.kr
2016-06-15
The temporal evolution of the kinetic ion temperature gradient driven instability and of the related anomalous transport of the ion thermal energy of plasma shear flow across the magnetic field is investigated analytically. This instability develops in a steady plasma due to the inverse ion Landau damping and has the growth rate of the order of the frequency when the ion temperature is equal to or above the electron temperature. The investigation is performed employing the non-modal methodology of the shearing modes which are the waves that have a static spatial structure in the frame of the background flow. Themore » solution of the governing linear integral equation for the perturbed potential displays that the instability experiences the non-modal temporal evolution in the shearing flow during which the unstable perturbation becomes very different from a canonical modal form. It transforms into the non-modal structure with vanishing frequency and growth rate with time. The obtained solution of the nonlinear integral equation, which accounts for the random scattering of the angle of the ion gyro-motion due to the interaction of ions with ensemble of shearing waves, reveals similar but accelerated process of the transformations of the perturbations into the zero frequency structures. It was obtained that in the shear flow the anomalous ion thermal conductivity decays with time. It is a strictly non-modal effect, which originates from the temporal evolution of the shearing modes turbulence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flock, M.; Dzyurkevich, N.; Klahr, H.
2011-07-10
We present full 2{pi} global three-dimensional stratified magnetohydrodynamic (MHD) simulations of accretion disks. We interpret our results in the context of protoplanetary disks. We investigate the turbulence driven by the magnetorotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and amore » magnetic pressure two to three orders of magnitude less than the gas pressure, while in those outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m = 5. No clear meridional circulation appears in the calculations because fluctuating radial pressure gradients lead to changes in the orbital frequency, comparable in importance to the stress gradients that drive the meridional flows in viscous models. The net mass flow rate is well reproduced by a viscous model using the mean stress distribution taken from the MHD calculation. The strength of the mean turbulent magnetic field is inversely proportional to the radius, so the fields are approximately force-free on the largest scales. Consequently, the accretion stress falls off as the inverse square of the radius.« less
Theory and observations of high frequency Alfvén eigenmodes in low aspect ratio plasmas
NASA Astrophysics Data System (ADS)
Gorelenkov, N. N.; Fredrickson, E.; Belova, E.; Cheng, C. Z.; Gates, D.; Kaye, S.; White, R.
2003-04-01
New observations of sub-cyclotron frequency instability in low aspect ratio plasmas in national spherical torus experiments are reported. The frequencies of observed instabilities correlate with the characteristic Alfvén velocity of the plasma. A theory of localized compressional Alfvén eigenmodes (CAE) and global shear Alfvén eigenmodes (GAE) in low aspect ratio plasmas is presented to explain the observed high frequency instabilities. CAEs/GAEs are driven by the velocity space gradient of energetic super-Alfvénic beam ions via Doppler shifted cyclotron resonances. One of the main damping mechanisms of GAEs, the continuum damping, is treated perturbatively within the framework of ideal MHD. Properties of these cyclotron instability ions are presented.
Flow shear stabilization of rotating plasmas due to the Coriolis effect.
Haverkort, J W; de Blank, H J
2012-07-01
A radially decreasing toroidal rotation frequency can have a stabilizing effect on nonaxisymmetric magnetohydrodynamic (MHD) instabilities. We show that this is a consequence of the Coriolis effect that induces a restoring pressure gradient force when plasma is perturbed radially. In a rotating cylindrical plasma, this Coriolis-pressure effect is canceled by the centrifugal effect responsible for the magnetorotational instability. In a magnetically confined toroidal plasma, a large aspect ratio expansion shows that only half of the effect is canceled. This analytical result is confirmed by numerical computations. When the plasma rotates faster toroidally in the core than near the edge, the effect can contribute to the formation of transport barriers by stabilizing MHD instabilities.
NASA Astrophysics Data System (ADS)
Michoski, Craig; Janhunen, Salomon; Faghihi, Danial; Carey, Varis; Moser, Robert
2017-10-01
The suppression of micro-turbulence and ultimately the inhibition of large-scale instabilities observed in tokamak plasmas is partially characterized by the onset of a global stationary state. This stationary attractor corresponds experimentally to a state of ``marginal stability'' in the plasma. The critical threshold that characterizes the onset in the nonlinear regime is observed both experimentally and numerically to exhibit an upshift relative to the linear theory. That is, the onset in the stationary state is up-shifted from those predicted by the linear theory as a function of the ion temperature gradient R0 /LT . Because the transition to this state with enhanced transport and therefore reduced confinement times is inaccessible to the linear theory, strategies for developing nonlinear reduced physics models to predict the upshift have been ongoing. As a complement to these effort, the principle aim of this work is to establish low-fidelity surrogate models that can be used to predict instability driven loss of confinement using training data from high-fidelity models. DE-SC0008454 and DE-AC02-09CH11466.
Vaezi, P.; Holland, C.; Thakur, S. C.; ...
2017-04-01
The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zocco, A.; Plunk, G. G.; Xanthopoulos, P.
The effects of a non-axisymmetric (3D) equilibrium magnetic field on the linear ion-temperature-gradient (ITG) driven mode are investigated. We consider the strongly driven, toroidal branch of the instability in a global (on the magnetic surface) setting. Previous studies have focused on particular features of non-axisymmetric systems, such as strong local shear or magnetic ripple, that introduce inhomogeneity in the coordinate along the magnetic field. In contrast, here we include non-axisymmetry explicitly via the dependence of the magnetic drift on the field line label α, i.e., across the magnetic field, but within the magnetic flux surface. We consider the limit wheremore » this variation occurs on a scale much larger than that of the ITG mode, and also the case where these scales are similar. Close to axisymmetry, we find that an averaging effect of the magnetic drift on the flux surface causes global (on the surface) stabilization, as compared to the most unstable local mode. In the absence of scale separation, we find destabilization is also possible, but only if a particular resonance occurs between the magnetic drift and the mode, and finite Larmor radius effects are neglected. We discuss the relative importance of surface global effects and known radially global effects.« less
On-Chip Pressure Generation for Driving Liquid Phase Separations in Nanochannels.
Xia, Ling; Choi, Chiwoong; Kothekar, Shrinivas C; Dutta, Debashis
2016-01-05
In this Article, we describe the generation of pressure gradients on-chip for driving liquid phase separations in submicrometer deep channels. The reported pressure-generation capability was realized by applying an electrical voltage across the interface of two glass channel segments with different depths. A mismatch in the electroosmotic flow rate at this junction led to the generation of pressure-driven flow in our device, a fraction of which was then directed to an analysis channel to carry out the desired separation. Experiments showed the reported strategy to be particularly conducive for miniaturization of pressure-driven separations yielding flow velocities in the separation channel that were nearly unaffected upon scaling down the depth of the entire fluidic network. Moreover, the small dead volume in our system allowed for high dynamic control over this pressure gradient, which otherwise was challenging to accomplish during the sample injection process using external pumps. Pressure-driven velocities up to 3.1 mm/s were realized in separation ducts as shallow as 300 nm using our current design for a maximum applied voltage of 3 kV. The functionality of this integrated device was demonstrated by implementing a pressure-driven ion chromatographic analysis that relied on analyte interaction with the nanochannel surface charges to yield a nonuniform solute concentration across the channel depth. Upon coupling such analyte distribution to the parabolic pressure-driven flow profile in the separation duct, a mixture of amino acids could be resolved. The reported assay yielded a higher separation resolution compared to its electrically driven counterpart in which sample migration was realized using electroosmosis/electrophoresis.
Insights into the Streaming Instability in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Youdin, Andrew N.; Lin, Min-Kai; Li, Rixin
2017-10-01
The streaming instability is a leading mechanism to concentrate particles in protoplanetary disks, thereby triggering planetesimal formation. I will present recent analytical and numerical work on the origin of the streaming instability and its robustness. Our recent analytic work examines the origin of, and relationship between, a variety of drag-induced instabilities, including the streaming instability as well as secular gravitational instabilities, a drag instability driven by self-gravity. We show that drag instabilities are powered by a specific phase relationship between gas pressure and particle concentrations, which power the instability via pressure work. This mechanism is analogous to pulsating instabilities in stars. This mechanism differs qualitatively from other leading particle concentration mechanisms in pressure bumps and vortices. Our recent numerical work investigates the numerical robustness of non-linear particle clumping by the streaming instability, especially with regard to the location and boundary condition of vertical boundaries. We find that particle clumping is robust to these choices in boxes that are not too short. However, hydrodynamic activity away from the particle-dominated midplane is significantly affected by vertical boundary conditions. This activity affects the observationally significant lofting of small dust grains. We thus emphasize the need for larger scale simulations which connect disk surface layers, including outflowing winds, to the planet-forming midplane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Outeda, R.; D'Onofrio, A.; El Hasi, C.
Density driven instabilities produced by CO{sub 2} (gas) dissolution in water containing a color indicator were studied in a Hele Shaw cell. The images were analyzed and instability patterns were characterized by mixing zone temporal evolution, dispersion curves, and the growth rate for different CO{sub 2} pressures and different color indicator concentrations. The results obtained from an exhaustive analysis of experimental data show that this system has a different behaviour in the linear regime of the instabilities (when the growth rate has a linear dependence with time), from the nonlinear regime at longer times. At short times using a colormore » indicator to see the evolution of the pattern, the images show that the effects of both the color indicator and CO{sub 2} pressure are of the same order of magnitude: The growth rates are similar and the wave numbers are in the same range (0–30 cm{sup −1}) when the system is unstable. Although in the linear regime the dynamics is affected similarly by the presence of the indicator and CO{sub 2} pressure, in the nonlinear regime, the influence of the latter is clearly more pronounced than the effects of the color indicator.« less
ON HELIUM MIXING IN QUASI-GLOBAL SIMULATIONS OF THE INTRACLUSTER MEDIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berlok, Thomas; Pessah, Martin E., E-mail: berlok@nbi.dk, E-mail: mpessah@nbi.dk
The assumption of a spatially uniform helium distribution in the intracluster medium (ICM) can lead to biases in the estimates of key cluster parameters if composition gradients are present. The helium concentration profile in galaxy clusters is unfortunately not directly observable. Current models addressing the putative sedimentation are one-dimensional and parametrize the presence of magnetic fields in a crude way, ignoring the weakly collisional, magnetized nature of the medium. When these effects are considered, a wide variety of instabilities can play an important role in the plasma dynamics. In a series of recent papers, we have developed the local, linearmore » theory of these instabilities and addressed their nonlinear development with a modified version of Athena. Here, we extend our study by developing a quasi-global approach that we use to simulate the mixing of helium as induced by generalizations of the heat-flux-driven buoyancy instability (HBI) and the magnetothermal instability, which feed off thermal and composition gradients. In the inner region of the ICM, mixing can occur over a few gigayears, after which the average magnetic field inclination angle is ∼30°–50°, resulting in an averaged Spitzer parameter higher by about 20% than the value obtained in homogeneous simulations. In the cluster outskirts the instabilities are rather inefficient, due to the shallow gradients. This suggests that composition gradients in cluster cores might be shallower than one-dimensional models predict. More quantitative statements demand more refined models that can incorporate the physics driving the sedimentation process and simultaneously account for the weakly collisional nature of the plasma.« less
Return current instability driven by a temperature gradient in ICF plasmas
Rozmus, W.; Brantov, A. V.; Sherlock, M.; ...
2017-10-12
Here, hot plasmas with strong temperature gradients in inertial confinement fusion (ICF) experiments are examined for ion acoustic instabilities produced by electron heat flow. The return current instability (RCI) due to a neutralizing current of cold electrons arising in response to a large electron heat flux has been considered. First, the linear threshold and growth rates are derived in the nonlocal regime of thermal transport. They are compared with the results of Vlasov-Fokker-Planck (VFP) simulations in one spatial dimension. Very good agreement has been found between kinetic VFP simulations and the linear theory of the RCI. A quasi-stationary state ofmore » ion acoustic turbulence produced by the RCI is achieved in the VFP simulations. Saturation of the RCI involves heating of ions in the tail of the ion distribution function and convection of the enhanced ion acoustic fluctuations from the unstable region of the plasma. Further evolution of the ion acoustic turbulence and its effects on absorption and transport are also discussed.« less
Return current instability driven by a temperature gradient in ICF plasmas
NASA Astrophysics Data System (ADS)
Rozmus, W.; Brantov, A. V.; Sherlock, M.; Bychenkov, V. Yu
2018-01-01
Hot plasmas with strong temperature gradients in inertial confinement fusion experiments are examined for ion acoustic instabilities produced by electron heat flow. The return current instability (RCI) due to a neutralizing current of cold electrons arising in response to a large electron heat flux has been considered. First, the linear threshold and growth rates are derived in the non-local regime of thermal transport. They are compared with the results of Vlasov-Fokker-Planck (VFP) simulations in one spatial dimension. Very good agreement has been found between kinetic VFP simulations and the linear theory of the RCI. A quasi-stationary state of ion acoustic turbulence (IAT) produced by the RCI is achieved in the VFP simulations. Saturation of the RCI involves heating of ions in the tail of the ion distribution function and convection of the enhanced ion acoustic fluctuations from the unstable region of the plasma. Further evolution of the IAT and its effects on absorption and transport are also discussed.
NASA Astrophysics Data System (ADS)
Rowan, William L.; Bespamyatnov, Igor O.; Fiore, C. L.; Dominguez, A.; Hubbard, A. E.; Ince-Cushman, A.; Greenwald, M. J.; Lin, L.; Marmar, E. S.; Reinke, M.; Rice, J. E.; Zhurovich, K.
2007-11-01
Internal transport barrier (ITB) plasmas can arise spontaneously in Ohmic Alcator C-Mod plasmas. The operational prescription for the ITB include formation of an EDA H-mode in a toroidal magnetic field that is ramping down and a subsequent increase in the toroidal magnetic field. Like ITBs generated with off-axis ICRF heating, these have peaked pressure profiles which can be suppressed by on-axis ICRF heating. Recent work on onset conditions for the ICRF generated ITB (K. Zhurovich, et al., To be published in Nuclear Fusion) demonstrates that the broadening of the ion temperature profile due to off-axis ICRF reduces the ion temperature gradient and suppreses the ITG instability driven particle flux as the primary mechanism for ITB formation. The object of this study is to examine the characteristics of Ohmic ITBs to find whether this model for onset is supported.
On the impact of adverse pressure gradient on the supersonic turbulent boundary layer
NASA Astrophysics Data System (ADS)
Wang, Qian-Cheng; Wang, Zhen-Guo; Zhao, Yu-Xin
2016-11-01
By employing the particle image velocimetry, the mean and turbulent characteristics of a Mach 2.95 turbulent boundary layer are experimentally investigated without the impact of curvature. The physical mechanism with which the streamwise adverse pressure gradient affects the supersonic boundary layer is revealed. The data are compared to that of the concave boundary layer with similar streamwise distributions of wall static pressure to clarify the separate impacts of the adverse pressure gradient and the concave curvature. The logarithmic law is observed to be well preserved for both of the cases. The dip below the logarithmic law is not observed in present investigation. Theoretical analysis indicates that it could be the result of compromise between the opposite impacts of the compression wave and the increased turbulent intensity. Compared to the zero pressure gradient boundary layer, the principal strain rate and the turbulent intensities are increased by the adverse pressure gradient. The shear layer formed due the hairpin packets could be sharpened by the compression wave, which leads to higher principal strain rate and the associated turbulent level. Due to the additional impact of the centrifugal instability brought by the concave wall, even higher turbulent intensities than that of the adverse pressure gradient case are introduced. The existence of velocity modes within the zero pressure gradient boundary layer suggests that the large scale motions are statistically well organized. The generation of new velocity modes due to the adverse pressure gradient indicates that the turbulent structure is changed by the adverse pressure gradient, through which more turbulence production that cannot be effectively predicted by the Reynolds-stress transport equations could be brought.
Self-organized stationary states of inductively driven tokamaks
NASA Astrophysics Data System (ADS)
Jardin, S. C.; Ferraro, N.; Krebs, I.; Chen, J.
2014-10-01
We report on a mechanism for preventing the current and temperature profiles from peaking in a stationary state tokamak. For certain parameters, regardless of the initial state, the plasma profiles will evolve into a self-organized state with the safety factor q slightly above 1 and constant in a central volume. This large shear free region is unstable to interchange modes for any pressure gradient, and the instability drives a strong (1,1) helical flow. This flow has the property that V × B is the gradient of a potential, so it does not affect the magnetic field evolution. However, the driven flow appears in the temperature evolution equation and dominates over the thermal conductivity in the center of the discharge. The net effect is to keep the central temperature (and resistivity) profiles flat so that the resistive steady state preserves the self organized state with q slightly above 1 and constant in the central volume. This mechanism was discovered with the M3D-C1 toroidal 3D MHD code, and could possibly explain the mechanism at play in non-sawtoothing discharges with q0 just above 1 such as hybrid modes in DIII-D and ASDEX-U and long-lived modes in NSTX and MAST. This work was supported by US DOE Contract No. DE-AC02-09CHI1446, MPPC, and SciDAC CEMM.
Surface instabilities in shock loaded granular media
NASA Astrophysics Data System (ADS)
Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.
2017-12-01
The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to initiate instabilities in a range of situations involving the explosive dispersion of particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emami, Razieh; Mukohyama, Shinji; Namba, Ryo
Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models,more » we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.« less
Microturbulence studies of pulsed poloidal current drive discharges in the reversed field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmody, D., E-mail: dcarmody@wisc.edu; Pueschel, M. J.; Anderson, J. K.
2015-01-15
Experimental discharges with pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed field pinch are investigated using a semi-analytic equilibrium model in the gyrokinetic turbulence code GENE. PPCD cases, with plasma currents of 500 kA and 200 kA, exhibit a density-gradient-driven trapped electron mode (TEM) and an ion temperature gradient mode, respectively. Relative to expectations of tokamak core plasmas, the critical gradients for the onset of these instabilities are found to be greater by roughly a factor of the aspect ratio. A significant upshift in the nonlinear TEM transport threshold, previously found for tokamaks, is confirmed in nonlinear reversed fieldmore » pinch simulations and is roughly three times the threshold for linear instability. The simulated heat fluxes can be brought in agreement with measured diffusivities by introducing a small, resonant magnetic perturbation, thus modeling the residual fluctuations from tearing modes. These fluctuations significantly enhance transport.« less
Instability waves and transition in adverse-pressure-gradient boundary layers
NASA Astrophysics Data System (ADS)
Bose, Rikhi; Zaki, Tamer A.; Durbin, Paul A.
2018-05-01
Transition to turbulence in incompressible adverse-pressure-gradient (APG) boundary layers is investigated by direct numerical simulations. Purely two-dimensional instability waves develop on the inflectional base velocity profile. When the boundary layer is perturbed by isotropic turbulence from the free stream, streamwise elongated streaks form and may interact with the instability waves. Subsequent mechanisms that trigger transition depend on the intensity of the free-stream disturbances. All evidence from the present simulations suggest that the growth rate of instability waves is sufficiently high to couple with the streaks. Under very low levels of free-stream turbulence (˜0.1 % ), transition onset is highly sensitive to the inlet disturbance spectrum and is accelerated if the spectrum contains frequency-wave-number combinations that are commensurate with the instability waves. Transition onset and completion in this regime is characterized by formation and breakdown of Λ vortices, but they are more sporadic than in natural transition. Beneath free-stream turbulence with higher intensity (1-2 % ), bypass transition mechanisms are dominant, but instability waves are still the most dominant disturbances in wall-normal and spanwise perturbation spectra. Most of the breakdowns were by disturbances with critical layers close to the wall, corresponding to inner modes. On the other hand, the propensity of an outer mode to occur increases with the free-stream turbulence level. Higher intensity free-stream disturbances induce strong streaks that favorably distort the boundary layer and suppress the growth of instability waves. But the upward displacement of high amplitude streaks brings them to the outer edge of the boundary layer and exposes them to ambient turbulence. Consequently, high-amplitude streaks exhibit an outer-mode secondary instability.
Jacobsen, Matthew K.; Velisavljevic, Nenad; Kono, Yoshio; ...
2017-04-05
Evidence in support of a shear driven anomaly in zirconium at elevated temperatures and pressures has been determined through the combined use of ultrasonic, diffractive, and radiographic techniques. Implications that these have on the phase diagram are explored through thermoacoustic parameters associated with the elasticity and thermal characteristics. In particular, our results illustrate a deviating phase boundary between the α and ω phases, referred to as a kink, at elevated temperatures and pressures. Furthermore, pair distribution studies of this material at more extreme temperatures and pressures illustrate the scale on which diffusion takes place in this material. Possible interpretation ofmore » these can be made through inspection of shear-driven anomalies in other systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, M. K.; Velisavljevic, N.; Kono, Y.
2017-04-01
Evidence in support of a shear driven anomaly in zirconium at elevated temperatures and pressures has been determined through the combined use of ultrasonic, diffractive, and radiographic techniques. Implications that these have on the phase diagram are explored through thermoacoustic parameters associated with the elasticity and thermal characteristics. In particular, our results illustrate a deviating phase boundary between the α and ω phases, referred to as a kink, at elevated temperatures and pressures. Further, pair distribution studies of this material at more extreme temperatures and pressures illustrate the scale on which diffusion takes place in this material. Possible interpretation ofmore » these can be made through inspection of shear-driven anomalies in other systems.« less
Baroclinic instability in the solar tachocline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilman, Peter; Dikpati, Mausumi, E-mail: gilman@ucar.edu, E-mail: dikpati@ucar.edu
2014-05-20
The solar tachocline is likely to be close to a geostrophic 'thermal wind', for which the Coriolis force associated with differential rotation is closely balanced by a latitudinal pressure gradient, leading to a tight relation between the vertical gradient of rotation and the latitudinal entropy gradient. Using a hydrostatic but nongeostrophic spherical shell model, we examine baroclinic instability of the tachocline thermal wind. We find that both the overshoot and radiative parts of the tachocline should be baroclinicly unstable at most latitudes. Growth rates are roughly five times higher in middle and high latitudes compared to low latitudes, and muchmore » higher in the overshoot than in the radiative tachocline. They range in e-folding amplification from 10 days in the high latitude overshoot tachocline, down to 20 yr for the low latitude radiative tachocline. In the radiative tachocline only, longitudinal wavenumbers m = 1, 2 are unstable, while in the overshoot tachocline a much broader range of m are unstable. At all latitudes and with all stratifications, the longitudinal scale of the most unstable mode is comparable to the Rossby deformation radius, while the growth rate is set by the local latitudinal entropy gradient. Baroclinic instability in the tachocline competing with instability of the latitude rotation gradient established in earlier studies should be important for the workings of the solar dynamo and should be expected to be found in most stars that contain an interface between radiative and convective domains.« less
Barrier island breach evolution: Alongshore transport and bay-ocean pressure gradient interactions
Safak, Ilgar; Warner, John C.; List, Jeffrey
2016-01-01
Physical processes controlling repeated openings and closures of a barrier island breach between a bay and the open ocean are studied using aerial photographs and atmospheric and hydrodynamic observations. The breach site is located on Pea Island along the Outer Banks, separating Pamlico Sound from the Atlantic Ocean. Wind direction was a major control on the pressure gradients between the bay and the ocean to drive flows that initiate or maintain the breach opening. Alongshore sediment flux was found to be a major contributor to breach closure. During the analysis period from 2011 to 2016, three hurricanes had major impacts on the breach. First, Hurricane Irene opened the breach with wind-driven flow from bay to ocean in August 2011. Hurricane Sandy in October 2012 quadrupled the channel width from pressure gradient flows due to water levels that were first higher on the ocean side and then higher on the bay side. The breach closed sometime in Spring 2013, most likely due to an event associated with strong alongshore sediment flux but minimal ocean-bay pressure gradients. Then, in July 2014, Hurricane Arthur briefly opened the breach again from the bay side, in a similar fashion to Irene. In summary, opening and closure of breaches are shown to follow a dynamic and episodic balance between along-channel pressure gradient driven flows and alongshore sediment fluxes.
Comparative In Situ Measurements of Plasma Instabilities in the Equatorial and Auroral Electrojets
NASA Technical Reports Server (NTRS)
Pfaff, Robert F.
2008-01-01
This presentation provides a comparison of in situ measurements of plasma instabilities gathered by rocket-borne probes in the equatorial and auroral electrojets. Specifically, using detailed measurements of the DC electric fields, current density, and plasma number density within the unstable daytime equatorial electrojet from Brazil (Guara Campaign) and in the auroral electrojet from Sweden (ERRIS Campaign), we present comparative observations and general conclusions regarding the observed physical properties of Farley-Buneman two-stream waves and large scale, gradient drift waves. The two stream observations reveal coherent-like waves propagating near the E x B direction but at reduced speeds (nearer to the presumed acoustic velocity) with wavelengths of approximately 5-10m in both the equatorial and auroral electrojet, as measured using the spaced-receiver technique. The auroral electrojet data generally shows extensions to shorter wavelengths, in concert with the fact that these waves are driven harder. With respect to gradient-drift driven waves, observations of this instability are much more pronounced in the equatorial electrojet, given the more favorable geometry for growth provided by the vertical gradient and horizontal magnetic field lines. We present new analysis of Guara rocket observations of electric field and plasma density data that reveal considerable structuring in the middle and lower portion of the electrojet (90-105 km) where the ambient plasma density gradient is unstable. Although the electric field amplitudes are largest (approximately 10-15 mV/m) in the zonal direction, considerable structure (approximately 5-10 mV/m) is also observed in the vertical electric field component as well, implying that the dominant large scale waves involve significant vertical interaction and coupling within the narrow altitude range where they are observed. Furthermore, a detailed examination of the phase of the waveforms show that on some, but not all occasions, locally enhanced eastward fields are associated with locally enhanced upwards (polarization) electric fields. The measurements are discussed in terms of theories involving the non-linear evolution and structuring of plasma waves.
NASA Astrophysics Data System (ADS)
Ogihara, Masahiro; Kokubo, Eiichiro; Suzuki, Takeru K.; Morbidelli, Alessandro
2018-05-01
Context. No planets exist inside the orbit of Mercury and the terrestrial planets of the solar system exhibit a localized configuration. According to thermal structure calculation of protoplanetary disks, a silicate condensation line ( 1300 K) is located around 0.1 au from the Sun except for the early phase of disk evolution, and planetesimals could have formed inside the orbit of Mercury. A recent study of disk evolution that includes magnetically driven disk winds showed that the gas disk obtains a positive surface density slope inside 1 au from the central star. In a region with positive midplane pressure gradient, planetesimals undergo outward radial drift. Aims: We investigate the radial drift of planetesimals and type I migration of planetary embryos in a disk that viscously evolves with magnetically driven disk winds. We show a case in which no planets remain in the close-in region. Methods: Radial drifts of planetesimals are simulated using a recent disk evolution model that includes effects of disk winds. The late stage of planet formation is also examined by performing N-body simulations of planetary embryos. Results: We demonstrate that in the middle stage of disk evolution, planetesimals can undergo convergent radial drift in a magnetorotational instability (MRI)-inactive disk, in which the pressure maximum is created, and accumulate in a narrow ring-like region with an inner edge at 0.7 au from the Sun. We also show that planetary embryos that may grow from the narrow planetesimal ring do not exhibit significant type I migration in the late stage of disk evolution. Conclusions: The origin of the localized configuration of the terrestrial planets of the solar system, in particular the deficit of close-in planets, can be explained by the convergent radial drift of planetesimals in disks with a positive pressure gradient in the close-in region.
Richtmyer-Meshkov instability in shock-flame interactions
NASA Astrophysics Data System (ADS)
Massa, Luca; Pallav Jha Collaboration
2011-11-01
Shock-flame interactions occur in supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer- Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a non-zero pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth for high wave numbers. A non-hydrodynamic flame representation leads to the definition of an additional scaling Peclet number, the effects of which are investigated. It is found that an increased flame-contact separation destabilizes the contact discontinuity by augmenting the tangential shear.
Dong, Ge; Bao, Jian; Bhattacharjee, Amitava; ...
2017-08-10
The compressional component of magnetic perturbation δB- || to can play an important role in drift-Alfvenic instabilities in tokamaks, especially as the plasma β increases (β is the ratio of kinetic pressure to magnetic pressure). In this work, we have formulated a gyrokinetic particle simulation model incorporating δB- ||, and verified the model in kinetic Alfven wave simulations using the Gyrokinetic Toroidal Code in slab geometry. Simulations of drift-Alfvenic instabilities in tokamak geometry shows that the kinetic ballooning mode (KBM) growth rate decreases more than 20% when δB- || is neglected for β e = 0.02, and that δB- ||more » to has stabilizing effects on the ion temperature gradient instability, but negligible effects on the collisionless trapped electron mode. Lastly, the KBM growth rate decreases about 15% when equilibrium current is neglected.« less
Toward a unified model of substorms
NASA Astrophysics Data System (ADS)
Machida, S.; Fukui, K.; Miyashita, Y.; Ieda, A.
2017-12-01
Numerous models of substorms have been proposed so far, and they are roughly divided into two categories, i.e., the outside-in category that is represented by the near-Earth neutral line (NENL) model and the inside-out category represented by the current disruption model or the ballooning instability model. Controversies have been raised for many years over the validity of those models. However, in recent years we have obtained important clues to solve this long-standing issue by analyzing THEMIS probe data for substorms and pseudo-substorms separately. [Fukui et al., 2017] The key is the plasma pressure in the equatorial region, and it was about 1.3 times higher in substorms, than the pseudo-substorm in the region between X -7 and -8 Re. However, no difference was found beyond X -10 Re. Therefore, the spatial gradient of the plasma pressure in the region of X -7.5 Re must be a necessary condition for the occurrence of substorm. Abrupt earthward flows originated from the catapult current sheet relaxation and subsequent magnetic reconnection at the NENL just prior to the onset is a common signature for both substorm and pseudo-substorm, which seems to be essentially a result of the tearing instability in the magnetotail. [Uchino and Machida, 2015] The subsequent earthward flows must initiate some instability, quite likely the ballooning instability around the flow braking region. Substorms do not occur only with the magnetic reconnection. If there is enough plasma pressure gradient, the system can develop into a substorm. Otherwise, it will end up with a pseudo-substorm. We emphasize that both NENL model and the ballooning instability model are partially correct but incomplete, and the true model of substorm can be constructed by synthesizing multiple models of substorm including at least these two models.
Aero-acoustics of Drag Generating Swirling Exhaust Flows
NASA Technical Reports Server (NTRS)
Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.
2007-01-01
Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.
Ion temperature gradient driven transport in tokamaks with square shaping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joiner, N.; Dorland, W.
2010-06-15
Advanced tokamak schemes which may offer significant improvement to plasma confinement on the usual large aspect ratio Dee-shaped flux surface configuration are of great interest to the fusion community. One possibility is to introduce square shaping to the flux surfaces. The gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1996)] is used to study linear stability and the resulting nonlinear thermal transport of the ion temperature gradient driven (ITG) mode in tokamak equilibria with square shaping. The maximum linear growth rate of ITG modes is increased by negative squareness (diamond shaping) and reduced by positive values (square shaping).more » The dependence of thermal transport produced by saturated ITG instabilities on squareness is not as clear. The overall trend follows that of the linear instability, heat and particle fluxes increase with negative squareness and decrease with positive squareness. This is contradictory to recent experimental results [Holcomb et al., Phys. Plasmas 16, 056116 (2009)] which show a reduction in transport with negative squareness. This may be reconciled as a reduction in transport (consistent with the experiment) is observed at small negative values of the squareness parameter.« less
NASA Astrophysics Data System (ADS)
Gültekin, Ö.; Gürcan, Ö. D.
2018-02-01
Basic, local kinetic theory of ion temperature gradient driven (ITG) mode, with adiabatic electrons is reconsidered. Standard unstable, purely oscillating as well as damped solutions of the local dispersion relation are obtained using a bracketing technique that uses the argument principle. This method requires computing the plasma dielectric function and its derivatives, which are implemented here using modified plasma dispersion functions with curvature and their derivatives, and allows bracketing/following the zeros of the plasma dielectric function which corresponds to different roots of the ITG dispersion relation. We provide an open source implementation of the derivatives of modified plasma dispersion functions with curvature, which are used in this formulation. Studying the local ITG dispersion, we find that near the threshold of instability the unstable branch is rather asymmetric with oscillating solutions towards lower wave numbers (i.e. drift waves), and damped solutions toward higher wave numbers. This suggests a process akin to inverse cascade by coupling to the oscillating branch towards lower wave numbers may play a role in the nonlinear evolution of the ITG, near the instability threshold. Also, using the algorithm, the linear wave diffusion is estimated for the marginally stable ITG mode.
High-Beta Electromagnetic Turbulence in LAPD Plasmas
NASA Astrophysics Data System (ADS)
Rossi, G.; Carter, T. A.; Pueschel, M. J.; Jenko, F.; Told, D.; Terry, P. W.
2015-11-01
The introduction of a new LaB6 cathode plasma source in the Large Plasma Device has enabled the study of pressure-gradient-driven turbulence and transport variations at significantly higher plasma β. Density fluctuations are observed to decrease with increasing β while magnetic fluctuations increase. Furthermore, the perpendicular magnetic fluctuations are seen to saturate while parallel (compressional) magnetic fluctuations increase continuously with β. These observations are compared to linear and nonlinear simulations with the GENE code. The results are consistent with the linear excitation of a Gradient-driven Drift Coupling mode (GDC) which relies on grad-B drift due to parallel magnetic fluctuations and can be driven by density or temperature gradients.
Phase space effects on fast ion transport modeling in tokamaks
NASA Astrophysics Data System (ADS)
Podesta, Mario
2015-11-01
Simulations of burning plasmas require a consistent treatment of energetic particles (EP), possibly including the effects of instabilities. Reduced EP transport models are emerging as an effective tool to account for those effects in long time-scale simulations. Available models essentially differ for the main transport drive, which is associated to gradients in real or phase space. It is crucial to assess to what extent those different assumptions affect computed quantities such as EP profile, Neutral Beam (NB) driven current and energy/momentum transfer to the thermal populations. These issues are investigated through a kick model, which includes modifications of the EP distribution by instabilities in real and velocity space. TRANSP simulations including the kick model are applied to NB-heated NSTX discharges featuring unstable toroidal Alfvén eigenmodes (TAEs). Results show that TAEs mainly affect fast ions with large parallel velocity, i.e. the most effective for NB current drive. Other portions of the EP distribution are nearly unperturbed. Core NB driven current decreases by 10-30%, with even larger relative changes toward the plasma edge. When TAEs evolve in so-called avalanches, the model reproduces measured drops of ~ 10% in the neutron rate. Consistently with previous results, the drop is caused by both EP energy loss and EP redistribution. These results are compared to those from a simple diffusive model and a ``critical gradient'' model, which postulates radial EP gradient as the only transport drive. The importance of EP velocity space modifications is discussed in terms of accuracy of the predictions, with emphasis on Neutral Beam driven current. Work supported by U.S. DOE Contract DE-AC02-09CH11466.
GTC simulations of ion temperature gradient driven instabilities in W7-X and LHD stellarators
NASA Astrophysics Data System (ADS)
Wang, Hongyu
2017-10-01
We report GTC linear simulations of ion temperature gradient (ITG) instabilities in Wendelstein 7-X (W7-X) and Large Helical Device (LHD) stellarators. GTC has recently been updated to treat 3D equilibria by interfacing with MHD equilibrium code VMEC. GTC simulations of ITG have been carried out in both full torus and partial torus taking into account the toroidal periodicity of the stellarators. The effects of toroidal mode coupling on linear dispersions and mode structures in W7-X and LHD are studied. The mode structure in W7-X is more localized in the toroidal direction, and LHD is more extended in the toroidal direction and tokamak-like. Linear growth rates, real frequencies, and mode structures agree reasonably with results of EUTERPE simulations. In collaboration with I. Holod, J. Riemann, Z. Lin, J. Bao, L. Shi, S. Taimourzadeh, R. Kleiber, and M. Borchardt.
Effects of magnetic islands on drift wave instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, P., E-mail: jiangp@pku.edu.cn; Department of Physics and Astronomy, University of California, Irvine, California 92697; Lin, Z., E-mail: zhihongl@uci.edu
2014-12-15
Magnetic islands have been implemented in the gyrokinetic toroidal code to study the effects of the islands on microturbulence. The pressure profile flattening is verified in the simulation with the islands. Simulations of ion temperature gradient instability find that different toroidal modes are linearly coupled together and that toroidal spectra become broader when the island width increases. The real frequencies and growth rates of different toroidal modes approach each other with the averaged value independent of the island width. The linear mode structures are enhanced at the island separatrices and weakened at the island centers, consistent with the flattening ofmore » the pressure profile inside the islands.« less
Study of low Reynolds number nozzle flows, including radial pressure gradients
NASA Technical Reports Server (NTRS)
Rae, W. J.
1972-01-01
An analysis is presented of the laminar, axisymmetric flow in a nozzle, including both axial and radial variations of the pressure. The system of equations derived is believed to contain all of the terms necessary for describing the flow through a relatively sharp throat (i.e., one for which the longitudinal radius of curvature of the throat is comparable to, or less than, the transverse radius). A finite difference approximation of these equations is described, together with a computer program for finding numerical solutions. An instability was found in the starting solution; a series of attempts to eliminate this instability is described.
Thermally induced secondary atomization of droplet in an acoustic field
NASA Astrophysics Data System (ADS)
Basu, Saptarshi; Saha, Abhishek; Kumar, Ranganathan
2012-01-01
We study the thermal effects that lead to instability and break up in acoustically levitated vaporizing fuel droplets. For selective liquids, atomization occurs at the droplet equator under external heating. Short wavelength [Kelvin-Helmholtz (KH)] instability for diesel and bio-diesel droplets triggers this secondary atomization. Vapor pressure, latent heat, and specific heat govern the vaporization rate and temperature history, which affect the surface tension gradient and gas phase density, ultimately dictating the onset of KH instability. We develop a criterion based on Weber number to define a condition for the inception of secondary atomization.
MHD thermal instabilities in cool inhomogeneous atmospheres
NASA Technical Reports Server (NTRS)
Bodo, G.; Ferrari, A.; Massaglia, S.; Rosner, R.
1983-01-01
The formation of a coronal state in a stellar atmosphere is investigated. A numerical code is used to study the effects of atmospheric gradients and finite loop dimension on the scale of unstable perturbations, solving for oscillatory perturbations as eigenfunctions of a boundary value problem. The atmosphere is considered as initially isothermal, with density and pressure having scale heights fixed by the hydrostatic equations. Joule mode instability is found to be an efficient mechanism for current filamentation and subsequent heating in initially cool atmospheres. This instability is mainly effective at the top of magnetic loops and is not suppressed by thermal conduction.
Tidally-driven Surface Flow in a Georgia Estuarine Saltmarsh
NASA Astrophysics Data System (ADS)
Young, D.; Bruder, B. L.; Haas, K. A.; Webster, D. R.
2016-02-01
Estuarine saltmarshes are diverse, valuable, and productive ecosystems. Vegetation dampens wave and current energy, thereby allowing the estuaries to serve as a nursery habitat for shellfish and fish species. Tidally-driven flow transports nutrients into and out of the estuary, nourishing inshore and offshore vegetation and animals. The effects of vegetation on the marsh hydrodynamics and on the estuary creek and channel flow are, unfortunately, poorly understood, and the knowledge that does exist primarily originates from modeling studies. Field studies addressing marsh surface flows are limited due to the difficulty of accurately measuring the water surface elevation and acquiring concurrent velocity measurements in the dense marsh vegetation. This study partially bridges the gap between the model observations of marsh flow driven by water surface elevation gradients and flume studies of flow through vegetation. Three current meters and three pressure transducers were deployed for three days along a transect perpendicular to the main channel (Little Ogeechee River) in a saltmarsh adjacent to Rose Dhu Island (Savannah, Georgia, USA). The pressure transducer locations were surveyed daily with static GPS yielding highly accurate water surface elevation data. During flood and ebb tide, water surface elevation differences between the marsh and Little Ogeechee River were observed up to 15 cm and pressure gradients were observed up to 0.0017 m of water surface elevation drop per m of linear distance. The resulting channel-to-saltmarsh pressure gradients substantially affected tidal currents at all current meters. At one current meter, the velocity was nearly perpendicular to the Little Ogeechee River bank. The velocity at this location was effectively modeled as a balance between the pressure gradient and marsh vegetation-induced drag force using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow.
Wu, D; Zheng, C Y; Qiao, B; Zhou, C T; Yan, X Q; Yu, M Y; He, X T
2014-08-01
It is shown that the transverse Rayleigh-Taylor-like (RT) instability in the hole-boring radiation pressure acceleration can be suppressed by using an elliptically polarized (EP) laser. A moderate J×B heating of the EP laser will thermalize the local electrons, which leads to the transverse diffusion of ions, suppressing the short wavelength perturbations of RT instability. A proper condition of polarization ratio is obtained analytically for the given laser intensity and plasma density. The idea is confirmed by two-dimensional particle-in-cell simulations, showing that the ion beam driven by the EP laser is more concentrated and intense compared with that of the circularly polarized laser.
Frontal Polymerization in Microgravity
NASA Technical Reports Server (NTRS)
Pojman, John A.
1999-01-01
Frontal polymerization systems, with their inherent large thermal and compositional gradients, are greatly affected by buoyancy-driven convection. Sounding rocket experiments allowed the preparation of benchmark materials and demonstrated that methods to suppress the Rayleigh-Taylor instability in ground-based research did not significantly affect the molecular weight of the polymer. Experiments under weightlessness show clearly that bubbles produced during the reaction interact very differently than under 1 g.
Destabilization of counter-propagating TAEs by off-axis, co-current Neutral Beam Injection
NASA Astrophysics Data System (ADS)
Podesta', M.; Fredrickson, E.; Gorelenkova, M.
2017-10-01
Neutral Beam injection (NBI) is a common tool to heat the plasma and drive current non-inductively in fusion devices. Energetic particles (EP) resulting from NBI can drive instabilities that are detrimental for the performance and the predictability of plasma discharges. A broad NBI deposition profile, e.g. by off-axis injection aiming near the plasma mid-radius, is often assumed to limit those undesired effects by reducing the radial gradient of the EP density, thus reducing the ``universal'' drive for instabilities. However, this work presents new evidence that off-axis NBI can also lead to undesired effects such as the destabilization of Alfvénic instabilities, as observed in NSTX-U plasmas. Experimental observations indicate that counter propagating toroidal AEs are destabilized as the radial EP density profile becomes hollow as a result of off-axis NBI. Time-dependent analysis with the TRANSP code, augmented by a reduced fast ion transport model (known as kick model), indicates that instabilities are driven by a combination of radial and energy gradients in the EP distribution. Understanding the mechanisms for wave-particle interaction, revealed by the phase space resolved analysis, is the basis to identify strategies to mitigate or suppress the observed instabilities. Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Contract Number DE-AC02-09CH11466.
Heat Transfer Characteristics of Mixed Electroosmotic and Pressure Driven Micro-Flows
NASA Astrophysics Data System (ADS)
Horiuchi, Keisuke; Dutta, Prashanta
We analyze heat transfer characteristics of steady electroosmotic flows with an arbitrary pressure gradient in two-dimensional straight microchannels considering the effects of Joule heating in electroosmotic pumping. Both the temperature distribution and local Nusselt number are mathematically derived in this study. The thermal analysis takes into consideration of the interaction among advective, diffusive, and Joule heating terms to obtain the thermally developing behavior. Unlike macro-scale pipes, axial conduction in micro-scale cannot be negligible, and the governing energy equation is not separable. Thus, a method that considers an extended Graetz problem is introduced. Analytical results show that the Nusselt number of pure electrooosmotic flow is higher than that of plane Poiseulle flow. Moreover, when the electroosmotic flow and pressure driven flow coexist, it is found that adverse pressure gradient to the electroosmotic flow makes the thermal entrance length smaller and the heat transfer ability stronger than pure electroosmotic flow case.
MHD and resonant instabilities in JT-60SA during current ramp-up with off-axis N-NB injection
NASA Astrophysics Data System (ADS)
Bierwage, A.; Toma, M.; Shinohara, K.
2017-12-01
The excitation of magnetohydrodynamic (MHD) and resonant instabilities and their effect on the plasma profiles during the current ramp-up phase of a beam-driven JT-60SA tokamak plasma is studied using the MHD-PIC hybrid code MEGA. In the simple scenario considered, the plasma is only driven by one negative-ion-based neutral beam, depositing 500 keV deuterons at 5 MW power off-axis at about mid-radius. The beam injection starts half-way in the ramp-up phase. Within 1 s, the beam-driven plasma current and fast ion pressure produce a configuration that is strongly unstable to rapidly growing MHD and resonant modes. Using MEGA, modes with low toroidal mode numbers in the range n = 1-4 are examined in detail and shown to cause substantial changes in the plasma profiles. The necessity to develop reduced models and incorporate the effects of such instabilities in integrated codes used to simulate the evolution of entire plasma discharges is discussed.
A pressure-gradient mechanism for vortex shedding in constricted channels
Boghosian, M. E.; Cassel, K. W.
2013-01-01
Numerical simulations of the unsteady, two-dimensional, incompressible Navier–Stokes equations are performed for a Newtonian fluid in a channel having a symmetric constriction modeled by a two-parameter Gaussian distribution on both channel walls. The Reynolds number based on inlet half-channel height and mean inlet velocity ranges from 1 to 3000. Constriction ratios based on the half-channel height of 0.25, 0.5, and 0.75 are considered. The results show that both the Reynolds number and constriction geometry have a significant effect on the behavior of the post-constriction flow field. The Navier–Stokes solutions are observed to experience a number of bifurcations: steady attached flow, steady separated flow (symmetric and asymmetric), and unsteady vortex shedding downstream of the constriction depending on the Reynolds number and constriction ratio. A sequence of events is described showing how a sustained spatially growing flow instability, reminiscent of a convective instability, leads to the vortex shedding phenomenon via a proposed streamwise pressure-gradient mechanism. PMID:24399860
DuBois, A M; Arnold, I; Thomas, E; Tejero, E; Amatucci, W E
2013-04-01
The Auburn Linear EXperiment for Instability Studies (ALEXIS) is a laboratory plasma physics experiment used to study spatially inhomogeneous flows in a magnetized cylindrical plasma column that are driven by crossed electric (E) and magnetic (B) fields. ALEXIS was recently upgraded to include a small, secondary plasma source for a new dual source, interpenetrating plasma experiment. Using two plasma sources allows for highly localized electric fields to be made at the boundary of the two plasmas, inducing strong E × B velocity shear in the plasma, which can give rise to a regime of instabilities that have not previously been studied in ALEXIS. The dual plasma configuration makes it possible to have independent control over the velocity shear and the density gradient. This paper discusses the recent addition of the secondary plasma source to ALEXIS, as well as the plasma diagnostics used to measure electric fields and electron densities.
Hydrodynamic Fingering Instability Induced by a Precipitation Reaction
NASA Astrophysics Data System (ADS)
Nagatsu, Y.; Ishii, Y.; Tada, Y.; De Wit, A.
2014-07-01
We experimentally demonstrate that a precipitation reaction at the miscible interface between two reactive solutions can trigger a hydrodynamic instability due to the buildup of a locally adverse mobility gradient related to a decrease in permeability. The precipitate results from an A +B→C type of reaction when a solution containing one of the reactants is injected into a solution of the other reactant in a porous medium or a Hele-Shaw cell. Fingerlike precipitation patterns are observed upon displacement, the properties of which depend on whether A displaces B or vice versa. A mathematical modeling of the underlying mobility profile confirms that the instability originates from a local decrease in mobility driven by the localized precipitation. Nonlinear simulations of the related reaction-diffusion-convection model reproduce the properties of the instability observed experimentally. In particular, the simulations suggest that differences in diffusivity between A and B may contribute to the asymmetric characteristics of the fingering precipitation patterns.
Hydrodynamic instability of elastic-plastic solid plates at the early stage of acceleration.
Piriz, A R; Sun, Y B; Tahir, N A
2015-03-01
A model is presented for the linear Rayleigh-Taylor instability taking place at the early stage of acceleration of an elastic-plastic solid, when the shock wave is still running into the solid and is driven by a time varying pressure on the interface. When the the shock is formed sufficiently close to the interface, this stage is considered to follow a previous initial phase controlled by the Ritchmyer-Meshkov instability that settles new initial conditions. The model reproduces the behavior of the instability observed in former numerical simulation results and provides a relatively simpler physical picture than the currently existing one for this stage of the instability evolution.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois A; Guiochon, Georges
2014-01-17
Five methods for controlling the mobile phase flow rate for gradient elution analyses using very high pressure liquid chromatography (VHPLC) were tested to determine thermal stability of the column during rapid gradient separations. To obtain rapid separations, instruments are operated at high flow rates and high inlet pressure leading to uneven thermal effects across columns and additional time needed to restore thermal equilibrium between successive analyses. The purpose of this study is to investigate means to minimize thermal instability and obtain reliable results by measuring the reproducibility of the results of six replicate gradient separations of a nine component RPLC standard mixture under various experimental conditions with no post-run times. Gradient separations under different conditions were performed: constant flow rates, two sets of constant pressure operation, programmed flow constant pressure operation, and conditions which theoretically should yield a constant net heat loss at the column's wall. The results show that using constant flow rates, programmed flow constant pressures, and constant heat loss at the column's wall all provide reproducible separations. However, performing separations using a high constant pressure with programmed flow reduces the analysis time by 16% compared to constant flow rate methods. For the constant flow rate, programmed flow constant pressure, and constant wall heat experiments no equilibration time (post-run time) was required to obtain highly reproducible data. Copyright © 2013 Elsevier B.V. All rights reserved.
On a nonlinear state of the electromagnetic ion/ion cyclotron instability
NASA Astrophysics Data System (ADS)
Cremer, M.; Scholer, M.
We have investigated the nonlinear properties of the electromagnetic ion/ion cyclotron instability (EMIIC) by means of hybrid simulations (macroparticle ions, massless electron fluid). The instability is driven by the relative (super-Alfvénic) streaming of two field-aligned ion beams in a low beta plasma (ion thermal pressure to magnetic field pressure) and may be of importance in the plasma sheet boundary layer. As shown in previously reported simulations the waves propagate obliquely to the magnetic field and heat the ions in the perpendicular direction as the relative beam velocity decreases. By running the simulation to large times it can be shown that the large temperature anisotropy leads to the ion cyclotron instability (IC) with parallel propagating Alfvén ion cyclotron waves. This is confirmed by numerically solving the electromagnetic dispersion relation. An application of this property to the plasma sheet boundary layer is discussed.
Radiation, Gas and Magnetic Fields: Understanding Accretion Disks with Real Physics
NASA Astrophysics Data System (ADS)
Tao, Ted
2011-01-01
This dissertation studies some of the fundamental physics ingredients that underlie the theory of astrophysical accretion disks. We begin by focusing on local radiation magnetohydrodynamic instabilities in static, optically thick, vertically stratified media with constant flux mean opacity. Our analysis includes the effects of vertical gradients in a horizontal background magnetic field. Assuming rapid radiative diffusion, we use the zero gas pressure limit as an entry point for investigating the coupling between the photon bubble instability and the Parker instability. We find that the two instabilities transition smoothly into each other at a characteristic wavelength that is approximately equal to the magnetic pressure scale height times the ratio of radiation to magnetic pressure gradient forces. The Parker instability exists for longer wavelengths, while photon bubbles exist for wavelengths shorter than the transition wavelength. We also consider the effects of finite gas pressure on the coupled instabilities. Finite gas pressure introduces an additional short wavelength limit to the Parker-like behavior, and also limits the growth rate of the photon bubble instability to a constant value at high wave numbers. Finally, our analytic infinite wavenumber perturbation calculation strongly suggest that magnetic pressure gradients do not modify the photon bubble growth rate in the asymptotic regime. Our results may explain why photon bubbles have not yet been observed in recent stratified shearing box accretion disk simulations. Photon bubbles may physically exist in simulations with high radiation to gas pressure ratios, but higher spatial resolution will be needed to resolve the asymptotically growing unstable wavelengths. Next, we turn to the effects of local dissipation physics on the spectra and vertical structure of high luminosity stellar mass black hole X-ray binary accretion disks. More specifically, we present spectral calculations of non-LTE accretion disk models. We first use a dissipation profile based on scaling the results of shearing box simulations to a range of annuli parameters. We simultaneously scale the effective temperature, orbital frequency and surface density of a disk annulus according to the standard Shakura & Sunyaev model in order to bring increased dissipation to the disk surface layers (around the photosphere). We find that annuli spectrum transitions directly from that of a modified black body to one characteristic of saturated Compton scattering without first going through an intermediate power law regime as we increased the effective temperature and orbital frequency while decreasing mid-plane surface density. Next, we construct annuli models based on the parameters of a 0.8 Eddington disk orbiting a 6.62 solar mass black hole (with accretion efficiency approximately 0.083) using two modified dissipation profiles that explicitly put more dissipation per unit mass near the disk surface. The new dissipation profiles are qualitatively similar to the one found by Hirose et al. (2009) and produce strong and distinct non-thermal spectral tails. Our models also include physically motivated magnetic acceleration support based once again on scaling the Hirose et al. (2009) results. We present three full-disk spectra each based on one of the dissipation prescriptions. Our most aggressive dissipation profile results in a disk spectrum that is in approximate quantitative agreement with certain observations of the steep power law (SPL) spectral state from some black hole X-ray binaries.
Analysis of edge stability for models of heat flux width
Makowski, Michael A.; Lasnier, Charles J.; Leonard, Anthony W.; ...
2017-05-12
Detailed measurements of the n e, and T e, and T i profiles in the vicinity of the separatrix of ELMing H-mode discharges have been used to examine plasma stability at the extreme edge of the plasma and assess stability dependent models of the heat flux width. The results are strongly contrary to the critical gradient model, which posits that a ballooning instability determines a gradient scale length related to the heat flux width. The results of this analysis are not sensitive to the choice of location to evaluate stability. Significantly, it is also found that the results are completelymore » consistent with the heuristic drift model for the heat flux width. Here the edge pressure gradient scales with plasma density and is proportional to the pressure gradient inferred from the equilibrium in accordance with the predictions of that theory.« less
Kinetic-MHD simulations of gyroresonance instability driven by CR pressure anisotropy
NASA Astrophysics Data System (ADS)
Lebiga, O.; Santos-Lima, R.; Yan, H.
2018-05-01
The transport of cosmic rays (CRs) is crucial for the understanding of almost all high-energy phenomena. Both pre-existing large-scale magnetohydrodynamic (MHD) turbulence and locally generated turbulence through plasma instabilities are important for the CR propagation in astrophysical media. The potential role of the resonant instability triggered by CR pressure anisotropy to regulate the parallel spatial diffusion of low-energy CRs (≲100 GeV) in the interstellar and intracluster medium of galaxies has been shown in previous theoretical works. This work aims to study the gyroresonance instability via direct numerical simulations, in order to access quantitatively the wave-particle scattering rates. For this, we employ a 1D PIC-MHD code to follow the growth and saturation of the gyroresonance instability. We extract from the simulations the pitch-angle diffusion coefficient Dμμ produced by the instability during the linear and saturation phases, and a very good agreement (within a factor of 3) is found with the values predicted by the quasi-linear theory (QLT). Our results support the applicability of the QLT for modelling the scattering of low-energy CRs by the gyroresonance instability in the complex interplay between this instability and the large-scale MHD turbulence.
Experimental Observation of Thin-shell Instability in a Collisionless Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, H.; Doria, D.; Sarri, G.
