NASA Technical Reports Server (NTRS)
Cohen, Clarence B; Reshotko, Eli
1956-01-01
Stewartson's transformation is applied to the laminar compressible boundary-layer equations and the requirement of similarity is introduced, resulting in a set of ordinary nonlinear differential equations previously quoted by Stewartson, but unsolved. The requirements of the system are Prandtl number of 1.0, linear viscosity-temperature relation across the boundary layer, an isothermal surface, and the particular distributions of free-stream velocity consistent with similar solutions. This system admits axial pressure gradients of arbitrary magnitude, heat flux normal to the surface, and arbitrary Mach numbers. The system of differential equations is transformed to integral system, with the velocity ratio as the independent variable. For this system, solutions are found by digital computation for pressure gradients varying from that causing separation to the infinitely favorable gradient and for wall temperatures from absolute zero to twice the free-stream stagnation temperature. Some solutions for separated flows are also presented.
The Compressible Laminar Boundary Layer with Heat Transfer and Arbitrary Pressure Gradient
NASA Technical Reports Server (NTRS)
Cohen, Clarence B; Reshotko, Eli
1956-01-01
An approximate method for the calculation of the compressible laminar boundary layer with heat transfer and arbitrary pressure gradient, based on Thwaites' correlation concept, is presented. With the definition of dimensionless shear and heat-transfer parameters and an assumed correlation of these parameters in terms of a momentum parameter, a complete system of relations for calculating skin friction and heat transfer results. Knowledge of velocity or temperature profiles is not necessary in using this calculation method. When the method is applied to a convergent-divergent, axially symmetric rocket nozzle, it shows that high rates of heat transfer are obtained at the initial stagnation point and at the throat of the nozzle. Also indicated are negative displacement thicknesses in the convergent portion of the nozzle; these occur because of the high density within the lower portions of the cooled boundary layer. (author)
Cascaded photonic crystal fibers for three-stage soliton compression.
Li, Qian; Cheng, Zihao
2016-11-01
Cascaded higher-order soliton compression in photonic crystal fibers (PCFs) is demonstrated, where both the hyperbolic secant and Gaussian input pulses are considered. Detailed fiber designs for three-stage higher-order soliton compression where soliton order is three or non-integer are presented. A highest compression factor of 221.32 has been achieved with only 49.48% pedestal energy.
NASA Technical Reports Server (NTRS)
Rose, W. C.
1973-01-01
The results of an experimental investigation of the mean- and fluctuating-flow properties of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient are presented. The turbulent boundary layer developed on the wall of an axially symmetric nozzle and test section whose nominal free-stream Mach number and boundary-layer thickness Reynolds number were 4 and 100,000, respectively. The adverse pressure gradient was induced by an externally generated conical shock wave. Mean and time-averaged fluctuating-flow data, including the complete experimental Reynolds stress tensor and experimental turbulent mass- and heat-transfer rates are presented for the boundary layer and external flow, upstream, within and downstream of the pressure gradient. The mean-flow data include distributions of total temperature throughout the region of interest. The turbulent mixing properties of the flow were determined experimentally with a hot-wire anemometer. The calibration of the wires and the interpretation of the data are discussed. From the results of the investigation, it is concluded that the shock-wave - boundary-layer interaction significantly alters the turbulent mixing characteristics of the boundary layer.
Generation and compression of dissipative soliton using fiber arrays
NASA Astrophysics Data System (ADS)
Shakeri, Somayeh; Niknafs, Akram; Rooholamininejad, Hossein; Bahrampour, Alireza
2017-01-01
Compression of dissipative soliton (DS) and dissipative soliton resonance (DSR) have attracted considerable attention for generation of short pulse lasers. Generation of DS/DSR is investigated numerically in circular fiber array with optical central fiber. Parameter management can generate the DS and DSR in circular fiber array with central optical fiber and in normal or anomalous dispersion. The nonlinear circular fiber arrays can be used as an optical pulse compressor. In this paper, compression of DS and DSR versus the nonlinearity and dispersion parameters in circular fiber array with central fiber, are taken into investigation.
NASA Technical Reports Server (NTRS)
Boccio, J.; Economos, C.
1972-01-01
An analysis of the incompressible turbulent boundary layer, developing under the combined effects of mass transfer and pressure gradient, is presented in this paper. A strip-integral method is employed whereby two of the three governing equations are obtained by integrating the combined momentum and continuity equation to 50 percent and 100 percent, respectively, of the boundary-layer height. The latter equation is the usual momentum-integral equation; the former equation requires specification of shear. Accordingly, Clauser's equilibrium eddy-viscosity law is assumed valid at this point. The third and final equation is obtained by specifying that Stevenson's velocity profiles apply throughout the domain of interest, from which a skin-friction law can be derived. Comparisons of the numerical results with the experiments of McQuaid, which include combined effects of variable pressure gradient and mass transfer, show good agreement.
NASA Technical Reports Server (NTRS)
Seginer, A.
1972-01-01
The failure of most viscous-inviscid interaction methods at strong interactions is attributed to the presence of a normal pressure gradient. A new theory is proposed for supersonic laminar boundary layers that can generate normal pressure gradients. The Navier-Stokes equations are reexamined by an order of magnitude analysis and all first and second order terms are retained. The approximation is found to be dependent not only on the boundary layer thickness but also on the ratio of the dimensionless viscosity and density. The equations are transformed into two quasi-similar, nonlinear, third order, ordinary integro-differential equations for the velocity and pressure as functions of a single transverse variable. The properties of the equations at the boundaries are discussed.
Compressive and rarefactive DIA solitons beyond the KdV limit
Mamun, A. A.; Deeba, F.
2012-04-15
The modified Gardner equation (MGE), showing the existence of compressive and rarefactive dust-ion-acoustic (DIA) solitons in a nonplanar dusty plasma (containing inertial ions, Boltzmann electrons, and negatively charged stationary dust) beyond the KdV Korteweg-de Vries (KdV) limit, is derived and numerically solved. The basic features of the compressive and rarefactive cylindrical and spherical DIA solitons, which are found to exist beyond the KdV limit, i.e., exist for {mu} {approx} 2/3 (where {mu} = Z{sub n}n{sub d0}/n{sub i0}, z{sub d} is the number of electrons residing onto the dust grain surface, n{sub d0}(n{sub i0}) is the dust (ion) number density at equilibrium, and {mu} {approx} 2/3 means that {mu} is not equal to 2/3, but it is around 2/3) are identified. These solitons (which can be referred to as DIA Gardner solitons (DIA-GSs)) are completely different from the KdV solitons because {mu} = 2/3 corresponds to the vanishing of the nonlinear coefficient of the KdV equation, and {mu} {approx} 2/3 corresponds to extremely large amplitude KdV solitons for which the validity of the reductive perturbation method breaks down. It is also shown that the properties of the nonplanar (cylindrical and spherical) DIA-GSs are significantly different from those of the one dimensional planar ones.
NASA Astrophysics Data System (ADS)
Taylor, J. R.
2005-08-01
1. Optical solitons in fibres: theoretical review A. Hasegawa; 2. Solitons in optical fibres: an experimental account L. F. Mollenauer; 3. All-optical long-distance soliton-based transmission systems K. Smith and L. F. Mollenauer; 4. Nonlinear propagation effects in optical fibres: numerical studies K. J. Blow and N. J. Doran; 5. Soliton-soliton interactions C. Desem and P. L. Chu; 6. Soliton amplification in erbium-doped fibre amplifiers and its application to soliton communication M. Nakazawa; 7. Nonlinear transformation of laser radiation and generation of Raman solitons in optical fibres E. M. Dianov, A. B. Grudinin, A. M. Prokhorov and V. N. Serkin; 8. Generation and compression of femtosecond solitons in optical fibers P. V. Mamyshev; 9. Optical fibre solitons in the presence of higher order dispersion and birefringence C. R. Menyuk and Ping-Kong A. Wai; 10. Dark optical solitons A. M. Weiner; 11. Soliton Raman effects J. R. Taylor; Bibliography; Index.
NASA Astrophysics Data System (ADS)
Taylor, J. R.
1992-04-01
1. Optical solitons in fibres: theoretical review A. Hasegawa; 2. Solitons in optical fibres: an experimental account L. F. Mollenauer; 3. All-optical long-distance soliton-based transmission systems K. Smith and L. F. Mollenauer; 4. Nonlinear propagation effects in optical fibres: numerical studies K. J. Blow and N. J. Doran; 5. Soliton-soliton interactions C. Desem and P. L. Chu; 6. Soliton amplification in erbium-doped fibre amplifiers and its application to soliton communication M. Nakazawa; 7. Nonlinear transformation of laser radiation and generation of Raman solitons in optical fibres E. M. Dianov, A. B. Grudinin, A. M. Prokhorov and V. N. Serkin; 8. Generation and compression of femtosecond solitons in optical fibers P. V. Mamyshev; 9. Optical fibre solitons in the presence of higher order dispersion and birefringence C. R. Menyuk and Ping-Kong A. Wai; 10. Dark optical solitons A. M. Weiner; 11. Soliton Raman effects J. R. Taylor; Bibliography; Index.
Note on rarefactive and compressive ion-acoustic solitons in a plasma containing two ion species
NASA Astrophysics Data System (ADS)
McKenzie, J. F.; Verheest, F.; Doyle, T. B.; Hellberg, M. A.
2005-10-01
In a recent article the conditions for the existence of solitons in a plasma containing two ion species were analyzed within the framework of a fully nonlinear treatment. In particular, an upper limit for the critical collective Mach number (above which rarefactive solitons cease to exist) was obtained from the requirement that a charge neutral point in the rarefactive regime must be formed before the electron density, ne, experiences its "lid," i.e., where ne→0. Although this is a necessary condition it is not sufficient. In the present work a sufficient condition is derived by requiring that a rarefactive equilibrium point be reached before the limit is imposed by either the electron lid or the infinite compression of the second ion species. This requirement, along with the usual necessary condition for soliton formation, provides the parameter space window for the existence of rarefactive solitons. The analysis has also been generalized to include ions of finite mass of various charge for both the rarefactive and compressive cases.
Zeng, Xianglong; Guo, Hairun; Zhou, Binbin; Bache, Morten
2012-11-19
We propose an efficient approach to improve few-cycle soliton compression with cascaded quadratic nonlinearities by using an engineered multi-section structure of the nonlinear crystal. By exploiting engineering of the cascaded quadratic nonlinearities, in each section soliton compression with a low effective order is realized, and high-quality few-cycle pulses with large compression factors are feasible. Each subsequent section is designed so that the compressed pulse exiting the previous section experiences an overall effective self-defocusing cubic nonlinearity corresponding to a modest soliton order, which is kept larger than unity to ensure further compression. This is done by increasing the cascaded quadratic nonlinearity in the new section with an engineered reduced residual phase mismatch. The low soliton orders in each section ensure excellent pulse quality and high efficiency. Numerical results show that compressed pulses with less than three-cycle duration can be achieved even when the compression factor is very large, and in contrast to standard soliton compression, these compressed pulses have minimal pedestal and high quality factor.
Jaramillo-Villegas, Jose A; Xue, Xiaoxiao; Wang, Pei-Hsun; Leaird, Daniel E; Weiner, Andrew M
2015-04-20
A path within the parameter space of detuning and pump power is demonstrated in order to obtain a single cavity soliton (CS) with certainty in SiN microring resonators in the anomalous dispersion regime. Once the single CS state is reached, it is possible to continue a path to compress it, broadening the corresponding single free spectral range (FSR) Kerr frequency comb. The first step to achieve this goal is to identify the stable regions in the parameter space via numerical simulations of the Lugiato-Lefever equation (LLE). Later, using this identification, we define a path from the stable modulation instability (SMI) region to the stable cavity solitons (SCS) region avoiding the chaotic and unstable regions.
Bache, Morten; Wise, Frank W.
2010-05-15
The output pulses of a commercial high-power femtosecond fiber laser or amplifier are typically around 300-500 fs with wavelengths of approximately 1030 nm and tens of microjoules of pulse energy. Here, we present a numerical study of cascaded quadratic soliton compression of such pulses in LiNbO{sub 3} using second-harmonic generation in a type-I phase-matching configuration. We find that because of competing cubic material nonlinearities, compression can only occur in the nonstationary regime, where group-velocity-mismatch-induced Raman-like nonlocal effects prevent compression to less than 100 fs. However, the strong group-velocity dispersion implies that the pulses can achieve moderate compression to durations of less than 130 fs in available crystal lengths. Most of the pulse energy is conserved because the compression is moderate. The effects of diffraction and spatial walk-off are addressed, and in particular the latter could become an issue when compressing such long crystals (around 10 cm long). We finally show that the second harmonic contains a short pulse locked to the pump and a long multi-picosecond red-shifted detrimental component. The latter is caused by the nonlocal effects in the nonstationary regime, but because it is strongly red-shifted to a position that can be predicted, we show that it can be removed using a bandpass filter, leaving a visible component of less than 100 fs at {lambda}=515 nm with excellent pulse quality.
Serkin, Vladimir N; Belyaeva, T L; Corro, G H; Granados, M Agueero
2003-05-31
It is shown that stimulated Raman self-scattering (SRSS) can be efficiently used for the compression of femtosecond optical solitons in optical fibres with the spectrally inhomogeneous frequency dependence of the group-velocity dispersion. The SRS dynamics is studied in detail near the point of the second-order zero dispersion. The saturation of compression of femtosecond solitons in spectrally inhomogeneous fibres in the zero-dispersion region is predicted. (solitons)
Characterization and compression of dissipative-soliton-resonance pulses in fiber lasers
Li, Daojing; Li, Lei; Zhou, Junyu; Zhao, Luming; Tang, Dingyuan; Shen, Deyuan
2016-01-01
We report numerical and experimental studies of dissipative-soliton-resonance (DSR) in a fiber laser with a nonlinear optical loop mirror. The DSR pulse presents temporally a flat-top profile and a clamped peak power. Its spectrum has a rectangle profile with characteristic steep edges. It shows a unique behavior as pulse energy increases: The rectangle part of the spectrum is unchanged while the newly emerging spectrum sits on the center part and forms a peak. Experimental observations match well with the numerical results. Moreover, the detailed evolution of the DSR pulse compression is both numerically and experimentally demonstrated for the first time. An experimentally obtained DSR pulse of 63 ps duration is compressed down to 760 fs, with low-intensity pedestals using a grating pair. Before being compressed to its narrowest width, the pulse firstly evolves into a cat-ear profile, and the corresponding autocorrelation trace shows a crown shape, which distinguishes itself from properties of other solitons formed in fiber lasers. PMID:27025189
On the impact of adverse pressure gradient on the supersonic turbulent boundary layer
NASA Astrophysics Data System (ADS)
Wang, Qian-Cheng; Wang, Zhen-Guo; Zhao, Yu-Xin
2016-11-01
By employing the particle image velocimetry, the mean and turbulent characteristics of a Mach 2.95 turbulent boundary layer are experimentally investigated without the impact of curvature. The physical mechanism with which the streamwise adverse pressure gradient affects the supersonic boundary layer is revealed. The data are compared to that of the concave boundary layer with similar streamwise distributions of wall static pressure to clarify the separate impacts of the adverse pressure gradient and the concave curvature. The logarithmic law is observed to be well preserved for both of the cases. The dip below the logarithmic law is not observed in present investigation. Theoretical analysis indicates that it could be the result of compromise between the opposite impacts of the compression wave and the increased turbulent intensity. Compared to the zero pressure gradient boundary layer, the principal strain rate and the turbulent intensities are increased by the adverse pressure gradient. The shear layer formed due the hairpin packets could be sharpened by the compression wave, which leads to higher principal strain rate and the associated turbulent level. Due to the additional impact of the centrifugal instability brought by the concave wall, even higher turbulent intensities than that of the adverse pressure gradient case are introduced. The existence of velocity modes within the zero pressure gradient boundary layer suggests that the large scale motions are statistically well organized. The generation of new velocity modes due to the adverse pressure gradient indicates that the turbulent structure is changed by the adverse pressure gradient, through which more turbulence production that cannot be effectively predicted by the Reynolds-stress transport equations could be brought.
Pressure-gradient fiber laser hydrophone
NASA Astrophysics Data System (ADS)
Zhang, Wentao; Zhang, Faxiang; Li, Fang; Liu, Yuliang
2009-10-01
A pressure-gradient fiber laser hydrophone (FLH) is demonstrated. Two brass diaphragms are installed at the end of a metal cylinder as the sensing element. There are two orifices at the middle of the cylinder. This structure can work as a pressure-gradient microphone in the acoustic field. Thus the DFB fiber laser fixed at the center of the two diaphragms is elongated or shortened due to the acoustic wave. Theoretical analysis is given based on the electro-acoustic theory. Experiments are carried out to test the performance of the hydrophone. A sensitivity of 100 nm/MPa has been achieved. Furthermore, the hydrostatic pressure is self-compensated and a ultra-thin dimension is achieved based on the proposed structure.
Pressure gradient induced generation of microbubbles
NASA Astrophysics Data System (ADS)
Evangelio, Alvaro; Campo-Cortes, Francisco; Gordillo, Jose Manuel
2015-11-01
It is well known that the controlled production of monodisperse bubbles possesses uncountable applications in medicine, pharmacy and industry. Here we provide with a detailed physical description of the bubble formation processes taking place in a type of flow where the liquid pressure gradient can be straightforwardly controlled. In our experiments, a gas flow rate discharges through a cylindrical needle into a pressurized chamber. The pressure gradient created from the exit of the injection needle towards the entrance of a extraction duct promotes the stretching of the gas ligament downstream. In our analysis, which is supported by an exhaustive experimental study in which the liquid viscosity is varied by three orders of magnitude, different regimes can be distinguished depending mainly on the Reynolds number. Through our physical modeling, we provide closed expressions for both the bubbling frequencies and for the bubble diameters as well as the conditions under which a monodisperse generation is obtained in all regimes found. The excellent agreement between our expressions and the experimental data fully validates our physical modeling.
NASA Astrophysics Data System (ADS)
Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.
2016-05-01
The aim of this comment is to show the solution of the KdVB equation used by Shah et al. (Astrophys. Space Sci. 335:529-537, 2011, doi: 10.1007/s10509-011-0766-y) is not correct. So, the numerical results that are predicted in this manuscript should not be helpful for further investigations in a plasma laboratory. For this reason, we have employed the Bernoulli's equation method to obtain the correct form of analytical solution to this equation, which is appropriate for the study of electrostatic compressive and rarefactive shocks and solitons in relativistic plasmas occurring in polar regions of pulsar.
Mak, K F; Travers, J C; Joly, N Y; Abdolvand, A; Russell, P St J
2013-09-15
We demonstrate temporal pulse compression in gas-filled kagomé hollow-core photonic crystal fiber (PCF) using two different approaches: fiber-mirror compression based on self-phase modulation under normal dispersion, and soliton effect self-compression under anomalous dispersion with a decreasing pressure gradient. In the first, efficient compression to near-transform-limited pulses from 103 to 10.6 fs was achieved at output energies of 10.3 μJ. In the second, compression from 24 to 6.8 fs was achieved at output energies of 6.6 μJ, also with near-transform-limited pulse shapes. The results illustrate the potential of kagomé-PCF for postprocessing the output of fiber lasers. We also show that, using a negative pressure gradient, ultrashort pulses can be delivered directly into vacuum.
Compressive and rarefactive dust-ion-acoustic Gardner solitons in a multi-component dusty plasma
NASA Astrophysics Data System (ADS)
Ema, S. A.; Ferdousi, M.; Mamun, A. A.
2015-04-01
The linear and nonlinear propagations of dust-ion-acoustic solitary waves (DIASWs) in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated theoretically. The linear properties are analyzed by using the normal mode analysis and the reductive perturbation method is used to derive the nonlinear equations, namely, the Korteweg-de Vries (K-dV), the modified K-dV (mK-dV), and the Gardner equations. The basic features (viz., polarity, amplitude, width, etc.) of Gardner solitons (GS) are found to exist beyond the K-dV limit and these dust-ion-acoustic GS are qualitatively different from the K-dV and mK-dV solitons. It is observed that the basic features of DIASWs are affected by various plasma parameters (viz., electron nonextensivity, negative-to-positive ion number density ratio, electron-to-positive ion number density ratio, electron-to-positive ion temperature ratio, etc.) of the considered plasma system. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear structures and the characteristics of DIASWs propagating in both space and laboratory plasmas.
Compressive and rarefactive dust-ion-acoustic Gardner solitons in a multi-component dusty plasma
Ema, S. A.; Ferdousi, M.; Mamun, A. A.
2015-04-15
The linear and nonlinear propagations of dust-ion-acoustic solitary waves (DIASWs) in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated theoretically. The linear properties are analyzed by using the normal mode analysis and the reductive perturbation method is used to derive the nonlinear equations, namely, the Korteweg-de Vries (K-dV), the modified K-dV (mK-dV), and the Gardner equations. The basic features (viz., polarity, amplitude, width, etc.) of Gardner solitons (GS) are found to exist beyond the K-dV limit and these dust-ion-acoustic GS are qualitatively different from the K-dV and mK-dV solitons. It is observed that the basic features of DIASWs are affected by various plasma parameters (viz., electron nonextensivity, negative-to-positive ion number density ratio, electron-to-positive ion number density ratio, electron-to-positive ion temperature ratio, etc.) of the considered plasma system. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear structures and the characteristics of DIASWs propagating in both space and laboratory plasmas.
Optimal disturbances in boundary layers subject to streamwise pressure gradient
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Tumin, Anatoli
2003-01-01
An analysis of the optimal non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner-Scan profiles indicate that a favorable pressure gradient decreases the non-modal growth, while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point.
Pressure Gradient Estimation Based on Ultrasonic Blood Flow Measurement
NASA Astrophysics Data System (ADS)
Nitta, Naotaka; Homma, Kazuhiro; Shiina, Tsuyoshi
2006-05-01
Mechanical load to the blood vessel wall, such as shear stress and pressure, which occurs in blood flow dynamics, contribute greatly to plaque rupture in arteriosclerosis and to biochemical activation of endothelial cells. Therefore, noninvasive estimations of these mechanical loads are able to provide useful information for the prevention of vascular diseases. Although the pressure is the dominant component of mechanical load, for practical purposes, the pressure gradient is also often important. So far, we have investigated the estimation of the kinematic viscosity coefficient using a combination of the Navier-Stokes equations and ultrasonic velocity measurement. In this paper, a method for pressure gradient estimation using the estimated kinematic viscosity coefficient is proposed. The validity of the proposed method was investigated on the basis of the analysis with the data obtained by computer simulation and a flow phantom experiment. These results revealed that the proposed method can provide a valid estimation of the pressure gradient.
Enhanced magnetic reconnection in the presence of pressure gradients
Pueschel, M. J.; Terry, P. W.; Told, D.; Jenko, F.
2015-06-15
Magnetic reconnection in the presence of background pressure gradients is studied, with special attention to parallel (compressional) magnetic fluctuations. A process is reported that reconnects fields through coupling of drift-wave-type instabilities with current sheets. Its time scale is set not by the reconnecting field but by inhomogeneities of the background density or temperature. The observed features can be attributed to a pressure-gradient-driven linear instability which interacts with the reconnecting system but is fundamentally different from microtearing. In particular, this mode relies on parallel magnetic fluctuations and the associated drift. For turbulent reconnection, similar or even stronger enhancements are reported. In the solar corona, this yields a critical pressure gradient scale length of about 200 km below which this new process becomes dominant over the tearing instability.
Accurate pressure gradient calculations in hydrostatic atmospheric models
NASA Technical Reports Server (NTRS)
Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet
1987-01-01
A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.
Evolution of a Planar Wake in Adverse Pressure Gradient
NASA Technical Reports Server (NTRS)
Driver, David M.; Mateer, George G.
2016-01-01
In the interest of improving the predictability of high-lift systems at maximum lift conditions, a series of fundamental experiments were conducted to study the effects of adverse pressure gradient on a wake flow. Mean and fluctuating velocities were measured with a two-component laser-Doppler velocimeter. Data were obtained for several cases of adverse pressure gradient, producing flows ranging from no reversed flow to massively reversed flow. While the turbulent Reynolds stresses increase with increasing size of the reversed flow region, the gradient of Reynolds stress does not. Computations using various turbulence models were unable to reproduce the reversed flow.
Acoustic waves in gases with strong pressure gradients
NASA Technical Reports Server (NTRS)
Zorumski, William E.
1989-01-01
The effect of strong pressure gradients on the acoustic modes (standing waves) of a rectangular cavity is investigated analytically. When the cavity response is represented by a sum of modes, each mode is found to have two resonant frequencies. The lower frequency is near the Viaesaela-Brundt frequency, which characterizes the buoyant effect, and the higher frequency is above the ordinary acoustic resonance frequency. This finding shows that the propagation velocity of the acoustic waves is increased due to the pressure gradient effect.
Pressure Gradient Effects on Hypersonic Cavity Flow Heating
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramadas K.
2006-01-01
The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.
Pressure Gradient Effects on Hypersonic Cavity Flow Heating
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramdas K.
2007-01-01
The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.
Novel pressure-gradient driven component for blood extraction
NASA Astrophysics Data System (ADS)
Fujioka, K.; Khumpuang, S.; Horede, M.; Sugiyama, S.
2006-01-01
Portable blood analysis devices are usually appreciable for applications in blood diagnostic system. We have designed and fabricated a low-cost and simple deal blood extraction device for a biomedical analysis. The device mainly composes of blood extraction tool and a functional bio-chemical analyzing element. In this work, we report the fabrication and pressure-gradient testing results of the blood extraction tool which consists of painless microneedle array and pressure-gradient tank. Microneedle array was fabricated by X-ray lithography using PCT (Plane-pattern to Cross-section Transfer) technique. The idea of our extraction device was simple but capability which is just to hold a sufficient pressure gradient between the tank and blood vessel. The device can draw the volume of blood up to 237 μl. The device was made of low-cost and disposable materials since it is expected to be used for single blood analysis system. In this work, we introduce design, fabrication and mechanism of the pressure gradient driven component including the extraction test results. The fabrication method of microneedle used in our system is also described.
Optimal Disturbances in Boundary Layers Subject to Streamwise Pressure Gradient
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Tumin, Anatoli
2003-01-01
An analysis of the non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner- Skan profiles indicate that a favorable pressure gradient decreases the non-modal growth while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary-layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point. The amplification is found to be small at the LPT s very low Reynolds numbers, but there is a possibility to enhance the transient energy growth by means of wall cooling.
Pressure Gradients in the Inner Surf and Outer Swash Zone
NASA Astrophysics Data System (ADS)
Kidwell, A.; Puleo, J. A.; Torres-Freyermuth, A.
2010-12-01
The swash zone is a highly dynamic region of the beach profile. Although there has been significant progression in understanding the complex hydrodynamics of the swash zone, an improvement in the understanding of the sediment transport mechanisms deserves further investigation. Prior studies have demonstrated that the existing formulations derived from the energetics-type formulation do not accurately and consistently predict sediment transport. Thus, measurements and numerical modeling can contribute in the improvement of the current predictive capability of sediment transport. A potential enhancement to nearshore sediment transport is the horizontal pressure gradient. However, measuring the dynamic pressure gradient in nearshore flows is a difficult task. For instance, standard pressure sensors are generally ill-suited for this type of measurement in shallow swash flows due to the obstructing size of the sensor and the potential for flow interference. With improved measurement apparati and techniques, it is possible to obtain measurements of the horizontal pressure gradient. Our current research includes laboratory and numerical model investigation of the horizontal pressure gradient in the inner surf and outer swash zone. An inexpensive differential pressure gauge is employed allowing for a pressure port on the order of 2 mm diameter. Four pressure sensor pairs are installed 1 cm above the bed with a cross-shore spacing of 8 cm. The sensors are deployed just outside of and at various locations within the outer swash zone to determine spatio-temporal pressure variations. The measurement of total pressure coupled with the corresponding free surface measurements from co-located capacitance wave gauges yields time series of the hydrostatic and dynamic pressure and pressure gradients. A VOF-type RANS model is employed in this investigation. Firstly, the numerical model is validated with swash measurements. Then, model simulations will be performed in order to
Asymptotically solvable model for a solitonic vortex in a compressible superfluid
NASA Astrophysics Data System (ADS)
Toikka, L. A.; Brand, J.
2017-02-01
Vortex motion is a complex problem due to the interplay between the short-range physics at the vortex core level and the long-range hydrodynamical effects. Here we show that the hydrodynamic equations of vortex motion in a compressible superfluid can be solved asymptotically in a model ‘slab’ geometry. Starting from an exact solution for an incompressible fluid, the hydrodynamic equations are solved with a series expansion in a small tunable parameter provided by the ratio of the healing length, characterising the vortex cores, to the slab width. The key dynamical properties of the vortex, the inertial and physical masses, are well defined and renormalizable. They are calculated at leading order beyond the logarithmic accuracy that has limited previous approaches. Subtracting the asymptotic solutions of the universal hydrodynamic problem from experimental observations of vortex motion exposes the physics of the vortex core and provides a window into interesting many-body phenomena that are currently poorly understood including the role of quantum pressure. Our results provide a solid framework for further detailed study of the vortex mass and vortex forces in strongly correlated and exotic superfluids.