We report on the experimental observation of the instability of a plasma shell, which formed during the expansion of a laser-ablated plasma into a rarefied ambient medium. By means of a proton radiography technique, the evolution of the instability is temporally and spatially resolved on a timescale much shorter than the hydrodynamic one. The density of the thin shell exceeds that of the surrounding plasma, which lets electrons diffuse outward. An ambipolar electric field grows on both sides of the thin shell that is antiparallel to the density gradient. Ripples in the thin shell result in a spatially varying balancemore » between the thermal pressure force mediated by this field and the ram pressure force that is exerted on it by the inflowing plasma. This mismatch amplifies the ripples by the same mechanism that drives the hydrodynamic nonlinear thin-shell instability (NTSI). Our results thus constitute the first experimental verification that the NTSI can develop in colliding flows.« less
Experimental Observation of Thin-shell Instability in a Collisionless Plasma
NASA Astrophysics Data System (ADS)
Ahmed, H.; Doria, D.; Dieckmann, M. E.; Sarri, G.; Romagnani, L.; Bret, A.; Cerchez, M.; Giesecke, A. L.; Ianni, E.; Kar, S.; Notley, M.; Prasad, R.; Quinn, K.; Willi, O.; Borghesi, M.
2017-01-01
We report on the experimental observation of the instability of a plasma shell, which formed during the expansion of a laser-ablated plasma into a rarefied ambient medium. By means of a proton radiography technique, the evolution of the instability is temporally and spatially resolved on a timescale much shorter than the hydrodynamic one. The density of the thin shell exceeds that of the surrounding plasma, which lets electrons diffuse outward. An ambipolar electric field grows on both sides of the thin shell that is antiparallel to the density gradient. Ripples in the thin shell result in a spatially varying balance between the thermal pressure force mediated by this field and the ram pressure force that is exerted on it by the inflowing plasma. This mismatch amplifies the ripples by the same mechanism that drives the hydrodynamic nonlinear thin-shell instability (NTSI). Our results thus constitute the first experimental verification that the NTSI can develop in colliding flows.
The Role of Cosmic-Ray Pressure in Accelerating Galactic Outflows
NASA Astrophysics Data System (ADS)
Simpson, Christine M.; Pakmor, Rüdiger; Marinacci, Federico; Pfrommer, Christoph; Springel, Volker; Glover, Simon C. O.; Clark, Paul C.; Smith, Rowan J.
2016-08-01
We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.
THE ROLE OF COSMIC-RAY PRESSURE IN ACCELERATING GALACTIC OUTFLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Christine M.; Pakmor, Rüdiger; Pfrommer, Christoph
We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overallmore » clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.« less
NASA Astrophysics Data System (ADS)
Ouyed, Amir; Ouyed, Rachid; Jaikumar, Prashanth
2018-02-01
We simulate and study the microphysics of combustion (flame burning) of two flavored quark matter (u,d) to three flavored quark matter (u,d,s) in a trapped neutrino regime applicable to conditions prevailing in a hot proto-neutron star. The reaction-diffusion-advection equations for (u,d) to (u,d,s) combustion are coupled with neutrino transport, which is modeled through a flux-limited diffusion scheme. The flame speed is proportional to initial lepton fraction because of the release of electron chemical potential as heat, and reaches a steady-state burning speed of (0.001-0.008)c. We find that the burning speed is ultimately driven by the neutrino pressure gradient, given that the pressure gradient induced by quarks is opposed by the pressure gradients induced by electrons. This suggests, somewhat counter-intuitively, that the pressure gradients that drive the interface are controlled primarily by leptonic weak decays rather than by the quark Equation of State (EOS). In other words, the effects of the leptonic weak interaction, including the corresponding weak decay rates and the EOS of electrons and neutrinos, are at least as important as the uncertainties related to the EOS of high density matter. We find that for baryon number densities nB ≤ 0.35 fm-3, strong pressure gradients induced by leptonic weak decays drastically slow down the burning speed, which is thereafter controlled by the much slower burning process driven by backflowing downstream matter. We discuss the implications of our findings to proto-neutron stars.
DIII-D research advancing the scientific basis for burning plasmas and fusion energy
NASA Astrophysics Data System (ADS)
W. M. SolomonThe DIII-D Team
2017-10-01
The DIII-D tokamak has addressed key issues to advance the physics basis for ITER and future steady-state fusion devices. In work related to transient control, magnetic probing is used to identify a decrease in ideal stability, providing a basis for active instability sensing. Improved understanding of 3D interactions is emerging, with RMP-ELM suppression correlated with exciting an edge current driven mode. Should rapid plasma termination be necessary, shattered neon pellet injection has been shown to be tunable to adjust radiation and current quench rate. For predictive simulations, reduced transport models such as TGLF have reproduced changes in confinement associated with electron heating. A new wide-pedestal variant of QH-mode has been discovered where increased edge transport is found to allow higher pedestal pressure. New dimensionless scaling experiments suggest an intrinsic torque comparable to the beam-driven torque on ITER. In steady-state-related research, complete ELM suppression has been achieved that is relatively insensitive to q 95, having a weak effect on the pedestal. Both high-q min and hybrid steady-state plasmas have avoided fast ion instabilities and achieved increased performance by control of the fast ion pressure gradient and magnetic shear, and use of external control tools such as ECH. In the boundary, experiments have demonstrated the impact of E× B drifts on divertor detachment and divertor asymmetries. Measurements in helium plasmas have found that the radiation shortfall can be eliminated provided the density near the X-point is used as a constraint in the modeling. Experiments conducted with toroidal rings of tungsten in the divertor have indicated that control of the strike-point flux is important for limiting the core contamination. Future improvements are planned to the facility to advance physics issues related to the boundary, transients and high performance steady-state operation.
DIII-D research advancing the scientific basis for burning plasmas and fusion energy
Solomon, Wayne M.
2017-07-12
The DIII-D tokamak has addressed key issues to advance the physics basis for ITER and future steady-state fusion devices. In work related to transient control, magnetic probing is used to identify a decrease in ideal stability, providing a basis for active instability sensing. Improved understanding of 3D interactions is emerging, with RMP-ELM suppression correlated with exciting an edge current driven mode. Should rapid plasma termination be necessary, shattered neon pellet injection has been shown to be tunable to adjust radiation and current quench rate. For predictive simulations, reduced transport models such as TGLF have reproduced changes in confinement associated withmore » electron heating. A new wide- pedestal variant of QH-mode has been discovered where increased edge transport is found to allow higher pedestal pressure. New dimensionless scaling experiments suggest an intrinsic torque comparable to the beam-driven torque on ITER. In steady-state-related research, complete ELM suppression has been achieved that is relatively insensitive to q 95, having a weak effect on the pedestal. Both high-q min and hybrid steady-state plasmas have avoided fast ion instabilities and achieved increased performance by control of the fast ion pressure gradient and magnetic shear, and use of external control tools such as ECH. In the boundary, experiments have demonstrated the impact of E × B drifts on divertor detachment and divertor asymmetries. Measurements in helium plasmas have found that the radiation shortfall can be eliminated provided the density near the X-point is used as a constraint in the modeling. Experiments conducted with toroidal rings of tungsten in the divertor have indicated that control of the strike-point flux is important for limiting the core contamination. In conclusion, future improvements are planned to the facility to advance physics issues related to the boundary, transients and high performance steady-state operation.« less
DIII-D research advancing the scientific basis for burning plasmas and fusion energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Wayne M.
The DIII-D tokamak has addressed key issues to advance the physics basis for ITER and future steady-state fusion devices. In work related to transient control, magnetic probing is used to identify a decrease in ideal stability, providing a basis for active instability sensing. Improved understanding of 3D interactions is emerging, with RMP-ELM suppression correlated with exciting an edge current driven mode. Should rapid plasma termination be necessary, shattered neon pellet injection has been shown to be tunable to adjust radiation and current quench rate. For predictive simulations, reduced transport models such as TGLF have reproduced changes in confinement associated withmore » electron heating. A new wide- pedestal variant of QH-mode has been discovered where increased edge transport is found to allow higher pedestal pressure. New dimensionless scaling experiments suggest an intrinsic torque comparable to the beam-driven torque on ITER. In steady-state-related research, complete ELM suppression has been achieved that is relatively insensitive to q 95, having a weak effect on the pedestal. Both high-q min and hybrid steady-state plasmas have avoided fast ion instabilities and achieved increased performance by control of the fast ion pressure gradient and magnetic shear, and use of external control tools such as ECH. In the boundary, experiments have demonstrated the impact of E × B drifts on divertor detachment and divertor asymmetries. Measurements in helium plasmas have found that the radiation shortfall can be eliminated provided the density near the X-point is used as a constraint in the modeling. Experiments conducted with toroidal rings of tungsten in the divertor have indicated that control of the strike-point flux is important for limiting the core contamination. In conclusion, future improvements are planned to the facility to advance physics issues related to the boundary, transients and high performance steady-state operation.« less
PIC simulation of a thermal anisotropy-driven Weibel instability in a circular rarefaction wave
NASA Astrophysics Data System (ADS)
Dieckmann, M. E.; Sarri, G.; Murphy, G. C.; Bret, A.; Romagnani, L.; Kourakis, I.; Borghesi, M.; Ynnerman, A.; O'C Drury, L.
2012-02-01
The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally.
On the ejection-induced instability in Navier-Stokes solutions of unsteady separation.
Obabko, Aleksandr V; Cassel, Kevin W
2005-05-15
Numerical solutions of the flow induced by a thick-core vortex have been obtained using the unsteady, two-dimensional Navier-Stokes equations. The presence of the vortex causes an adverse pressure gradient along the surface, which leads to unsteady separation. The calculations by Brinckman and Walker for a similar flow identify a possible instability, purported to be an inviscid Rayleigh instability, in the region where ejection of near-wall vorticity occurs during the unsteady separation process. In results for a range of Reynolds numbers in the present investigation, the oscillations are also found to occur. However, they can be eliminated with increased grid resolution. Despite this behaviour, the instability may be physical but requires a sufficient amplitude of disturbances to be realized.
NASA Astrophysics Data System (ADS)
Peterson, J. L.; Bell, R.; Candy, J.; Guttenfelder, W.; Hammett, G. W.; Kaye, S. M.; LeBlanc, B.; Mikkelsen, D. R.; Smith, D. R.; Yuh, H. Y.
2012-05-01
The National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] can achieve high electron plasma confinement regimes that are super-critically unstable to the electron temperature gradient driven (ETG) instability. These plasmas, dubbed electron internal transport barriers (e-ITBs), occur when the magnetic shear becomes strongly negative. Using the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)], the first nonlinear ETG simulations of NSTX e-ITB plasmas reinforce this observation. Local simulations identify a strongly upshifted nonlinear critical gradient for thermal transport that depends on magnetic shear. Global simulations show e-ITB formation can occur when the magnetic shear becomes strongly negative. While the ETG-driven thermal flux at the outer edge of the barrier is large enough to be experimentally relevant, the turbulence cannot propagate past the barrier into the plasma interior.
A Concept of Cross-Ferroic Plasma Turbulence
Inagaki, S.; Kobayashi, T.; Kosuga, Y.; Itoh, S.-I.; Mitsuzono, T.; Nagashima, Y.; Arakawa, H.; Yamada, T.; Miwa, Y.; Kasuya, N.; Sasaki, M.; Lesur, M.; Fujisawa, A.; Itoh, K.
2016-01-01
The variety of scalar and vector fields in laboratory and nature plasmas is formed by plasma turbulence. Drift-wave fluctuations, driven by density gradients in magnetized plasmas, are known to relax the density gradient while they can generate flows. On the other hand, the sheared flow in the direction of magnetic fields causes Kelvin-Helmholtz type instabilities, which mix particle and momentum. These different types of fluctuations coexist in laboratory and nature, so that the multiple mechanisms for structural formation exist in extremely non-equilibrium plasmas. Here we report the discovery of a new order in plasma turbulence, in which chained structure formation is realized by cross-interaction between inhomogeneities of scalar and vector fields. The concept of cross-ferroic turbulence is developed, and the causal relation in the multiple mechanisms behind structural formation is identified, by measuring the relaxation rate and dissipation power caused by the complex turbulence-driven flux. PMID:26917218
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolesnikov, R.A.; Krommes, J.A.
The collisionless limit of the transition to ion-temperature-gradient-driven plasma turbulence is considered with a dynamical-systems approach. The importance of systematic analysis for understanding the differences in the bifurcations and dynamics of linearly damped and undamped systems is emphasized. A model with ten degrees of freedom is studied as a concrete example. A four-dimensional center manifold (CM) is analyzed, and fixed points of its dynamics are identified and used to predict a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows. The exact value of that shift in terms of physical parameters is established for themore » model; the effects of higher-order truncations on the dynamics are noted. Multiple-scale analysis of the CM equations is used to discuss possible effects of modulational instability on scenarios for the transition to turbulence in both collisional and collisionless cases.« less
Hybrid simulation of fishbone instabilities in the EAST tokamak
Shen, Wei; Wang, Feng; Fu, G. Y.; ...
2017-08-11
Hybrid simulations with the global kinetic-magnetohydrodynamic (MHD) code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven fishbone in the experimental advanced superconducting tokamak (EAST) experiment. Linear simulations show that a low frequency fishbone instability is excited at experimental value of beam ion pressure. The mode is mainly driven by low energy beam ions via precessional resonance. Our results are consistent with the experimental measurement with respect to mode frequency and mode structure. When the beam ion pressure is increased to exceed a critical value, the low frequency mode transits to a beta-induced Alfvenmore » eigenmode (BAE) with much higher frequency. This BAE is driven by higher energy beam ions. Nonlinear simulations show that the frequency of the low frequency fishbone chirps up and down with corresponding hole-clump structures in phase space, consistent with the Berk-Breizman theory. In addition to the low frequency mode, the high frequency BAE is excited during the nonlinear evolution. Furthermore, for the transient case of beam pressure fraction where the low and high frequency modes are simultaneously excited in the linear phase, only one dominant mode appears in the nonlinear phase with frequency jumps up and down during nonlinear evolution.« less
On the tertiary instability formalism of zonal flows in magnetized plasmas
NASA Astrophysics Data System (ADS)
Rath, F.; Peeters, A. G.; Buchholz, R.; Grosshauser, S. R.; Seiferling, F.; Weikl, A.
2018-05-01
This paper investigates the so-called tertiary instabilities driven by the zonal flow in gyro-kinetic tokamak core turbulence. The Kelvin Helmholtz instability is first considered within a 2D fluid model and a threshold in the zonal flow wave vector kZF>kZF,c for instability is found. This critical scale is related to the breaking of the rotational symmetry by flux-surfaces, which is incorporated into the modified adiabatic electron response. The stability of undamped Rosenbluth-Hinton zonal flows is then investigated in gyro-kinetic simulations. Absolute instability, in the sense that the threshold zonal flow amplitude tends towards zero, is found above a zonal flow wave vector kZF,cρi≈1.3 ( ρi is the ion thermal Larmor radius), which is comparable to the 2D fluid results. Large scale zonal flows with kZF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, D.; Lawes, M.; Mansour, M.S.
2009-07-15
The principal burning characteristics of a laminar flame comprise the fuel vapour pressure, the laminar burning velocity, ignition delay times, Markstein numbers for strain rate and curvature, the stretch rates for the onset of flame instabilities and of flame extinction for different mixtures. With the exception of ignition delay times, measurements of these are reported and discussed for ethanol-air mixtures. The measurements were in a spherical explosion bomb, with central ignition, in the regime of a developed stable, flame between that of an under or over-driven ignition and that of an unstable flame. Pressures ranged from 0.1 to 1.4 MPa,more » temperatures from 300 to 393 K, and equivalence ratios were between 0.7 and 1.5. It was important to ensure the relatively large volume of ethanol in rich mixtures at high pressures was fully evaporated. The maximum pressure for the measurements was the highest compatible with the maximum safe working pressure of the bomb. Many of the flames soon became unstable, due to Darrieus-Landau and thermo-diffusive instabilities. This effect increased with pressure and the flame wrinkling arising from the instabilities enhanced the flame speed. Both the critical Peclet number and the, more rational, associated critical Karlovitz stretch factor were evaluated at the onset of the instability. With increasing pressure, the onset of flame instability occurred earlier. The measured values of burning velocity are expressed in terms of their variations with temperature and pressure, and these are compared with those obtained by other researchers. Some comparisons are made with the corresponding properties for iso-octane-air mixtures. (author)« less
Ballooning instabilities in tokamaks with sheared toroidal flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waelbroeck, F.L.; Chen, L.
1990-11-01
The stability of ballooning modes in the presence of sheared toroidal flows is investigated. The eigenmodes are shown to be related by a Fourier transformation to the non-exponentially growing Floquet solutions found by Cooper. It is further shown that the problem cannot be reduced further than to a two dimensional partial differential equation. Next, the generalized ballooning equation is solved analytically for a circular tokamak equilibrium with sonic flows, but with a small rotation shear compared to the sound speed. With this ordering, the centrifugal forces are comparable to the pressure gradient forces driving the instability, but coupling of themore » mode with the sound wave is avoided. A new stability criterion is derived which explicitly demonstrates that flow shear is stabilizing at constant centrifugal force gradient. 34 refs.« less
Alpha-Driven MHD and MHD-Induced Alpha Loss in TFTR DT Experiments
NASA Astrophysics Data System (ADS)
Chang, Zuoyang
1996-11-01
Theoretical calculation and numerical simulation indicate that there can be interesting interactions between alpha particles and MHD activity which can adversely affect the performance of a tokamak reactor (e.g., ITER). These interactions include alpha-driven MHD, like the toroidicity-induced-Alfven-eigenmode (TAE) and MHD induced alpha particle losses or redistribution. Both phenomena have been observed in recent TFTR DT experiments. Weak alpha-driven TAE activity was observed in a NBI-heated DT experiment characterized by high q0 ( >= 2) and low core magnetic shear. The TAE mode appears at ~30-100 ms after the neutral beam turning off approximately as predicted by theory. The mode has an amplitude measured by magnetic coils at the edge tildeB_p ~1 mG, frequency ~150-190 kHz and toroidal mode number ~2-3. It lasts only ~ 30-70 ms and has been seen only in DT discharges with fusion power level about 1.5-2.0 MW. Numerical calculation using NOVA-K code shows that this type of plasma has a big TAE gap. The calculated TAE frequency and mode number are close to the observation. (2) KBM-induced alpha particle loss^1. In some high-β, high fusion power DT experiments, enhanced alpha particle losses were observed to be correlated to the high frequency MHD modes with f ~100-200 kHz (the TAE frequency would be two-times higher) and n ~5-10. These modes are localized around the peak plasma pressure gradient and have ballooning characteristics. Alpha loss increases by 30-100% during the modes. Particle orbit simulations show the added loss results from wave-particle resonance. Linear instability analysis indicates that the plasma is unstable to the kinetic MHD ballooning modes (KBM) driven primarily by strong local pressure gradients. ----------------- ^1Z. Chang, et al, Phys. Rev. Lett. 76 (1996) 1071. In collaberation with R. Nazikian, G.-Y. Fu, S. Batha, R. Budny, L. Chen, D. Darrow, E. Fredrickson, R. Majeski, D. Mansfield, K. McGuire, G. Rewoldt, G. Taylor, R. White, K.-L. Wong and S. Zweben, Princeton Plasma Physics Lab. Department of Physics, University of California, Irvine, CA 92717 ^*Work supported by the U.S. Department of Energy DoE Contract No. DE-AC02-76CH03073.
Active Control of Combustor Instability Shown to Help Lower Emissions
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Chang, Clarence T.
2002-01-01
In a quest to reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities, or high-pressure oscillations much like sound waves, that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Aerospace Propulsion and Power Base Research and Technology Program, the NASA Glenn Research Center, in partnership with Pratt & Whitney and United Technologies Research Center, is developing technologies for the active control of combustion instabilities. With active combustion control, the fuel is pulsed to put pressure oscillations into the system. This cancels out the pressure oscillations being produced by the instabilities. Thus, the engine can have lower pollutant emissions and long life.The use of active combustion instability control to reduce thermo-acoustic-driven combustor pressure oscillations was demonstrated on a single-nozzle combustor rig at United Technologies. This rig has many of the complexities of a real engine combustor (i.e., an actual fuel nozzle and swirler, dilution cooling, etc.). Control was demonstrated through modeling, developing, and testing a fuel-delivery system able to the 280-Hz instability frequency. The preceding figure shows the capability of this system to provide high-frequency fuel modulations. Because of the high-shear contrarotating airflow in the fuel injector, there was some concern that the fuel pulses would be attenuated to the point where they would not be effective for control. Testing in the combustor rig showed that open-loop pulsing of the fuel was, in fact, able to effectively modulate the combustor pressure. To suppress the combustor pressure oscillations due to thermoacoustic instabilities, it is desirable to time the injection of the fuel so that it interferes with the instability. A closed-loop control scheme was developed that uses combustion pressure feedback and a phase-shifting controller to time the fuel-injection pulses. Some suppression of the pressure oscillations at the 280-Hz instability frequency was demonstrated (see the next figure). However, the overall peak-to- peak pressure oscillations in the combustor were only mildly reduced. Improvements to control hardware and control methods are being continued to gain improved closed-loop reduction of the pressure oscillations.pulse the fuel at
Axial Flow Conditioning Device for Mitigating Instabilities
NASA Technical Reports Server (NTRS)
Ahuja, Vineet (Inventor); Birkbeck, Roger M. (Inventor); Hosangadi, Ashvin (Inventor)
2017-01-01
A flow conditioning device for incrementally stepping down pressure within a piping system is presented. The invention includes an outer annular housing, a center element, and at least one intermediate annular element. The outer annular housing includes an inlet end attachable to an inlet pipe and an outlet end attachable to an outlet pipe. The outer annular housing and the intermediate annular element(s) are concentrically disposed about the center element. The intermediate annular element(s) separates an axial flow within the outer annular housing into at least two axial flow paths. Each axial flow path includes at least two annular extensions that alternately and locally direct the axial flow radially outward and inward or radially inward and outward thereby inducing a pressure loss or a pressure gradient within the axial flow. The pressure within the axial flow paths is lower than the pressure at the inlet end and greater than the vapor pressure for the axial flow. The invention minimizes fluidic instabilities, pressure pulses, vortex formation and shedding, and/or cavitation during pressure step down to yield a stabilized flow within a piping system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avara, Mark J.; Reynolds, Christopher S.; Bogdanovic, Tamara, E-mail: mavara@astro.umd.edu, E-mail: chris@astro.umd.edu, E-mail: tamarab@gatech.edu
2013-08-20
The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channeled along field lines. This anisotropic heat conduction profoundly changes the instabilities of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. Here, we employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux-driven buoyancy instability (HBI) relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of two-dimensional simulations that span a large rangemore » of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction, thereby shutting off the heat flux. However, we find that simulations that begin with intermediate initial field strengths have a qualitatively different behavior, forming HBI-stable filaments that resist field-line wrapping and enable sustained vertical conductive heat flux at a level of 10%-25% of the Spitzer value. While astrophysical conclusions regarding the role of conduction in cooling cores require detailed global models, our local study proves that systems dominated by the HBI do not necessarily quench the conductive heat flux.« less
Experimental Study of Current-Driven Turbulence During Magnetic Reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porkolab, Miklos; Egedal-Pedersen, Jan; Fox, William
CMPD Final Report Experimental Study of Current-Driven Turbulence During Magnetic Reconnection Miklos Porkolab, PI, Jan Egedal, co-PI, William Fox, graduate student. This is the final report for Grant DE-FC02-04ER54786, MIT Participation in the Center for Multiscale Plasma Dynamics, which was active from 8/1/2004 to 7/31/2010. This Grant supported the thesis work of one MIT graduate student, William Fox, The thesis research consisted of an experimental study of the fluctuations arising during magnetic reconnection in plasmas on the Versatile Toroidal Facility (VTF) at MIT Plasma Science and Fusion Center (PSFC). The thesis was submitted and accepted by the MIT physics Department,.more » Fox, Experimental Study of Current-Driven Turbulence During Magnetic Reconnection, Ph.D. Thesis, MIT (2009). In the VTF experiment reconnection and current-sheet formation is driven by quickly changing currents in a specially arranged set of internal conductors. Previous work on this device [Egedal, et al, PRL 98, 015003, (2007)] identified a spontaneous reconnection regime. In this work fluctuations were studied using impedance-matched, high-bandwidth Langmuir probes. Strong, broadband fluctuations, with frequencies extending from near the lower-hybrid frequency [fLH = (fcefci)1/2] to the electron cyclotron frequency fce were found to arise during the reconnection events. Based on frequency and wavelength measurements, lower-hybrid waves and Trivelpiece-Gould waves were identified. The lower-hybrid waves are easiest to drive with strong perpendicular drifts or gradients which arise due to the reconnection events; an appealing possibility is strong temperature gradients. The Trivelpiece-Gould modes can result from kinetic, bump-on-tail instability of a runaway electron population energized by the reconnection events. We also observed that the turbulence is often spiky, consisting of discrete positive-potential spikes, which were identified as electron phase-space holes, a class of nonlinear solitary wave known to evolve from a strong beam-on-tail instability. We established that fast electrons were produced by magnetic reconnection. Overall, these instabilities were found to be a consequence of reconnection, specifically the strong energization of electrons, leading to steep gradients in both coordinate- and velocity-space. Estimates (using quasi-linear theory) of the anomalous resistivity due to these modes did not appear large enough to substantially impact the reconnection process. Relevant publications: W. Fox, M. Porkolab, et al, Phys. Rev. Lett. 101, 255003 (2008). W. Fox, M. Porkolab, et al, Phys. Plasmas 17, 072303, (2010).« less
Signal Processing in Periodically Forced Gradient Frequency Neural Networks
Kim, Ji Chul; Large, Edward W.
2015-01-01
Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal. We use linear stability analysis to identify various driven behaviors of canonical oscillators for all possible ranges of model and forcing parameters. The analysis shows that canonical oscillators exhibit qualitatively different sets of driven states and transitions for different regimes of model parameters. We classify the parameter regimes into four main categories based on their distinct signal processing capabilities. This analysis will lead to deeper understanding of the diverse behaviors of neural systems under periodic forcing and can inform the design of oscillatory network models of auditory signal processing. PMID:26733858
Hydraulic effects in a radiative atmosphere with ionization
NASA Astrophysics Data System (ADS)
Bhat, P.; Brandenburg, A.
2016-03-01
Context. In his 1978 paper, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has also recently been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability (NEMPI). Aims: We study the effects of partial ionization near the radiative surface on the formation of these magnetic flux concentrations. Methods: We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the H- opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force that resembles a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. Results: Because of partial ionization, an unstable stratification always forms near the surface. We show that the extrema in the specific entropy profiles correspond to the extrema in the degree of ionization. In the 2D models without partial ionization, strong flux concentrations form just above the height where the blob is placed. Interestingly, in models with partial ionization, such flux concentrations always form at the surface well above the blob. This is due to the corresponding negative gradient in specific entropy. Owing to the absence of turbulence, the downflows reach transonic speeds. Conclusions: We demonstrate that, together with density stratification, the imposed source of negative pressure drives the formation of flux concentrations. We find that the inclusion of partial ionization affects the entropy profile dramatically, causing strong flux concentrations to form closer to the surface. We speculate that turbulence effects are needed to limit the strength of flux concentrations and homogenize the specific entropy to a stratification that is close to marginal.
Iverson, R.M.; Major, J.J.
1987-01-01
We present data on rainfall, ground-water flow, and repetitive seasonal motion that occurred from 1982 to 1985 at Minor Creek landslide in northwestern Californa, and we interpret these data in the context of physically based theories. We find that landslide motion is closely regulated by the direction and magnitude of near-surface hydraulic gradients and by waves of pore pressure caused by intermittent rainfall. Hummocky topography that results from slope instability may cause ground-water flow that perpetuates instability. -from Authors
Combustion Instability in Solid Propellant Rockets
1989-03-21
adverse pressure gradients may arise. As suggested in Figure 5.1, the volume behind a submerged nozzle is especially likely to exhibit recircu- lation...ranges of interest. Therefore, the axial vortical velocity is governed to zeroth order in the mean flow Mach number by auz a2 2 U b+ Mbr -&r2 +O(Mb
NASA Technical Reports Server (NTRS)
Leib, S. J.
1985-01-01
The receptivity problem in a circular liquid jet is considered. A time harmonic axial pressure gradient is imposed on the steady, parallel flow of a jet of liquid emerging from a circular duct. Using a technique developed in plasma physics a casual solution to the forced problem is obtained over certain ranges of Weber number for a number of mean velocity profiles. This solution contains a term which grows exponentially in the downstream direction and can be identified with a capillary instability wave. Hence, it is found that the externally imposed disturbances can indeed trigger instability waves in a liquid jet. The amplitude of the instability wave generated relative to the amplitude of the forcing is computed numerically for a number of cases.
Large-scale solar wind flow around Saturn's nonaxisymmetric magnetosphere
NASA Astrophysics Data System (ADS)
Sulaiman, A. H.; Jia, X.; Achilleos, N.; Sergis, N.; Gurnett, D. A.; Kurth, W. S.
2017-09-01
The interaction between the solar wind and a magnetosphere is central to the dynamics of a planetary system. Here we address fundamental questions on the large-scale magnetosheath flow around Saturn using a 3-D magnetohydrodynamic (MHD) simulation. We find Saturn's polar-flattened magnetosphere to channel 20% more flow over the poles than around the flanks at the terminator. Further, we decompose the MHD forces responsible for accelerating the magnetosheath plasma to find the plasma pressure gradient as the dominant driver. This is by virtue of a high-β magnetosheath and, in turn, the high-MA bow shock. Together with long-term magnetosheath data by the Cassini spacecraft, we present evidence of how nonaxisymmetry substantially alters the conditions further downstream at the magnetopause, crucial for understanding solar wind-magnetosphere interactions such as reconnection and shear flow-driven instabilities. We anticipate our results to provide a more accurate insight into the global conditions upstream of Saturn and the outer planets.
Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions
NASA Astrophysics Data System (ADS)
Massa, L.; Jha, P.
2012-05-01
Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer-Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth of high wave-number perturbations. A gasdynamic flame representation leads to the definition of a Peclet number representing the scaling between perturbation and thermal diffusion lengths within the flame. Peclet number effects on perturbation growth are observed to be marginal. The gasdynamic model also considers a finite flame Mach number that supports a separation between flame and contact discontinuity. Such a separation destabilizes the interface growth by augmenting the tangential shear.
Hydrodynamic fingering instability induced by a precipitation reaction
NASA Astrophysics Data System (ADS)
De Wit, Anne; Nagatsu, Yuichiro
2014-05-01
We experimentally demonstrate that a precipitation reaction at the miscible interface between two reactive solutions can trigger a hydrodynamic instability due to the build-up of a locally adverse mobility gradient related to a decrease in permeability. The precipitate results from an A+B → C type of reaction when a solution containing one of the reactant is injected into a solution of the other reactant in a porous medium or a Hele-Shaw cell. Finger-like precipitation patterns are observed upon displacement, the properties of which depend on whether A displaces B or vice-versa. A mathematical modeling of the underlying mobility profile in the cell reconstructed on the basis of one-dimensional reaction-diffusion concentration profiles confirms that the instability originates from a local decrease in mobility driven by the precipitation. Nonlinear simulations of the related reaction-diffusion-convection model reproduce the properties of the instability observed experimentally. In particular, the simulations suggest that differences in diffusivity between A and B may contribute to the asymmetric characteristics of the fingering precipitation patterns.
Near-wall similarity in a pressure-driven three-dimensional turbulent boundary layer
NASA Technical Reports Server (NTRS)
Pierce, F. J.; Mcallister, J. E.
1980-01-01
Mean velocity, measured wall pressure and wall shear stress fields were made in a three dimensional pressure-driven turbulent boundary layer created by a cylinder with trailing edge placed normal to a flat plate floor. The direct force wall shear stress measurements were made with floating element direct force sensing shear meter that responded to both the magnitude and direction of the local wall shear stress. The ability of 10 near wall similarity models to describe the near wall velocity field for the measured flow under a wide range of skewing conditions and a variety of pressure gradient and wall shear vector orientations was used.
NASA Astrophysics Data System (ADS)
Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Nikitin, S. P.; Metzler, N.; Oh, J.
2012-10-01
Experimental study of hydrodynamic perturbation evolution triggered by a laser-driven shock wave breakout at the free rippled rear surface of a plastic target is reported. We observed a transition between two qualitatively distinct types of perturbation evolution: jet formation at low shock pressure and areal mass oscillations at high shock pressure, which correspond respectively to high and low values of effective adiabatic index. The experiments were done on the KrF Nike laser facility with laser wavelength 248 nm and a 4 ns pulse. We varied the number of beams overlapped on the plastic target to change the ablative pressure driving the shock wave through the target: 36 beams produce pressure of ˜8 Mbar, whereas a single beam irradiation reduces the pressure to ˜0.7 Mbar. With the help of side-on monochromatic x-ray imaging, planar jets manifesting the development of the Richtmyer-Meshkov-type instability in a non-accelerated target are observed at sub-megabar shock pressure. As the shock pressure exceeds 1 Mbar, instead of jet formation an oscillatory rippled expansion wave is observed, followed by the ``feedout'' of the rear-surface perturbations to the ablation front and the development of the Rayleigh-Taylor instability, which breaks up the accelerated target.
Treatment of glenohumeral instability in rugby players.
Funk, Lennard
2016-02-01
Rugby is a high-impact collision sport, with impact forces. Shoulder injuries are common and result in the longest time off sport for any joint injury in rugby. The most common injuries are to the glenohumeral joint with varying degrees of instability. The degree of instability can guide management. The three main types of instability presentations are: (1) frank dislocation, (2) subluxations and (3) subclinical instability with pain and clicking. Understanding the exact mechanism of injury can guide diagnosis with classical patterns of structural injuries. The standard clinical examination in a large, muscular athlete may be normal, so specific tests and techniques are needed to unearth signs of pathology. Taking these factors into consideration, along with the imaging, allows a treatment strategy. However, patient and sport factors need to be also considered, particularly the time of the season and stage of sporting career. Surgery to repair the structural damage should include all lesions found. In chronic, recurrent dislocations with major structural lesions, reconstruction procedures such as the Latarjet procedure yields better outcomes. Rehabilitation should be safe, goal-driven and athlete-specific. Return to sport is dependent on a number of factors, driven by the healing process, sport requirements and extrinsic pressures. Level of evidence V.
Hydrodynamic bifurcation in electro-osmotically driven periodic flows
NASA Astrophysics Data System (ADS)
Morozov, Alexander; Marenduzzo, Davide; Larson, Ronald G.
2018-06-01
In this paper, we report an inertial instability that occurs in electro-osmotically driven channel flows. We assume that the charge motion under the influence of an externally applied electric field is confined to a small vicinity of the channel walls that, effectively, drives a bulk flow through a prescribed slip velocity at the boundaries. Here, we study spatially periodic wall velocity modulations in a two-dimensional straight channel numerically. At low slip velocities, the bulk flow consists of a set of vortices along each wall that are left-right symmetric, while at sufficiently high slip velocities, this flow loses its stability through a supercritical bifurcation. Surprisingly, the flow state that bifurcates from a left-right symmetric base flow has a rather strong mean component along the channel, which is similar to pressure-driven velocity profiles. The instability sets in at rather small Reynolds numbers of about 20-30, and we discuss its potential applications in microfluidic devices.
f-Mode Secular Instabilities in Deleptonizing Fizzlers
NASA Astrophysics Data System (ADS)
Imamura, James N.; Durisen, Richard H.
2004-12-01
Fizzlers are intermediate states that may form between white dwarf and neutron star densities during the collapse of massive rotating stars. This paper studies the gravitational radiation reaction (GRR) driven f-mode secular instabilities of fizzlers with angular momentum distributions h(mc) appropriate to the core collapse of massive rotating stars, where h is the specific angular momentum and mc is the cylindrical mass fraction. For core collapses that maintain axial symmetry, the h(mc) of the remnant reflects the conditions in the precollapse stellar core, and, thus, the h(mc) will resemble that of a uniformly rotating star supported by the pressure of relativistically degenerate electrons. Such an h(mc) concentrates most angular momentum toward the equatorial region of the object. The onset of f-mode secular instabilities in such fizzlers is affected strongly by the h(mc), whereas instability depends only weakly on compressibility. For a broad range of fizzler equations of state and the core h(mc), the f-mode secular instability thresholds drop to T/W~0.034-0.042, 0.019-0.021, and 0.012-0.0135, for m=2, 3, and 4, respectively. These same thresholds with the Maclaurin spheroid h(mc) are T/W=0.13-0.15, 0.10-0.11, and 0.08-0.09, respectively. The growth times τgw for GRR-driven m=2 modes are long. For fizzlers with specific angular momentum J/M~1.5×1016 cm2 s-1 and T/W<~0.24 (ρc<~1014 g cm-3), τgw>400 s. For these fizzlers, τgw>>τde, the deleptonization timescale, and GRR-driven secular instabilities will not grow along a deleptonizing fizzler sequence except, possibly, at T/W near the dynamic bar mode instability threshold, T/W~0.27.
Generalized Galileons: instabilities of bouncing and Genesis cosmologies and modified Genesis
NASA Astrophysics Data System (ADS)
Libanov, M.; Mironov, S.; Rubakov, V.
2016-08-01
We study spatially flat bouncing cosmologies and models with the early-time Genesis epoch in a popular class of generalized Galileon theories. We ask whether there exist solutions of these types which are free of gradient and ghost instabilities. We find that irrespectively of the forms of the Lagrangian functions, the bouncing models either are plagued with these instabilities or have singularities. The same result holds for the original Genesis model and its variants in which the scale factor tends to a constant as t → -∞. The result remains valid in theories with additional matter that obeys the Null Energy Condition and interacts with the Galileon only gravitationally. We propose a modified Genesis model which evades our no-go argument and give an explicit example of healthy cosmology that connects the modified Genesis epoch with kination (the epoch still driven by the Galileon field, which is a conventional massless scalar field at that stage).
High beta effects and nonlinear evolution of the TAE instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spong, D.A.
1992-12-31
The toroidal Alfven eigenmode has recently been observed experimentally on DIII-D and TFTR when neutral beams are injected near the Alfven velocity. This instability is also of concern for future high {beta} D-T devices where fusion by-product alpha populations will generally be super-Alfvenic. We have developed a gyrofluid model (with Landau closure) of the TAE mode which can include most of the relevant damping mechanisms (continuum damping, ion and electron damping, ion FLR and collisional trapped electron damping) as well as reproducing analytically predicted undamped growth rates relatively accurately. An important consideration in predicting future unstable TAE regimes is themore » effect of finite beta in the background plasma. Due to the Shafranov shift and distortion of the flux surfaces, the location of the stable TAE root and the continuum will shift with increasing {beta}. The net effect of this is to generally enhance continuum damping and stabilize the TAF instability. Also, as the pressure gradient drive from the background becomes increasingly important, coupling between TAE and background driven modes can alter the TAE mode. A further application of our gyrofluid model which will be discussed is the nonlinear evolution of the TAE instability. Gyrofluid models offer a convenient reduced description which is more amenable to computational nonlinear modeling than full kinetic particle models. Our results demonstrate the rise and crash phases of TAE activity similar to experimental observations. The saturation is caused by generation of m=0 n=0 components through nonlinear beatings of the n > 1 modes; these cause modifications to the original equilibrium profiles in such a direction as to decrease the instability drive. This is the gyrofluid analog of direct particle losses. The peak magnetic fluctuation level increases with increasing energetic species beta, resulting in non-resonant stochastization of magnetic field lines.« less
High beta effects and nonlinear evolution of the TAE instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spong, D.A.
1992-01-01
The toroidal Alfven eigenmode has recently been observed experimentally on DIII-D and TFTR when neutral beams are injected near the Alfven velocity. This instability is also of concern for future high [beta] D-T devices where fusion by-product alpha populations will generally be super-Alfvenic. We have developed a gyrofluid model (with Landau closure) of the TAE mode which can include most of the relevant damping mechanisms (continuum damping, ion and electron damping, ion FLR and collisional trapped electron damping) as well as reproducing analytically predicted undamped growth rates relatively accurately. An important consideration in predicting future unstable TAE regimes is themore » effect of finite beta in the background plasma. Due to the Shafranov shift and distortion of the flux surfaces, the location of the stable TAE root and the continuum will shift with increasing [beta]. The net effect of this is to generally enhance continuum damping and stabilize the TAF instability. Also, as the pressure gradient drive from the background becomes increasingly important, coupling between TAE and background driven modes can alter the TAE mode. A further application of our gyrofluid model which will be discussed is the nonlinear evolution of the TAE instability. Gyrofluid models offer a convenient reduced description which is more amenable to computational nonlinear modeling than full kinetic particle models. Our results demonstrate the rise and crash phases of TAE activity similar to experimental observations. The saturation is caused by generation of m=0 n=0 components through nonlinear beatings of the n > 1 modes; these cause modifications to the original equilibrium profiles in such a direction as to decrease the instability drive. This is the gyrofluid analog of direct particle losses. The peak magnetic fluctuation level increases with increasing energetic species beta, resulting in non-resonant stochastization of magnetic field lines.« less
NASA Astrophysics Data System (ADS)
Ercolano, Barbara; Jennings, Jeff; Rosotti, Giovanni; Birnstiel, Tilman
2017-12-01
The streaming instability is often invoked as solution to the fragmentation and drift barriers in planetesimal formation, catalysing the aggregation of dust on kyr time-scales to grow km-sized cores. However, there remains a lack of consensus on the physical mechanism(s) responsible for initiating it. One potential avenue is disc photoevaporation, wherein the preferential removal of relatively dust-free gas increases the disc metallicity. Late in the disc lifetime, photoevaporation dominates viscous accretion, creating a gradient in the depleted gas surface density near the location of the gap. This induces a local pressure maximum that collects drifting dust particles, which may then become susceptible to the streaming instability. Using a one-dimensional viscous evolution model of a disc subject to internal X-ray photoevaporation, we explore the efficacy of this process to build planetesimals. Over a range of parameters, we find that the amount of dust mass converted into planetesimals is often <1 M⊕ and at most a few M⊕ spread across tens of au. We conclude that photoevaporation may at best be relevant for the formation of debris discs, rather than a common mechanism for the formation of planetary cores. Our results are in contrast to a recent, similar investigation that considered an far-ultra-violet (FUV)-driven photoevaporation model and reported the formation of tens of M⊕ at large (>100 au) disc radii. The discrepancies are primarily a consequence of the different photoevaporation profiles assumed. Until observations more tightly constrain photoevaporation models, the relevance of this process to the formation of planets remains uncertain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Faculty of Transportation Systems, Kharkiv National Automobile and Highway University, 61002 Kharkiv
2014-07-15
The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combinedmore » ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ⊥}ρ{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weis, M. R.; Zhang, P.; Lau, Y. Y., E-mail: yylau@umich.edu
2014-12-15
Using the ideal magnetohydrodynamic model, we calculate the temporal evolution of initial ripples on the boundaries of a planar plasma slab that is subjected to the magneto-Rayleigh-Taylor instability. The plasma slab consists of three regions. We assume that in each region the plasma density is constant with an arbitrary value and the magnetic field is also constant with an arbitrary magnitude and an arbitrary direction parallel to the interfaces. Thus, the instability may be driven by a combination of magnetic pressure and kinetic pressure. The general dispersion relation is derived, together with the feedthrough factor between the two interfaces. Themore » temporal evolution is constructed from the superposition of the eigenmodes. Previously established results are recovered in the various limits. Numerical examples are given on the temporal evolution of ripples on the interfaces of the finite plasma slab.« less
Weis, Matthew Robert; Zhang, Peng; Lau, Yue Ying; ...
2014-12-17
Using the ideal magnetohydrodynamic model, we calculate the temporal evolution of initial ripples on the boundaries of a planar plasma slab that is subjected to the magneto-Rayleigh-Taylor instability. The plasma slab consists of three regions. We assume that in each region the plasma density is constant with an arbitrary value and the magnetic field is also constant with an arbitrary magnitude and an arbitrary direction parallel to the interfaces. Then, the instability may be driven by a combination of magnetic pressure and kinetic pressure. Thus the general dispersion relation is derived, together with the feedthrough factor between the two interfaces.more » The temporal evolution is constructed from the superposition of the eigenmodes. Those previously established results are recovered in the various limits. Numerical examples are given on the temporal evolution of ripples on the interfaces of the finite plasma slab.« less
Streamer formation and transport for parameters characteristic of H-mode pedestals
NASA Astrophysics Data System (ADS)
Blackmon, Austin; Hatch, D. R.; Kotschenreuther, M.; Mahajan, S.; Hazeltine, R. D.
2017-10-01
We investigate, through gyrokinetic simulations, the formation of streamers as a consequence of electron temperature gradient driven, electron scale instabilities. We also study the interaction of velocity shear with streamers for parameters typical of H-mode pedestals, exploring both the higher as well as lower temperature gradient regions. Without ExB shear, the streamers form at the pedestal top causing large heat fluxes; the modes, however, did not saturate. When ExB shear was turned on, the streamers dissipated, and heat flux was lowered, though still of significant magnitude. In the middle of the pedestal, with high temperature gradient, heat flux was insignificant. There was no evidence of streamers in this region, leading to a conclusion that streamers have a strong influence on heat flux. Work supported by US DOE under DE-FG02-04ER54742.
Analytical study of mixed electroosmotic-pressure-driven flow in rectangular micro-channels
NASA Astrophysics Data System (ADS)
Movahed, Saeid; Kamali, Reza; Eghtesad, Mohammad; Khosravifard, Amir
2013-09-01
Operational state of many miniaturized devices deals with flow field in microchannels. Pressure-driven flow (PDF) and electroosmotic flow (EOF) can be recognized as the two most important types of the flow field in such channels. EOF has many advantages in comparison with PDF, such as being vibration free and not requiring any external mechanical pumps or moving parts. However, the disadvantages of this type of flow such as Joule heating, electrophoresis demixing, and not being suitable for mobile devices must be taken into consideration carefully. By using mixed electroosmotic/pressure-driven flow, the role of EOF in producing desired velocity profile will be reduced. In this way, the advantages of EOF can be exploited, and its disadvantages can be prevented. Induced pressure gradient can be utilized in order to control the separation in the system. Furthermore, in many complicated geometries such as T-shape microchannels, turns may induce pressure gradient to the electroosmotic velocity. While analytical formulas are completely essential for analysis and control of any industrial and laboratory microdevices, lack of such formulas in the literature for solving Poisson-Boltzmann equation and predicting electroosmotic velocity field in rectangular domains is evident. In the present study, first a novel method is proposed to solve Poisson-Boltzmann equation (PBE). Subsequently, this solution is utilized to find the electroosmotic and the mixed electroosmotic/pressure-driven velocity profile in a rectangular domain of the microchannels. To demonstrate the accuracy of the presented analytical method in solving PBE and finding electroosmotic velocity, a general nondimensional example is analyzed, and the results are compared with the solution of boundary element method. Additionally, the effects of different nondimensional parameters and also aspect ratio of channels on the electroosmotic part of the flow field will be investigated.
Effects of energetic particle phase space modifications by instabilities on integrated modeling
NASA Astrophysics Data System (ADS)
Podestà, M.; Gorelenkova, M.; Fredrickson, E. D.; Gorelenkov, N. N.; White, R. B.
2016-11-01
Tokamak plasmas can feature a large population of energetic particles (EP) from neutral beam injection or fusion reactions. In turn, energetic particles can drive instabilities, which affect the driving EP population leading to a distortion of the original EP distribution function and of quantities that depend on it. The latter include, for example, neutral beam (NB) current drive and plasma heating through EP thermalization. Those effects must be taken into account to enable reliable and quantitative simulations of discharges for present devices as well as predictions for future burning plasmas. Reduced models for EP transport are emerging as an effective tool for long time-scale integrated simulations of tokamak plasmas, possibly including the effects of instabilities on EP dynamics. Available models differ in how EP distribution properties are modified by instabilities, e.g. in terms of gradients in real or phase space. It is therefore crucial to assess to what extent different assumptions in the transport models affect predicted quantities such as EP profile, energy distribution, NB driven current and energy/momentum transfer to the thermal populations. A newly developed kick model, which includes modifications of the EP distribution by instabilities in both real and velocity space, is used in this work to investigate these issues. Coupled to TRANSP simulations, the kick model is used to analyze NB-heated NSTX and DIII-D discharges featuring unstable Alfvén eigenmodes (AEs). Results show that instabilities can strongly affect the EP distribution function, and modifications propagate to macroscopic quantities such as NB-driven current profile and NB power transferred to the thermal plasma species. Those important aspects are only qualitatively captured by simpler fast ion transport models that are based on radial diffusion of energetic ions only.
Effects of energetic particle phase space modifications by instabilities on integrated modeling
Podesta, M.; Gorelenkova, M.; Fredrickson, E. D.; ...
2016-07-22
Tokamak plasmas can feature a large population of energetic particles (EP) from neutral beam injection or fusion reactions. In turn, energetic particles can drive instabilities, which affect the driving EP population leading to a distortion of the original EP distribution function and of quantities that depend on it. The latter include, for example, neutral beam (NB) current drive and plasma heating through EP thermalization. Those effects must be taken into account to enable reliable and quantitative simulations of discharges for present devices as well as predictions for future burning plasmas. Reduced models for EP transport are emerging as an effectivemore » tool for long time-scale integrated simulations of tokamak plasmas, possibly including the effects of instabilities on EP dynamics. Available models differ in how EP distribution properties are modified by instabilities, e.g. in terms of gradients in real or phase space. It is therefore crucial to assess to what extent different assumptions in the transport models affect predicted quantities such as EP profile, energy distribution, NB driven current and energy/momentum transfer to the thermal populations. A newly developed kick model, which includes modifications of the EP distribution by instabilities in both real and velocity space, is used in this work to investigate these issues. Coupled to TRANSP simulations, the kick model is used to analyze NB-heated NSTX and DIII-D discharges featuring unstable Alfvén eigenmodes (AEs). Results show that instabilities can strongly affect the EP distribution function, and modifications propagate to macroscopic quantities such as NB-driven current profile and NB power transferred to the thermal plasma species. Furthermore, those important aspects are only qualitatively captured by simpler fast ion transport models that are based on radial diffusion of energetic ions only.« less
Local magnetohydrodynamic instabilities and the wave-driven dynamo in accretion disks
NASA Technical Reports Server (NTRS)
Vishniac, Ethan T.; Diamond, Patrick
1992-01-01
We consider the consequences of magnetic buoyancy and the magnetic shearing instability (MSI) on the strength and organization of the magnetic field in a thin accretion disk. We discuss a model in which the wave-driven dynamo growth rate is balanced by the dissipative effects of the MSI. As in earlier work, the net helicity is due to small advective motions driven by nonlinear interactions between internal waves. Assuming a simple model of the internal wave spectrum generated from the primary m = 1 internal waves, we find that the magnetic energy density saturates at about (H/r) exp 4/3 times the local pressure (where H is the disk thickness and r is its radius). On very small scales the shearing instability will produce an isotropic fluctuating field. For a stationary disk this is equivalent to a dimensionless 'viscosity' of about (H/r) exp 4/3. The vertical and radial diffusion coefficients will be comparable to each other. Magnetic buoyancy will be largely suppressed by the turbulence due to the MSI. We present a rough estimate of its effects and find that it removes magnetic flux from the disk at a rate comparable to that caused by turbulent diffusion.
NASA Astrophysics Data System (ADS)
Petit, Jean-Pierre; Dore, Jean-Christophe
2013-09-01
MHD propulsion has been extensively studied since the fifties. To shift from propulsion to an MHD Aerodyne, one only needs to accelerate the air externally, along its outer skin, using Lorentz forces. We present a set of successful experiments, obtained around a model, placed in low density air. We successfully dealt with various problems: wall confinement of two-temperature plasma obtained by inversion of the magnetic pressure gradient, annihilation of the Velikhov electrothermal instability by magnetic confinement of the streamers, establishment of a stable spiral distribution of the current, obtained by an original method. Another direction of research is devoted to the study of an MHD-controlled inlet which, coupled with a turbofan engine and implying an MHD-bypass system, would extend the flight domain to hypersonic conditions. Research manager
Schmidt, Eric; Ros, Maxime; Moyse, Emmanuel; Lorthois, Sylvie; Swider, Pascal
2016-01-01
In line with the first law of thermodynamics, Bernoulli's principle states that the total energy in a fluid is the same at all points. We applied Bernoulli's principle to understand the relationship between intracranial pressure (ICP) and intracranial fluids. We analyzed simple fluid physics along a tube to describe the interplay between pressure and velocity. Bernoulli's equation demonstrates that a fluid does not flow along a gradient of pressure or velocity; a fluid flows along a gradient of energy from a high-energy region to a low-energy region. A fluid can even flow against a pressure gradient or a velocity gradient. Pressure and velocity represent part of the total energy. Cerebral blood perfusion is not driven by pressure but by energy: the blood flows from high-energy to lower-energy regions. Hydrocephalus is related to increased cerebrospinal fluid (CSF) resistance (i.e., energy transfer) at various points. Identification of the energy transfer within the CSF circuit is important in understanding and treating CSF-related disorders. Bernoulli's principle is not an abstract concept far from clinical practice. We should be aware that pressure is easy to measure, but it does not induce resumption of fluid flow. Even at the bedside, energy is the key to understanding ICP and fluid dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardóczi, L.; Rhodes, T. L.; Carter, T. A.
We report the first observation of localized modulation of turbulent density uctuations en (via Beam Emission Spectroscopy) by neoclassical tearing modes (NTMs) in the core of the DIII-D tokamak. NTMs are important as they often lead to severe degradation of plasma confinement and disruptions in high-confinement fusion experiments. Magnetic islands associated with NTMs significantly modify the profiles and turbulence drives. In this experiment n was found to be modulated by 14% across the island. Gyrokinetic simulations suggest that en could be dominantly driven by the ion temperature gradient (ITG) instability.
High pressure phase transformation in uranium carbide: A first principle study
NASA Astrophysics Data System (ADS)
Sahoo, B. D.; Joshi, K. D.; Gupta, Satish C.
2013-02-01
First principles calculations have been carried out to analyze structural, elastic and dynamic stability, of UC under hydrostatic compression. The comparison of enthalpies of rocksalt type (B1) and body centered orthorhombic (bco) structures as a function of pressure suggests the B1 →bco transition at ˜ 23 GPa, in good agreement with experimental value of 27 GPa. From the lattice dynamic calculations we have determined the phonon dispersion relations for B1 phase at various compressions. It is found that TA phonon branch along Γ-X direction becomes imaginary around the transition pressure. Further, the phonon instability so caused is of long wavelength nature as it occurs near the Brillouin zone centre. This long wavelength phonon instability at the transition point indicates that the B1 →bco transition is driven by elastic failure (the vanishing of C44 modulus). Various physical quantities such as equilibrium volume, bulk modulus, pressure derivative of bulk modulus and elastic constants have been determined at zero pressure and compared with data available in literature.
Dutta, Debashis
2017-01-01
Pressure-driven cross-flows can arise in free-flow isoelectric focusing systems (FFIEF) due to a non-uniform electroosmotic flow velocity along the channel width induced by the pH gradient in this direction. In addition, variations in the channel cross-section as well as unwanted differences in hydrostatic heads at the buffer/sample inlet ports can also lead to such pressure-gradients which besides altering the equilibrium position of the sample zones have a tendency to substantially broaden their widths deteriorating the separations. In this situation, a thorough assessment of stream broadening due to transverse pressure-gradients in FFIEF devices is necessary in order to establish accurate design rules for the assay. The present article describes a mathematical framework to estimate the noted zone dispersion in FFIEF separations based on the method-of-moments approach under laminar flow conditions. A closed-form expression has been derived for the spatial variance of the analyte streams at their equilibrium positions as a function of the various operating parameters governing the assay performance. This expression predicts the normalized stream variance under the chosen conditions to be determined by two dimensionless Péclet numbers evaluated based on the transverse pressure-driven and electrophoretic solute velocities in the separation chamber, respectively. Moreover, the analysis shows that while the stream width can be expected to increase with an increase in the value of the first Péclet number, the opposite trend will be followed with respect to the latter. The noted results have been validated using Monte Carlo simulations that also establish a time/length scale over which the predicted equilibrium stream width is attained in the system. PMID:28081900
Modeling of fast neutral-beam-generated ions and rotation effects on RWM stability in DIII-D plasmas
Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; ...
2015-10-15
Here, validation results for the MARS-K code for DIII-D equilibria, predict that the absence of fast Neutral Beam (NB) generated ions leads to a plasma response ~40–60% higher than in NB-sustained H-mode plasmas when the no-wall β N limit is reached. In a β N scan, the MARS-K model with thermal and fast-ions, reproduces the experimental measurements above the no-wall limit, except at the highest β N where the phase of the plasma response is overestimated. The dependencies extrapolate unfavorably to machines such as ITER with smaller fast ion fractions since elevated responses in the absence of fast ions indicatemore » the potential onset of a resistive wall mode (RWM). The model was also tested for the effects of rotation at high β N, and recovers the measured response even when fast-ions are neglected, reversing the effect found in lower β N cases, but consistent with the higher β N results above the no-wall limit. The agreement in the response amplitude and phase for the rotation scan is not as good, and additional work will be needed to reproduce the experimental trends. In the case of current-driven instabilities, the magnetohydrodynamic spectroscopy system used to measure the plasma response reacts differently from that for pressure driven instabilities: the response amplitude remains low up to ~93% of the current limit, showing an abrupt increase only in the last ~5% of the current ramp. This makes it much less effective as a diagnostic for the approach to an ideal limit. However, the mode structure of the current driven RWM extends radially inwards, consistent with that in the pressure driven case for plasmas with q edge~2. This suggests that previously developed RWM feedback techniques together with the additional optimizations that enabled q edge~2 operation, can be applied to control of both current-driven and pressure-driven modes at high β N.« less
Stability and instability of axisymmetric droplets in thermocapillary-driven thin films
NASA Astrophysics Data System (ADS)
Nicolaou, Zachary G.
2018-03-01
The stability of compactly supported, axisymmetric droplet states is considered for driven thin viscous films evolving on two-dimensional surfaces. Stability is assessed using Lyapunov energy methods afforded by the Cahn-Hilliard variational form of the governing equation. For general driving forces, a criterion on the gradient of profiles at the boundary of their support (their contact slope) is shown to be a necessary condition for stability. Additional necessary and sufficient conditions for stability are established for a specific driving force corresponding to a thermocapillary-driven film. It is found that only droplets of sufficiently short height that satisfy the contact slope criterion are stable. This destabilization of droplets with increasing height is characterized as a saddle-node bifurcation between a branch of tall, unstable droplets and a branch of short, stable droplets.
Off-equatorial current-driven instabilities ahead of approaching dipolarization fronts
NASA Astrophysics Data System (ADS)
Zhang, Xu; Angelopoulos, V.; Pritchett, P. L.; Liu, Jiang
2017-05-01
Recent kinetic simulations have revealed that electromagnetic instabilities near the ion gyrofrequency and slightly away from the equatorial plane can be driven by a current parallel to the magnetic field prior to the arrival of dipolarization fronts. Such instabilities are important because of their potential contribution to global electromagnetic energy conversion near dipolarization fronts. Of the several instabilities that may be consistent with such waves, the most notable are the current-driven electromagnetic ion cyclotron instability and the current-driven kink-like instability. To confirm the existence and characteristics of these instabilities, we used observations by two Time History of Events and Macroscale Interactions during Substorms satellites, one near the neutral sheet observing dipolarization fronts and the other at the boundary layer observing precursor waves and currents. We found that such instabilities with monochromatic signatures are rare, but one of the few cases was selected for further study. Two different instabilities, one at about 0.3 Hz and the other at a much lower frequency, 0.02 Hz, were seen in the data from the off-equatorial spacecraft. A parallel current attributed to an electron beam coexisted with the waves. Our instability analysis attributes the higher-frequency instability to a current-driven ion cyclotron instability and the lower frequency instability to a kink-like instability. The current-driven kink-like instability we observed is consistent with the instabilities observed in the simulation. We suggest that the currents needed to excite these low-frequency instabilities are so intense that the associated electron beams are easily thermalized and hence difficult to observe.
Ahlbrandt, Thomas S.
1997-01-01
The world has recently experienced rapid change to market-driven economies and increasing reliance on petroleum supplies from areas of political instability. The interplay of unprecedented growth of the global population, increasing worldwide energy demand, and political instability in two major petroleum exporting regions (the former Soviet Union and the Middle East) requires that the United States maintains a current, reliable, objective assessment of the world's energy resources. The need is compounded by the environmental implications of rapid increases in coal use in the Far East and international pressure on consumption of fossil fuels.
A pressure-driven flow analysis of gas trapping behavior in nanocomposite thermite films
NASA Astrophysics Data System (ADS)
Sullivan, K. T.; Bastea, S.; Kuntz, J. D.; Gash, A. E.
2013-10-01
This article is in direct response to a recently published article entitled Electrophoretic deposition and mechanistic studies of nano-Al/CuO thermites (K. T. Sullivan et al., J. Appl. Phys., 112(2), 2012), in which we introduced a non-dimensional parameter as the ratio of gas production to gas escape within a thin porous thermite film. In our original analysis, we had treated the problem as Fickian diffusion of gases through the porous network. However, we believe a more physical representation of the problem is to treat this as pressure-driven flow of gases in a porous medium. We offer a new derivation of the non-dimensional parameter which calculates gas velocity using the well-known Poiseuille's Law for pressure-driven flow in a pipe. This updated analysis incorporates the porosity, gas viscosity, and pressure gradient into the equation.
NASA Technical Reports Server (NTRS)
Driver, David M.; Johnston, James P.
1990-01-01
The effects of a strong adverse pressure gradient on a three-dimensional turbulent boundary layer are studied in an axisymmetric spinning cylinder geometry. Velocity measurements made with a three-component laser Doppler velocimeter include all three mean flow components, all six Reynolds stress components, and all ten triple-product correlations. Reynolds stress diminishes as the flow becomes three-dimensional. Lower levels of shear stress were seen to persist under adverse pressure gradient conditions. This low level of stress was seen to roughly correlate with the magnitude of cross-flow (relative to free stream flow) for this experiment as well as most of the other experiments in the literature. Variations in pressure gradient do not appear to alter this correlation. For this reason, it is hypothesized that a three-dimensional boundary layer is more prone to separate than a two-dimensional boundary layer, although it could not be directly shown here. None of the computations performed with either a Prandtl mixing length, k-epsilon, or a Launder-Reece-Rodi full Reynolds-stress model were able to predict the reduction in Reynolds stress.
Transient disturbance growth in flows over convex surfaces
NASA Astrophysics Data System (ADS)
Karp, Michael; Hack, M. J. Philipp
2017-11-01
Flows over curved surfaces occur in a wide range of applications including airfoils, compressor and turbine vanes as well as aerial, naval and ground vehicles. In most of these applications the surface has convex curvature, while concave surfaces are less common. Since monotonic boundary-layer flows over convex surfaces are exponentially stable, they have received considerably less attention than flows over concave walls which are destabilized by centrifugal forces. Non-modal mechanisms may nonetheless enable significant disturbance growth which can make the flow susceptible to secondary instabilities. A parametric investigation of the transient growth and secondary instability of flows over convex surfaces is performed. The specific conditions yielding the maximal transient growth and strongest instability are identified. The effect of wall-normal and spanwise inflection points on the instability process is discussed. Finally, the role and significance of additional parameters, such as the geometry and pressure gradient, is analyzed.
Hydrodynamic Stability of Multicomponent Droplet Gasification in Reduced Gravity
NASA Technical Reports Server (NTRS)
Aharon, I.; Shaw, B. D.
1995-01-01
This investigation addresses the problem of hydrodynamic stability of a two-component droplet undergoing spherically-symmetrical gasification. The droplet components are assumed to have characteristic liquid species diffusion times that are large relative to characteristic droplet surface regression times. The problem is formulated as a linear stability analysis, with a goal of predicting when spherically-symmetric droplet gasification can be expected to be hydrodynamically unstable from surface-tension gradients acting along the surface of a droplet which result from perturbations. It is found that for the conditions assumed in this paper (quasisteady gas phase, no initial droplet temperature gradients, diffusion-dominated gasification), surface tension gradients do not play a role in the stability characteristics. In addition, all perturbations are predicted to decay such that droplets were hydrodynamically stable. Conditions are identified, however, that deserve more analysis as they may lead to hydrodynamic instabilities driven by capillary effects.
Ge, Zhengwei; Wang, Wei; Yang, Chun
2015-02-09
This paper reports rapid microfluidic electrokinetic concentration of deoxyribonucleic acid (DNA) with the Joule heating induced temperature gradient focusing (TGF) by using our proposed combined AC and DC electric field technique. A peak of 480-fold concentration enhancement of DNA sample is achieved within 40s in a simple poly-dimethylsiloxane (PDMS) microfluidic channel of a sudden expansion in cross-section. Compared to a sole DC field, the introduction of an AC field can reduce DC field induced back-pressure and produce sufficient Joule heating effects, resulting in higher concentration enhancement. Within such microfluidic channel structure, negative charged DNA analytes can be concentrated at a location where the DNA electrophoretic motion is balanced with the bulk flow driven by DC electroosmosis under an appropriate temperature gradient field. A numerical model accounting for a combined AC and DC field and back-pressure driven flow effects is developed to describe the complex Joule heating induced TGF processes. The experimental observation of DNA concentration phenomena can be explained by the numerical model. Copyright © 2014 Elsevier B.V. All rights reserved.
Three-dimensional doubly diffusive convectons: instability and transition to complex dynamics
NASA Astrophysics Data System (ADS)
Knobloch, Edgar; Beaume, Cedric; Bergeon, Alain
2017-11-01
Doubly diffusive convection in a closed vertically extended 3D container driven by competing horizontal temperature and concentration gradients is studied. No-slip boundary conditions are imposed. The buoyancy number N = - 1 to ensure the presence of a conduction state. The primary instability is subcritical and generates two families of spatially localised steady states known as convectons. The convectons bifurcate directly from the conduction state and are organized in a pair of primary branches that snake within a well-defined range of Rayleigh numbers as the convectons grow in length. Secondary instabilities generating twist result in secondary snaking branches of twisted convectons. These destabilize the primary convectons and are responsible for the absence of stable steady states, localized or otherwise, in the subcritical regime. As a result, once the Rayleigh number for the primary instability of the conduction state is exceeded, the system exhibits an abrupt transition to large amplitude spatio-temporal chaos that arises whenever the twist instability leading to collapse is faster than the nucleation time for new rolls. These numerical results are confirmed by determining the stability properties of all convecton states as well as spatially extended convection. Supported in part by the National Science Foundation under Grant DMS-1613132.
Combustion-transition interaction in a jet flame
NASA Astrophysics Data System (ADS)
Yule, A. J.; Chigier, N. A.; Ralph, S.; Boulderstone, R.; Ventura, J.
1980-01-01
The transition between laminar and turbulent flow in a round jet flame is studied experimentally. Comparison is made between transition in non-burning and burning jets and between jet flames with systematic variation in initial Reynolds number and equivalence ratio. Measurements are made using laser anemometry, miniature thermocouples, ionization probes, laser-schlieren and high speed cine films. Compared with the cold jet, the jet flame has a longer potential core, undergoes a slower transition to turbulence, has lower values of fluctuating velocity near the burner but higher values further downstream, contains higher velocity gradients in the mixing layer region although the total jet width does not alter greatly in the first twenty diameters. As in the cold jet, transitional flow in the flame contains waves and vortices and these convolute and stretch the initially laminar interface burning region. Unlike the cold jet, which has Kelvin-Helmholtz instabilities, the jet flame can contain at least two initial instabilities; an inner high frequency combustion driven instability and an outer low frequency instability which may be influenced by buoyancy forces.
Surface Tension Induced Instabilities in Reduced Gravity: the Benard Problem
NASA Technical Reports Server (NTRS)
Koschmieder, E.; Chai, A. T.
1985-01-01
A Benard convection experiment has been set up, and the onset of convection in shallow layers of silicone oil two millimeters or less deep has been studied. The onset has been observed visually or has been determined by the break in the heat transfer curve which accompanies the onset of convection. The outcome of these experiments has been very surprising, from the point of view of theoretical expectations. The onset of convection at temperature differences far below the critical value for fluid depths smaller than 2mm was observed. The discrepancy between experiments and theory increases with decreasing fluid depth. According to theoretical considerations, the effects of surface tension become more important as the fluid depth is decreased. Actually, one observes that the onset of convection tales place in two stages. There is first an apparently surface tension driven instability, occuring at subcritical temperature differences according to conventional theory. If then the temperature difference is increased, a second instability occurs which transform the first pattern into conventional strong hexagonal Benard cells. The second instability is in agreement with the critical temperature gradients predicted by Nield.
The interaction of evaporative and convective instabilities
NASA Astrophysics Data System (ADS)
Ozen, O.
Evaporative convection arises in a variety of natural and industrial processes, such as drying of lakebeds, heat pipe technology and dry-eye syndrome. The phenomenon of evaporative convection leads to an interfacial instability where an erstwhile flat surface becomes undulated as a control variable, such as temperature drop, exceeds a critical value. This instability has been investigated by others assuming that the vapor phase is infinitely deep and passive, i.e. vapor fluid dynamics has been ignored. However, when we look at some engineering processes, such as distillation columns, heat pipes and drying technologies where phase change takes place we might imagine that the assumption of an infinitely deep vapor layer or at least that of a passive vapor is inappropriate. Previous work on convection in bilayer systems with no phase-change suggests that active vapor layers play a major role in determining the stability of an interface. Hence, for the case of convection with phase-change, we will address this issue and try to answer the question whether the infinitely deep and passive vapor layer is a valid assumption. We have also investigated, theoretically, the gravity and surface tension gradient-driven instabilities occurring during the evaporation of a liquid into its own vapor taking into account the fluid dynamics of both phases and the finiteness of the domains of each phase, i.e. the liquid and its vapor are assumed to be confined between two horizontal plates, and different heating arrangements are applied. The effects of fluid layer depths, the evaporation rate and the temperature gradient applied across the fluids on the stability of the interface are studied. The modes of the flow pattern are determined for each scenario. The physics of the instability are explained and a comparison is made with the results of similar, yet physically different problems.
Aspect ratio effects on limited scrape-off layer plasma turbulence
NASA Astrophysics Data System (ADS)
Jolliet, Sébastien; Halpern, Federico D.; Loizu, Joaquim; Mosetto, Annamaria; Ricci, Paolo
2014-02-01
The drift-reduced Braginskii model describing turbulence in the tokamak scrape-off layer is written for a general magnetic configuration with a limiter. The equilibrium is then specified for a circular concentric magnetic geometry retaining aspect ratio effects. Simulations are then carried out with the help of the global, flux-driven fluid three-dimensional code GBS [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. Linearly, both simulations and simplified analytical models reveal a stabilization of ballooning modes. Nonlinearly, flux-driven nonlinear simulations give a pressure characteristic length whose trends are correctly captured by the gradient removal theory [Ricci and Rogers, Phys. Plasmas 20, 010702 (2013)], that assumes the profile flattening from the linear modes as the saturation mechanism. More specifically, the linear stabilization of ballooning modes is reflected by a 15% increase in the steady-state pressure gradient obtained from GBS nonlinear simulations when going from an infinite to a realistic aspect ratio.
NASA Astrophysics Data System (ADS)
Pec, Matej; Holtzman, Benjamin; Zimmerman, Mark; Kohlstedt, David
2016-04-01
Geochemical, geophysical and geological observations suggest that melt extraction from the partially molten mantle occurs by some sort of channelized flow. Melt-solid reactions can lead to melt channelization due to a positive feedback between melt flow and reaction. If a melt-solid reaction increases local permeability, subsequent flow is increased as well and promotes further reaction. This process can lead to the development of high-permeability channels which emerge from background flow. In nature, anastomozing tabular dunite bodies within peridotitic massifs are thought to represent fossilized channels that formed by reactive flow. The conditions under which such channels can emerge are treated by the reaction infiltration instability (RII) theory (e.g. Szymczak and Ladd 2014). In this contribution, we report the results of a series of Darcy type experiments designed to study the development of channels due to RII in mantle lithologies (Pec et al. 2015). We sandwiched a partially molten rock between a melt source and a porous sink and annealed it at high-pressures (P = 300 MPa) and high-temperatures (T = 1200° or 1250° C) under a controlled pressure gradient (∇P = 0-100 MPa/mm) for up to 5 hours. The partially molten rock is formed by 50:50 mixtures of San Carlos olivine (Ol, Fo ˜ 88) and clinopyroxene (Cpx) with either 4, 10 or 20 vol% of alkali basalt added. The source and sink are disks of alkali basalt and porous alumina, respectively. During the experiments, silica undersaturated melt from the melt source dissolves Cpx and precipitates an iron rich Ol (Fo ˜ 82) thereby forming a Cpx-free reaction layer at the melt source - partially molten rock interface. The melt fraction in the reaction layer increases significantly (40% melt) compared to the protolith, confirming that the reaction increases the permeability of the partially molten rock. In experiments annealed under a low pressure gradient (and hence slow melt flow velocity) the reaction layer is planar and no channels develop. However, if the melt migration velocity exceeds ˜5 μm/s the reaction layer locally protrudes into the partially molten rock forming finger-like melt-rich channels. The morphology and spacing of the channels depends on the initial melt fraction. With 20 vol% melt, multiple and voluminous channels with an elliptical core formed of pure melt develop. At lower melt contents, fewer and thinner channels develop. Our experiments demonstrate that melt-rock reactions can lead to melt channelization in mantle lithologies. The morphology of the channels seems to depend on the initial permeability perturbations present in the starting material. The observed lithological transformations are in broad agreement with natural observations. However, the resulting channels lack the tabular anastomozing shapes which are likely caused by shear deformation in nature. Therefore, both reaction-driven as well as stress-driven melt segregation have to interact in nature to form the observed dunite channels. Szymczak, P., and A. J. C. Ladd (2014), Reactive-infiltration instabilities in rocks. Part 2. Dissolution of a porous matrix, J. Fluid Mech., 738, 591-630. Pec, M., B. K. Holtzman, M. Zimmerman, and D. L. Kohlstedt (2015), Reaction infiltration instabilities in experiments on partially molten mantle rocks, Geology, 43(7), 575-578, doi:10.1130/G36611.1.
Stability of boundary layer flow based on energy gradient theory
NASA Astrophysics Data System (ADS)
Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong
2018-05-01
The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.
NASA Astrophysics Data System (ADS)
Romanelli, M.; Zocco, A.; Crisanti, F.; Contributors, JET-EFDA
2010-04-01
Understanding and modelling turbulent transport in thermonuclear fusion plasmas are crucial for designing and optimizing the operational scenarios of future fusion reactors. In this context, plasmas exhibiting state transitions, such as the formation of an internal transport barrier (ITB), are particularly interesting since they can shed light on transport physics and offer the opportunity to test different turbulence suppression models. In this paper, we focus on the modelling of ITB formation in the Joint European Torus (JET) [1] hybrid-scenario plasmas, where, due to the monotonic safety factor profile, magnetic shear stabilization cannot be invoked to explain the transition. The turbulence suppression mechanism investigated here relies on the increase in the plasma pressure gradient in the presence of a minority of energetic ions. Microstability analysis of the ion temperature gradient driven modes (ITG) in the presence of a fast-hydrogen minority shows that energetic ions accelerated by the ion cyclotron resonance heating (ICRH) system (hydrogen, nH,fast/nD,thermal up to 10%, TH,fast/TD,thermal up to 30) can increase the pressure gradient enough to stabilize the ITG modes driven by the gradient of the thermal ions (deuterium). Numerical analysis shows that, by increasing the temperature of the energetic ions, electrostatic ITG modes are gradually replaced by nearly electrostatic modes with tearing parity at progressively longer wavelengths. The growth rate of the microtearing modes is found to be lower than that of the ITG modes and comparable to the local E × B-velocity shearing rate. The above mechanism is proposed as a possible trigger for the formation of ITBs in this type of discharges.
Stabilization of the Rayleigh-Taylor instability in quantum magnetized plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L. F.; Ye, W. H.; He, X. T.
2012-07-15
In this research, stabilization of the Rayleigh-Taylor instability (RTI) due to density gradients, magnetic fields, and quantum effects, in an ideal incompressible plasma, is studied analytically and numerically. A second-order ordinary differential equation (ODE) for the RTI including quantum corrections, with a continuous density profile, in a uniform external magnetic field, is obtained. Analytic expressions of the linear growth rate of the RTI, considering modifications of density gradients, magnetic fields, and quantum effects, are presented. Numerical approaches are performed to solve the second-order ODE. The analytical model proposed here agrees with the numerical calculation. It is found that the densitymore » gradients, the magnetic fields, and the quantum effects, respectively, have a stabilizing effect on the RTI (reduce the linear growth of the RTI). The RTI can be completely quenched by the magnetic field stabilization and/or the quantum effect stabilization in proper circumstances leading to a cutoff wavelength. The quantum effect stabilization plays a central role in systems with large Atwood number and small normalized density gradient scale length. The presence of external transverse magnetic fields beside the quantum effects will bring about more stability on the RTI. The stabilization of the linear growth of the RTI, for parameters closely related to inertial confinement fusion and white dwarfs, is discussed. Results could potentially be valuable for the RTI treatment to analyze the mixing in supernovas and other RTI-driven objects.« less
NASA Technical Reports Server (NTRS)
Bullard, Brad
1998-01-01
During mainstage testing of the 60,000 lbf thrust Fastrac thrust chamber at MSFC's Test Stand 116 (TS 116), sustained, large amplitude oscillations near 530 Hz were observed in the pressure data. These oscillations were detected both in the RP-1 feedline, downstream of the cavitating venturi, and in the combustion chamber. The driver of the instability is believed to be feedline excitation driven by either periodic cavity collapse at the exit of the cavitating venturi or combustion instability. In covitating venturi, static pressure drops as the flow passes through a constriction resembling a converging-diverging nozzle until the vapor pressure is reached. At the venturi throat, the flow is essentially choked, which is why these devices are typically used for mass flow rate control and disturbance isolation. Typically, a total pressure drop of 15% or more across the venturi is required for cavitation. For much larger pressure differentials, unstable cavities can form and subsequently collapse downstream of the throat. Although the disturbances generated by cavitating venturis is generally considered to be broad-band, this type of phenomena could generate periodic behavior capable of exciting the feedline. An excitation brought about by combustion instability would result from the coupling of a combustion chamber acoustic mode and a feedline resonance frequency. This type of coupling is referred to as "buzz" and is not uncommon for engines in this thrust range.
Radial and local time structure of the Saturnian ring current, revealed by Cassini
NASA Astrophysics Data System (ADS)
Sergis, N.; Jackman, C. M.; Thomsen, M. F.; Krimigis, S. M.; Mitchell, D. G.; Hamilton, D. C.; Dougherty, M. K.; Krupp, N.; Wilson, R. J.
2017-02-01
We analyze particle and magnetic field data obtained between July 2004 and December 2013 in the equatorial magnetosphere of Saturn, by the Cassini spacecraft. The radial and local time distribution of the total (thermal and suprathermal) particle pressure and total plasma beta (ratio of particle to magnetic pressure) over radial distances from 5 to 16 Saturn radii (RS = 60,258 km) is presented. The average azimuthal current density Jϕ and its separate components (inertial, pressure gradient, and anisotropy) are computed as a function of radial distance and local time and presented as equatorial maps. We explore the relative contribution of different physical mechanisms that drive the ring current at Saturn. Results show that (a) the particle pressure is controlled by thermal plasma inside of 8 RS and by the hot ions beyond 12 RS, exhibiting strong local time asymmetry with higher pressures measured at the dusk and night sectors; (b) the plasma beta increases with radial distance and remains >1 beyond 8-10 RS for all local times; (c) the ring current is asymmetric in local time and forms a maximum region between 7 and 13 RS, with values up to 100-115 pA/m2; and (d) the ring current is inertial everywhere inside of 7 RS, exhibits a mixed nature between 7 and 11 RS and is pressure gradient driven beyond 11 RS, with the exception of the noon sector where the mixed nature persists. In the dawn sector, it appears strongly pressure gradient driven for a wider range of radial distance, consistent with fast return flow of hot, tenuous magnetospheric plasma following tail reconnection.
On the stability of radiation-pressure-dominated cavities
NASA Astrophysics Data System (ADS)
Kuiper, R.; Klahr, H.; Beuther, H.; Henning, Th.
2012-01-01
Context. When massive stars exert a radiation pressure onto their environment that is higher than their gravitational attraction (super-Eddington condition), they launch a radiation-pressure-driven outflow, which creates cleared cavities. These cavities should prevent any further accretion onto the star from the direction of the bubble, although it has been claimed that a radiative Rayleigh-Taylor instability should lead to the collapse of the outflow cavity and foster the growth of massive stars. Aims: We investigate the stability of idealized radiation-pressure-dominated cavities, focusing on its dependence on the radiation transport approach used in numerical simulations for the stellar radiation feedback. Methods: We compare two different methods for stellar radiation feedback: gray flux-limited diffusion (FLD) and ray-tracing (RT). Both methods are implemented in our self-gravity radiation hydrodynamics simulations for various initial density structures of the collapsing clouds, eventually forming massive stars. We also derive simple analytical models to support our findings. Results: Both methods lead to the launch of a radiation-pressure-dominated outflow cavity. However, only the FLD cases lead to prominent instability in the cavity shell. The RT cases do not show such instability; once the outflow has started, it precedes continuously. The FLD cases display extended epochs of marginal Eddington equilibrium in the cavity shell, making them prone to the radiative Rayleigh-Taylor instability. In the RT cases, the radiation pressure exceeds gravity by 1-2 orders of magnitude. The radiative Rayleigh-Taylor instability is then consequently suppressed. It is a fundamental property of the gray FLD method to neglect the stellar radiation temperature at the location of absorption and thus to underestimate the opacity at the location of the cavity shell. Conclusions: Treating the stellar irradiation in the gray FLD approximation underestimates the radiative forces acting on the cavity shell. This can lead artificially to situations that are affected by the radiative Rayleigh-Taylor instability. The proper treatment of direct stellar irradiation by massive stars is crucial for the stability of radiation-pressure-dominated cavities. Movies are available in electronic form at http://www.aanda.org
A stabilized element-based finite volume method for poroelastic problems
NASA Astrophysics Data System (ADS)
Honório, Hermínio T.; Maliska, Clovis R.; Ferronato, Massimiliano; Janna, Carlo
2018-07-01
The coupled equations of Biot's poroelasticity, consisting of stress equilibrium and fluid mass balance in deforming porous media, are numerically solved. The governing partial differential equations are discretized by an Element-based Finite Volume Method (EbFVM), which can be used in three dimensional unstructured grids composed of elements of different types. One of the difficulties for solving these equations is the numerical pressure instability that can arise when undrained conditions take place. In this paper, a stabilization technique is developed to overcome this problem by employing an interpolation function for displacements that considers also the pressure gradient effect. The interpolation function is obtained by the so-called Physical Influence Scheme (PIS), typically employed for solving incompressible fluid flows governed by the Navier-Stokes equations. Classical problems with analytical solutions, as well as three-dimensional realistic cases are addressed. The results reveal that the proposed stabilization technique is able to eliminate the spurious pressure instabilities arising under undrained conditions at a low computational cost.
Characterisation of minimal-span plane Couette turbulence with pressure gradients
NASA Astrophysics Data System (ADS)
Sekimoto, Atsushi; Atkinson, Callum; Soria, Julio
2018-04-01
The turbulence statistics and dynamics in the spanwise-minimal plane Couette flow with pressure gradients, so-called, Couette-Poiseuille (C-P) flow, are investigated using direct numerical simulation. The large-scale motion is limited in the spanwise box dimension as in the minimal-span channel turbulence of Flores & Jiménez (Phys. Fluids, vol. 22, 2010, 071704). The effect of the top wall, where normal pressure-driven Poiseuille flow is realised, is distinguished from the events on the bottom wall, where the pressure gradient results in mild or almost-zero wall-shear stress. A proper scaling of turbulence statistics in minimal-span C-P flows is presented. Also the ‘shear-less’ wall-bounded turbulence, where the Corrsin shear parameter is very weak compared to normal wall-bounded turbulence, represents local separation, which is also observed as spanwise streaks of reversed flow in full-size plane C-P turbulence. The local separation is a multi-scale event, which grows up to the order of the channel height even in the minimal-span geometry.
NASA Astrophysics Data System (ADS)
Fiore, C. L.; Rowan, W. L.; Dominguez, A.; Hubbard, A. E.; Ince-Cushman, A.; Greenwald, M. J.; Lin, L.; Marmar, E. S.; Reinke, M.; Rice, J. E.; Zhurovich, K.
2007-11-01
Internal transport barrier plasmas can arise spontaneously in ohmic Alcator C-Mod plasmas where an EDA H-mode has been developed by magnetic field ramping. These ohmic ITBs share the hallmarks of ITBs created with off-axis ICRF injection in that they have highly peaked density and pressure profiles and the peaking can be suppressed by on-axis ICRF. There is a reduction of particle and thermal flux in the barrier region which then allows the neoclassical pinch to peak the central density. Recent work on ITB onset conditions [1] which was motivated by turbulence studies [2] points to the broadening of the Ti profile with off-axis ICRF acting to reduce the ion temperature gradient. This suppresses ITG instability driven particle fluxes, which is thought to be the primary mechanism for ITB formation. The object of this study is to examine the characteristics of ohmic ITBs to find whether the stability of plasmas and the plasma parameters support the onset model. [1]K. Zhurovich, et al., To be published in Nuclear Fusion [2] D. R. Ernst, et al., Phys. Plasmas 11, 2637 (2004)
Generalized Galileons: instabilities of bouncing and Genesis cosmologies and modified Genesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libanov, M.; Moscow Institute of Physics and Technology,Institutskii per. 9, 141700 Dolgoprudny, Moscow Region; Mironov, S.
2016-08-18
We study spatially flat bouncing cosmologies and models with the early-time Genesis epoch in a popular class of generalized Galileon theories. We ask whether there exist solutions of these types which are free of gradient and ghost instabilities. We find that irrespectively of the forms of the Lagrangian functions, the bouncing models either are plagued with these instabilities or have singularities. The same result holds for the original Genesis model and its variants in which the scale factor tends to a constant as t→−∞. The result remains valid in theories with additional matter that obeys the Null Energy Condition andmore » interacts with the Galileon only gravitationally. We propose a modified Genesis model which evades our no-go argument and give an explicit example of healthy cosmology that connects the modified Genesis epoch with kination (the epoch still driven by the Galileon field, which is a conventional massless scalar field at that stage).« less
A transverse separate-spin-evolution streaming instability
NASA Astrophysics Data System (ADS)
Iqbal, Z.; Andreev, Pavel A.; Murtaza, G.
2018-05-01
By using the separate spin evolution quantum hydrodynamical model, the instability of transverse mode due to electron streaming in a partially spin polarized magnetized degenerate plasma is studied. The electron spin polarization gives birth to a new spin-dependent wave (i.e., separate spin evolution streaming driven ordinary wave) in the real wave spectrum. It is shown that the spin polarization and streaming speed significantly affect the frequency of this new mode. Analyzing growth rate, it is found that the electron spin effects reduce the growth rate and shift the threshold of instability as well as its termination point towards higher values. Additionally, how the other parameters like electron streaming and Fermi pressure influence the growth rate is also investigated. Current study can help towards better understanding of the existence of new waves and streaming instability in the astrophysical plasmas.
Evaluating gyro-viscosity in the Kelvin-Helmholtz instability by kinetic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umeda, Takayuki, E-mail: taka.umeda@nagoya-u.jp; Yamauchi, Natsuki; Wada, Yasutaka
2016-05-15
In the present paper, the finite-Larmor-radius (gyro-viscous) term [K. V. Roberts and J. B. Taylor, Phys. Rev. Lett. 8, 197–198 (1962)] is evaluated by using a full kinetic Vlasov simulation result of the Kelvin-Helmholtz instability (KHI). The velocity field and the pressure tensor are calculated from the high-resolution data of the velocity distribution functions obtained by the Vlasov simulation, which are used to approximate the Finite-Larmor-Radius (FLR) term according to Roberts and Taylor [Phys. Rev. Lett. 8, 197–198 (1962)]. The direct comparison between the pressure tensor and the FLR term shows an agreement. It is also shown that the anisotropicmore » pressure gradient enhanced the linear growth of the KHI when the inner product between the vorticity of the primary velocity shear layer and the magnetic field is negative, which is consistent with the previous FLR-magnetohydrodynamic simulation result. This result suggests that it is not sufficient for reproducing the kinetic simulation result by fluid simulations to include the FLR term (or the pressure tensor) only in the equation of motion for fluid.« less
NASA Astrophysics Data System (ADS)
Amininasab, S.; Sadighi-Bonabi, R.; Khodadadi Azadboni, F.
2018-02-01
Shear stress effect has been often neglected in calculation of the Weibel instability growth rate in laser-plasma interactions. In the present work, the role of the shear stress in the Weibel instability growth rate in the dense plasma with density gradient is explored. By increasing the density gradient, the shear stress threshold is increasing and the range of the propagation angles of growing modes is limited. Therefore, by increasing steps of the density gradient plasma near the relativistic electron beam-emitting region, the Weibel instability occurs at a higher stress flow. Calculations show that the minimum value of the stress rate threshold for linear polarization is greater than that of circular polarization. The Wiebel instability growth rate for linear polarization is 18.3 times circular polarization. One sees that for increasing stress and density gradient effects, there are smaller maximal growth rates for the range of the propagation angles of growing modes /π 2 < θ m i n < π and /3 π 2 < θ m i n < 2 π in circular polarized plasma and for /k c ω p < 4 in linear polarized plasma. Therefore, the shear stress and density gradient tend to stabilize the Weibel instability for /k c ω p < 4 in linear polarized plasma. Also, the shear stress and density gradient tend to stabilize the Weibel instability for the range of the propagation angles of growing modes /π 2 < θ m i n < π and /3 π 2 < θ m i n < 2 π in circular polarized plasma.
Thin film instabilities: Rayleigh-Taylor with thermocapillarity and Kolmogorov flow in a soap film
NASA Astrophysics Data System (ADS)
Burgess, John Matthew
The Rayleigh-Taylor instability occurs when a more dense fluid layer is suspended above a less dense fluid layer in a gravitational field. The horizontal interface between the two fluids is unstable to infinitesimal deformations and the dense fluid falls. To counteract the destabilizing effects of gravity on the interface between two thin fluid layers, we apply a vertical temperature gradient, heating from below. The dependence of surface tension on temperature (``thermocapillarity'') can cause spatially-varying interfacial forces between two immiscible fluid layers if a variation in temperature along the interface is introduced. With an applied vertical temperature gradient, the deforming interface spontaneously develops temperature variations which locally adjust the surface tension to restore a flat interface. We find that these surface tension gradients can stabilize a more dense thin fluid layer (silicone oil, 0.015 cm thick) above a less dense thin fluid layer (air, 0.025 cm thick) in a gravitational field, in qualitative agreement with linear stability analysis. This is the first experimental observation of the stabilization of Rayleigh-Taylor instability by thermocapillary forces. We also examine the instability of a soap film flow driven by a time-independent force that is spatially periodic in the direction perpendicular to the forcing (Kolmogorov flow). The film is in the x- y plane, where the forcing approximates a shape sin (y)x̂. Linear stability analysis of an idealized model of this flow predicts a critical Reynolds number Rc~
Sigmoidal equilibria and eruptive instabilities in laboratory magnetic flux ropes
NASA Astrophysics Data System (ADS)
Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.
2013-12-01
The Magnetic Reconnection Experiment (MRX) has recently been modified to study quasi-statically driven line-tied magnetic flux ropes in the context of storage-and-release eruptions in the corona. Detailed in situ magnetic measurements and supporting MHD simulations permit quantitative analysis of the plasma behavior. We find that the behavior of these flux ropes depends strongly on the properties of the applied potential magnetic field arcade. For example, when the arcade is aligned parallel to the flux rope footpoints, force free currents induced in the expanding rope modify the pressure and tension in the arcade, resulting in a confined, quiescent discharge with a saturated kink instability. When the arcade is obliquely aligned to the footpoints, on the other hand, a highly sigmoidal equilibrium forms that can dynamically erupt (see Fig. 1 and Fig. 2). To our knowledge, these storage-and-release eruptions are the first of their kind to be produced in the laboratory. A new 2D magnetic probe array is used to map out the internal structure of the flux ropes during both the storage and the release phases of the discharge. The kink instability and the torus instability are studied as candidate eruptive mechanisms--the latter by varying the vertical gradient of the potential field arcade. We also investigate magnetic reconnection events that accompany the eruptions. The long-term objective of this work is to use internal magnetic measurements of the flux rope structure to better understand the evolution and eruption of comparable structures in the corona. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the Center for Magnetic Self-Organization (CMSO). Qualitative sketches of flux ropes formed in (1) a parallel potential field arcade; and (2) an oblique potential field arcade. One-dimensional magnetic measurements from (1) a parallel arcade discharge that is confined; and (2) an oblique arcade discharge that erupts.
Song, Hongjun; Wang, Yi; Pant, Kapil
2013-01-01
This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.
Song, Hongjun; Wang, Yi; Pant, Kapil
2012-01-01
This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space. PMID:23554584
Zhang, Wei; Zeng, Zhao Yi; Ge, Ni Na; Li, Zhi Guo
2016-01-01
For a further understanding of the phase transitions mechanism in type-I silicon clathrates K8Si46, ab initio self-consistent electronic calculations combined with linear-response method have been performed to investigate the vibrational properties of alkali metal K atoms encapsulated type-I silicon-clathrate under pressure within the framework of density functional perturbation theory. Our lattice dynamics simulation results showed that the pressure induced phase transition of K8Si46 was believed to be driven by the phonon instability of the calthrate lattice. Analysis of the evolution of the partial phonon density of state with pressure, a legible dynamic picture for both guest K atoms and host lattice, was given. In addition, based on phonon calculations and combined with quasi-harmonic approximation, the specific heat of K8Si46 was derived, which agreed very well with experimental results. Also, other important thermal properties including the thermal expansion coefficients and Grüneisen parameters of K8Si46 under different temperature and pressure were also predicted. PMID:28773736
LAPD Studies on Kelvin-Helmholtz turbulence and Transport
NASA Astrophysics Data System (ADS)
Perez, Jean; Horton, Wendel; Carter, Troy; Gekelman, Walter; Bengtson, Roger; Gentle, Kenneth
2004-11-01
New results on the partial transport barrier and turbulence produced by a strong E×B jet of plasma shear flow are reported. By controlled biasing of the cathode-anode structure of the 20 m long, 1 m diameter Large Plasma Device at UCLA, a strongly localized shear flow is driven in the steady state. The fluctuations are shown to be well described by 2D electrostatic potential simulations of the Kelvin-Helmholtz instability in preprint IFSR-1002. Now, we exam the transport of particles and report the particle flux data for transport across the plasma jet. The mean ion saturation current shows that there is a steep density gradient on the core side of the jet with the foot of the density gradient near the shear layer . We consider the motion of test particles launched from the core side of the layer and calculate the probablity distribution of the first exit times. The density gradient of driven drift waves is also discussed. Experimentally, we propose to use optical tagging and laser induced fluorescence to follow particle trajectories across the shear layer in LAPD. Work supported by DOE grant DE-FG02-04ER54742. Experimental work was performed at the UCLA Basic Plasma Science Facility which is funded by NSF and DOE.
Models of non-Newtonian Hele-Shaw flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondic, L.; Palffy-Muhoray, P.; Shelley, M.J.
1996-11-01
We study the Saffman-Taylor instability of a non-Newtonian fluid in a Hele-Shaw cell. Using a fluid model with shear-rate dependent viscosity, we derive a Darcy{close_quote}s law whose viscosity depends upon the squared pressure gradient. This yields a natural, nonlinear boundary value problem for the pressure. A model proposed recently by Bonn {ital et} {ital al}. [Phys. Rev. Lett. {bold 75}, 2132 (1995)] follows from this modified law. For a shear-thinning liquid, our derivation shows strong constraints upon the fluid viscosity{emdash} strong shear-thinning does not allow the construction of a unique Darcy{close_quote}s law, and is related to the appearance of slipmore » layers in the flow. For a weakly shear-thinning liquid, we calculate corrections to the Newtonian instability of an expanding bubble in a radial cell. {copyright} {ital 1996 The American Physical Society.}« less
Generation of region 1 current by magnetospheric pressure gradients
NASA Technical Reports Server (NTRS)
Yang, Y. S.; Spiro, R. W.; Wolf, R. A.
1994-01-01
The Rice Convection Model (RCM) is used to illustrate theoretical possibilities for generating region 1 Birkeland currents by pressure gradients on closed field lines in the Earth's magnetosphere. Inertial effects and viscous forces are neglected. The RCM is applied to idealized cases, to emphasize the basic physical ideas rather than realistic representation of the actual magnetosphere. Ionospheric conductance is taken to be uniform, and the simplest possible representations of the magnetospheric plasma are used. Three basic cases are considered: (1) the case of pure northward Interplanetary Magnetic Field (IMF), with cusp merging assumed to create new closed field lines near the nose of the magnetosphere, following the suggestion by Song and Russell (1992); (2) the case where Dungey-type reconnection occurs at the nose, but magnetosheath plasma somehow enters closed field lines on the dawnside and duskside of the merging region, causing a pressure-driven low-latitude boundary layer; and (3) the case where Dungey-type reconnection occurs at the nose, but region 1 currents flow on sunward drifting plasma sheet field lines. In case 1, currents of region 1 sense are generated by pressure gradients, but those currents do not supply the power for ionospheric convection. Results for case 2 suggest that pressure gradients at the inner edge of the low-latitude boundary layer might generate a large fraction of the region 1 Birkeland currents that drive magnetospheric convection. Results for case 3 indicate that pressure gradients in the plasma sheet could provide part of the region 1 current.
NASA Astrophysics Data System (ADS)
Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel
2015-02-01
We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ~ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p ∥ and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ~ 0.3 langBrang in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ~ 0.1 langBrang, the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.
Demonstration of current drive by a rotating magnetic dipole field
NASA Astrophysics Data System (ADS)
Giersch, L.; Slough, J. T.; Winglee, R.
2007-04-01
Abstract.A dipole-like rotating magnetic field was produced by a pair of circular, orthogonal coils inside a metal vacuum chamber. When these coils were immersed in plasma, large currents were driven outside the coils: the currents in the plasma were generated and sustained by the rotating magnetic dipole (RMD) field. The peak RMD-driven current was at roughly two RMD coil radii, and this current (60 kA m-) was sufficient to reverse the ambient magnetic field (33 G). Plasma density, electron temperature, magnetic field and current probes indicated that plasma formed inside the coils, then expanded outward until the plasma reached equilibrium. This equilibrium configuration was adequately described by single-fluid magnetohydrodynamic equilibrium, wherein the cross product of the driven current and magnetic filed was approximately equal to the pressure gradient. The ratio of plasma pressure to magnetic field pressure, β, was locally greater than unity.
General kinetic solution for the Biermann battery with an associated pressure anisotropy generation
NASA Astrophysics Data System (ADS)
Schoeffler, K. M.; Silva, L. O.
2018-01-01
Fully kinetic analytic calculations of an initially Maxwellian distribution with arbitrary density and temperature gradients exhibit the development of temperature anisotropies and magnetic field growth associated with the Biermann battery. The calculation, performed by taking a small order expansion of the ratio of the Debye length to the gradient scale, predicts anisotropies and magnetic fields as a function of space given an arbitrary temperature and density profile. These predictions are shown to qualitatively match the values measured from particle-in-cell simulations, where the development of the Weibel instability occurs at the same location and with a wavenumber aligned with the predicted temperature anisotropy.
NASA Astrophysics Data System (ADS)
Oberparleiter, M.; Jenko, F.; Told, D.; Doerk, H.; Görler, T.
2016-04-01
Neoclassical and turbulent transport in tokamaks has been studied extensively over the past decades, but their possible interaction remains largely an open question. The two are only truly independent if the length scales governing each of them are sufficiently separate, i.e., if the ratio ρ* between ion gyroradius and the pressure gradient scale length is small. This is not the case in particularly interesting regions such as transport barriers. Global simulations of a collisional ion-temperature-gradient-driven microturbulence performed with the nonlinear global gyrokinetic code Gene are presented. In particular, comparisons are made between systems with and without neoclassical effects. In fixed-gradient simulations, the modified radial electric field is shown to alter the zonal flow pattern such that a significant increase in turbulent transport is observed for ρ*≳1 /300 . Furthermore, the dependency of the flux on the collisionality changes. In simulations with fixed power input, we find that the presence of neoclassical effects decreases the frequency and amplitude of intermittent turbulent transport bursts (avalanches) and thus plays an important role for the self-organisation behaviour.
Pressure-driven occlusive flow of a confined red blood cell.
Savin, Thierry; Bandi, M M; Mahadevan, L
2016-01-14
When red blood cells (RBCs) move through narrow capillaries in the microcirculation, they deform as they flow. In pathophysiological processes such as sickle cell disease and malaria, RBC motion and flow are severely restricted. To understand this threshold of occlusion, we use a combination of experiment and theory to study the motion of a single swollen RBC through a narrow glass capillary of varying inner diameter. By tracking the movement of the squeezed cell as it is driven by a controlled pressure drop, we measure the RBC velocity as a function of the pressure gradient as well as the local capillary diameter, and find that the effective blood viscosity in this regime increases with both decreasing RBC velocity and tube radius by following a power-law that depends upon the length of the confined cell. Our observations are consistent with a simple elasto-hydrodynamic model and highlight the role of lateral confinement in the occluded pressure-driven slow flow of soft confined objects.
Slope instability in complex 3D topography promoted by convergent 3D groundwater flow
NASA Astrophysics Data System (ADS)
Reid, M. E.; Brien, D. L.
2012-12-01
Slope instability in complex topography is generally controlled by the interaction between gravitationally induced stresses, 3D strengths, and 3D pore-fluid pressure fields produced by flowing groundwater. As an example of this complexity, coastal bluffs sculpted by landsliding commonly exhibit a progression of undulating headlands and re-entrants. In this landscape, stresses differ between headlands and re-entrants and 3D groundwater flow varies from vertical rainfall infiltration to lateral groundwater flow on lower permeability layers with subsequent discharge at the curved bluff faces. In plan view, groundwater flow converges in the re-entrant regions. To investigate relative slope instability induced by undulating topography, we couple the USGS 3D limit-equilibrium slope-stability model, SCOOPS, with the USGS 3D groundwater flow model, MODFLOW. By rapidly analyzing the stability of millions of potential failures, the SCOOPS model can determine relative slope stability throughout the 3D domain underlying a digital elevation model (DEM), and it can utilize both fully 3D distributions of pore-water pressure and material strength. The two models are linked by first computing a groundwater-flow field in MODFLOW, and then computing stability in SCOOPS using the pore-pressure field derived from groundwater flow. Using these two models, our analyses of 60m high coastal bluffs in Seattle, Washington showed augmented instability in topographic re-entrants given recharge from a rainy season. Here, increased recharge led to elevated perched water tables with enhanced effects in the re-entrants owing to convergence of groundwater flow. Stability in these areas was reduced about 80% compared to equivalent dry conditions. To further isolate these effects, we examined groundwater flow and stability in hypothetical landscapes composed of uniform and equally spaced, oscillating headlands and re-entrants with differing amplitudes. The landscapes had a constant slope for both headlands and re-entrants to minimize slope effects on stability. Despite these equal slopes, our analyses, given dry conditions, illustrated that the headlands can be 5-7% less stable than the re-entrants, owing to the geometry of the 3D failure mass with the lowest stability. We then simulated groundwater flow in these landscapes; flow was caused by recharge perching on a horizontal low permeability layer with discharge at the bluff faces. By systematically varying recharge, hydraulic conductivity of the material, and conductance at the bluffs, we created different 3D pore-pressure fields. Recharge rates and hydraulic conductivities controlled the height of the water table, whereas bluff conductance influenced the gradient of the water table near the bluff face. Given elevated water tables with steep gradients, bluffs in the re-entrants became unstable where flow converged. Thus, with progressively stronger effects from water flow, overall instability evolved from relatively unstable headlands to more uniform stability to relatively unstable re-entrants. Larger re-entrants led to more 3D flow convergence and greater localized instability. One- or two-dimensional models cannot fully characterize slope instability in complex topography.
NASA Astrophysics Data System (ADS)
Rathore, Prerana; Sharma, Vivek
`Tears of wine' refer to the rows of wine-drops that spontaneously emerge within a glass of strong wine. Evaporation-driven Marangoni flows near the meniscus of water-alcohol mixtures drive liquid upward forming a thin liquid film, and a rim or ridge forms near the moving contact line. Eventually the rim undergoes an instability forming drops, that roll back into bulk reservoir forming so called tears or legs of wine. Most studies in literature argue the evaporation of more volatile, lower surface tension component (alcohol) results in a concentration-dependent surface tension gradient that drives the climbing flow within the thin film. Though it is well-known that evaporative cooling can create temperature gradients that could provide additional contribution to the climbing flows, the role of thermocapillary flows is less well-understood. Furthermore, the patterns, flows and instabilities that occur near the rim, and determine the size and periodicity of tears, are not well-studied. Using experiments and theory, we visualize and analyze the formation and growth of tears of wine. The sliding drops, released from the rim towards the bulk reservoir, show oscillations and a cascade of fascinating flows that are analyzed for the first time.
Cell Blebbing in Confined Microfluidic Environments
Ibo, Markela; Srivastava, Vasudha; Robinson, Douglas N.; Gagnon, Zachary R.
2016-01-01
Migrating cells can extend their leading edge by forming myosin-driven blebs and F-actin-driven pseudopods. When coerced to migrate in resistive environments, Dictyostelium cells switch from using predominately pseudopods to blebs. Bleb formation has been shown to be chemotactic and can be influenced by the direction of the chemotactic gradient. In this study, we determine the blebbing responses of developed cells of Dictyostelium discoideum to cAMP gradients of varying steepness produced in microfluidic channels with different confining heights, ranging between 1.7 μm and 3.8 μm. We show that microfluidic confinement height, gradient steepness, buffer osmolarity and Myosin II activity are important factors in determining whether cells migrate with blebs or with pseudopods. Dictyostelium cells were observed migrating within the confines of microfluidic gradient channels. When the cAMP gradient steepness is increased from 0.7 nM/μm to 20 nM/μm, cells switch from moving with a mixture of blebs and pseudopods to moving only using blebs when chemotaxing in channels with confinement heights less than 2.4 μm. Furthermore, the size of the blebs increases with gradient steepness and correlates with increases in myosin-II localization at the cell cortex. Reduction of intracellular pressure by high osmolarity buffer or inhibition of myosin-II by blebbistatin leads to a decrease in bleb formation and bleb size. Together, our data reveal that the protrusion type formed by migrating cells can be influenced by the channel height and the steepness of the cAMP gradient, and suggests that a combination of confinement-induced myosin-II localization and cAMP-regulated cortical contraction leads to increased intracellular fluid pressure and bleb formation. PMID:27706201
NASA Astrophysics Data System (ADS)
Wang, W. P.; Shen, B. F.; Xu, Z. Z.
2017-01-01
The accelerating gradient of a proton beam is a crucial factor for the stable radiation pressure acceleration, because quickly accelerating protons into the relativistic region may reduce the multidimensional instability grow to a certain extent. In this letter, a shape-tailored laser is designed to accelerate the protons in a controllable high accelerating gradient in theory. Finally, a proton beam in the gigaelectronvolt range with an energy spread of ˜2.4% is obtained in one-dimensional particle-in-cell simulations. With the future development of the high-intense laser, the ability to accelerate a high energy proton beam using a shape-tailored laser will be important for realistic proton applications, such as fast ignition for inertial confinement fusion, medical therapy, and proton imaging.
Magnetic effect for electrochemically driven cellular convection.
Nakabayashi, S; Inokuma, K; Karantonis, A
1999-06-01
Hydrodynamic instability analogous to Rayleigh-Bénard convection is observed in an electrolytic solution between two parallel copper wire electrodes. The laser interferometric technique can reveal the dissipation structure created by the motion of the fluid, which is controlled electrochemically. It is shown that under the presence of horizontal magnetic field the roll cells move horizontally along the electrodes. The electrochemically driven convection is simply controlled and monitored by setting and measuring the electrochemical parameters and forms many kinds of spatiotemporal patterns, especially under the magnetic field. The phenomenon is modeled by considering a Boussinesq fluid under a concentration gradient. The stability of the resulting equations is studied by linear stability analysis. The time dependent nonlinear system is investigated numerically and the main features of the experimental response are reproduced.
A model of energetic ion effects on pressure driven tearing modes in tokamaks
Halfmoon, M. R.; Brennan, D. P.
2017-06-05
Here, the effects that energetic trapped ions have on linear resistive magnetohydrodynamic (MHD) instabilities are studied in a reduced model that captures the essential physics driving or damping the modes through variations in the magnetic shear. The drift-kinetic orbital interaction of a slowing down distribution of trapped energetic ions with a resistive MHD instability is integrated to a scalar contribution to the perturbed pressure, and entered into an asymptotic matching formalism for the resistive MHD dispersion relation. Toroidal magnetic field line curvature is included to model trapping in the particle distribution, in an otherwise cylindrical model. The focus is onmore » a configuration that is driven unstable to the m/n = 2/1 mode by increasing pressure, where m is the poloidal mode number and n is the toroidal. The particles and pressure can affect the mode both in the core region where there can be low and reversed shear and outside the resonant surface in significant positive shear. The results show that the energetic ions damp and stabilize the mode when orbiting in significant positive shear, increasing the marginal stability boundary. However, the inner core region contribution with low and reversed shear can drive the mode unstable. This effect of shear on the energetic ion pressure contribution is found to be consistent with the literature. These results explain the observation that the 2/1 mode was found to be damped and stabilized by energetic ions in delta δf-MHD simulations of tokamak experiments with positive shear throughout, while the 2/1 mode was found to be driven unstable in simulations of experiments with weakly reversed shear in the core. This is also found to be consistent with related experimental observations of the stability of the 2/1 mode changing significantly with core shear.« less
A model of energetic ion effects on pressure driven tearing modes in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halfmoon, M. R.; Brennan, D. P.
Here, the effects that energetic trapped ions have on linear resistive magnetohydrodynamic (MHD) instabilities are studied in a reduced model that captures the essential physics driving or damping the modes through variations in the magnetic shear. The drift-kinetic orbital interaction of a slowing down distribution of trapped energetic ions with a resistive MHD instability is integrated to a scalar contribution to the perturbed pressure, and entered into an asymptotic matching formalism for the resistive MHD dispersion relation. Toroidal magnetic field line curvature is included to model trapping in the particle distribution, in an otherwise cylindrical model. The focus is onmore » a configuration that is driven unstable to the m/n = 2/1 mode by increasing pressure, where m is the poloidal mode number and n is the toroidal. The particles and pressure can affect the mode both in the core region where there can be low and reversed shear and outside the resonant surface in significant positive shear. The results show that the energetic ions damp and stabilize the mode when orbiting in significant positive shear, increasing the marginal stability boundary. However, the inner core region contribution with low and reversed shear can drive the mode unstable. This effect of shear on the energetic ion pressure contribution is found to be consistent with the literature. These results explain the observation that the 2/1 mode was found to be damped and stabilized by energetic ions in delta δf-MHD simulations of tokamak experiments with positive shear throughout, while the 2/1 mode was found to be driven unstable in simulations of experiments with weakly reversed shear in the core. This is also found to be consistent with related experimental observations of the stability of the 2/1 mode changing significantly with core shear.« less
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
NASA Astrophysics Data System (ADS)
Duff, James; Sarff, John; Ding, Weixing; Brower, David; Parke, Eli; Chapman, Brett; Terry, Paul; Pueschel, M. J.; Williams, Zach
2017-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM). Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking, which are suppressed via inductive control for this work. The improved confinement is associated with an increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have f 50 kHz, kϕρs < 0.14 , and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in global tearing mode associated fluctuations, their amplitude increases with local density gradient, and they exhibit a density-gradient threshold at R /Ln 15 . The GENE code, modified for the RFP, predicts the onset of density-gradient-driven TEM for these strong-gradient plasma conditions. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations, comparable to experimental magnetic fluctuations, causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Work supported by US DOE.