Investigation on a pressure-gradient fiber laser hydrophone
NASA Astrophysics Data System (ADS)
Zhang, Wentao; Zhang, Faxiang; Li, Fang; Liu, Yuliang
2010-09-01
In this paper, a pressure-gradient fiber laser hydrophone is demonstrated. Two brass diaphragms are installed at the end of a metal cylinder as sensing elements. A distributed feedback fiber laser, fixed at the center of the two diaphragms, is elongated or shortened due to the acoustic wave. There are two orifices at the middle of the cylinder. So this structure can work as a pressure-gradient microphone in the acoustic field. Furthermore, the hydrostatic pressure is self-compensated and an ultra-thin dimension is achieved. Theoretical analysis is given based on the electro-acoustic theory. Field trials are carried out to test the performance of the hydrophone. A sensitivity of 100 nm MPa-1 has been achieved. Due to the small dimensions, no directivity is found in the test.
Computation of Turbulent Wake Flows in Variable Pressure Gradient
NASA Technical Reports Server (NTRS)
Duquesne, N.; Carlson, J. R.; Rumsey, C. L.; Gatski, T. B.
1999-01-01
Transport aircraft performance is strongly influenced by the effectiveness of high-lift systems. Developing wakes generated by the airfoil elements are subjected to strong pressure gradients and can thicken very rapidly, limiting maximum lift. This paper focuses on the effects of various pressure gradients on developing symmetric wakes and on the ability of a linear eddy viscosity model and a non-linear explicit algebraic stress model to accurately predict their downstream evolution. In order to reduce the uncertainties arising from numerical issues when assessing the performance of turbulence models, three different numerical codes with the same turbulence models are used. Results are compared to available experimental data to assess the accuracy of the computational results.
On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.
Nath, Saurabh; Boreyko, Jonathan B
2016-08-23
Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.
Pore-pressure gradients in the proximity of a submarine buried pipeline
Magda, W.
1995-12-31
This paper is concerned with the two-dimensional finite-element modeling of the wave-induced pore-pressure field in the proximity of a submarine pipeline buried in sandy seabed sediments subject to continuous loading of regular surface waves. Neglecting inertial forces, a linear elastic stress-strain relationship for the soil, and Darcy`s law for the flow of pore-fluid are assumed. The model takes into account the compressibility of both components (i.e., pore-fluid and soil skeleton) of the two-phase medium. The results of numerical computations are discussed with respect to the hydraulic gradient in the upper part of seabed sediments just above the buried submarine pipeline. The pore-pressure gradient is studied as a function of geometry (depth of burial) as well as soil and pore-fluid compressibility parameters where the later of which is defined in terms of soil saturation conditions.
Estimation of pressure gradients at renal artery stenoses
NASA Astrophysics Data System (ADS)
Yim, Peter J.; Cebral, Juan R.; Weaver, Ashley; Lutz, Robert J.; Vasbinder, G. Boudewijn C.
2003-05-01
Atherosclerotic disease of the renal artery can reduce the blood flow leading to renovascular hypertension and ischemic nephopathy. The kidney responds to a decrease in blood flow by activation of the renin-angiotensin system that increases blood pressure and can result in severe hypertension. Percutaneous translumenal angioplasty (PTA) may be indicated for treatment of renovascular hypertension (RVH). However, direct measurement of renal artery caliber and degree of stenosis has only moderate specificity for detection of RVH. A confounding factor in assessment of the proximal renal artery is that diffuse atherosclerotic disease of the distal branches of the renal artery can produce the same effect on blood-flow as atherosclerotic disease of the proximal renal artery. A methodology is proposed for estimation of pressure gradients at renal artery stenoses from magnetic resonance imaging that could improve the evaluation of renal artery disease. In the proposed methodology, pressure gradients are estimated using computational fluid dynamics (CFD) modeling. Realistic CFD models are constructed from images of vessel shape and measurements of blood-flow rates which are available from magnetic resonance angiography (MRA) and phase-contrast magnetic resonance (MR) imaging respectively. CFD measurement of renal artery pressure gradients has been validated in a physical flow-through model.
Statistical estimates for channel flows driven by a pressure gradient
NASA Astrophysics Data System (ADS)
Ramos, F.; Rosa, R.; Temam, R.
2008-07-01
We present rigorous estimates for some physical quantities related to turbulent and non-turbulent channel flows driven by a uniform pressure gradient. Such results are based on the concept of stationary statistical solutions, which is related to the notion of ensemble averages for flows in statistical equilibrium. We provide a lower bound estimate for the mean skin friction coefficient and improve on a previous upper bound estimate for the same quantity; both estimates are derived in terms of the Reynolds number. We also present lower and upper bound estimates for the mean rate of energy dissipation, the mean longitudinal bulk velocity (in the direction of the pressure gradient), and the mean kinetic energy in terms of various physical parameters. In particular, we obtain an upper bound related to the energy dissipation law, namely that the mean rate of energy dissipation is essentially bounded by a non-dimensional universal constant times the cube of the mean longitudinal bulk velocity over a characteristic macro-scale length. Finally, we investigate the scale-by-scale energy injection due to the pressure gradient, proving an upper bound estimate for the decrease of this energy injection as the scale length decreases.
Improved plenum pressure gradient facemaps for PKL reactors
Crowley, D.A.; Hamm, L.L.
1988-05-01
This report documents the development of improved plenum pressure gradient facemaps* for PKL Mark 16--31 and Mark 22 reactor charges. These new maps are based on the 1985 L-area AC flow tests. Use of the L-area data base for estimating C-area plenum pressure gradient maps is inappropriate because the nozzle geometry plays a major role in determining the shape of the plenum pressure profile. These plenum pressure gradient facemaps are used in the emergency cooling system (ECS) and in the flow instability (FI) loss of coolant accident (LOCA) limits calculations. For the ECS LOCA limits calculations, the maps are used as input to the FLOWZONE computer code to determine the average flow within a flowzone during normal operating conditions. For the FI LOCA limits calculations, the maps are used as plenum pressure boundary conditions in the FLOWTRAN computer code to determine the maximum pre-incident assembly flow within a flowzone. These maps will also be used for flowzoning and transient protection limits analyses.
Coastal Trapped Waves, Alongshore Pressure Gradients, and the California Undercurrent
2014-01-01
REPORJ Db.’XE IDD-MM-YYYYj 06-03-2014 2. REPORT TYPE Journal Article 4 . TITLE AND SUBTITLE Coastal Trapped Waves, Alongshore Pressure Gradients...8217 ’ 1 A^rl b) )1^N Iff^ 0.2 0.1 Z 0 V -0.1 -0.2 4 % ^ ^ w ! , : 1 1 CCMP 10m wind (m/s) 128 126 124 122 120...region 30 - 4 ’) N, 135<>-115 W (Tigs. la.b). and hindcast results aiv pre- sented for the year 20(15. The model is forced with atmospheric products
Vandenberg Air Force Base Pressure Gradient Wind Study
NASA Technical Reports Server (NTRS)
Shafer, Jaclyn A.
2013-01-01
Warning category winds can adversely impact day-to-day space lift operations at Vandenberg Air Force Base (VAFB) in California. NASA's Launch Services Program and other programs at VAFB use wind forecasts issued by the 30 Operational Support Squadron Weather Flight (30 OSSWF) to determine if they need to limit activities or protect property such as a launch vehicle. The 30 OSSWF tasked the AMU to develop an automated Excel graphical user interface that includes pressure gradient thresholds between specific observing stations under different synoptic regimes to aid forecasters when issuing wind warnings. This required the AMU to determine if relationships between the variables existed.
Characteristics of turbulence in boundary layer with zero pressure gradient
NASA Technical Reports Server (NTRS)
Klebanoff, P S
1955-01-01
The results of an experimental investigation of a turbulent boundary layer with zero pressure gradient are presented. Measurements with the hot-wire anemometer were made of turbulent energy and turbulent shear stress, probability density and flattening factor of u-fluctuation (fluctuation in x-direction), spectra of turbulent energy and shear stress, and turbulent dissipation. The importance of the region near the wall and the inadequacy of the concept of local isotropy are demonstrated. Attention is given to the energy balance and the intermittent character of the outer region of the boundary layer. Also several interesting features of the spectral distribution of the turbulent motions are discussed.
Structure of the zero-pressure-gradient turbulent boundary layer.
Barenblatt, G I; Chorin, A J; Hald, O H; Prostokishin, V M
1997-07-22
A processing of recent experimental data by Nagib and Hites [Nagib, H. & Hites, M. (1995) AIAA paper 95-0786, Reno, NV) shows that the flow in a zero-pressure-gradient turbulent boundary layer, outside the viscous sublayer, consists of two self-similar regions, each described by a scaling law. The results concerning the Reynolds-number dependence of the coefficients of the wall-region scaling law are consistent with our previous results concerning pipe flow, if the proper definition of the boundary layer Reynolds number (or boundary layer thickness) is used.
Effectiveness of Micro-Blowing Technique in Adverse Pressure Gradients
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Larosiliere, Louis M.; Hwang, Danny P.; Wood, Jerry R.
2001-01-01
The impact of the micro-blowing technique (MBT) on the skin friction and total drag of a strut in a turbulent, strong adverse-pressure-gradient flow is assessed experimentally over a range of subsonic Mach numbers (0.3 less than M less than 0.7) and reduced blowing fractions (0 less than or equal to 2F/C (sub f,o) less than or equal to 1.75). The MBT-treated strut is situated along the centerline of a symmetric 2-D diffuser with a static pressure rise coefficient of 0.6. In agreement with presented theory and earlier experiments in zero-pressure-gradient flows, the effusion of blowing air reduces skin friction significantly (e.g., by 60% at reduced blowing fractions near 1.75). The total drag of the treated strut with blowing is significantly lower than that of the treated strut in the limit of zero-blowing; further, the total drag is reduced below that of the baseline (solid-plate) strut, provided that the reduced blowing fractions are sufficiently high. The micro-blowing air is, however, deficient in streamwise momentum and the blowing leads to increased boundary-layer and wake thicknesses and shape factors. Diffuser performance metrics and wake surveys are used to discuss the impact of various levels of micro-blowing on the aerodynamic blockage and loss.
Implicit Large-Eddy Simulations of Zero-Pressure Gradient, Turbulent Boundary Layer
NASA Technical Reports Server (NTRS)
Sekhar, Susheel; Mansour, Nagi N.
2015-01-01
A set of direct simulations of zero-pressure gradient, turbulent boundary layer flows are conducted using various span widths (62-630 wall units), to document their influence on the generated turbulence. The FDL3DI code that solves compressible Navier-Stokes equations using high-order compact-difference scheme and filter, with the standard recycling/rescaling method of turbulence generation, is used. Results are analyzed at two different Re values (500 and 1,400), and compared with spectral DNS data. They show that a minimum span width is required for the mere initiation of numerical turbulence. Narrower domains ((is) less than 100 w.u.) result in relaminarization. Wider spans ((is) greater than 600 w.u.) are required for the turbulent statistics to match reference DNS. The upper-wall boundary condition for this setup spawns marginal deviations in the mean velocity and Reynolds stress profiles, particularly in the buffer region.
NASA Technical Reports Server (NTRS)
Frendi, Abdelkader
1997-01-01
Using the model developed by the author for zero-pressure gradient turbulent boundary layers, results are obtained for adverse and favorable pressure gradients. It is shown that when a flexible plate is located in an adverse pressure gradient area, it vibrates more than if it were in a favorable pressure gradient one. Therefore the noise generated by the plate in an adverse pressure gradient is much greater than that due to the plate in a favorable pressure gradient. The effects of Reynolds number and boundary layer thickness are also analyzed and found to have the same effect in both adverse and favorable pressure gradient cases. Increasing the Reynolds number is found to increase the loading on the plate and therefore acoustic radiation. An increase in boundary layer thickness is found to decrease the level of the high frequencies and therefore the response and radiation at these frequencies. The results are in good qualitative agreement with experimental measurements.
Radio jet refraction in galactic atmospheres with static pressure gradients
NASA Technical Reports Server (NTRS)
Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.
1981-01-01
A theory of double radio sources which have a 'Z' or 'S' morphology is proposed, based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy. The model describes a collimated jet of supersonic material bending self-consistently under the influence of external static pressure gradients. Gravity and magnetic fields are neglected in the simplest case except insofar as they determine the static pressure distribution. The calculation is a straightforward extension of a method used to calculate a ram-pressure model for twin radio trails ('C' morphology). It may also be described as a continuous-jet version of a buoyancy model proposed in 1973. The model has the added virtue of invoking a galactic atmosphere similar to those already indicated by X-ray measurements of some other radio galaxies and by models for the collimation of other radio jets.
Radio jet refraction in galactic atmospheres with static pressure gradients
NASA Technical Reports Server (NTRS)
Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.
1981-01-01
A theory based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy, is proposed for double radio sources with a Z or S morphology. The model describes a collimated jet of supersonic material that bends self-consistently under the influence of external static pressure gradients, and may alternatively be seen as a continuous-jet version of the buoyancy model proposed by Gull (1973). Emphasis is placed on (1) S-shaped radio sources identified with isolated galaxies, such as 3C 293, whose radio structures should be free of distortions resulting from motion relative to a cluster medium, and (2) small-scale, galaxy-dominated rather than environment-dominated S-shaped sources such as the inner jet structure of Fornax A.
Pressure Gradient Effects On Two-Dimensional Plasma Expansion
Moon, S; Smith, R F; Dunn, J; Keenan, R; Nilsen, J; Hunter, J R; Filevich, J; Rocca, J J; Marconi, M C; Shlyaptsev, V N
2004-10-05
Recent advances in interferometry has allowed for the characterization of the electron density expansion within a laser produced plasma to within 10 {micro}m of the target surface and over picosecond timescales. This technique employs the high brightness output of the transient gain Ni-like Pd collisional x-ray laser at 14.7 nm to construct an effective moving picture of the two-dimensional (2-D) expansion of the plasma. We present experimentally measured density profiles of an expanding Al plasma generated through laser irradiation in a 14mm line focus geometry. Significant lateral expansion was observed at all times as well as a pronounced on-axis electron density dip. Detailed modeling with a 2-D plasma physics code gives good agreement to experimental observations. Large pressure gradients associated with the tight focal spot conditions are calculated to dominate in shaping the plasma density profile.
Wake measurements in a strong adverse pressure gradient
NASA Technical Reports Server (NTRS)
Hoffenberg, R.; Sullivan, John P.; Schneider, S. P.
1994-01-01
The behavior of wakes in adverse pressure gradients is critical to the performance of high-lift systems for transport aircraft. Wake deceleration is known to lead to sudden thickening and the onset of reversed flow; this 'wake bursting' phenomenon can occur while surface flows remain attached. Although 'wake bursting' is known to be important for high-lift systems, no detailed measurements of 'burst' wakes have ever been reported. Wake bursting has been successfully achieved in the wake of a flat plate as it decelerated in a two-dimensional diffuser, whose sidewalls were forced to remain attached by use of slot blowing. Pilot probe surveys, L.D.V. measurements, and flow visualization have been used to investigate the physics of this decelerated wake, through the onset of reversed flow.
Characterizing developing adverse pressure gradient flows subject to surface roughness
NASA Astrophysics Data System (ADS)
Brzek, Brian; Chao, Donald; Turan, Özden; Castillo, Luciano
2010-04-01
An experimental study was conducted to examine the effects of surface roughness and adverse pressure gradient (APG) on the development of a turbulent boundary layer. Hot-wire anemometry measurements were carried out using single and X-wire probes in all regions of a developing APG flow in an open return wind tunnel test section. The same experimental conditions (i.e., T ∞, U ref, and C p) were maintained for smooth, k + = 0, and rough, k + = 41-60, surfaces with Reynolds number based on momentum thickness, 3,000 < Re θ < 40,000. The experiment was carefully designed such that the x-dependence in the flow field was known. Despite this fact, only a very small region of the boundary layer showed a balance of the various terms in the integrated boundary layer equation. The skin friction computed from this technique showed up to a 58% increase due to the surface roughness. Various equilibrium parameters were studied and the effect of roughness was investigated. The generated flow was not in equilibrium according to the Clauser (J Aero Sci 21:91-108, 1954) definition due to its developing nature. After a development region, the flow reached the equilibrium condition as defined by Castillo and George (2001), where Λ = const, is the pressure gradient parameter. Moreover, it was found that this equilibrium condition can be used to classify developing APG flows. Furthermore, the Zagarola and Smits (J Fluid Mech 373:33-79, 1998a) scaling of the mean velocity deficit, U ∞δ*/δ, can also be used as a criteria to classify developing APG flows which supports the equilibrium condition of Castillo and George (2001). With this information a ‘full APG region’ was defined.
A turbulent burst model for boundary layer flows with pressure gradient
NASA Astrophysics Data System (ADS)
Thomas, L. C.; Benton, D. J.
The object of this paper is to develop a surface renewal model of the turbulent burst phenomenon for momentum and energy transfer in the wall region for turbulent boundary layer flows with pressure gradient. In addition to obtaining inner laws for the distributions in velocity and temperature, predictions are obtained for the effect of pressure gradient on the mean burst frequency and on the turbulent Prandtl number within the wall region for slight favorable and mild adverse pressure gradients.
Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient
Huang, Hai; Mattson, Earl Douglas; Podgorney, Robert Karl
2015-04-01
A robust and reliable numerical model for fracture initiation and propagation, which includes the interactions among propagating fractures and the coupling between deformation, fracturing and fluid flow in fracture apertures and in the permeable rock matrix, would be an important tool for developing a better understanding of fracturing behaviors of crystalline brittle rocks driven by thermal and (or) hydraulic pressure gradients. In this paper, we present a physics-based hydraulic fracturing simulator based on coupling a quasi-static discrete element model (DEM) for deformation and fracturing with conjugate lattice network flow model for fluid flow in both fractures and porous matrix. Fracturing is represented explicitly by removing broken bonds from the network to represent microcracks. Initiation of new microfractures and growth and coalescence of the microcracks leads to the formation of macroscopic fractures when external and/or internal loads are applied. The coupled DEM-network flow model reproduces realistic growth pattern of hydraulic fractures. In particular, simulation results of perforated horizontal wellbore clearly demonstrate that elastic interactions among multiple propagating fractures, fluid viscosity, strong coupling between fluid pressure fluctuations within fractures and fracturing, and lower length scale heterogeneities, collectively lead to complicated fracturing patterns.
Optimal Disturbances in Boundary Layers Subject to Streamwise Pressure Gradient
NASA Technical Reports Server (NTRS)
Tumin, Anatoli; Ashpis, David E.
2003-01-01
Laminar-turbulent transition in shear flows is still an enigma in the area of fluid mechanics. The conventional explanation of the phenomenon is based on the instability of the shear flow with respect to infinitesimal disturbances. The conventional hydrodynamic stability theory deals with the analysis of normal modes that might be unstable. The latter circumstance is accompanied by an exponential growth of the disturbances that might lead to laminar-turbulent transition. Nevertheless, in many cases, the transition scenario bypasses the exponential growth stage associated with the normal modes. This type of transition is called bypass transition. An understanding of the phenomenon has eluded us to this day. One possibility is that bypass transition is associated with so-called algebraic (non-modal) growth of disturbances in shear flows. In the present work, an analysis of the optimal disturbances/streamwise vortices associated with the transient growth mechanism is performed for boundary layers in the presence of a streamwise pressure gradient. The theory will provide the optimal spacing of the control elements in the spanwise direction and their placement in the streamwise direction.
Effects of pressure gradient on global Alfvén eigenmodes in reversed field pinch
NASA Astrophysics Data System (ADS)
Cai, Huishan; Fu, Guoyong; Lin, Liang; Liu, D. Y.; Ding, Weixing; Brower, D. L.; Hu, Y. J.
2014-02-01
The effects of pressure gradient on the existence of global Alfvén eigenmodes (GAE) in Reversed Field Pinch are studied by numerical calculation. It is found that GAEs near the plasma core can exist when pressure gradient is sufficiently large. The calculated mode frequency and structure are consistent with the experimental results in the Madison Symmetric Torus.
Effects of pressure gradient on global Alfvén eigenmodes in reversed field pinch
Cai, Huishan; Fu, Guoyong; Lin, Liang; Ding, Weixing; Brower, D. L.; Liu, D. Y.; Hu, Y. J.
2014-02-15
The effects of pressure gradient on the existence of global Alfvén eigenmodes (GAE) in Reversed Field Pinch are studied by numerical calculation. It is found that GAEs near the plasma core can exist when pressure gradient is sufficiently large. The calculated mode frequency and structure are consistent with the experimental results in the Madison Symmetric Torus.
HAYASHI, Naokazu; MATSUMAE, Mitsunori; YATSUSHIRO, Satoshi; HIRAYAMA, Akihiro; ABDULLAH, Afnizanfaizal; KURODA, Kagayaki
2015-01-01
Magnetic resonance imaging (MRI) can depict not only anatomical information, but also physiological factors such as velocity and pressure gradient. Measurement of these physiological factors is necessary to understand the cerebrospinal fluid (CSF) environment. In this study we quantified CSF motion in various parts of the CSF space, determined changes in the CSF environment with aging, and compared CSF pressure gradient between patients with idiopathic normal pressure hydrocephalus (iNPH) and healthy elderly volunteers. Fifty-seven healthy volunteers and six iNPH patients underwent four-dimensional (4D) phase-contrast (PC) MRI. CSF motion was observed and the pressure gradient of CSF was quantified in the CSF space. In healthy volunteers, inhomogeneous CSF motion was observed whereby the pressure gradient markedly increased in the center of the skull and gradually decreased in the periphery of the skull. For example, the pressure gradient at the ventral surface of the brainstem was 6.6 times greater than that at the convexity of the cerebrum. The pressure gradient was statistically unchanged with aging. The pressure gradient of patients with iNPH was 3.2 times greater than that of healthy volunteers. The quantitative analysis of 4D-PC MRI data revealed that the pressure gradient of CSF can be used to understand the CSF environment, which is not sufficiently given by subjective impression of the anatomical image. PMID:26226976
Effect of Axial Pressure Gradient on the Bifurcation Structure of Viscous Vortex Breakdown
NASA Astrophysics Data System (ADS)
Vyazmina, Elena; Nichols, Joseph; Chomaz, Jean-Marc; Schmid, Peter
2007-11-01
Incompressible open swirling flows are studied by means of direct numerical simulation (DNS) and linear stability analysis. The bifurcation structure is obtained by varying control parameters including: the swirl parameter S, the Reynolds number Re, and the nondimensional external pressure gradientβ. Nonlinear steady states are traced by pseudo-arclength continuation using the Recursive Projection Method (RPM) applied to the fully nonlinear DNS. For zero pressure gradient and large Re, the bifurcation curve shows a characteristic fold representing the existence of multiple solutions associated with vortex breakdown. Large favorable pressure gradients prevent vortex breakdown giving access to new stable or unstable branches corresponding to high swirl number, breakdown-free states. These branches are traced back to the case with zero pressure gradient by applying continuation into the pressure gradient parameter.
Solitons riding on solitons and the quantum Newton's cradle
NASA Astrophysics Data System (ADS)
Ma, Manjun; Navarro, R.; Carretero-González, R.
2016-02-01
The reduced dynamics for dark and bright soliton chains in the one-dimensional nonlinear Schrödinger equation is used to study the behavior of collective compression waves corresponding to Toda lattice solitons. We coin the term hypersoliton to describe such solitary waves riding on a chain of solitons. It is observed that in the case of dark soliton chains, the formulated reduction dynamics provides an accurate an robust evolution of traveling hypersolitons. As an application to Bose-Einstein condensates trapped in a standard harmonic potential, we study the case of a finite dark soliton chain confined at the center of the trap. When the central chain is hit by a dark soliton, the energy is transferred through the chain as a hypersoliton that, in turn, ejects a dark soliton on the other end of the chain that, as it returns from its excursion up the trap, hits the central chain repeating the process. This periodic evolution is an analog of the classical Newton's cradle.
Eslami, Esmaeil Baraz, Rasoul
2014-02-15
Sagdeev's pseudo potential method is employed to study dust acoustic solitary waves in an unmagnetized plasma containing negatively charged dusts with non-thermal electron and ion. The range of parameters for the existence of solitary waves using the analytical expression of the Sagdeev potential has been found. It is observed that, depending on the values of the plasma parameters like ion to electron temperature ratio σ, non-thermal parameters β and γ, electron to ion density ratio μ, and the value of the Mach number M, both rarefactive and compressive solitary waves may exist.
On soliton propagation in biomembranes and nerves.
Heimburg, Thomas; Jackson, Andrew D
2005-07-12
The lipids of biological membranes and intact biomembranes display chain melting transitions close to temperatures of physiological interest. During this transition the heat capacity, volume and area compressibilities, and relaxation times all reach maxima. Compressibilities are thus nonlinear functions of temperature and pressure in the vicinity of the melting transition, and we show that this feature leads to the possibility of soliton propagation in such membranes. In particular, if the membrane state is above the melting transition solitons will involve changes in lipid state. We discuss solitons in the context of several striking properties of nerve membranes under the influence of the action potential, including mechanical dislocations and temperature changes.
NASA Astrophysics Data System (ADS)
Dobricic, Srdjan; Oddo, Paolo; Pinardi, Nadia
2012-03-01
Recently the atmospheric pressure gradient forcing has been implemented in the oceanographic model used in the Mediterranean Forecasting System data assimilation scheme. Experiments show that there is an impact on how the temperature and salinity is updated in the assimilation when the ocean model is forced by the atmospheric pressure gradient. It is, however, necessary to perform longer data assimilation experiments to quantify the impact on the quality of the MFS analyses of the state of the Mediterranean Sea.
Bagheri, N.; White, B.R.; Lei, T.
1994-01-01
Hot-wire anemometry measurements in an incompressible turbulent boundary-layer flow over a heated flat plate under equilibrium adverse-pressure-gradient conditions (beta = 1.8) were made for two different temperature difference cases (10 and 15 C) between the wall and the freestream. Space-time correlations of temperature fluctuations (T`) were obtained with a pair of subminiature temperature fluctuation probes. The mean convection velocities, the mean inclination angles, and coherence characteristics of the T` large-scale structure were determined. The present temperature structures measurements for a nonisothermal boundary layer are compared to the zero-pressure-gradient case with identical temperature differences previously reported, in which the mean convection velocity of the T` structure was a function of position y(sup +) and independent of the limited temperature-difference cases tested. The three major findings of the present study, as compared to the zero-pressure-gradient case, are (1) the mean convection speed of the T` structure under beta = 1.8 pressure-gradient conditions was found to be substantially lower in the logarithmic core region than the zero-pressure-gradient case. Additionally, the mean convection speed is felt by the authors to be a function of pressure-gradient parameter beta; (2) the mean inclination angle of the T` structure to the wall under the adverse-pressure-gradient flow was 32 deg, which compares favorably to the 30-deg value of the zero-pressure-gradient case; and (3) the limited data suggests that the mean convection velocity of the T` structure is a function of y(sup +) and independent of the limited temperature-difference cases tested. 11 refs.
NASA Astrophysics Data System (ADS)
Voronin, A. A.; Zheltikov, A. M.
2017-02-01
Analysis of the group-velocity dispersion (GVD) of atmospheric air with a model that includes the entire manifold of infrared transitions in air reveals a remarkably broad and continuous anomalous-GVD region in the high-frequency wing of the carbon dioxide rovibrational band from approximately 3.5 to 4.2 μm where atmospheric air is still highly transparent and where high-peak-power sources of ultrashort midinfrared pulses are available. Within this range, anomalous dispersion acting jointly with optical nonlinearity of atmospheric air is shown to give rise to a unique three-dimensional dynamics with well-resolved soliton features in the time domain, enabling a highly efficient whole-beam soliton self-compression of such pulses to few-cycle pulse widths.
Soliton production with nonlinear homogeneous lines
Elizondo-Decanini, Juan M.; Coleman, Phillip D.; Moorman, Matthew W.; ...
2015-11-24
Low- and high-voltage Soliton waves were produced and used to demonstrate collision and compression using diode-based nonlinear transmission lines. Experiments demonstrate soliton addition and compression using homogeneous nonlinear lines. We built the nonlinear lines using commercially available diodes. These diodes are chosen after their capacitance versus voltage dependence is used in a model and the line design characteristics are calculated and simulated. Nonlinear ceramic capacitors are then used to demonstrate high-voltage pulse amplification and compression. The line is designed such that a simple capacitor discharge, input signal, develops soliton trains in as few as 12 stages. We also demonstrated outputmore » voltages in excess of 40 kV using Y5V-based commercial capacitors. The results show some key features that determine efficient production of trains of solitons in the kilovolt range.« less
Soliton production with nonlinear homogeneous lines
Elizondo-Decanini, Juan M.; Coleman, Phillip D.; Moorman, Matthew W.; Petney, Sharon Joy Victor; Dudley, Evan C.; Youngman, Kevin; Penner, Tim Dwight; Fang, Lu; Myers, Katherine M.
2015-11-24
Low- and high-voltage Soliton waves were produced and used to demonstrate collision and compression using diode-based nonlinear transmission lines. Experiments demonstrate soliton addition and compression using homogeneous nonlinear lines. We built the nonlinear lines using commercially available diodes. These diodes are chosen after their capacitance versus voltage dependence is used in a model and the line design characteristics are calculated and simulated. Nonlinear ceramic capacitors are then used to demonstrate high-voltage pulse amplification and compression. The line is designed such that a simple capacitor discharge, input signal, develops soliton trains in as few as 12 stages. We also demonstrated output voltages in excess of 40 kV using Y5V-based commercial capacitors. The results show some key features that determine efficient production of trains of solitons in the kilovolt range.