Shock interaction with a two-gas interface in a novel dual-driver shock tube
NASA Astrophysics Data System (ADS)
Labenski, John R.
Fluid instabilities exist at the interface between two fluids having different densities if the flow velocity and density gradient are anti-parallel or if a shock wave crosses the boundary. The former case is called the Rayleigh-Taylor (R-T) instability and the latter, the Richtmyer-Meshkov (R-M) instability. Small initial perturbations on the interface destabilize and grow into larger amplitude structures leading to turbulent mixing. Instabilities of this type are seen in inertial confinement fusion (ICF) experiments, laser produced plasmas, supernova explosions, and detonations. A novel dual-driver shock tube was used to investigate the growth rate of the R-M instability. One driver is used to create an argon-refrigerant interface, and the other at the opposite end of the driven section generates a shock to force the interface with compressible flows behind the shock. The refrigerant gas in the first driver is seeded with sub-micron oil droplets for visualization of the interface. The interface travels down the driven section past the test section for a fixed amount of time. A stronger shock of Mach 1.1 to 1.3 drives the interface back past the test section where flow diagnostics are positioned. Two schlieren systems record the density fluctuations while light scattering detectors record the density of the refrigerant as a function of position over the interface. A pair of digital cameras take stereo images of the interface, as mapped out by the tracer particles under illumination by a Q-switched ruby laser. The amount of time that the interface is allowed to travel up the driven section determines the interaction time as a control. Comparisons made between the schlieren signals, light scattering detector outputs, and the images quantify the fingered characteristics of the interface and its growth due to shock forcing. The results show that the interface has a distribution of thickness and that the interaction with a shock further broadens the interface. The growth rate was found to exhibit a dependence on the shock strength.
NASA Astrophysics Data System (ADS)
Fraggedakis, D.; Kouris, Ch.; Dimakopoulos, Y.; Tsamopoulos, J.
2015-08-01
We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our volume-of-fluid algorithm is used to solve the governing equations. First, the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then, it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow, or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray, and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results [I. Cohen et al., "Two fluid drop snap-off problem: Experiments and theory," Phys. Rev. Lett. 83, 1147-1150 (1999)]. Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our result provides deeper insights into the mechanism of the pattern transitions and is in agreement with previous studies on core-annular flow [Ch. Kouris and J. Tsamopoulos, "Core-annular flow in a periodically constricted circular tube, I. Steady state, linear stability and energy analysis," J. Fluid Mech. 432, 31-68 (2001) and Ch. Kouris et al., "Comparison of spectral and finite element methods applied to the study of interfacial instabilities of the core-annular flow in an undulating tube," Int. J. Numer. Methods Fluids 39(1), 41-73 (2002)], segmented flow [E. Lac and J. D. Sherwood, "Motion of a drop along the centreline of a capillary in a pressure-driven flow," J. Fluid Mech. 640, 27-54 (2009)], and churn flow [R. Y. Bai et al., "Lubricated pipelining—Stability of core annular-flow. 5. Experiments and comparison with theory," J. Fluid Mech. 240, 97-132 (1992)].
Drying paint: from micro-scale dynamics to mechanical instabilities
NASA Astrophysics Data System (ADS)
Goehring, Lucas; Li, Joaquim; Kiatkirakajorn, Pree-Cha
2017-04-01
Charged colloidal dispersions make up the basis of a broad range of industrial and commercial products, from paints to coatings and additives in cosmetics. During drying, an initially liquid dispersion of such particles is slowly concentrated into a solid, displaying a range of mechanical instabilities in response to highly variable internal pressures. Here we summarize the current appreciation of this process by pairing an advection-diffusion model of particle motion with a Poisson-Boltzmann cell model of inter-particle interactions, to predict the concentration gradients in a drying colloidal film. We then test these predictions with osmotic compression experiments on colloidal silica, and small-angle X-ray scattering experiments on silica dispersions drying in Hele-Shaw cells. Finally, we use the details of the microscopic physics at play in these dispersions to explore how two macroscopic mechanical instabilities-shear-banding and fracture-can be controlled. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'
A Study of Single Pass Ion Effects at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrd, J.M.; Thomson, J.; /LBL, Berkeley
2011-09-13
We report the results of experiments on a 'fast beam-ion instability' at the Advanced Light Source (ALS). This ion instability, which can arise even when the ions are not trapped over multiple beam passages, will likely be important for many future accelerators. In our experiments, we filled the ALS storage ring with helium gas, raising the pressure approximately two orders of magnitude above the nominal pressure. With gaps in the bunch train large enough to avoid conventional (multi-turn) ion trapping, we observed a factor of 2-3 increase in the vertical beam size along with coherent beam oscillations which increased alongmore » the bunch train. Ion trapping has long been recognized as a potential limitation in electron storage rings. The ions, generated by beam-gas collisions, become trapped in the negative potential of the beam and accumulate over multiple beam passages. The trapped ions are then observed to cause a number of deleterious effects such as an increasing beam phase space, a broadening and shifting of the beam transverse oscillation frequencies (tunes), collective beam instabilities, and beam lifetime reductions. All of these effects are of concern for the next generation of accelerators, such as the B-factories or damping rings for future linear colliders, which will store high beam currents with closely spaced bunches and ultra-low beam emittances. One of the standard solutions used to prevent ion trapping is to include a gap in the bunch train which is long compared to the bunch spacing. In this case, the ions are first strongly-focused by the passing electron bunches and then over-focused in the gap. With a sufficiently large gap, the ions can be driven to large amplitudes where they form a diffuse halo and do not affect the beam. In this paper, we describe experiments that study a new regime of transient ion instabilities predicted to arise in future electron storage rings, and linacs with bunch trains. These future rings and linacs, which will be operated with higher beam currents, small transverse beam emittances, and long bunch trains, will use ion clearing gaps to prevent conventional ion trapping. But, while the ion clearing gap may suppress the conventional ion instabilities, it will not suppress a transient beam-ion instability where ions generated and trapped during the passage of a single train lead to a fast instability. While both conventional and transient ion instabilities have the same origin, namely ions produced by the beam, they have different manifestations and, more importantly, the new transient instability can arise even after the conventional ion instability is cured. This new instability is called the 'Fast Beam-Ion Instability' (FBII). In many future rings, the FBII is predicted to have very fast growth rates, much faster than the damping rates of existing and proposed transverse feedback systems, and thus is a potential limitation. To study the FBII, we performed experiments at the ALS, a 1.5 GeV electron storage ring. At the nominal ALS pressure of about 0.24 nTorr, the FBII is not evident. To study the instability, we intentionally added helium gas to the storage-ring vacuum system until the residual gas pressure was increased about 80 nTorr. This brought the predicted growth rate of the instability at least an order of magnitude above the growth rate of conventional multibunch instabilities driven by the RF cavities and above the damping rate of the transverse feedback system (TFB) in the ALS and, thereby, established conditions very similar to those in a future storage ring. We then filled the ring with a relatively short train of bunches, suppressing conventional ion instabilities. In the following, we will first briefly describe This paper describes the experiment and results in more detail.« less
An enstrophy-based linear and nonlinear receptivity theory
NASA Astrophysics Data System (ADS)
Sengupta, Aditi; Suman, V. K.; Sengupta, Tapan K.; Bhaumik, Swagata
2018-05-01
In the present research, a new theory of instability based on enstrophy is presented for incompressible flows. Explaining instability through enstrophy is counter-intuitive, as it has been usually associated with dissipation for the Navier-Stokes equation (NSE). This developed theory is valid for both linear and nonlinear stages of disturbance growth. A previously developed nonlinear theory of incompressible flow instability based on total mechanical energy described in the work of Sengupta et al. ["Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003)] is used to compare with the present enstrophy based theory. The developed equations for disturbance enstrophy and disturbance mechanical energy are derived from NSE without any simplifying assumptions, as compared to other classical linear/nonlinear theories. The theory is tested for bypass transition caused by free stream convecting vortex over a zero pressure gradient boundary layer. We explain the creation of smaller scales in the flow by a cascade of enstrophy, which creates rotationality, in general inhomogeneous flows. Linear and nonlinear versions of the theory help explain the vortex-induced instability problem under consideration.
Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces
Kalpathy, Sreeram K.; Shreyes, Amrita Ravi
2017-01-01
The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other. PMID:28595391
Experiments on Electron-Plasma Vortex Motion Driven by a Background Vorticity Gradient.
NASA Astrophysics Data System (ADS)
Kabantsev, A. A.; Driscoll, C. F.
2000-10-01
The interaction of self-trapped vortices with a background vorticity gradient plays an important role in 2D hydrodynamics, including various aspects of relaxation and self-organization of 2D turbulence. In the present experiments, electron plasma columns with monotonically decreasing density profiles provide a vorticity background with (negative) shear in the rotational flow. Clumps of extra electrons are then retrograde vortices, rotating against the background shear; and regions with a deficit of electrons (holes) are prograde vortices. Theory predicts that clumps move up the background gradient, and holes move down the gradient, with velocities which depend differently on the ratio of the vortex trapping length to vortex radius, l / r_v. The present experiments show quantitative agreement with recent theory and simulations,(D.A. Schecter and D.H.E. Dubin, Phys. Rev. Lett. 83), 2191 (1999). for the accessible regime of 0.2 < l/rv < 2. The experiments also show that moving clumps leave a spiral density wake, and that instability of these wakes results in a large number of long-lived holes.
Tidally influenced alongshore circulation at an inlet-adjacent shoreline
Hansen, Jeff E.; Elias, Edwin P.L.; List, Jeffrey H.; Erikson, Li H.; Barnard, Patrick L.
2013-01-01
The contribution of tidal forcing to alongshore circulation inside the surfzone is investigated at a 7 km long sandy beach adjacent to a large tidal inlet. Ocean Beach in San Francisco, CA (USA) is onshore of a ∼150 km2 ebb-tidal delta and directly south of the Golden Gate, the sole entrance to San Francisco Bay. Using a coupled flow-wave numerical model, we find that the tides modulate, and in some cases can reverse the direction of, surfzone alongshore flows through two separate mechanisms. First, tidal flow through the inlet results in a barotropic tidal pressure gradient that, when integrated across the surfzone, represents an important contribution to the surfzone alongshore force balance. Even during energetic wave conditions, the tidal pressure gradient can account for more than 30% of the total alongshore pressure gradient (wave and tidal components) and up to 55% during small waves. The wave driven component of the alongshore pressure gradient results from alongshore wave height and corresponding setup gradients induced by refraction over the ebb-tidal delta. Second, wave refraction patterns over the inner shelf are tidally modulated as a result of both tidal water depth changes and strong tidal flows (∼1 m/s), with the effect from currents being larger. These tidally induced changes in wave refraction result in corresponding variability of the alongshore radiation stress and pressure gradients within the surfzone. Our results indicate that tidal contributions to the surfzone force balance can be significant and important in determining the direction and magnitude of alongshore flow.
Kinetic-scale flux rope reconnection in periodic and line-tied geometries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauppe, J. P.; Daughton, W.
Here, the collisionless reconnection of two parallel flux ropes driven by both the coalescence and kink instabilities is examined using fully kinetic simulations in periodic and line-tied geometries. The three-dimensional reconnection rate is computed from the maximum of the quasi-potential, Ξ≡-∫E·dℓ, where the integral of the electric field is taken along the magnetic field lines across the system. In periodic simulations in which the kink mode is nearly suppressed, reconnection is driven by the coalescence instability, and the peak rate is within 3%–8% of comparable 2D simulations. When a strong kink growth is observed, the peak reconnection rate drops bymore » 10%–25%, and there is a larger drop for lower guide field. With line-tied boundary conditions, the kink instability plays a key role in allowing the flux ropes to interact and partially reconnect. In this limit, the field lines with maximum quasi-potential are associated with a quasi-separatrix layer, and the electric field along these special field lines is supported predominantly by the divergence of the electron pressure tensor. Both of these features, along with the observed reconnection rate, are consistent with recent laboratory experiments on kinetic-scale flux ropes. In kinetic simulations, the non-gyrotropic pressure tensor terms contribute significantly more to the reconnecting electric field than do the gyrotropic terms, while contributions from the electron inertia are significant for field lines adjacent to the quasi-separatrix layer.« less
Kinetic-scale flux rope reconnection in periodic and line-tied geometries
Sauppe, J. P.; Daughton, W.
2017-12-28
Here, the collisionless reconnection of two parallel flux ropes driven by both the coalescence and kink instabilities is examined using fully kinetic simulations in periodic and line-tied geometries. The three-dimensional reconnection rate is computed from the maximum of the quasi-potential, Ξ≡-∫E·dℓ, where the integral of the electric field is taken along the magnetic field lines across the system. In periodic simulations in which the kink mode is nearly suppressed, reconnection is driven by the coalescence instability, and the peak rate is within 3%–8% of comparable 2D simulations. When a strong kink growth is observed, the peak reconnection rate drops bymore » 10%–25%, and there is a larger drop for lower guide field. With line-tied boundary conditions, the kink instability plays a key role in allowing the flux ropes to interact and partially reconnect. In this limit, the field lines with maximum quasi-potential are associated with a quasi-separatrix layer, and the electric field along these special field lines is supported predominantly by the divergence of the electron pressure tensor. Both of these features, along with the observed reconnection rate, are consistent with recent laboratory experiments on kinetic-scale flux ropes. In kinetic simulations, the non-gyrotropic pressure tensor terms contribute significantly more to the reconnecting electric field than do the gyrotropic terms, while contributions from the electron inertia are significant for field lines adjacent to the quasi-separatrix layer.« less
NASA Astrophysics Data System (ADS)
Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.
2018-01-01
In previous work [Kawamura et al., Plasma Sources Sci. Technol. 25, 054009 (2016)] and [Kawamura et al., J. Phys. D: Appl. Phys. 50, 145204 (2017)], 1D kinetic particle-in-cell (PIC) simulations of narrow gap (1 to 4 mm), high frequency (27 MHz) or dc-driven, He/2%H2O atmospheric pressure plasmas (APPs) showed an ionization instability resulting in standing striations (spatial oscillations) in the bulk plasma. We developed a steady-state striation theory which showed that the striations are due to non-local electron kinetics. In both the high frequency and dc-driven cases, the equilibrium electron density n0 in the plasma bulk was stationary. In this work, we first conduct 1D PIC simulations of a 1 mm gap He/2%H2O APP, driven by a sinusoidal current at a low frequency of f = 50 kHz such that ω = 2πf is well below the ionization frequency νiz. In this case, n0 varies with time, and we observe a time-varying instability which quasistatically depends on n0(t). At each phase of the rf cycle, the discharge resembles a dc discharge at the same n0. At higher frequencies (200 kHz-1 MHz), ω approaches νiz, and quasistatic equilibrium at each phase breaks down. The discharge is also driven with a 200 kHz, 50% duty cycle square wave pulse with a short rise and fall time of 0.1 μs in an attempt to directly measure the striation growth rate s during the on-cycle before it saturated. However, the spike in current during the rise time leads to a spike in electron temperature Te and hence νiz and s at the beginning of the rise which saturated during the beginning of the on-cycle. To predict the instability growth rate and saturation during and after the current spike, we extend our striation theory to include time-varying n0, Te, νiz, as well as terms for the nonlinear saturation and noise floor of the striation amplitude. The time-varying global model predictions are compared to the PIC simulations, showing reasonable agreement.
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Tokugawa, Naoko; Li, Fei; Chang, Chau-Lyan; White, Jeffery A.; Ishikawa, Hiroaki; Ueda, Yoshine; Atobe, Takashi; Fujii, Keisuke
2012-01-01
Boundary layer transition over axisymmetric bodies at non-zero angle of attack in supersonic flow is numerically investigated as part of joint research between the National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). Transition over four axisymmetric bodies (namely, Sears-Haack body, semi-Sears-Haack body, 5-degree straight cone and flared cone) with different axial pressure gradients has been studied at Mach 2 in order to understand the effect of axial pressure gradient on instability amplification along the leeward symmetry plane and in the region of nonzero crossflow away from it. Comparisons are made with measured transition data in Mach 2 facilities as well as with predicted and measured transition characteristics for a 5-degree straight cone in a Mach 3.5 low disturbance tunnel. Limitations of using linear stability correlations for predicting transition over axisymmetric bodies at angle of attack are pointed out.
Hybrid simulation of fishbone instabilities in the EAST tokamak
NASA Astrophysics Data System (ADS)
Shen, Wei; Fu, Guoyong; Wang, Feng; Xu, Liqing; Li, Guoqiang; Liu, Chengyue; EAST Team
2017-10-01
Hybrid simulations with the global kinetic- MHD code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven fishbone in EAST experiment. Linear simulations show that a low frequency fishbone instability is excited at experimental value of beam ion pressure. The mode is mainly driven by low energy beam ions via precessional resonance. The results are consistent with the experimental measurement with respect to mode frequency and mode structure. When the beam ion pressure is increased to exceed a critical value, the low frequency mode transits to a BAE with much higher frequency. Nonlinear simulations show that the frequency of the low frequency fishbone chirps up and down with corresponding hole-clump structures in phase space, consistent with the Berk-Breizman theory. In addition to the low frequency mode, the high frequency BAE is excited during the nonlinear evolution. For the transient case of beam pressure fraction where the low and high frequency modes are simultaneously excited in the linear phase, only one dominant mode appears in the nonlinear phase with frequency jumps up and down during nonlinear evolution. This work is supported by the National Natural Science Foundation of China under Grant Nos. 11605245 and 11505022, and the CASHIPS Director's Fund under Grant No. YZJJ201510, and the Department of Energy Scientific Discovery through Advanced Computing (SciDAC) under Grant No. DE-AC02-09CH11466.
Preferential paths in yield stress fluid flow through a porous medium
NASA Astrophysics Data System (ADS)
Guasto, Jeffrey; Waisbord, Nicolas; Stoop, Norbert; Dunkel, Jörn
2016-11-01
A broad range of biological, geological, and industrial materials with complex rheological properties are subjected to flow through porous media in applications ranging from oil recovery to food manufacturing. In this experimental study, we examine the flow of a model yield stress fluid (Carbopol micro-gel) through a quasi-2D porous medium, fabricated in a microfluidic channel. The flow is driven by applying a precisely-controlled pressure gradient and measured by particle tracking velocimetry, and our observations are complemented by a pore-network model of the yield stress fluid flow. While remaining unyielded at small applied pressure, the micro-gel begins to yield at a critical pressure gradient, exhibiting a single preferential flow path that percolates through the porous medium. As the applied pressure gradient increases, we observe a subsequent coarsening and invasion of the yielded, fluidized network. An examination of both the yielded network topology and pore-scale flow reveal that two cooperative phenomena are involved in sculpting the preferential flow paths: (1) the geometry of the porous microstructure, and (2) the adhesive surface interactions between the micro-gel and substrate. NSF CBET-1511340.
NASA Astrophysics Data System (ADS)
Zocco, A.; Xanthopoulos, P.; Doerk, H.; Connor, J. W.; Helander, P.
2018-02-01
The threshold for the resonant destabilisation of ion-temperature-gradient (ITG) driven instabilities that render the modes ubiquitous in both tokamaks and stellarators is investigated. We discover remarkably similar results for both confinement concepts if care is taken in the analysis of the effect of the global shear . We revisit, analytically and by means of gyrokinetic simulations, accepted tokamak results and discover inadequacies of some aspects of their theoretical interpretation. In particular, for standard tokamak configurations, we find that global shear effects on the critical gradient cannot be attributed to the wave-particle resonance destabilising mechanism of Hahm & Tang (Phys. Plasmas, vol. 1, 1989, pp. 1185-1192), but are consistent with a stabilising contribution predicted by Biglari et al. (Phys. Plasmas, vol. 1, 1989, pp. 109-118). Extensive analytical and numerical investigations show that virtually no previous tokamak theoretical predictions capture the temperature dependence of the mode frequency at marginality, thus leading to incorrect instability thresholds. In the asymptotic limit , where is the rotational transform, and such a threshold should be solely determined by the resonant toroidal branch of the ITG mode, we discover a family of unstable solutions below the previously known threshold of instability. This is true for a tokamak case described by a local local equilibrium, and for the stellarator Wendelstein 7-X, where these unstable solutions are present even for configurations with a small trapped-particle population. We conjecture they are of the Floquet type and derive their properties from the Fourier analysis of toroidal drift modes of Connor & Taylor (Phys. Fluids, vol. 30, 1987, pp. 3180-3185), and to Hill's theory of the motion of the lunar perigee (Acta Math., vol. 8, 1886, pp. 1-36). The temperature dependence of the newly determined threshold is given for both confinement concepts. In the first case, the new temperature-gradient threshold is found to be rather insensitive to the temperature ratio i/Te$ , at least for i/Te\\lesssim 1$ , and to be a growing function of the density gradient scale for i/Te\\gtrsim 1$ . For Wendelstein 7-X, the new critical temperature gradient is a growing function of the temperature ratio. The importance of these findings for the assessment of turbulence in stellarators and low-shear tokamak configurations is discussed.
Radiation-driven rotational motion of nanoparticles
Liang, Mengning; Harder, Ross; Robinson, Ian
2018-04-25
Focused synchrotron beams can influence a studied sample via heating, or radiation pressure effects due to intensity gradients. The high angular sensitivity of rotational X-ray tracking (RXT) of crystalline particles via their Bragg reflections can detect extremely small forces such as those caused by field gradients. By tracking the rotational motion of single crystal nanoparticles embedded in a viscous or viscoelastic medium, we observed the effects of heating in a uniform gradient beam and radiation pressure in a Gaussian profile beam. Heating of a few degrees Celsius was measured for 42μm crystals in glycerol and angular velocities of 10 -6rad/smore » due to torques of 10 - 24N∙m were measured for 340nm crystals in a colloidal gel matrix. These results show the ability to quantify small forces using rotation motion of tracer particles.« less
Radiation-driven rotational motion of nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Mengning; Harder, Ross; Robinson, Ian
Focused synchrotron beams can influence a studied sample via heating, or radiation pressure effects due to intensity gradients. The high angular sensitivity of rotational X-ray tracking (RXT) of crystalline particles via their Bragg reflections can detect extremely small forces such as those caused by field gradients. By tracking the rotational motion of single crystal nanoparticles embedded in a viscous or viscoelastic medium, we observed the effects of heating in a uniform gradient beam and radiation pressure in a Gaussian profile beam. Heating of a few degrees Celsius was measured for 42μm crystals in glycerol and angular velocities of 10 -6rad/smore » due to torques of 10 - 24N∙m were measured for 340nm crystals in a colloidal gel matrix. These results show the ability to quantify small forces using rotation motion of tracer particles.« less
Abadeh, Aryan; Lew, Roger R
2013-11-01
Movement of nuclei, mitochondria and vacuoles through hyphal trunks of Neurospora crassa were vector-mapped using fluorescent markers and green fluorescent protein tags. The vectorial movements of all three were strongly correlated, indicating the central role of mass (bulk) flow in cytoplasm movements in N. crassa. Profiles of velocity versus distance from the hyphal wall did not match the parabolic shape predicted by the ideal Hagen-Poiseuille model of flow at low Reynolds number. Instead, the profiles were flat, consistent with a model of partial plug flow due to the high concentration of organelles in the flowing cytosol. The intra-hyphal pressure gradients were manipulated by localized external osmotic treatments to demonstrate the dependence of velocity (and direction) on pressure gradients within the hyphae. The data support the concept that mass transport, driven by pressure gradients, dominates intra-hyphal transport. The transport occurs by partial plug flow due to the organelles in the cytosol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi
The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed tomore » sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.« less
Gas turbine engine fuel control
NASA Technical Reports Server (NTRS)
Gold, H. S. (Inventor)
1973-01-01
A variable orifice system is described that is responsive to compressor inlet pressure and temperature, compressor discharge pressure and rotational speed of a gas-turbine engine. It is incorporated into a hydraulic circuit that includes a zero gradient pump driven at a speed proportional to the speed of the engine. The resulting system provides control of fuel rate for starting, steady running, acceleration and deceleration under varying altitudes and flight speeds.
A hydrodynamic mechanism of meteor ablation. The melt-spraying model
NASA Astrophysics Data System (ADS)
Girin, Oleksandr G.
2017-10-01
Context. Hydrodynamic conditions are similar in a molten meteoroid and a liquid drop in a high-speed airflow. Despite the fact that the latter is well-studied, both experimentally and theoretically, hydrodynamic instability theory has not been applied to study the fragmentation of molten meteoroids. Aims: We aim to treat quasi-continuous spraying of meteoroid melt due to hydrodynamic instability as a possible mechanism of ablation. Our objectives are to calculate the time development of particle release, the released particle sizes and their distribution by sizes, as well as the meteoroid mass loss law. Methods: We have applied gradient instability theory to model the behaviour of the meteoroid melt layer and its interaction with the atmosphere. We have assumed a spherical meteoroid and that the meteoroid has a shallow entry angle, such that the density of the air stream interacting with the meteoroid is nearly constant. Results: High-frequency spraying of the molten meteoroid is numerically simulated. The intermediate and final size distributions of released particles are calculated, as well as the meteoroid mass loss law. Fast and slow meteoroids of iron and stone compositions are modelled, resulting in significant differences in the size distribution of melt particles sprayed from each meteoroid. Less viscous iron melt produces finer particles and a denser aerosol wake than a stony one does. Conclusions: Analysis of the critical conditions for the gradient instability mechanism shows that the dynamic pressure of the air-stream at heights up to 100 km is sufficient to overcome surface tension forces and pull out liquid particles from the meteoroid melt by means of unstable disturbances. Hence, the proposed melt-spraying model is able to explain quasi-continuous mode of meteoroid fragmentation at large heights and low dynamic pressures. A closed-form solution of the meteoroid ablation problem is obtained due to the melt-spraying model usage, at the meteoroid composition, initial radius and velocity being given. The movies associated to Figs. 6 and 7 are available at http://www.aanda.org
Quantifying Instability Sources in Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Farmer, Richard C.; Cheng, Gary C.
2000-01-01
Computational fluid dynamics methodology to predict the effects of combusting flows on acoustic pressure oscillations in liquid rocket engines (LREs) is under development. 'Me intent of the investigation is to develop the causal physics of combustion driven acoustic resonances in LREs. The crux of the analysis is the accurate simulation of pressure/density/sound speed in a combustor which when used by the FDNS-RFV CFD code will produce realistic flow phenomena. An analysis of a gas generator considered for the Fastrac engine will be used as a test validation case.
Bardóczi, L.; Rhodes, T. L.; Carter, T. A.; ...
2016-05-26
We report the first observation of localized modulation of turbulent density uctuations en (via Beam Emission Spectroscopy) by neoclassical tearing modes (NTMs) in the core of the DIII-D tokamak. NTMs are important as they often lead to severe degradation of plasma confinement and disruptions in high-confinement fusion experiments. Magnetic islands associated with NTMs significantly modify the profiles and turbulence drives. In this experiment n was found to be modulated by 14% across the island. Gyrokinetic simulations suggest that en could be dominantly driven by the ion temperature gradient (ITG) instability.
Off-Axis Driven Current Effects on ETB and ITB Formations based on Bifurcation Concept
NASA Astrophysics Data System (ADS)
Pakdeewanich, J.; Onjun, T.; Chatthong, B.
2017-09-01
This research studies plasma performance in fusion Tokamak system by investigating parameters such as plasma pressure in the presence of an edge transport barrier (ETB) and an internal transport barrier (ITB) as the off-axis driven current position is varied. The plasma is modeled based on the bifurcation concept using a suppression function that can result in formation of transport barriers. In this model, thermal and particle transport equations, including both neoclassical and anomalous effects, are solved simultaneously in slab geometry. The neoclassical coefficients are assumed to be constant while the anomalous coefficients depend on gradients of local pressure and density. The suppression function, depending on flow shear and magnetic shear, is assumed to affect only on the anomalous channel. The flow shear can be calculated from the force balance equation, while the magnetic shear is calculated from the given plasma current. It is found that as the position of driven current peak is moved outwards from the plasma center, the central pressure is increased. But at some point it stars to decline, mostly when the driven current peak has reached the outer half of the plasma. The higher pressure value results from the combination of ETB and ITB formations. The drop in central pressure occurs because ITB stats to disappear.
Parametric instability of a non-uniform beam with thermal gradient and elastic end support
NASA Astrophysics Data System (ADS)
Kar, R. C.; Sujata, T.
1988-04-01
The influence of an elastic end support and a thermal gradient on the dynamic instability of a non-uniform cantilever beam subjected to a pulsating axial load has been studied. The results reveal that stiffening of the end support has a stabilizing effect, whereas increasing the thermal gradient has a destabilizing one.
Experimental Nanofluidics in an individual Nanotube
NASA Astrophysics Data System (ADS)
Siria, Alessandro; Poncharal, Philippe; Biance, Anne Laure; Fulcrand, Remy; Purcell, Stephen; Bocquet, Lyderic
2012-11-01
Building new devices that benefit from the strange transport behavior of fluids at nanoscales is an open and worthy challenge that may lead to new scientific and technological paradigms. We present here a new class of nanofluidic device, made of individual Boron-Nitride (BN) nanotube inserted in a pierced membrane and connecting two macroscopic reservoirs. We explore fluidic transport inside a single BN nanotube under electric fields, pressure drops, chemical gradients, and combinations of these. We show that in this transmembrane geometry, the pressure-driven streaming current is voltage gated, with an apparent electro-osmotic zeta potential raising up to one volt. Further, we measured the current induced by ion concentration gradients and show its dependency on the surface charge.
Theoretical and computational studies of the sheath of a planar wall
NASA Astrophysics Data System (ADS)
Giraudo, Martina; Camporeale, Enrico; Delzanno, Gian Luca; Lapenta, Giovanni
2012-03-01
We present an investigation of the stability and nonlinear evolution of the sheath of a planar wall. We focus on the electrostatic limit. The stability analysis is conducted with a fluid model where continuity and momentum equations for the electrons and ions are coupled through Poisson's equation. The effect of electron emission from the wall is studied parametrically. Our results show that a sheath instability associated with the emitted electrons can exist. Following Ref. [1], it is interpreted as a Rayleigh-Taylor instability driven by the favorable combination of the sheath electron density gradient and electric field. Fully kinetic Particle-In-Cell (PIC) simulations will also be presented to investigate whether this instability indeed exists and to study the nonlinear effect of electron emission on the sheath profiles. The simulations will be conducted with CPIC, a new electrostatic PIC code that couples the standard PIC algorithm with strategies for generation and adaptation of the computational grid. [4pt] [1] G.L. Delzanno, ``A paradigm for the stability of the plasma sheath against fluid perturbations,'' Phys. Plasmas 18, 103508 (2011).
Particle Energization via Tearing Instability with Global Self-Organization Constraints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarff, John; Guo, Fan
The presentation reviews how tearing magnetic reconnection leads to powerful ion energization in reversed field pinch (RFP) plasmas. A mature MHD model for tearing instability has been developed that captures key nonlinear dynamics from the global to intermediate spatial scales. A turbulent cascade is also present that extends to at least the ion gyroradius scale, within which important particle energization mechanisms are anticipated. In summary, Ion heating and acceleration associated with magnetic reconnection from tearing instability is a powerful process in the RFP laboratory plasma (gyro-resonant and stochastic processes are likely candidates to support the observed rapid heating and othermore » features, reconnection-driven electron heating appears weaker or even absent, energetic tail formation for ions and electrons). Global self-organization strongly impacts particle energization (tearing interactions that span to core to edge, global magnetic flux change produces a larger electric field and runaway, correlations in electric and magnetic field fluctuations needed for dynamo feedback, impact of transport processes (which can be quite different for ions and electrons), inhomogeneity on the system scale, e.g., strong edge gradients).« less
NASA Astrophysics Data System (ADS)
Loodts, Vanessa; Rongy, Laurence; De Wit, Anne
2014-05-01
Subsurface carbon sequestration has emerged as a promising solution to the problem of increasing atmospheric carbon dioxide (CO2) levels. How does the efficiency of such a sequestration process depend on the physical and chemical characteristics of the storage site? This question is emblematic of the need to better understand the dynamics of CO2 in subsurface formations, and in particular, the properties of the convective dissolution of CO2 in the salt water of aquifers. This dissolution is known to improve the safety of the sequestration by reducing the risks of leaks of CO2 to the atmosphere. Buoyancy-driven convection makes this dissolution faster by transporting dissolved CO2 further away from the interface. Indeed, upon injection, the less dense CO2 phase rises above the aqueous layer where it starts to dissolve. The dissolved CO2 increases the density of the aqueous solution, thereby creating a layer of denser CO2-rich solution above less dense solution. This unstable density gradient in the gravity field is at the origin of convection. In this framework, we theoretically investigate the effect of CO2 pressure, salt concentration, temperature, and chemical reactions on the dissolution-driven convection of CO2 in aqueous solutions. On the basis of a linear stability analysis, we assess the stability of the time-dependent density profiles developing when CO2 dissolves in an aqueous layer below it. We predict that increasing CO2 pressure destabilizes the system with regard to buoyancy-driven convection, because it increases the density gradient at the origin of the instability. By contrast, increasing salt concentration or temperature stabilizes the system via effects on CO2 solubility, solutal expansion coefficient, diffusion coefficient and on the viscosity and density of the solution. We also show that a reaction of CO2 with chemical species dissolved in the aqueous solution can either enhance or decrease the amplitude of the convective dissolution compared to the non reactive one. On the basis of a reaction-diffusion-convection model, we classify the various possible cases and show that the difference between the solutal expansion coefficients of the reactant and of the product governs the type of density profile building up in the aqueous solution and thus the stability of the system. By contrast to non reactive density profiles, reactive density profiles can feature a minimum that induces a delay of the buoyancy-driven convection. This work identifies the parameters that could influence the dissolution-driven convection in the aquifers, and thus impact the safety of the sequestration. In other words, this theoretical study shows that it is crucial to analyse the composition and reactivity of potential storage sites to choose those that will be most efficient for long-term CO2 sequestration.
Puffing flame instability - Part II: Predicting the onset and frequency
NASA Astrophysics Data System (ADS)
Boettcher, Philipp; Shepherd, Joseph; Menon, Shyam; Blanquart, Guillaume
2011-11-01
Experiments and simulations have been performed on fuel rich n- hexane air mixtures in a closed vessel. Both experiments and simulations show a distinct cyclic combustion or ``puffing'' mode. The misalignment of buoyancy induced pressure gradients and density gradients across the flame front is responsible for the generation of vorticity and its subsequent roll-up into vortex rings. In the present work, a simplified model is proposed based on the fundamental interactions between fluid mechanical and chemical parameters. This simplified fluid mechanics model is based on dimensional analysis and is used to predict the onset and frequency of the puffing behavior. This work was sponsored by The Boeing Company through CTBA-GTA-1.
Plasma Irregularity Production in the Polar Cap F-Region Ionosphere
NASA Astrophysics Data System (ADS)
Lamarche, Leslie
Plasma in the Earth's ionosphere is highly irregular on scales ranging between a few centimeters and hundreds of kilometers. Small-scale irregularities or plasma waves can scatter radio waves resulting in a loss of signal for navigation and communication networks. The polar region is particularly susceptible to strong disturbances due to its direct connection with the Sun's magnetic field and energetic particles. In this thesis, factors that contribute to the production of decameter-scale plasma irregularities in the polar F region ionosphere are investigated. Both global and local control of irregularity production are studied, i.e. we consider global solar control through solar illumination and solar wind as well as much more local control by plasma density gradients and convection electric field. In the first experimental study, solar control of irregularity production is investigated using the Super Dual Auroral Radar Network (SuperDARN) radar at McMurdo, Antarctica. The occurrence trends for irregularities are analyzed statistically and a model is developed that describes the location of radar echoes within the radar's field-of-view. The trends are explained through variations in background plasma density with solar illumination affecting radar beam propagation. However, it is found that the irregularity occurrence during the night is higher than expected from ray tracing simulations based on a standard ionospheric density model. The high occurrence at night implies an additional source of plasma density and it is proposed that large-scale density enhancements called polar patches may be the source of this density. Additionally, occurrence maximizes around the terminator due to different competing irregularity production processes that favor a more or less sunlit ionosphere. The second study is concerned with modeling irregularity characteristics near a large-scale density gradient reversal, such as those expected near polar patches, with a particular focus on the asymmetry of the irregularity growth rate across the gradient reversal. Directional dependencies on the plasma density gradient, plasma drift, and wavevector are analyzed in the context of the recently developed general fluid theory of the gradient-drift instability. In the ionospheric F region, the strongest asymmetry is found when an elongated structure is oriented along the radar's boresight and moving perpendicular to its direction of elongation. These results have important implications for finding optimal configurations for oblique-scanning ionospheric radars such as SuperDARN to observe gradient reversals. To test the predictions of the developed model and the general theory of the gradient-drift instability, an experimental investigation is presented focusing on decameter-scale irregularities near a polar patch and the previously uninvestigated directional dependence of irregularity characteristics. Backscatter power and occurrence of irregularities are analyzed using measurements from the SuperDARN radar at Rankin Inlet, Canada, while background density gradients and convection electric fields are found from the north face of the Resolute Bay Incoherent Scatter Radar. It is shown that irregularity occurrence tends to follow the expected trends better than irregularity power, suggesting that while the gradient-drift instability may be a dominant process in generating small-scale irregularities, other mechanisms such as a shear-driven instability or nonlinear process may exert greater control over their intensity. It is concluded from this body of work that the production of small-scale plasma irregularities in the polar F-region ionosphere is controlled both by global factors such as solar illumination as well as local plasma density gradients and electric fields. In general, linear gradient-drift instability theory describes small-scale irregularity production well, particularly for low-amplitude perturbations. The production of irregularities is complex, and while ground-based radars are invaluable tools to study the ionosphere, care must be taken to interpret results correctly.
NASA Astrophysics Data System (ADS)
Emelyanov, V. N.; Teterina, I. V.; Volkov, K. N.; Garkushev, A. U.
2017-06-01
Metal particles are widely used in space engineering to increase specific impulse and to supress acoustic instability of intra-champber processes. A numerical analysis of the internal injection-driven turbulent gas-particle flows is performed to improve the current understanding and modeling capabilities of the complex flow characteristics in the combustion chambers of solid rocket motors (SRMs) in presence of forced pressure oscillations. The two-phase flow is simulated with a combined Eulerian-Lagrangian approach. The Reynolds-averaged Navier-Stokes equations and transport equations of k - ε model are solved numerically for the gas. The particulate phase is simulated through a Lagrangian deterministic and stochastic tracking models to provide particle trajectories and particle concentration. The results obtained highlight the crucial significance of the particle dispersion in turbulent flowfield and high potential of statistical methods. Strong coupling between acoustic oscillations, vortical motion, turbulent fluctuations and particle dynamics is observed.
Instabilities in mimetic matter perturbations
NASA Astrophysics Data System (ADS)
Firouzjahi, Hassan; Gorji, Mohammad Ali; Mansoori, Seyed Ali Hosseini
2017-07-01
We study cosmological perturbations in mimetic matter scenario with a general higher derivative function. We calculate the quadratic action and show that both the kinetic term and the gradient term have the wrong sings. We perform the analysis in both comoving and Newtonian gauges and confirm that the Hamiltonians and the associated instabilities are consistent with each other in both gauges. The existence of instabilities is independent of the specific form of higher derivative function which generates gradients for mimetic field perturbations. It is verified that the ghost instability in mimetic perturbations is not associated with the higher derivative instabilities such as the Ostrogradsky ghost.
The role of turbulence-flow interactions in L- to H-mode transition dynamics: recent progress
NASA Astrophysics Data System (ADS)
Schmitz, L.
2017-02-01
Recent experimental and simulation work has substantially advanced the understanding of L-mode plasma edge turbulence and plasma flows and their mutual interaction across the L-H transition. Flow acceleration and E × B shear flow amplification via the turbulent Reynolds stress have been directly observed in multiple devices, using multi-tip probe arrays, Doppler backscattering, beam emission spectroscopy, and gas puff imaging diagnostics. L-H transitions characterized by limit-cycle oscillations (LCO) allow probing of the trigger dynamics and the synergy of turbulence-driven and pressure-gradient-driven flows with high spatio-temporal resolution. L-mode turbulent structures exhibit characteristic changes in topology (tilting) and temporal and radial correlation preceding the L-H transition. Long-range toroidal flow correlations increase preceding edge-transport-barrier formation. The energy transfer from the turbulence spectrum to large-scale axisymmetric flows has been quantified in L-LCO and fast L-H transitions in several devices. After formation of a transient barrier, the increasing ion pressure gradient (via the E × B flow shear associated with diamagnetic flow) sustains fluctuation suppression and secures the transition to H-mode. Heuristic models of the L-H trigger dynamics have progressed from 0D predator-prey models to 1D extended models, including neoclassical ion flow-damping and pressure-gradient evolution. Initial results from 2D and 3D reduced fluid models have been obtained for high-collisionality regimes.
Simulation of a Driven Dense Granular Gas
NASA Astrophysics Data System (ADS)
Bizon, Chris; Shattuck, M. D.; Swift, J. B.; Swinney, Harry L.
1998-11-01
Event driven particle simulations quantitatively reproduce the experimental results on vibrated granular layers, including the formation of standing wave patterns(C. Bizon, M.D. Shattuck, J.B. Swift, W.D. McCormick, and H.L. Swinney, Phys. Rev. Lett. 80), pp. 57-60 (1998). and secondary instabilities(J.R. deBruyn, C. Bizon, M.D. Shattuck, D. Goldman, J.B. Swift, and H.L. Swinney, Phys. Rev. Lett. 81) (1998), to appear. . In these simulations the velocity distributions are nearly Gaussian when scaled with the local fluctuational kinetic energy (granular temperature); this suggests that inelastic dense gas kinetic theory is applicable. We perform simulations of a two-dimensional granular gas that is homogeneously driven with fluctuating forces. We find that the equation of state differs from that of an elastic dense gas and that this difference is due to a change in the distribution of relative velocities at collisions. Granular thermal conductivity and viscosity are measured by allowing the fluctuating forces to have large scale spatial gradients.
NASA Astrophysics Data System (ADS)
Chamorro, Adolfo; Echevin, Vincent; Colas, François; Oerder, Vera; Tam, Jorge; Quispe-Ccalluari, Carlos
2018-01-01
The physical processes driving the wind intensification in a coastal band of 100 km off Peru during the intense 1997-1998 El Niño (EN) event were studied using a regional atmospheric model. A simulation performed for the period 1994-2000 reproduced the coastal wind response to local sea surface temperature (SST) forcing and large scale atmospheric conditions. The model, evaluated with satellite data, represented well the intensity, seasonal and interannual variability of alongshore (i.e. NW-SE) winds. An alongshore momentum budget showed that the pressure gradient was the dominant force driving the surface wind acceleration. The pressure gradient tended to accelerate the coastal wind, while turbulent vertical mixing decelerated it. A quasi-linear relation between surface wind and pressure gradient anomalies was found. Alongshore pressure gradient anomalies were caused by a greater increase in near-surface air temperature off the northern coast than off the southern coast, associated with the inhomogeneous SST warming. Vertical profiles of wind, mixing coefficient, and momentum trends showed that the surface wind intensification was not caused by the increase of turbulence in the planetary boundary layer. Moreover, the temperature inversion in the vertical mitigated the development of pressure gradient due to air convection during part of the event. Sensitivity experiments allowed to isolate the respective impacts of the local SST forcing and large scale condition on the coastal wind intensification. It was primarily driven by the local SST forcing whereas large scale variability associated with the South Pacific Anticyclone modulated its effects. Examination of other EN events using reanalysis data confirmed that intensifications of alongshore wind off Peru were associated with SST alongshore gradient anomalies, as during the 1997-1998 event.
Instability and dynamics of volatile thin films
NASA Astrophysics Data System (ADS)
Ji, Hangjie; Witelski, Thomas P.
2018-02-01
Volatile viscous fluids on partially wetting solid substrates can exhibit interesting interfacial instabilities and pattern formation. We study the dynamics of vapor condensation and fluid evaporation governed by a one-sided model in a low-Reynolds-number lubrication approximation incorporating surface tension, intermolecular effects, and evaporative fluxes. Parameter ranges for evaporation-dominated and condensation-dominated regimes and a critical case are identified. Interfacial instabilities driven by the competition between the disjoining pressure and evaporative effects are studied via linear stability analysis. Transient pattern formation in nearly flat evolving films in the critical case is investigated. In the weak evaporation limit unstable modes of finite-amplitude nonuniform steady states lead to rich droplet dynamics, including flattening, symmetry breaking, and droplet merging. Numerical simulations show that long-time behaviors leading to evaporation or condensation are sensitive to transitions between filmwise and dropwise dynamics.
NASA Astrophysics Data System (ADS)
Peterson, Jayson Luc
2011-10-01
Observations in the National Spherical Torus Experiment (NSTX) have found electron temperature gradients that greatly exceed the linear threshold for the onset for electron temperature gradient-driven (ETG) turbulence. These discharges, deemed electron internal transport barriers (e-ITBs), coincide with a reversal in the shear of the magnetic field and with a reduction in electron-scale density fluctuations, qualitatively consistent with earlier gyrokinetic predictions. To investigate this phenomenon further, we numerically model electron turbulence in NSTX reversed-shear plasmas using the gyrokinetic turbulence code GYRO. These first-of-a-kind nonlinear gyrokinetic simulations of NSTX e-ITBs confirm that reversing the magnetic shear can allow the plasma to reach electron temperature gradients well beyond the critical gradient for the linear onset of instability. This effect is very strong, with the nonlinear threshold for significant transport approaching three times the linear critical gradient in some cases, in contrast with moderate shear cases, which can drive significant ETG turbulence at much lower gradients. In addition to the experimental implications of this upshifted nonlinear critical gradient, we explore the behavior of ETG turbulence during reversed shear discharges. This work is supported by the SciDAC Center for the Study of Plasma Microturbulence, DOE Contract DE-AC02-09CH11466, and used the resources of NCCS at ORNL and NERSC at LBNL. M. Ono et al., Nucl. Fusion 40, 557 (2000).
NASA Astrophysics Data System (ADS)
Karam, H. N.; Mulligan, A. E.; Abarca, E.; Gardner, A.; Hemond, H.; Harvey, C. F.
2013-12-01
We present time series of vertical pressure gradients in the sea floor at Waquoit Bay, MA, collected along a transect of locations perpendicular to shore, with a 10-minute resolution over two years. The custom-made instruments used for data collection measure pressure differences with an accuracy of 0.5 mm freshwater head, and record pore water and surface water salinities, allowing a robust calculation of the direction and magnitude of flux across the sediment-water interface given an estimate of sediment permeability. Distinct processes of seawater circulation in the subsurface driven by different forcings, including storms, tides, variations in fresh groundwater head, and salinity gradients in coastal groundwater, are manifest as different frequency components in the time series. We characterize the relative contributions of these different forcings to seafloor fluxes at our site, as a function of the time of year and the distance from shore. We find that: 1) Sea level variations drive variations in seafloor flux at time scales of hours to weeks, around a mean flux that is produced by processes with longer time scales, including the seasonal cycle in fresh groundwater head and the density-driven circulation of seawater through the coastal aquifer. 2) Seafloor flux responds non-linearly to shifts in seawater level. Furthermore, this response is asymmetric, with very low tides producing an amplified response in submarine groundwater discharge relative to the recharge produced by equivalently high tides. 3) The amplitude of seafloor pressure gradients shows a three-fold increase during winters relative to summers. We present a model to explain this effect based on the increase in shallow pore water viscosity at colder temperatures. We generalize our findings to help guide the design of sampling studies of seafloor fluxes at other sites. Finally, we present the distribution of subsurface residence times for seawater in Waquoit Bay, derived from our pressure gradient data sets, and discuss the implications for surface water and sediment chemistry.
Observations of ELM stabilization during neutral beam injection in DIII-D
NASA Astrophysics Data System (ADS)
Bortolon, Alessandro; Kramer, Gerrit; Diallo, Ahmed; Knolker, Matthias; Maingi, Rajesh; Nazikian, Raffi; Degrassie, John; Osborne, Thomas
2017-10-01
Edge localized modes (ELMs) are generally interpreted as peeling-ballooning instabilities, driven by the pedestal current and pressure gradient, with other subdominant effects possibly relevant close to marginal stability. We report observations of transient stabilization of type-I ELMs during neutral beam injection (NBI), emerging from a combined dataset of DIII-D ELMy H-mode plasmas with moderate heating obtained through pulsed NBI waveforms. Statistical analysis of ELM onset times indicates that, in the selected dataset, the likelihood of onset of an ELM lowers significantly during NBI modulation pulses, with the stronger correlation found with counter-current NBI. The effect is also found in rf-heated H-modes, where ELMs appear inhibited when isolated diagnostic beam pulses are applied. Coherent average analysis is used to determine how plasma density, temperature, rotation as well as beam ion quantities evolve during a NB modulation cycle, finding relatively small changes ( 3%) of pedestal Te and ne and toroidal and poloidal rotation variations up to 5 km/s. The effect of these changes on pedestal stability will be discussed. Work supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466.
Ekman-Hartmann layer in a magnetohydrodynamic Taylor-Couette flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szklarski, Jacek; Ruediger, Guenther
2007-12-15
We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical magnetohydrodynamic (MHD) Taylor-Couette flow at the finite aspect ratio H/D=10. The fluid confined between the cylinders is assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly conducting, an axial magnetic field is imposed with Hartmann number Ha{approx_equal}10, and the rotation rates correspond to Reynolds numbers of order 10{sup 2}-10{sup 3}. We show that the end plates introduce, besides the well-known Ekman circulation, similar magnetic effects which arise for infinite, rotating plates, horizontally unbounded by any walls. In particular, there exists the Hartmannmore » current, which penetrates the fluid, turns in the radial direction, and together with the applied magnetic field gives rise to a force. Consequently, the flow can be compared with a Taylor-Dean flow driven by an azimuthal pressure gradient. We analyze the stability of such flows and show that the currents induced by the plates can give rise to instability for the considered parameters. When designing a MHD Taylor-Couette experiment, special care must be taken concerning the vertical magnetic boundaries so that they do not significantly alter the rotational profile.« less
Mean Flow Augmented Acoustics in Rocket Systems
NASA Technical Reports Server (NTRS)
Fischbach, Sean
2014-01-01
Combustion instability in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. Recent advances in energy based modeling of combustion instabilities require accurate determination of acoustic frequencies and mode shapes. Of particular interest is the acoustic mean flow interactions within the converging section of a rocket nozzle, where gradients of pressure, density, and velocity become large. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The present study aims to implement the French model within the COMSOL Multiphysiscs framework and analyzes one of the author's presented test cases.
NASA Astrophysics Data System (ADS)
Ohdachi, S.; Suzuki, Y.; Sakakibara, S.; Watanabe, K. Y.; Ida, K.; Goto, M.; Du, X. D.; Narushima, Y.; Takemura, Y.; Yamada, H.
In the high beta experiments of the Large Helical Device (LHD), the plasma tends to expand from the last closed flux surface (LCFS) determined by the vacuum magnetic field. The pressure/temperature gradient in the external region is finite. The scale length of the pressure profile does not change so much even when the mean free path of electrons exceeds the connection length of the magnetic field line to the wall. There appear MHD instabilities with amplitude of 10-4 of the toroidal magnetic field. From the mode number of the activities (m/n = 2/3, 1/2, 2/4), the location of the corresponding rational surface is outside the vacuum LCFS. The location of the mode is consistent with the fluctuation measurement, e.g., soft X-ray detector arrays. The MHD mode localized in the magnetic stochastic region is affected by the magnetic field structure estimated by the connection length to the wall using 3D equilibrium calculation.
NASA Astrophysics Data System (ADS)
Smith, Robert William
Many electrically driven thermoacoustic refrigerators have employed corrugated metal bellows to couple work from an electro-mechanical transducer to the working fluid typically. An alternative bellows structure to mediate this power transfer is proposed: a laminated hollow cylinder comprised of alternating layers of rubber and metal 'hoop-stack'. Fatigue and visoelastic power dissipation in the rubber are critical considerations; strain energy density plays a role in both. Optimal aspect ratios for a rectangle corss-section in the rubber, for given values of bellows axial strain and oscillatory pressure loads are discussed. Comparisons of tearing energies estimated from known load cases and those obtained by finite element analysis for candidate dimensions are presented. The metal layers of bellows are subject to an out-of-plane buckling instability for the case of external pressure loading; failure of this type was experimentally observed. The proposed structure also exhibits column instability when subject to internal pressure, as do metal bellows. For hoop-stack bellows, shear deflection cannot be ignored and this leads to column instability for both internal and external pressures, the latter being analogous to the case of tension buckling of a beam. During prototype bellows testing, transverse modes of vibration are believed to have been excited parametrically as a consequence of the oscillatory pressures. Some operating frequencies of interest in this study lie above the cut-on frequency at which Timoshenko beam theory (TBT) predicts multiple phase speeds; it is shown that TBT fails to accurately predict both mode shapes and resonance frequencies in this regime. TBT is also shown to predict multiple phase speeds in the presence of axial tension, or external pressures, at magnitudes of interest in this study, over the entire frequency spectrum. For modes below cut-on absent a pressure differential (or equivalently, axial load) TBT predicts decreasing resonance frequencies for both internal external static pressure, and converges on known, valid static buckling solutions. Parametric stability in the presence of oscillatory pressure is discussed for such modes; periodic solutions to the Whittaker-Hill equation are pursued to illustrate the shape of the parametric instability regions, and contrasted with results of the more well-known Mathieu equation.
NASA Astrophysics Data System (ADS)
Paustian, Joel Scott
Microfluidic technology is playing an ever-expanding role in advanced chemical and biological devices, with diverse applications including medical diagnostics, high throughput research tools, chemical or biological detection, separations, and controlled particle fabrication. Even so, local (microscale) modification of solution properties within microchannels, such as pressure, solute concentration, and voltage remains a challenge, and improved spatiotemporal control would greatly enhance the capabilities of microfluidics. This thesis demonstrates and characterizes two microfluidic tools to enhance local solution control. I first describe a microfluidic pump that uses an electrokinetic effect, Induced-Charge Electroosmosis (ICEO), to generate pressure on-chip. In ICEO, steady flows are driven by AC fields along metal-electrolyte interfaces. I design and microfabricate a pump that exploits this effect to generate on-chip pressures. The ICEO pump is used to drive flow along a microchannel, and the pressure is measured as a function of voltage, frequency, and electrolyte composition. This is the first demonstration of chip-scale flows driven by ICEO, which opens the possibility for ICEO pumping in self-contained microfluidic devices. Next, I demonstrate a method to create thin local membranes between microchannels, which enables local diffusive delivery of solute. These ``Hydrogel Membrane Microwindows'' are made by photopolymerizing a hydrogel which serves as a local ``window'' for solute diffusion and electromigration between channels, but remains a barrier to flow. I demonstrate three novel experimental capabilities enabled by the hydrogel membranes: local concentration gradients, local electric currents, and rapid diffusive composition changes. I conclude by applying the hydrogel membranes to study solvophoresis, the migration of particles in solvent gradients. Solvent gradients are present in many chemical processes, but migration of particles within these gradients is not well understood. An improved understanding would allow solvophoresis to be engineered (e.g. for coatings and thin film deposition) or reduced (e.g. in fouling processes during reactions and separations). Toward this end, I perform velocity measurements of colloidal particles at various ethanol-water concentrations and gradient strengths. The velocity was found to depend on the mole fraction via the equation u = DSP▿ln X, where u is the velocity, DSP is the mobility, and X is the ethanol mole fraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falceta-Gonçalves, D.; Kowal, G.