A Study of Wake Development and Structure in Constant Pressure Gradients
NASA Technical Reports Server (NTRS)
Thomas, Flint O.; Nelson, R. C.; Liu, Xiaofeng
2000-01-01
Motivated by the application to high-lift aerodynamics for commercial transport aircraft, a systematic investigation into the response of symmetric/asymmetric planar turbulent wake development to constant adverse, zero, and favorable pressure gradients has been conducted. The experiments are performed at a Reynolds number of 2.4 million based on the chord of the wake generator. A unique feature of this wake study is that the pressure gradients imposed on the wake flow field are held constant. The experimental measurements involve both conventional LDV and hot wire flow field surveys of mean and turbulent quantities including the turbulent kinetic energy budget. In addition, similarity analysis and numerical simulation have also been conducted for this wake study. A focus of the research has been to isolate the effects of both pressure gradient and initial wake asymmetry on the wake development. Experimental results reveal that the pressure gradient has a tremendous influence on the wake development, despite the relatively modest pressure gradients imposed. For a given pressure gradient, the development of an initially asymmetric wake is different from the initially symmetric wake. An explicit similarity solution for the shape parameters of the symmetric wake is obtained and agrees with the experimental results. The turbulent kinetic energy budget measurements of the symmetric wake demonstrate that except for the convection term, the imposed pressure gradient does not change the fundamental flow physics of turbulent kinetic energy transport. Based on the turbulent kinetic energy budget measurements, an approach to correct the bias error associated with the notoriously difficult dissipation estimate is proposed and validated through the comparison of the experimental estimate with a direct numerical simulation result.
Samuels, Brian C.; Hammes, Nathan M.; Johnson, Philip L.; Shekhar, Anantha; McKinnon, Stuart J.; Allingham, R. Rand
2012-01-01
Purpose. Intraocular pressure (IOP) fluctuation has recently been identified as a risk factor for glaucoma progression. Further, decreases in intracranial pressure (ICP), with postulated increases in the translaminar pressure gradient across the lamina cribrosa, has been reported in glaucoma patients. We hypothesized that circadian fluctuations in IOP and the translaminar pressure gradient are influenced, at least in part, by central autonomic regulatory neurons within the dorsomedial and perifornical hypothalamus (DMH/PeF). This study examined whether site-directed chemical stimulation of DMH/PeF neurons evoked changes in IOP, ICP, and the translaminar pressure gradient. Methods. The GABAA receptor antagonist bicuculline methiodide (BMI) was stereotaxically microinjected into the DMH/PeF region of isoflurane-anesthetized male Sprague-Dawley rats (n = 19). The resulting peripheral cardiovascular (heart rate [HR] and mean arterial pressure [MAP]), IOP, and ICP effects were recorded and alterations in the translaminar pressure gradient calculated. Results. Chemical stimulation of DMH/PeF neurons evoked significant increases in HR (+69.3 ± 8.5 beats per minute); MAP (+22.9 ± 1.6 mm Hg); IOP (+7.1 ± 1.9 mm Hg); and ICP (+3.6 ± 0.7 mm Hg) compared with baseline values. However, the peak IOP increase was significantly delayed compared with ICP (28 vs. 4 minutes postinjection), resulting in a dramatic translaminar pressure gradient fluctuation. Conclusions. Chemical stimulation of DMH/PeF neurons evokes substantial increases in IOP, ICP, and the translaminar pressure gradient in the rat model. Given that the DMH/PeF neurons may be a key effector pathway for circadian regulation of autonomic tone by the suprachiasmatic nucleus, these findings will help elucidate novel mechanisms modulating circadian fluctuations in IOP and the translaminar pressure gradient. PMID:23033392
Quantifying Dynamic Changes in Plantar Pressure Gradient in Diabetics with Peripheral Neuropathy
Lung, Chi-Wen; Hsiao-Wecksler, Elizabeth T.; Burns, Stephanie; Lin, Fang; Jan, Yih-Kuen
2016-01-01
Diabetic foot ulcers remain one of the most serious complications of diabetes. Peak plantar pressure (PPP) and peak pressure gradient (PPG) during walking have been shown to be associated with the development of diabetic foot ulcers. To gain further insight into the mechanical etiology of diabetic foot ulcers, examination of the pressure gradient angle (PGA) has been recently proposed. The PGA quantifies directional variation or orientation of the pressure gradient during walking and provides a measure of whether pressure gradient patterns are concentrated or dispersed along the plantar surface. We hypothesized that diabetics at risk of foot ulceration would have smaller PGA in key plantar regions, suggesting less movement of the pressure gradient over time. A total of 27 participants were studied, including 19 diabetics with peripheral neuropathy and 8 non-diabetic control subjects. A foot pressure measurement system was used to measure plantar pressures during walking. PPP, PPG, and PGA were calculated for four foot regions – first toe (T1), first metatarsal head (M1), second metatarsal head (M2), and heel (HL). Consistent with prior studies, PPP and PPG were significantly larger in the diabetic group compared with non-diabetic controls in the T1 and M1 regions, but not M2 or HL. For example, PPP was 165% (P = 0.02) and PPG was 214% (P < 0.001) larger in T1. PGA was found to be significantly smaller in the diabetic group in T1 (46%, P = 0.04), suggesting a more concentrated pressure gradient pattern under the toe. The proposed PGA may improve our understanding of the role of pressure gradient on the risk of diabetic foot ulcers. PMID:27486576
Intraarterial Pressure Gradients After Randomized Angioplasty or Stenting of Iliac Artery Lesions
Tetteroo, Eric; Haaring, Cees; Graaf, Yolanda van der; Schaik, Jan P.J. van; Engelen, A.D. van; Mali, Willem P.T.M.
1996-11-15
Purpose: To determine initial technical results of percutaneous transluminal angioplasty (PTA) and stent procedures in the iliac artery, mean intraarterial pressure gradients were recorded before and after each procedure. Methods: We randomly assigned 213 patients with typical intermittent claudication to primary stent placement (n= 107) or primary PTA (n= 106), with subsequent stenting in the case of a residual mean pressure gradient of > 10 mmHg (n= 45). Eligibility criteria included angiographic iliac artery stenosis (> 50% diameter reduction) and/or a peak systolic velocity ratio > 2.5 on duplex examination. Mean intraarterial pressures were simultaneously recorded above and below the lesion, at rest and also during vasodilatation in the case of a resting gradient {<=} 10 mmHg. Results: Pressure gradients in the primary stent group were 14.9 {+-} 10.4 mmHg before and 2.9 {+-} 3.5 mmHg after stenting. Pressure gradients in the primary PTA group were 17.3 {+-} 11.3 mmHg pre-PTA, 4.2 {+-} 5.4 mmHg post-PTA, and 2.5 {+-} 2.8 mmHg after selective stenting. Compared with primary stent placement, PTA plus selective stent placement avoided application of a stent in 63% (86/137) of cases, resulting in a considerable cost saving. Conclusion: Technical results of primary stenting and PTA plus selective stenting are similar in terms of residual pressure gradients.
Vertical two-phase flow regimes and pressure gradients: Effect of viscosity
Da Hlaing, Nan; Sirivat, Anuvat; Siemanond, Kitipat; Wilkes, James O.
2007-05-15
The effect of liquid viscosity on the flow regimes and the corresponding pressure gradients along the vertical two-phase flow was investigated. Experiment was carried out in a vertical transparent tube of 0.019 m in diameter and 3 m in length and the pressure gradients were measured by a U-tube manometer. Water and a 50 vol.% glycerol solution were used as the working fluids whose kinematic viscosities were 0.85 x 10{sup -6} and 4.0 x 10{sup -6} m{sup 2}/s, respectively. In our air-liquid annular two-phase flow, the liquid film of various thicknesses flowed adjacent to the wall and the gas phase flowed at the center of the tube. The superficial air velocity, j{sub air}, was varied between 0.0021 and 58.7 m/s and the superficial liquid velocity, j{sub liquid}, was varied between 0 and 0.1053 m/s. In the bubble, the slug and the slug-churn flow regimes, the pressure gradients decreased with increasing Reynolds number. But in the annular and the mist flow regimes, pressure gradients increased with increasing Reynolds number. Finally, the experimentally measured pressure gradient values were compared and are in good agreement with the theoretical values. (author)
NASA Astrophysics Data System (ADS)
Taylor, Blaine Keith
An experimental study was conducted in Lehigh University's low-speed water channel to examine the effects of a zero, adverse, and favorable pressure gradients on the development of single hairpin vortices. Single hairpin vortices were generated in an initially laminar environment using controlled fluid injection through a streamwise slot at a Re(delta)* = 380, 440, and 570. Behavior of hairpin structures was determined by the use of dye and hydrogen bubble flow visualization techniques. Visualization results indicate that as a single hairpin vortex convects downstream a complicated growth process due to viscous-inviscid interactions and Biot-Savart deformation results in the generation of secondary and subsidiary vortices, eventually yielding a turbulent spot-like structure. The hairpin vortex structures are observed to be strongly affected by the presence of a pressure gradient, undergoing significant spatial growth changes, as well as experiencing significant flow structure modifications. As the hairpin initiation location is moved further into an adverse pressure gradient, the hairpin vortex lifts and rotates farther away from the surface relative to the behavior in a zero pressure gradient. Regions of low and high-velocity fluid near the surface are accentuated within an adverse pressure gradient, which amplifies the low-speed streak formation and breakdown process, accelerating the formation of vortical substructures and ejection of fluid from the surface.
Semenov, Semen; Schimpf, Martin
2004-01-01
The movement of molecules and homopolymer chains dissolved in a nonelectrolyte solvent in response to a temperature gradient is considered a consequence of temperature-induced pressure gradients in the solvent layer surrounding the solute molecules. Local pressure gradients are produced by nonuniform London-van der Waals interactions, established by gradients in the concentration (density) of solvent molecules. The density gradient is produced by variations in solvent thermal expansion within the nonuniform temperature field. The resulting expression for the velocity of the solute contains the Hamaker constants for solute-solvent and solute-solute interactions, the radius of the solute molecule, and the viscosity and cubic coefficient of thermal expansion of the solvent. In this paper we consider an additional force that arises from directional asymmetry in the interaction between solvent molecules. In a closed cell, the resulting macroscopic pressure gradient gives rise to a volume force that affects the motion of dissolved solutes. An expression for this macroscopic pressure gradient is derived and the resulting force is incorporated into the expression for the solute velocity. The expression is used to calculate thermodiffusion coefficients for polystyrene in several organic solvents. When these values are compared to those measured in the laboratory, the consistency is better than that found in previous reports, which did not consider the macroscopic pressure gradient that arises in a closed thermodiffusion cell. The model also allows for the movement of solute in either direction, depending on the relative values of the solvent and solute Hamaker constants.
NASA Technical Reports Server (NTRS)
Tchen, C. M.
1986-01-01
Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.
Coherent structures of a self-similar adverse pressure gradient turbulent boundary layer
NASA Astrophysics Data System (ADS)
Sekimoto, Atsushi; Kitsios, Vassili; Atkinson, Callum; Jiménez, Javier; Soria, Julio
2016-11-01
The turbulence statistics and structures are studied in direct numerical simulation (DNS) of a self-similar adverse pressure gradient turbulent boundary layer (APG-TBL). The self-similar APG-TBL at the verged of separation is achieved by a modification of the far-field boundary condition to produce the desired pressure gradient. The turbulence statistics in the self-similar region collapse by using the scaling of the external velocity and the displacement thickness. The coherent structures of the APG-TBL are investigated and compared to those of zero-pressure gradient case and homogeneous shear flow. The support of the ARC, NCI and Pawsey SCC funded by the Australian and Western Australian governments as well as the support of PRACE funded by the European Union are gratefully acknowledged.
Non-linear aspects of Görtler instability in boundary layers with pressure gradient
NASA Astrophysics Data System (ADS)
Rogenski, J. K.; de Souza, L. F.; Floryan, J. M.
2016-12-01
The laminar flow over a concave surface may undergo transition to a turbulent state driven by secondary instabilities initiated by the longitudinal vortices known as Görtler vortices. These vortices distort the boundary layer structure by modifying the streamwise velocity component in both spanwise and wall-normal directions. Numerical simulations have been conducted to identify the role of the external pressure gradients in the development and saturation of the vortices. The results show that flows with adverse pressure gradients reach saturation upstream from the saturation location for neutral and favorable pressure gradients. In the transition region, the mean spanwise shear stress is about three times larger than in the flow without the vortices.
Arterial Pressure Gradients during Upright Posture and 30 deg Head Down Tilt
NASA Technical Reports Server (NTRS)
Sanchez, E. R; William, J. M.; Ueno, T.; Ballard, R. E.; Hargens, A. R.; Holton, Emily M. (Technical Monitor)
1997-01-01
Gravity alters local blood pressure within the body so that arterial pressures in the head and foot are lower and higher, respectively, than that at heart level. Furthermore, vascular responses to local alterations of arterial pressure are probably important to maintain orthostatic tolerance upon return to the Earth after space flight. However, it has been difficult to evaluate the body's arterial pressure gradient due to the lack of noninvasive technology. This study was therefore designed to investigate whether finger arterial pressure (FAP), measured noninvasively, follows a normal hydrostatic pressure gradient above and below heart level during upright posture and 30 deg head down tilt (HDT). Seven healthy subjects gave informed consent and were 19 to 52 years old with a height range of 158 to 181 cm. A Finapres device measured arterial pressure at different levels of the body by moving the hand from 36 cm below heart level (BH) to 72 cm above heart level (AH) in upright posture and from 36 cm BH to 48 cm AH during HDT in increments of 12 cm. Mean FAP creased by 85 mmHg transitioning from BH to AH in upright posture, and the pressure gradient calculated from hydrostatic pressure difference (rho(gh)) was 84 mmHg. In HDT, mean FAP decreased by 65 mmHg from BH to AH, and the calculated pressure gradient was also 65 mmHg. There was no significant difference between the measured FAP gradient and the calculated pressure gradient, although a significant (p = 0.023) offset was seen for absolute arterial pressure in upright posture. These results indicate that arterial pressure at various levels can be obtained from the blood pressure at heart level by calculating rho(gh) + an offset. The offset equals the difference between heart level and the site of measurement. In summary, we conclude that local blood pressure gradients can be measured by noninvasive studies of FAP.
Approximate Solution of a Laminar Flow over a Flat Plate with Suction and Pressure Gradient.
1984-01-01
8217nature ywpartment Chair) Date Department of Mechanical Enoineerino Accesslon Por U nIn C, LA ICC -’ .", J, f ! i C I o D irnt rbut ion / A*.-.1 lilt...reduced to a no suction and no pressure gradient condi t ion . Blasius Thesis Linear Prandtl Pohlhausen S(x) 5.8 4.318 3.464 4.64 5.835 S 1 1.729 1.727...2, but he was able to overcome that limitation with another function. 4.2 Suction and Pressure Gradient at Seoaration From Chapter 3 the velocity
FIRST MEASUREMENT OF PRESSURE GRADIENT-DRIVEN CURRENTS IN TOKAMAK EDGE PLASMAS
THOMAS DM; LEONARD AW; LAO LL; OSBORNE TH; MUELLER HW; FINKENTHAL DK
2003-11-01
Localized currents driven by pressure gradients play a pivotal role in the magnetohydrodynamic stability of toroidal plasma confinement devices. We have measured the currents generated in the edge of L- (low) and H- (high confinement) mode discharges on the DIII-D tokamak, utilizing the Zeeman effect in an injected lithium beam to obtain high resolution profiles of the poloidal magnetic field. We find current densities in excess of 1 MA/m{sup 2} in a 1 to 2 cm region near the peak of the edge pressure gradient. These values are sufficient to challenge edge stability theories based on specific current formation models.
Role of Pressure Gradient on Intrinsic Toroidal Rotation in Tokamak Plasmas
Yoshida, M.; Kamada, Y.; Takenaga, H.; Sakamoto, Y.; Urano, H.; Oyama, N.; Matsunaga, G.
2008-03-14
The toroidal plasma rotation generated by the external momentum input and by the plasma itself (intrinsic rotation) has been separated through a novel momentum transport analysis in the JT-60U tokamak device. The toroidal rotation, which is not determined by the momentum transport coefficients and the external momentum input, has been observed. It is found that this intrinsic rotation is locally determined by the local pressure gradient and increases with increasing pressure gradient. This trend is almost the same for various plasmas: low and high confinement mode, co and counterrotating plasmas.
1990-01-01
pressure gradient and a strong (relative to the mild case) pressure gradient. The objeetive-of the study was to determine the effect of pressure... determine the various boundary layer integral parameters and to create velocity records needed to calculate the period of the bursting cycle. Over the range...role in the production of turbulence and in momentum transport. For this reason, this study undertakes to determine the effect of pressure gradient on
NASA Technical Reports Server (NTRS)
Song, Y.; Wright, D.
1998-01-01
A formulation of the pressure gradient force for use in models with topography-following coordinates is proposed and diagnostically analyzed by Song. We investigate numerical consistency with respect to global energy conservation, depth-integrated momentum changes, and the represent of the bottom pressure torque.
Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction
NASA Technical Reports Server (NTRS)
Lee, Seongkyu; Brentner, Kenneth S.; Farassat, Fereidoun
2007-01-01
The scattering of rotor noise is an area that has received little attention over the years, yet the limited work that has been done has shown that both the directivity and intensity of the acoustic field may be significantly modified by the presence of scattering bodies. One of the inputs needed to compute the scattered acoustic field is the acoustic pressure gradient on a scattering surface. Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. These formulations are presented in this paper. The first formulation is derived by taking the gradient of Farassat's retarded-time Formulation 1A. Although this formulation is relatively simple, it requires numerical time differentiation of the acoustic integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. The acoustic pressure gradient predicted by these new formulations is validated through comparison with the acoustic pressure gradient determined by a purely numerical approach for two model rotors. The agreement between analytic formulations and numerical method is excellent for both stationary and moving observers case.
Barrier island breach evolution: Alongshore transport and bay-ocean pressure gradient interactions
Safak, Ilgar; Warner, John C.; List, Jeffrey
2016-01-01
Physical processes controlling repeated openings and closures of a barrier island breach between a bay and the open ocean are studied using aerial photographs and atmospheric and hydrodynamic observations. The breach site is located on Pea Island along the Outer Banks, separating Pamlico Sound from the Atlantic Ocean. Wind direction was a major control on the pressure gradients between the bay and the ocean to drive flows that initiate or maintain the breach opening. Alongshore sediment flux was found to be a major contributor to breach closure. During the analysis period from 2011 to 2016, three hurricanes had major impacts on the breach. First, Hurricane Irene opened the breach with wind-driven flow from bay to ocean in August 2011. Hurricane Sandy in October 2012 quadrupled the channel width from pressure gradient flows due to water levels that were first higher on the ocean side and then higher on the bay side. The breach closed sometime in Spring 2013, most likely due to an event associated with strong alongshore sediment flux but minimal ocean-bay pressure gradients. Then, in July 2014, Hurricane Arthur briefly opened the breach again from the bay side, in a similar fashion to Irene. In summary, opening and closure of breaches are shown to follow a dynamic and episodic balance between along-channel pressure gradient driven flows and alongshore sediment fluxes.
NASA Astrophysics Data System (ADS)
Park, Junshin; You, Donghyun
2014-11-01
Predicitive capabilites of Reynolds-averaged Navier-Stokes (RANS) techniques for separated flow under unsteady adverse pressure gradients have been assessed using SST k - ω model and Spalart-Allmaras model by comparing their results with direct numerical simulation (DNS) results. Both DNS and RANS have been conducted with a zero pressure gradient, a steady adverse pressure gradient, and an unsteady adverse pressure gradient, respectively. Comparative studies show that both RANS models predict earlier separation and fuller velocity profiles at the reattachment zone than DNS in the unsteady case, while reasonable agreements with DNS are observed for steady counterparts. Causes for differences in the predictive capability of RANS for steady and unsteady cases, are explained by examining the Reynolds stress term and eddy viscosity term in detail. The Reynolds stress and eddy viscosity are under-predicted by both RANS models in the unsteady case. The origin of the under-prediction of the Reynolds stress with both RANS models is revealed by investigating Reynolds stress budget terms obtained from DNS. Supported by the National Research Foundation of Korea Grant NRF-2012R1A1A2003699 and the Brain Korea 21+ program.
Nonisothermal flow of a polymeric liquid under a pulsating pressure gradient
Shul'man, Z.P.; Khusid, B.M.; Shabunina, Z.A.
1987-03-01
Increasing flow rates is a major problem in transporting petroleum as well as polymer solutions and melts. Industrial methods are often directed to reducing the effective viscosity: heating and pulsation. The latter is related to the nonlinearity in the properties. This paper studies the effects of pressure-gradient pulsations on the nonisothermal flow of a nonlinear liquid with memory in an annular channel.
Barrier island breach evolution: Alongshore transport and bay-ocean pressure gradient interactions
NASA Astrophysics Data System (ADS)
Safak, Ilgar; Warner, John C.; List, Jeffrey H.
2016-12-01
Physical processes controlling repeated openings and closures of a barrier island breach between a bay and the open ocean are studied using aerial photographs and atmospheric and hydrodynamic observations. The breach site is located on Pea Island along the Outer Banks, separating Pamlico Sound from the Atlantic Ocean. Wind direction was a major control on the pressure gradients between the bay and the ocean to drive flows that initiate or maintain the breach opening. Alongshore sediment flux was found to be a major contributor to breach closure. During the analysis period from 2011 to 2016, three hurricanes had major impacts on the breach. First, Hurricane Irene opened the breach with wind-driven flow from bay to ocean in August 2011. Hurricane Sandy in October 2012 quadrupled the channel width from pressure gradient flows due to water levels that were first higher on the ocean side and then higher on the bay side. The breach closed sometime in Spring 2013, most likely due to an event associated with strong alongshore sediment flux but minimal ocean-bay pressure gradients. Then, in July 2014, Hurricane Arthur briefly opened the breach again from the bay side, in a similar fashion to Irene. In summary, opening and closure of breaches are shown to follow a dynamic and episodic balance between along-channel pressure gradient driven flows and alongshore sediment fluxes.
Acoustic solitons in inhomogeneous pair-ion plasmas
Shah, Asif; Mahmood, S.; Haque, Q.
2010-12-15
The acoustic solitons are investigated in inhomogeneous unmagnetized pair ion plasmas. The Korteweg-de Vries (KdV) like equation with an additional term due to density gradients is deduced by employing reductive perturbation technique. It is noticed that pair-ion plasma system is conducive for the propagation of compressive as well as rarefactive solitons. The increase in the temperature ratio causes the amplitude of the rarefactive soliton to decrease. However, the amplitude of the compressive solitons is found to be increased as the temperature ratio of ions is enhanced. The amplitude of both compressive and rarefactive solitons is found to be increased as the density gradient parameter is increased. The equlibrium density profile is assumed to be exponential. The numerical results are shown for illustration.
Non-autonomous bright matter wave solitons in spinor Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Kanna, T.; Babu Mareeswaran, R.; Sakkaravarthi, K.
2014-01-01
We investigate the dynamics of bright matter wave solitons in spin-1 Bose-Einstein condensates with time modulated nonlinearities. We obtain soliton solutions of an integrable autonomous three-coupled Gross-Pitaevskii (3-GP) equations using Hirota's method involving a non-standard bilinearization. The similarity transformations are developed to construct the soliton solutions of non-autonomous 3-GP system. The non-autonomous solitons admit different density profiles. An interesting phenomenon of soliton compression is identified for kink-like nonlinearity coefficient with Hermite-Gaussian-like potential strength. Our study shows that these non-autonomous solitons undergo non-trivial collisions involving condensate switching.
Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation
NASA Astrophysics Data System (ADS)
Mani Rajan, M. S.; Mahalingam, A.; Uthayakumar, A.
2014-07-01
We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz-Kaup-Newell-Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons, study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management.
NASA Astrophysics Data System (ADS)
Atkinson, Callum; Amili, Omid; Stanislas, Michel; Cuvier, Christophe; Foucaut, Jean-Marc; Srinath, Sricharan; Laval, Jean-Philippe; Kaehler, Christian; Hain, Rainer; Scharnowski, Sven; Schroeder, Andreas; Geisler, Reinhard; Agocs, Janos; Roese, Anni; Willert, Christian; Klinner, Joachim; Soria, Julio
2016-11-01
The study of adverse pressure gradient turbulent boundary layers is complicated by the need to characterise both the local pressure gradient and it's upstream flow history. It is therefore necessary to measure a significant streamwise domain at a resolution sufficient to resolve the small scales features. To achieve this collaborative particle image velocimetry (PIV) measurements were performed in the large boundary layer wind-tunnel at the Laboratoire de Mecanique de Lille, including: planar measurements spanning a streamwise domain of 3.5m using 16 cameras covering 15 δ spanwise wall-normal stereo-PIV measurements, high-speed micro-PIV of the near wall region and wall shear stress; and streamwise wall-normal PIV in the viscous sub layer. Details of the measurements and preliminary results will be presented.
Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant
Duangprasert, Tanabordee; Sirivat, Anuvat; Siemanond, Kitipat; Wilkes, James O.
2008-01-15
Two-phase gas/liquid flows in vertical pipes have been systematically investigated. Water and SDS surfactant solutions at various concentrations were used as the working fluids. In particular, we focus our work on the influence of surfactant addition on the flow regimes, the corresponding pressure gradients, and the bubble sizes and velocity. Adding the surfactant lowers the air critical Reynolds numbers for the bubble-slug flow and the slug flow transitions. The pressure gradients of SDS solutions are lower than those of pure water especially in the slug flow and the slug-churn flow regimes, implying turbulent drag reduction. At low Re{sub air}, the bubble sizes of the surfactant solution are lower than those of pure water due to the increase in viscosity. With increasing and at high Re{sub air}, the bubble sizes of the SDS solution become greater than those of pure water which is attributed to the effect of surface tension. (author)
2011-07-21
United States Government. EXPERIMENTAL INVESTIGATION OF A SUPERSONIC BOUNDARY LAYER INCLUDING FAVORABLE PRESSURE GRADIENT EFFECTS THESIS Presented to...flow to be disturbed from its original state . Aside from providing a non-intrusive method of measurement, LDV has the advantage of measuring the...providing some useful test of turbulence modeling. 4. Well-defined experimental boundary conditions: All incoming conditions (especially the state of
Roll-up of vorticity in adverse-pressure-gradient boundary layers
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Durbin, P. A.; Leib, S. J.
1987-01-01
It is shown how the unsteady, nonlinear critical-layer equation determines the evolution of instability waves in a weak adverse-pressure-gradient boundary layer. Numerical solutions show that the nonlinearity halts the growth of these inviscidly unstable waves. The stabilizing effect of nonlinearity, in the present case, can be described as a consequence of either the increase (toward zero) of the phase jump across the critical layer or the roll-up of the critical-layer disturbance vorticity.
Influence of pressure gradient on streamwise skewness factor in turbulent boundary layer
NASA Astrophysics Data System (ADS)
Dróżdż, Artur
2014-08-01
The paper shows an effect of favourable and adverse pressure gradients on turbulent boundary layer. The skewness factor of streamwise velocity component was chosen as a measure of the pressure gradient impact. It appears that skewness factor is an indicator of convection velocity of coherent structures, which is not always equal to the average flow velocity. The analysis has been performed based upon velocity profiles measured with hot-wire technique in turbulent boundary layer with pressure gradient corresponding to turbomachinery conditions. The results show that the skewness factor decreases in the flow region subjected to FPG and increases in the APG conditions. The changes of convection velocity and skewness factor are caused by influence of large-scale motion through the mechanism called amplitude modulation. The large-scale motion is less active in FPG and more active in APG, therefore in FPG the production of vortices is random (there are no high and low speed regions), while in the APG the large-scale motion drives the production of vortices. Namely, the vortices appear only in the high-speed regions, therefore have convection velocity higher than local mean velocity. The convection velocity affects directly the turbulent sweep and ejection events. The more flow is dominated by large-scale motion the higher values takes both the convection velocity of small-scale structures and sweep events induced by them.
Pressure gradient sensors for bearing determination in shallow water tracking ranges
NASA Astrophysics Data System (ADS)
Stein, Peter J.; Euerle, Steven E.; Menoche, Richard K.; Janiesch, Robert E.
1996-04-01
Underwater acoustic tracking has traditionally used only the arrival time of tracking pings to localize targets. This implies that the ping transmitted from a target must be received at a minimum of three separate nodes (receiver locations) in order to determine the position. For deep water ranges this was acceptable. In shallow water, where propagation ranges are limited, this requires a large number of nodes. This makes shallow water ranges very costly. An effort is underway to use pressure gradient hydrophones as receivers and measure the bearing of the ping arrival along with arrival time, thereby locating the target using only one tracking node. This allows for increased node spacing and greatly reduced cost. However, the accuracy required for training ranges is on the order of 1 degree. Further, the directional receiver must be housed so as to withstand impacts from fishing operations. Research including design, fabrication, and testing of conventional and unconventional pressure gradient hydrophones, the housing, and signal processing methods are discussed. Extensive testing has already been conducted using a 1″ diameter by 5″ long multimode hydrophone. A shallow water tracking test was conducted at the NUWC Lake Seneca test facility. The results demonstrate the feasibility of tracking using a single pressure gradient hydrophone with an accuracy of 50 yds out to 2 kyds. The effects of multiple paths and scattering are also discussed.
The F-Region Gravity and Pressure Gradient Current Systems: A Review
NASA Astrophysics Data System (ADS)
Alken, P.; Maute, A.; Richmond, A. D.