2015-07-20
In this work we report on a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of the magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that (i) amplification of the magnetic field was efficient in firehose-unstable turbulent regimes, but not in the mirror-unstable models; (ii) the growthmore » rate of the magnetic energy density is much faster than the turbulent dynamo; and (iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales and pressure anisotropy is confirmed by the numerical simulations. These results reinforce the idea that pressure anisotropies—driven naturally in a turbulent collisionless medium, e.g., the intergalactic medium, could efficiently amplify the magnetic field in the early universe (post-recombination era), previous to the collapse of the first large-scale gravitational structures. This mechanism, though fast for the small-scale fields (∼kpc scales), is unable to provide relatively strong magnetic fields at large scales. Other mechanisms that were not accounted for here (e.g., collisional turbulence once instabilities are quenched, velocity shear, or gravitationally induced inflows of gas into galaxies and clusters) could operate afterward to build up large-scale coherent field structures in the long time evolution.« less
Direct Coupling Method for Time-Accurate Solution of Incompressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Soh, Woo Y.
1992-01-01
A noniterative finite difference numerical method is presented for the solution of the incompressible Navier-Stokes equations with second order accuracy in time and space. Explicit treatment of convection and diffusion terms and implicit treatment of the pressure gradient give a single pressure Poisson equation when the discretized momentum and continuity equations are combined. A pressure boundary condition is not needed on solid boundaries in the staggered mesh system. The solution of the pressure Poisson equation is obtained directly by Gaussian elimination. This method is tested on flow problems in a driven cavity and a curved duct.
Fast ion beta limit measurements by collimated neutron detection in MST plasmas
NASA Astrophysics Data System (ADS)
Capecchi, William; Anderson, Jay; Bonofiglo, Phillip; Kim, Jungha; Sears, Stephanie
2015-11-01
Fast ion orbits in the reversed field pinch (RFP) are well ordered and classically confined despite magnetic field stochasticity generated by multiple tearing modes. Classical TRANSP modeling of a 1MW tangentially injected hydrogen neutral beam in MST deuterium plasmas predicts a core-localized fast ion density that can be up to 25% of the electron density and a fast ion beta of many times the local thermal beta. However, neutral particle analysis of an NBI-driven mode (presumably driven by a fast ion pressure gradient) shows mode-induced transport of core-localized fast ions and a saturated fast ion density. The TRANSP modeling is presumed valid until the onset of the beam-driven mode and gives an initial estimate of the volume-averaged fast ion beta of 1-2% (local core value up to 10%). A collimated neutron detector for fusion product profile measurements will be used to determine the spatial distribution of fast ions, allowing for a first measurement of the critical fast-ion pressure gradient required for mode destabilization. Testing/calibration data and initial fast-ion profiles will be presented. Characterization of both the local and global fast ion beta will be done for deuterium beam injection into deuterium plasmas for comparison to TRANSP predictions. Work supported by US DOE.
Calibration of PCB-132 Sensors in a Shock Tube
NASA Technical Reports Server (NTRS)
Berridge, Dennis C.; Schneider, Steven P.
2012-01-01
While PCB-132 sensors have proven useful for measuring second-mode instability waves in many hypersonic wind tunnels, they are currently limited by their calibration. Until now, the factory calibration has been all that was available, which is a single-point calibration at an amplitude three orders of magnitude higher than a second-mode wave. In addition, little information has been available about the frequency response or spatial resolution of the sensors, which is important for measuring high-frequency instability waves. These shortcomings make it difficult to compare measurements at different conditions and between different sensors. If accurate quantitative measurements could be performed, comparisons of the growth and breakdown of instability waves could be made in different facilities, possibly leading to a method of predicting the amplitude at which the waves break down into turbulence, improving transition prediction. A method for calibrating the sensors is proposed using a newly-built shock tube at Purdue University. This shock tube, essentially a half-scale version of the 6-Inch shock tube at the Graduate Aerospace Laboratories at Caltech, has been designed to attain a moderate vacuum in the driven section. Low driven pressures should allow the creation of very weak, yet still relatively thin shock waves. It is expected that static pressure rises within the range of second-mode amplitudes should be possible. The shock tube has been designed to create clean, planar shock waves with a laminar boundary layer to allow for accurate calibrations. Stronger shock waves can be used to identify the frequency response of the sensors out to hundreds of kilohertz.
Chromospheric dust formation, stellar masers and mass loss
NASA Technical Reports Server (NTRS)
Stencel, R. E.
1986-01-01
A multistep scenario which describes a plausible mass loss mechanism associated with red giant and related stars is outlined. The process involves triggering a condensation instability in an extended chromosphere, leading to the formation of cool, dense clouds which are conducive to the formation of molecules and dust grains. Once formed, the dust can be driven away from the star by radiation pressure. Consistency with various observed phenomena is discussed.
Investigation of thermocapillary convection in a three-liquid-layer system
NASA Astrophysics Data System (ADS)
Géoris, Ph.; Hennenberg, M.; Lebon, G.; Legros, J. C.
1999-06-01
This paper presents the first experimental results on Marangoni Bénard instability in a symmetrical three-layer system. A pure thermocapillary phenomenon has been observed by performing the experiment in a microgravity environment where buoyancy forces can be neglected. This configuration enables the hydrodynamic stability of two identical liquid liquid interfaces subjected to a normal gradient of temperature to be studied. The flow is driven by one interface only and obeys the criterion based on the heat diffusivity ratio proposed by Scriven & Sternling (1959) and Smith (1966). The measured critical temperature difference for the onset of convection is compared to the value obtained from two-dimensional numerical simulations. The results of the simulations are in reasonable agreement with the velocimetry and the thermal experimental data for moderate supercriticality. Numerically and experimentally, the convective pattern exhibits a transition between different convective regimes for similar temperature gradients. Their common detailed features are discussed.
Comparison of Microinstability Properties for Stellarator Magnetic Geometries
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Rewoldt; L.-P. Ku; W.M. Tang
2005-06-16
The microinstability properties of seven distinct magnetic geometries corresponding to different operating and planned stellarators with differing symmetry properties are compared. Specifically, the kinetic stability properties (linear growth rates and real frequencies) of toroidal microinstabilities (driven by ion temperature gradients and trapped-electron dynamics) are compared, as parameters are varied. The familiar ballooning representation is used to enable efficient treatment of the spatial variations along the equilibrium magnetic field lines. These studies provide useful insights for understanding the differences in the relative strengths of the instabilities caused by the differing localizations of good and bad magnetic curvature and of the presencemore » of trapped particles. The associated differences in growth rates due to magnetic geometry are large for small values of the temperature gradient parameter n identical to d ln T/d ln n, whereas for large values of n, the mode is strongly unstable for all of the different magnetic geometries.« less
Kinetic instability of electrostatic ion cyclotron waves in inter-penetrating plasmas
NASA Astrophysics Data System (ADS)
Bashir, M. F.; Ilie, R.; Murtaza, G.
2018-05-01
The Electrostatic Ion Cyclotron (EIC) instability that includes the effect of wave-particle interaction is studied owing to the free energy source through the flowing velocity of the inter-penetrating plasmas. It is shown that the origin of this current-less instability is different from the classical current driven EIC instability. The threshold conditions applicable to a wide range of plasma parameters and the estimate of the growth rate are determined as a function of the normalized flowing velocity ( u0/vt f e ), the temperature ( Tf/Ts ) and the density ratios ( nf 0/ns 0 ) of flowing component to static one. The EIC instability is driven by either flowing electrons or flowing ions, depending upon the different Doppler shifted frequency domains. It is found that the growth rate for electron-driven instability is higher than the ion-driven one. However, in both cases, the denser (hotter) is the flowing plasma, the lesser (greater) is the growth rate. The possible applications related to the terrestrial solar plasma environment are also discussed.
A Computational Study of a Circular Interface Richtmyer-Meshkov Instability in MHD
NASA Astrophysics Data System (ADS)
Maxon, William; Black, Wolfgang; Denissen, Nicholas; McFarland, Jacob; Los Alamos National Laboratory Collaboration; University of Missouri Shock Tube Laboratory Team
2017-11-01
The Richtmyer-Meshkov instability (RMI) is a hydrodynamic instability that appears in several high energy density applications such as inertial confinement fusion (ICF). In ICF, as the thermonuclear fuel is being compressed it begins to mix due to fluid instabilities including the RMI. This mixing greatly decreases the energy output. The RMI occurs when two fluids of different densities are impulsively accelerated and the pressure and density gradients are misaligned. In magnetohydrodynamics (MHD), the RMI may be suppressed by introducing a magnetic field in an electrically conducting fluid, such as a plasma. This suppression has been studied as a possible mechanism for improving confinement in ICF targets. In this study,ideal MHD simulations are performed with a circular interface impulsively accelerated by a shock wave in the presence of a magnetic field. These simulations are executed with the research code FLAG, a multiphysics, arbitrary Lagrangian/Eulerian, hydrocode developed and utilized at Los Alamos National Laboratory. The simulation results will be assessed both quantitatively and qualitatively to examine the stabilization mechanism. These simulations will guide ongoing MHD experiments at the University of Missouri Shock Tube Facility.
POD analysis of the instability mode of a low-speed streak in a laminar boundary layer
NASA Astrophysics Data System (ADS)
Deng, Si-Chao; Pan, Chong; Wang, Jin-Jun; Rinoshika, Akira
2017-12-01
The instability of one single low-speed streak in a zero-pressure-gradient laminar boundary layer is investigated experimentally via both hydrogen bubble visualization and planar particle image velocimetry (PIV) measurement. A single low-speed streak is generated and destabilized by the wake of an interference wire positioned normal to the wall and in the upstream. The downstream development of the streak includes secondary instability and self-reproduction process, which leads to the generation of two additional streaks appearing on either side of the primary one. A proper orthogonal decomposition (POD) analysis of PIV measured velocity field is used to identify the components of the streak instability in the POD mode space: for a sinuous/varicose type of POD mode, its basis functions present anti-symmetric/symmetric distributions about the streak centerline in the streamwise component, and the symmetry condition reverses in the spanwise component. It is further shown that sinuous mode dominates the turbulent kinematic energy (TKE) through the whole streak evolution process, the TKE content first increases along the streamwise direction to a saturation value and then decays slowly. In contrast, varicose mode exhibits a sustained growth of the TKE content, suggesting an increasing competition of varicose instability against sinuous instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandenboomgaerde, M.; Bonnefille, M.; Gauthier, P.
Highly resolved radiation-hydrodynamics FCI2 simulations have been performed to model laser experiments on the National Ignition Facility. In these experiments, cylindrical gas-filled hohlraums with gold walls are driven by a 20 ns laser pulse. For the first time, simulations show the appearance of Kelvin-Helmholtz (KH) vortices at the interface between the expanding wall material and the gas fill. In this paper, we determine the mechanisms which generate this instability: the increase of the gas pressure around the expanding gold plasma leads to the aggregation of an over-dense gold layer simultaneously with shear flows. At the surface of this layer, all themore » conditions are met for a KH instability to grow. Later on, as the interface decelerates, the Rayleigh-Taylor instability also comes into play. A potential scenario for the generation of a mixing zone at the gold-gas interface due to the KH instability is presented. Our estimates of the Reynolds number and the plasma diffusion width at the interface support the possibility of such a mix. The key role of the first nanosecond of the laser pulse in the instability occurrence is also underlined.« less
MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders
NASA Astrophysics Data System (ADS)
Haq, Rizwan Ul; Shahzad, Faisal; Al-Mdallal, Qasem M.
In this article, thermal performance of engine oil in the presence of both single and multiple wall carbon nanotubes (SWCNTs and MWCNTs) between two concentric cylinders is presented. Flow is driven with oscillatory pressure gradient and magneto-hydrodynamics (MHDs) effects are also introduced to control the random motion of the nanoparticles. Arrived broad, it is perceived that the inclusion of nanoparticles increases the thermal conductivity of working fluid significantly for both turbulent and laminar regimes. Fundamental momentum and energy equations are based upon partial differential equations (PDEs) that contain thermos-physical properties of both SWCNTs and MWCNTs. The solution has been evaluated for each mixture, namely: SWCNT-engine oil and MWCNT-engine oil. Results are determined for each velocity, temperature, pressure and stress gradient. Graphical results for the numerical values of the emerging parameters, namely: Hartmann number (M), the solid volume fraction of the nanoparticles (ϕ), Reynolds number (Reω), and the pulsation parameter based on the periodic pressure gradient are analyzed for pressure difference, frictional forces, velocity profile, temperature profile, crux, streamlines and vorticity phenomena. In addition, the assets of various parameters on the flow quantities of observation are investigated.
A Model for the Oxidation of C/SiC Composite Structures
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2003-01-01
A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of C/SiC composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. Within the mathematical formulation, two diffusion mechanisms are possible: (1) the relative diffusion of one species with respect to the mixture, which is concentration gradient driven and (2) the diffusion associated with the average velocity of the gas mixture, which is total gas pressure gradient driven. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations must be solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of space and time. The local rate of carbon oxidation is determined as a function of space and time using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The end result is a numerical scheme capable of determining the variation of the local carbon oxidation rates as a function of space and time for any arbitrary C/SiC composite structures.
Study of heat transfer on physiological driven movement with CNT nanofluids and variable viscosity.
Akbar, Noreen Sher; Kazmi, Naeem; Tripathi, Dharmendra; Mir, Nazir Ahmed
2016-11-01
With ongoing interest in CNT nanofluids and materials in biotechnology, energy and environment, microelectronics, composite materials etc., the current investigation is carried out to analyze the effects of variable viscosity and thermal conductivity of CNT nanofluids flow driven by cilia induced movement through a circular cylindrical tube. Metachronal wave is generated by the beating of cilia and mathematically modeled as elliptical wave propagation by Blake (1971). The problem is formulated in the form of nonlinear partial differential equations, which are simplified by using the dimensional analysis to avoid the complicacy of dimensional homogeneity. Lubrication theory is employed to linearize the governing equations and it is also physically appropriate for cilia movement. Analytical solutions for velocity, temperature and pressure gradient and stream function are obtained. The analytical results are numerically simulated by using the Mathematica Software and plotted the graphs for velocity profile, temperature profile, pressure gradient and stream lines for better discussion and visualization. This model is applicable in physiological transport phenomena to explore the nanotechnology in engineering the artificial cilia and ciliated tube/pipe. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Segregation physics of a macroscale granular ratchet
NASA Astrophysics Data System (ADS)
Bhateja, Ashish; Sharma, Ishan; Singh, Jayant K.
2017-05-01
New experiments with multigrain mixtures in a laterally shaken, horizontal channel show complete axial segregation of species. The channel consists of multiple concatenated trapeziums, and superficially resembles microratchets wherein asymmetric geometries and potentials transport, and sort, randomly agitated microscopic particles. However, the physics of our macroscale granular ratchet is fundamentally different, as macroscopic segregation is gravity driven. Our observations are not explained by classical granular segregation theories either. Motivated by the experiments, extensive parallelized discrete element simulations reveal that the macroratchet differentiates grains through hierarchical bidirectional segregation over two different time scales: Grains rapidly sort vertically into horizontal bands spanning the channel's length that, subsequently, slowly separate axially, driven by strikingly gentle, average interfacial pressure gradients acting over long distances. At its maximum, the pressure gradient responsible for axial separation was due to a change in height of about two big grain diameters (d =7 mm) over a meter-long channel. The strong directional segregation achieved by the granular macroratchet has practical importance, while identifying the underlying new physics will further our understanding of granular segregation in industrial and geophysical processes.
The Bar Mode Instability in Deleptonizing Fizzlers
NASA Astrophysics Data System (ADS)
Imamura, James N.; Durisen, R. H.
2009-01-01
Core collapse in massive rotating nonmagnetic stars may hangup before neutron star densities are reached when rotationally supported or partially rotation supported, hot, lepton-rich objects known as fizzlers form. For typical massive core masses, fizzlers may form if the core has angular momentum J > 1049 g cm2 s-1. Newly formed fizzlers are stable to secular and dynamic nonaxisymmetric instabilities because of the high electron fraction per baryon, Ye > 0.3, and high entropy per baryon, Sn = 1-2 k of fizzler material, and the long-term evolution of a fizzler to neutron star density is driven by deleptonization and cooling of the lepton-rich fizzler material. Both processes lead to pressure loss which causes the fizzler to contract and spin-up. All deleptonizing fizzlers eventually become subject to gravito-rotation-driven nonaxisymmetric instabilities before they reach neutron star density. We study the development of barlike instabilities in deleptonizing fizzlers. We find that vigorous growth in barlike modes occurs only after the bar mode dynamic instability threshold is passed. Because barlike modes break axial symmetry, a burst of gravitational wave (GW) radiation is produced as barlike modes develop. For typical fizzler properties, the GW radiation will have frequency 300-600 Hz with strains of 10-23-10-23, for fizzlers at distances of 15 Mpc ( Virgo cluster of galaxies). Fizzlers in the Virgo cluster would be easily detectable by the gravitational wave obervatory LIGO if the barlike mode persisted for several hundred cycles. We find that barlike modes in fizzlers persist for at least 15-30 cycles in our simulations, depending on the deleptonization rate.
On the classification of buoyancy-driven chemo-hydrodynamic instabilities of chemical fronts.
D'Hernoncourt, J; Zebib, A; De Wit, A
2007-03-01
Exothermic autocatalytic fronts traveling in the gravity field can be deformed by buoyancy-driven convection due to solutal and thermal contributions to changes in the density of the product versus the reactant solutions. We classify the possible instability mechanisms, such as Rayleigh-Benard, Rayleigh-Taylor, and double-diffusive mechanisms known to operate in such conditions in a parameter space spanned by the corresponding solutal and thermal Rayleigh numbers. We also discuss a counterintuitive instability leading to buoyancy-driven deformation of statically stable fronts across which a solute-light and hot solution lies on top of a solute-heavy and colder one. The mechanism of this chemically driven instability lies in the coupling of a localized reaction zone and of differential diffusion of heat and mass. Dispersion curves of the various cases are analyzed. A discussion of the possible candidates of autocatalytic reactions and experimental conditions necessary to observe the various instability scenarios is presented.
Global gyrokinetic simulation of Tokamak edge pedestal instabilities.
Wan, Weigang; Parker, Scott E; Chen, Yang; Yan, Zheng; Groebner, Richard J; Snyder, Philip B
2012-11-02
Global electromagnetic gyrokinetic simulations show the existence of near threshold conditions for both a high-n kinetic ballooning mode (KBM) and an intermediate-n kinetic version of peeling-ballooning mode (KPBM) in the edge pedestal of two DIII-D H-mode discharges. When the magnetic shear is reduced in a narrow region of steep pressure gradient, the KPBM is significantly stabilized, while the KBM is weakly destabilized and hence becomes the most-unstable mode. Collisions decrease the KBM's critical β and increase the growth rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiang, J.; Ding, Y.; Emma, P.
The shot-noise driven microbunching instability can significantly degrade electron beam quality in x-ray free electron laser light sources. Experiments were carried out at the Linac Coherent Light Source (LCLS) to study this instability. Here in this paper, we present start-to-end simulations of the shot-noise driven microbunching instability experiment at the LCLS using the real number of electrons. The simulation results reproduce the measurements quite well. A microbunching self-heating mechanism is also illustrated in the simulation, which helps explain the experimental observation.
Qiang, J.; Ding, Y.; Emma, P.; ...
2017-05-23
The shot-noise driven microbunching instability can significantly degrade electron beam quality in x-ray free electron laser light sources. Experiments were carried out at the Linac Coherent Light Source (LCLS) to study this instability. Here in this paper, we present start-to-end simulations of the shot-noise driven microbunching instability experiment at the LCLS using the real number of electrons. The simulation results reproduce the measurements quite well. A microbunching self-heating mechanism is also illustrated in the simulation, which helps explain the experimental observation.
Plasma shaping effects on tokamak scrape-off layer turbulence
NASA Astrophysics Data System (ADS)
Riva, Fabio; Lanti, Emmanuel; Jolliet, Sébastien; Ricci, Paolo
2017-03-01
The impact of plasma shaping on tokamak scrape-off layer (SOL) turbulence is investigated. The drift-reduced Braginskii equations are written for arbitrary magnetic geometries, and an analytical equilibrium model is used to introduce the dependence of turbulence equations on tokamak inverse aspect ratio (ε ), Shafranov’s shift (Δ), elongation (κ), and triangularity (δ). A linear study of plasma shaping effects on the growth rate of resistive ballooning modes (RBMs) and resistive drift waves (RDWs) reveals that RBMs are strongly stabilized by elongation and negative triangularity, while RDWs are only slightly stabilized in non-circular magnetic geometries. Assuming that the linear instabilities saturate due to nonlinear local flattening of the plasma gradient, the equilibrium gradient pressure length {L}p=-{p}e/{{\
Janus droplet as a catalytic micromotor
NASA Astrophysics Data System (ADS)
Shklyaev, Sergey
2015-06-01
Self-propulsion of a Janus droplet in a solution of surfactant, which reacts on a half of a drop surface, is studied theoretically. The droplet acts as a catalytic motor creating a concentration gradient, which generates its surface-tension-driven motion; the self-propulsion speed is rather high, 60 μ \\text{m/s} and more. This catalytic motor has several advantages over other micromotors: simple manufacturing, easily attained neutral buoyancy. In contrast to a single-fluid droplet, which demonstrates a self-propulsion as a result of symmetry breaking instability, for the Janus one no stability threshold exists; hence, the droplet radius can be scaled down to micrometers.
A charge-driven molecular water pump.
Gong, Xiaojing; Li, Jingyuan; Lu, Hangjun; Wan, Rongzheng; Li, Jichen; Hu, Jun; Fang, Haiping
2007-11-01
Understanding and controlling the transport of water across nanochannels is of great importance for designing novel molecular devices, machines and sensors and has wide applications, including the desalination of seawater. Nanopumps driven by electric or magnetic fields can transport ions and magnetic quanta, but water is charge-neutral and has no magnetic moment. On the basis of molecular dynamics simulations, we propose a design for a molecular water pump. The design uses a combination of charges positioned adjacent to a nanopore and is inspired by the structure of channels in the cellular membrane that conduct water in and out of the cell (aquaporins). The remarkable pumping ability is attributed to the charge dipole-induced ordering of water confined in the nanochannels, where water can be easily driven by external fields in a concerted fashion. These findings may provide possibilities for developing water transport devices that function without osmotic pressure or a hydrostatic pressure gradient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghizzo, A., E-mail: alain.ghizzo@univ-lorraine.fr; Palermo, F.
We address the mechanisms underlying low-frequency zonal flow generation in turbulent system and the associated intermittent regime of ion-temperature-gradient (ITG) turbulence. This model is in connection with the recent observation of quasi periodic zonal flow oscillation at a frequency close to 2 kHz, at the low-high transition, observed in the ASDEX Upgrade [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)] and EAST tokamak [Xu et al., Phys. Rev. Lett 107, 125001 (2011)]. Turbulent bursts caused by the coupling of Kelvin-Helmholtz (KH) driven shear flows with trapped ion modes (TIMs) were investigated by means of reduced gyrokinetic simulations. It was foundmore » that ITG turbulence can be regulated by low-frequency meso-scale zonal flows driven by resonant collisionless trapped ion modes (CTIMs), through parametric-type scattering, a process in competition with the usual KH instability.« less
Swept-Wing Receptivity Studies Using Distributed Roughness
NASA Technical Reports Server (NTRS)
Saric, William S.
1998-01-01
This paper reviews the important recent progress in three-dimensional boundary-layer transition research. The review focuses on the crossflow instability that leads to transition on swept wings with a favorable pressure gradient. Following a brief overview of swept-wing instability mechanisms and the crossflow problem, a summary of the important findings of the 1990s is given. The discussion is presented from the experimental viewpoint, highlighting the ITAM work of Kachanov and co-workers, the DLR experiments of Bippes and co-workers, and the Arizona State University (ASU) investigations of Saric and co-workers. Where appropriate, relevant comparisons with CFD are drawn. The recent (last 18 months) research conducted by the ASU team is described in more detail in order to underscore the latest developments concerning nonlinear effects and transition control.
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Weatherill, W. H.; Yip, E. L.
1984-01-01
A finite difference method to solve the unsteady transonic flow about harmonically oscillating wings was investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. An alternating direction implicit procedure was investigated, and a pilot program was developed for both two and three dimensional wings. This program provides a relatively efficient relaxation solution without previously encountered solution instability problems. Pressure distributions for two rectangular wings are calculated. Conjugate gradient techniques were developed for the asymmetric, indefinite problem. The conjugate gradient procedure is evaluated for applications to the unsteady transonic problem. Different equations for the alternating direction procedure are derived using a coordinate transformation for swept and tapered wing planforms. Pressure distributions for swept, untaped wings of vanishing thickness are correlated with linear results for sweep angles up to 45 degrees.
Ring current impoundment of the Io plasma torus
NASA Technical Reports Server (NTRS)
Siscoe, G. L.; Thorne, R. M.; Richardson, J. D.; Bagenal, F.; Sullivan, J. D.; Eviatar, A.
1981-01-01
A newly discovered feature in the Io plasma formation that may be described as a ramp separating a high-density plasma ledge on its Jupiterward side from the lower-density radially distended Io plasma disc on its anti-Jupiterward side is observed to coincide with a marked inward decrease in the ring current population. The spatial congruency of the counter-directed maximal gradients in both plasma bodies reveals a profound coupling between them. The existence of the ramp requires a local order-of-magnitude reduction in the diffusion coefficient that governs radial mass transport. It is demonstrated that the diminished diffusive efficiency there is caused by strong pressure gradient inhibition of the interchange instability that underlies mass transport. The Io plasma torus, which is defined as the region of strong ultraviolet emissions, is identified as the plasma ledge. The plasma density in the ledge is high and, incidentally therefore, able to emit strongly because it is impounded against rapid, centrifugal expulsion by the inwardly directed pressure of the ring current at its inner edge.
Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)
NASA Technical Reports Server (NTRS)
Balakumar, P.
2015-01-01
Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.
NASA Astrophysics Data System (ADS)
Xu, Qiuju; Belmonte, Andrew; deForest, Russ; Liu, Chun; Tan, Zhong
2017-04-01
In this paper, we study a fitness gradient system for two populations interacting via a symmetric game. The population dynamics are governed by a conservation law, with a spatial migration flux determined by the fitness. By applying the Galerkin method, we establish the existence, regularity and uniqueness of global solutions to an approximate system, which retains most of the interesting mathematical properties of the original fitness gradient system. Furthermore, we show that a Turing instability occurs for equilibrium states of the fitness gradient system, and its approximations.
NASA Technical Reports Server (NTRS)
Doggett, Glen P.; Chokani, Ndaona
1996-01-01
An experimental investigation of the effects of angle of attack on hypersonic boundary-layer stability on a flared-cone model was conducted in the low-disturbance Mach-6 Nozzle-Test Chamber Facility at NASA Langley Research Center. This unique facility provided a 'quiet' flow test environment which is well suited for stability experiments because the low levels of freestream 'noise' minimize artificial stimulation of flow-disturbance growth. Surface pressure and temperature measurements documented the adverse-pressure gradient and transition-onset location. Hot-wire anemometry diagnostics were applied to identify the instability mechanisms which lead to transition. In addition, the mean flow over the flared-cone geometry was modeled by laminar Navier-Stokes computations. Results show that the boundary layer becomes more stable on the windward ray and less stable on the leeward ray relative to the zero-degree angle-of-attack case. The second-mode instability dominates the transition process at a zero-degree angle of attack, however, on the windward ray at an angle of attack this mode was completely stabilized. The less-dominant first-mode instability was slightly destabilized on the windward ray. Non-linear mechanisms such as saturation and harmonic generation are identified from the flow-disturbance bispectra.
The causal relation between turbulent particle flux and density gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligen, B. Ph. van; Martín de Aguilera, A.; Hidalgo, C.
A technique for detecting the causal relationship between fluctuating signals is used to investigate the relation between flux and gradient in fusion plasmas. Both a resistive pressure gradient driven turbulence model and experimental Langmuir probe data from the TJ-II stellarator are studied. It is found that the maximum influence occurs at a finite time lag (non-instantaneous response) and that quasi-periodicities exist. Furthermore, the model results show very long range radial influences, extending over most of the investigated regions, possibly related to coupling effects associated with plasma self-organization. These results clearly show that transport in fusion plasmas is not local andmore » instantaneous, as is sometimes assumed.« less
NASA Technical Reports Server (NTRS)
Joslin, R. D.; Streett, C. L.; Chang, C.-L.
1991-01-01
A study of instabilities in incompressible boundary-layer flow on a flat plate is conducted by spatial direct numerical simulation (DNS) of the Navier-Stokes equations. Here, the DNS results are used to critically evaluate the results obtained using parabolized stability equations (PSE) theory and to study mechanisms associated with breakdown from laminar to turbulent flow. Three test cases are considered: two-dimensional Tollmien-Schlichting wave propagation, subharmonic instability breakdown, and oblique-wave break-down. The instability modes predicted by PSE theory are in good quantitative agreement with the DNS results, except a small discrepancy is evident in the mean-flow distortion component of the 2-D test problem. This discrepancy is attributed to far-field boundary- condition differences. Both DNS and PSE theory results show several modal discrepancies when compared with the experiments of subharmonic breakdown. Computations that allow for a small adverse pressure gradient in the basic flow and a variation of the disturbance frequency result in better agreement with the experiments.
NASA Astrophysics Data System (ADS)
Fehn, Niklas; Wall, Wolfgang A.; Kronbichler, Martin
2017-12-01
The present paper deals with the numerical solution of the incompressible Navier-Stokes equations using high-order discontinuous Galerkin (DG) methods for discretization in space. For DG methods applied to the dual splitting projection method, instabilities have recently been reported that occur for small time step sizes. Since the critical time step size depends on the viscosity and the spatial resolution, these instabilities limit the robustness of the Navier-Stokes solver in case of complex engineering applications characterized by coarse spatial resolutions and small viscosities. By means of numerical investigation we give evidence that these instabilities are related to the discontinuous Galerkin formulation of the velocity divergence term and the pressure gradient term that couple velocity and pressure. Integration by parts of these terms with a suitable definition of boundary conditions is required in order to obtain a stable and robust method. Since the intermediate velocity field does not fulfill the boundary conditions prescribed for the velocity, a consistent boundary condition is derived from the convective step of the dual splitting scheme to ensure high-order accuracy with respect to the temporal discretization. This new formulation is stable in the limit of small time steps for both equal-order and mixed-order polynomial approximations. Although the dual splitting scheme itself includes inf-sup stabilizing contributions, we demonstrate that spurious pressure oscillations appear for equal-order polynomials and small time steps highlighting the necessity to consider inf-sup stability explicitly.
Droplet and multiphase effects in a shock-driven hydrodynamic instability with reshock
NASA Astrophysics Data System (ADS)
Middlebrooks, John B.; Avgoustopoulos, Constantine G.; Black, Wolfgang J.; Allen, Roy C.; McFarland, Jacob A.
2018-06-01
Shock-driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching applications in engineering and science such as high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase field is impulsively accelerated by a shock wave and evolves as a result of gradients in particle-gas momentum transfer. A new shock tube facility has been constructed to study the SDMI. Experiments were conducted to investigate liquid particle and multiphase effects in the SDMI. A multiphase cylindrical interface was created with water droplet laden air in our horizontal shock tube facility. The interface was accelerated by a Mach 1.66 shock wave, and its reflection from the end wall. The interface development was captured using laser illumination and a high-resolution CCD camera. Laser interferometry was used to determine the droplet size distribution. A particle filtration technique was used to determine mass loading within an interface and verify particle size distribution. The effects of particle number density, particle size, and a secondary acceleration (reshock) of the interface were noted. Particle number density effects were found comparable to Atwood number effects in the Richtmyer-Meshkov instability for small (˜ 1.7 {μ }m) droplets. Evaporation was observed to alter droplet sizes and number density, markedly after reshock. For large diameter droplets (˜ 10.7 {μ }m), diminished development was observed with larger droplets lagging far behind the interface. These lagging droplets were also observed to breakup after reshock into structured clusters of smaller droplets. Mixing width values were reported to quantify mixing effects seen in images.
Characteristics of Muti-pulsing CHI driven ST plasmas on HIST
NASA Astrophysics Data System (ADS)
Ishihara, M.; Hanao, T.; Ito, K.; Matsumoto, K.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2011-10-01
The flux amplification and sustainment of the ST configurations by operating in Multi-pulsing Coaxial Helicity Injection (M-CHI) method have been demonstrated on HIST. The multi-pulsing experiment was demonstrated in the SSPX spheromak device at LLNL. In the double pulsing discharges, we have observed that the plasma current has been sustained much longer against the resistive decay as compared to the single CHI. We have measured the radial profiles of the flow velocities by using Ion Doppler Spectrometer and Mach probes. The result shows that poloidal shear flow exists between the open flux column and the most outer closed flux surface. The poloidal velocity shear at the interface may be caused by the ion diamagnetic drift, because of a steep density gradient there. The radial electric field is determined by the flow velocities and the ion pressure gradient through the radial momentum balance equation. We have investigated the contribution of ExB or the ion pressure gradient on the poloidal velocity shear by comparing the impurity ion flow obtained from the IDS with the bulk ion flow from the Mach probe. It should be noted that the diamagnetic drift velocity of the impurity is much smaller than ExB drift velocity. We will discuss characteristics of M-CHI-driven ST plasmas by varying TF coil current and the line averaged electron density.
Induced charge electroosmosis micropumps using arrays of Janus micropillars.
Paustian, Joel S; Pascall, Andrew J; Wilson, Neil M; Squires, Todd M
2014-09-07
We report on a microfluidic AC-driven electrokinetic pump that uses Induced Charge Electro-Osmosis (ICEO) to generate on-chip pressures. ICEO flows occur when a bulk electric field polarizes a metal object to induce double layer formation, then drives electroosmotic flow. A microfabricated array of metal-dielectric Janus micropillars breaks the symmetry of ICEO flow, so that an AC electric field applied across the array drives ICEO flow along the length of the pump. When pumping against an external load, a pressure gradient forms along the pump length. The design was analyzed theoretically with the reciprocal theorem. The analysis reveals a maximum pressure and flow rate that depend on the ICEO slip velocity and micropillar geometry. We then fabricate and test the pump, validating our design concept by demonstrating non-local pressure driven flow using local ICEO slip flows. We varied the voltage, frequency, and electrolyte composition, measuring pump pressures of 15-150 Pa. We use the pump to drive flows through a high-resistance microfluidic channel. We conclude by discussing optimization routes suggested by our theoretical analysis to enhance the pump pressure.
Passive injection control for microfluidic systems
Paul, Phillip H.; Arnold, Don W.; Neyer, David W.
2004-12-21
Apparatus for eliminating siphoning, "dead" regions, and fluid concentration gradients in microscale analytical devices. In its most basic embodiment, the present invention affords passive injection control for both electric field-driven and pressure-driven systems by providing additional fluid flow channels or auxiliary channels disposed on either side of a sample separation column. The auxiliary channels are sized such that volumetric fluid flow rate through these channels, while sufficient to move the sample away from the sample injection region in a timely fashion, is less than that through the sample separation channel or chromatograph.
An investigation of transient pressure and plasma properties in a pinched plasma column. M.S. Thesis
NASA Technical Reports Server (NTRS)
Stover, E. K.; York, T. M.
1971-01-01
The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with the following plasma diagnostics: a special rapid response pressure transducer, a magnetic field probe, a voltage probe and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior; they were in temporal sequence: strong axial pressure asymmetry noted early in plasma column lifetime followed by plasma heating in which there is a rapid rise in static pressure and a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating is attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity. Turbulent heating arising from discharge current excitation of the ion acoustic wave instability is also considered a possible heating mechanism.
Investigation of flame driving and flow turning in axial solid rocket instabilities
NASA Astrophysics Data System (ADS)
Zinn, Ben T.; Daniel, Brady R.; Matta, Lawrence M.
1993-08-01
An understanding of the processes responsible for driving and damping acoustic oscillations in solid rocket motors is necessary for developing practical design methods that eliminate or reduce the occurrence combustion instabilities. While state of the art solid rocket stability prediction methods generally account for the flow turning loss, the magnitude and characteristics of this loss have never been fully investigated. Results of an investigation of the role of the flow turning loss in the stability of solid rockets and its dependence upon motor design and operating parameters are described. A one dimensional acoustic stability equation that verifies that the flow turning loss term is appropriately included in the one dimensional stability formulation was derived for a chamber with a constant mean temperature and pressure by an approach independent from that of Culick. This study was extended providing the background and expressions needed to guide an experimental study of the flow turning loss in the presence of mean temperature and density gradients. This allows the study of combustion systems in which mean temperature gradients and heat losses are significant. The relevant conservation equations were solved numerically for the experimental configuration in order to predict the behavior of the flow turning loss and to assist in the analysis of experimental results. Experiments performed, with and without combustion, showed that the flow turning loss strongly depends upon the propellant burning rate and the location of the flow turning region relative to the standing pressure wave.
List, Jeffrey; Benedet, Lindino; Hanes, Daniel M.; Ruggiero, Peter
2009-01-01
Predictions of alongshore transport gradients are critical for forecasting shoreline change. At the previous ICCE conference, it was demonstrated that alongshore transport gradients predicted by the empirical CERC equation can differ substantially from predictions made by the hydrodynamics-based model Delft3D in the case of a simulated borrow pit on the shoreface. Here we use the Delft3D momentum balance to examine the reason for this difference. Alongshore advective flow accelerations in our Delft3D simulation are mainly driven by pressure gradients resulting from alongshore variations in wave height and setup, and Delft3D transport gradients are controlled by these flow accelerations. The CERC equation does not take this process into account, and for this reason a second empirical transport term is sometimes added when alongshore gradients in wave height are thought to be significant. However, our test case indicates that this second term does not properly predict alongshore transport gradients.
Forward Osmosis in Wastewater Treatment Processes.
Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini; Hélix-Nielsen, Claus; Petrinic, Irena
2017-01-01
In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies is that the forward osmosis process per se eliminates the need for operation with high hydraulic pressure and forward osmosis has low fouling tendency. Hence, it provides an opportunity for saving energy and membrane replacement cost. However, there are many limitations that still need to be addressed. Here we briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication.
Differential Activity-Driven Instabilities in Biphasic Active Matter
NASA Astrophysics Data System (ADS)
Weber, Christoph A.; Rycroft, Chris H.; Mahadevan, L.
2018-06-01
Active stresses can cause instabilities in contractile gels and living tissues. Here we provide a generic hydrodynamic theory that treats these systems as a mixture of two phases of varying activity and different mechanical properties. We find that differential activity between the phases causes a uniform mixture to undergo a demixing instability. We follow the nonlinear evolution of the instability and characterize a phase diagram of the resulting patterns. Our study complements other instability mechanisms in mixtures driven by differential adhesion, differential diffusion, differential growth, and differential motion.
Screech tones from free and ducted supersonic jets
NASA Technical Reports Server (NTRS)
Tam, C. K. W.; Ahuja, K. K.; Jones, R. R., III
1994-01-01
It is well known that screech tones from supersonic jets are generated by a feedback loop. The loop consists of three main components. They are the downstream propagating instability wave, the shock cell structure in the jet plume, and the feedback acoustic waves immediately outside the jet. Evidence will be presented to show that the screech frequency is largely controlled by the characteristics of the feedback acoustic waves. The feedback loop is driven by the instability wave of the jet. Thus the tone intensity and its occurrence are dictated by the characteristics of the instability wave. In this paper the dependence of the instability wave spectrum on the azimuthal mode number (axisymmetric or helical/flapping mode, etc.), the jet-to-ambient gas temperature ratio, and the jet Mach number are studied. The results of this study provide an explanation for the observed screech tone mode switch phenomenon (changing from axisymmetric to helical mode as Mach number increases) and the often-cited experimental observation that tone intensity reduces with increase in jet temperature. For ducted supersonic jets screech tones can also be generated by feedback loops formed by the coupling of normal duct modes to instability waves of the jet. The screech frequencies are dictated by the frequencies of the duct modes. Super resonance, resonance involving very large pressure oscillations, can occur when the feedback loop is powered by the most amplified instability wave. It is proposed that the observed large amplitude pressure fluctuations and tone in the test cells of Arnold Engineering Development Center were generated by super resonance. Estimated super-resonance frequency for a Mach 1.3 axisymmetric jet tested in the facility agrees well with measurement.
NASA Astrophysics Data System (ADS)
Rudolf, Pavel; Litera, Jiří; Alejandro Ibarra Bolanos, Germán; Štefan, David
2018-06-01
Vortex rope, which induces substantial pressure pulsations, arises in the draft tube (diffuser) of Francis turbine for off-design operating conditions. Present paper focuses on mitigation of those pulsations using active water jet injection control. Several modifications of the original Susan-Resiga's idea were proposed. All modifications are driven by manipulation of the shear layer region, which is believed to play important role in swirling flow instability. While some of the methods provide results close to the original one, none of them works in such a wide range. Series of numerical experiments support the idea that the necessary condition for vortex rope pulsation mitigation is increasing the fluid momentum along the draft tube axis.
Plasma Irregularities on the Leading and Trailing Edges of Polar Cap Patches
NASA Astrophysics Data System (ADS)
Lamarche, L. J.; Varney, R. H.; Gillies, R.; Chartier, A.; Mitchell, C. N.
2017-12-01
Plasma irregularities in the polar cap have often been attributed to the gradient drift instability (GDI). Traditional fluid theories of GDI predicts irregularity growth only on the trailing edge of polar patches, where the plasma density gradient is parallel to the plasma drift velocity, however many observations show irregularities also form on the leading edge of patches. We consider decameter-scale irregularities detected by polar-latitude SuperDARN (Super Dual Auroral Radar Network) radars with any relationship between the background density gradients and drift velocity. Global electron density from the Multi-Instrument Data Analysis System (MIDAS), a GPS tomography routine, is used to provide context for where irregularities are observed relative to polar patches and finer-scale background density gradients are found from 3D imaging from both the North and Canada faces of the Resolute Bay Incoherent Scatter Radars (RISR-N and RISR-C) jointly. Shear-based instabilities are considered as mechanisms by which plasma irregularities could form on the leading edge of patches. Theoretical predictions of instability growth from both GDI and shear instabilities are compared with irregularity observations for the October 13, 2016 storm.
How the Venus flytrap actively snaps: hydrodynamic measurements at the cellular level
NASA Astrophysics Data System (ADS)
Colombani, Mathieu; Forterre, Yoel; GEP Team
2012-11-01
Although they lack muscle, plants have evolved a remarkable range of mechanisms to create rapid motion, from the rapid folding of sensitive plants to seed dispersal. Of these spectacular examples that have long fascinated scientists, the carnivorous plant Venus flytrap, whose leaves snap together in a fraction of second to capture insects, has long been a paradigm for study. Recently, we have shown that this motion involves a snap-buckling instability due to the shell-like geometry of the leaves of the trap. However, the origin of the movement that allows the plant to cross the instability threshold and actively bend remains largely unknown. In this study, we investigate this active motion using a micro-fluidic pressure probe that gives direct hydraulic and mechanical measurements at the cellular level (osmotic pressure, cell membrane permeability, cell wall elasticity). Our results challenge the role of osmotically-driven water flows usually put forward to explain Venus flytrap's active closure.
NASA Astrophysics Data System (ADS)
Gravier, E.; Plaut, E.
2013-04-01
Collisional drift waves and ion temperature gradient (ITG) instabilities are studied using a linear water-bag kinetic model [P. Morel et al., Phys. Plasmas 14, 112109 (2007)]. An efficient spectral method, already validated in the case of drift waves instabilities [E. Gravier et al., Eur. Phys. J. D 67, 7 (2013)], allows a fast solving of the global linear problem in cylindrical geometry. The comparison between the linear ITG instability properties thus computed and the ones given by the COLUMBIA experiment [R. G. Greaves et al., Plasma Phys. Controlled Fusion 34, 1253 (1992)] shows a qualitative agreement. Moreover, the transition between collisional drift waves and ITG instabilities is studied theoretically as a function of the ion temperature profile.
The linear tearing instability in three dimensional, toroidal gyro-kinetic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hornsby, W. A., E-mail: william.hornsby@ipp.mpg.de; Migliano, P.; Buchholz, R.
2015-02-15
Linear gyro-kinetic simulations of the classical tearing mode in three-dimensional toroidal geometry were performed using the global gyro-kinetic turbulence code, GKW. The results were benchmarked against a cylindrical ideal MHD and analytical theory calculations. The stability, growth rate, and frequency of the mode were investigated by varying the current profile, collisionality, and the pressure gradients. Both collisionless and semi-collisional tearing modes were found with a smooth transition between the two. A residual, finite, rotation frequency of the mode even in the absence of a pressure gradient is observed, which is attributed to toroidal finite Larmor-radius effects. When a pressure gradientmore » is present at low collisionality, the mode rotates at the expected electron diamagnetic frequency. However, the island rotation reverses direction at high collisionality. The growth rate is found to follow a η{sup 1∕7} scaling with collisional resistivity in the semi-collisional regime, closely following the semi-collisional scaling found by Fitzpatrick. The stability of the mode closely follows the stability analysis as performed by Hastie et al. using the same current and safety factor profiles but for cylindrical geometry, however, here a modification due to toroidal coupling and pressure effects is seen.« less
Instabilities in mimetic matter perturbations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firouzjahi, Hassan; Gorji, Mohammad Ali; Mansoori, Seyed Ali Hosseini, E-mail: firouz@ipm.ir, E-mail: gorji@ipm.ir, E-mail: shosseini@shahroodut.ac.ir, E-mail: shossein@ipm.ir
2017-07-01
We study cosmological perturbations in mimetic matter scenario with a general higher derivative function. We calculate the quadratic action and show that both the kinetic term and the gradient term have the wrong sings. We perform the analysis in both comoving and Newtonian gauges and confirm that the Hamiltonians and the associated instabilities are consistent with each other in both gauges. The existence of instabilities is independent of the specific form of higher derivative function which generates gradients for mimetic field perturbations. It is verified that the ghost instability in mimetic perturbations is not associated with the higher derivative instabilitiesmore » such as the Ostrogradsky ghost.« less
Turbulence, transport, and zonal flows in the Madison symmetric torus reversed-field pinch
NASA Astrophysics Data System (ADS)
Williams, Z. R.; Pueschel, M. J.; Terry, P. W.; Hauff, T.
2017-12-01
The robustness and the effect of zonal flows in trapped electron mode (TEM) turbulence and Ion Temperature Gradient (ITG) turbulence in the reversed-field pinch (RFP) are investigated from numerical solutions of the gyrokinetic equations with and without magnetic external perturbations introduced to model tearing modes. For simulations without external magnetic field perturbations, zonal flows produce a much larger reduction of transport for the density-gradient-driven TEM turbulence than they do for the ITG turbulence. Zonal flows are studied in detail to understand the nature of their strong excitation in the RFP and to gain insight into the key differences between the TEM- and ITG-driven regimes. The zonal flow residuals are significantly larger in the RFP than in tokamak geometry due to the low safety factor. Collisionality is seen to play a significant role in the TEM zonal flow regulation through the different responses of the linear growth rate and the size of the Dimits shift to collisionality, while affecting the ITG only minimally. A secondary instability analysis reveals that the TEM turbulence drives zonal flows at a rate that is twice that of the ITG turbulence. In addition to interfering with zonal flows, the magnetic perturbations are found to obviate an energy scaling relation for fast particles.
The role of hot electrons in the dynamics of a laser-driven strong converging shock
Llor Aisa, E.; Ribeyre, X.; Duchateau, G.; ...
2017-11-30
Experiments on strong shock excitation in spherical plastic targets conducted at the Omega Laser Facility are interpreted with the radiation–hydrodynamics code CHIC to account for parametric instabilities excitation and hot-electron generation. The effects of hot electrons on the shock-pressure amplification and upstream preheat are analyzed. In this study, it is demonstrated that both effects contribute to an increase in shock velocity. Comparison of the measured laser reflectivity and shock flash time with numerical simulations make it possible to reconstitute the time history of the ablation and shock pressures. Finally, consequences of this analysis for the shock-ignition target design are discussed.
The role of hot electrons in the dynamics of a laser-driven strong converging shock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llor Aisa, E.; Ribeyre, X.; Duchateau, G.
Experiments on strong shock excitation in spherical plastic targets conducted at the Omega Laser Facility are interpreted with the radiation–hydrodynamics code CHIC to account for parametric instabilities excitation and hot-electron generation. The effects of hot electrons on the shock-pressure amplification and upstream preheat are analyzed. In this study, it is demonstrated that both effects contribute to an increase in shock velocity. Comparison of the measured laser reflectivity and shock flash time with numerical simulations make it possible to reconstitute the time history of the ablation and shock pressures. Finally, consequences of this analysis for the shock-ignition target design are discussed.
Quenching star formation with quasar outflows launched by trapped IR radiation
NASA Astrophysics Data System (ADS)
Costa, Tiago; Rosdahl, Joakim; Sijacki, Debora; Haehnelt, Martin G.
2018-06-01
We present cosmological radiation-hydrodynamic simulations, performed with the code RAMSES-RT, of radiatively-driven outflows in a massive quasar host halo at z = 6. Our simulations include both single- and multi-scattered radiation pressure on dust from a quasar and are compared against simulations performed with thermal feedback. For radiation pressure-driving, we show that there is a critical quasar luminosity above which a galactic outflow is launched, set by the equilibrium of gravitational and radiation forces. While this critical luminosity is unrealistically high in the single-scattering limit for plausible black hole masses, it is in line with a ≈ 3 × 10^9 M_⊙ black hole accreting at its Eddington limit, if infrared (IR) multi-scattering radiation pressure is included. The outflows are fast (v ≳ 1000 km s^{-1}) and strongly mass-loaded with peak mass outflow rates ≈ 10^3 - 10^4 M_⊙ yr^{-1}, but short-lived (< 10 Myr). Outflowing material is multi-phase, though predominantly composed of cool gas, forming via a thermal instability in the shocked swept-up component. Radiation pressure- and thermally-driven outflows both affect their host galaxies significantly, but in different, complementary ways. Thermally-driven outflows couple more efficiently to diffuse halo gas, generating more powerful, hotter and more volume-filling outflows. IR radiation, through its ability to penetrate dense gas via diffusion, is more efficient at ejecting gas from the bulge. The combination of gas ejection through outflows with internal pressurisation by trapped IR radiation leads to a complete shut down of star formation in the bulge. We hence argue that radiation pressure-driven feedback may be an important ingredient in regulating star formation in compact starbursts, especially during the quasar's `obscured' phase.
Diffusion-driven fluid dynamics in ideal gases and plasmas
NASA Astrophysics Data System (ADS)
Vold, E. L.; Yin, L.; Taitano, W.; Molvig, K.; Albright, B. J.
2018-06-01
The classical transport theory based on Chapman-Enskog methods provides self-consistent approximations for the kinetic flux of mass, heat, and momentum in a fluid limit characterized with a small Knudsen number. The species mass fluxes relative to the center of mass, or "diffusive fluxes," are expressed as functions of known gradient quantities with kinetic coefficients evaluated using similar analyses for mixtures of gases or plasma components. The sum over species of the diffusive mass fluxes is constrained to be zero in the Lagrange frame, and thus results in a non-zero molar flux leading to a pressure perturbation. At an interface between two species initially in pressure equilibrium, the pressure perturbation driven by the diffusive molar flux induces a center of mass velocity directed from the species of greater atomic mass towards the lighter atomic mass species. As the ratio of the species particle masses increases, this center of mass velocity carries an increasingly greater portion of the mass across the interface and for a particle mass ratio greater than about two, the center of mass velocity carries more mass than the gradient driven diffusion flux. Early time transients across an interface between two species in a 1D plasma regime and initially in equilibrium are compared using three methods; a fluid code with closure in a classical transport approximation, a particle in cell simulation, and an implicit Fokker-Planck solver for the particle distribution functions. The early time transient phenomenology is shown to be similar in each of the computational simulation methods, including a pressure perturbation associated with the stationary "induced" component of the center of mass velocity which decays to pressure equilibrium during diffusion. At early times, the diffusive process generates pressure and velocity waves which propagate outward from the interface and are required to maintain momentum conservation. The energy in the outgoing waves dissipates as heat in viscous regions, and it is hypothesized that these diffusion driven waves may sustain fluctuations in less viscid finite domains after reflections from the boundaries. These fluid dynamic phenomena are similar in gases or plasmas and occur in flow transients with a moderate Knudsen number. The analysis and simulation results show how the kinetic flux, represented in the fluid transport closure, directly modifies the mass averaged flow described with the Euler equations.
NASA Astrophysics Data System (ADS)
Sotnikov, V. I.; Kim, T. C.; Mishin, E. V.; Kil, H.; Kwak, Y. S.; Paraschiv, I.
2017-12-01
Ionospheric irregularities cause scintillations of electromagnetic signals that can severely affect navigation and transionospheric communication, in particular during space storms. At mid-latitudes the source of F-region Field Aligned Irregularities (FAI) is yet to be determined. They can be created in enhanced subauroral flow channels (SAI/SUBS), where strong gradients of electric field, density and plasma temperature are present. Another important source of FAI is connected with Medium-scale travelling ionospheric disturbances (MSTIDs). Related shear flows and plasma density troughs point to interchange and Kelvin-Helmholtz type instabilities as a possible source of plasma irregularities. A model of nonlinear development of these instabilities based on the two-fluid hydrodynamic description with inclusion of finite Larmor radius effects will be presented. This approach allows to resolve density irregularities on the meter scale. A numerical code in C language to solve the derived nonlinear equations for analysis of interchange and flow velocity shear instabilities in the ionosphere was developed. This code will be used to analyze competition between interchange and Kelvin-Helmholtz instabilities in the mid-latitude region. The high-resolution simulations with continuous density and velocity profiles will be driven by the ambient conditions corresponding to the in situ data obtained during the 2016 Daejeon (Korea) and MU (Japan) radar campaign and data collected simultaneously by the Swarm satellites passed over Korea and Japan. PA approved #: 88ABW-2017-3641
Velocity-jump instabilities in Hele-Shaw flow of associating polymer solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlad, D.H.; Ignes-Mullol, J.; Maher, J.V.
We study fracturelike flow instabilities that arise when water is injected into a Hele-Shaw cell filled with aqueous solutions of associating polymers. We explore various polymer architectures, molecular weights, and solution concentrations. Simultaneous measurements of the finger tip velocity and of the pressure at the injection point allow us to describe the dynamics of the finger in terms of the {open_quotes}finger mobility,{close_quotes} which relates the velocity to the pressure gradient. The flow discontinuities, characterized by jumps in the finger tip velocity, which are observed in experiments with some of the polymer solutions, can be modeled by using a nonmonotonic dependencemore » between a characteristic shear stress and the shear rate at the tip of the finger. A simple model, which is based on a viscosity function containing both a Newtonian and a non-Newtonian component, and which predicts nonmonotonic regions when the non-Newtonian component of the viscosity dominates, is shown to agree with the experimental data. {copyright} {ital 1999} {ital The American Physical Society}« less
NASA Astrophysics Data System (ADS)
Korovinskiy, D. B.; Erkaev, N. V.; Semenov, V. S.; Ivanov, I. B.; Kiehas, S. A.; Ryzhkov, I. I.