2017-03-01
The ionospheric gravity and pressure-gradient current systems are most prominent in the low-latitude F-region due to the plasma density enhancement known as the equatorial ionization anomaly (EIA). This enhancement of plasma density which builds up during the day and lasts well into the evening supports a toroidal gravity current which flows eastward around the Earth in the F-region during the daytime and evening, and eventually returns westward through the E-region. The existence of pressure-gradients in the EIA region also gives rise to a poloidal diamagnetic current system, whose flow direction acts to reduce the ambient geomagnetic field inside the plasma. The gravity and pressure-gradient currents are among the weaker ionospheric sources, with current densities of a few nA/m2, however they produce clear signatures of about 5-7 nT in magnetic measurements made by low-Earth orbiting satellites. In this work, we review relevant observational and modeling studies of these two current systems and present new results from a 3D ionospheric electrodynamics model which allows us to visualize the entire flow pattern of these currents throughout the ionosphere as well as calculate their magnetic perturbations.
Self-similar turbulent boundary layer with imposed pressure gradient. Four flow regimes
Vigdorovich, I. I.
2014-11-15
Self-similar flows of an incompressible fluid in a turbulent boundary layer, when the free-stream velocity is a power function (with the exponent m) of the longitudinal coordinate, have been studied. It has been shown that there are four different self-similar flow regimes corresponding to four individual similarity parameters one of which is the known Clauser parameter and the three other parameters have been established for the first time. At adverse pressure gradient, when the exponent m lies in a certain range depending on Reynolds number, the problem has two solutions with different values of the boundary-layer thickness and skin friction; consequently, hysteresis in a pre-separation flow is possible. Separation occurs not at the minimal value of m that corresponds to the strongest adverse pressure gradient, but at m = −0.216 −0.4 Re{sub p}{sup −1/3} + O(Re{sub p}{sup −2/3}), where Re{sub p} is the Reynolds number based on longitudinal pressure gradient. The theoretical results are in good agreement with experimental data.
Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction
NASA Technical Reports Server (NTRS)
Lee, Seongkyu; Brentner, Kenneth S.; Farassat, F.; Morris, Philip J.
2008-01-01
Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. The pressure gradient can be used to solve the boundary condition for scattering problems and it is a key aspect to solve acoustic scattering problems. The first formulation is derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation has a form involving the observer time differentiation outside the integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these new formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. The formulations are applied to the rotor noise problems for two model rotors. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and the numerical method is excellent for both stationary and moving observer cases.
NASA Technical Reports Server (NTRS)
Hebbar, S. K.; Driver, D. M.
1985-01-01
Results from an experimental investigation designed to provide data on both mean and turbulence quantities in the axisymmetric, swirling boundary layer (with and without pressure gradient) flowing over a stationary cylinder downstreams of a spinning cylindrical section are presented. The pressure gradient was introduced into the flow field by a 25.4 mm-high, forward-facing, circular step mounted on the stationary cylinder, the step height being nearly equal to the thickness of the approaching boundary layer. All the measurements were made at a nominal upstream reference Reynolds number of 2.4 x 10 to the 6th power/m (corresponding to an upstream reference velocity of 36 to 37 m/sec) with the rotation of the spinner set to make its peripheral speed equal the reference velocity. The data reported included measurements of surface pressure and the mean surface shear-stress vector taken with a miniature, directional, surface-fence gage. These measurements were supplemented by oil-flow visualization studies of the stationary cylinder. The data indicates that the streamwise pressure gradient controls the development of the streamwise component of wall shear, but leaves the peripheral component of wall shear practically unaffected.
The F-Region Gravity and Pressure Gradient Current Systems: A Review
NASA Astrophysics Data System (ADS)
Alken, P.; Maute, A.; Richmond, A. D.
2016-07-01
The ionospheric gravity and pressure-gradient current systems are most prominent in the low-latitude F-region due to the plasma density enhancement known as the equatorial ionization anomaly (EIA). This enhancement of plasma density which builds up during the day and lasts well into the evening supports a toroidal gravity current which flows eastward around the Earth in the F-region during the daytime and evening, and eventually returns westward through the E-region. The existence of pressure-gradients in the EIA region also gives rise to a poloidal diamagnetic current system, whose flow direction acts to reduce the ambient geomagnetic field inside the plasma. The gravity and pressure-gradient currents are among the weaker ionospheric sources, with current densities of a few nA/m2, however they produce clear signatures of about 5-7 nT in magnetic measurements made by low-Earth orbiting satellites. In this work, we review relevant observational and modeling studies of these two current systems and present new results from a 3D ionospheric electrodynamics model which allows us to visualize the entire flow pattern of these currents throughout the ionosphere as well as calculate their magnetic perturbations.
Computations of Turbulent Boundary Layers Subjected to Various Localized Pressure Gradients
NASA Astrophysics Data System (ADS)
Vinuesa Motilva, Ricardo; Nagib, Hassan
2009-11-01
Four different localized pressure gradient configurations were computed using a commercially available code by means of four RANS turbulence models (SA, k-ɛ, SST and RSM), and compared with experimental measurements of the mean flow quantities and the wall shear stress. The pressure gradients were imposed on high Reynolds number, 2-D turbulent boundary layer developing on a flat plate by changing the ceiling geometry. Two converging humps (at x=2m and x=5.5m from the leading edge of the plate) and two diverging humps at the same locations were considered. The SST model produced the best agreement with experiments. A complimentary study about how the models deal with numerical transition was done by solving a zero pressure gradient (ZPG) configuration. We find that the major differences between the results from the models when predicting mean flow quantities are essentially produced by the numerical transition process. This process does not belong to the models themselves, and it is a procedure by which the software transforms the simple laminar boundary conditions at the inlet into inflow conditions which characterize the turbulent flow when turbulence has already been developed. Therefore, models requiring the simplest inflow conditions lead to better results and consequently models such as the RSM suffer the most and ultimately lead to inferior results.
DNS of self-similar adverse pressure gradient turbulent boundary layer
NASA Astrophysics Data System (ADS)
Soria, Julio; Kitsios, Vassili; Sekimoto, Atsushi; Atkinson, Callum; Jiménez, Javier
2016-11-01
A direct numerical simulation (DNS) of a self-similar adverse pressure gradient (APG) turbulent boundary layer (TBL) at the verge of separation has been set-up and carried out. The DNS APG TBL has a displacement thickness based Reynolds number that ranges up to 30,000. The conditions for self-similarity and appropriate scaling will be highlighted, with the first and second order velocity statistical profiles non-dimensionalised using this scaling. The details of the DNS and the required boundary conditions that are necessary to establish this self-similar APG-TBL will be presented. The statistical properties of the self-similar adverse pressure gradient (APG) turbulent boundary layer (TBL) DNS will presented, as will the profiles of the terms in the momentum equation, spanwise/wall-normal kinetic energy spectrum and two-point correlations, which will be compared to those of a zero pressure gradient turbulent boundary layer. NCI and Pawsey SCC funded by the Australian and Western Australian governments as well as the support of PRACE funded by the European Union are gratefully acknowledged.
Favorable pressure gradient turbulent flow over straight and inclined ribs on both channel walls
NASA Astrophysics Data System (ADS)
Tachie, Mark F.; Shah, Mohammad K.
2008-09-01
This paper reports on experimental study of turbulent flows over straight and inclined transverse ribs of square and triangular cross sections attached to the bottom and top walls of an asymmetric converging channel. The pitch-to-height ratio of the ribs was 10. A particle image velocimetry technique was used to conduct extensive velocity measurements at channel midspan and in planes close to the leading and trailing edges of the inclined ribs. From these measurements, spatial averaged profiles of the mean velocity and higher order statistics were obtained to study the effects of rib geometry, pressure gradient, spanwise plane, and rib inclination on the flow characteristics. The results show that rib geometry has no significant effects on the mean flow and turbulent quantities. The roughness effects produced by the straight ribs outweighed pressure gradient effects in the inner region of the flow. As a result, the skin friction coefficient is nearly independent of pressure gradient. The Reynolds shear stress and turbulent transport of the shear stress are also independent of pressure gradient. On the contrary, favorable pressure gradient decreased the Reynolds normal stresses in the outer region and increased the magnitudes of the triple velocity correlations and transport of turbulent kinetic energy (TKE). The three-dimensional secondary motion produced by the inclined ribs distorted the mean flow pattern and substantially diminished the ribs' effectiveness to augment skin friction and turbulence. For example, the skin friction over the inclined ribs is only 50%-70% of the value measured over the straight ribs. Furthermore, the size of equivalent sand grain required to produce the same amount of drag is one-tenth to one-third of the rib height for the inclined ribs compared to two- to fourfold for the straight ribs. The inclined ribs also reduced the level of the Reynolds stresses, triple velocity correlations, and transport of both the turbulent kinetic energy
Reevaluation of compressible-flow Preston tube calibrations
NASA Technical Reports Server (NTRS)
Allen, J. M.
1977-01-01
Revised zero-pressure-gradient, adiabatic wall skin-friction-balance data covering a Mach number range from 1.6 to 4.6 led to a reevaluation of existing compressible flow Preston tube calibration equations.
Shortcut to adiabatic control of soliton matter waves by tunable interaction
Li, Jing; Sun, Kun; Chen, Xi
2016-01-01
We propose a method for shortcut to adiabatic control of soliton matter waves in harmonic traps. The tunable interaction controlled by Feshbach resonance is inversely designed to achieve fast and high-fidelity compression of soliton matter waves as compared to the conventional adiabatic compression. These results pave the way to control the nonlinear dynamics for matter waves and optical solitons by using shortcuts to adiabaticity. PMID:28009007
Topological Solitons in Physics.
ERIC Educational Resources Information Center
Parsa, Zohreh
1979-01-01
A broad definition of solitons and a discussion of their role in physics is given. Vortices and magnetic monopoles which are examples of topological solitons in two and three spatial dimensions are described in some detail. (BB)
NASA Technical Reports Server (NTRS)
Chiu, Hong-Yee
1990-01-01
The theory of Lee and Pang (1987), who obtained solutions for soliton stars composed of zero-temperature fermions and bosons, is applied here to quark soliton stars. Model soliton stars based on a simple physical model of the proton are computed, and the properties of the solitons are discussed, including the important problem of the existence of a limiting mass and thus the possible formation of black holes of primordial origin. It is shown that there is a definite mass limit for ponderable soliton stars, so that during cooling a soliton star might reach a stage beyond which no equilibrium configuration exists and the soliton star probably will collapse to become a black hole. The radiation of ponderable soliton stars may alter the short-wavelength character of the cosmic background radiation, and may be observed as highly redshifted objects at z of about 100,000.
Chamorro-Posada, P; McDonald, G S
2003-05-15
A general dark-soliton solution of the Helmholtz equation (with defocusing Kerr nonlinearity) that has on- and off-axis, gray and black, paraxial and Helmholtz solitons as particular solutions, is reported. Modifications to soliton transverse velocity, width, phase period, and existence conditions are derived and explained in geometrical terms. Simulations verify analytical predictions and also demonstrate spontaneous formation of Helmholtz solitons and transparency of their interactions.
Dissipative photonic lattice solitons.
Ultanir, Erdem A; Stegeman, George I; Christodoulides, Demetrios N
2004-04-15
We show that discrete dissipative optical lattice solitons are possible in waveguide array configurations that involve periodically patterned semiconductor optical amplifiers and saturable absorbers. The characteristics of these low-power soliton states are investigated, and their propagation constant eigenvalues are mapped on Floquet-Bloch band diagrams. The prospect of observing such low-power dissipative lattice solitons is discussed in detail.
NASA Technical Reports Server (NTRS)
Soker, Noam; Sarazin, Craig L.; O'Dea, Christopher P.
1988-01-01
Three-dimensional numerical hydrodynamic simulations are used to study the bending of radio jets. The simulations are compared with observations of jets in narrow-angle-tail radio sources. Two mechanisms for the observed bending are considered: direct bending of quasi-continuous jets by ram pressure from intergalactic gas and bending by pressure gradients in the interstellar gas of the host galaxy, the pressure gradients themselves being the result of ram pressure by intergalactic gas. It is shown that the pressure gradients are much less effective in bending jets, implying that the jets have roughly 30 times lower momentum fluxes if they are bent by this mechanism. Ram-pressure bending produces jets with 'kidney-shaped' cross sections; when observed from the side, these jets appear to have diffuse extensions on the downstream side. On the other hand, pressure-gradient bending causes the jets to be densest near their upstream side.
Chong, Tze-Pei; Zhong, Shan; Hodson, Howard P
2002-10-01
Turbulent wedges induced by a three-dimensional surface roughness placed on a flat plate were studied using both shear sensitive and temperature sensitive liquid crystals, respectively denoted by SSLC and TSLC. The experiments were carried out at a free-stream velocity of 28 m/sec at three different favorable pressure gradients. The purpose of this investigation was to examine the spreading angles of the turbulent wedges, as indicated by their associated surface shear stresses and heat transfer characteristics, and to obtain more insight about the behavior of transitional momentum and thermal boundary layers when a streamwise pressure gradient exists. It was shown that under a zero pressure gradient the spreading angles indicated by the two types of liquid crystals are the same, but the difference increases as the level of the favorable pressure gradient increases. The result from the present study is important for modelling the transition of thermal boundary layers over gas turbine blades.
Stability of the flow in a soft tube deformed due to an applied pressure gradient
NASA Astrophysics Data System (ADS)
Verma, M. K. S.; Kumaran, V.
2015-04-01
A linear stability analysis is carried out for the flow through a tube with a soft wall in order to resolve the discrepancy of a factor of 10 for the transition Reynolds number between theoretical predictions in a cylindrical tube and the experiments of Verma and Kumaran [J. Fluid Mech. 705, 322 (2012), 10.1017/jfm.2011.55]. Here the effect of tube deformation (due to the applied pressure difference) on the mean velocity profile and pressure gradient is incorporated in the stability analysis. The tube geometry and dimensions are reconstructed from experimental images, where it is found that there is an expansion and then a contraction of the tube in the streamwise direction. The mean velocity profiles at different downstream locations and the pressure gradient, determined using computational fluid dynamics, are found to be substantially modified by the tube deformation. The velocity profiles are then used in a linear stability analysis, where the growth rates of perturbations are calculated for the flow through a tube with the wall modeled as a neo-Hookean elastic solid. The linear stability analysis is carried out for the mean velocity profiles at different downstream locations using the parallel flow approximation. The analysis indicates that the flow first becomes unstable in the downstream converging section of the tube where the flow profile is more pluglike when compared to the parabolic flow in a cylindrical tube. The flow is stable in the upstream diverging section where the deformation is maximum. The prediction for the transition Reynolds number is in good agreement with experiments, indicating that the downstream tube convergence and the consequent modification in the mean velocity profile and pressure gradient could reduce the transition Reynolds number by an order of magnitude.
Gap heating with pressure gradients. [for Shuttle Orbiter thermal protection system tiles
NASA Technical Reports Server (NTRS)
Scott, C. D.; Maraia, R. J.
1979-01-01
The heating rate distribution and temperature response on the gap walls of insulating tiles is analyzed to determine significant phenomena and parameters in flows where there is an external surface pressure gradient. Convective heating due to gap flow, modeled as fully developed pipe flow, is coupled with a two-dimensional thermal model of the tiles that includes conduction and radiative heat transfer. To account for geometry and important environmental parameters, scale factors are obtained by curve-fitting measured temperatures to analytical solutions. These scale factors are then used to predict the time-dependent gap heat flux and temperature response of tile gaps on the Space Shuttle Orbiter during entry.
New Pressure Gradient Equations for Lumped-Parameter Interior Ballistic Codes
1990-05-01
chambrage effects are important factors in respect to the time- dependent behavior of the pressure gradient. The result of the RGA gradient equation... dependence of both V. and d 21np/dt 2 . The Drojectile acceleration is given by P = goABPB gQAP,L.5 MM "(L.25) To get the base pressure Pg dependence ...v)) or a- - 14(t)z (L.69) where k1(t) = k, = C "- ,j. (L,.70) k, depends upon the base pressure PB = P(z.P (one of the values we wish to solve for
LES - IB analysis of a flow in channel with an adverse pressure gradient.
NASA Astrophysics Data System (ADS)
Księżyk, M.; Tyliszczak, A.
2016-10-01
This paper presents results of Large Eddy Simulation (LES) of a flow in a channel with an adverse pressure gradient. The applied computational code (SAILOR) is based on a high-order compact finite difference scheme on half-staggered meshes and is combined with an Immersed Boundary (IB) method. The IB method is implemented using the direct forcing approach in a simplified stepwise variant. The results are verified using the experimental data and the general agreement is good. The observed discrepancies are small close to the inlet section and increase along the channel length where strong flow separation occurs.
NASA Astrophysics Data System (ADS)
Monkewitz, Peter A.; Chauhan, Kapil A.; Nagib, Hassan M.
2007-11-01
The asymptotic behavior of mean velocity and integral parameters in flat plate turbulent boundary layers under zero pressure gradient are studied for Reynolds numbers approaching infinity. Using the classical two-layer approach of Millikan, Rotta, and Clauser with a logarithmic velocity profile in the overlap region between "inner" and "outer" layers, a fully self-consistent leading-order description of the mean velocity profile and all integral parameters is developed. It is shown that this description fits most high Reynolds number data, and in particular their Reynolds number dependence, exceedingly well; i.e., within experimental errors.
Turbulence model investigations on the boundary layer flow with adverse pressure gradients
NASA Astrophysics Data System (ADS)
Yong, Zhao; Zhi, Zong; Li, Zou; Tianlin, Wang
2015-06-01
In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses six typical turbulence models, which are critical to the computing precision, and to evaluating the issue of APGs. Local frictional resistance coefficient is compared between numerical and experimental results. The same comparisons of dimensionless averaged velocity profiles are also performed. It is found that results generated by Wilcox (2006) k- w are most close to the experimental data. Meanwhile, turbulent quantities such as turbulent kinetic energy and Reynolds-stress are also studied.
Local pressure gradients due to incipience of boiling in subcooled flows
Ruggles, A.E.; McDuffee, J.L.
1995-09-01
Models for vapor bubble behavior and nucleation site density during subcooled boiling are integrated with boundary layer theory in order to predict the local pressure gradient and heat transfer coefficient. Models for bubble growth rate and bubble departure diameter are used to scale the movement of displaced liquid in the laminar sublayer. An added shear stress, analogous to a turbulent shear stress, is derived by considering the liquid movement normal to the heated surface. The resulting mechanistic model has plausible functional dependence on wall superheat, mass flow, and heat flux and agrees well with data available in the literature.
NASA Astrophysics Data System (ADS)
Araya, Guillermo; Castillo, Luciano
2013-09-01
An innovative method for prescribing turbulent thermal inflow information in spatially developing boundary layers under streamwise pressure gradients is introduced for attached flows. The approach is tested and validated in a suite of Direct Numerical Simulations (DNS) of thermal boundary layers for zero (ZPG) and adverse (APG) pressure gradients with momentum thickness Reynolds numbers (Reθ) up to 3000. The turbulent thermal data are generated based on the dynamic multi-scale approach proposed by Araya et al. ["A dynamic multi-scale approach for turbulent inflow boundary conditions in spatially evolving flows," J. Fluid Mech. 670, 581-605 (2011)], which is extended to include thermal field simulations in the present article. The approach is based on the original rescaling-recycling method developed by Lund, Wu, and Squires ["Generation of turbulent inflow data for spatially developing boundary layer simulations," J. Comput. Phys. 140, 233-258 (1998)] for ZPG flows. Isothermal walls are considered for the thermal field and the molecular Prandtl number is 0.71. In addition, only inlet momentum/thermal boundary layer thicknesses must be prescribed while other flow parameters such as the inlet friction velocity, uτ, and friction temperature, Θτ, are computed dynamically based on the flow solution obtained downstream by means of a test plane. This plane is located between the inlet and recycle stations. Based on the unique and extensive DNS results of heat transfer obtained in this investigation, the effects of Reynolds numbers and adverse pressure gradients on the flow and thermal parameters are also explored and visualized. The principal outcome of adverse pressure gradient on the flow parameters has been determined as a secondary peak, particularly on the streamwise velocity fluctuations in the outer region, which shows clear evidence of energy production in the outer flow and not only in the buffer layer as traditionally known. Nevertheless, this peak is not so
Structure of the zero-pressure-gradient turbulent boundary layer
Barenblatt, G. I.; Chorin, A. J.; Hald, O. H.; Prostokishin, V. M.
1997-01-01
A processing of recent experimental data by Nagib and Hites [Nagib, H. & Hites, M. (1995) AIAA paper 95-0786, Reno, NV) shows that the flow in a zero-pressure-gradient turbulent boundary layer, outside the viscous sublayer, consists of two self-similar regions, each described by a scaling law. The results concerning the Reynolds-number dependence of the coefficients of the wall-region scaling law are consistent with our previous results concerning pipe flow, if the proper definition of the boundary layer Reynolds number (or boundary layer thickness) is used. PMID:11038559
Supersolitons: Solitonic Excitations in Atomic Soliton Chains
Novoa, David; Michinel, Humberto; Perez-Garcia, Victor M.
2008-10-03
We show that, by tuning interactions in nonintegrable vector nonlinear Schroedinger equations modeling Bose-Einstein condensates and other relevant physical systems, it is possible to achieve a regime of elastic particlelike collisions between solitons. This would allow one to construct a Newton's cradle with solitons and supersolitons: localized collective excitations in solitary-wave chains.
Maimistov, Andrei I
2010-11-13
The classic examples of optical phenomena resulting in the appearance of solitons are self-focusing, self-induced transparency, and parametric three-wave interaction. To date, the list of the fields of nonlinear optics and models where solitons play an important role has significantly expanded. Now long-lived or stable solitary waves are called solitons, including, for example, dissipative, gap, parametric, and topological solitons. This review considers nonlinear optics models giving rise to the appearance of solitons in a narrow sense: solitary waves corresponding to the solutions of completely integrable systems of equations basic for the models being discussed. (review)
Pressure gradient effects on heat transfer to reusable surface insulation tile-array gaps
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1975-01-01
An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer within space shuttle reusable surface insulation (RSI) tile-array gaps under thick, turbulent boundary-layer conditions. Heat-transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel-wall boundary layer at a nominal free-stream Mach number and free-stream Reynolds numbers. Transverse pressure gradients of varying degree were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel-wall boundary-layer flow was obtained by measurement of boundary-layer pitot pressure profiles, wall pressure, and heat transfer. Flat-plate heat-transfer data were correlated and a method was derived for prediction of heat transfer to a smooth curved surface in the highly three-dimensional tunnel-wall boundary-layer flow. Pressure on the floor of the RSI tile-array gap followed the trends of the external surface pressure. Heat transfer to the surface immediately downstream of a transverse gap is higher than that for a smooth surface at the same location. Heating to the wall of a transverse gap, and immediately downstream of it, at its intersection with a longitudinal gap is significantly greater than that for the simple transverse gap.
Feasibility of skin-friction diagnostics based on surface pressure gradient field
NASA Astrophysics Data System (ADS)
Liu, Tianshu; Misaka, Takashi; Asai, Keisuke; Obayashi, Shigeru; Wu, Jie-Zhi
2016-12-01
An intrinsic relation is given between the skin-friction vector and the surface pressure gradient through the boundary enstrophy flux (BEF), and it is used to study the possibility to extract some skin-friction structures from a surface pressure field. This attempt contains two related parts. In the first part, when the BEF field is given, a projected skin-friction field in the image plane can be sought from a surface pressure image based on a variational solution of an optical-flow-like equation. This approach is validated in several classical flows. The second part deals with a practical problem in which the BEF field is not known a priori. In this case, a so-called auxiliary skin-friction field is determined from a surface pressure image alone by using the same variational approach. The auxiliary skin-friction field has the magnitude proportional to the skin-friction magnitude and the direction of the negative surface pressure gradient. The physical meaning of the auxiliary skin-friction field and its applicability to global skin-friction diagnostics are discussed.
Flow Control Device Evaluation for an Internal Flow with an Adverse Pressure Gradient
NASA Technical Reports Server (NTRS)
Jenkins, Luther N.; Gorton, Susan Althoff; Anders, Scott G.
2002-01-01
The effectiveness of several active and passive devices to control flow in an adverse pressure gradient with secondary flows present was evaluated in the 15 Inch Low Speed Tunnel at NASA Langley Research Center. In this study, passive micro vortex generators, micro bumps, and piezoelectric synthetic jets were evaluated for their flow control characteristics using surface static pressures, flow visualization, and 3D Stereo Digital Particle Image Velocimetry. Data also were acquired for synthetic jet actuators in a zero flow environment. It was found that the micro vortex generator is very effective in controlling the flow environment for an adverse pressure gradient, even in the presence of secondary vortical flow. The mechanism by which the control is effected is a re-energization of the boundary layer through flow mixing. The piezoelectric synthetic jet actuators must have sufficient velocity output to produce strong longitudinal vortices if they are to be effective for flow control. The output of these devices in a laboratory or zero flow environment will be different than the output in a flow environment. In this investigation, the output was higher in the flow environment, but the stroke cycle in the flow did not indicate a positive inflow into the synthetic jet.
Internal pressure gradient errors in σ-coordinate ocean models in high resolution fjord studies
NASA Astrophysics Data System (ADS)
Berntsen, Jarle; Thiem, Øyvind; Avlesen, Helge
2015-08-01
Terrain following ocean models are today applied in coastal areas and fjords where the topography may be very steep. Recent advances in high performance computing facilitate model studies with very high spatial resolution. In general, numerical discretization errors tend to zero with the grid size. However, in fjords and near the coast the slopes may be very steep, and the internal pressure gradient errors associated with σ-models may be significant even in high resolution studies. The internal pressure gradient errors are due to errors when estimating the density gradients in σ-models, and these errors are investigated for two idealized test cases and for the Hardanger fjord in Norway. The methods considered are the standard second order method and a recently proposed method that is balanced such that the density gradients are zero for the case ρ = ρ(z) where ρ is the density and z is the vertical coordinate. The results show that by using the balanced method, the errors may be reduced considerably also for slope parameters larger than the maximum suggested value of 0.2. For the Hardanger fjord case initialized with ρ = ρ(z) , the errors in the results produced with the balanced method are orders of magnitude smaller than the corresponding errors in the results produced with the second order method.
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.
1990-01-01
The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.
Mixed mode transition in zero and adverse pressure gradient boundary layers
NASA Astrophysics Data System (ADS)
Bose, Rikhi; Durbin, Paul
2015-11-01
Flow regimes exist where interaction of Klebanoff streaks and the Tollmien-Sclichting waves trigger transition but either mode is individually insufficient. Such interaction between orderly and bypass routes of transition is called Mixed mode transition. In zero pressure gradient boundary layers, mixed mode transition follows three routes depending upon strength of these perturbation modes. At high free-stream turbulence intensity (Tu), bypass transition is dominant and the flow is very weakly sensitive to the TS mode strength. In the presence of a strong TS mode, low Tu triggers secondary instability of the TS wave forming Λ vortices. The Λ vortices are forced response due to the weak streaks rather than resonance mechanism seen in monochromatic excitations. When both of these modes are weak, secondary instability of streaks trigger consequent breakdown to turbulent spots. Three-dimensional visualization of the perturbation fields shows toroidal n = 0 and helical n = 1 modes observed in instability of axisymmetric jets and wakes. In adverese pressure gradient boundary layers, the presence of an inflection point significantly increases the growth rate of TS mode thereby strengthening the secondary instability route and the interaction is more interesting. This work was supported by NSF grant CBET-1228195. Computer time was provided by the Extreme Science and Engineering Discovery Environment (XSEDE).
NASA Technical Reports Server (NTRS)
Nakatani, S.; Firstenberg, M. S.; Greenberg, N. L.; Vandervoort, P. M.; Smedira, N. G.; McCarthy, P. M.; Thomas, J. D.
2001-01-01
The pressure-velocity relationship across the normal mitral valve is approximated by the Bernoulli equation DeltaP = 1/2 rhoDeltav(2) + M. dv/dt, where DeltaP is the atrioventricular pressure difference, rho is blood density, v is transmitral flow velocity, and M is mitral inertance. Although M is indispensable in assessing transvalvular pressure differences from transmitral flow, this term is poorly understood. We measured intraoperative high-fidelity left atrial and ventricular pressures and simultaneous transmitral flow velocities by using transesophageal echocardiography in 100 beats (8 patients). We computed mean mitral inertance (M) by M = integral((DeltaP)-(1/2 x rho v(2))dt/integral(dv/dt)dt and we assessed the effect of the inertial term on the transmitral pressure-flow relation. ranged from 1.03 to 5.96 g/cm(2) (mean = 3.82 +/- 1.22 g/cm(2)). DeltaP calculated from the simplified Bernoulli equation (DeltaP = 1/2. rhov(2)) lagged behind (44 +/- 11 ms) and underestimated the actual peak pressures (2.3 +/- 1.1 mmHg). correlated with left ventricular systolic pressure (r = -0.68, P < 0.0001) and transmitral pressure gradients (r = 0.65, P < 0.0001). Because mitral inertance causes the velocity to lag significantly behind the actual pressure gradient, it needs to be considered when assessing diastolic filling and the pressure difference across normal mitral valves.
NASA Technical Reports Server (NTRS)
Liu, Xiao-Feng; Thomas, Flint O.; Nelson, Robert C.