2018-02-01
The stability of the Fadeev-like current sheet with respect to transversally propagating kink-like perturbations (flapping mode) is considered in terms of two-dimensional linear magnetohydrodynamic numerical simulations. It is found that the current sheet is stable when the total pressure minimum is located in the sheet center and unstable when the maximum value is reached there. It is shown that an unstable spot of any size enforces the whole sheet to be unstable, though the increment of instability decreases with the reduction of the unstable domain. In unstable sheets, the dispersion curve of instability shows a good match with the double-gradient (DG) model prediction. Here, the typical growth rate (short-wavelength limit) is close to the DG estimate averaged over the unstable region. In stable configurations, the typical frequency matches the maximum DG estimate. The dispersion curve of oscillations demonstrates a local maximum at wavelength ˜0.7 sheet half-width, which is a new feature that is absent in simplified analytical solutions.
NASA Astrophysics Data System (ADS)
Verscharen, D.; Chandran, B. D. G.; Klein, K. G.; Quataert, E.
2016-12-01
Compressive fluctuations are a minor yet significant component of astrophysical plasma turbulence. In the solar wind, long-wavelength compressive slow-mode fluctuations lead to changes in β∥p ≡ 8πnpkBT∥p/B2 and in Rp ≡ T⊥p/T∥p, where T⊥p and T∥p are the perpendicular and parallel temperatures of the protons, B is the magnetic field strength, and np is the proton density. If the amplitude of the compressive fluctuations is large enough, Rp crosses one or more instability thresholds for anisotropy-driven micro-instabilities. The enhanced field fluctuations from these micro-instabilities scatter the protons so as to reduce the anisotropy of the pressure tensor, driving the average value of Rp away from the marginal stability boundary until the fluctuating value of Rp stops crossing the boundary. We model this "fluctuating-anisotropy effect" using linear Vlasov-Maxwell theory to describe the large-scale compressive fluctuations. We show that this effect can explain why, in the nearly collisionless solar wind, the average value of Rp is close to unity.
NASA Astrophysics Data System (ADS)
Fragile, P. Chris; Etheridge, Sarina M.; Anninos, Peter; Mishra, Bhupendra; Kluźniak, Włodek
2018-04-01
We present results from two-dimensional, general relativistic, viscous, radiation hydrodynamic numerical simulations of Shakura–Sunyaev thin disks accreting onto stellar-mass Schwarzschild black holes. We consider cases on both the gas- and radiation-pressure-dominated branches of the thermal equilibrium curve, with mass accretion rates spanning the range from \\dot{M}=0.01{L}Edd}/{c}2 to 10L Edd/c 2. The simulations directly test the stability of this standard disk model on the different branches. We find clear evidence of thermal instability for all radiation-pressure-dominated disks, resulting universally in the vertical collapse of the disks, which in some cases then settle onto the stable, gas-pressure-dominated branch. Although these results are consistent with decades-old theoretical predictions, they appear to be in conflict with available observational data from black hole X-ray binaries. We also find evidence for a radiation-pressure-driven instability that breaks the unstable disks up into alternating rings of high and low surface density on a timescale comparable to the thermal collapse. Since radiation is included self-consistently in the simulations, we are able to calculate light curves and power density spectra (PDS). For the most part, we measure radiative efficiencies (ratio of luminosity to mass accretion rate) close to 6%, as expected for a nonrotating black hole. The PDS appear as broken power laws, with a break typically around 100 Hz. There is no evidence of significant excess power at any frequencies, i.e., no quasi-periodic oscillations are observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com; Shaha, Poly Rani; Roy, Titob
Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number −300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for themore » constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario ‘multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic’, if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario ‘multi-periodic → periodic → steady-state’, if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.« less
Membraneless seawater desalination
Crooks, Richard A.; Knust, Kyle N.; Perdue, Robbyn K.
2018-04-03
Disclosed are microfluidic devices and systems for the desalination of water. The devices and systems can include an electrode configured to generate an electric field gradient in proximity to an intersection formed by the divergence of two microfluidic channels from an inlet channel. Under an applied bias and in the presence of a pressure driven flow of saltwater, the electric field gradient can preferentially direct ions in saltwater into one of the diverging microfluidic channels, while desalted water flows into second diverging channel. Also provided are methods of using the devices and systems described herein to decrease the salinity of water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odier, Philippe; Ecke, Robert E.
Stratified shear flows occur in many geophysical contexts, from oceanic overflows and river estuaries to wind-driven thermocline layers. In this study, we explore a turbulent wall-bounded shear flow of lighter miscible fluid into a quiescent fluid of higher density with a range of Richardson numbersmore » $$0.05\\lesssim Ri\\lesssim 1$$. In order to find a stability parameter that allows close comparison with linear theory and with idealized experiments and numerics, we investigate different definitions of$Ri$$. We find that a gradient Richardson number defined on fluid interface sections where there is no overturning at or adjacent to the maximum density gradient position provides an excellent stability parameter, which captures the Miles–Howard linear stability criterion. For small $$Ri$$ the flow exhibits robust Kelvin–Helmholtz instability, whereas for larger $$Ri$$ interfacial overturning is more intermittent with less frequent Kelvin–Helmholtz events and emerging Holmboe wave instability consistent with a thicker velocity layer compared with the density layer. We compute the perturbed fraction of interface as a quantitative measure of the flow intermittency, which is approximately 1 for the smallest $$Ri$$ but decreases rapidly as $$Ri$ increases, consistent with linear theory. For the perturbed regions, we use the Thorpe scale to characterize the overturning properties of these flows. The probability distribution of the non-zero Thorpe length yields a universal exponential form, suggesting that much of the overturning results from increasingly intermittent Kelvin–Helmholtz instability events. Finally, the distribution of turbulent kinetic energy, conditioned on the intermittency fraction, has a similar form, suggesting an explanation for the universal scaling collapse of the Thorpe length distribution.« less
Odier, Philippe; Ecke, Robert E.
2017-02-21
Stratified shear flows occur in many geophysical contexts, from oceanic overflows and river estuaries to wind-driven thermocline layers. In this study, we explore a turbulent wall-bounded shear flow of lighter miscible fluid into a quiescent fluid of higher density with a range of Richardson numbersmore » $$0.05\\lesssim Ri\\lesssim 1$$. In order to find a stability parameter that allows close comparison with linear theory and with idealized experiments and numerics, we investigate different definitions of$Ri$$. We find that a gradient Richardson number defined on fluid interface sections where there is no overturning at or adjacent to the maximum density gradient position provides an excellent stability parameter, which captures the Miles–Howard linear stability criterion. For small $$Ri$$ the flow exhibits robust Kelvin–Helmholtz instability, whereas for larger $$Ri$$ interfacial overturning is more intermittent with less frequent Kelvin–Helmholtz events and emerging Holmboe wave instability consistent with a thicker velocity layer compared with the density layer. We compute the perturbed fraction of interface as a quantitative measure of the flow intermittency, which is approximately 1 for the smallest $$Ri$$ but decreases rapidly as $$Ri$ increases, consistent with linear theory. For the perturbed regions, we use the Thorpe scale to characterize the overturning properties of these flows. The probability distribution of the non-zero Thorpe length yields a universal exponential form, suggesting that much of the overturning results from increasingly intermittent Kelvin–Helmholtz instability events. Finally, the distribution of turbulent kinetic energy, conditioned on the intermittency fraction, has a similar form, suggesting an explanation for the universal scaling collapse of the Thorpe length distribution.« less
NASA Astrophysics Data System (ADS)
Reinink, Shawn K.; Yaras, Metin I.
2015-06-01
Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal property gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between hairpin vortices causes them to interact more frequently by merging together and by breaking apart into smaller turbulence structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinink, Shawn K.; Yaras, Metin I., E-mail: Metin.Yaras@carleton.ca
2015-06-15
Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal propertymore » gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between hairpin vortices causes them to interact more frequently by merging together and by breaking apart into smaller turbulence structures.« less
Reduced ion bootstrap current drive on NTM instability
NASA Astrophysics Data System (ADS)
Qu, Hongpeng; Wang, Feng; Wang, Aike; Peng, Xiaodong; Li, Jiquan
2018-05-01
The loss of bootstrap current inside magnetic island plays a dominant role in driving the neoclassical tearing mode (NTM) instability in tokamak plasmas. In this work, we investigate the finite-banana-width (FBW) effect on the profile of ion bootstrap current in the island vicinity via an analytical approach. The results show that even if the pressure gradient vanishes inside the island, the ion bootstrap current can partly survive due to the FBW effect. The efficiency of the FBW effect is higher when the island width becomes smaller. Nevertheless, even when the island width is comparable to the ion FBW, the unperturbed ion bootstrap current inside the island cannot be largely recovered by the FBW effect, and thus the current loss still exists. This suggests that FBW effect alone cannot dramatically reduce the ion bootstrap current drive on NTMs.
Electrothermal instability growth in magnetically driven pulsed power liners
NASA Astrophysics Data System (ADS)
Peterson, Kyle J.; Sinars, Daniel B.; Yu, Edmund P.; Herrmann, Mark C.; Cuneo, Michael E.; Slutz, Stephen A.; Smith, Ian C.; Atherton, Briggs W.; Knudson, Marcus D.; Nakhleh, Charles
2012-09-01
This paper explores the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. Comparatively little is known about these types of instabilities compared to the well known Magneto-Rayleigh-Taylor (MRT) instability. We present simulations that show electrothermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent MRT instability growth. We also present the results of several experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electrothermal instability growth on well characterized initially solid aluminum and copper rods driven with a 20 MA, 100 ns risetime current pulse. These experiments show excellent agreement with electrothermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone.
Gyrokinetic projection of the divertor heat-flux width from present tokamaks to ITER
Chang, Choong Seock; Ku, Seung -Hoe; Loarte, Alberto; ...
2017-07-11
Here, the XGC1 edge gyrokinetic code is used to study the width of the heat-flux to divertor plates in attached plasma condition. The flux-driven simulation is performed until an approximate power balance is achieved between the heat-flux across the steep pedestal pressure gradient and the heat-flux on the divertor plates.
Unique capabilities for ICF and HEDP research with the KrF laser
NASA Astrophysics Data System (ADS)
Obenschain, Stephen; Bates, Jason; Chan, Lop-Yung; Karasik, Max; Kehne, David; Sethian, John; Serlin, Victor; Weaver, James; Oh, Jaechul; Jenkins, Bruce; Lehmberg, Robert; Hegeler, Frank; Terrell, Stephen; Aglitskiy, Yefim; Schmitt, Andrew
2014-10-01
The krypton-fluoride (KrF) laser provides the shortest wavelength, broadest bandwidth and most uniform target illumination of all developed high-energy lasers. For directly driven targets these characteristics result in higher and more uniform ablation pressures as well as higher intensity thresholds for laser-plasma instability. The ISI beam smoothing scheme implemented on the NRL Nike KrF facility allows easy implementation of focal zooming where the laser radial profile is varied during the laser pulse. The capability for near continuous zooming with KrF would be valuable towards minimizing the effects of cross beam energy transport (CBET) in directly driven capsule implosions. The broad bandwidth ISI beam smoothing that is utilized with the Nike KrF facility may further inhibit certain laser plasma instability. In this presentation we will summarize our current understanding of laser target interaction with the KrF laser and the benefits it provides for ICF and certain HEDP experiments. Status and progress in high-energy KrF laser technology will also be discussed. Work supported by the Deparment of Energy, NNSA.
Trapped electron mode turbulence driven intrinsic rotation in Tokamak plasmas.
Wang, W X; Hahm, T S; Ethier, S; Zakharov, L E; Diamond, P H
2011-02-25
Progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported. The turbulence-driven intrinsic torque associated with nonlinear residual stress generation due to zonal flow shear induced asymmetry in the parallel wave number spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing experimental empirical scalings of intrinsic rotation. The origin of current scaling is found to be enhanced k(∥) symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The intrinsic torque is proportional to the pressure gradient because both turbulence intensity and zonal flow shear, which are two key ingredients for driving residual stress, increase with turbulence drive, which is R/L(T(e)) and R/L(n(e)) for the trapped electron mode. © 2011 American Physical Society
BAROCLINIC INSTABILITY IN THE SOLAR TACHOCLINE. II. THE EADY PROBLEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilman, Peter A., E-mail: gilman@ucar.edu
2016-02-20
We solve the nongeostrophic baroclinic instability problem for the tachocline for a continuous model with a constant vertical rotation gradient (the Eady problem), using power series generated by the Frobenius method. The results confirm and greatly extend those from a previous two-layer model. For effective gravity G independent of height, growth rates and ranges of unstable longitudinal wavenumbers m and latitudes increase with decreasing G. As with the two-layer model, the overshoot tachocline is much more unstable than the radiative tachocline. The e-folding growth times range from as short as 10 days to as long as several years, depending on latitude,more » G, and wavenumber. For a more realistic effective gravity that decreases linearly from the radiative interior to near zero at the top of the tachocline, we find that only m = 1, 2 modes are unstable, with growth rates somewhat larger than for constant G, with the same value as at the bottom of the tachocline. All results are the same whether we assume that the vertical velocity or the perturbation pressure is zero at the top of the layer; this is a direct consquence of not employing the geostrophic assumption for perturbations. We explain most of the properties of the instability in terms of the Rossby deformation radius. We discuss further improvements in the realism of the model, particularly adding toroidal fields that vary in height, and including latitudinal gradients of both rotation and toroidal fields.« less
Unstable infiltration fronts in porous media on laboratory scale
NASA Astrophysics Data System (ADS)
Schuetz, Cindi; Neuweiler, Insa
2014-05-01
Water flow and transport of substances in the unsaturated zone are important processes for the quality and quantity of water in the hydrologic cycle. The water movement through preferential paths is often much faster than standard models (e. g. Richards equation in homogeneous porous media) predict. One type/phenomenon of preferential flow can occur during water infiltration into coarse and/or dry porous media: the so-called gravity-driven fingering flow. To upscale the water content and to describe the averaged water fluxes in order to couple models of different spheres it is necessary to understand and to quantify the behavior of flow instabilities. We present different experiments of unstable infiltration in homogeneous and heterogeneous structures to analyze development and morphology of gravity-driven fingering flow on the laboratory scale. Experiments were carried out in two-dimensional and three-dimensional sand tanks as well as in larger two-dimensional sand tanks with homogeneous and heterogeneous filling of sand and glass beads. In the small systems, water content in the medium was measured at different times. We compare the experiments to prediction of theoretical approaches (e.g. Saffman and Taylor, 1958; Chuoke et al., 1959; Philip 1975a; White et al., 1976; Parlange and Hill, 1976a; Glass et al., 1989a; Glass et al., 1991; Wang et al., 1998c) that quantify properties of the gravity-driven fingers. We use hydraulic parameters needed for the theoretical predictions (the water-entry value (hwe), van Genuchten parameter (Wang et al., 1997, Wang et al., 2000) and saturated conductivity (Ks), van Genuchten parameter (Guarracino, 2007) to simplify the prediction of the finger properties and if necessary to identify a constant correction factor. We find in general that the finger properties correspond well to theoretical predictions. In heterogeneous settings, where fine inclusions are embedded into a coarse material, the finger properties do not change much, while the inclusions act as a storage that is filled during the infiltration process. References: Chouke, R.L., van Meurs, P., and van der Poel, C., 1959. The instability of slow immiscible, viscous liquid-liquid displacements in permeable media, Trans. AIME. 216:188-194. Glass, R.J., Steenhuis, T.S., and Parlange J.-Y., 1989a. Mechanism for finger persistence in homogeneous, unsaturated, porous media: Theory and verification, Soil Sci. 148:60-70. Glass R.J., Parlange, J.-Y., and Steenhuis, T.S., 1991. Immiscible displacement in porous media: Stability analysis of three-dimensional, axisymmetric disturbances with application to gravity-driven wetting front instability, Water Resour. Res., 27, 1947-1956. Guarracino, L., 2007. Estimation of saturated hydraulic conductivity Ks from the van Genuchten shape parameter , Water Resour. Res., 43, W11502. Parlange, J.-Y. and Hill, D.E., 1976a. Theoretical analysis of wetting front instability in soils, Soil Sci. 122:236-239. Philip, J. 1975a. Stability analysis of infiltration, Soil Sci. Soc. Am. Proc. 39:1042-1049. Saffman, P.G. and Taylor, G., 1958. The penetration of a fluid into a porous medium or hele-shaw cell containing a more viscous liquid, Proc. R. Soc. London, 245:312-329. Wang Z., Feyen, J., Nielsen, D.R., and van Genuchten, M.T., 1997. Two-phase flow infiltration equations accounting for air entrapment effects, Water Resour. Res., 33:2759-2767. Wang, Z., Feyen, J., and Elrick, D.E., 1998c. Prediction of fingering in porous media, Water Resour. Res. 34(9):2183-2190. Wang Z., Wu, L., and Wu, Q.J., 2000. Water-entry value as an alternative indicator of soil water-repellency and wettability, Journal of Hydrology., 231-232, 76-83. White, I., Colombera, P.M., and Philip, J.R., 1976. Experimental studies of wetting front instability induced by sudden changes of pressure gradient, Soil Sci. Soc. Am. Proc., 40:824-829.
SPHYNX: an accurate density-based SPH method for astrophysical applications
NASA Astrophysics Data System (ADS)
Cabezón, R. M.; García-Senz, D.; Figueira, J.
2017-10-01
Aims: Hydrodynamical instabilities and shocks are ubiquitous in astrophysical scenarios. Therefore, an accurate numerical simulation of these phenomena is mandatory to correctly model and understand many astrophysical events, such as supernovas, stellar collisions, or planetary formation. In this work, we attempt to address many of the problems that a commonly used technique, smoothed particle hydrodynamics (SPH), has when dealing with subsonic hydrodynamical instabilities or shocks. To that aim we built a new SPH code named SPHYNX, that includes many of the recent advances in the SPH technique and some other new ones, which we present here. Methods: SPHYNX is of Newtonian type and grounded in the Euler-Lagrange formulation of the smoothed-particle hydrodynamics technique. Its distinctive features are: the use of an integral approach to estimating the gradients; the use of a flexible family of interpolators called sinc kernels, which suppress pairing instability; and the incorporation of a new type of volume element which provides a better partition of the unity. Unlike other modern formulations, which consider volume elements linked to pressure, our volume element choice relies on density. SPHYNX is, therefore, a density-based SPH code. Results: A novel computational hydrodynamic code oriented to Astrophysical applications is described, discussed, and validated in the following pages. The ensuing code conserves mass, linear and angular momentum, energy, entropy, and preserves kernel normalization even in strong shocks. In our proposal, the estimation of gradients is enhanced using an integral approach. Additionally, we introduce a new family of volume elements which reduce the so-called tensile instability. Both features help to suppress the damp which often prevents the growth of hydrodynamic instabilities in regular SPH codes. Conclusions: On the whole, SPHYNX has passed the verification tests described below. For identical particle setting and initial conditions the results were similar (or better in some particular cases) than those obtained with other SPH schemes such as GADGET-2, PSPH or with the recent density-independent formulation (DISPH) and conservative reproducing kernel (CRKSPH) techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gravier, E.; Plaut, E.
2013-04-15
Collisional drift waves and ion temperature gradient (ITG) instabilities are studied using a linear water-bag kinetic model [P. Morel et al., Phys. Plasmas 14, 112109 (2007)]. An efficient spectral method, already validated in the case of drift waves instabilities [E. Gravier et al., Eur. Phys. J. D 67, 7 (2013)], allows a fast solving of the global linear problem in cylindrical geometry. The comparison between the linear ITG instability properties thus computed and the ones given by the COLUMBIA experiment [R. G. Greaves et al., Plasma Phys. Controlled Fusion 34, 1253 (1992)] shows a qualitative agreement. Moreover, the transition betweenmore » collisional drift waves and ITG instabilities is studied theoretically as a function of the ion temperature profile.« less
Observational constraints on the multiphase ISM
NASA Astrophysics Data System (ADS)
Wolfire, Mark G.
2015-03-01
In recent years we have seen a wealth of new observations and analysis that sheds light on the distribution and physical properties of various ISM phases. In particular the thermal pressure from C I (Jenkins & Tripp 2011) shows the bulk of the CNM phase with a log normal pressure distribution. It appears that thermal instability is important for phase separation, but with with a thermal pressure variation about the mean driven by turbulence. In additional, there is evidence from C I, H2, and complex molecules, of both higher and lower pressure environments. An additional ``phase`` that is of increasing interest for high z, low metallicity galaxies is the C+/H2 gas that is not traced by H I or CO. This review presents the observational evidence for the existence and physical properties of these various ISM phases.
Borehole Stability in High-Temperature Formations
NASA Astrophysics Data System (ADS)
Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang
2014-11-01
In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.
NASA Technical Reports Server (NTRS)
Holtet, J. A.; Maynard, N. C.; Heppner, J. P.
1976-01-01
Recordings from OGO 6 show that electric field irregularities are frequently present between + or - 35 deg geomagnetic latitude in the 2000 - 0600 local time sector. The signatures are very clear, and are easily distinguished from the normal AC background noise, and whistler and emission activity. The spectral appearance of the fields makes it meaningful to distinguish between 3 different types of irregularities: strong irregularities, weak irregularities, and weak irregularities with a rising spectrum. Strong irregularities seem most likely to occur in regions where gradients in ionization are present. Changes in plasma composition, resulting in an increase in the mean ion mass, are also often observed in the irregularity regions. Comparison with ground based ionosondes indicates a connection between strong irregularities and low latitude spread F. A good correlation is also present between strong fields and small scale fluctuations in ionization, delta N/N 1 percent. From the data it appears as if a gradient driven instability is the most likely source of the strong irregularities.
Osmosis-Based Pressure Generation: Dynamics and Application
Li, Suyi; Billeh, Yazan N.; Wang, K. W.; Mayer, Michael
2014-01-01
This paper describes osmotically-driven pressure generation in a membrane-bound compartment while taking into account volume expansion, solute dilution, surface area to volume ratio, membrane hydraulic permeability, and changes in osmotic gradient, bulk modulus, and degree of membrane fouling. The emphasis lies on the dynamics of pressure generation; these dynamics have not previously been described in detail. Experimental results are compared to and supported by numerical simulations, which we make accessible as an open source tool. This approach reveals unintuitive results about the quantitative dependence of the speed of pressure generation on the relevant and interdependent parameters that will be encountered in most osmotically-driven pressure generators. For instance, restricting the volume expansion of a compartment allows it to generate its first 5 kPa of pressure seven times faster than without a restraint. In addition, this dynamics study shows that plants are near-ideal osmotic pressure generators, as they are composed of many small compartments with large surface area to volume ratios and strong cell wall reinforcements. Finally, we demonstrate two applications of an osmosis-based pressure generator: actuation of a soft robot and continuous volume delivery over long periods of time. Both applications do not need an external power source but rather take advantage of the energy released upon watering the pressure generators. PMID:24614529
The vertical structure of the circulation and dynamics in Hudson Shelf Valley
Lentz, Steven J.; Butman, Bradford; Harris, Courtney K.
2014-01-01
Hudson Shelf Valley is a 20–30 m deep, 5–10 km wide v-shaped submarine valley that extends across the Middle Atlantic Bight continental shelf. The valley provides a conduit for cross-shelf exchange via along-valley currents of 0.5 m s−1 or more. Current profile, pressure, and density observations collected during the winter of 1999–2000 are used to examine the vertical structure and dynamics of the flow. Near-bottom along-valley currents having times scales of a few days are driven by cross-shelf pressure gradients setup by wind stresses, with eastward (westward) winds driving onshore (offshore) flow within the valley. The along-valley momentum balance in the bottom boundary layer is predominantly between the pressure gradient and bottom stress because the valley bathymetry limits current veering. Above the bottom boundary layer, the flow veers toward an along-shelf (cross-valley) orientation and a geostrophic balance with some contribution from the wind stress (surface Ekman layer). The vertical structure and strength of the along-valley current depends on the magnitude and direction of the wind stress. During offshore flows driven by westward winds, the near-bottom stratification within the valley increases resulting in a thinner bottom boundary layer and weaker offshore currents. Conversely, during onshore flows driven by eastward winds the near-bottom stratification decreases resulting in a thicker bottom boundary layer and stronger onshore currents. Consequently, for wind stress magnitudes exceeding 0.1 N m−2, onshore along-valley transport associated with eastward wind stress exceeds the offshore transport associated with westward wind stress of the same magnitude.
NASA Astrophysics Data System (ADS)
Dikpati, Mausumi; Gilman, Peter A.
2001-04-01
We examine the global, hydrodynamic stability of solar latitudinal differential rotation in a ``shallow-water'' model of the tachocline. Charbonneau, Dikpati, & Gilman have recently shown that two-dimensional disturbances are stable in the tachocline (which contains a pole-to-equator differential rotation s<18%). In our model, the upper boundary of the thin shell is allowed to deform in latitude, longitude, and time, thus including simplified three-dimensional effects. We examine the stability of differential rotation as a function of the effective gravity of the stratification in the tachocline. High effective gravity corresponds to the radiative part of the tachocline; for this case, the instability is similar to the strictly two-dimensional case (appearing only for s>=18%), driven primarily by the kinetic energy of differential rotation extracted through the work of the Reynolds stress. For low effective gravity, which corresponds to the overshoot part of the tachocline, a second mode of instability occurs, fed again by the kinetic energy of differential rotation, which is primarily extracted by additional stresses and correlations of perturbations arising in the deformed shell. In this case, instability occurs for differential rotation as low as about 11% between equator and pole. If this mode occurs in the Sun, it should destabilize the latitudinal differential rotation in the overshoot part of the tachocline, even without a toroidal field. For the full range of effective gravity, the vorticity associated with the perturbations, coupled with radial motion due to horizontal divergence/convergence of the fluid, gives rise to a longitude-averaged, net kinetic helicity pattern, and hence a source of α-effect in the tachocline. Thus there could be a dynamo in the tachocline, driven by this α-effect and the latitudinal and radial gradients of rotation.
Coupled dynamics of translation and collapse of acoustically driven microbubbles.
Reddy, Anil J; Szeri, Andrew J
2002-10-01
Pressure gradients drive the motion of microbubbles relative to liquids in which they are suspended. Examples include the hydrostatic pressure due to a gravitational field, and the pressure gradients in a sound field, useful for acoustic levitation. In this paper, the equations describing the coupled dynamics of radial oscillation and translation of a microbubble are given. The formulation is based on a recently derived expression for the hydrodynamic force on a bubble of changing size in an incompressible liquid [J. Magnaudet and D. Legendre, Phys. Fluids 10, 550-556 (1998)]. The complex interaction between radial and translation dynamics is best understood by examination of the added momentum associated with the liquid motion caused by the moving bubble. Translation is maximized when the bubble collapses violently. The new theory for coupled collapse and translation dynamics is compared to past experiments and to previous theories for decoupled translation dynamics. Special attention is paid to bubbles of relevance in biomedical applications.
Flows, Fields, and Forces in the Mars-Solar Wind Interaction
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Brain, D. A.; Luhmann, J. G.; DiBraccio, G. A.; Ruhunusiri, S.; Harada, Y.; Fowler, C. M.; Mitchell, D. L.; Connerney, J. E. P.; Espley, J. R.; Mazelle, C.; Jakosky, B. M.
2017-11-01
We utilize suprathermal ion and magnetic field measurements from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, organized by the upstream magnetic field, to investigate the morphology and variability of flows, fields, and forces in the Mars-solar wind interaction. We employ a combination of case studies and statistical investigations to characterize the interaction in both quasi-parallel and quasi-perpendicular regions and under high and low solar wind Mach number conditions. For the first time, we include a detailed investigation of suprathermal ion temperature and anisotropy. We find that the observed magnetic fields and suprathermal ion moments in the magnetosheath, bow shock, and upstream regions have observable asymmetries controlled by the interplanetary magnetic field, with particularly large asymmetries found in the ion parallel temperature and anisotropy. The greatest temperature anisotropies occur in quasi-perpendicular regions of the magnetosheath and under low Mach number conditions. These results have implications for the growth and evolution of wave-particle instabilities and their role in energy transport and dissipation. We utilize the measured parameters to estimate the average ion pressure gradient, J × B, and v × B macroscopic force terms. The pressure gradient force maintains nearly cylindrical symmetry, while the J × B force has larger asymmetries and varies in magnitude in comparison to the pressure gradient force. The v × B force felt by newly produced planetary ions exceeds the other forces in magnitude in the magnetosheath and upstream regions for all solar wind conditions.
A compact model for electroosmotic flows in microfluidic devices
NASA Astrophysics Data System (ADS)
Qiao, R.; Aluru, N. R.
2002-09-01
A compact model to compute flow rate and pressure in microfluidic devices is presented. The microfluidic flow can be driven by either an applied electric field or a combined electric field and pressure gradient. A step change in the ζ-potential on a channel wall is treated by a pressure source in the compact model. The pressure source is obtained from the pressure Poisson equation and conservation of mass principle. In the proposed compact model, the complex fluidic network is simplified by an electrical circuit. The compact model can predict the flow rate, pressure distribution and other basic characteristics in microfluidic channels quickly with good accuracy when compared to detailed numerical simulation. Using the compact model, fluidic mixing and dispersion control are studied in a complex microfluidic network.
NASA Astrophysics Data System (ADS)
Gravier, E.; Klein, R.; Morel, P.; Besse, N.; Bertrand, P.
2008-12-01
A new model is presented, named collisional-gyro-water-bag (CGWB), which describes the collisional drift waves and ion-temperature-gradient (ITG) instabilities in a plasma column. This model is based on the kinetic gyro-water-bag approach recently developed [P. Morel et al., Phys. Plasmas 14, 112109 (2007)] to investigate ion-temperature-gradient modes. In CGWB electron-neutral collisions have been introduced and are now taken into account. The model has been validated by comparing CGWB linear analysis with other models previously proposed and experimental results as well. Kinetic effects on collisional drift waves are investigated, resulting in a less effective growth rate, and the transition from collisional drift waves to ITG instability depending on the ion temperature gradient is studied.
NASA Astrophysics Data System (ADS)
Farengo, R.; Guzdar, P. N.; Lee, Y. C.
1989-08-01
The effect of finite parallel wavenumber and electron temperature gradients on the lower hybrid drift instability is studied in the parameter regime corresponding to the TRX-2 device [Fusion Technol. 9, 48 (1986)]. Perturbations in the electrostatic potential and all three components of the vector potential are considered and finite beta electron orbit modifications are included. The electron temperature gradient decreases the growth rate of the instability but, for kz=0, unstable modes exist for ηe(=T'en0/Ten0)>6. Since finite kz effects completely stabilize the mode at small values of kz/ky(≂5×10-3), magnetic shear could be responsible for stabilizing the lower hybrid drift instability in field-reversed configurations.
Effect of composition gradient on magnetothermal instability modified by shear and rotation
NASA Astrophysics Data System (ADS)
Gupta, Himanshu; Chaudhuri, Anya; Sadhukhan, Shubhadeep; Chakraborty, Sagar
2018-02-01
We model the intracluster medium as a weakly collisional plasma that is a binary mixture of the hydrogen and the helium ions, along with free electrons. When, owing to the helium sedimentation, the gradient of the mean-molecular weight (or equivalently, composition or helium ions' concentration) of the plasma is not negligible, it can have appreciable influence on the stability criteria of the thermal convective instabilities, e.g. the heat-flux-buoyancy instability and the magnetothermal instability (MTI). These instabilities are consequences of the anisotropic heat conduction occurring preferentially along the magnetic field lines. In this paper, without ignoring the magnetic tension, we first present the mathematical criterion for the onset of composition gradient modified MTI. Subsequently, we relax the commonly adopted equilibrium state in which the plasma is at rest, and assume that the plasma is in a sheared state which may be due to differential rotation. We discuss how the concentration gradient affects the coupling between the Kelvin-Helmholtz instability and the MTI in rendering the plasma unstable or stable. We derive exact stability criterion by working with the sharp boundary case in which the physical variables - temperature, mean-molecular weight, density and magnetic field - change discontinuously from one constant value to another on crossing the boundary. Finally, we perform the linear stability analysis for the case of the differentially rotating plasma that is thermally and compositionally stratified as well. By assuming axisymmetric perturbations, we find the corresponding dispersion relation and the explicit mathematical expression determining the onset of the modified MTI.
NASA Astrophysics Data System (ADS)
Sironi, Lorenzo; Narayan, Ramesh
2015-02-01
In systems accreting well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the innermost regions of the disk is believed to be collisionless and have two temperatures, with the ions substantially hotter than the electrons. However, whether a collisionless faster-than-Coulomb energy transfer mechanism exists in two-temperature accretion flows is still an open question. We study the physics of electron heating during the growth of ion velocity-space instabilities by means of multidimensional, fully kinetic, particle-in-cell (PIC) simulations. A background large-scale compression—embedded in a novel form of the PIC equations—continuously amplifies the field. This constantly drives a pressure anisotropy P > P ∥ because of the adiabatic invariance of the particle magnetic moments. We find that, for ion plasma beta values β0i ~ 5-30 appropriate for the midplane of low-luminosity accretion flows (here, β0i is the ratio of ion thermal pressure to magnetic pressure), mirror modes dominate if the electron-to-proton temperature ratio is T 0e /T 0i >~ 0.2, whereas for T 0e /T 0i <~ 0.2 the ion cyclotron instability triggers the growth of strong Alfvén-like waves, which pitch-angle scatter the ions to maintain marginal stability. We develop an analytical model of electron heating during the growth of the ion cyclotron instability, which we validate with PIC simulations. We find that for cold electrons (β0e <~ 2 me /mi , where β0e is the ratio of electron thermal pressure to magnetic pressure), the electron energy gain is controlled by the magnitude of the E-cross-B velocity induced by the ion cyclotron waves. This term is independent of the initial electron temperature, so it provides a solid energy floor even for electrons starting with extremely low temperatures. On the other hand, the electron energy gain for β0e >~ 2 me /mi —governed by the conservation of the particle magnetic moment in the growing fields of the instability—is proportional to the initial electron temperature, and it scales with the magnetic energy of ion cyclotron waves. Our results have implications for two-temperature accretion flows as well as for solar wind and intracluster plasmas.
NASA Astrophysics Data System (ADS)
Berlok, Thomas; Pessah, Martin E.
2015-11-01
Understanding whether Helium can sediment to the core of galaxy clusters is important for a number of problems in cosmology and astrophysics. All current models addressing this question are one-dimensional and do not account for the fact that magnetic fields can effectively channel ions and electrons, leading to anisotropic transport of momentum, heat, and particle diffusion in the weakly collisional intracluster medium (ICM). This anisotropy can lead to a wide variety of instabilities, which could be relevant for understanding the dynamics of heterogeneous media. In this paper, we consider the radial temperature and composition profiles as obtained from a state-of-the-art Helium sedimentation model and analyze its stability properties. We find that the associated radial profiles are unstable to different kinds of instabilities depending on the magnetic field orientation at all radii. The fastest growing modes are usually related to generalizations of the magnetothermal instability (MTI) and the heat-flux-driven buoyancy instability which operate in heterogeneous media. We find that the effect of sedimentation is to increase (decrease) the predicted growth rates in the inner (outer) cluster region. The unstable modes grow quickly compared to the sedimentation timescale. This suggests that the composition gradients as inferred from sedimentation models, which do not fully account for the anisotropic character of the weakly collisional environment, might not be very robust. Our results emphasize the subtleties involved in understanding the gas dynamics of the ICM and argue for the need of a comprehensive approach to address the issue of Helium sedimentation beyond current models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berlok, Thomas; Pessah, Martin E., E-mail: berlok@nbi.dk, E-mail: mpessah@nbi.dk
2015-11-01
Understanding whether Helium can sediment to the core of galaxy clusters is important for a number of problems in cosmology and astrophysics. All current models addressing this question are one-dimensional and do not account for the fact that magnetic fields can effectively channel ions and electrons, leading to anisotropic transport of momentum, heat, and particle diffusion in the weakly collisional intracluster medium (ICM). This anisotropy can lead to a wide variety of instabilities, which could be relevant for understanding the dynamics of heterogeneous media. In this paper, we consider the radial temperature and composition profiles as obtained from a state-of-the-artmore » Helium sedimentation model and analyze its stability properties. We find that the associated radial profiles are unstable to different kinds of instabilities depending on the magnetic field orientation at all radii. The fastest growing modes are usually related to generalizations of the magnetothermal instability (MTI) and the heat-flux-driven buoyancy instability which operate in heterogeneous media. We find that the effect of sedimentation is to increase (decrease) the predicted growth rates in the inner (outer) cluster region. The unstable modes grow quickly compared to the sedimentation timescale. This suggests that the composition gradients as inferred from sedimentation models, which do not fully account for the anisotropic character of the weakly collisional environment, might not be very robust. Our results emphasize the subtleties involved in understanding the gas dynamics of the ICM and argue for the need of a comprehensive approach to address the issue of Helium sedimentation beyond current models.« less
Optimal Disturbances in Boundary Layers Subject to Streamwise Pressure Gradient
NASA Technical Reports Server (NTRS)
Tumin, Anatoli; Ashpis, David E.
2003-01-01
Laminar-turbulent transition in shear flows is still an enigma in the area of fluid mechanics. The conventional explanation of the phenomenon is based on the instability of the shear flow with respect to infinitesimal disturbances. The conventional hydrodynamic stability theory deals with the analysis of normal modes that might be unstable. The latter circumstance is accompanied by an exponential growth of the disturbances that might lead to laminar-turbulent transition. Nevertheless, in many cases, the transition scenario bypasses the exponential growth stage associated with the normal modes. This type of transition is called bypass transition. An understanding of the phenomenon has eluded us to this day. One possibility is that bypass transition is associated with so-called algebraic (non-modal) growth of disturbances in shear flows. In the present work, an analysis of the optimal disturbances/streamwise vortices associated with the transient growth mechanism is performed for boundary layers in the presence of a streamwise pressure gradient. The theory will provide the optimal spacing of the control elements in the spanwise direction and their placement in the streamwise direction.
Dynamical analysis of a satellite-observed anticyclonic eddy in the northern Bering Sea
NASA Astrophysics Data System (ADS)
Li, Yineng; Li, Xiaofeng; Wang, Jia; Peng, Shiqiu
2016-05-01
The characteristics and evolution of a satellite-observed anticyclonic eddy in the northern Bering Sea during March and April 1999 are investigated using a three-dimensional Princeton Ocean Model (POM). The anticyclonic-like current pattern and asymmetric feature of the eddy were clearly seen in the synthetic aperture radar (SAR), sea surface temperature, and ocean color images in April 1999. The results from model simulation reveal the three-dimensional structure of the anticyclonic eddy, its movement, and dissipation. Energy analysis indicates that the barotropic instability (BTI) is the main energy source for the growth of the anticyclonic eddy. The momentum analysis further reveals that the larger magnitude of the barotropic pressure gradient in the meridional direction causes the asymmetry of the anticyclonic eddy in the zonal and meridional directions, while the different magnitudes of the meridional baroclinic pressure gradient are responsible for the different intensity of currents between the northern and southern parts of the anticyclonic eddy. This article was corrected on 23 JUL 2016. See the end of the full text for details.
NASA Astrophysics Data System (ADS)
Nishi, K.; Kazuo, S.
2017-12-01
The auroral finger-like structures appear in the equatorward part of the auroral oval in the diffuse auroral region, and contribute to the auroral fragmentation into patches during substorm recovery phase. In our previous presentations, we reported the first conjugate observation of auroral finger-like structures using the THEMIS GBO cameras and the THEMIS satellites, which was located at a radial distance of 9 Re in the dawnside plasma sheet. In this conjugate event, we found anti-phase fluctuation of plasma pressure and magnetic pressure with a time scale of 5-20 min in the plasma sheet. This observational fact is consistent with the idea that the finger-like structures are caused by a pressure-driven instability in the balance of plasma and magnetic pressures in the magnetosphere. Then we also searched simultaneous observation events of auroral finger-like structures with the RBSP satellites which have an apogee of 5.8 Re in the inner magnetosphere. Contrary to the first result, the observed variation of plasma and magnetic pressures do not show systematic phase relationship. In order to investigate these phase relationships between plasma and magnetic pressures in the magnetosphere, we statistically analyzed these pressure data using the THEMIS-E satellite for one year in 2011. In the preliminary analysis of pressure variation spectra, we found that out of phase relationship between magnetic and plasma pressures occupied 40 % of the entire period of study. In the presentation, we will discuss these results in the context of relationships between the pressure fluctuations and the magnetospheric instabilities that can cause auroral finger-like structures.
Experimental Evaluation of an Isolated Synthetic Jet IN Crossflow
NASA Technical Reports Server (NTRS)
Schaeffler, Norman W.; Jenkins, Luther N.; Hepner, Timothy E.
2007-01-01
The second case for this workshop builds upon the isolated synthetic jet of Case 1 by adding a crossflow, with no streamwise pressure gradient, for the developing jet to interact with. Formally, Case 2 examines the interaction of a single, isolated, synthetic jet and a fully turbulent zero-pressure gradient boundary layer. The resulting flow has many of the characteristics that need to be modeled with fidelity if the results of the calculations are to serve as the basis for research and design with active flow control devices. These include the turbulence in the boundary layer, the time-evolution of the large vortical structure emanating from the jet orifice and its subsequent interaction with and distortion by the boundary layer turbulence, and the effect of the suction cycle on the boundary layer flow. In a synthetic jet, the flow through the orifice and out into the outer flowfield alternates between an exhaust and a suction cycle, driven by the contraction and expansion of a cavity internal to the actuator. In the present experiment, the volume changes in the internal cavity are accomplished by replacing one of the rigid walls of the cavity, the wall opposite the orifice exit, with a deformable wall. This flexible wall is driven by a bottom-mounted moveable piston. The piston is driven electro-mechanically. The synthetic jet issues into the external flow through a circular orifice. In the present experiment, this orifice has a diameter of 0.250 inches (6.35 mm). The flow is conceptually similar to that documented in Schaeffler [1]. To document the flow, several measurement techniques were utilized. The upstream boundary conditions (in-flow conditions), and several key phase-averaged velocity profiles were measured with a 3-component laser-Doppler velocimetry system. Phase-averaged velocity field measurements were made with both stereo digital particle image velocimetry and 2-D digital particle image velocimetry as the primary measurement system. Surface pressure measurements were made utilizing an electronically scanned pressure system.
Extreme hydrothermal conditions at an active plate-bounding fault.
Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G R; Janku-Capova, Lucie; Carpenter, Brett M; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin
2017-06-01
Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.
Extreme hydrothermal conditions at an active plate-bounding fault
NASA Astrophysics Data System (ADS)
Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G. R.; Janku-Capova, Lucie; Carpenter, Brett M.; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R.; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin
2017-06-01
Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.
Time-Frequency Analysis of Boundary-Layer Instabilites Generated by Freestream Laser Perturbations
NASA Technical Reports Server (NTRS)
Chou, Amanda; Schneider, Steven P.
2015-01-01
A controlled disturbance is generated in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) by focusing a high-powered Nd:YAG laser to create a laser-induced breakdown plasma. The plasma then cools, creating a freestream thermal disturbance that can be used to study receptivity. The freestream disturbance convects down-stream in the Mach-6 wind tunnel to interact with a flared cone model. The adverse pressure gradient created by the flare of the model is capable of generating second-mode instability waves that grow large and become nonlinear before experiencing natural transition in quiet flow. The freestream laser perturbation generates a wave packet in the boundary layer at the same frequency as the natural second mode, complicating time-independent analyses of the effect of the laser perturbation. The data show that the laser perturbation creates an instability wave packet that is larger than the natural waves on the sharp flared cone. The wave packet is still difficult to distinguish from the natural instabilities on the blunt flared cone.
Low and Midlatitude Ionospheric Plasma Density Irregularities and Their Effects on Geomagnetic Field
NASA Astrophysics Data System (ADS)
Yokoyama, Tatsuhiro; Stolle, Claudia
2017-03-01
Earth's magnetic field results from various internal and external sources. The electric currents in the ionosphere are major external sources of the magnetic field in the daytime. High-resolution magnetometers onboard low-Earth-orbit satellites such as CHAMP and Swarm can detect small-scale currents in the nighttime ionosphere, where plasma density gradients often become unstable and form irregular density structures. The magnetic field variations caused by the ionospheric irregularities are comparable to that of the lithospheric contribution. Two phenomena in the nighttime ionosphere that contribute to the magnetic field variation are presented: equatorial plasma bubble (EPB) and medium-scale traveling ionospheric disturbance (MSTID). EPB is formed by the generalized Rayleigh-Taylor instability over the dip equator and grows nonlinearly to as high as 2000 km apex altitude. It is characterized by deep plasma density depletions along magnetic flux tubes, where the diamagnetic effect produced by a pressure-gradient-driven current enhances the main field intensity. MSTID is a few hundred kilometer-scale disturbance in the midlatitude ionosphere generated by the coupled electrodynamics between the ionospheric E and F regions. The field-aligned currents associated with EPBs and MSTIDs also have significant signatures in the magnetic field perpendicular to the main field direction. The empirical discovery of the variations in the magnetic field due to plasma irregularities has motivated the inclusion of electrodynamics in the physical modeling of these irregularities. Through an effective comparison between the model results and observations, the physical process involved has been largely understood. The prediction of magnetic signatures due to plasma irregularities has been advanced by modeling studies, and will be helpful in interpreting magnetic field observations from satellites.
Stationary QH-mode plasmas with high and wide pedestal at low rotation on DIII-D
Chen, Xi; Burrell, K. H.; Osborne, T. H.; ...
2016-09-30
A stationary, quiescent H-mode (QH-mode) regime with a wide pedestal and improved confinement at low rotation has been discovered on DIII-D with reactor relevant edge parameters and no ELMs. As the injected neutral beam torque is ramped down and the edge ExB rotation shear reduces, the transition from standard QH to the wide pedestal QH-mode occurs. And at the transition, the coherent edge harmonic oscillations (EHO) that usually regulate the standard QH edge cease and broadband edge MHD modes appear along with a rapid increase in the pedestal pressure height (by ≤60%) and width (by ≤50%). We posit that themore » enhanced edge turbulence-driven transport, enabled by the lower edge ExB flow shear due to lower torque reduces the pedestal gradient and, combined with the high edge instability limit provided by the balanced double-null plasma shape, permits the development of a broader and thus higher pedestal that is turbulence-transport-limited. Even with the significantly enhanced pedestal pressure, the edge operating point is below the peeling ballooning mode stability boundary and thus without ELMs. Improved transport in the outer core region (0.8≤ρ≤0.9) owing to increased ExB flow shear in that region and the enhanced pedestal boost the overall confinement by up to 45%. Our findings advance the physics basis for developing stationary ELM-free high-confinement operation at low rotation for future burning plasma where similar collisionality and rotation levels are expected.« less
Isochoric heating and strong blast wave formation driven by fast electrons in solid-density targets
NASA Astrophysics Data System (ADS)
Santos, J. J.; Vauzour, B.; Touati, M.; Gremillet, L.; Feugeas, J.-L.; Ceccotti, T.; Bouillaud, R.; Deneuville, F.; Floquet, V.; Fourment, C.; Hadj-Bachir, M.; Hulin, S.; Morace, A.; Nicolaï, Ph; d'Oliveira, P.; Reau, F.; Samaké, A.; Tcherbakoff, O.; Tikhonchuk, V. T.; Veltcheva, M.; Batani, D.
2017-10-01
We experimentally investigate the fast (< 1 {ps}) isochoric heating of multi-layer metallic foils and subsequent high-pressure hydrodynamics induced by energetic electrons driven by high-intensity, high-contrast laser pulses. The early-time temperature profile inside the target is measured from the streaked optical pyrometry of the target rear side. This is further characterized from benchmarked simulations of the laser-target interaction and the fast electron transport. Despite a modest laser energy (< 1 {{J}}), the early-time high pressures and associated gradients launch inwards a strong compression wave developing over ≳ 10 ps into a ≈ 140 {Mbar} blast wave, according to hydrodynamic simulations, consistent with our measurements. These experimental and numerical findings pave the way to a short-pulse-laser-based platform dedicated to high-energy-density physics studies.
Microgravity Investigation of Capillary Driven Imbibition
NASA Astrophysics Data System (ADS)
Dushin, V. R.; Nikitin, V. F.; Smirnov, N. N.; Skryleva, E. I.; Tyurenkova, V. V.
2018-05-01
The goal of the present paper is to investigate the capillary driven filtration in porous media under microgravity conditions. New mathematical model that allows taking into account the blurring of the front due to the instability of the displacement that is developing at the front is proposed. The constants in the mathematical model were selected on the basis of the experimental data on imbibition into unsaturated porous media under microgravity conditions. The flow under the action of a combination of capillary forces and a constant pressure drop or a constant flux is considered. The effect of capillary forces and the type of wettability of the medium on the displacement process is studied. A criterion in which case the capillary effects are insignificant and can be neglected is established.
Microfluidic diffusion diluter: bulging of PDMS microchannels under pressure-driven flow
NASA Astrophysics Data System (ADS)
Holden, Matthew A.; Kumar, Saurabh; Beskok, Ali; Cremer, Paul S.
2003-05-01
The bulging of microfluidic systems during pressure-driven flow is potentially a major consideration for polydimethylsiloxane (PDMS)-based devices. Microchannel cross-sectional areas can change drastically as a function of flow rate and downstream microchannel position. Such geometrical flexibility leads to difficulties in predicting convective/diffusive transport for these systems. We have previously introduced a non-dimensional parameter, kappa, for characterizing convection and diffusion behavior for pressure-driven flow in rigid all-glass systems. This paper describes a modification of that concept for application to non-rigid systems, which is accomplished by incorporating an experimental step to account for the bulging in PDMS/glass microsystems. Specifically, an experimental measurement of channel height by fluorescence microscopy is combined with the aforementioned theory to characterize convective/diffusive behavior at a single location in the device. This allowed the parameter kappa to be determined at that point and applied to predict fluid flow in the subsequent portion of the PDMS microsystem. This procedure was applied to a PDMS/glass microfluidic diffusion dilution (muDD) device designed for generating concentration gradients. Theoretically predicted and experimentally measured distributions of concentrations within the microsystem matched well.
Quasiperiodicity and Frequency Locking in Electronic Conduction in Germanium.
NASA Astrophysics Data System (ADS)
Gwinn, Elisabeth Gray
1987-09-01
This thesis presents an experimental study of a driven spatio-temporal instability in high-field transport in cooled, p-type Ge. The instability is produced at liquid He temperatures by d.c. voltage bias above the threshold for breakdown by impurity impact ionization, and is associated experimentally with voltage-controlled negative differential conductivity. The instability is coupled to an external oscillator by applying a sinusoidal voltage bias across the Ge sample. The driven instability exhibits frequency locking, quasiperiodicity, and chaos as the frequency and amplitude of the sinusoidal bias are varied. An iterative map of the circle provides a simple model for such a coupled, dissipative nonlinear oscillator system. The transition from quasiperiodicity to chaos in this model system occurs in a universal way; for example, the circle map has a universal, self-similar power spectrum at the onset of chaos with the golden mean winding number. When normalized appropriately, the power spectrum at the onset of chaos in the driven instability in Ge displays the same structure, with good agreement between the amplitudes of the experimental and theoretical spectral peaks. The relevance of universal theory to experiment can also be tested with a spectrum of scaling indices f( alpha), which is used to compare the probability distribution for the circle map at the onset of chaos with the golden mean winding number to the distribution of probability on a Poincare section of the experimental attractor. The procedure used to find f(alpha ) for the driven transport instability overcomes the sensitivity of f(alpha) to noise and to deviation from the critical amplitude. The f( alpha) curve for the driven instability in Ge is found to be in good agreement with the universal circle map result.
Double shell planar experiments on OMEGA
NASA Astrophysics Data System (ADS)
Dodd, E. S.; Merritt, E. C.; Palaniyappan, S.; Montgomery, D. S.; Daughton, W. S.; Schmidt, D. W.; Cardenas, T.; Wilson, D. C.; Loomis, E. N.; Batha, S. H.; Ping, Y.; Smalyuk, V. A.; Amendt, P. A.
2017-10-01
The double shell project is aimed at fielding neutron-producing capsules at the National Ignition Facility (NIF), in which an outer low-Z ablator collides with an inner high-Z shell to compress the fuel. However, understanding these targets experimentally can be challenging when compared with conventional single shell targets. Halfraum-driven planar targets at OMEGA are being used to study physics issues important to double shell implosions outside of a convergent geometry. Both VISAR and radiography through a tube have advantages over imaging through the hohlraum and double-shell capsule at NIF. A number physics issues are being studied with this platform that include 1-d and higher dimensional effects such as defect-driven hydrodynamic instabilities from engineering features. Additionally, the use of novel materials with controlled density gradients require study in easily diagnosed 1-d systems. This work ultimately feeds back into the NIF capsule platform through manufacturing tolerances set using data from OMEGA. Supported under the US DOE by the LANS, LLC under contract DE-AC52-06NA25396. LA-UR-17-25386.
Nonlinear self-sustained structures and fronts in spatially developing wake flows
NASA Astrophysics Data System (ADS)
Pier, Benoît; Huerre, Patrick
2001-05-01
A family of slowly spatially developing wakes with variable pressure gradient is numerically demonstrated to sustain a synchronized finite-amplitude vortex street tuned at a well-defined frequency. This oscillating state is shown to be described by a steep global mode exhibiting a sharp Dee Langer-type front at the streamwise station of marginal absolute instability. The front acts as a wavemaker which sends out nonlinear travelling waves in the downstream direction, the global frequency being imposed by the real absolute frequency prevailing at the front station. The nonlinear travelling waves are determined to be governed by the local nonlinear dispersion relation resulting from a temporal evolution problem on a local wake profile considered as parallel. Although the vortex street is fully nonlinear, its frequency is dictated by a purely linear marginal absolute instability criterion applied to the local linear dispersion relation.
The Goertler vortex instability mechanism in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Hall, P.
1984-01-01
The two dimensional boundary layer on a concave wall is centrifugally unstable with respect to vortices aligned with the basic flow for sufficiently high values of the Goertler number. However, in most situations of practical interest the basic flow is three dimensional and previous theoretical investigations do not apply. The linear stability of the flow over an infinitely long swept wall of variable curvature is considered. If there is no pressure gradient in the boundary layer the instability problem can always be related to an equivalent two dimensional calculation. However, in general, this is not the case and even for small values of the crossflow velocity field dramatic differences between the two and three dimensional problems emerge. When the size of the crossflow is further increased, the vortices in the neutral location have their axes locally perpendicular to the vortex lines of the basic flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Shin'ichi; Nishi, Sakine; Kobayashi, Tsutomu, E-mail: s.hirano@rikkyo.ac.jp, E-mail: sakine@rikkyo.ac.jp, E-mail: tsutomu@rikkyo.ac.jp
We study the stability of a recently proposed model of scalar-field matter called mimetic dark matter or imperfect dark matter. It has been known that mimetic matter with higher derivative terms suffers from gradient instabilities in scalar perturbations. To seek for an instability-free extension of imperfect dark matter, we develop an effective theory of cosmological perturbations subject to the constraint on the scalar field's kinetic term. This is done by using the unifying framework of general scalar-tensor theories based on the ADM formalism. We demonstrate that it is indeed possible to construct a model of imperfect dark matter which ismore » free from ghost and gradient instabilities. As a side remark, we also show that mimetic F (R) theory is plagued with the Ostrogradsky instability.« less
Electroosmotically Driven Liquid Flows in Complex Micro-Geometries
NASA Astrophysics Data System (ADS)
Dutta, Prashanta; Warburton, Timothy C.; Beskok, Ali
1999-11-01
Electroosmotically driven flows in micro-channels are analyzed analytically and numerically by using a high-order h/p type spectral element simulation suite, Nektar. The high-resolution characteristic of the spectral element method enables us to resolve the sharp electric double layers with successive p-type mesh refinements. For electric double layers that are much smaller than the channel height, the Helmholtz Smoluchowski velocity is used to develop semi-analytical relations for the velocity and the pressure distributions in micro channels. Analytical relations for wall shear stress and pressure distributions are also obtained. These relations show amplification of the normal and shear stresses on the micro-channel walls. Finally, flow through a step-channel is analyzed to document the interaction of the electroosmotic forces with the adverse pressure gradients. Depending on the direction and the magnitude of the electroosmotic force, enhancement or elimination of the separation bubble is observed. These findings can be used to develop innovative strategies for flow control with no moving components and for promotion of mixing in micro-scale geometries.
shock driven instability of a multi-phase particle-gas system
NASA Astrophysics Data System (ADS)
McFarland, Jacob; Black, Wolfgang; Dahal, Jeevan; Morgan, Brandon
2015-11-01
A computational study of a shock driven instability of a multiphse particle-gas system is presented. This instability can evolve in a similar fashion to the Richtmyer-Meshkov (RM) instability, but has addition parameters to be considered. Particle relaxation times, and density differences of the gas and particle-gas system can be adjusted to produce results which are different from the classical RM instability. We will show simulation results from the Ares code, developed at Lawrence Livermore National Laboratory, which uses a particle-in-cell approach to study the effects of the particle-gas system parameters. Mixing parameters will be presented to highlight the suppression of circulation and gas mixing by the particle phase.