2001-01-01
Turbulence kinetic energy (TKE) is a very important quantity for turbulence modeling and the budget of this quantity in its transport equation can provide insight into the flow physics. Turbulence kinetic energy budget measurements were conducted for a symmetric turbulent wake flow subjected to constant zero, favorable and adverse pressure gradients in year-three of research effort. The purpose of this study is to clarify the flow physics issues underlying the demonstrated influence of pressure gradient on wake development and provide experimental support for turbulence modeling. To ensure the reliability of these notoriously difficult measurements, the experimental procedure was carefully designed on the basis of an uncertainty analysis. Four different approaches, based on an isotropic turbulence assumption, a locally axisymmetric homogeneous turbulence assumption, a semi-isotropy assumption and a forced balance of the TKE equation, were applied for the estimate of the dissipation term. The pressure transport term is obtained from a forced balance of the turbulence kinetic energy equation. This report will present the results of the turbulence kinetic energy budget measurement and discuss their implication on the development of strained turbulent wakes.
Beyond Pressure Gradients: The Effects of Intervention on Heart Power in Aortic Coarctation
Brüning, Jan; Hellmeier, Florian; Nordmeyer, Sarah; da Silva, Tiago Ferreira; Schubert, Stephan; Berger, Felix; Kuehne, Titus; Kelm, Marcus
2017-01-01
Background In aortic coarctation, current guidelines recommend reducing pressure gradients that exceed given thresholds. From a physiological standpoint this should ideally improve the energy expenditure of the heart and thus prevent long term organ damage. Objectives The aim was to assess the effects of interventional treatment on external and internal heart power (EHP, IHP) in patients with aortic coarctation and to explore the correlation of these parameters to pressure gradients obtained from heart catheterization. Methods In a collective of 52 patients with aortic coarctation 25 patients received stenting and/or balloon angioplasty, and 20 patients underwent MRI before and after an interventional treatment procedure. EHP and IHP were computed based on catheterization and MRI measurements. Along with the power efficiency these were combined in a cardiac energy profile. Results By intervention, the catheter gradient was significantly reduced from 21.8±9.4 to 6.2±6.1mmHg (p<0.001). IHP was significantly reduced after intervention, from 8.03±5.2 to 4.37±2.13W (p < 0.001). EHP was 1.1±0.3 W before and 1.0±0.3W after intervention, p = 0.044. In patients initially presenting with IHP above 5W intervention resulted in a significant reduction in IHP from 10.99±4.74 W to 4.94±2.45W (p<0.001), and a subsequent increase in power efficiency from 14 to 26% (p = 0.005). No significant changes in IHP, EHP or power efficiency were observed in patients initially presenting with IHP < 5W. Conclusion It was demonstrated that interventional treatment of coarctation resulted in a decrease in IHP. Pressure gradients, as the most widespread clinical parameters in coarctation, did not show any correlation to changes in EHP or IHP. This raises the question of whether they should be the main focus in coarctation interventions. Only patients with high IHP of above 5W showed improvement in IHP and power efficiency after the treatment procedure. Trial Registration clinicaltrials
Dissipative solitons in pair-ion plasmas
Ghosh, Samiran; Adak, Ashish Khan, Manoranjan
2014-01-15
The effects of ion-neutral collisions on the dynamics of the nonlinear ion acoustic wave in pair-ion plasma are investigated. The standard perturbative approach leads to a Korteweg-de Vries equation with a linear damping term for the dynamics of the finite amplitude wave. The ion-neutral collision induced dissipation is responsible for the linear damping. The analytical solution and numerical simulation reveal that the nonlinear wave propagates in the form of a weakly dissipative compressive solitons. Furthermore, the width of the soliton is proportional to the amplitude of the wave for fixed soliton velocity. Results are discussed in the context of the fullerene pair-ion plasma experiment.
Interpretation of the Finite Pressure Gradient Effects in the Reversed Shear Alfvén Eigenmode Theory
N.N. Gorelenkov, G.J. Kramer, R. Nazikian
2008-02-21
Ideal MHD equations employed in the NOVA code are analyzed analytically and numerically in order to investigate the role of the pressure gradient on global reversed shear Alfvén eigenmodes (RSAEs) or Alfvén cascades. We confirm both numerically and analytically conclusions obtained earlier using the ideal MHD code NOVA and analytically that the plasma pressure gradient plays a key role in the existence condition and in the dispersion relation for the mode. The effect of the plasma pressure gradient is to shift the mode frequency up at the low part of the RSAE frequency chirp and downshift the mode frequency when the frequency approaches the TAE gap This finding is opposite to predictions in a recent publication , where the pressure gradient is found to be always stabilizing by means of downshifting the RSAE frequency and enhancing its in- teraction with the continuum. We resolve this discrepancy by showing that neglecting the pressure gradient effect on the plasma equilibrium (modification of the Shafranov shift and the averaged curvature) leads to conclusions at variance to the numerical and analytical results presented here. A new variational approximation of the RSAE is introduced which compares remarkably well with NOVA solutions. With this new approximation we clearly demonstrate the diagnostic potential and limitations of the RSAE frequency measurement for MHD spectroscopy.
Influence of Pressure-gradient and Shear on Ballooning Stability in Stellarators
S.R. Hudson; C.C. Hegna; N. Nakajima
2005-02-28
Pressure-driven, ideal ballooning stability calculations are often used to predict the achievable plasma in stellarator configurations. In this paper, the sensitivity of ballooning stability to plasmas profile variations is addressed. A simple, semi-analytic method for expressing the ballooning growth rate, for each field line, as a polynomial function of the variation in the pressure gradient and the average magnetic shear from an original equilibrium has recently been introduced [Phys. Plasmas 11:9 (September 2004) L53]. This paper will apply the expression to various stellarator configurations and comment on the validity of various truncated forms of the polynomial expression. In particular, it is shown that in general it is insufficient to consider only the second order terms as previously assumed, and that higher order terms must be included to obtain accurate predictions of stability.
NASA Astrophysics Data System (ADS)
Abu-Ghannam, B. J.; Shaw, R.
1980-10-01
Natural transition of boundary layers is investigated for a flat plate in a low-speed wind tunnel with free-stream turbulence intensities ranging from 0.3 to 5 percent, and with pressure-gradient histories typical of turbomachinery blades without separation. Empirical relationships are proposed for the prediction of the start and end of transition, as well as the development of the boundary layer during transition. These relations are based on the recent measurements made with a hot-wire anemometer, and augmented, mainly for the start of transition, by results of previously reported research. Finally, these experimental relationships are used in conjunction with well established methods to predict the entire unseparated boundary layer. To utilize the prediction, all that is required is a knowledge of the free-stream turbulence level and the free-stream velocity distribution, which itself can be derived from potential flow theory.
Wall mass transfer and pressure gradient effects on turbulent skin friction
NASA Technical Reports Server (NTRS)
Watson, R. D.; Balasubramanian, R.
1984-01-01
The effects of mass injection and pressure gradients on the drag of surfaces were studied theoretically with the aid of boundary-layer and Navier-Stokes codes. The present investigation is concerned with the effects of spatially varying the injection in the case of flat-plate drag. Effects of suction and injection on wavy wall surfaces are also explored. Calculations were performed for 1.2 m long surfaces, one flat and the other sinusoidal with a wavelength of 30.5 cm. Attention is given to the study of the effect of various spatial blowing variations on flat-plate skin friction reduction, local skin friction coefficient calculated by finite difference boundary-layer code and Navier-Stokes code, and the effect of phase-shifting sinusoidal mass transfer on the drag of a sinusoidal surface.
Direct Numerical Simulation and Theories of Wall Turbulence with a Range of Pressure Gradients
NASA Technical Reports Server (NTRS)
Coleman, G. N.; Garbaruk, A.; Spalart, P. R.
2014-01-01
A new Direct Numerical Simulation (DNS) of Couette-Poiseuille flow at a higher Reynolds number is presented and compared with DNS of other wall-bounded flows. It is analyzed in terms of testing semi-theoretical proposals for universal behavior of the velocity, mixing length, or eddy viscosity in pressure gradients, and in terms of assessing the accuracy of two turbulence models. These models are used in two modes, the traditional one with only a dependence on the wall-normal coordinate y, and a newer one in which a lateral dependence on z is added. For pure Couette flow and the Couette-Poiseuille case considered here, this z-dependence allows some models to generate steady streamwise vortices, which generally improves the agreement with DNS and experiment. On the other hand, it complicates the comparison between DNS and models.
Glinka, Z
1977-05-01
The effect of abscisic acid on the exudation rate from decapitated roots of sunflower plants (Helianthus annuus L.) was investigated in the presence and absence of an imposed hydrostatic pressure gradient. The magnitude of the abscisic acid effect was constant even when suctions up to 60 cm Hg were applied to the cut stumps.When roots were bathed in a THO-labeled nutrient solution, the course of the appearance of radioactivity in the exudate, expressed as a function of exudate volume, was not affected by abscisic acid treatment but was strongly speeded up by applying suction.The implications of those findings with regard to the water pathway through the root and the location of the abscisic acid effect are discussed.
Blanco-Redondo, Andrea; Martijn, de Sterke C.; Sipe, J.E.; Krauss, Thomas F.; Eggleton, Benjamin J.; Husko, Chad
2016-01-01
Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers. PMID:26822758
Dutta, Debashis
2017-02-10
Pressure-driven cross-flows can arise in free-flow isoelectric focusing systems (FFIEF) due to a non-uniform electroosmotic flow velocity along the channel width induced by the pH gradient in this direction. In addition, variations in the channel cross-section as well as unwanted differences in hydrostatic heads at the buffer/sample inlet ports can also lead to such pressure-gradients which besides altering the equilibrium position of the sample zones have a tendency to substantially broaden their widths deteriorating the separations. In this situation, a thorough assessment of stream broadening due to transverse pressure-gradients in FFIEF devices is necessary in order to establish accurate design rules for the assay. The present article describes a mathematical framework to estimate the noted zone dispersion in FFIEF separations based on the method-of-moments approach under laminar flow conditions. A closed-form expression has been derived for the spatial variance of the analyte streams at their equilibrium positions as a function of the various operating parameters governing the assay performance. This expression predicts the normalized stream variance under the chosen conditions to be determined by two dimensionless Péclet numbers evaluated based on the transverse pressure-driven and electrophoretic solute velocities in the separation chamber, respectively. Moreover, the analysis shows that while the stream width can be expected to increase with an increase in the value of the first Péclet number, the opposite trend will be followed with respect to the latter. The noted results have been validated using Monte Carlo simulations that also establish a time/length scale over which the predicted equilibrium stream width is attained in the system.
Bakosi, Jozsef; Ristorcelli, Raymond J
2010-01-01
Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.
Statistical foundation of the fluid analogue of the soliton formalism
NASA Technical Reports Server (NTRS)
Tchen, C. M.
1986-01-01
A fully nonlinear analysis is used to develop a general soliton formalism for the description of the nonlinear evolution of soliton fluctuations in both plasmas and classical fluids. From the Navier-Stokes equations for plasmas and compressible fluids of two scales, two equations for the propagation of density waves are derived. A fast soliton field is spontaneously created by rarefaction, and a slow density wave modulates the field intensity as a ponderomotive force. Constitutive properties are demonstrated using a Lagrangian-kinetic formalism of the fluctuation-dissipation theory.
2006-01-29
logic functions and mathematical operations were implemented in the laboratory based on soliton collisions in photorefractive media. In addition to...the usual NAND and AND logic gates, soliton collisions do transfer information and two successive collisions can be made to mimic a unitary matrix or...clear proof-of- principle for soliton based optical computing functions , electronics has advanced in speed and power requirements in the last six years
Multiple soliton production and the Korteweg-de Vries equation.
NASA Technical Reports Server (NTRS)
Hershkowitz, N.; Romesser, T.; Montgomery, D.
1972-01-01
Compressive square-wave pulses are launched in a double-plasma device. Their evolution is interpreted according to the Korteweg-de Vries description of Washimi and Taniuti. Square-wave pulses are an excitation for which an explicit solution of the Schrodinger equation permits an analytical prediction of the number and amplitude of emergent solitons. Bursts of energetic particles (pseudowaves) appear above excitation voltages greater than an electron thermal energy, and may be mistaken for solitons.
NASA Astrophysics Data System (ADS)
Chiu, Hong-Yee
1990-05-01
The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.
NASA Technical Reports Server (NTRS)
Chiu, Hong-Yee
1990-01-01
The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.
Manciu, M.; Sen, S.; Hurd, A.J.
1999-04-12
The authors consider a chain of elastic (Hertzian) grains that repel upon contact according to the potential V = a{delta}{sup u}, u > 2, where {delta} is the overlap between the grains. They present numerical and analytical results to show that an impulse initiated at an end of a chain of Hertzian grains in contact eventually propagates as a soliton for all n > 2 and that no solitons are possible for n {le} 2. Unlike continuous, they find that colliding solitons in discrete media initiative multiple weak solitons at the point of crossing.
NASA Astrophysics Data System (ADS)
Huhn, F.; Schanz, D.; Gesemann, S.; Schröder, A.
2016-09-01
Pressure gradient fields in unsteady flows can be estimated through flow measurements of the material acceleration in the fluid and the assumption of the governing momentum equation. In order to derive pressure from its gradient, almost exclusively two numerical methods have been used to spatially integrate the pressure gradient until now: first, direct path integration in the spatial domain, and second, the solution of the Poisson equation for pressure. Instead, we propose an alternative third method that integrates the pressure gradient field in Fourier space. Using a FFT function, the method is fast and easy to implement in programming languages for scientific computing. We demonstrate the accuracy of the integration scheme on a synthetic pressure field and apply it to an experimental example based on time-resolved material acceleration data from high-resolution Lagrangian particle tracking with the Shake-The-Box method.
NASA Technical Reports Server (NTRS)
Blackwell, B. F.; Kays, W. M.; Moffat, R. J.
1972-01-01
An experimental investigation of the heat transfer behavior of the near equilibrium transpired turbulent boundary layer with adverse pressure gradient has been carried out. Stanton numbers were measured by an energy balance on electrically heated plates that form the bottom wall of the wind tunnel. Two adverse pressure gradients were studied. Two types of transpiration boundary conditions were investigated. The concept of an equilibrium thermal boundary layer was introduced. It was found that Stanton number as a function of enthalpy thickness Reynolds number is essentially unaffected by adverse pressure gradient with no transpiration. Shear stress, heat flux, and turbulent Prandtl number profiles were computed from mean temperature and velocity profiles. It was concluded that the turbulent Prandtl number is greater than unity in near the wall and decreases continuously to approximately 0.5 at the free stream.
NASA Technical Reports Server (NTRS)
Hornung, Hans; Seto, Jeffrey
1991-01-01
A new, robust oil film skin friction meter was designed and constructed. This enables skin friction measurements remotely and from within the model, as well as avoiding the need to know the location of the leading edge of the film. The instrument was tested by comparing measurements with those given by a floating element gage in a zero pressure gradient flat plate turbulent boundary layer. Both instruments agreed satisfactorily with the well-known curve for this case. Significant discrepancies between the two instruments were observed in the case of adverse and favorable pressure gradients. The discrepancies were of opposite sign for opposite-sign pressure gradients as is consistent with the error expected from floating-element gages. Additional confidence in the oil film technique is supplied by the good agreement of the behavior of the film profile with predictions from lubrication theory.
NASA Technical Reports Server (NTRS)
Conley, Julianne M.
1994-01-01
Computational fluid dynamics is being used increasingly to predict flows for aerospace propulsion applications, yet there is still a need for an easy to use, computationally inexpensive turbulence model capable of accurately predicting a wide range of turbulent flows. The Baldwin-Lomax model is the most widely used algebraic model, even though it has known difficulties calculating flows with strong adverse pressure gradients and large regions of separation. The modified mixing length model (MML) was developed specifically to handle the separation which occurs on airfoils and has given significantly better results than the Baldwin-Lomax model. The success of these calculations warrants further evaluation and development of MML. The objective of this work was to evaluate the performance of MML for zero and adverse pressure gradient flows, and modify it as needed. The Proteus Navier-Stokes code was used for this study and all results were compared with experimental data and with calculations made using the Baldwin-Lomax algebraic model, which is currently available in Proteus. The MML model was first evaluated for zero pressure gradient flow over a flat plate, then modified to produce the proper boundary layer growth. Additional modifications, based on experimental data for three adverse pressure gradient flows, were also implemented. The adapted model, called MMLPG (modified mixing length model for pressure gradient flows), was then evaluated for a typical propulsion flow problem, flow through a transonic diffuser. Three cases were examined: flow with no shock, a weak shock and a strong shock. The results of these calculations indicate that the objectives of this study have been met. Overall, MMLPG is capable of accurately predicting the adverse pressure gradient flows examined in this study, giving generally better agreement with experimental data than the Baldwin-Lomax model.
NASA Astrophysics Data System (ADS)
Rajan, M. S. Mani
2016-08-01
In this manuscript, the ultrashort soliton pulse propagation through nonlinear tunneling in cubic quintic media is investigated. The effect of chirping on propagation characteristics of the soliton pulse is analytically investigated using similarity transformation. In particular, we investigate the propagation dynamics of ultrashort soliton pulse through dispersion barrier for both chirp and chirp-free soliton. By investigating the obtained soliton solution, we found that chirping has strong influence on soliton dynamics such as pulse compression with amplification. These two important dynamics of chirped soliton in cubic quintic media open new possibilities to improve the solitonic communication system. Moreover, we surprisingly observe that a dispersion well is formed for the chirped case whereas a barrier is formed for the chirp-free case, which has certain applications in the construction of logic gate devices to achieve ultrafast switching.
Semirelativity and Kink Solitons
ERIC Educational Resources Information Center
Nowak, Mariusz Karol
2014-01-01
It is hard to observe relativistic effects in everyday life. However, table experiments using a mechanical transmission line for solitons may be an efficient and simple way to show effects such as Lorentz contraction in a classroom. A kink soliton is a deformation of a lattice of several dozen or more pendulums placed on a wire and connected by a…
NASA Astrophysics Data System (ADS)
Komineas, Stavros; Shipman, Stephen P.; Venakides, Stephanos
2016-02-01
Photons and excitons in a semiconductor microcavity interact to form exciton-polariton condensates. These are governed by a nonlinear quantum-mechanical system involving exciton and photon wavefunctions. We calculate all non-traveling harmonic soliton solutions for the one-dimensional lossless system. There are two frequency bands of bright solitons when the inter-exciton interactions produce an attractive nonlinearity and two frequency bands of dark solitons when the nonlinearity is repulsive. In addition, there are two frequency bands for which the exciton wavefunction is discontinuous at its symmetry point, where it undergoes a phase jump of π. A band of continuous dark solitons merges with a band of discontinuous dark solitons, forming a larger band over which the soliton far-field amplitude varies from 0 to ∞; the discontinuity is initiated when the operating frequency exceeds the free exciton frequency. The far fields of the solitons in the lowest and highest frequency bands (one discontinuous and one continuous dark) are linearly unstable, whereas the other four bands have linearly stable far fields, including the merged band of dark solitons.
Soliton absorption spectroscopy
Kalashnikov, V. L.; Sorokin, E.
2010-01-01
We analyze optical soliton propagation in the presence of weak absorption lines with much narrower linewidths as compared to the soliton spectrum width using the novel perturbation analysis technique based on an integral representation in the spectral domain. The stable soliton acquires spectral modulation that follows the associated index of refraction of the absorber. The model can be applied to ordinary soliton propagation and to an absorber inside a passively modelocked laser. In the latter case, a comparison with water vapor absorption in a femtosecond Cr:ZnSe laser yields a very good agreement with experiment. Compared to the conventional absorption measurement in a cell of the same length, the signal is increased by an order of magnitude. The obtained analytical expressions allow further improving of the sensitivity and spectroscopic accuracy making the soliton absorption spectroscopy a promising novel measurement technique. PMID:21151755
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Tuttle, M. H.
1979-01-01
A survey was conducted and a bibliography compiled on attainment of laminar flow in air through the use of favorable pressure gradient and suction. This report contains the survey, summaries of data for both ground and flight experiments, and abstracts of referenced reports. Much early information is also included which may be of some immediate use as background material for LFC applications.
WILKIE, KATHLEEN P.; NAGRA, GURJIT; JOHNSTON, MILES
2014-01-01
Perhaps the greatest paradox in the hydrocephalus field is the failure of researchers to consistently measure transmantle pressure gradients (ventricle to subarachnoid space) in either human or animal models of the communicating form of the disorder. Without such a gradient, conceptualization of how ventricular distention occurs is difficult. Based on evidence from both a mathematical model [35] and experiments in skin [51], we observed that the intraventricular injection of anti-β1 integrin antibodies in rat brains results in a reduction of periventricular pressures to values below those monitored in the ventricles. In addition, many of these animals developed hydrocephalus [30]. We conclude that the dissociation of β1 integrins from the surrounding matrix fibers generates pressure gradients favouring ventricular expansion suggesting a novel mechanism for hydrocephalus development. Several issues, however, need further clarification. If hydrostatic pressure declines in the periventricular tissues then fluid absorption must occur. Aquaporin-4 (AQP4) is a likely candidate for this absorption as it is the predominant water channel in the brain. Indeed, when capillary function is negated, periventricular interstitial fluid pressures increase after anti-β1 integrin antibody administration. This suggests that capillary absorption of parenchymal water may play a pivotal role in the generation of pressure gradients in our hydrocephalus model. Focusing on these issues, we present two poroelastic models to investigate the role of intramantle pressure gradients in ventriculomegaly and to determine if integrin-matrix disassociation represents a complete causative mechanism for hydrocephalus development. PMID:25678938
Procopeţ, Bogdan; Tantau, Marcel; Bureau, Christophe
2013-03-01
Portal hypertension is a major consequence of any chronic liver disease and it represents the main mechanism of complication occurrence. Therefore, the assessment of portal hypertension presence is one of the most important steps in the management of any chronic liver diseases. The most accurate tool for portal pressure assessment is hepatic venous pressure gradient (HVPG) measurement, which has diagnostic and prognostic relevance. In this paper we review the methodology of HVPG measuring, together with the clinical relevance of this technique. Portal hypertension is defined as a HVPG higher than 5 mmHg, but clinically significant portal hypertension that predisposes to clinical decompensation is defined as HVPG higher than 10 mmHg. HVPG is useful for portal hypertension treatment monitoring. A decrease in HVPG greater than 20% or under the threshold of 12 mmHg is considered to be protective against portal hypertension-related events. Even if HVPG measurement is a safe procedure, it is still considered an invasive technique and not widely available. Therefore, non-invasive markers of portal hypertension were searched for. Until now only liver stiffness measurement by transient elastography has proved to be sufficiently accurate but there is still heterogeneity among the cut-off values for portal hypertension diagnosis.
NASA Technical Reports Server (NTRS)
Cook, W. J.
1975-01-01
The laminar boundary layer has been theoretically studied for six gases for flows over cold walls with zero pressure gradient at Mach numbers between 5.5 and 12.5 to correlate boundary layer quantities for the various gases. The flow conditions considered correspond to those that can be generated in test facilities such as the shock tunnel and the expansion tube. Computed results obtained using real gas properties indicate that the Eckert number based on edge conditions serves to correlate the results in terms of the wall shear stress and enthalpy gradient, the Stanton number, and the momentum thickness for the various gases within plus or minus 10 per cent for Te = Tw and Te approximately 3Tw. Computed Reynolds analogy factors exhibit very good agreement with those predicted by the Colburn analogy. Velocity and displacement thicknesses correlate well with Eckert number for Te = Tw, but fail to correlate for Te approximately 3Tw. Differences in results are traced to property variations. Results show that the Eckert number is a significant correlating variable for the flows considered.
NASA Technical Reports Server (NTRS)
Johnson, D. A.; King, L. S.
1984-01-01
A new turbulence closure model designed specifically to treat two-dimensional, turbulent boundary layers with strong adverse pressure gradients and attendant separation, is presented. The influence of history effects are modeled by using an ordinary differential equation (ODE) derived from the turbulence kinetic-energy equation, to describe the streamwise development of the maximum Reynolds shear stress in conjunction with an assumed eddy-viscosity distribution which has as its velocity scale the maximum Reynolds shear stress. In the outer part of the boundary layer, the eddy viscosity is treated as a free parameter which is adjusted in order to satisfy the ODE for the maximum shear stress. Because of this, the model s not simply an eddy-viscosity model, but contains features of a Reynolds-stress model. Comparisons with experiments are presented which clearly show the proposed model to be superior to the Cebeci-Smith model in treating strongly retarded and separated flows. In contrast to two-equation, eddy-viscosity models, it requires only slightly more computational effort than simple models like the Cebeci-Smith model.
A Simple Method for Noninvasive Quantification of Pressure Gradient Across the Pulmonary Valve
Zhou, Xueying; Xing, Changyang; Feng, Yang; Duan, Yunyou; Zheng, Qiangsun; Wang, Zuojun; Liu, Jie; Cao, Tiesheng; Yuan, Lijun
2017-01-01
Pressure gradient across the pulmonary valve (PVPG) is an important hemodynamic variable used in the management of patients with cardiovascular and pulmonary disease. However, a reliable noninvasive method is unavailable. We hypothesized that a progressive Muller maneuver would elicit the pulmonary valve premature opening (PVPO) in diastole and that this event would be detectable by Doppler echocardiography. The intrathoracic pressure (ITP) decrease during this maneuver equals PVPG, which may be assessed with a custom airway pressure measurement device. A total of 102 subjects were enrolled in the study. At the earliest appearance of PVPO, the ITP decrease was recorded as the PVPG. PVPG was also simultaneously measured and compared by other two methods: right heart catheterization in 43 subjects, and routine Doppler echocardiography (pulmonary regurgitation jet) in the other 59 subjects. The results measured by different approaches were compared using the Bland-Altman analysis. PVPG assessed via PVPO showed strong agreement with PVPG measured by catheterization or routine Doppler echocardiography methods, with Lin concordance correlation coefficients of 0.91 and 0.70, respectively. In conclusion, PVPO provides a new noninvasive method of quantification of PVPG. PMID:28198458
Scaling properties of the mean wall-normal velocity in the zero pressure gradient boundary layer
NASA Astrophysics Data System (ADS)
Wei, Tie; Klewicki, Joseph
2016-11-01
The scaling properties of the mean wall-normal velocity, V (x , y) , in zero-pressure-gradient laminar and turbulent boundary layer flows is investigated using numerical simulation data, physical experiment data, and integral analyses of governing equations. The maximum mean wall-normal velocity, V∞, and the boundary layer thickness, δ, are evidenced to be the proper scaling for V over most if not the entire boundary layer. This is different from the behavior of the mean streamwise velocity (U) or the turbulent shear stress (T = - ρ < uv >), which depend on different characteristic length scales in the regions near to and away from the surface. Insights pertaining to this are further surmised from an analytical relationship for the ratio of the displacement to momentum thickness, i.e., shape factor, H. Integral analyses using the continuity and mean momentum equation show that (U∞V∞) /uτ2 = H , where uτ is the friction velocity. Both the laminar similarity solution and DNS data in post-transitional flows convincingly support this relation. Over the transitional regime, sufficiently high quality data is still lacking to check if this relation remains valid.
Scaling properties of the mean wall-normal velocity in zero-pressure-gradient boundary layers
NASA Astrophysics Data System (ADS)
Wei, Tie; Klewicki, Joseph
2016-12-01
The scaling properties of the mean wall-normal velocity V (x ,y ) in zero-pressure-gradient laminar and turbulent boundary-layer flows are investigated using numerical simulation data, physical experiment data, and integral analyses of the governing equations. The maximum mean wall-normal velocity V∞ and the boundary-layer thickness δ are evidenced to be the proper scaling for V over most if not all of the boundary layer. This is different from the behavior of the mean streamwise velocity U or the turbulent shear stress T =-ρ , which depend on different characteristic length scales in the regions near and away from the surface, respectively. The reason for this apparent difference in scaling behaviors is described physically relative to the downstream development of the U velocity profile and the mechanisms of boundary-layer growth. Insights pertaining to this are further surmised from an analytical relationship for the ratio of the displacement to momentum thickness, i.e., shape factor H . Integral analyses using the continuity and mean momentum equation show that U∞V∞/uτ2=H , where uτ is the friction velocity. Both the laminar similarity solution and direct numerical simulation data in post-transitional flows convincingly support this relation. Over the transitional regime, data of sufficiently high quality are lacking to check if this relation remains valid.
Ion pressure gradient effects on Kelvin-Helmholtz and interchange instabilities
NASA Astrophysics Data System (ADS)
Russell, David; Myra, James
2016-10-01
In the flow-free state, radial force-balance implies that the poloidal components of the ExB and ion diamagnetic drifts, grad(Pi) / n, are mirrored : vE + vdi = 0. Analysis of the linearized fluid equations shows that the mirrored state is stable in the absence of the interchange drive, grad(Pe +Pi) / n, i.e., the K-H instability is absent. With the interchange drive present, the mirrored-state growth rate passes through a global minimum value with increasing ion pressure gradient, due to sheared ExB flow and diamagnetic suppression, admitting a stability interval in a neighborhood of the minimum if other damping mechanisms are present. The K-H instability is recovered, absent the interchange drive, if force-balance is generalized to include neoclassical poloidal flows (vE + vdi + vnc = 0, vnc grad(Ti)), so that mirroring is lost. Implications for achieving a quiescent H-mode are discussed, and SOLT simulations, which include nonlinear ion pressure effects, are compared with the linear picture. Work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-97ER54392.
Oosterveld, F G; Rasker, J J
1990-06-01
In this study the effect of pressure gradient gloves was compared with that of control gloves by eight patients with rheumatoid arthritis (RA) and diffusely and symmetrically swollen hands. In the morning at fixed times, grip strength, circumference of PIP joints and proximal phalanges, nocturnal pain and morning stiffness in the hands were measured. Significant improvement of circumference of PIP joints (P less than 0.001) and proximal phalanges (P less than 0.01) were found. On wearing the control gloves, some improvement was also found, but only the circumference of PIP joints decreased significantly (P less than 0.05). Nocturnal pain and morning stiffness diminished significantly on wearing both types of glove. Grip strength improved, but not significantly with both. No significant differences were detected between the effects of wearing the two types of glove. No correlation was found between the decreased swelling in the hands as measured by PIP joint circumference or circumference of the proximal phalanges and the decreased nocturnal pain or morning stiffness. This study provided no explanation for the beneficial effect of the gloves. It was shown that for some patients with painful and swollen hands, wearing gloves at night may give relief.
Staging of liver fibrosis or cirrhosis: The role of hepatic venous pressure gradient measurement
Suk, Ki Tae; Kim, Dong Joon
2015-01-01
Liver fibrosis is a common histological change of chronic liver injury and it is closely related with portal hypertension which is hemodynamic complication of chronic liver disease. Currently, liver fibrosis has been known as a reversible dynamic process in previous literatures. Although liver biopsy is a gold standard for assessing the stage of liver fibrosis, it may not completely represent the stage of liver fibrosis because of sampling error or semi-quantative measurement. Recent evidences suggested that histologic, clinical, hemodynamic, and biologic features are closely associated in patients with chronic liver disease. Hepatic venous pressure gradient (HVPG) measurement has been known as a modality to evaluate the portal pressure. The HVPG measurement has been used clinically for fibrosis diagnosis, risk stratification, preoperative screening for liver resection, monitoring the efficacy of medical treatments, and assessing the prognosis of liver fibrosis. Therefore, the HVPG measurement can be used to monitor areas the chronic liver disease but also other important areas of chronic liver disease. PMID:25848485
A Simple Method for Noninvasive Quantification of Pressure Gradient Across the Pulmonary Valve.
Zhou, Xueying; Xing, Changyang; Feng, Yang; Duan, Yunyou; Zheng, Qiangsun; Wang, Zuojun; Liu, Jie; Cao, Tiesheng; Yuan, Lijun
2017-02-15
Pressure gradient across the pulmonary valve (PVPG) is an important hemodynamic variable used in the management of patients with cardiovascular and pulmonary disease. However, a reliable noninvasive method is unavailable. We hypothesized that a progressive Muller maneuver would elicit the pulmonary valve premature opening (PVPO) in diastole and that this event would be detectable by Doppler echocardiography. The intrathoracic pressure (ITP) decrease during this maneuver equals PVPG, which may be assessed with a custom airway pressure measurement device. A total of 102 subjects were enrolled in the study. At the earliest appearance of PVPO, the ITP decrease was recorded as the PVPG. PVPG was also simultaneously measured and compared by other two methods: right heart catheterization in 43 subjects, and routine Doppler echocardiography (pulmonary regurgitation jet) in the other 59 subjects. The results measured by different approaches were compared using the Bland-Altman analysis. PVPG assessed via PVPO showed strong agreement with PVPG measured by catheterization or routine Doppler echocardiography methods, with Lin concordance correlation coefficients of 0.91 and 0.70, respectively. In conclusion, PVPO provides a new noninvasive method of quantification of PVPG.
NASA Astrophysics Data System (ADS)
Cheng, Wan; Samtaney, Ravi
2013-11-01
We present results of large eddy simulation (LES) for a smooth-wall, zero-pressure-gradient turbulent boundary layer. We employ the stretched vortex sub-grid-scale model in the simulations augmented by a wall model. Our wall model is based on the virtual-wall model introduced by Chung & Pullin (J. Fluid Mech 2009). An essential component of their wall model is an ODE governing the local wall-normal velocity gradient obtained using inner-scaling ansatz. We test two variants of the wall model based on different similarity laws: one is based on a log-law and the other on a power-law. The specific form of the power law scaling utilized is that proposed by George & Castillo (Appl. Mech. Rev. 1997), dubbed the ``GC Law''. Turbulent inflow conditions are generated by a recycling method, and applying scaling laws corresponding to the two variants of the wall model, and a uniform way to determine the inlet friction velocity. For Reynolds number based on momentum thickness, Reθ , ranging from 104 to 1012 it is found that the velocity profiles generally follow the log law form rather than the power law. For large Reynolds number asymptotic behavior, LES based on different scaling laws the boundary layer thickness and turbulent intensities do not show much difference. Supported by a KAUST funded project on large eddy simulation of turbulent flows. The IBM Blue Gene P Shaheen at KAUST was utilized for the simulations.
Estimation of diastolic intraventricular pressure gradients by Doppler M-mode echocardiography
NASA Technical Reports Server (NTRS)
Greenberg, N. L.; Vandervoort, P. M.; Firstenberg, M. S.; Garcia, M. J.; Thomas, J. D.
2001-01-01
Previous studies have shown that small intraventricular pressure gradients (IVPG) are important for efficient filling of the left ventricle (LV) and as a sensitive marker for ischemia. Unfortunately, there has previously been no way of measuring these noninvasively, severely limiting their research and clinical utility. Color Doppler M-mode (CMM) echocardiography provides a spatiotemporal velocity distribution along the inflow tract throughout diastole, which we hypothesized would allow direct estimation of IVPG by using the Euler equation. Digital CMM images, obtained simultaneously with intracardiac pressure waveforms in six dogs, were processed by numerical differentiation for the Euler equation, then integrated to estimate IVPG and the total (left atrial to left ventricular apex) pressure drop. CMM-derived estimates agreed well with invasive measurements (IVPG: y = 0.87x + 0.22, r = 0.96, P < 0.001, standard error of the estimate = 0.35 mmHg). Quantitative processing of CMM data allows accurate estimation of IVPG and tracking of changes induced by beta-adrenergic stimulation. This novel approach provides unique information on LV filling dynamics in an entirely noninvasive way that has previously not been available for assessment of diastolic filling and function.
NASA Technical Reports Server (NTRS)
Firstenberg, M. S.; Greenberg, N. L.; Smedira, N. G.; Prior, D. L.; Scalia, G. M.; Thomas, J. D.; Garcia, M. J.
2000-01-01
The simplified Bernoulli equation relates fluid convective energy derived from flow velocities to a pressure gradient and is commonly used in clinical echocardiography to determine pressure differences across stenotic orifices. Its application to pulmonary venous flow has not been described in humans. Twelve patients undergoing cardiac surgery had simultaneous high-fidelity pulmonary venous and left atrial pressure measurements and pulmonary venous pulsed Doppler echocardiography performed. Convective gradients for the systolic (S), diastolic (D), and atrial reversal (AR) phases of pulmonary venous flow were determined using the simplified Bernoulli equation and correlated with measured actual pressure differences. A linear relationship was observed between the convective (y) and actual (x) pressure differences for the S (y = 0.23x + 0.0074, r = 0.82) and D (y = 0.22x + 0.092, r = 0.81) waves, but not for the AR wave (y = 0. 030x + 0.13, r = 0.10). Numerical modeling resulted in similar slopes for the S (y = 0.200x - 0.127, r = 0.97), D (y = 0.247x - 0. 354, r = 0.99), and AR (y = 0.087x - 0.083, r = 0.96) waves. Consistent with numerical modeling, the convective term strongly correlates with but significantly underestimates actual gradient because of large inertial forces.
Acoustic scattering by circular cylinders of various aspect ratios. [pressure gradient microphones
NASA Technical Reports Server (NTRS)
Maciulaitis, A.
1979-01-01
The effects of acoustic scattering on the useful frequency range of pressure gradient microphones were investigated experimentally between ka values of 0.407 and 4.232 using two circular cylindrical models (L/D = 0.5 and 0.25) having a 25 cm outside diameter. Small condenser microphones, attached to preamplifiers by flexible connectors, were installed from inside the cylindrical bodies, and flush mounted on the exterior surface of the cylinders. A 38 cm diameter woofer in a large speaker enclosure was used as the sound source. Surface pressure augmentation and phase differences were computed from measured data for various sound wave incidence angles. Results are graphically compared with theoretical predictions supplied by NASA for ka = 0.407, 2.288, and 4.232. All other results are tabulated in the appendices. With minor exceptions, the experimentally determined pressure augmentations agreed within 0.75 dB with theoretical predictions. The agreement for relative phase angles was within 5 percent without any exceptions. Scattering parameter variations with ka and L/D ratio, as computed from experimental data, are also presented.
Ripoll, Cristina; Groszmann, Roberto J.; Garcia-Tsao, Guadalupe; Bosch, Jaime; Grace, Norman; Burroughs, Andrew; Planas, Ramon; Escorsell, Angels; Garcia-Pagan, Juan Carlos; Makuch, Robert; Patch, David; Matloff, Daniel S.
2013-01-01
Background/Aims A total of 213 patients with compensated cirrhosis, portal hypertension and no varices were included in a trial evaluating beta-blockers in preventing varices. Predictors of the development of hepatocellular carcinoma (HCC), including hepatic venous pressure gradient (HVPG) were analyzed. Methods Baseline laboratory tests, ultrasound and HVPG measurements were performed. Patients were followed prospectively every three months until development of varices or variceal bleeding or end of the study in 09/02. The endpoint was HCC development according to standard diagnostic criteria. Univariate and multivariate Cox regression models were developed to identify predictors of HCC. Results In a median follow-up of 58 months 26/213 (12.2%) patients developed HCC. Eight patients were transplanted and 28 patients died without HCC. Twenty-one (84%) HCC developed in patients with HCV. On multivariate analysis HVPG (HR 1.18; 95%CI 1.08–1.29), albumin (HR 0.34; 95%CI 0.14–0.83) and viral etiology (HR 4.59; 95%CI 1.51–13.92) were independent predictors of HCC development. ROC curves identified 10 mmHg of HVPG as the best cutoff; those who had an HVPG above this value had a 6-fold increase in the HCC incidence. Conclusions Portal hypertension is an independent predictor of HCC development. An HVPG >10 mmHg is associated with a 6-fold increase of HCC risk. PMID:19303163
Role of Magnetosonic Solitons in Perpendicular Collisionless Shock Reformation
NASA Astrophysics Data System (ADS)
Gueroult, Renaud; Ohsawa, Yukiharu; Fisch, Nathaniel J.
2017-03-01
The nature of the magnetic structure arising from ion specular reflection in shock compression studies is examined by means of 1D particle-in-cell simulations. Propagation speed, field profiles, and supporting currents for this magnetic structure are shown to be consistent with a magnetosonic soliton. Coincidentally, this structure and its evolution are typical of foot structures observed in perpendicular shock reformation. To reconcile these two observations, we propose, for the first time, that shock reformation can be explained as the result of the formation, growth, and subsequent transition to a supercritical shock of a magnetosonic soliton. This argument is further supported by the remarkable agreement found between the period of the soliton evolution cycle and classical reformation results. This new result suggests that the unique properties of solitons can be used to shed new light on the long-standing issue of shock nonstationarity and its role on particle acceleration.
NASA Astrophysics Data System (ADS)
Rehman, Momin A.; Mishra, M. K.
2016-01-01
The ion-acoustic solitons in collisionless plasma consisting of warm adiabatic ions, isothermal positrons, and two temperature distribution of electrons have been studied. Using reductive perturbation method, Korteweg-de Vries (K-dV), the modified K-dV (m-KdV), and Gardner equations are derived for the system. The soliton solution of the Gardner equation is discussed in detail. It is found that for a given set of parameter values, there exists a critical value of β=Tc/Th, (ratio of cold to hot electron temperature) below which only rarefactive KdV solitons exist and above it compressive KdV solitons exist. At the critical value of β, both compressive and rarefactive m-KdV solitons co-exist. We have also investigated the soliton in the parametric regime where the KdV equation is not valid to study soliton solution. In this region, it is found that below the critical concentration the system supports rarefactive Gardner solitons and above it compressive Gardner solitons are found. The effects of temperature ratio of two-electron species, cold electron concentration, positron concentration on the characteristics of solitons are also discussed.
Prati, F.; Lugiato, L. A.; Tissoni, G.; Brambilla, M.
2011-11-15
The motion of a self-propelled cavity soliton in a laser where the pump profile acts as a square billiard is investigated. In the long-term dynamics, only closed trajectories are possible, exhibiting nonspecular reflections with striking similarities to walking droplets in a vibrated liquid bath. Open orbits can be achieved either by introducing scattering defects in the pump profile or in the presence of more than two solitons, due to their interaction. Such dynamical properties can be exploited for applications such as a compact soliton-force microscope.
Christian, J M; McDonald, G S; Chamorro-Posada, P
2006-12-01
A different spatial soliton-bearing wave equation is introduced, the Helmholtz-Manakov (HM) equation, for describing the evolution of broad multicomponent self-trapped beams in Kerr-type media. By omitting the slowly varying envelope approximation, the HM equation can describe accurately vector solitons propagating and interacting at arbitrarily large angles with respect to the reference direction. The HM equation is solved using Hirota's method, yielding four different classes of Helmholtz soliton that are vector generalizations of their scalar counterparts. General and particular forms of the three invariants of the HM system are also reported.
Coherent soliton communication lines
Yushko, O. V. Redyuk, A. A.; Fedoruk, M. P.; Turitsyn, S. K.
2014-11-15
The data transmission in coherent fiber-optical communication lines using solitons with a variable phase is studied. It is shown that nonlinear coherent structures (solitons) can be applied for effective signal transmission over a long distance using amplitude and optical-phase keying of information. The optimum ratio of the pulse width to the bit slot at which the spectral efficiency (transmitted bits per second and hertz) is maximal is determined. It is shown that soliton fiber-optical communication lines can ensure data transmission at a higher spectral efficiency as compared to traditional communication lines and at a high signal-to-noise ratio.
Eisenbrey, John R.; Dave, Jaydev K.; Halldorsdottir, Valgerdur G.; Merton, Daniel A.; Miller, Cynthia; Gonzalez, José M.; Machado, Priscilla; Park, Suhyun; Dianis, Scott; Chalek, Carl L.; Kim, Christopher E.; Baliff, Jeffrey P.; Thomenius, Kai E.; Brown, Daniel B.; Navarro, Victor
2013-01-01
Purpose: To compare subharmonic aided pressure estimation (SHAPE) with pressure catheter–based measurements in human patients with chronic liver disease undergoing transjugular liver biopsy. Materials and Methods: This HIPAA-compliant study had U.S. Food and Drug Administration and institutional review board approval, and written informed consent was obtained from all participants. Forty-five patients completed this study between December 2010 and December 2011. A clinical ultrasonography (US) scanner was modified to obtain SHAPE data. After transjugular liver biopsy with pressure measurements as part of the standard of care, 45 patients received an infusion of a microbubble US contrast agent and saline. During infusion, SHAPE data were collected from a portal and hepatic vein and were compared with invasive measurements. Correlations between data sets were determined by using the Pearson correlation coefficient, and statistical significance between groups was determined by using the Student t test. Results:- The 45 study patients included 27 men and 18 women (age range, 19–71 years; average age, 55.8 years). The SHAPE gradient between the portal and hepatic veins was in good overall agreement with the hepatic venous pressure gradient (HVPG) (R = 0.82). Patients at increased risk for variceal hemorrhage (HVPG ≥ 12 mm Hg) had a significantly higher mean subharmonic gradient than patients with lower HVPGs (1.93 dB ± 0.61 [standard deviation] vs −1.47 dB ± 0.29, P < .001), with a sensitivity of 100% and a specificity of 81%, indicating that SHAPE may be a useful tool for the diagnosis of clinically important portal hypertension. Conclusion: Preliminary results show SHAPE to be an accurate noninvasive technique for estimating portal hypertension. © RSNA, 2013 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.13121769/-/DC1 PMID:23525208
Lorenzoni, A G; Anthony, N B; Wideman, R F
2008-01-01
Previous hemodynamic evaluations demonstrated that pulmonary arterial pressure (PAP) is higher in broilers that are susceptible to pulmonary hypertension syndrome (PHS, ascites) than in broilers that are resistant to PHS. We compared key pulmonary hemodynamic parameters in broilers from PHS-susceptible and PHS-resistant lines (selected for 12 generations under hypobaric hypoxia) and in broilers from a relaxed (control) line. In experiment 1 the PAP was measured in male broilers in which a flow probe positioned on one pulmonary artery permitted the determination of cardiac output and pulmonary vascular resistance (PVR). The PAP and relative PVR were higher in susceptible broilers than in relaxed and resistant broilers, whereas absolute and relative cardiac output did not differ between lines. In experiment 2 male and female broilers from the 3 lines were catheterized to measure pressures in the wing vein, right atrium, right ventricle, pulmonary artery, and pulmonary veins (WP, wedge pressure). The transpulmonary pressure gradient (TPG) was calculated as (PAP-WP), with PAP quantifying precapillary pressure and WP approximating postcapillary pulmonary venous pressure. When compared with resistant and relaxed broilers, PAP values in susceptible broilers were > or =10 mmHg higher, TPG values were > or =8 mmHg higher, and WP values were < or =2 mmHg higher, regardless of sex. The combined hemodynamic criteria (elevated PAP and PVR combined with a proportionally elevated TPG) demonstrate that susceptibility to PHS can be attributed primarily to pulmonary arterial hypertension associated with increased precapillary (arteriole) resistance rather than to pulmonary venous hypertension caused by elevated postcapillary (venous and left atrial) resistance.
Lillie, M A; Piscitelli, M A; Vogl, A W; Gosline, J M; Shadwick, R E
2013-07-15
Fin whales have an incompliant aorta, which, we hypothesize, represents an adaptation to large, depth-induced variations in arterial transmural pressures. We hypothesize these variations arise from a limited ability of tissues to respond to rapid changes in ambient ocean pressures during a dive. We tested this hypothesis by measuring arterial mechanics experimentally and modelling arterial transmural pressures mathematically. The mechanical properties of mammalian arteries reflect the physiological loads they experience, so we examined a wide range of fin whale arteries. All arteries had abundant adventitial collagen that was usually recruited at very low stretches and inflation pressures (2-3 kPa), making arterial diameter largely independent of transmural pressure. Arteries withstood significant negative transmural pressures (-7 to -50 kPa) before collapsing. Collapse was resisted by recruitment of adventitial collagen at very low stretches. These findings are compatible with the hypothesis of depth-induced variation of arterial transmural pressure. Because transmural pressures depend on thoracic pressures, we modelled the thorax of a diving fin whale to assess the likelihood of significant variation in transmural pressures. The model predicted that deformation of the thorax body wall and diaphragm could not always equalize thoracic and ambient pressures because of asymmetrical conditions on dive descent and ascent. Redistribution of blood could partially compensate for asymmetrical conditions, but inertial and viscoelastic lag necessarily limits tissue response rates. Without pressure equilibrium, particularly when ambient pressures change rapidly, internal pressure gradients will develop and expose arteries to transient pressure fluctuations, but with minimal hemodynamic consequence due to their low compliance.
NASA Technical Reports Server (NTRS)
Rovner, Aleksandr; Smith, Rebecca; Greenberg, Neil L.; Tuzcu, E. Murat; Smedira, Nicholas; Lever, Harry M.; Thomas, James D.; Garcia, Mario J.
2003-01-01
We sought to validate measurement of intraventricular pressure gradients (IVPG) and analyze their change in patients with hypertrophic obstructive cardiomyopathy (HOCM) after ethanol septal reduction (ESR). Quantitative analysis of color M-mode Doppler (CMM) images may be used to estimate diastolic IVPG noninvasively. Noninvasive IVPG measurement was validated in 10 patients undergoing surgical myectomy. Echocardiograms were then analyzed in 19 patients at baseline and after ESR. Pulsed Doppler data through the mitral valve and pulmonary venous flow were obtained. CMM was used to obtain the flow propagation velocity (Vp) and to calculate IVPG off-line. Left atrial pressure was estimated with the use of previously validated Doppler equations. Data were compared before and after ESR. CMM-derived IVPG correlated well with invasive measurements obtained before and after surgical myectomy [r = 0.8, P < 0.01, Delta(CMM - invasive IVPG) = 0.09 +/- 0.45 mmHg]. ESR resulted in a decrease of resting LVOT systolic gradient from 62 +/- 10 to 29 +/- 5 mmHg (P < 0.001). There was a significant increase in the Vp and IVPG (from 48 +/- 5to 74 +/- 7 cm/s and from 1.5 +/- 0.2 to 2.6 +/- 0.3 mmHg, respectively, P < 0.001 for both). Estimated left atrial pressure decreased from 16.2 +/- 1.1 to 11.5 +/- 0.9 mmHg (P < 0.001). The increase in IVPG correlated with the reduction in the LVOT gradient (r = 0.6, P < 0.01). Reduction of LVOT obstruction after ESR is associated with an improvement in diastolic suction force. Noninvasive measurements of IVPG may be used as an indicator of diastolic function improvement in HOCM.
Pressure-Gradient-Limiting Instability Dynamics in the H-mode Pedestal on DIII-D
NASA Astrophysics Data System (ADS)
Yan, Z.
2010-11-01
Detailed 2D measurements of long-wavelength density fluctuations in the pedestal region with beam emission spectroscopy during the inter-ELM phase indicate two distinct bands of fluctuations propagating in opposite poloidal directions in the plasma frame: one lower frequency band (20-150 kHz) advects in the ion-diamagnetic drift direction (ion mode), and a higher frequency band (200-400 kHz) advects in the electron diamagnetic drift direction (electron mode). Interestingly, the mode amplitudes are modulated with the ELM cycle with the ion mode having some features qualitatively similar to those predicted for kinetic ballooning modes (KBM). Experiments have focused on determining the role of current and pressure gradient-driven instabilities in determining the H-mode pedestal structure. Detailed analysis of the temporal evolution reveals complex dynamics. The ion mode amplitude increases rapidly after an ELM and then saturates, consistent with the dynamics of the pedestal electron pressure, while the electron mode is quasi-stationary between ELMs. The decorrelation time of the ion mode is <5,s (τcxcs/a<=1), the radial correlation length is of order 10,ρi and the poloidal wave-number kθρi˜0.1. The mode velocity is comparable to the diamagnetic velocity. In related Quiescent H-mode experiments, pedestals with high electron pressure and high ExB shearing rates exhibit a set of high-frequency coherent modes propagating in the ion diamagnetic direction. These modes also exhibit KBM-like characteristics, but do not develop into fully turbulent structures. Numerical simulations are in progress to help identify the underlying instabilities and nature of these modes, and ultimately help validate nonlinear models of the H-mode pedestal structure.
Maedler, U.; Hansmann, J.; Duex, M.; Noeldge, G.; Sauer, P.; Richter, G.M.
2002-03-15
TIPSS (transjugular intrahepatic portosystemic shunt) may be indicated to control bleeding from esophageal and gastric varicose veins, to reduce ascites, and to treat patients with Budd-Chiari syndrome and veno-occlusive disease. Numerous measures to improve the safety and methodology of the procedure have helped to increase the technical and clinical success. Follow-up of TIPSS patients has revealed shunt stenosis to occur more often in patients with preserved liver function (Child A, Child B). In addition, the extent of liver cirrhosis is the main factor that determines prognosis in the long term. Little is known about the effects of TIPSS with respect to portosystemic hemodynamics. This report deals with a cirrhotic patient who stopped drinking 7 months prior to admission. He received TIPSS to control ascites and recurrent esophageal bleeding. Two years later remarkable hypertrophy of the left liver lobe and shunt occlusion was observed. The portosystemic pressure gradient dropped from 24 mmHg before TIPSS to 11 mmHg and remained stable after shunt occlusion. The Child's B cirrhosis prior to TIPSS turned into Child's A cirrhosis and remained stable during the follow-up period of 32 months. This indicates that liver function of TIPSS patients may recover due to hypertrophy of the remaining non-cirrhotic liver tissue. In addition the hepatic hemodynamics may return to normal. In conclusion, TIPSS cannot cure cirrhosis but its progress may be halted if the cause can be removed. This may result in a normal portosystemic gradient, leading consequently to shunt occlusion.
Alfvén wings in the lunar wake: The role of pressure gradients
NASA Astrophysics Data System (ADS)
Zhang, H.; Khurana, K. K.; Kivelson, M. G.; Fatemi, S.; Holmström, M.; Angelopoulos, V.; Jia, Y. D.; Wan, W. X.; Liu, L. B.; Chen, Y. D.; Le, H. J.; Shi, Q. Q.; Liu, W. L.
2016-11-01
Strongly conducting or magnetized obstacles in a flowing plasma generate structures called Alfvén wings, which mediate momentum transfer between the obstacle and the plasma. Nonconducting obstacles such as airless planetary bodies can generate such structures, which, however, have so far been seen only in sub-Alfvénic regime. A novel statistical analysis of simultaneous measurements made by two ARTEMIS satellites, one in the solar wind upstream of the Moon and one in the downstream wake, and comparison of the data with results of a three-dimensional hybrid model of the interaction reveal that the perturbed plasma downstream of the Moon generates Alfvén wings in super-Alfvénic solar wind. In the wake region, magnetic field lines bulge toward the Moon and the plasma flows are significantly perturbed. We use the simulation to show that some of the observed bends of the field result from field-aligned currents. The perturbations in the wake thus arise from a combination of compressional and Alfvénic perturbations. Because of the super-Alfvénic background flow of the solar wind, the two Alfvén wings fold back to form a small intersection angle. The currents that form the Alfvén wing in the wake are driven by both plasma flow deceleration and a gradient of plasma pressure, positive down the wake from the region just downstream of the Moon. Such Alfvén wing structures, caused by pressure gradients in the wake and the resulting plasma slowdown, should exist downstream of any nonconducting body in a super-Alfvénic plasma flow.
Bipolar solitons of the focusing nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Liu, Zhongxuan; Feng, Qi; Lin, Chengyou; Chen, Zhaoyang; Ding, Yingchun
2016-11-01
The focusing nonlinear Schrödinger equation (NLSE) is a universal model for studying solitary waves propagation in nonlinear media. The NLSE is especially important in understanding how solitons on a condensate background (SCB) appear from a small perturbation through modulation instability. We study theoretically the one- and two-soliton solutions of the NLSE in presence of a condensate by using the dressing method. It is found that a class of bipolar elliptically polarized solitons with the choice of specific parameters in the one- and two-soliton solutions. Collisions among these solitons are studied by qualitative analysis and graphical illustration. We also generalize the concept of the quasi-Akhmediev breather to the bipolar solitons and show how it can be used for wave profile compression down to the extremely short duration. Our results extend previous studies in this area of the SCB and play an important role in the theory of freak wave.
Balaratnasingam, Chandrakumar; Morgan, William H; Johnstone, Victoria; Pandav, Surinder S; Cringle, Stephen J; Yu, Dao-Yi
2009-11-01
Intraocular pressure and cerebrospinal fluid (CSF) pressure are important determinants of the trans-laminar pressure gradient which is believed to be important in the pathogenesis of glaucomatous optic nerve degeneration. Computational models and finite element calculations of optic nerve head biomechanics have been previously used to predict pressures and stresses in the human optic nerve. The purpose of this report is to morphometrically compare the optic nerve laminar and pia mater structure between humans and dogs, and to use previously reported tissue pressure measurements in the dog optic nerve to estimate individual-specific human optic nerve pressures and pressure gradients. High resolution light microscopy was used to acquire quantitative histological measurements from sagittal sections taken from the middle of the optic nerve in 34 human cadaveric eyes and 10 dog eyes. Parameters measured included the pre-laminar and lamina cribrosa thickness, distance from posterior boundary of lamina cribrosa to inner limiting membrane (ILM), shortest distance between anterior lamina cribrosa surface and subarachnoid space, shortest distance between ILM and inner surface of pia mater in contact with the subarachnoid space and optic nerve diameter. Pia mater thickness in the proximal 4 mm of post-laminar nerve was also determined. There was no significant difference in lamina cribrosa thickness between dog and human eyes (P = 0.356). The distance between the intraocular and subarachnoid space was greater in dogs (P < 0.001). Pia mater thickness was greatest at the termination of subarachnoid space in both species. In humans, pia mater thickness decreased over the proximal 500 mum to reach a constant value of approximately 60 mum. In dogs this decrease occurred over 1000 mum to reach a constant diameter of approximately 30 mum. Using previous measurements of optic nerve pressures and pressure gradients in dogs we estimate that at an IOP of 15 mmHg and a CSF pressure of 0
Probe-controlled soliton frequency shift in the regime of optical event horizon.
Gu, Jie; Guo, Hairun; Wang, Shaofei; Zeng, Xianglong
2015-08-24
In optical analogy of the event horizon, temporal pulse collision and mutual interactions are mainly between an intense solitary wave (soliton) and a dispersive probe wave. In such a regime, here we numerically investigate the probe-controlled soliton frequency shift as well as the soliton self-compression. In particular, in the dispersion landscape with multiple zero dispersion wavelengths, bi-directional soliton spectral tunneling effects is possible. Moreover, we propose a mid-infrared soliton self-compression to the generation of few-cycle ultrashort pulses, in a bulk of quadratic nonlinear crystals in contrast to optical fibers or cubic nonlinear media, which could contribute to the community with a simple and flexible method to experimental implementations.