NASA Astrophysics Data System (ADS)
Makarevich, Roman A.
2016-04-01
A general dispersion relation is derived that integrates the Farley-Buneman, gradient-drift, and current-convective plasma instabilities (FBI, GDI, and CCI) within the same formalism for an arbitrary altitude, wave propagation vector, and background density gradient. The limiting cases of the FBI/GDI in the E region for nearly field-aligned irregularities, GDI/CCI in the main F region at long wavelengths, and GDI at high altitudes are successfully recovered using analytic analysis. Numerical solutions are found for more general representative cases spanning the entire ionosphere. It is demonstrated that the results are consistent with those obtained using a general FBI/GDI/CCI theory developed previously at and near E region altitudes under most conditions. The most significant differences are obtained for strong gradients (scale lengths of 100 m) at high altitudes such as those that may occur during highly structured soft particle precipitation events. It is shown that the strong gradient case is dominated by inertial effects and, for some scales, surprisingly strong additional damping due to higher-order gradient terms. The growth rate behavior is examined with a particular focus on the range of wave propagations with positive growth (instability cone) and its transitions between altitudinal regions. It is shown that these transitions are largely controlled by the plasma density gradients even when FBI is operational.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Xiang, E-mail: xzhai@caltech.edu; Bellan, Paul M., E-mail: pbellan@caltech.edu
We present an MHD theory of Rayleigh-Taylor instability on the surface of a magnetically confined cylindrical plasma flux rope in a lateral external gravity field. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability that cannot be described by either of the two instabilities alone. The lateral gravity breaks the axisymmetry of the system and couples all azimuthal modes together. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring atmore » a two-dimensional planar interface. The theory successfully explains the lateral Rayleigh-Taylor instability observed in the Caltech plasma jet experiment [Moser and Bellan, Nature 482, 379 (2012)]. Potential applications of the theory include magnetic controlled fusion, solar emerging flux, solar prominences, coronal mass ejections, and other space and astrophysical plasma processes.« less
Driven motion and instability of an atmospheric pressure arc
NASA Astrophysics Data System (ADS)
Karasik, Max
Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental are furnace is constructed and operated in air with graphite cathode and steel anode at currents 100--250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes. Experiments are carried out on the response of the are to applied transverse DC and AC (up to ≈1 kHz) magnetic fields. The arc is found to deflect parabolically for DC field and assumes a growing sinusoidal structure for AC field. A simple analytic two-parameter fluid model of the are dynamics is derived, in which the inertia of the magnetically pumped cathode jet balances the applied J⃗xB⃗ force. Time variation of the applied field allows evaluation of the parameters individually. A fit of the model to the experimental data gives a value for the average jet speed an order of magnitude below Maecker's estimate of the maximum jet speed. A spontaneous instability of the same arc is investigated experimentally and modeled analytically. The presence of the instability is found to depend critically on cathode dimensions. For cylindrical cathodes, instability occurs only for a narrow range of cathode diameters. Cathode spot motion is proposed as the mechanism of the instability. A simple fluid model combining the effect of the cathode spot motion and the inertia of the cathode jet successfully describes the arc shape during low amplitude instability. The amplitude of cathode spot motion required by the model is in agreement with measurements. The average jet velocity required is approximately equal to that inferred from the transverse magnetic field experiments. Reasons for spot motion and for cathode geometry dependence are discussed. An exploratory study of the instability of the arc in applied axial magnetic field is also described. Applicability of the results of the thesis to an industrial steelmaking furnace is considered.
Atomic physics effects on tokamak edge drift-tearing modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahm, T.S.
1993-03-01
The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold {Delta}{sup Th}, produced by ion sound wave coupling is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semi-collisional regime, both ionization and charge exchange act as drag on the ion parallel velocity, and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation.
Atomic physics effects on tokamak edge drift-tearing modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahm, T.S.
1993-03-01
The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold [Delta][sup Th], produced by ion sound wave coupling is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semi-collisional regime, both ionization and charge exchange act as drag on the ion parallel velocity, and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation.
NASA Astrophysics Data System (ADS)
King, Jacob; Kruger, Scott
2017-10-01
Flow can impact the stability and nonlinear evolution of range of instabilities (e.g. RWMs, NTMs, sawteeth, locked modes, PBMs, and high-k turbulence) and thus robust numerical algorithms for simulations with flow are essential. Recent simulations of DIII-D QH-mode [King et al., Phys. Plasmas and Nucl. Fus. 2017] with flow have been restricted to smaller time-step sizes than corresponding computations without flow. These computations use a mixed semi-implicit, implicit leapfrog time discretization as implemented in the NIMROD code [Sovinec et al., JCP 2004]. While prior analysis has shown that this algorithm is unconditionally stable with respect to the effect of large flows on the MHD waves in slab geometry [Sovinec et al., JCP 2010], our present Von Neumann stability analysis shows that a flow-induced numerical instability may arise when ad-hoc cylindrical curvature is included. Computations with the NIMROD code in cylindrical geometry with rigid rotation and without free-energy drive from current or pressure gradients qualitatively confirm this analysis. We explore potential methods to circumvent this flow-induced numerical instability such as using a semi-Lagrangian formulation instead of time-centered implicit advection and/or modification to the semi-implicit operator. This work is supported by the DOE Office of Science (Office of Fusion Energy Sciences).
NASA Astrophysics Data System (ADS)
Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang
2018-03-01
This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.
Double-diffusive instabilities in ancient seawater
NASA Astrophysics Data System (ADS)
Pawlowicz, Rich; Scheifele, Ben; Zaloga, Artem; Wuest, Alfred; Sommer, Tobias
2015-04-01
Powell Lake, British Columbia, Canada is a geothermally heated lake about 350m deep with a saline lower layer that was isolated from the ocean by coastal uplift about 11000 years ago, after the last ice age. Careful temperature and conductivity profiling measurements show consistent, stable, and spatially/temporally coherent steps resulting from double-diffusive processes in certain ranges of depth, vertically interspersed with other depth ranges where these signatures are not present. These features are quasi-stable for at least several years. Although molecular diffusion has removed about half the salt from the deepest waters and biogeochemical processes have slightly modified the water composition, the lack of tidal processes and shear-driven mixing, as well as an accurate estimate of heat flux from both sediment heat flux measurements and gradient measurements in a region not susceptible to diffusive instabilities, makes this a unique geophysical laboratory to study double diffusion. Here we present a detailed picture of the structure of Powell Lake and its double-diffusive stair cases, and suggest shortcomings with existing parameterizations for fluxes through such staircases.
Collisionless kinetic theory of oblique tearing instabilities
Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.
2018-02-15
The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less
Collisionless kinetic theory of oblique tearing instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.
The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less
Collisionless kinetic theory of oblique tearing instabilities
NASA Astrophysics Data System (ADS)
Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.
2018-02-01
The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. We find that this stabilization is associated with the density-gradient-driven diamagnetic drift. The analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. A simple analytic estimate for the stability criterion is provided.
Krishnamurthy, K S; Kumar, Pramoda; Kumar, M Vijay
2013-02-01
We report, for a rodlike nematic liquid crystal with small positive dielectric and conductivity anisotropies, and in the 90°-twisted configuration, low frequency (<2 Hz) square wave electric field generated Carr-Helfrich director modulation appearing transiently over a few seconds at each polarity reversal and vanishing almost completely under steady field conditions. Significantly, the instability is polarity sensitive, with the maximum distortion localized in the vicinity of the negative electrode, rather than in the midplane of the layer. This is revealed by the wave vector alternating in the two halves of the driving cycle between the alignment directions at the two substrates. Besides the Carr-Helfrich mechanism, quadrupolar flexoelectric polarization arising under electric field gradient is strongly indicated as being involved in the development of the transient periodic order. Similar transient instability is also observed in other nematic compounds with varying combinations of dielectric and conductivity anisotropies, showing its general nature. The study also deals with various characteristics of the electro-optic effect that emerge from the temporal variation of optical response for different driving voltages, frequencies, and temperatures.
Electrically driving large magnetic Reynolds number flows on the Madison plasma dynamo experiment
NASA Astrophysics Data System (ADS)
Weisberg, David; Wallace, John; Peterson, Ethan; Endrezzi, Douglass; Forest, Cary B.; Desangles, Victor
2015-11-01
Electrically-driven plasma flows, predicted to excite a large-scale dynamo instability, have been generated in the Madison plasma dynamo experiment (MPDX), at the Wisconsin Plasma Astrophysics Laboratory. Numerical simulations show that certain topologies of these simply-connected flows may be optimal for creating a plasma dynamo and predict critical thresholds as low as Rmcrit =μ0 σLV = 250 . MPDX plasmas are shown to exceed this critical Rm , generating large (L = 1 . 4 m), warm (Te > 10 eV), unmagnetized (MA > 1) plasmas where Rm < 600 . Plasma flow is driven using ten thermally emissive LaB6 cathodes which generate a J × B torque in Helium plasmas. Detailed Mach probe measurements of plasma velocity for two flow topologies will be presented: edge-localized drive using the multi-cusp boundary field, and volumetric drive using an axial Helmholtz field. Radial velocity profiles show that edge-driven flow is established via ion viscosity but is limited by a volumetric neutral drag force (χ ~ 1 / (ντin)), and measurements of velocity shear compare favorably to Braginskii transport theory. Volumetric flow drive is shown to produce stronger velocity shear, and is characterized by the radial potential gradient as determined by global charge balance.
Multiscale modeling and simulation for polymer melt flows between parallel plates
NASA Astrophysics Data System (ADS)
Yasuda, Shugo; Yamamoto, Ryoichi
2010-03-01
The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for ωτR≲1 , and the crossover between the liquidlike and solidlike regime takes place around ωτα≃1 (where ω is the angular frequency of the plate and τR and τα are Rouse and α relaxation time, respectively).
Multiscale modeling and simulation for polymer melt flows between parallel plates.
Yasuda, Shugo; Yamamoto, Ryoichi
2010-03-01
The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for omegatauR < approximately 1 , and the crossover between the liquidlike and solidlike regime takes place around omegataualpha approximately equal 1 (where omega is the angular frequency of the plate and tauR and taualpha are Rouse and alpha relaxation time, respectively).
Early Student Support for a Process Study of Oceanic Responses to Typhoons
2015-06-21
responses to tropical cyclone forcing are surface waves, wind-driven currents, shear and turbulence, and inertial currents. Quantifying the effect ...Cd is estimated assuming a balance between the time rate change of the depth-integrated horizontal momentum, Coriolis force, and the wind stress. This...negligible pressure gradient effect . Most of the observed horizontal kinetic energy is within the upper 100 m. The available potential energy and
Healthy imperfect dark matter from effective theory of mimetic cosmological perturbations
NASA Astrophysics Data System (ADS)
Hirano, Shin'ichi; Nishi, Sakine; Kobayashi, Tsutomu
2017-07-01
We study the stability of a recently proposed model of scalar-field matter called mimetic dark matter or imperfect dark matter. It has been known that mimetic matter with higher derivative terms suffers from gradient instabilities in scalar perturbations. To seek for an instability-free extension of imperfect dark matter, we develop an effective theory of cosmological perturbations subject to the constraint on the scalar field's kinetic term. This is done by using the unifying framework of general scalar-tensor theories based on the ADM formalism. We demonstrate that it is indeed possible to construct a model of imperfect dark matter which is free from ghost and gradient instabilities. As a side remark, we also show that mimetic F(Script R) theory is plagued with the Ostrogradsky instability.
Capillary Pumped Heat Transfer (CHT) Experiment
NASA Technical Reports Server (NTRS)
Hallinan, Kevin P.; Allen, J. S.
1998-01-01
The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paz-Soldan, C.; La Haye, R. J.; Shiraki, D.
DIII-D plasmas at very low density exhibit onset of n=1 error field (EF) penetration (the `low-density locked mode') not at a critical density or EF, but instead at a critical level of runaway electron (RE) intensity. Raising the density during a discharge does not avoid EF penetration, so long as RE growth proceeds to the critical level. Penetration is preceded by non-thermalization of the electron cyclotron emission, anisotropization of the total pressure, synchrotron emission shape changes, as well as decreases in the loop voltage and bulk thermal electron temperature. The same phenomena occur despite various types of optimal EF correction,more » and in some cases modes are born rotating. Similar phenomena are also found at the low-density limit in JET. These results stand in contrast to the conventional interpretation of the low-density stability limit as being due to residual EFs and demonstrate a new pathway to EF penetration instability due to REs. Existing scaling laws for penetration project to increasing EF sensitivity as bulk temperatures decrease, though other possible mechanisms include classical tearing instability, thermo-resistive instability, and pressure-anisotropy driven instability. Regardless of first-principles mechanism, known scaling laws for Ohmic energy confinement combined with theoretical RE production rates allow rough extrapolation of the RE criticality condition, and thus, the low-density limit to other tokamaks. Furthermore, the extrapolated low-density limit by this pathway decreases with increasing machine size and is considerably below expected operating conditions for ITER. While likely unimportant for ITER, this effect can explain the low-density limit of existing tokamaks operating with small residual EFs.« less
Extended mimetic gravity: Hamiltonian analysis and gradient instabilities
NASA Astrophysics Data System (ADS)
Takahashi, Kazufumi; Kobayashi, Tsutomu
2017-11-01
We propose a novel class of degenerate higher-order scalar-tensor theories as an extension of mimetic gravity. By performing a noninvertible conformal transformation on "seed" scalar-tensor theories which may be nondegenerate, we can generate a large class of theories with at most three physical degrees of freedom. We identify a general seed theory for which this is possible. Cosmological perturbations in these extended mimetic theories are also studied. It is shown that either of tensor or scalar perturbations is plagued with gradient instabilities, except for a special case where the scalar perturbations are presumably strongly coupled, or otherwise there appear ghost instabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, Adam; Merzari, Elia; Sofu, Tanju
2016-08-01
High-fidelity analysis has been utilized in the design of beam target options for an accelerator driven subcritical system. Designs featuring stacks of plates with square cross section have been investigated for both tungsten and uranium target materials. The presented work includes the first thermal-hydraulic simulations of the full, detailed target geometry. The innovative target cooling manifold design features many regions with complex flow features, including 90 bends and merging jets, which necessitate three-dimensional fluid simulations. These were performed using the commercial computational fluid dynamics code STAR-CCM+. Conjugate heat transfer was modeled between the plates, cladding, manifold structure, and fluid. Steady-statemore » simulations were performed but lacked good residual convergence. Unsteady simulations were then performed, which converged well and demonstrated that flow instability existed in the lower portion of the manifold. It was established that the flow instability had little effect on the peak plate temperatures, which were well below the melting point. The estimated plate surface temperatures and target region pressure were shown to provide sufficient margin to subcooled boiling for standard operating conditions. This demonstrated the safety of both potential target configurations during normal operation.« less
Electro-diffusion in a plasma with two ion species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, Grigory; Tang Xianzhu
2012-08-15
Electric field is a thermodynamic force that can drive collisional inter-ion-species transport in a multicomponent plasma. In an inertial confinement fusion capsule, such transport causes fuel ion separation even with a target initially prepared to have equal number densities for the two fuel ion species. Unlike the baro-diffusion driven by ion pressure gradient and the thermo-diffusion driven by ion and electron temperature gradients, electro-diffusion has a critical dependence on the charge-to-mass ratio of the ion species. Specifically, it is shown here that electro-diffusion vanishes if the ion species have the same charge-to-mass ratio. An explicit expression for the electro-diffusion ratiomore » is obtained and used to investigate the relative importance of electro- and baro-diffusion mechanisms. In particular, it is found that electro-diffusion reinforces baro-diffusion in the deuterium and tritium mix, but tends to cancel it in the deuterium and helium-3 mix.« less
Nonlinear Evolution of Rayleigh-Taylor Instability in a Radiation-supported Atmosphere
NASA Astrophysics Data System (ADS)
Jiang, Yan-Fei; Davis, Shane W.; Stone, James M.
2013-02-01
The nonlinear regime of Rayleigh-Taylor instability (RTI) in a radiation supported atmosphere, consisting of two uniform fluids with different densities, is studied numerically. We perform simulations using our recently developed numerical algorithm for multi-dimensional radiation hydrodynamics based on a variable Eddington tensor (VET) as implemented in Athena, focusing on the regime where scattering opacity greatly exceeds absorption opacity. We find that the radiation field can reduce the growth and mixing rate of RTI, but this reduction is only significant when radiation pressure significantly exceeds gas pressure. Small-scale structures are also suppressed in this case. In the nonlinear regime, dense fingers sink faster than rarefied bubbles can rise, leading to asymmetric structures about the interface. By comparing the calculations that use a VET versus the Eddington approximation, we demonstrate that anisotropy in the radiation field can affect the nonlinear development of RTI significantly. We also examine the disruption of a shell of cold gas being accelerated by strong radiation pressure, motivated by models of radiation driven outflows in ultraluminous infrared galaxies. We find that when the growth timescale of RTI is smaller than acceleration timescale, the amount of gas that would be pushed away by the radiation field is reduced due to RTI.
Suppressing Two-Plasmon Decay with Laser Frequency Detuning
Follett, R. K.; Shaw, J. G.; Myatt, J. F.; ...
2018-03-30
Three-dimensional laser-plasma interaction simulations show that laser frequency detuning by an amount achievable with current laser technology can be used to suppress the two-plasmon decay (TPD) instability and the corresponding hot-electron generation. For the plasma conditions and laser configuration in a direct-drive inertial confinement fusion implosion on the OMEGA laser, the simulations show that ~0.7% laser frequency detuning is sufficient to eliminate TPD-driven hot-electron generation in current experiments. In conclusion, this allows for higher ablation pressures in future implosion designs by using higher laser intensities.
LLE Review 118 (January-March 2009)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bittle, W., editor
2009-08-03
This issue has the following articles: (1) Applied Plasma Spectroscopy: Laser-Fusion Experiments; (2) Relativistic Electron-Beam Transport Studies Using High-Resolution, Coherent Transition Radiation Imaging; (3) Pressure-Driven, Resistive Magnetohydrodynamic Interchange Instabilities in Laser-Produced, High-Energy-Density Plasmas; (4) Extended Model for Polymer Cholesteric Liquid Crystal Flake Reorientation and Relaxation; (5) Modeling the Effects of Microencapsulation on the Electro-Optic Behavior of Polymer Cholesteric Liquid Crystal Flakes; (6) Capillarity and Dielectrophoresis of Liquid Deuterium; and (7) A Stable Mid-IR, GaSb-Based Diode Laser Source for Cryogenic Target Layering at the OMEGA Laser Facility.
Suppressing Two-Plasmon Decay with Laser Frequency Detuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follett, R. K.; Shaw, J. G.; Myatt, J. F.
Three-dimensional laser-plasma interaction simulations show that laser frequency detuning by an amount achievable with current laser technology can be used to suppress the two-plasmon decay (TPD) instability and the corresponding hot-electron generation. For the plasma conditions and laser configuration in a direct-drive inertial confinement fusion implosion on the OMEGA laser, the simulations show that ~0.7% laser frequency detuning is sufficient to eliminate TPD-driven hot-electron generation in current experiments. In conclusion, this allows for higher ablation pressures in future implosion designs by using higher laser intensities.
Suppressing Two-Plasmon Decay with Laser Frequency Detuning
NASA Astrophysics Data System (ADS)
Follett, R. K.; Shaw, J. G.; Myatt, J. F.; Palastro, J. P.; Short, R. W.; Froula, D. H.
2018-03-01
Three-dimensional laser-plasma interaction simulations show that laser frequency detuning by an amount achievable with current laser technology can be used to suppress the two-plasmon decay (TPD) instability and the corresponding hot-electron generation. For the plasma conditions and laser configuration in a direct-drive inertial confinement fusion implosion on the OMEGA laser, the simulations show that ˜0.7 % laser frequency detuning is sufficient to eliminate TPD-driven hot-electron generation in current experiments. This allows for higher ablation pressures in future implosion designs by using higher laser intensities.
Buoyancy-Driven Instabilities in Single-Bubble Sonoluminescence
NASA Technical Reports Server (NTRS)
Matula, Thomas J.
2003-01-01
The principal objectives of this study are to determine how gravity affects the emission of light from single-bubble sonoluminescence (SBSL), and whether or not the bubble extinction is directly related to gravity. Our experimental task involves designing glass or quartz spherical levitation cells that generate very stable SL bubbles. The cells must have minimized vibration, and some temperature control. The experimental system will reside in a light-tight enclosure. Aside from acceleration, the frequency, pressure amplitude, and light intensity must be measured. A computer program will be constructed to perform all aspects of the experiment.
The role of the geothermal gradient in the emplacement and replenishment of ground ice on Mars
NASA Technical Reports Server (NTRS)
Clifford, Stephen M.
1993-01-01
Knowledge of the mechanisms by which ground ice is emplaced, removed, and potentially replenished, are critical to understanding the climatic and hydrologic behavior of water on Mars, as well as the morphologic evolution of its surface. Because of the strong temperature dependence of the saturated vapor pressure of H2O, the atmospheric emplacement or replenishment of ground ice is prohibited below the depth at which crustal temperatures begin to monotonically increase due to geothermal heating. In contrast, the emplacement and replenishment of ground ice from reservoirs of H2O residing deep within the crust can occur by at least three different thermally-driven processes, involving all three phases of water. In this regard, Clifford has discussed how the presence of a geothermal gradient as small as 15 K/km can give rise to a corresponding vapor pressure gradient sufficient to drive the vertical transport of 1 km of water from a reservoir of ground water at depth to the base of the cryosphere every 10(exp 6) - 10(exp 7) years. This abstract expands on this earlier treatment by considering the influence of thermal gradients on the transport of H2O at temperatures below the freezing point.
Well-posedness of the free boundary problem in compressible elastodynamics
NASA Astrophysics Data System (ADS)
Trakhinin, Yuri
2018-02-01
We study the free boundary problem for the flow of a compressible isentropic inviscid elastic fluid. At the free boundary moving with the velocity of the fluid particles the columns of the deformation gradient are tangent to the boundary and the pressure vanishes outside the flow domain. We prove the local-in-time existence of a unique smooth solution of the free boundary problem provided that among three columns of the deformation gradient there are two which are non-collinear vectors at each point of the initial free boundary. If this non-collinearity condition fails, the local-in-time existence is proved under the classical Rayleigh-Taylor sign condition satisfied at the first moment. By constructing an Hadamard-type ill-posedness example for the frozen coefficients linearized problem we show that the simultaneous failure of the non-collinearity condition and the Rayleigh-Taylor sign condition leads to Rayleigh-Taylor instability.
Plasma transport in an Eulerian AMR code
Vold, E. L.; Rauenzahn, R. M.; Aldrich, C. H.; ...
2017-04-04
A plasma transport model has been implemented in an Eulerian AMR radiation-hydrodynamics code, xRage, which includes plasma viscosity in the momentum tensor, viscous dissipation in the energy equations, and binary species mixing with consistent species mass and energy fluxes driven by concentration gradients, ion and electron baro-diffusion terms and temperature gradient forces. The physics basis, computational issues, numeric options, and results from several test problems are discussed. The transport coefficients are found to be relatively insensitive to the kinetic correction factors when the concentrations are expressed with the molar fractions and the ion mass differences are large. The contributions tomore » flow dynamics from plasma viscosity and mass diffusion were found to increase significantly as scale lengths decrease in an inertial confinement fusion relevant Kelvin-Helmholtz instability mix layer. The mixing scale lengths in the test case are on the order of 100 μm and smaller for viscous effects to appear and 10 μm or less for significant ion species diffusion, evident over durations on the order of nanoseconds. The temperature gradient driven mass flux is seen to deplete a high Z tracer ion at the ion shock front. The plasma transport model provides the generation of the atomic mix per unit of interfacial area between two species with no free parameters. The evolution of the total atomic mix then depends also on an accurate resolution or estimate of the interfacial area between the species mixing by plasma transport. High resolution simulations or a more Lagrangian-like treatment of species interfaces may be required to distinguish plasma transport and numerical diffusion in an Eulerian computation of complex and dynamically evolving mix regions.« less
Plasma transport in an Eulerian AMR code
NASA Astrophysics Data System (ADS)
Vold, E. L.; Rauenzahn, R. M.; Aldrich, C. H.; Molvig, K.; Simakov, A. N.; Haines, B. M.
2017-04-01
A plasma transport model has been implemented in an Eulerian AMR radiation-hydrodynamics code, xRage, which includes plasma viscosity in the momentum tensor, viscous dissipation in the energy equations, and binary species mixing with consistent species mass and energy fluxes driven by concentration gradients, ion and electron baro-diffusion terms and temperature gradient forces. The physics basis, computational issues, numeric options, and results from several test problems are discussed. The transport coefficients are found to be relatively insensitive to the kinetic correction factors when the concentrations are expressed with the molar fractions and the ion mass differences are large. The contributions to flow dynamics from plasma viscosity and mass diffusion were found to increase significantly as scale lengths decrease in an inertial confinement fusion relevant Kelvin-Helmholtz instability mix layer. The mixing scale lengths in the test case are on the order of 100 μm and smaller for viscous effects to appear and 10 μm or less for significant ion species diffusion, evident over durations on the order of nanoseconds. The temperature gradient driven mass flux is seen to deplete a high Z tracer ion at the ion shock front. The plasma transport model provides the generation of the atomic mix per unit of interfacial area between two species with no free parameters. The evolution of the total atomic mix then depends also on an accurate resolution or estimate of the interfacial area between the species mixing by plasma transport. High resolution simulations or a more Lagrangian-like treatment of species interfaces may be required to distinguish plasma transport and numerical diffusion in an Eulerian computation of complex and dynamically evolving mix regions.
Edge Currents and Stability in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D M; Fenstermacher, M E; Finkenthal, D K
2004-12-01
Understanding the stability physics of the H-mode pedestal in tokamak devices requires an accurate measurement of plasma current in the pedestal region with good spatial resolution. Theoretically, the high pressure gradients achieved in the edge of H-mode plasmas should lead to generation of a significant edge current density peak through bootstrap and Pfirsh-Schl{umlt u}ter effects. This edge current is important for the achievement of second stability in the context of coupled magneto hydrodynamic (MHD) modes which are both pressure (ballooning) and current (peeling) driven. Many aspects of edge localized mode (ELM) behavior can be accounted for in terms of anmore » edge current density peak, with the identification of Type 1 ELMs as intermediate-n toroidal mode number MHD modes being a natural feature of this model. The development of a edge localized instabilities in tokamak experiments code (ELITE) based on this model allows one to efficiently calculate the stability and growth of the relevant modes for a broad range of plasma parameters and thus provides a framework for understanding the limits on pedestal height. This however requires an accurate assessment of the edge current. While estimates of j{sub edge} can be made based on specific bootstrap models, their validity may be limited in the edge (gradient scalelengths comparable to orbit size, large changes in collisionality, etc.). Therefore it is highly desirable to have an actual measurement. Such measurements have been made on the DIII-D tokamak using combined polarimetry and spectroscopy of an injected lithium beam. By analyzing one of the Zeeman-split 2S-2P lithium resonance line components, one can obtain direct information on the local magnetic field components. These values allow one to infer details of the edge current density. Because of the negligible Stark mixing of the relevant atomic levels in lithium, this method of determining j(r) is insensitive to the large local electric fields typically found in enhanced confinement (H-mode) edges, and thus avoids an ambiguity common to MSE measurements of B{sub pol}.« less
Edge Currents and Stability in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D M; Fenstermacher, M E; Finkenthal, D K
2005-05-05
Understanding the stability physics of the H-mode pedestal in tokamak devices requires an accurate measurement of plasma current in the pedestal region with good spatial resolution. Theoretically, the high pressure gradients achieved in the edge of H-mode plasmas should lead to generation of a significant edge current density peak through bootstrap and Pfirsh-Schlueter effects. This edge current is important for the achievement of second stability in the context of coupled magneto hydrodynamic (MHD) modes which are both pressure (ballooning) and current (peeling) driven [1]. Many aspects of edge localized mode (ELM) behavior can be accounted for in terms of anmore » edge current density peak, with the identification of Type 1 ELMs as intermediate-n toroidal mode number MHD modes being a natural feature of this model [2]. The development of a edge localized instabilities in tokamak experiments code (ELITE) based on this model allows one to efficiently calculate the stability and growth of the relevant modes for a broad range of plasma parameters [3,4] and thus provides a framework for understanding the limits on pedestal height. This however requires an accurate assessment of the edge current. While estimates of j{sub edge} can be made based on specific bootstrap models, their validity may be limited in the edge (gradient scale lengths comparable to orbit size, large changes in collisionality, etc.). Therefore it is highly desirable to have an actual measurement. Such measurements have been made on the DIII-D tokamak using combined polarimetry and spectroscopy of an injected lithium beam. [5,6]. By analyzing one of the Zeeman-split 2S-2P lithium resonance line components, one can obtain direct information on the local magnetic field components. These values allow one to infer details of the edge current density. Because of the negligible Stark mixing of the relevant atomic levels in lithium, this method of determining j(r) is insensitive to the large local electric fields typically found in enhanced confinement (H-mode) edges, and thus avoids an ambiguity common to MSE measurements of B{sub pol}.« less
On the interaction between turbulence and a planar rarefaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Bryan M.
2014-04-01
The modeling of turbulence, whether it be numerical or analytical, is a difficult challenge. Turbulence is amenable to analysis with linear theory if it is subject to rapid distortions, i.e., motions occurring on a timescale that is short compared to the timescale for nonlinear interactions. Such an approach (referred to as rapid distortion theory) could prove useful for understanding aspects of astrophysical turbulence, which is often subject to rapid distortions, such as supernova explosions or the free-fall associated with gravitational instability. As a proof of principle, a particularly simple problem is considered here: the evolution of vorticity due to amore » planar rarefaction in an ideal gas. Analytical solutions are obtained for incompressive modes having a wave vector perpendicular to the distortion; as in the case of gradient-driven instabilities, these are the modes that couple most strongly to the mean flow. Vorticity can either grow or decay in the wake of a rarefaction front, and there are two competing effects that determine which outcome occurs: entropy fluctuations couple to the mean pressure gradient to produce vorticity via baroclinic effects, whereas vorticity is damped due to the conservation of angular momentum as the fluid expands. Whether vorticity grows or decays depends upon the ratio of entropic to vortical fluctuations at the location of the front; growth occurs if this ratio is of order unity or larger. In the limit of purely entropic fluctuations in the ambient fluid, a strong rarefaction generates vorticity with a turbulent Mach number on the order of the rms of the ambient entropy fluctuations. The analytical results are shown to compare well with results from two- and three-dimensional numerical simulations. Analytical solutions are also derived in the linear regime of Reynolds-averaged turbulence models. This highlights an inconsistency in standard turbulence models that prevents them from accurately capturing the physics of rarefaction-turbulence interaction. In addition to providing physical insight, the solutions derived here can be used to verify algorithms of both the Reynolds-averaged and direct numerical simulation variety. Finally, dimensional analysis of the equations indicates that rapid distortion of turbulence can give rise to two distinct regimes in the turbulent spectrum: a distortion range at large scales where linear distortion effects dominate, and an inertial range at small scales where nonlinear effects dominate.« less
Rayleigh-Taylor instability in an equal mass plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adak, Ashish, E-mail: ashish-adak@yahoo.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in
The Rayleigh-Taylor (RT) instability in an inhomogeneous pair-ion plasma has been analyzed. Considering two fluid model for two species of ions (positive and negative), we obtain the possibility of the existence of RT instability. The growth rate of the RT instability as usual depends on gravity and density gradient scale length. The results are discussed in context of pair-ion plasma experiments.
Gorbacheva, E V; Ganchenko, G S; Demekhin, E A
2018-03-27
The stability of the electroosmotic flow of electrolyte-dielectric viscous liquids under the influence of the DC and AC electric fields along with the external pressure gradient is studied theoretically. Liquids are bounded by two infinite parallel plates. The lower wall bordering the electrolyte is assumed to be a charged surface, and the upper wall is electrically isolated. The charge at the lower boundary is assumed to be immobile, while the surface charge at the free surface is assumed to be mobile. In this paper, we study the micro- and nanosized liquid layers. The mathematical model is described by a nonlinear system of the Nernst-Planck-Poisson-Stokes partial differential equations with the appropriate boundary conditions on the solid surface, the electrolyte/dielectric interface, and on the upper wall. The pressure gradient is highly important for the stability of the flow. For the DC case, the external pressure could either stabilize and destabilize the flow depending on the relative directions of the electroosmotic flow and the pressure-driven flow. For the AC case, the dependence on the value of the external pressure is not monotonous for different wave numbers of perturbations, but, as a rule, the external pressure destabilizes the flow. As the frequency of the electric field increases, the one-dimensional solution of the problem becomes stable.
Controlling cavitation-based image contrast in focused ultrasound histotripsy surgery.
Allen, Steven P; Hall, Timothy L; Cain, Charles A; Hernandez-Garcia, Luis
2015-01-01
To develop MRI feedback for cavitation-based, focused ultrasound, tissue erosion surgery (histotripsy), we investigate image contrast generated by transient cavitation events. Changes in GRE image intensity are observed while balanced pairs of field gradients are varied in the presence of an acoustically driven cavitation event. The amplitude of the acoustic pulse and the timing between a cavitation event and the start of these gradient waveforms are also varied. The magnitudes and phases of the cavitation site are compared with those of control images. An echo-planar sequence is used to evaluate histotripsy lesions in ex vivo tissue. Cavitation events in water cause localized attenuation when acoustic pulses exceed a pressure threshold. Attenuation increases with increasing gradient amplitude and gradient lobe separation times and is isotropic with gradient direction. This attenuation also depends upon the relative timing between the cavitation event and the start of the balanced gradients. These factors can be used to control the appearance of attenuation while imaging ex vivo tissue. By controlling the timing between cavitation events and the imaging gradients, MR images can be made alternately sensitive or insensitive to cavitation. During therapy, these images can be used to isolate contrast generated by cavitation. © 2014 Wiley Periodicals, Inc.
Numerical study on the instabilities in H2-air rotating detonation engines
NASA Astrophysics Data System (ADS)
Liu, Yan; Zhou, Weijiang; Yang, Yunjun; Liu, Zhou; Wang, Jianping
2018-04-01
Numerical simulations of rotating detonation engines (RDEs) are performed using two-dimensional Euler equations and a detailed chemistry model of H2-air. Two propagation modes, the one-wave mode and the two-wave mode, are observed in the RDEs. The instabilities of the RDEs are studied and analyzed specifically. A low frequency instability and a high frequency instability are found from the pressure-time trace measured at a fixed location and the average density-time trace of the RDEs. For the low frequency instability, the pressure peak of the pressure-time trace oscillates with a low frequency while the average density is stable. The deviation between the measurement location and the location of the detonation wave results in the low frequency instability. For the high frequency instability, the average density of the RDEs oscillates regularly with a single frequency while the pressure oscillates irregularly with several frequencies. The oscillation of the detonation wave height results in the high frequency instability. Furthermore, the low frequency instability and the high frequency instability both occur in the one-wave and two-wave mode RDEs.
Submesoscale CO2 variability across an upwelling front off Peru
NASA Astrophysics Data System (ADS)
Köhn, Eike E.; Thomsen, Sören; Arévalo-Martínez, Damian L.; Kanzow, Torsten
2017-12-01
As a major source for atmospheric CO2, the Peruvian upwelling region exhibits strong variability in surface fCO2 on short spatial and temporal scales. Understanding the physical processes driving the strong variability is of fundamental importance for constraining the effect of marine emissions from upwelling regions on the global CO2 budget. In this study, a frontal decay on length scales of 𝒪(10 km) was observed off the Peruvian coast following a pronounced decrease in down-frontal (equatorward) wind speed with a time lag of 9 h. Simultaneously, the sea-to-air flux of CO2 on the inshore (cold) side of the front dropped from up to 80 to 10 mmol m-2 day-1, while the offshore (warm) side of the front was constantly outgassing at a rate of 10-20 mmol m-2 day-1. Based on repeated ship transects the decay of the front was observed to occur in two phases. The first phase was characterized by a development of coherent surface temperature anomalies which gained in amplitude over 6-9 h. The second phase was characterized by a disappearance of the surface temperature front within 6 h. Submesoscale mixed-layer instabilities were present but seem too slow to completely remove the temperature gradient in this short time period. Dynamics such as a pressure-driven gravity current appear to be a likely mechanism behind the evolution of the front.
Ubiquitous Instabilities of Dust Moving in Magnetized Gas
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.; Squire, Jonathan
2018-06-01
Squire & Hopkins (2017) showed that coupled dust-gas mixtures are generically subject to "resonant drag instabilities" (RDIs), which drive violently-growing fluctuations in both. But the role of magnetic fields and charged dust has not yet been studied. We therefore explore the RDI in gas which obeys ideal MHD and is coupled to dust via both Lorentz forces and drag, with an external acceleration (e.g., gravity, radiation) driving dust drift through gas. We show this is always unstable, at all wavelengths and non-zero values of dust-to-gas ratio, drift velocity, dust charge, "stopping time" or drag coefficient (for any drag law), or field strength; moreover growth rates depend only weakly (sub-linearly) on these parameters. Dust charge and magnetic fields do not suppress instabilities, but give rise to a large number of new instability "families," each with distinct behavior. The "MHD-wave" (magnetosonic or Alfvén) RDIs exhibit maximal growth along "resonant" angles where the modes have a phase velocity matching the corresponding MHD wave, and growth rates increase without limit with wavenumber. The "gyro" RDIs are driven by resonances between drift and Larmor frequencies, giving growth rates sharply peaked at specific wavelengths. Other instabilities include "acoustic" and "pressure-free" modes (previously studied), and a family akin to cosmic ray instabilities which appear when Lorentz forces are strong and dust streams super-Alfvénically along field lines. We discuss astrophysical applications in the warm ISM, CGM/IGM, HII regions, SNe ejecta/remnants, Solar corona, cool-star winds, GMCs, and AGN.
NASA Astrophysics Data System (ADS)
Andrioli, V. F.; Batista, P. P.; Xu, Jiyao; Yang, Guotao; Chi, Wang; Zhengkuan, Liu
2017-04-01
Na lidar temperature measurements were taken successfully from 2007 to 2009 in the mesopause region over São José dos Campos (23.1°S, 45.9°W). Strong gradients on these vertical temperature profiles are often observed. A simple theoretical study has shown that temperature gradient of at least -8 K/km is required concurrently with the typical tidal wind shear in order to generate dynamical instability in the MLT region. We have studied vertical shear in horizontal wind related to atmospheric tides, inferred by meteor radar, with the aim of analyzing instability occurrence. These wind measurements were taken from an all-sky meteor radar at Cachoeira Paulista (22.7°S, 45°W). Two years of simultaneous data, wind and temperature, were used in this analysis which represent 79 days, totalizing 589 h of simultaneous observations. We realize that the condition for the local Richardson number (Ri) dropping below the critical value of instability (Ri < 0.25) is often reached in 98% of the analyzed cases. The mean probabilities for occurrence of convective and dynamical instabilities, in the altitude region between 82 and 98 km, were observed to be about 3% and 17.5%, respectively. Additionally, vertical distribution of these probabilities has revealed a weak occurrence of dynamical instability around 90 km, and this fact can be related to the double mesopause typically observed in this site.
Shi, F.; Hanes, D.M.; Kirby, J.T.; Erikson, L.; Barnard, P.; Eshleman, J.
2011-01-01
The nearshore circulation induced by a focused pattern of surface gravity waves is studied at a beach adjacent to a major inlet with a large ebb tidal shoal. Using a coupled wave and wave-averaged nearshore circulation model, it is found that the nearshore circulation is significantly affected by the heterogeneous wave patterns caused by wave refraction over the ebb tidal shoal. The model is used to predict waves and currents during field experiments conducted near the mouth of San Francisco Bay and nearby Ocean Beach. The field measurements indicate strong spatial variations in current magnitude and direction and in wave height and direction along Ocean Beach and across the ebb tidal shoal. Numerical simulations suggest that wave refraction over the ebb tidal shoal causes wave focusing toward a narrow region at Ocean Beach. Due to the resulting spatial variation in nearshore wave height, wave-induced setup exhibits a strong alongshore nonuniformity, resulting in a dramatic change in the pressure field compared to a simulation with only tidal forcing. The analysis of momentum balances inside the surf zone shows that, under wave conditions with intensive wave focusing, the alongshore pressure gradient associated with alongshore nonuniform wave setup can be a dominant force driving circulation, inducing heterogeneous alongshore currents. Pressure-gradient- forced alongshore currents can exhibit flow reversals and flow convergence or divergence, in contrast to the uniform alongshore currents typically caused by tides or homogeneous waves.
The Low-Recycling Lithium Boundary and Implications for Plasma Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granstedt, Erik Michael
Pumping of incident hydrogen and impurity ions by lithium enables control of the particle inventory and fueling profile in magnetic-confined plasmas, and may raise the plasma temperature near the wall. As a result, the density gradient is expected to contribute substantially to the free-energy, affecting particle and thermal transport from micro-turbulence which is typically the dominant transport mechanism in high-temperature fusion experiments. Transport in gyrokinetic simulations of density-gradient-dominated profiles is characterized by a small linear critical gradient, large particle flux, and preferential diffusion of cold particles. As a result, the heat flux is below 5/2 or even 3/2 times themore » particle flux, usually assumed to be the minimum for convection. While surprising, this result is consistent with increasing entropy. Coupled TEM-ITG (ion-temperature- gradient) simulations using ηe = ηi find η = ∇T /∇n∼0.8 maximizes the linear critical pressure gradient, which suggests that experiments operating near marginal ITG stability with larger η would increase the linear critical pressure gradient by transferring free-energy from the temperature gradient to the density gradient. Simulations were performed with profiles predicted for the Lithium Tokamak Experiment (LTX) if ion thermal transport was neoclassical, while electron thermal transport and particle transport were a fixed ratio above the neoclassical level. A robust TEM instability was found for the outer half radius, while the ITG was found to be driven unstable as well during gas puff fueling. This suggests that TEM transport will be an important transport mechanism in high-temperature low-recycling fusion experiments, and in the absence of stabilizing mechanisms, may dominate over neoclassical transport. A diagnostic suite has been developed to measure hydrogen and impurity emission in LTX in order to determine the lower bound on recycling that can be achieved in a small tokamak using solid lithium coatings, assess its dependence on the operating condition of the lithium surface, and evaluate its impact on the discharge. Coatings on the close-fitting stainless-steel substrate produce a significant reduction in recyling, so that the effective particle confinement times are as low as 1 ms. Measurements of particle inventory in the plasma and hydrogen Lyman-α emission indicate that hydrogen recycling at the surface increases as subsequent discharges are performed; nevertheless, strong pumping of hydrogen is observed even after almost double the cumulative fueling is applied that should saturate the lithium coating to the penetration depth of hydrogen ions. Probe measurements show that when external fueling is terminated, the scrape-off-layer of discharges with fresh coatings decays to lower density and rises to higher electron temperature than for discharges with a partially-passivated surface, consistent with reduced edge cooling from recycled particles. Near the end of the discharge, higher plasma current correlates with reduced τp* and hydrogen emission, suggesting that discharges with fresh coatings achieve higher electron temperature in the core. A novel approach using neutral modeling was developed for the inverse problem of determining the distribution of recycled particle flux from PFC surfaces given a large number of emission measurements, revealing that extremely low levels of recycling (Rcore∼0.6 and Rplate∼0.8) have been achieved with solid lithium coatings. Together with impurity emission measurements, modeling suggests that during periods of particularly low electron density, influx of impurities from the walls contributes substantially to the global particle balance.« less
Characterizing gravitational instability in turbulent multicomponent galactic discs
NASA Astrophysics Data System (ADS)
Agertz, Oscar; Romeo, Alessandro B.; Grisdale, Kearn
2015-05-01
Gravitational instabilities play an important role in galaxy evolution and in shaping the interstellar medium (ISM). The ISM is observed to be highly turbulent, meaning that observables like the gas surface density and velocity dispersion depend on the size of the region over which they are measured. In this work, we investigate, using simulations of Milky Way-like disc galaxies with a resolution of ˜ 9 pc, the nature of turbulence in the ISM and how this affects the gravitational stability of galaxies. By accounting for the measured average turbulent scalings of the density and velocity fields in the stability analysis, we can more robustly characterize the average level of stability of the galaxies as a function of scale, and in a straightforward manner identify scales prone to fragmentation. Furthermore, we find that the stability of a disc with feedback-driven turbulence can be well described by a `Toomre-like' Q stability criterion on all scales, whereas the classical Q can formally lose its meaning on small scales if violent disc instabilities occur in models lacking pressure support from stellar feedback.
A motor-driven syringe-type gradient maker for forming immobilized pH gradient gels.
Fawcett, J S; Sullivan, J V; Chidakel, B E; Chrambach, A
1988-05-01
A motor driven gradient maker based on the commercial model (Jule Inc., Trumbull, CT) was designed for immobilized pH gradient gels to provide small volumes, rapid stirring and delivery, strict volume and temperature control and air exclusion. The device was constructed and by a convenient procedure yields highly reproducible gradients either in solution or on polyacrylamide gels.
Wake Instabilities Behind Discrete Roughness Elements in High Speed Boundary Layers
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Li, Fei; Chang, Chau-Lyan; Norris, Andrew; Edwards, Jack
2013-01-01
Computations are performed to study the flow past an isolated, spanwise symmetric roughness element in zero pressure gradient boundary layers at Mach 3.5 and 5.9, with an emphasis on roughness heights of less than 55 percent of the local boundary layer thickness. The Mach 5.9 cases include flow conditions that are relevant to both ground facility experiments and high altitude flight ("cold wall" case). Regardless of the Mach number, the mean flow distortion due to the roughness element is characterized by long-lived streamwise streaks in the roughness wake, which can support instability modes that did not exist in the absence of the roughness element. The higher Mach number cases reveal a variety of instability mode shapes with velocity fluctuations concentrated in different localized regions of high base flow shear. The high shear regions vary from the top of a mushroom shaped structure characterizing the centerline streak to regions that are concentrated on the sides of the mushroom. Unlike the Mach 3.5 case with nearly same values of scaled roughness height k/delta and roughness height Reynolds number Re(sub kk), the odd wake modes in both Mach 5.9 cases are significantly more unstable than the even modes of instability. Additional computations for a Mach 3.5 boundary layer indicate that the presence of a roughness element can also enhance the amplification of first mode instabilities incident from upstream. Interactions between multiple roughness elements aligned along the flow direction are also explored.
Shock Driven Multiphase Instabilities in Scramjet Applications
NASA Astrophysics Data System (ADS)
McFarland, Jacob
2016-11-01
Shock driven multiphase instabilities (SDMI) arise in many applications from dust production in supernovae to ejecta distribution in explosions. At the limit of small, fast reacting particles the instability evolves similar to the Richtmyer-Meshkov (RM) instability. However, as additional particle effects such as lag, phase change, and collisions become significant the required parameter space becomes much larger and the instability deviates significantly from the RM instability. In scramjet engines the SDMI arises during a cold start where liquid fuel droplets are injected and processed by shock and expansion waves. In this case the particle evaporation and mixing is important to starting and sustaining combustion, but the particles are large and slow to react, creating significant multiphase effects. This talk will examine multiphase mixing in scramjet relevant conditions in 3D multiphase hydrodynamic simulations using the FLASH code from the University of Chicago FLASH center.
Oblique Alfvén instabilities driven by compensated currents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malovichko, P.; Voitenko, Y.; De Keyser, J., E-mail: voitenko@oma.be
2014-01-10
Compensated-current systems created by energetic ion beams are widespread in space and astrophysical plasmas. The well-known examples are foreshock regions in the solar wind and around supernova remnants. We found a new oblique Alfvénic instability driven by compensated currents flowing along the background magnetic field. Because of the vastly different electron and ion gyroradii, oblique Alfvénic perturbations react differently on the currents carried by the hot ion beams and the return electron currents. Ultimately, this difference leads to a non-resonant aperiodic instability at perpendicular wavelengths close to the beam ion gyroradius. The instability growth rate increases with increasing beam currentmore » and temperature. In the solar wind upstream of Earth's bow shock, the instability growth time can drop below 10 proton cyclotron periods. Our results suggest that this instability can contribute to the turbulence and ion acceleration in space and astrophysical foreshocks.« less
Anisotropic diffusion in mesh-free numerical magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2017-04-01
We extend recently developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbitrary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer-Braginskii conduction and viscosity, cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffusion, the Hall effect) and turbulent 'eddy diffusion'. We study these as implemented in the code GIZMO for both new meshless finite-volume Godunov schemes (MFM/MFV). We show that the MFM/MFV methods are accurate and stable even with noisy fields and irregular particle arrangements, and recover the correct behaviour even in arbitrarily anisotropic cases. They are competitive with state-of-the-art AMR/moving-mesh methods, and can correctly treat anisotropic diffusion-driven instabilities (e.g. the MTI and HBI, Hall MRI). We also develop a new scheme for stabilizing anisotropic tensor-valued fluxes with high-order gradient estimators and non-linear flux limiters, which is trivially generalized to AMR/moving-mesh codes. We also present applications of some of these improvements for SPH, in the form of a new integral-Godunov SPH formulation that adopts a moving-least squares gradient estimator and introduces a flux-limited Riemann problem between particles.
Theory of the corrugation instability of a piston-driven shock wave.
Bates, J W
2015-01-01
We analyze the two-dimensional stability of a shock wave driven by a steadily moving corrugated piston in an inviscid fluid with an arbitrary equation of state. For h≤-1 or h>h(c), where h is the D'yakov parameter and h(c) is the Kontorovich limit, we find that small perturbations on the shock front are unstable and grow--at first quadratically and later linearly--with time. Such instabilities are associated with nonequilibrium fluid states and imply a nonunique solution to the hydrodynamic equations. The above criteria are consistent with instability limits observed in shock-tube experiments involving ionizing and dissociating gases and may have important implications for driven shocks in laser-fusion, astrophysical, and/or detonation studies.
NASA Astrophysics Data System (ADS)
Spagnuolo, Elena; Violay, Marie; Nielsen, Stefan; Cornelio, Chiara; Di Toro, Giulio
2017-04-01
Fluid pressure has been indicated as a major factor controlling natural (e.g., L'Aquila, Italy, 2009 Mw 6.3) and induced seismicity (e.g., Wilzetta, Oklahoma, 2011 Mw 5.7). Terzaghi's principle states that the effective normal stress is linearly reduced by a pore pressure (Pf) increase σeff=σn(1 - αPf), where the effective stress parameter α, may be related to the fraction of the fault area that is flooded. A value of α =1 is often used by default, with Pf shifting the Mohr circle towards lower normal effective stresses and anticipating failure on pre-existing faults. However, within a complex fault core of inhomogeneous permeability, α may vary in a yet poorly understood way. To shed light on this problem, we conducted experiments on calcite-bearing rock samples (Carrara marble) at room humidity conditions and in the presence of pore fluids (drained conditions) using a rotary apparatus (SHIVA). A pre-cut fault is loaded by constant shear stress τ under constant normal stress σn=15 MPa until a target value corresponding roughly to the 80 % of the frictional fault strength. The pore pressure Pf is then raised with regular pressure and time steps to induce fault instability. Assuming α=1 and a threshold for instability τp_eff=μp σeff, the experiments reveal that an increase of Pf does not necessarily induce an instability even when the effective strength threshold is largely surpassed (e.g., τp_eff=1.3 μpσeff). This result may indicate that the Pf increase did not instantly diffuse throughout the slip zone, but took a finite time to equilibrate with the external imposed pressure increase due to finite permeability. Under our experimental conditions, a significant departure from α=1 is observed provided that the Pf step is shorter than about < 20s. We interpret this delay as indicative of the diffusion time (td), which is related to fluid penetration length l by l = √ κtd-, where κ is the hydraulic diffusivity on the fault plane. We show that a simple cubic law relates td to hydraulic aperture, pore pressure gradient and injection rate. We redefine α as the ratio between the fluid penetration length and sample dimension L resulting in α = min(√ktd,L) L. Under several pore pressure loading rates this relation yields an approximate hydraulic diffusivity κ ˜10-8 m2 s-1 which is compatible, for example, with a low porosity shale. Our results highlight that a high injection flow rate in fault plane do not necessarily induce seismogenic fault slip: a critical pore penetration length or fluid patch size is necessary to trigger fault instability.
NASA Astrophysics Data System (ADS)
Rollin, Bertrand; Denissen, Nicholas A.; Reisner, Jon M.; Andrews, Malcolm J.
2012-11-01
The tilted rig experiment is a derivative of the rocket rig experiment designed to investigate turbulent mixing induced by the Rayleigh-Taylor (RT) instability. A tank containing two fluids of different densities is accelerated downwards between two parallel guiding rods by rocket motors. The acceleration is such that the pressure and density gradients face opposite directions at the fluids interface, creating a Rayleigh-Taylor unstable configuration. The rig is tilted such that the tank is initially at an angle and the acceleration is not perpendicular to the fluids interface when the rockets fire. This results in a two dimensional Rayleigh-Taylor instability case where the fluids experience RT mixing and a bulk overturning motion. The tilted rig is therefore a valuable experiment to help calibrating two-dimensional mixing models. Large Eddy Simulations of the tilted rig experiments will be compared to available experimental results. A study of the behavior of turbulence variables relevant to turbulence modeling will be presented. LA-UR 12-23829. This work was performed for the U.S. Department of Energy by Los Alamos National Laboratory under Contract No.DEAC52- 06NA2-5396.
Gravitational Effects on Flow Instability and Transition in Low Density Jets
NASA Technical Reports Server (NTRS)
Agrawal A. K.; Parthasarathy, K.; Pasumarthi, K.; Griffin, D. W.