NASA Astrophysics Data System (ADS)
Lian, Qi Xiang
1990-06-01
Experimental investigations were carried out on the coherent structures of turbulent boundary layers in flow with adverse pressure gradient and, in the vicinity of separation, extensive visual observations using the hydrogen-bubble technique were performed. In a flow with adverse pressure gradient, the structures are larger, and thus more details were observed. By a suitable manipulation of the generation of hydrogen-bubble time lines, some new results were obtained in observing plan views near the wall. The long streaks downstream along the interface regions between low-speed and high-speed streaks are continually stretching, and their velocity may be greater than that of high-speed streaks; the hydrogen bubbles in the long streaks generally have a longer life. Streamwise (x, y) vortices were also observed along the interface regions between high-speed and low-speed streaks. Transverse (z) vortices were observed at the front of the high-speed regions.
A wall-layer model for large-eddy simulations of turbulent flows with/out pressure gradient
NASA Astrophysics Data System (ADS)
Duprat, C.; Balarac, G.; Métais, O.; Congedo, P. M.; Brugière, O.
2011-01-01
In this work, modeling of the near-wall region in turbulent flows is addressed. A new wall-layer model is proposed with the goal to perform high-Reynolds number large-eddy simulations of wall bounded flows in the presence of a streamwise pressure gradient. The model applies both in the viscous sublayer and in the inertial region, without any parameter to switch from one region to the other. An analytical expression for the velocity field as a function of the distance from the wall is derived from the simplified thin-boundary equations and by using a turbulent eddy coefficient with a damping function. This damping function relies on a modified van Driest formula to define the mixing-length taking into account the presence of a streamwise pressure gradient. The model is first validated by a priori comparisons with direct numerical simulation data of various flows with and without streamwise pressure gradient and with eventual flow separation. Large-eddy simulations are then performed using the present wall model as wall boundary condition. A plane channel flow and the flow over a periodic arrangement of hills are successively considered. The present model predictions are compared with those obtained using the wall models previously proposed by Spalding, Trans. ASME, J. Appl. Mech 28, 243 (2008) and Manhart et al., Theor. Comput. Fluid Dyn. 22, 243 (2008). It is shown that the new wall model allows for a good prediction of the mean velocity profile both with and without streamwise pressure gradient. It is shown than, conversely to the previous models, the present model is able to predict flow separation even when a very coarse grid is used.
NASA Astrophysics Data System (ADS)
Kang, Hyun-Gyu; Cheong, Hyeong-Bin; Jeong, Han-Byeol; Kim, Won-Ho
2015-04-01
Response characteristics of the spectral element hydrostatic dynamical core on the cubed sphere to the global topographic forcing are investigated in terms of pressure gradient error, and it is compared with the spherical harmonics hydrostatic dynamical core. The vertical hybrid-pressure coordinate and finite difference method are introduced to both dynamical cores, and explicit and implicit hyper-diffusion schemes are applied to spectral element dynamical core and spherical harmonics dynamical core, respectively. The model atmosphere at initial time is set to the quiescent environment so that the term affecting on the time tendency of the momentum equation at the first time step is the pressure gradient term only which is influenced by the observed surface topography. During 6 days of time integration, the spurious flow is generated due to inaccurate numerical approximations of pressure gradient term for each dynamical core. High zonal wind speed which can be regarded as numerical error is occurred commonly in two dynamical cores around steep topography (e.g., the Tibetan Plateau, the Rocky Mountains, and the Andes Mountains), but the maximum zonal wind speed at day 6 of spectral element dynamical core is 8-9 times larger than that of spherical harmonics dynamical core. The vertically averaged kinetic energy spectrum at day 6 shows very different trend between two dynamical cores. By performing the experiments with the scale-separated topography, it turns out that these kinetic energy spectrum trends are mainly caused by the small-scale topography. A simple change of pressure gradient term into log-pressure form is found to significantly reduce numerical error (up to 63% of maximum wind speed in case of spectral element dynamical core) and noise-like small-scale phenomena.
Preventing Damaging Pressure Gradients at the Walls of an Inflatable Space System
NASA Technical Reports Server (NTRS)
Scialdone, John J.
2000-01-01
An inflatable structural system to deploy a space system such as a solar shield, an antenna or another similar instrument, requires a stiffening element after it is extended by the inflated gas pressure. The stiffening element has to be packaged in a folded configuration before the deployment. It must be relatively small, lightweight, non-damaging to the inflated system, and be able to become stiff in a short time. One stiffening method is to use a flexible material inserted in the deployable system, which, upon a temperature curing, can become stiff and is capable to support the entire structure. There are two conditions during the space operations when the inflated volume could be damaged: during the transonic region of the launch phase and when the curing of the rigidizing element occurs. In both cases, an excess of pressure within the volume containing the rigid element could burst the walls of the low-pressure gas inflated portion of the system. This paper investigates those two conditions and indicates the vents, which will prevent those damaging overpressures. Vent openings at the non-inflated volumes have been calculated for the conditions existing during the launch. Those vents allow the initially folded volume to exhaust the trapped atmospheric gas at approximately the same rate as the ambient pressure drops. That will prevent pressure gradients across the container walls which otherwise could be as high as 14.7 psi. The other condition occurring during the curing of the stiffening element has been investigated. This has required the testing of the element to obtain the gas generation during the curing and the transformation from a pliable material to a rigid one. The tested material is a composite graphite/epoxy weave. The outgassing of the uncured sample at 121C was carried with the Cahn Microbalance and with other outgassing facilities including the micro-CVCM ASTM E-595 facility. The tests provided the mass of gas evolved during the test. That data
Preventing Damaging Pressure Gradients at the Walls of an Inflatable Space System
NASA Technical Reports Server (NTRS)
Scialdone, John J.; Powers, Edward I. (Technical Monitor)
2000-01-01
An inflatable structural system to deploy a space system such as a solar shield, an antenna or another similar instrument requires a stiffening element after it is extended by the inflated gas pressure. The stiffening element has to be packaged in folded configuration before the deployment. It must be relatively small, lightweight, non-damaging to the inflated system and be able to become stiff in a short time. One stiffening method is to use a flexible material inserted in the deployable system, which, upon a temperature curing, can become stiff and is capable of supporting the entire structure. There are two conditions during the space operations when the inflated volume could be damaged: during the transonic region of the launch phase and when the curing of the rigidizing element occurs. In both cases, an excess of pressure within the volume containing the rigid element could burst the walls of the low-pressure gas inflated portion of the system. This paper investigates those two conditions and indicates the vents, which will prevent those damaging overpressures. Vent openings at the non-inflated volumes have been calculated for the conditions existing during the launch. Those vents allow the initially folded volume to exhaust the trapped atmospheric gas at approximately the same rate as the ambient pressure drops. That will prevent pressure gradients across the container walls which otherwise could be as high as 14.7 psi. The other condition occurring during the curing of the stiffening element has been investigated. This has required the testing of the element to obtain the gas generation during the curing and the transformation from a pliable material to a rigid on The tested material is a composite graphite/epoxy weave. The outgassing of the uncured sample at 121 deg Celcius was carried with the Cahn Microbalance and with other outgassing facilities including the micro-CVCM ASTM E-595 facility. The test provided the mass of gas evolved during the test. That
Pressure gradients and boiling as mechanisms for localizing ore in porphyry systems
Cunningham, Charles G.
1978-01-01
Fluid inclusions in ore zones of porphyry systems indicate that extensive boiling of hydrothermal fluids accompanies deposition of ore and gangue minerals. The boiling commonly accompanied a change from a lithostatic to a hydrostatic environment during evolution of an epizonal stock. Pressure gradients near the margin of the stock can determine whether ore or only a diffuse zone of mineralization is formed. A sharp drop in pressure in an epizonal environment is more likely to cause extensive boiling than a comparable change in a deeper environment, as the slope of the boiling curve steepens with an increase 'in pressure. The drop in pressure causes the hydrothermal fluids to boil and creates a crackle (stockwork) breccia, which hosts the veinlets of gangue quartz and ore minerals. The boiling selectively partitions CO2, H2S, and HCl into the vapor phase, changing the pH, composition, ionic strength, and thus the solubility product of metal complexes in the remaining liquid and causing the ore and gangue to come out of solution. Fluid inclusions trapped from boiling solutions can exhibit several forms, depending on the physical and chemical conditions of the hydrothermal fluid from which they were trapped. In one case, inclusions when heated can homogenize to either liquid or vapor at the same temperature, which is the true boiling temperature. In another case, homogenization of various inclusions can occur through a range of temperatures. The latter case results from the trapping of mixture of liquid and vapor. Variations in salinity can result from boiling of the hydrothermal fluid, or intermittent incorporation of high-salinity fluids from the magma, or trapping of fluids of varying densities at pressure-temperature conditions above the critical point of the fluid. In places, paleopressure-temperature transition zones can be recognized by fluid-inclusion homogenization temperatures and phase relationships and by the presence of anhydrite daughter minerals
Experimental Study of Turbulent Flow over Inclined Ribs in Adverse Pressure Gradient
NASA Astrophysics Data System (ADS)
Tsikata, Jonathan Mawuli
This thesis is an experimental study of turbulent flows over smooth and rough walls in a channel that consists of an upstream parallel section to produce a fully developed channel flow and a diverging section to produce an adverse pressure gradient (APG) flow. The roughness elements used were two-dimensional square ribs of nominal height k = 3 mm. The ribs were secured to the lower wall of the channel and spaced to produce the following three pitches: 2k, 4k and 8 k, corresponding to d-type, intermediate and k-type rough walls, respectively. For each rough wall type, the ribs were inclined at 90°, 45° and 30° to the approach flow. The velocity measurements were performed using a particle image velocimetry technique. The results showed that rib roughness enhanced the drag characteristics, and the degree of enhancement increased with increasing pitch. The level of turbulence production and Reynolds stresses were significantly increased by roughness beyond the roughness sublayer. It was observed that the population, sizes and the level of organization of hairpin vortices varied with roughness and more intense quadrant events were found over the smooth wall than the rough walls. APG reinforced wall roughness in augmenting the equivalent sand grain roughness height, turbulence production and Reynolds stresses. APG also reduced the sizes of the hairpin packets but strengthened the quadrant events in comparison to the results obtained in the parallel section. The secondary flow induced by inclined ribs significantly altered the distributions of the flow characteristics across the span of the channel. Generally, the mean flow was less uniform close to the trailing edge of the ribs compared to the flows at the mid-span and close to the leading edge of the ribs. The Reynolds stresses and hairpin packets were distinctly larger close to the trailing edge of the ribs. Rib inclination also decreased the drag characteristics and significantly modified the distributions of the
Dissipative solitons in fiber lasers
NASA Astrophysics Data System (ADS)
Turitsyn, S. K.; Rosanov, N. N.; Yarutkina, I. A.; Bednyakova, A. E.; Fedorov, S. V.; Shtyrina, O. V.; Fedoruk, M. P.
2016-07-01
Dissipative solitons (also known as auto-solitons) are stable, nonlinear, time- or space-localized solitary waves that occur due to the balance between energy excitation and dissipation. We review the theory of dissipative solitons applied to fiber laser systems. The discussion context includes the classical Ginzburg-Landau and Maxwell-Bloch equations and their modifications that allow describing laser-cavity-produced waves. Practical examples of laser systems generating dissipative solitons are discussed.
Noncommuting Momenta of Topological Solitons
NASA Astrophysics Data System (ADS)
Watanabe, Haruki; Murayama, Hitoshi
2014-05-01
We show that momentum operators of a topological soliton may not commute among themselves when the soliton is associated with the second cohomology H2 of the target space. The commutation relation is proportional to the winding number, taking a constant value within each topological sector. The noncommutativity makes it impossible to specify the momentum of a topological soliton, and induces a Magnus force.
NASA Astrophysics Data System (ADS)
Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.
2016-08-01
Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.
Stokes solitons in optical microcavities
NASA Astrophysics Data System (ADS)
Yang, Qi-Fan; Yi, Xu; Yang, Ki Youl; Vahala, Kerry
2017-01-01
Solitons are wave packets that resist dispersion through a self-induced potential well. They are studied in many fields, but are especially well known in optics on account of the relative ease of their formation and control in optical fibre waveguides. Besides their many interesting properties, solitons are important to optical continuum generation, in mode-locked lasers, and have been considered as a natural way to convey data over great distances. Recently, solitons have been realized in microcavities, thereby bringing the power of microfabrication methods to future applications. This work reports a soliton not previously observed in optical systems, the Stokes soliton. The Stokes soliton forms and regenerates by optimizing its Raman interaction in space and time within an optical potential well shared with another soliton. The Stokes and the initial soliton belong to distinct transverse mode families and benefit from a form of soliton trapping that is new to microcavities and soliton lasers in general. The discovery of a new optical soliton can impact work in other areas of photonics, including nonlinear optics and spectroscopy.
Classically spinning and isospinning solitons
NASA Astrophysics Data System (ADS)
Battye, Richard A.; Haberichter, Mareike
2012-09-01
We investigate classically spinning topological solitons in (2+1)- and (3+1)-dimensional models; more explicitely spinning sigma model solitons in 2+1 dimensions and Skyrme solitons in 2+1 and 3+1 dimensions. For example, such types of solitons can be used to describe quasiparticle excitations in ferromagnetic quantum Hall systems or to model spin and isospin states of nuclei. The standard way to obtain solitons with quantised spin and isospin is the semiclassical quantization procedure: One parametrizes the zero-mode space - the space of energy-degenerate soliton configurations generated from a single soliton by spatial translations and rotations in space and isospace - by collective coordinates which are then taken to be time-dependent. This gives rise to additional dynamical terms in the Hamiltonian which can then be quantized following semiclassical quantization rules. A simplification which is often made in the literature is to apply a simple adiabatic approximation to the (iso)rotational zero modes of the soliton by assuming that the soliton's shape is rotational frequency independent. Our numerical results on classically spinning arbitrarily deforming soliton solutions clearly show that soliton deformation cannot be ignored.
Accessible solitons of fractional dimension
Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi
2016-05-15
We demonstrate that accessible solitons described by an extended Schrödinger equation with the Laplacian of fractional dimension can exist in strongly nonlocal nonlinear media. The soliton solutions of the model are constructed by two special functions, the associated Legendre polynomials and the Laguerre polynomials in the fraction-dimensional space. Our results show that these fractional accessible solitons form a soliton family which includes crescent solitons, and asymmetric single-layer and multi-layer necklace solitons. -- Highlights: •Analytic solutions of a fractional Schrödinger equation are obtained. •The solutions are produced by means of self-similar method applied to the fractional Schrödinger equation with parabolic potential. •The fractional accessible solitons form crescent, asymmetric single-layer and multilayer necklace profiles. •The model applies to the propagation of optical pulses in strongly nonlocal nonlinear media.
NASA Technical Reports Server (NTRS)
Song, Y. T.
1998-01-01
A Jacobian formulation of the pressure gradient force for use in models with topography following coordinates is proposed. It can be used in conjunction with any vertical coordinate system and is easily implemented.
NASA Technical Reports Server (NTRS)
Johnson, D. R.; Uccellini, L. W.
1983-01-01
In connection with the employment of the sigma coordinates introduced by Phillips (1957), problems can arise regarding an accurate finite-difference computation of the pressure gradient force. Over steeply sloped terrain, the calculation of the sigma-coordinate pressure gradient force involves computing the difference between two large terms of opposite sign which results in large truncation error. To reduce the truncation error, several finite-difference methods have been designed and implemented. The present investigation has the objective to provide another method of computing the sigma-coordinate pressure gradient force. Phillips' method is applied for the elimination of a hydrostatic component to a flux formulation. The new technique is compared with four other methods for computing the pressure gradient force. The work is motivated by the desire to use an isentropic and sigma-coordinate hybrid model for experiments designed to study flow near mountainous terrain.
NASA Technical Reports Server (NTRS)
Schobeiri, M. T.; John, J.
1996-01-01
The turbomachinery wake flow development is largely influenced by streamline curvature and streamwise pressure gradient. The objective of this investigation is to study the development of the wake under the influence of streamline curvature and streamwise pressure gradient. The experimental investigation is carried out in two phases. The first phase involves the study of the wake behind a stationary circular cylinder (steady wake) in curved channels at positive, zero, and negative streamwise pressure gradients. The mean velocity and Reynolds stress components are measured using a X-hot-film probe. The measured quantities obtained in probe coordinates are transformed to a curvilinear coordinate system along the wake centerline and are presented in similarity coordinates. The results of the steady wakes suggest strong asymmetry in velocity and Reynolds stress components. However, the velocity defect profiles in similarity coordinates are almost symmetrical and follow the same distribution as the zero pressure gradient straight wake. The results of Reynolds stress distributions show higher values on the inner side of the wake than the outer side. Other quantities, including the decay of maximum velocity defect, growth of wake width, and wake integral parameters, are also presented for the three different pressure gradient cases of steady wake. The decay rate of velocity defect is fastest for the negative streamwise pressure gradient case and slowest for the positive pressure gradient case. Conversely, the growth of the wake width is fastest for the positive streamwise pressure gradient case and slowest for the negative streamwise pressure gradient. The second phase studies the development of periodic unsteady wakes generated by the circular cylinders of the rotating wake generator in a curved channel at zero streamwise pressure gradient. Instantaneous velocity components of the periodic unsteady wakes, measured with a stationary X-hot-film probe, are analyzed by the
Weakly relativistic solitons in a cold plasma with electron inertia
Kalita, B.C.; Barman, S.N.; Goswami, G.
1996-01-01
Ion-acoustic solitons have been investigated in a cold plasma in the presence of electron inertia through the derivation of the Korteweg{endash}de Vries (KdV) equation taking into account of weakly relativistic effects. Interestingly, relativistic solitons of both compressive and rarefactive characters are found to exist at the negligible difference of {ital u}{sub 0}/{ital c} and {ital v}{sub 0}/{ital c} ({ital u}{sub 0}, {ital v}{sub 0} being the initial speeds of streaming electrons and ions respectively, and {ital c}, the velocity of light) of the order 1{times}10{sup -7}. {copyright} {ital 1996 American Institute of Physics.}
NASA Technical Reports Server (NTRS)
Dussauge, J. P.; Debieve, J. F.
1980-01-01
The amplification or reduction of unsteady velocity perturbations under the influence of strong flow acceleration or deceleration was studied. Supersonic flows with large velocity, pressure gradients, and the conditions in which the velocity fluctuations depend on the action of the average gradients of pressure and velocity rather than turbulence, are described. Results are analyzed statistically and interpreted as a return to laminar process. It is shown that this return to laminar implies negative values in the turbulence production terms for kinetic energy. A simple geometrical representation of the Reynolds stress production is given.
Afreen, F; Zobayed, S M A; Armstrong, J; Armstrong, W
2007-01-01
Emergent aquatic macrophytes growing in waterlogged anaerobic sediments overlain by deep water require particularly efficient ventilating systems. In Phragmites australis (Cav.) Trin. ex Steud, pressurized gas flows, generated by humidity-induced diffusion of air into leaf sheaths, enhance oxygen transport to below-ground parts and aid in the removal of respiratory CO2 and sediment-generated CO2 and methane. Although modelling and flow measurements have pointed to the probable involvement of all leaf sheaths in the flow process and the development of pressure gradients along the whole lengths of living culm and leaf sheaths, direct measurements of pressure gradients have never been reported. The aim of this study was to search for pressure gradient development in Phragmites culms and leaf sheaths and to determine their magnitudes and distribution. In addition, dynamic (with gas flow) and static pressures (no flow condition) and their relationship to flows, leaf sheath areas, and living-to-dead culm ratios were further investigated. Dynamic pressures (DeltaPd) recorded in the pith cavities of intact (non-excised) leafy culms, pneumatically isolated from the below-ground parts and venting through an artificial bore-hole near the base, revealed a curvilinear gradient of pressure 'asymptoting' towards the tips of the culms. Similarly, DeltaPd in upper and lower parts of leaf sheaths increased with distance from the base of the culm, with values in the upper parts always being greater. Curvilinear gradients of pressure were also found along pneumatically isolated individual leaf sheaths, but radial channels linking the leaf sheath aerenchyma with the pith cavity of the culm appeared to offer little resistance to flow. In keeping with predictions, static pressure differentials (DeltaPs) achieved in intact and excised culms and single leaf sheaths on intact culms proved to be relatively independent of leaf sheath area, whereas the potential for developing convective flows
NASA Technical Reports Server (NTRS)
Kreskovsky, J. P.; Shamroth, S. J.; Mcdonald, H.
1975-01-01
Theoretical predictions of turbulent boundary layer development under the influence of strong favorable pressure gradients made using a finite-difference calculation procedure are compared to experimental data. Comparisons are presented for low speed flows with and without wall heat transfer as well as for supersonic flows with adiabatic walls. The turbulence model used is governed by an integral form of the turbulence kinetic energy equation and the results are compared with predictions made using a conventional equilibrium turbulence model based upon Prandtl's mixing length, a Clauser-type eddy viscosity model used by Cebecci and Mosinskis, and a two-equation turbulence energy model of Launder and Jones.
Kekre, Rahul; Butler, Jason E; Ladd, Anthony J C
2010-11-01
Experiments have shown that DNA molecules in capillary electrophoresis migrate across field lines if a pressure gradient is applied simultaneously. We suggest that this migration results from an electrically driven flow field around the polyelectrolyte, which generates additional contributions to the center-of-mass velocity if the overall polymer conformation is asymmetric. This hypothesis leads to a coarse-grained polymer model, without explicit charges, that quantitatively explains the experimentally observed migration. The simulations contradict the widely held notion that charge neutrality eliminates the effects of hydrodynamic interactions in electrically driven flows of polyelectrolytes. We predict a measurable increase in the electrophoretic velocity of a sheared polyelectrolyte that depends on chain length.
NASA Technical Reports Server (NTRS)
Conley, Julianne M.; Leonard, B. P.
1994-01-01
The modified mixing length (MML) turbulence model was installed in the Proteus Navier-Stokes code, then modified to make it applicable to a wider range of flows typical of aerospace propulsion applications. The modifications are based on experimental data for three flat-plate flows having zero, mild adverse, and strong adverse pressure gradients. Three transonic diffuser test cases were run with the new version of the model in order to evaluate its performance. All results are compared with experimental data and show improvements over calculations made using the Baldwin-Lomax turbulence model, the standard algebraic model in Proteus.
NASA Astrophysics Data System (ADS)
Katz, Y.; Seifert, A.; Wygnanski, I.
1990-12-01
An investigation is conducted of the evolution of a turbulent spot in an accelerating boundary layer which faithfully resembles the flow in the vicinity of a stagnation point theoretically characterized by Falkner and Skan. The spot's rate of growth was substantially inhibited by the favorable pressure gradient in all three directions. Dimensional analysis was used to identify and correlate the independent variables responsible for the spot's size, convection speed, and relative rate of growth. The arrowhead shape of the spot gave way to a rounded triangular shape whose trailing interface was straight and perpendicular to the direction of streaming.
Skryabin, Dmitry V.; Champneys, Alan R.
2001-06-01
A family of walking solitons is obtained for the degenerate optical parametric oscillator below threshold. The loss-driven mechanism of velocity selection for these structures is described analytically and numerically. Our approach is based on understanding the role played by the field momentum and generic symmetry properties and, therefore, it can be easily generalized to other dissipative multicomponent models with walk off.
Moving embedded lattice solitons.
Malomed, B A; Fujioka, J; Espinosa-Cerón, A; Rodríguez, R F; González, S
2006-03-01
It was recently proved that solitons embedded in the spectrum of linear waves may exist in discrete systems, and explicit solutions for isolated unstable embedded lattice solitons (ELS) of a differential-difference version of a higher-order nonlinear Schrodinger equation were found [Gonzalez-Perez-Sandi, Fujioka, and Malomed, Physica D 197, 86 (2004)]. The discovery of these ELS gives rise to relevant questions such as the following: (1) Are there continuous families of ELS? (2) Can ELS be stable? (3) Is it possible for ELS to move along the lattice? (4) How do ELS interact? The present work addresses these questions by showing that a novel equation (a discrete version of a complex modified Korteweg-de Vries equation that includes next-nearest-neighbor couplings) has a two-parameter continuous family of exact ELS. These solitons can move with arbitrary velocities across the lattice, and the numerical simulations demonstrate that these ELS are completely stable. Moreover, the numerical tests show that these ELS are robust enough to withstand collisions, and the result of a collision is only a shift in the positions of the solitons. The model may apply to the description of a Bose-Einstein condensate with dipole-dipole interactions between the atoms, trapped in a deep optical-lattice potential.
Shi, F.; Hanes, D.M.; Kirby, J.T.; Erikson, L.; Barnard, P.; Eshleman, J.
2011-01-01
The nearshore circulation induced by a focused pattern of surface gravity waves is studied at a beach adjacent to a major inlet with a large ebb tidal shoal. Using a coupled wave and wave-averaged nearshore circulation model, it is found that the nearshore circulation is significantly affected by the heterogeneous wave patterns caused by wave refraction over the ebb tidal shoal. The model is used to predict waves and currents during field experiments conducted near the mouth of San Francisco Bay and nearby Ocean Beach. The field measurements indicate strong spatial variations in current magnitude and direction and in wave height and direction along Ocean Beach and across the ebb tidal shoal. Numerical simulations suggest that wave refraction over the ebb tidal shoal causes wave focusing toward a narrow region at Ocean Beach. Due to the resulting spatial variation in nearshore wave height, wave-induced setup exhibits a strong alongshore nonuniformity, resulting in a dramatic change in the pressure field compared to a simulation with only tidal forcing. The analysis of momentum balances inside the surf zone shows that, under wave conditions with intensive wave focusing, the alongshore pressure gradient associated with alongshore nonuniform wave setup can be a dominant force driving circulation, inducing heterogeneous alongshore currents. Pressure-gradient- forced alongshore currents can exhibit flow reversals and flow convergence or divergence, in contrast to the uniform alongshore currents typically caused by tides or homogeneous waves.
NASA Astrophysics Data System (ADS)
Gambolati, Giuseppe; Ferronato, Massimiliano; Teatini, Pietro; Deidda, Roberto; Lecca, Giuditta
2001-04-01
The solution of the poroelastic equations for predicting land subsidence above productive gas/oil fields may be addressed by the principle of virtual works using either the effective intergranular stress, with the pore pressure gradient regarded as a distributed body force, or the total stress incorporating the pore pressure. In the finite element (FE) method both approaches prove equivalent at the global assembled level. However, at the element level apparently the equivalence does not hold, and the strength source related to the pore pressure seems to generate different local forces on the element nodes. The two formulations are briefly reviewed and discussed for triangular and tetrahedral finite elements. They are shown to yield different results at the global level as well in a three-dimensional axisymmetric porous medium if the FE integration is performed using the average element-wise radius. A modification to both formulations is suggested which allows to correctly solve the problem of a finite reservoir with an infinite pressure gradient, i.e. with a pore pressure discontinuity on its boundary.
All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser
Zhang, Z.; Popa, D. Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C.; Ilday, F. Ö.
2015-12-14
We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.
All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser
NASA Astrophysics Data System (ADS)
Zhang, Z.; Popa, D.; Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C.; Ilday, F. Ö.
2015-12-01
We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.
Biological soliton in multicellular movement
NASA Astrophysics Data System (ADS)
Kuwayama, Hidekazu; Ishida, Shuji
2013-07-01
Solitons have been observed in various physical phenomena. Here, we show that the distinct characteristics of solitons are present in the mass cell movement of non-chemotactic mutants of the cellular slime mould Dictyostelium discoideum. During starvation, D. discoideum forms multicellular structures that differentiate into spore or stalk cells and, eventually, a fruiting body. Non-chemotactic mutant cells do not form multicellular structures; however, they do undergo mass cell movement in the form of a pulsatile soliton-like structure (SLS). We also found that SLS induction is mediated by adhesive cell-cell interactions. These observations provide novel insights into the mechanisms of biological solitons in multicellular movement.
Calculation methods for compressible turbulent boundary layers
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.
1976-01-01
Calculation procedures for non-reacting compressible two- and three-dimensional turbulent boundary layers were reviewed. Integral, transformation and correlation methods, as well as finite difference solutions of the complete boundary layer equations summarized. Alternative numerical solution procedures were examined, and both mean field and mean turbulence field closure models were considered. Physics and related calculation problems peculiar to compressible turbulent boundary layers are described. A catalog of available solution procedures of the finite difference, finite element, and method of weighted residuals genre is included. Influence of compressibility, low Reynolds number, wall blowing, and pressure gradient upon mean field closure constants are reported.
Bermejo, J; Antoranz, J C; Yotti, R; Moreno, M; García-Fernández, M A
2001-05-01
Doppler assessment of intracardiac pressure gradients using the simplified Bernoulli equation is inaccurate in the absence of a restricted orifice. The purpose of this study is to develop a new general method to map instantaneous pressure gradients inside the heart using Doppler echocardiography. Color Doppler M-mode recordings are digitally postprocessed with a software algorithm that decodes flow velocity and fits a bivariate spatio-temporal tensor-product smoothing spline. Temporal and spatial accelerations are then calculated by analytical derivation of the fitted velocity data, allowing solution of both inertial and convective terms of Euler's equation. A database of 39 transmitral inflow and transaortic outflow color Doppler M-mode recordings from 20 patients with a number of cardiac conditions was analysed, along with matched pulsed-wave spectral recordings. A close agreement was observed between the spectral and postprocessed color Doppler velocity values (error = 0.8 +/- 11.7 cm/s), validating the data decoding and fitting process. Spatio-temporal pressure-gradient maps were obtained from all studies, allowing visualisation of instantaneous pressure gradients from the atrium to the apex during left ventricular filling, and from the apex to the outflow tract during ejection. Instantaneous pressure differences between localised intracardiac sample points closely matched previously published catheterization findings, both in magnitude and waveform shape. Our method shows that intracardiac instantaneous pressure gradients can be analysed noninvasively using color Doppler M-mode echocardiography combined with image postprocessing methods.