2000-01-01
Recent experiments have shown that low-density gas jets injected into a high-density ambient gas undergo an instability mode, leading to highly-periodic oscillations in the flow-field for certain conditions. The transition from laminar to turbulent flow in these jets is abrupt, without the gradual change in scales. Even the fine scale turbulent structure repeats itself with extreme regularity from cycle to cycle. Similar observations were obtained in buoyancy-dominated and momentum-dominated jets characterized by the Richardson numbers, Ri = [gD(rho(sub a)-rho(sub j))/rho(sub j)U(sub j)(exp 2) ] where g is the gravitational acceleration, D is the jet diameter, rho(sub a) and rho(sub a) are, respectively, the free-stream and jet densities, and U(sub j) is the mean jet exit velocity. At high Richardson numbers, the instability is presumably caused by buoyancy since the flow-oscillation frequency (f) or the Strouhal number, St = [fD/U(sub j)] scales with Ri. In momentum-dominated jets, however, the Strouhal number of the oscillating flow is relatively independent of the Ri. In this case, a local absolute instability is predicted in the potential core of low-density jets with S [= rho(sub j)/rho(sub a)] < 0.7, which agrees qualitatively with experiments. Although the instability in gas jets of high Richardson numbers is attributed to buoyancy, direct physical evidence has not been acquired in experiments. If the instability is indeed caused by buoyancy, the near-field flow structure of the jet will change significantly when the buoyancy is removed, for example, in the microgravity environment. Thus, quantitative data on the spatial and temporal evolutions of the instability, length and time scale of the oscillating mode and its effects on the mean flow and breakdown of the potential core are needed in normal and microgravity to delineate gravitational effects in buoyant jets. In momentum dominated low-density jets, the instability is speculated to originate in the potential core. However, experiments have not succeeded in identifying the direct physical cause of the instability. For example, the theory predicts an oscillating mode for S<0.62 in the limit of zero momentum thickness, which contradicts with the experimental findings of Kyle and Sreenivasan. The analyses of momentum-dominated jets neglect buoyancy effects because of the small Richardson number. Although this assumption is appropriate in the potential core, the gravitational effects are important in the annular region surrounding the jet, where the density and velocity gradients are large. This reasoning provides basis for the hypothesis that the instability in low Richardosn number jets studied by Kyle and Sreenivasan and Monkewitz et al. is caused by buoyancy. The striking similarity in characteristics of the instability and virtually the identical conclusions reached by Subbarao and Cantwell in buoyant (Ri>0.5) helium jets on one hand and by Kyle and Sreenivasan in momentum-dominated (Ri<1x10(exp -3)) helium jets on the other support this hypothesis. However, quantitative experiments in normal and microgravity are necessary to obtain direct physical evidence of buoyancy effects on the flow instability and structure of momentum-dominated low-density jets. The primary objective of this new research project is to quantify how buoyancy affects the flow instability and structure in the near field of low-density jets. The flow will be described by the spatial and temporal evolutions of the instability, length and time scales of the oscillating mode, and the mean and fluctuating concentration fields. To meet this objective, concentration measurements will be obtained across the whole field using quantitative Rainbow Schlieren Deflectometry, providing spatial resolution of 0.1mm and temporal resolution of 0.017s to 1ms. The experimental effort will be supplemented with linear stability analysis of low-density jets by considering buoyancy. The first objective of this research is to investigate the effects of gravity on the flow instability and structure of low-density jets. The flow instability in these jets has been attributed to buoyancy. By removing buoyancy in our experiments, we seek to obtain the direct physical evidence of the instability mechanism. In the absence of the instability, the flow structure will undergo a significant change. We seek to quantify these changes by mapping the flow field (in terms of the concentration profiles) of these jets at non-buoyant conditions. Such information is presently lacking in the existing literature. The second objective of this research is to determine if the instability in momentum-driven, low-density jets is caused by buoyancy. At these conditions, the buoyancy effects are commonly ignored because of the small Richardson based on global parameters. By eliminating buoyancy in our experiments, globally as well as locally, we seek to examine the possibility that the instability mechanism in self-excited, buoyant or momentum-driven jets is the same. To meet this objective, we would quantify the jet flow in normal and microgravity, while systematically decreasing the Richardson number from buoyancy-driven to momentum driven flow regime. The third objective of this research is to perform a linear stability analysis of low-density gas jets by including the gravitational effects. The flow oscillations in these jets are attributed to an absolute instability, whereby the disturbance grows exponentially at the site to ultimately contaminate the entire flow field. We seek to study the characteristics of both convective and absolute instabilities and demarcate the boundary between them.
Diffusion Driven Combustion Waves in Porous Media
NASA Technical Reports Server (NTRS)
Aldushin, A. P.; Matkowsky, B. J.
2000-01-01
Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases the wave velocity. In addition to the reaction and diffusion layers, the uniformly propagating wave structure includes a layer with a pressure gradient, where the gas motion is induced by the production or consumption of the gas in the reaction as well as by thermal expansion of the gas. The width of this zone determines the scale of the combustion wave in the porous medium.
Comparative study of the loss cone-driven instabilities in the low solar corona
NASA Technical Reports Server (NTRS)
Sharma, R. R.; Vlahos, L.
1984-01-01
A comparative study of the loss cone-driven instabilities in the low solar corona is undertaken. The instabilities considered are the electron cyclotron maser, the whistler, and the electrostatic upper hybrid. It is shown that the first-harmonic extraordinary mode of the electron cyclotron maser instability is the fastest growing mode for strong magnetized plasma (the ratio of plasma frequency to cyclotron frequency being less than 0.35). For values of the ratio between 0.35 and 1.0, the first-harmonic ordinary mode of the electron cyclotron maser instability dominates the emission. For ratio values greater than 1.0, no direct electromagnetic radiation is expected since other instabilities, which do not escape directly, saturate the electron cyclotron maser (the whistler or the electrostatic upper hybrid waves). It is also shown that the second-harmonic electron cyclotron maser emission never grows to an appreciable level. Thus, it is suggested that the electron cyclotron maser instability can be the explanation for the escape of the first harmonic from a flaring loop.
Topographic-driven instabilities in terrestrial bodies
NASA Astrophysics Data System (ADS)
Vantieghem, S.; Cebron, D.; Herreman, W.; Lacaze, L.
2013-12-01
Models of internal planetary fluid layers (core flows, subsurface oceans) commonly assume that these fluid envelopes have a spherical shape. This approximation however entails a serious restriction from the fluid dynamics point of view. Indeed, in the presence of mechanical forcings (precession, libration, nutation or tides) due to gravitational interaction with orbiting partners, boundary topography (e.g. of the core-mantle boundary) may excite flow instabilities and space-filling turbulence. These phenomena may affect heat transport and dissipation at the main order. Here, we focus on instabilities driven by longitudinal libration. Using a suite of theoretical tools and numerical simulations, we are able to discern a parameter range for which instability may be excited. We thereby consider deformations of different azimuthal order. This study gives the first numerical evidence of the tripolar instability. Furthermore, we explore the non-linear regime and investigate the amplitude as well as the dissipation of the saturated instability. Indeed, these two quantities control the torques on the solid layers and the thermal transport. Furthermore, based on this results, we address the issue of magnetic field generation associated with these flows (by induction or by dynamo process). This instability mechanism applies to both synchronized as non-synchronized bodies. As such, our results show that a tripolar instability might be present in various terrestrial bodies (Early Moon, Gallilean moons, asteroids, etc.), where it could participate in dynamo action. Simulation of a libration-driven tripolar instability in a deformed spherical fluid layer: snapshot of the velocity magnitude, where a complex 3D flow pattern is established.
NASA Technical Reports Server (NTRS)
Fulton, J. W.
1984-01-01
An electric motor driven centrifugal compressor to supply gas for further compression and reinjection on a petroleum production platform in the North Sea was examined. The compressor design, raised concerns about susceptibility to subsynchronous instability. Log decrement, aerodynamic features, and the experience of other compressors with similar ratios of operating to critical speed ratio versus gas density led to the decision to full load test. Mixed hydrocarbon gas was chosen for the test to meet discharge temperature restrictions. The module was used as the test site. Subsynchronous vibrations made the compressor inoperable above approximately one-half the rated discharge pressure of 14500 kPa. Modifications, which includes shortening the bearing span, change of leakage inlet flow direction on the back to back labyrinth, and removal of the vaned diffusers on all stages were made simultaneously. The compressor is operating with satisfactory vibration levels.
NASA Technical Reports Server (NTRS)
Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.
1994-01-01
We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.
Stationary QH-mode plasmas with high and wide pedestal at low rotation on DIII-D
NASA Astrophysics Data System (ADS)
Chen, Xi; Burrell, K. H.; Osborne, T. H.; Solomon, W. M.; Barada, K.; Garofalo, A. M.; Groebner, R. J.; Luhmann, N. C.; McKee, G. R.; Muscatello, C. M.; Ono, M.; Petty, C. C.; Porkolab, M.; Rhodes, T. L.; Rost, J. C.; Snyder, P. B.; Staebler, G. M.; Tobias, B. J.; Yan, Z.; the DIII-D Team
2017-02-01
A stationary, quiescent H-mode (QH-mode) regime with a wide pedestal and improved confinement at low rotation has been discovered on DIII-D with reactor relevant edge parameters and no ELMs. As the injected neutral beam torque is ramped down and the edge E × B rotation shear reduces, the transition from standard QH to the wide pedestal QH-mode occurs. At the transition, the coherent edge harmonic oscillations (EHO) that usually regulate the standard QH edge cease and broadband edge MHD modes appear along with a rapid increase in the pedestal pressure height (by ⩽60%) and width (by ⩽50%). We posit that the enhanced edge turbulence-driven transport, enabled by the lower edge E × B flow shear due to lower torque reduces the pedestal gradient and, combined with the high edge instability limit provided by the balanced double-null plasma shape, permits the development of a broader and thus higher pedestal that is turbulence-transport-limited. Even with the significantly enhanced pedestal pressure, the edge operating point is below the peeling ballooning mode stability boundary and thus without ELMs. Improved transport in the outer core region (0.8 ⩽ ρ ⩽0.9) owing to increased E × B flow shear in that region and the enhanced pedestal boost the overall confinement by up to 45%. These findings advance the physics basis for developing stationary ELM-free high-confinement operation at low rotation for future burning plasma where similar collisionality and rotation levels are expected.
Combined electroosmotically and pressure driven flow in soft nanofluidics.
Matin, Meisam Habibi; Ohshima, Hiroyuki
2015-12-15
The present study is devoted to the analysis of mixed electroosmotic and pressure driven flows through a soft charged nanochannel considering boundary slip and constant charge density on the walls of the slit channel. The sources of the fluid flow are the pressure gradient along the channel axis and the electrokinetic effects that trigger an electroosmotic flow under the influence of a uniformly applied electric field. The polyelectrolyte layer (PEL) is denoted as a fixed charge layer (FCL) and the electrolyte ions can be present both inside and outside the PEL i.e., the PEL-electrolyte interface acts as a semi-penetrable membrane. The Poisson-Boltzmann equation is solved assuming the Debye-Hückel linearization for the low electric potential to provide us with analytical closed form solutions for the conservation equations. The conservation equations are solved to obtain the electric potential and velocity distributions in terms of governing dimensionless parameters. The results for the dimensionless electric potential, the dimensionless velocity and Poiseuille number are presented graphically and discussed in detail. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Karam, Pascal; Pennathur, Sumita
2016-11-01
Characterization of the electrophoretic mobility and zeta potential of micro and nanoparticles is important for assessing properties such as stability, charge and size. In electrophoretic techniques for such characterization, the bulk fluid motion due to the interaction between the fluid and the charged surface must be accounted for. Unlike current industrial systems which rely on DLS and oscillating potentials to mitigate electroosmotic flow (EOF), we propose a simple alternative electrophoretic method for optically determining electrophoretic mobility using a DC electric fields. Specifically, we create a system where an adverse pressure gradient counters EOF, and design the geometry of the channel so that the flow profile of the pressure driven flow matches that of the EOF in large regions of the channel (ie. where we observe particle flow). Our specific COMSOL-optimized geometry is two large cross sectional areas adjacent to a central, high aspect ratio channel. We show that this effectively removes EOF from a large region of the channel and allows for the accurate optical characterization of electrophoretic particle mobility, no matter the wall charge or particle size.
2016-01-01
Asters nucleated by Microtubule (MT) organizing centers (MTOCs) converge on chromosomes during spindle assembly in mouse oocytes undergoing meiosis I. Time-lapse imaging suggests that this centripetal motion is driven by a biased ‘search-and-capture’ mechanism. Here, we develop a model of a random walk in a drift field to test the nature of the bias and the spatio-temporal dynamics of the search process. The model is used to optimize the spatial field of drift in simulations, by comparison to experimental motility statistics. In a second step, this optimized gradient is used to determine the location of immobilized dynein motors and MT polymerization parameters, since these are hypothesized to generate the gradient of forces needed to move MTOCs. We compare these scenarios to self-organized mechanisms by which asters have been hypothesized to find the cell-center- MT pushing at the cell-boundary and clustering motor complexes. By minimizing the error between simulation outputs and experiments, we find a model of “pulling” by a gradient of dynein motors alone can drive the centripetal motility. Interestingly, models of passive MT based “pushing” at the cortex, clustering by cross-linking motors and MT-dynamic instability gradients alone, by themselves do not result in the observed motility. The model predicts the sensitivity of the results to motor density and stall force, but not MTs per aster. A hybrid model combining a chromatin-centered immobilized dynein gradient, diffusible minus-end directed clustering motors and pushing at the cell cortex, is required to comprehensively explain the available data. The model makes experimentally testable predictions of a spatial bias and self-organized mechanisms by which MT asters can find the center of a large cell. PMID:27706163
Khetan, Neha; Athale, Chaitanya A
2016-10-01
Asters nucleated by Microtubule (MT) organizing centers (MTOCs) converge on chromosomes during spindle assembly in mouse oocytes undergoing meiosis I. Time-lapse imaging suggests that this centripetal motion is driven by a biased 'search-and-capture' mechanism. Here, we develop a model of a random walk in a drift field to test the nature of the bias and the spatio-temporal dynamics of the search process. The model is used to optimize the spatial field of drift in simulations, by comparison to experimental motility statistics. In a second step, this optimized gradient is used to determine the location of immobilized dynein motors and MT polymerization parameters, since these are hypothesized to generate the gradient of forces needed to move MTOCs. We compare these scenarios to self-organized mechanisms by which asters have been hypothesized to find the cell-center- MT pushing at the cell-boundary and clustering motor complexes. By minimizing the error between simulation outputs and experiments, we find a model of "pulling" by a gradient of dynein motors alone can drive the centripetal motility. Interestingly, models of passive MT based "pushing" at the cortex, clustering by cross-linking motors and MT-dynamic instability gradients alone, by themselves do not result in the observed motility. The model predicts the sensitivity of the results to motor density and stall force, but not MTs per aster. A hybrid model combining a chromatin-centered immobilized dynein gradient, diffusible minus-end directed clustering motors and pushing at the cell cortex, is required to comprehensively explain the available data. The model makes experimentally testable predictions of a spatial bias and self-organized mechanisms by which MT asters can find the center of a large cell.
Disturbance functions of the Goertler instability on an airfoil
NASA Technical Reports Server (NTRS)
Dagenhart, J. R.; Mangalam, S. M.
1986-01-01
Goertler vortices arise in boundary layers along concave surfaces due to centrifugal effects. This paper presents some results of an experiment conducted to study the development of these vortices on an airfoil with a pressure gradient in the concave region where an attached laminar boundary layer was insured with suction through a perforated panel. A sublimating chemical technique was used to visualize Goertler vortices and the velocity field was measured by laser velocimetry. Experimental disturbance functions are compared with those predicted by the linear stability theory. The trend of vortex amplification in the concave zone and damping in the following convex region is shown to essentially follow the theoretical predictions.
Noreen, Saima; Qasim, Muhammad
2015-01-01
In this paper, we study the influence of heat sink (or source) on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones.
Increased in-shoe lateral plantar pressures with chronic ankle instability.
Schmidt, Heather; Sauer, Lindsay D; Lee, Sae Yong; Saliba, Susan; Hertel, Jay
2011-11-01
Previous plantar pressure research found increased loads and slower loading response on the lateral aspect of the foot during gait with chronic ankle instability compared to healthy controls. The studies had subjects walking barefoot over a pressure mat and results have not been confirmed with an in-shoe plantar pressure system. Our purpose was to report in-shoe plantar pressure measures for chronic ankle instability subjects compared to healthy controls. Forty-nine subjects volunteered (25 healthy controls, 24 chronic ankle instability) for this case-control study. Subjects jogged continuously on a treadmill at 2.68 m/s (6.0 mph) while three trials of ten consecutive steps were recorded. Peak pressure, time-to-peak pressure, pressure-time integral, maximum force, time-to-maximum force, and force-time integral were assessed in nine regions of the foot with the Pedar-x in-shoe plantar pressure system (Novel, Munich, Germany). Chronic ankle instability subjects demonstrated a slower loading response in the lateral rearfoot indicated by a longer time-to-peak pressure (16.5% +/- 10.1, p = 0.001) and time-to-maximum force (16.8% +/- 11.3, p = 0.001) compared to controls (6.5% +/- 3.7 and 6.6% +/- 5.5, respectively). In the lateral midfoot, ankle instability subjects demonstrated significantly greater maximum force (318.8 N +/- 174.5, p = 0.008) and peak pressure (211.4 kPa +/- 57.7, p = 0.008) compared to controls (191.6 N +/- 74.5 and 161.3 kPa +/- 54.7). Additionally, ankle instability subjects demonstrated significantly higher force-time integral (44.1 N/s +/- 27.3, p = 0.005) and pressure-time integral (35.0 kPa/s +/- 12.0, p = 0.005) compared to controls (23.3 N/s +/- 10.9 and 24.5 kPa/s +/- 9.5). In the lateral forefoot, ankle instability subjects demonstrated significantly greater maximum force (239.9N +/- 81.2, p = 0.004), force-time integral (37.0 N/s +/- 14.9, p = 0.003), and time-to-peak pressure (51.1% +/- 10.9, p = 0.007) compared to controls (170.6 N +/- 49.3, 24.3 N/s +/- 7.2 and 43.8% +/- 4.3). Using an in-shoe plantar pressure system, chronic ankle instability subjects had greater plantar pressures and forces in the lateral foot compared to controls during jogging. These findings may have implications in the etiology and treatment of chronic ankle instability.
Srivastava, Ashna; Tiwari, Naveen
2018-05-07
The stability analysis of a gravity-driven thin liquid film with an insoluble surfactant flowing over a surface with embedded, regularly spaced heaters is investigated. At the leading edge of a heater, the presence of a temperature gradient induces an opposing Marangoni stress at the interface leading to the formation of a capillary ridge. This ridge has been shown to be susceptible to thermocapillary (oscillating in the flow direction) and rivulet (spanwise periodic pattern) instabilities. The presence of an insoluble surfactant is shown to have a stabilizing effect on this system. The governing equations for the evolution of the film thickness and surfactant concentration are obtained within the lubrication approximation. The coupled two-dimensional base solutions for the film thickness and surfactant concentration show that there is no significant change in the height of the capillary ridge at the subsequent heaters downstream. The height of the capillary ridge is reduced by the presence of the surfactant. For very small Peclet number, the presence of multiple heaters has almost no significant effect on the film stability as compared to a single heater and similar trends are observed between the two configurations in the presence of the surfactant as for the case of a clean interface. However, for large Peclet number, the effect was observed on both types of instabilities for certain heater configurations. The Biot number is shown to have a strong effect on the stability results wherein the dominant mode of instability is altered (from rivulet to thermocapillary instability) for a passive or no surfactant case with increase in the Biot number. For an active surfactant thermocapillary instability is found to remain the dominant mode of instability for all the values of the Biot number. It is shown that increasing the number of heaters beyond a couple does not further affect the stability results.
Ab initio study on structural stability of uranium carbide
NASA Astrophysics Data System (ADS)
Sahoo, B. D.; Joshi, K. D.; Gupta, Satish C.
2013-06-01
First principles calculations have been performed using plane wave pseudopotential and full potential linearized augmented plane wave (FP-LAPW) methods to analyze structural, elastic and dynamic stability of UC under hydrostatic compression. Our calculations within pseudopotential method suggest that the rocksalt (B1) structure will transform to body centered orthorhombic (bco) structure at ˜21.5 GPa. The FP-LAPW calculations put this transition at 23 GPa. The transition pressures determined from our calculations though agree reasonably with the experimental value of 27 GPa, the high pressure bco structure suggested by theory differs slightly from the experimentally reported pseudo bco phase. The elastic stability analysis of B1 phase suggests that the B1 to bco transition is driven by the failure of C44 modulus. This finding is further substantiated by the lattice dynamic calculations which demonstrate that the B1 phase becomes dynamically unstable around the transition pressure and the instability is of long wavelength nature.
On Thermodiffusion and Gauge Transformations for Thermodynamic Fluxes and Driving Forces
NASA Astrophysics Data System (ADS)
Goldobin, D. S.
2017-12-01
We discuss the molecular diffusion transport in infinitely dilute liquid solutions under nonisothermal conditions. This discussion is motivated by an occurring misinterpretation of thermodynamic transport equations written in terms of chemical potential in the presence of temperature gradient. The transport equations contain the contributions owned by a gauge transformation related to the fact that chemical potential is determined up to the summand of form ( AT + B) with arbitrary constants A and B, where constant A is owned by the entropy invariance with respect to shifts by a constant value and B is owned by the potential energy invariance with respect to shifts by a constant value. The coefficients of the cross-effect terms in thermodynamic fluxes are contributed by this gauge transformation and, generally, are not the actual cross-effect physical transport coefficients. Our treatment is based on consideration of the entropy balance and suggests a promising hint for attempts of evaluation of the thermal diffusion constant from the first principles. We also discuss the impossibility of the "barodiffusion" for dilute solutions, understood in a sense of diffusion flux driven by the pressure gradient itself. When one speaks of "barodiffusion" terms in literature, these terms typically represent the drift in external potential force field (e.g., electric or gravitational fields), where in the final equations the specific force on molecules is substituted with an expression with the hydrostatic pressure gradient this external force field produces. Obviously, the interpretation of the latter as barodiffusion is fragile and may hinder the accounting for the diffusion fluxes produced by the pressure gradient itself.
NASA Astrophysics Data System (ADS)
Tran, Jonathan
Plasma turbulence and the resulting anomalous electron transport due to azimuthal current driven instabilities in Hall-effect thrusters is a promising candidate for developing predictive models for the observed anomalous transport. A theory for anomalous electron transport and current driven instabilities has been recently studied by [Lafluer et al., 2016a]. Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster modeling. Using a reduced dimension particle in cell simulation implemented in the Thermophysics Universal Research Framework developed by the Air Force Research Lab, we show collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field and the plasma density. These high-frequency and short wavelength fluctuations can lead to an effective cross-field mobility many orders of magnitude larger than what is expected from classical electron-neutral momentum collisions in the low neutral density regime. We further adapt the previous study by [Lampe et al., 1971] and [Stringer, 1964] for related current driven instabilities to electric propulsion relevant mass ratios and conditions. Finally, we conduct a preliminary study of resolving this instability with a modified hybrid simulation with the hope of integration with established hybrid Hall-effect thruster simulations.
Pressure driven spin transition in siderite and magnesiosiderite single crystals.
Weis, Christopher; Sternemann, Christian; Cerantola, Valerio; Sahle, Christoph J; Spiekermann, Georg; Harder, Manuel; Forov, Yury; Kononov, Alexander; Sakrowski, Robin; Yavaş, Hasan; Tolan, Metin; Wilke, Max
2017-11-28
Iron-bearing carbonates are candidate phases for carbon storage in the deep Earth and may play an important role for the Earth's carbon cycle. To elucidate the properties of carbonates at conditions of the deep Earth, we investigated the pressure driven magnetic high spin to low spin transition of synthetic siderite FeCO 3 and magnesiosiderite (Mg 0.74 Fe 0.26 )CO 3 single crystals for pressures up to 57 GPa using diamond anvil cells and x-ray Raman scattering spectroscopy to directly probe the iron 3d electron configuration. An extremely sharp transition for siderite single crystal occurs at a notably low pressure of 40.4 ± 0.1 GPa with a transition width of 0.7 GPa when using the very soft pressure medium helium. In contrast, we observe a broadening of the transition width to 4.4 GPa for siderite with a surprising additional shift of the transition pressure to 44.3 ± 0.4 GPa when argon is used as pressure medium. The difference is assigned to larger pressure gradients in case of argon. For magnesiosiderite loaded with argon, the transition occurs at 44.8 ± 0.8 GPa showing similar width as siderite. Hence, no compositional effect on the spin transition pressure is observed. The spectra measured within the spin crossover regime indicate coexistence of regions of pure high- and low-spin configuration within the single crystal.
Multi-water-bag models of ion temperature gradient instability in cylindrical geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coulette, David; Besse, Nicolas
2013-05-15
Ion temperature gradient instabilities play a major role in the understanding of anomalous transport in core fusion plasmas. In the considered cylindrical geometry, ion dynamics is described using a drift-kinetic multi-water-bag model for the parallel velocity dependency of the ion distribution function. In a first stage, global linear stability analysis is performed. From the obtained normal modes, parametric dependencies of the main spectral characteristics of the instability are then examined. Comparison of the multi-water-bag results with a reference continuous Maxwellian case allows us to evaluate the effects of discrete parallel velocity sampling induced by the Multi-Water-Bag model. Differences between themore » global model and local models considered in previous works are discussed. Using results from linear, quasilinear, and nonlinear numerical simulations, an analysis of the first stage saturation dynamics of the instability is proposed, where the divergence between the three models is examined.« less
The non-thermal origin of the tokamak low-density stability limit
Paz-Soldan, C.; La Haye, R. J.; Shiraki, D.; ...
2016-04-13
DIII-D plasmas at very low density exhibit onset of n=1 error field (EF) penetration (the `low-density locked mode') not at a critical density or EF, but instead at a critical level of runaway electron (RE) intensity. Raising the density during a discharge does not avoid EF penetration, so long as RE growth proceeds to the critical level. Penetration is preceded by non-thermalization of the electron cyclotron emission, anisotropization of the total pressure, synchrotron emission shape changes, as well as decreases in the loop voltage and bulk thermal electron temperature. The same phenomena occur despite various types of optimal EF correction,more » and in some cases modes are born rotating. Similar phenomena are also found at the low-density limit in JET. These results stand in contrast to the conventional interpretation of the low-density stability limit as being due to residual EFs and demonstrate a new pathway to EF penetration instability due to REs. Existing scaling laws for penetration project to increasing EF sensitivity as bulk temperatures decrease, though other possible mechanisms include classical tearing instability, thermo-resistive instability, and pressure-anisotropy driven instability. Regardless of first-principles mechanism, known scaling laws for Ohmic energy confinement combined with theoretical RE production rates allow rough extrapolation of the RE criticality condition, and thus, the low-density limit to other tokamaks. Furthermore, the extrapolated low-density limit by this pathway decreases with increasing machine size and is considerably below expected operating conditions for ITER. While likely unimportant for ITER, this effect can explain the low-density limit of existing tokamaks operating with small residual EFs.« less
NASA Astrophysics Data System (ADS)
Sen, Koushik; Fernández, Rodrigo; Socrates, Aristotle
2018-06-01
We examine the excitation of unstable magnetosonic waves in the radiative envelopes of intermediate- and high-mass stars with a magnetic field of ˜kG strength. Wind clumping close to the star and microturbulence can often be accounted for when including small-scale, subphotospheric density or velocity perturbations. Compressional waves - with wavelengths comparable to or shorter than the gas pressure scale height - can be destabilized by the radiative flux in optically thick media when a magnetic field is present, in a process called the radiation-driven magneto-acoustic instability (RMI). The instability does not require radiation or magnetic pressure to dominate over gas pressure, and acts independently of subsurface convection zones. Here we evaluate the conditions for the RMI to operate on a grid of stellar models covering a mass range 3-40 M⊙ at solar metallicity. For a uniform 1 kG magnetic field, fast magnetosonic modes are unstable down to an optical depth of a few tens, while unstable slow modes extend beyond the depth of the iron convection zone. The qualitative behaviour is robust to magnetic field strength variations by a factor of a few. When combining our findings with previous results for the saturation amplitude of the RMI, we predict velocity fluctuations in the range ˜0.1-10 km s-1. These amplitudes are a monotonically increasing function of the ratio of radiation to gas pressure, or alternatively, of the zero-age main sequence mass.
D'Hernoncourt, J; Merkin, J H; De Wit, A
2007-09-01
Traveling fronts can become transversally unstable either because of a diffusive instability arising when the key variables diffuse at sufficiently different rates or because of a buoyancy-driven Rayleigh-Taylor mechanism when the density jump across the front is statically unfavorable. The interaction between such diffusive and buoyancy instabilities of fronts is analyzed theoretically for a simple model system. Linear stability analysis and nonlinear simulations show that their interplay changes considerably the stability properties with regard to the pure Rayleigh-Taylor or diffusive instabilities of fronts. In particular, an instability scenario can arise which triggers convection around statically stable fronts as a result of differential diffusion. Moreover, spatiotemporal chaos can be observed when both buoyancy and diffusive effects cooperate to destabilize the front. Experimental conditions to test our predictions are suggested.
Triaxial instabilities in rapidly rotating neutron stars
NASA Astrophysics Data System (ADS)
Basak, Arkadip
2018-06-01
Viscosity driven bar mode secular instabilities of rapidly rotating neutron stars are studied using LORENE/Nrotstar code. These instabilities set a more rigorous limit to the rotation frequency of a neutron star than the Kepler frequency/mass-shedding limit. The procedure employed in the code comprises of perturbing an axisymmetric and stationary configuration of a neutron star and studying its evolution by constructing a series of triaxial quasi-equilibrium configurations. Symmetry breaking point was found out for Polytropic as well as 10 realistic equations of states (EOS) from the CompOSE data base. The concept of piecewise polytropic EOSs has been used to comprehend the rotational instability of Realistic EOSs and validated with 19 different Realistic EOSs from CompOSE. The possibility of detecting quasi-periodic gravitational waves from viscosity driven instability with ground-based LIGO/VIRGO interferometers is also discussed very briefly.
New Instability Mode in A Driven Granular Gas: Athermal and Thermal Convection
NASA Astrophysics Data System (ADS)
Shukla, Priyanka; Alam, Meheboob
2017-11-01
For a thermally-driven granular gas confined between two plates under gravity, we report a new instability mode which is found to be active at very small values of the heat-loss parameter. We show that the origin of this new mode is tied to the ``thermal'' mode of the well-studied Rayleigh-Benard convection. This is dubbed purely elastic instability since it survives even for perfectly elastic collisions (en = 1). The distinction of this new instability mode from its dissipative/athermal counterpart is clarified for the first time. Furthermore, a weakly nonlinear analysis using Stuart-Landau equation has been carried out for both instability modes, and the underlying bifurcation scenario (supercritical/subcritical) from each mode is elucidated. The resulting linear and nonlinear patterns with respect to inelasticity and gravity are compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootton, K. P.; Wu, Z.; Cowan, B. M.
Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm -1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.
Comments on the Operation of Capillary Pumped Loop Devices in Low Gravity
NASA Technical Reports Server (NTRS)
Hallinan, K. P.; Allen, J. S.
1999-01-01
The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.
Role of magnetic fluctuations in mode selection of magnetically driven instabilities
NASA Astrophysics Data System (ADS)
Dan, Jia-Kun; Ren, Xiao-Dong; Huang, Xian-Bin; Ouyang, Kai; Chen, Guang-Hua
2014-12-01
The influences of magnetic fluctuations on quasiperiodic structure formation and fundamental wavelength selection of the instability have been studied using two 25-μm-diameter tungsten wires on a 100 ns rise time, 220 kA pulsed power facility. Two different load configurations were adopted to make end surfaces of electrodes approximately satisfy reflecting and absorbing boundary conditions, respectively. The experimental results that the fundamental wavelength in the case of absorbing boundary condition is about one half of that in the case of reflecting boundary condition have demonstrated that magnetic fluctuations appear to play a key role in mode selection of magnetically driven instabilities. The dominant wavelength should be proportional to magnetic field and inversely proportional to square root of mass density, provided that the magnetosonic wave propagating perpendicular to magnetic fields provides a leading candidate for magnetic fluctuations. Therefore, magnetic fluctuation is one of the three key perturbations, along with surface contaminants and surface roughness, that seeds magnetically driven instabilities.
NASA Astrophysics Data System (ADS)
Qiao, Bin; Shen, X. F.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.
2017-10-01
Among various laser-driven acceleration schemes, radiation pressure acceleration (RPA) is regarded as one of the most promising schemes to obtain high-quality ion beams. Although RPA is very attractive in principle, it is difficult to be achieved experimentally. One of the most important reasons is the dramatic growth of the multi-dimensional Rayleigh-Taylor-like (RT) instabilities. In this talk, we report a novel method to achieve stable RPA of ions from laser-irradiated ultrathin foils, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as electron loss induced by the RT and other instabilities are significantly offset and suppressed so that stable acceleration of ions are maintained. Supported by the NSAF, Grant No. U1630246; the NNSF China Grants No. 11575298; and the National Key Program of S&T Research and Development, Grant No. 2016YFA0401100.
Linear instability regimes in L-mode edges using reduced MHD models in BOUT + +
NASA Astrophysics Data System (ADS)
Bass, Eric; Holland, Chris; Cohen, Bruce; Umansky, Maxim
2016-10-01
We compare linear instabilities in the edge of two DIII-D L-mode discharges using reduced two-fluid MHD models implemented in BOUT + +. Discharge 119919, a case used in a previous BOUT + + validation study, has a cold edge and is dominated by resistive ballooning modes (RBMs). Hotter discharge 128913, an L-mode shortfall benchmark case, is drift-wave (DW) dominant. The model captures essential drift wave physics through the electron pressure parallel gradient drive term in the A| | evolution. At relevant toroidal mode numbers (50-200), the leading DWs in 128913 are flutelike with high kr and require about an order of magnitude greater radial resolution than the leading RBMs in 119919. We quantify when such high kr modes must be resolved in practice. To aid eigenfunction confirmation, and to identify potential subdominant DWs, a companion eigenvalue solver for the BOUT + + models is under development. Prepared by UCSD under Contract Number DE-FG02-06ER54871.
Marrow fat may distribute the energy of impact loading throughout subchondral bone
Simkin, Peter A
2018-01-01
Abstract Most students of articular mechanics consider impact loads to be compressive forces that are borne by an intraosseous, trabecular scaffold. The possible role of marrow fat, which comprises about 75% of the structure, is generally ignored, and the potential contribution of type 1 collagen, the prototypic tensile protein, is not considered. Here, I question the evidence underlying these omissions and reject the conclusion of exclusive trabecular compression. Instead, I suggest that impact loading pressurizes the fat in subchondral compartments, and those pressures stretch the elastic trabecular walls, which are thereby subjected to tensile loading. The load-driven pressure pulses then diminish as they pass from each compartment to its adjoining neighbours. The resulting pressure gradient distributes the burden throughout the subchondrium, stores energy for ensuing recovery and subjects individual trabeculae only to the net pressure differences between adjacent compartments. PMID:28977578
High-pressure mechanical instability in rocks
Byerlee, J.D.; Brace, W.F.
1969-01-01
At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.
High-pressure mechanical instability in rocks.
Byerlee, J D; Brace, W F
1969-05-09
At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.
Eddies in a bottleneck: an arbitrary Debye length theory for capillary electroosmosis.
Park, Stella Y; Russo, Christopher J; Branton, Daniel; Stone, Howard A
2006-05-15
Using an applied electrical field to drive fluid flows becomes desirable as channels become smaller. Although most discussions of electroosmosis treat the case of thin Debye layers, here electroosmotic flow (EOF) through a constricted cylinder is presented for arbitrary Debye lengths (kappa(-1)) using a long wavelength perturbation of the cylinder radius. The analysis uses the approximation of small potentials. The varying diameter of the cylinder produces radially and axially varying effective electric fields, as well as an induced pressure gradient. We predict the existence of eddies for certain constricted geometries and propose the possibility of electrokinetic trapping in these regions. We also present a leading-order criterion which predicts central eddies in very narrow constrictions at the scale of the Debye length. Eddies can be found both in the center of the channel and along the perimeter, and the presence of the eddies is a consequence of the induced pressure gradient that accompanies electrically driven flow into a narrow constriction.
Eddies in a Bottleneck: An Arbitrary Debye Length Theory for Capillary Electroosmosis
Park, Stella Y.; Russo, Christopher J.; Branton, Daniel; Stone, Howard A.
2011-01-01
Using an applied electrical field to drive fluid flows becomes desirable as channels become smaller. Although most discussions of electroosmosis treat the case of thin Debye layers, here electroosmotic flow (EOF) through a constricted cylinder is presented for arbitrary Debye lengths (κ−1) using a long wavelength perturbation of the cylinder radius. The analysis uses the approximation of small potentials. The varying diameter of the cylinder produces radially and axially varying effective electric fields, as well as an induced pressure gradient. We predict the existence of eddies for certain constricted geometries and propose the possibility of electrokinetic trapping in these regions. We also present a leading-order criterion which predicts central eddies in very narrow constrictions at the scale of the Debye length. Eddies can be found both in the center of the channel and along the perimeter, and the presence of the eddies is a consequence of the induced pressure gradient that accompanies electrically driven flow into a narrow constriction. PMID:16376361
Galactic Disk Winds Driven by Cosmic Ray Pressure
NASA Astrophysics Data System (ADS)
Mao, S. Alwin; Ostriker, Eve C.
2018-02-01
Cosmic ray pressure gradients transfer energy and momentum to extraplanar gas in disk galaxies, potentially driving significant mass loss as galactic winds. This may be particularly important for launching high-velocity outflows of “cool” (T ≲ 104 K) gas. We study cosmic ray-driven disk winds using a simplified semi-analytic model assuming streamlines follow the large-scale gravitational potential gradient. We consider scaled Milky Way–like potentials including a disk, bulge, and halo with a range of halo velocities V H = 50–300 km s-1 and streamline footpoints with radii in the disk R 0 = 1–16 kpc at a height of 1 kpc. Our solutions cover a wide range of footpoint gas velocity u 0, magnetic–to–cosmic ray pressure ratio, gas–to–cosmic ray pressure ratio, and angular momentum. Cosmic ray streaming at the Alfvén speed enables the effective sound speed C eff to increase from the footpoint to a critical point where C eff,c = u c ∼ V H; this differs from thermal winds, in which C eff decreases outward. The critical point is typically at a height of 1–6 kpc from the disk, increasing with V H, and the asymptotic wind velocity exceeds the escape speed of the halo. Mass-loss rates are insensitive to the footpoint values of the magnetic field and angular momentum. In addition to numerical parameter space exploration, we develop and compare to analytic scaling relations. We show that winds have mass-loss rates per unit area up to \\dot{Σ}∼ Π0VH-5/3u02/3, where Π0 is the footpoint cosmic ray pressure and u 0 is set by the upwelling of galactic fountains. The predicted wind mass-loss rate exceeds the star formation rate for V H ≲ 200 km s-1 and u 0 = 50 km s-1, a typical fountain velocity.
NASA Astrophysics Data System (ADS)
Beeson, H. W.; McCoy, S. W.; Willett, S.
2016-12-01
Erosional river networks dissect much of Earth's surface into drainage basins. Global scaling laws such as Hack's Law suggest that river basins trend toward a particular scale-invariant shape. While erosional instabilities arising from competition between advective and diffusive processes can explain why headwaters branch, the erosional mechanics linking larger scale network branching with evolution towards a characteristic river basin shape remain poorly constrained. We map river steepness and a proxy for the steady-state elevation of river networks, χ, in simulated and real landscapes with a large range in spatial scale (102 -106 m) but with similar inclined, planar surfaces at the time of incipient network formation. We document that the evolution from narrow rill-like networks to dendritic, leaf-shaped river basins follows from drainage area differences between catchments. These serve as instabilities that grow, leading to divide migration, stream capture, lateral branching and network reorganization. As Horton hypothesized, incipient networks formed down gradient on an inclined, planar surface have an unequal distribution of drainage area and nonuniformity in response times such that larger basins erode more rapidly and branch laterally via capture of adjacent streams with lower erosion rates. Positive feedback owing to increase in drainage area furthers the process of branching at the expense of neighboring rivers. We show that drainage area exchange and the degree of network reorganization has a significant effect on river steepness in the Dragon's Back Pressure Ridge, CA, the Sierra Nevada, CA, and the Rocky Mountain High Plains, USA. Similarly, metrics of basin shape reveal that basins are evolving from narrow basins towards more common leaf shapes. Our results suggest that divide migration and stream capture driven by erosional disequilibrium could be fundamental processes by which river basins reach their characteristic geometry and dendritic form.
NASA Astrophysics Data System (ADS)
Viete, D. R.; Hacker, B. R.; Seward, G.; Allen, M. B.
2016-12-01
Rhythmic major-element zoning has been documented in garnets from high pressure/low temperature (HP/LT) lenses within a number of worldwide subduction mélanges (e.g. California, Chinese Tianshan, Cuba, Greek Cyclades, Guatemala, Japan, Venezuela). The origin of these features has implications for the nature of subduction-zone processes. Conditions of rhythmic zoning acquirement in HP/LT garnets of California and Venezuela were investigated by use of Raman and FTIR microspectroscopy, and thermodynamic modelling of phase equilibria. Quartz-in-garnet Raman barometry reveals varying P—on the order of 100-300 MPa, over radial distances of 10s of µm—in association with the high-Mn (and low-Mg) bands that define the fine-scale rhythmic zoning. Results from FTIR microspectroscopy demonstrate association between the high-Mn bands and locally depressed (structural) OH and elevated (molecular) H2O concentrations. The microspectroscopy results suggest changes in P and fluid activity attended development of the cryptic rhythmic zoning. Perple_X modelling of phase equilibria shows that, for specific rock chemistry and subduction P-T conditions, garnet modal abundance is extremely sensitive to changes in P (e.g. 10-20 vol.% growth/dissolution for ΔP = 200 MPa). Rhythmic major-element zoning may reflect P- and/or fluid-driven cycles of garnet stability-instability and/or varying reaction progress/kinetics during subduction. Steep compositional gradients that define the rhythmic major-element zoning limit time scales at subduction T, requiring that such individual stability-instability and/or accelerated reaction cycles were extremely brief. Seismic cycles or porosity waves represent ephemeral phenomena capable of accounting for development of rhythmic major-element zoning in HP/LT garnet, during subduction, as a result of fluctuations in both P and fluids. Metamorphic rocks may well carry detailed records of the catastrophism that punctuates longer-term tectonometamorphic processes.
Mechanism behind Erosive Bursts In Porous Media.
Jäger, R; Mendoza, M; Herrmann, H J
2017-09-22
Erosion and deposition during flow through porous media can lead to large erosive bursts that manifest as jumps in permeability and pressure loss. Here we reveal that the cause of these bursts is the reopening of clogged pores when the pressure difference between two opposite sites of the pore surpasses a certain threshold. We perform numerical simulations of flow through porous media and compare our predictions to experimental results, recovering with excellent agreement shape and power-law distribution of pressure loss jumps, and the behavior of the permeability jumps as a function of particle concentration. Furthermore, we find that erosive bursts only occur for pressure gradient thresholds within the range of two critical values, independent of how the flow is driven. Our findings provide a better understanding of sudden sand production in oil wells and breakthrough in filtration.
Extended MHD modeling of nonlinear instabilities in fusion and space plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germaschewski, Kai
A number of different sub-projects where pursued within this DOE early career project. The primary focus was on using fully nonlinear, curvilinear, extended MHD simulations of instabilities with applications to fusion and space plasmas. In particular, we performed comprehensive studies of the dynamics of the double tearing mode in different regimes and confi gurations, using Cartesian and cyclindrical geometry and investigating both linear and non-linear dynamics. In addition to traditional extended MHD involving Hall term and electron pressure gradient, we also employed a new multi-fluid moment model, which shows great promise to incorporate kinetic effects, in particular off-diagonal elements ofmore » the pressure tensor, in a fluid model, which is naturally computationally much cheaper than fully kinetic particle or Vlasov simulations. We used our Vlasov code for detailed studies of how weak collisions effect plasma echos. In addition, we have played an important supporting role working with the PPPL theory group around Will Fox and Amitava Bhattacharjee on providing simulation support for HED plasma experiments performed at high-powered laser facilities like OMEGA-EP in Rochester, NY. This project has support a great number of computational advances in our fluid and kinetic plasma models, and has been crucial to winning multiple INCITE computer time awards that supported our computational modeling.« less
Interaction of lateral baroclinic forcing and turbulence in an estuary
Lacy, J.R.; Stacey, M.T.; Burau, J.R.; Monismith, Stephen G.
2003-01-01
Observations of density and velocity in a channel in northern San Francisco Bay show that the onset of vertical density stratification during flood tides is controlled by the balance between the cross-channel baroclinic pressure gradient and vertical mixing due to turbulence. Profiles of velocity, salinity, temperature, and suspended sediment concentration were measured in transects across Suisun Cutoff, in northern San Francisco Bay, on two days over the 12.5-hour tidal cycle. During flood tides an axial density front developed between fresher water flowing from the shallows of Grizzly Bay into the northern side of Suisun Cutoff and saltier water flowing up the channel. North of the front, transverse currents were driven by the lateral salinity gradient, with a top-to-bottom velocity difference greater than 30 cm/s. South of the front, the secondary circulation was weak, and along-channel velocities were greater than to the north. The gradient Richardson number shows that stratification was stable north of the front, while the water column was turbulently mixed south of the front. Time-series measurements of velocity and salinity demonstrate that the front develops during each tidal cycle. In estuaries, longitudinal dynamics predict less stratification during flood than ebb tides. These data show that stratification can develop during flood tides due to a lateral baroclinic pressure gradient in estuaries with complex bathymetry.
Designing high speed diagnostics
NASA Astrophysics Data System (ADS)
Veliz Carrillo, Gerardo; Martinez, Adam; Mula, Swathi; Prestridge, Kathy; Extreme Fluids Team Team
2017-11-01
Timing and firing for shock-driven flows is complex because of jitter in the shock tube mechanical drivers. Consequently, experiments require dynamic triggering of diagnostics from pressure transducers. We explain the design process and criteria for setting up re-shock experiments at the Los Alamos Vertical Shock Tube facility, and the requirements for particle image velocimetry and planar laser induced fluorescence measurements necessary for calculating Richtmeyer-Meshkov variable density turbulent statistics. Dynamic triggering of diagnostics allows for further investigation of the development of the Richtemeyer-Meshkov instability at both initial shock and re-shock. Thanks to the Los Alamos National Laboratory for funding our project.
NASA Astrophysics Data System (ADS)
Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping
2018-05-01
The role of ion–ion acoustic instabilities in the formation and dissipation of collisionless electrostatic shock waves driven by counter-streaming supersonic plasma flows has been investigated via two-dimensional particle-in-cell simulations. The nonlinear evolution of unstable waves and ion velocity distributions has been analyzed in detail. It is found that for electrostatic shocks driven by moderate-velocity flows, longitudinal and oblique ion–ion acoustic instabilities can be excited in the downstream and upstream regions, which lead to thermalization of the transmitted and reflected ions, respectively. For high-velocity flows, oblique ion–ion acoustic instabilities can develop in the overlap layer during the shock formation process and impede the shock formation.
Evaporation-driven instability of the precorneal tear film.
Peng, Cheng-Chun; Cerretani, Colin; Braun, Richard J; Radke, C J
2014-04-01
Tear-film instability is widely believed to be a signature of eye health. When an interblink is prolonged, randomly distributed ruptures occur in the tear film. "Black spots" and/or "black streaks" appear in 15 to 40 s for normal individuals. For people who suffer from dry eye, tear-film breakup time (BUT) is typically less than a few seconds. To date, however, there is no satisfactory quantitative explanation for the origin of tear rupture. Recently, it was proposed that tear-film breakup is related to locally high evaporative thinning. A spatial variation in the thickness of the tear-film lipid layer (TFLL) may lead to locally elevated evaporation and subsequent tear-film breakup. We examine the local-evaporation-driven tear-film-rupture hypothesis in a one-dimensional (1-D) model for the evolution of a thin aqueous tear film overriding the cornea subject to locally elevated evaporation at its anterior surface and osmotic water influx at its posterior surface. Evaporation rate depends on mass transfer both through the coating lipid layer and through ambient air. We establish that evaporation-driven tear-film breakup can occur under normal conditions but only for higher aqueous evaporation rates. Predicted roles of environmental conditions, such as wind speed and relative humidity, on tear-film stability agree with clinical observations. More importantly, locally elevated evaporation leads to hyperosmolar spots in the tear film and, hence, vulnerability to epithelial irritation. In addition to evaporation rate, tear-film instability depends on the strength of healing flow from the neighboring region outside the breakup region, which is determined by the surface tension at the tear-film surface and by the repulsive thin-film disjoining pressure. This study provides a physically consistent and quantitative explanation for the formation of black streaks and spots in the human tear film during an interblink. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nikiforova, Vasilisa; Damour, Thibault
2018-06-01
We continue the exploration of the consistency of a modified-gravity theory that generalizes general relativity by including a dynamical torsion in addition to the dynamical metric. The six-parameter theory we consider was found to be consistent around arbitrary torsionless Einstein backgrounds, in spite of its containing a (notoriously delicate) massive spin-2 excitation. At zero bare cosmological constant, this theory was found to admit a self-accelerating solution whose exponential expansion is sustained by a nonzero torsion background. The scalar-type perturbations of the latter torsionfull self-accelerating solution were recently studied and were found to preserve the number of propagating scalar degrees of freedom, but to exhibit, for some values of the torsion background, some exponential instabilities (of a rather mild type). Here, we study the tensor-type and vector-type perturbations of the torsionfull self-accelerating solution, and of its deformation by a nonzero bare cosmological constant. We find strong, "gradient" instabilities in the vector sector. No tuning of the parameters of the theory can kill these instabilities without creating instabilities in the other sectors. Further work is needed to see whether generic torsionfull backgrounds are prone to containing gradient instabilities, or if the instabilities we found are mainly due to the (generalized) self-accelerating nature of the special de Sitter backgrounds we considered.
Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices
NASA Astrophysics Data System (ADS)
Martín, Juan A.; Paredes, Pedro
2017-12-01
A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.
Observations of shear flows in high-energy-density plasmas
NASA Astrophysics Data System (ADS)
Harding, Eric C.
The research discussed in this thesis represents work toward the demonstration of experimental designs for creating a Kelvin-Helmholtz (KH) unstable shear layer in a high-energy-density (HED) plasma. Such plasmas are formed by irradiating materials with several kilo-Joules of laser light over a few nanoseconds, and are defined as having an internal pressure greater than one-million atmospheres. Similar plasmas exist in laboratory fusion experiments and in the astrophysical environment. The KH instability is a fundamental fluid instability that arises when strong velocity gradients exist at the interface between two fluids. The KH instability is important because it drives the mixing of fluids and initiates the transition to turbulence in the flow. Until now, the evolution of the KH instability has remained relatively unexplored in the HED regime This thesis presents the observations and analysis of two novel experiments carried out using two separate laser facilities. The first experiment used 1.4 kJ from the Nike laser to generate a supersonic flow of Al plasma over a low-density, rippled foam surface. The Al flow interacted with the foam and created distinct features that resulted from compressible effects. In this experiment there is little evidence of the KH instability. Nevertheless, this experimental design has perhaps pioneered a new method for generating a supersonic shear flow that has the potential to produce the KH instability if more laser energy is applied. The second experiment was performed on the Omega laser. In this case 4.3 kJ of laser energy drove a blast wave along a rippled foam/plastic interface. In response to the vorticity deposited and the shear flow established by the blast wave, the interface rolls up into large vorticies characteristic of the KH instability. The Omega experiment was the first HED experiment to capture the evolution of the KH instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmit, P. F.; Velikovich, A. L.; McBride, R. D.
Magnetically driven implosions of solid metal shells are an effective vehicle to compress materials to extreme pressures and densities. Rayleigh-Taylor instabilities (RTI) are ubiquitous, yet typically undesired features in all such experiments where solid materials are rapidly accelerated to high velocities. In cylindrical shells (“liners”), the magnetic field driving the implosion can exacerbate the RTI. Here, we suggest an approach to implode solid metal liners enabling a remarkable reduction in the growth of magnetized RTI (MRTI) by employing a magnetic drive with a tilted, dynamic polarization, forming a dynamic screw pinch. Our calculations, based on a self-consistent analytic framework, demonstratemore » that the cumulative growth of the most deleterious MRTI modes may be reduced by as much as 1 to 2 orders of magnitude. One key application of this technique is to generate increasingly stable, higher-performance implosions of solid metal liners to achieve fusion [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. Finally, we weigh the potentially dramatic benefits of the solid liner dynamic screw pinch against the experimental tradeoffs required to achieve the desired drive field history and identify promising designs for future experimental and computational studies.« less
Impact of convection and resistivity on angular momentum transport in dwarf novae.
NASA Astrophysics Data System (ADS)
Scepi, N.; Lesur, G.; Dubus, G.; Flock, M.
2017-12-01
The eruptive cycles of dwarf novae are thought to be due to a thermal-viscous instability in the accretion disk surrounding the white dwarf. This model has long been known to imply enhanced angular momentum transport in the accretion disk during outburst. This is measured by the stress to pressure ratio α, with α≈ 0.1 required in outburst compared to α≈ 0.01 in quiescence. Such an enhancement in α has recently been observed in simulations of turbulent transport driven by the magneto-rotational instability (MRI) when convection is present, without requiring a net magnetic flux. We independently recover this result by carrying out PLUTO MHD simulations of vertically stratified, radiative, shearing boxes with the thermodynamics and opacities appropriate to dwarf novae. The results are robust against the choice of vertical boundary conditions. In the quiescent state, the disk is only very weakly ionized so, in the second part of our work, we studied the impact of resistive MHD on transport.We find that the MRI-driven transport is quenched (α≈ 0) below the critical density at which the magnetic Reynolds number R_{m}≤ 10^4. This is problematic because the X-ray emission observed in quiescent systems requires ongoing accretion onto the white dwarf.
Schmit, P. F.; Velikovich, A. L.; McBride, R. D.; ...
2016-11-11
Magnetically driven implosions of solid metal shells are an effective vehicle to compress materials to extreme pressures and densities. Rayleigh-Taylor instabilities (RTI) are ubiquitous, yet typically undesired features in all such experiments where solid materials are rapidly accelerated to high velocities. In cylindrical shells (“liners”), the magnetic field driving the implosion can exacerbate the RTI. Here, we suggest an approach to implode solid metal liners enabling a remarkable reduction in the growth of magnetized RTI (MRTI) by employing a magnetic drive with a tilted, dynamic polarization, forming a dynamic screw pinch. Our calculations, based on a self-consistent analytic framework, demonstratemore » that the cumulative growth of the most deleterious MRTI modes may be reduced by as much as 1 to 2 orders of magnitude. One key application of this technique is to generate increasingly stable, higher-performance implosions of solid metal liners to achieve fusion [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. Finally, we weigh the potentially dramatic benefits of the solid liner dynamic screw pinch against the experimental tradeoffs required to achieve the desired drive field history and identify promising designs for future experimental and computational studies.« less
Role of electromagnetic wave in mode selection of magnetically driven instabilities
NASA Astrophysics Data System (ADS)
Dan, J. K.; Ren, X. D.; Duan, S. C.; Ouyang, K.; Chen, G. H.; Huang, X. B.
2014-12-01
The fundamental wavelength of the instability along two 25-μm-diameter aluminum wires using a 100 ns rise time, 220 kA pulsed power facility is measured for two different load configurations. In one case the wires are perpendicular to end surface of electrodes, and in another case the wires are oblique to electrode's end surface. The primary diagnostic used to measure time revolution of instability wavelength and amplitude is laser shadowgraphy. The role of end surface of electrodes appears to be responsible for the differences in dominant wavelength of instability between two types of load configurations. The experimental results that the fundamental wavelength in oblique case is about one half of that in perpendicular case indicates the ionic electromagnetic waves may play a key role in mode selection of magnetically driven instabilities. Conclusions drew from this paper may help us to understand the original reason why instabilities along wires manifest itself as a quasiperiodic pattern.