NASA Astrophysics Data System (ADS)
Cotrell, David L.; Pearlstein, Arne J.
2000-11-01
We report computations of the velocity field for flows driven by rotation of a screw in a circular cylinder with an applied opposing pressure gradient. Use of a helical coordinate system in a frame rotating with the screw reduces the flow calculation to a steady one, which is taken to be fully-developed in the helical direction. The full incompressible Navier-Stokes equations in primitive-variables form are solved numerically using a finite-element method employing quadrilateral elements with quadratic velocity and linear pressure interpolation. A consistent penalty method is used to satisfy incompressibility. The screw cross-section is rectangular. The effect of screw clearance and other geometric parameters on the velocity field will be discussed for low and intermediate Reynolds numbers and compared to the Stokes flow case.
NASA Astrophysics Data System (ADS)
Tutkun, M.; Johansson, P. B. V.; George, W. K.; Stanislas, M.; Foucaut, J. M.; Kostas, J.; Coudert, S.; Delville, J.
2006-11-01
Zero pressure gradient flat plate boundary layer experiments have been performed in the 20 meter long test section of the Laboratoire de M'ecanique de Lille, LML, wind tunnel. Measurements were carried out at Reθ=10 000 and Reθ=20 000 using synchronized PIV and a hot wire anemometry rake. The boundary layer thickness at the measurement location was about 30 cm. A hot wire rake of 143 probes was placed in the test section of the wind tunnel to provide the time history of the boundary layer. 2 stereo PIV systems in the wallnormal-spanwise (YZ) plane, and 1 stereo PIV system to record in the streamwise-wallnormal (XY) were used. One high repetition PIV system was used in streamwise-spanwise (XZ) plane. The sampling frequency of the XZ PIV system was 3000 VF/s at Reθ=20 000 and 1500 VF/s at Reθ=10 000.
Federspiel, L.; Labit, B.; Ricci, P.; Fasoli, A.; Furno, I.; Theiler, C.
2009-09-15
The existence of a critical pressure gradient needed to drive the interchange instability is experimentally demonstrated in the simple magnetized torus TORoidal Plasma EXperiment [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)]. This gradient is reached during a scan in the neutral gas pressure p{sub n}. Around a critical value for p{sub n}, depending on the magnetic configuration and on the injected rf power, a small increase in the neutral gas pressure triggers a transition in the plasma behavior. The pressure profile is locally flattened, stabilizing the interchange mode observed at lower neutral gas densities. The measured value for the critical gradient is close to the linear theory estimate.
NASA Technical Reports Server (NTRS)
Simpson, R. L.
1984-01-01
Experimental data were obtained on blade self-noise generation by strong adverse-pressure-gradient attached boundary layers and by separated turbulent boundary layers that accompany stall. Two microphones were calibrated, placed in plastic housing, and installed in a wind tunnel where observations of acoustic and turbulent signals permitted decomposition of the surface pressure fluctuation signals into the propagated acoustic part and the turbulent-flow generated portion. To determine the convective wave speed of the turbulent contributions, the microphones were spaced a small distance apart in the streamwise direction and correlations were obtained. The turbulent surface pressure spectra upstream of detachment and downstream of the beginning of separation are discussed as well as measurements of turbulent velocity spectra and wavespeeds.
NASA Astrophysics Data System (ADS)
Campitelli, Gennaro
The study of transitional flows is considered crucial for many practical engineering applications. In fact, a comprehensive understanding of the laminar-turbulent transition phenomenon often helps to improve the overall performance of apparatuses such as airfoils, wind turbines, hulls and turbomachinery blades. In addition to understanding and prediction of transitional flows, active research continues in the area of boundary layer control, which includes control of phenomena such as flow separation and transition. For instance, optimum geometrical shaping may be followed by the adoption on the wall-surface of riblets to adjust pressure gradient and reduce drag. Further "flow control" may also be acquired by introducing active devices able to modify the flow field in order to accomplish a desired aerodynamic task. Such flow manipulation is often achieved by using time-dependent forcing mechanisms which promote natural instabilities amplifying the control effectiveness. Localized energy inputs such as Lorentz-force actuator, piezoelectric flaps and synthetic jets all produce a consistent boundary layer mixing enhancement with lift increase and drag abatement. The current numerical study attempts to demonstrate the efficacy of dynamic roughness (DR) on altering separated-reattached transitional flows under adverse pressure gradient. It has already been proven how DR, acting on the boundary sublayer perturbation, is able to suppress (partially or completely) the typical leading edge separation for an airfoil at different angles of attack. This makes DR particularly suitable for separated flow control applications where the shear layer reattaches presenting the characteristic laminar separation bubble. A numerical sensitivity study has been conducted with an efficient orthogonal design taking into account four different control parameters on three levels (actuation frequency, humps height, rows displacement, synchronization) to provide an optimum DR setup which limits
Han, Jiu-Ning Luo, Jun-Hua; Li, Jun-Xiu; Li, Sheng-Chang; Liu, Shi-Wei; Yang, Yang; Duan, Wen-Shan; Han, Juan-Fang
2015-06-15
We study the basic physical properties of composite nonlinear structure induced by the head-on collision of magnetosonic solitons. Solitary waves are assumed to propagate in a quantum electron-ion magnetoplasma with spin-1/2 degenerate electrons. The main interest of the present work is to investigate the time evolution of the merged composite structure during a specific time interval of the wave interaction process. We consider three cases of colliding-situation, namely, compressive-rarefactive solitons interaction, compressive-compressive solitons interaction, and rarefactive-rarefactive solitons interaction, respectively. Compared with the last two colliding cases, the changing process of the composite structure is more complex for the first situation. Moreover, it is found that they are obviously different for the last two colliding cases.
Breather soliton dynamics in microresonators
NASA Astrophysics Data System (ADS)
Yu, Mengjie; Jang, Jae K.; Okawachi, Yoshitomo; Griffith, Austin G.; Luke, Kevin; Miller, Steven A.; Ji, Xingchen; Lipson, Michal; Gaeta, Alexander L.
2017-02-01
The generation of temporal cavity solitons in microresonators results in coherent low-noise optical frequency combs that are critical for applications in spectroscopy, astronomy, navigation or telecommunications. Breather solitons also form an important part of many different classes of nonlinear wave systems, manifesting themselves as a localized temporal structure that exhibits oscillatory behaviour. To date, the dynamics of breather solitons in microresonators remains largely unexplored, and its experimental characterization is challenging. Here we demonstrate the excitation of breather solitons in two different microresonator platforms based on silicon nitride and on silicon. We investigate the dependence of the breathing frequency on pump detuning and observe the transition from period-1 to period-2 oscillation. Our study constitutes a significant contribution to understanding the soliton dynamics within the larger context of nonlinear science.
Breather soliton dynamics in microresonators
Yu, Mengjie; Jang, Jae K.; Okawachi, Yoshitomo; Griffith, Austin G.; Luke, Kevin; Miller, Steven A.; Ji, Xingchen; Lipson, Michal; Gaeta, Alexander L.
2017-01-01
The generation of temporal cavity solitons in microresonators results in coherent low-noise optical frequency combs that are critical for applications in spectroscopy, astronomy, navigation or telecommunications. Breather solitons also form an important part of many different classes of nonlinear wave systems, manifesting themselves as a localized temporal structure that exhibits oscillatory behaviour. To date, the dynamics of breather solitons in microresonators remains largely unexplored, and its experimental characterization is challenging. Here we demonstrate the excitation of breather solitons in two different microresonator platforms based on silicon nitride and on silicon. We investigate the dependence of the breathing frequency on pump detuning and observe the transition from period-1 to period-2 oscillation. Our study constitutes a significant contribution to understanding the soliton dynamics within the larger context of nonlinear science. PMID:28232720
Solitons in generalized Galileon theories
NASA Astrophysics Data System (ADS)
Carrillo González, Mariana; Masoumi, Ali; Solomon, Adam R.; Trodden, Mark
2016-12-01
We consider the existence and stability of solitons in generalized Galileons, scalar-field theories with higher-derivative interactions but second-order equations of motion. It has previously been proven that no stable, static solitons exist in a single Galileon theory using an argument invoking the existence of zero modes for the perturbations. Here we analyze the applicability of this argument to generalized Galileons and discuss how this may be avoided by having potential terms in the energy functional for the perturbations or by including time dependence. Given the presence of potential terms in the Lagrangian for the perturbations, we find that stable, static solitons are not ruled out in conformal and (anti-)de Sitter Galileons. For the case of Dirac-Born-Infeld and conformal Galileons, we find that solitonic solutions moving at the speed of light exist, the former being stable and the latter unstable if the background soliton satisfies a certain condition.
Dissipative ring solitons with vorticity.
Soto-Crespo, J M; Akhmediev, N; Mejia-Cortés, C; Devine, N
2009-03-16
We study dissipative ring solitons with vorticity in the frame of the (2+1)-dimensional cubic-quintic complex Ginzburg-Landau equation. In dissipative media, radially symmetric ring structures with any vorticity m can be stable in a finite range of parameters. Beyond the region of stability, the solitons lose the radial symmetry but may remain stable, keeping the same value of the topological charge. We have found bifurcations into solitons with n-fold bending symmetry, with n independent on m. Solitons without circular symmetry can also display (m + 1)-fold modulation behaviour. A sequence of bifurcations can transform the ring soliton into a pulsating or chaotic state which keeps the same value of the topological charge as the original ring.
Thermophoresis of an antiferromagnetic soliton
NASA Astrophysics Data System (ADS)
Kim, Se Kwon; Tchernyshyov, Oleg; Tserkovnyak, Yaroslav
2015-07-01
We study the dynamics of an antiferromagnetic soliton under a temperature gradient. To this end, we start by phenomenologically constructing the stochastic Landau-Lifshitz-Gilbert equation for an antiferromagnet with the aid of the fluctuation-dissipation theorem. We then derive the Langevin equation for the soliton's center of mass by the collective coordinate approach. An antiferromagentic soliton behaves as a classical massive particle immersed in a viscous medium. By considering a thermodynamic ensemble of solitons, we obtain the Fokker-Planck equation, from which we extract the average drift velocity of a soliton. The diffusion coefficient is inversely proportional to a small damping constant α , which can yield a drift velocity of tens of m/s under a temperature gradient of 1 K/mm for a domain wall in an easy-axis antiferromagnetic wire with α ˜10-4 .
NASA Astrophysics Data System (ADS)
Gomes, J. N.; Wang, Qiaoling; Xia, Changyu
2017-04-01
We introduce the concept h-almost Ricci soliton which extends naturally the almost Ricci soliton by Pigola-Rigoli-Rimoldi-Setti and show that a compact nontrivial h-almost Ricci soliton of dimension no less than three with h having defined signal and constant scalar curvature is isometric to a standard sphere with the potential function well determined. We also consider the h-Ricci soliton which is a particular case of the h-almost Ricci soliton and a generalization of the Ricci soliton and give characterizations for a special class of gradient h-Ricci solitons.
Musammil, N M; Porsezian, K; Subha, P A; Nithyanandan, K
2017-02-01
We investigate the dynamics of vector dark solitons propagation using variable coefficient coupled nonlinear Schrödinger (Vc-CNLS) equation. The dark soliton propagation and evolution dynamics in the inhomogeneous system are studied analytically by employing the Hirota bilinear method. It is apparent from our asymptotic analysis that the collision between the dark solitons is elastic in nature. The various inhomogeneous effects on the evolution and interaction between dark solitons are explored, with a particular emphasis on nonlinear tunneling. It is found that the tunneling of the soliton depends on a condition related to the height of the barrier and the amplitude of the soliton. The intensity of the tunneling soliton either forms a peak or a valley, thus retaining its shape after tunneling. For the case of exponential background, the soliton tends to compress after tunneling through the barrier/well. Thus, a comprehensive study of dark soliton pulse evolution and propagation dynamics in Vc-CNLS equation is presented in the paper.
Gray solitons on the surface of water.
Chabchoub, A; Kimmoun, O; Branger, H; Kharif, C; Hoffmann, N; Onorato, M; Akhmediev, N
2014-01-01
The dynamics of surface gravity water waves can be described by the self-defocusing nonlinear Schrödinger equation. Recent observations of black solitons on the surface of water confirmed its validity for finite, below critical depth. The black soliton is a limiting case of a family of gray soliton solutions with finite amplitude depressions. Here, we report observations of gray solitons in water waves, thus, complementing our previous observations of black solitons.
Davydov Solitons in Polypeptides
NASA Astrophysics Data System (ADS)
Scott, A. C.
1985-08-01
The experimental evidence for self-trapping of amide-I (CO stretching) vibrational energy in crystalline acetanilide (a model protein) is reviewed and related to A. S. Davydov's theory of solitons as a mechanism for energy storage and transport in protein. Particular attention is paid to the construction of quantum states that contain N amide-I vibrational quanta. It is noted that the `N = 2' state is almost exactly resonant with the free energy that is released upon hydrolysis of adenosine triphosphate.
Davydov solitons in polypeptides
Scott, A.
1984-10-01
The experimental evidence for self-trapping of amide-I (CO stretching) vibrational energy in crystalline acetanilide (a model protein) is reviewed and related to A. S. Davydov's theory of solitons as a mechanism for energy storage and transport in protein. Particular attention is paid to the construction of quantum states that contain N amide-I vibrational quanta. It is noted that the N = 2 state is almost exactly resonant with the free energy that is released upon hydrolysis of adenosine triphosphate. 30 references, 4 figures, 3 tables.
Deceleration of the small solitons in the soliton lattice: KdV-type framework
NASA Astrophysics Data System (ADS)
Shurgalina, Ekaterina; Gorshkov, Konstantin; Talipova, Tatiana; Pelinovsky, Efim
2016-04-01
As it is known the solitary waves (solitons) in the KdV-systems move with speed which exceeds the speed of propagation of long linear waves (sound speed). Due to interaction between them, solitons do not lose their individuality (elastic interaction). Binary interaction of neigborough solitons is the major contribution in the dynamics of soliton gas. Taking into account the integrability of the classic and modified Korteweg-de Vries equations the process of the soliton interaction can be analyzed in the framework of the rigorous analytical two-soliton solutions. Main physical conclusion from this solution is the phase shift which is positive for large solitons and negative for small solitons. This fact influences the average velocity of individual soliton in the soliton lattice or soliton gas. We demonstrate that soliton of relative small amplitude moves in soliton gas in average in opposite (negative) direction, meanwhile a free soliton moves always in the right direction. Approximated analytical theory is created for the soliton motion in the periodic lattice of big solitons of the same amplitudes, and the critical amplitude of the small soliton changed its averaged speed is found. Numerical simulation is conducted for a statistical assembly of solitons with random amplitudes and phases. The application of developed theory to the long surface and internal waves is discussed.
NASA Technical Reports Server (NTRS)
Wheeler, Richard R., Jr.; Holtsnider, John T.; Dahl, Roger W.; Deeks, Dalton; Javanovic, Goran N.; Parker, James M.; Ehlert, Jim
2013-01-01
Advances in the understanding of multiphase flow characteristics under variable gravity conditions will ultimately lead to improved and as of yet unknown process designs for advanced space missions. Such novel processes will be of paramount importance to the success of future manned space exploration as we venture into our solar system and beyond. In addition, because of the ubiquitous nature and vital importance of biological and environmental processes involving airwater mixtures, knowledge gained about fundamental interactions and the governing properties of these mixtures will clearly benefit the quality of life here on our home planet. The techniques addressed in the current research involving multiphase transport in porous media and gas-liquid phase separation using capillary pressure gradients are also a logical candidate for a future International Space Station (ISS) flight experiment. Importantly, the novel and potentially very accurate Lattice-Boltzmann (LB) modeling of multiphase transport in porous media developed in this work offers significantly improved predictions of real world fluid physics phenomena, thereby promoting advanced process designs for both space and terrestrial applications.This 3-year research effort has culminated in the design and testing of a zero-g demonstration prototype. Both the hydrophilic (glass) and hydrophobic (Teflon) media Capillary Pressure Gradient (CPG) cartridges prepared during the second years work were evaluated. Results obtained from ground testing at 1-g were compared to those obtained at reduced gravities spanning Martian (13-g), Lunar (16-g) and zero-g. These comparisons clearly demonstrate the relative strength of the CPG phenomena and the efficacy of its application to meet NASAs unique gas-liquid separation (GLS) requirements in non-terrestrial environments.LB modeling software, developed concurrently with the zero-g test effort, was shown to accurately reproduce observed CPG driven gas-liquid separation
Chua, Gim Chuah; Snowden, Sue; Patel, Uday
2004-11-15
Significant transplant renal artery stenosis (TRAS) results in an intraarterial pressure gradient and increasing graft dysfunction correctable by endovascular therapy. Kinks of the transplant artery cause velocity gradients on Doppler ultrasound, but some will have no intraarterial pressure gradient across the kink. It is not known whether these nonflow limiting kinks progress further to threaten graft function and should undergo endovascular correction. This is a longitudinal study of conservatively managed arterial kinks to define their natural history. Fourteen patients who had undergone angiography over a 5-year period for suspected TRAS had kinks of the renal artery. True intraarterial pressures were measured in all cases by slow withdrawal of an end-hole catheter after intraarterial injection of a vasodilator. Those with a significant pressure change ({>=}10% change in peak systolic pressure across the area of suspicion) underwent endovascular treatment. The rest were managed conservatively, with maximal antihypertensive therapy. Outcome of all 14 cases was determined by follow-up of creatinine levels, blood pressure (BP) control and graft outcome over a 3-5-year period (median 4 years). Of the 14 patients with kinks, 10 were male and 4 female; age range 23-67 years (mean 47 years). Eleven had received cadaveric transplants and 3 were allografts; 12 had end-to-side and 2 end-to-end anastomosis, 11/14 cases had an intraarterial pressure ratio of <10% and at median 4 years follow-up on conservative treatment, the serum creatinine of these 11 patients did not differ significantly from those who underwent successful endovascular treatment (mean 118 {mu}mol/l versus 149 {mu}mol/l; p = 0.30, Mann Whitney test). Mean blood pressure was 137/82 mmHg, with a range of 124-155/56-95 mmHg. Only one patient has required an unexplainable increase in antihypertensive medication. Grafts (2/11) were lost and both had chronic rejection on histology. There were no unexplained
Chua, Gim Chuah; Snowden, Sue; Patel, Uday
2004-01-01
Significant transplant renal artery stenosis (TRAS) results in an intraarterial pressure gradient and increasing graft dysfunction correctable by endovascular therapy. Kinks of the transplant artery cause velocity gradients on Doppler ultrasound, but some will have no intraarterial pressure gradient across the kink. It is not known whether these nonflow limiting kinks progress further to threaten graft function and should undergo endovascular correction. This is a longitudinal study of conservatively managed arterial kinks to define their natural history. Fourteen patients who had undergone angiography over a 5-year period for suspected TRAS had kinks of the renal artery. True intraarterial pressures were measured in all cases by slow withdrawal of an end-hole catheter after intraarterial injection of a vasodilator. Those with a significant pressure change (> or =10% change in peak systolic pressure across the area of suspicion) underwent endovascular treatment. The rest were managed conservatively, with maximal antihypertensive therapy. Outcome of all 14 cases was determined by follow-up of creatinine levels, blood pressure (BP) control and graft outcome over a 3-5-year period (median 4 years). Of the 14 patients with kinks, 10 were male and 4 female; age range 23-67 years (mean 47 years). Eleven had received cadaveric transplants and 3 were allografts; 12 had end-to-side and 2 end-to-end anastomosis, 11/14 cases had an intraarterial pressure ratio of <10% and at median 4 years follow-up on conservative treatment, the serum creatinine of these 11 patients did not differ significantly from those who underwent successful endovascular treatment (mean 118 micromol/l versus 149 micromol/l; p = 0.30, Mann Whitney test). Mean blood pressure was 137/82 mmHg, with a range of 124-155/56-95 mmHg. Only one patient has required an unexplainable increase in antihypertensive medication. Grafts (2/11) were lost and both had chronic rejection on histology. There were no
Quantum reduplication of classical solitons
NASA Astrophysics Data System (ADS)
Sveshnikov, Konstantin
1993-09-01
The possible existence of a series of quantum copies of classical soliton solutions is discussed, which do not exist when the effective Planck constant of the theory γ tends to zero. Within the conventional weak-coupling expansion in √ γ such non-classical solitons are O(√ γ) in energy and therefore lie in between the true classical solutions and elementary quantum excitations. Analytic results concerning the shape functions, masses and characteristic scales of such quantum excitations are given for soliton models of a self-interacting scalar field. Stability properties and quantization of fluctuations in the neighborhood of these configurations are also discussed in detail.
Soliton solutions for Davydov solitons in α-helix proteins
NASA Astrophysics Data System (ADS)
Taghizadeh, N.; Zhou, Qin; Ekici, M.; Mirzazadeh, M.
2017-02-01
The propagation equation for describing Davydov solitons in α-helix proteins has been investigated analytically. There are seven integration tools to extract analytical soliton solutions. They are the Ricatti equation expansion approach, ansatz scheme, improved extended tanh-equation method, the extend exp(-Ψ(τ)) -expansion method, the extended Jacobi elliptic function expansion method, the extended trial equation method and the extended G ' / G - expansion method.
D'Enfert, J; Mathieu-Daudé, J C; Grolleau, D; Saussine, M; Allien, M; Chaptal, P A; du Cailar, J
1980-01-01
Variations in oncotic pressure-pulmonary artery diastolic pressure gradient and in intrapulmonary shunt were studied in two groups of patients undergoing surgery with extracorporeal circulation for aortocoronary bypass of excision of an aneurysm. The two groups, differed only in terms of the E.C.C. bath (Group A: Ringer Lactate; Group B: DDextran 60,000). The effects of E.C.C. on these parameters were as follows: - decrease in both groups in the gradient (OP-PAP) (respectively P < 0.001 and P < 0.01) but with a more marked decrease in group A than in group B (P < 0.05) with non-negativisation of the gradient in that group; - non-significant variations in Qs/Qt in both groups without any correlation with gradient (OP-PAP). The onset of pulmonary oedema associated with a decrease in gradient (OP-PAP) leads to the suggestion of the use of Dextrans in pathological situations where OP is low or PAP high and all the more so when both of these factors are present.
Asymptotic theory of two-phase gas-solid flow through a vertical tube at moderate pressure gradient
NASA Astrophysics Data System (ADS)
Sergeev, Y. A.; Zhurov, A. I.
1997-02-01
Based on the equations, constitutive relations and boundary conditions of the kinetic theory of colliding particles in a gas-solid suspension, the approximate theory of the steady, developed vertical flow of a gas-particulate mixture is developed for the case of moderate gas pressure gradient in a vertical tube. The basic equations and boundary conditions show a singular behaviour of the solution of the problem at the wall. The method of matched asymptotic expansions is applied to develop a boundary layer-type theory for the flow parameters of the particulate phase. The basic equations in the bulk flow are reduced to a system of two ordinary integrodifferential equations for the particle-phase concentration and mean kinetic energy of particle velocity fluctuations (particle-phase pseudotemperature). The distributions of the particle concentration and velocity are found in both the bulk and the boundary layer. The solutions shows the bifurcation of flow parameters, and an explicit criterion is derived to identify a range of the given macroscopic parameters corresponding to upward or downward particulate flow. The integrated parameters (total fluxes of the gas and particle phase) are calculated.
NASA Astrophysics Data System (ADS)
Azih, C.; Brinkerhoff, J. R.; Yaras, M. I.
2012-02-01
Experimental research has long shown that forced-convective heat transfer in wall-bounded turbulent flows of fluids in the supercritical thermodynamic state is not accurately predicted by correlations that have been developed for single-phase fluids in the subcritical thermodynamic state. In the present computational study, the statistical properties of turbulent flow as well as the development of coherent flow structures in a zero-pressure-gradient flat-plate boundary layer are investigated in the absence of body forces, where the working fluid is in the supercritical thermodynamic state. The simulated boundary layers are developed to a friction Reynolds number of 250 for two heat-flux to mass-flux ratios corresponding to cases where normal heat transfer and improved heat transfer are observed. In the case where improved heat transfer is observed, spanwise spacing of the near-wall coherent flow structures is reduced due to a relatively less stable flow environment resulting from the lower magnitudes of the wall-normal viscosity-gradient profile.
Kim, Gaeun; Kim, Moon Young; Baik, Soon Koo
2017-01-01
Background/Aims Transient elastography (TE) has been proposed as a promising noninvasive alternative to hepatic venous pressure gradient (HVPG) for detecting portal hypertension (PH). However, previous studies have yielded conflicting results. We gathered evidence from literature on the clinical usefulness of TE versus HVPG for assessing PH. Methods We conducted a systematic review by searching databases for relevant literature evaluating the clinical usefulness of non-invasive TE for assessing PH in patients with cirrhosis. A literature search in Ovid Medline, EMBASE and the Cochrane Library was performed for all studies published prior to December 30, 2015. Results Eight studies (1,356 patients) met our inclusion criteria. For the detection of PH (HVPG ≥6 mmHg), the summary sensitivity and specificity were 0.88 (95% confidence interval [CI] 0.86-0.90) and 0.74 (95% CI 0.67-0.81), respectively. Regarding clinically significant PH (HVPG ≥10 mmHg), the summary sensitivity and specificity were 0.85 (95% CI 0.63-0.97) and 0.71 (95% CI 0.50-0.93), respectively. The overall correlation estimate of TE and HVPG was large (0.75, 95% CI: 0.65; 0.82, P<0.0001). Conclusions TE showed high accuracy and correlation for detecting the severity of PH. Therefore, TE shows promise as a reliable and non-invasive procedure for the evaluation of PH that should be integrated into clinical practice. PMID:28263953
Kornuta, Jeffrey A.; Dixon, J. Brandon
2015-01-01
In addition to external forces, collecting lymphatic vessels intrinsically contract to transport lymph from the extremities to the venous circulation. As a result, the lymphatic endothelium is routinely exposed to a wide range of dynamic mechanical forces, primarily fluid shear stress and circumferential stress, which have both been shown to affect lymphatic pumping activity. Although various ex-vivo perfusion systems exist to study this innate pumping activity in response to mechanical stimuli, none are capable of independently controlling the two primary mechanical forces affecting lymphatic contractility: transaxial pressure gradient, ΔP, which governs fluid shear stress; and average transmural pressure, Pavg, which governs circumferential stress. Hence, the authors describe a novel ex-vivo lymphatic perfusion system (ELPS) capable of independently controlling these two outputs using a linear, explicit model predictive control (MPC) algorithm. The ELPS is capable of reproducing arbitrary waveforms within the frequency range observed in the lymphatics in vivo, including a time-varying ΔP with a constant Pavg, time-varying ΔP and Pavg, and a constant ΔP with a time-varying Pavg. In addition, due to its implementation of syringes to actuate the working fluid, a post-hoc method of estimating both the flow rate through the vessel and fluid wall shear stress over multiple, long (5 sec) time windows is also described. PMID:24809724
NASA Astrophysics Data System (ADS)
Frerichs, H.; Schmitz, O.; Evans, T.; Feng, Y.; Reiter, D.
2015-07-01
High resolution plasma transport simulations with the EMC3-EIRENE code have been performed to address the parallel plasma flow structure in the boundary of a poloidal divertor configuration with non-axisymmetric perturbations at DIII-D. Simulation results show that a checkerboard pattern of flows with alternating direction is generated inside the separatrix. This pattern is aligned with the position of the main resonances (i.e., where the safety factor is equal to rational values q = m / n for a perturbation field with base mode number n): m pairs of alternating forward and backward flow channel exist for each resonance. The poloidal oscillations are aligned with the subharmonic Melnikov function, which indicates that the plasma flow is generated by parallel pressure gradients along perturbed field lines. An additional scrape-off layer-like domain is introduced by the perturbed separatrix which guides field lines from the interior to the divertor targets, resulting in an enhanced outward flow that is consistent with the experimentally observed particle pump-out effect. However, while the lobe structure of the perturbed separatrix is very well reflected in the temperature profile, the same lobes can appear to be smaller in the flow profile due to a competition between high upstream pressure and downstream particle sources driving flows in opposite directions.
NASA Technical Reports Server (NTRS)
Pedrosa, A. C. F.; Nagamatsu, H. T.; Hinckel, J. A.
1984-01-01
Heat transfer measurements were determined for a flat plate with and without pressure gradient for various free stream temperatures, wall temperature ratios, and Reynolds numbers for an inlet flow Mach number of 0.45, which is a representative inlet Mach number for gas turbine rotor blades. A shock tube generated the high temperature and pressure air flow, and a variable geometry test section was used to produce inlet flow Mach number of 0.45 and accelerate the flow over the plate to sonic velocity. Thin-film platinum heat gages recorded the local heat flux for laminar, transition, and turbulent boundary layers. The free stream temperatures varied from 611 R (339 K) to 3840 R (2133 K) for a T(w)/T(r,g) temperature ratio of 0.87 to 0.14. The Reynolds number over the heat gages varied from 3000 to 690,000. The experimental heat transfer data were correlated with laminar and turbulent boundary layer theories for the range of temperatures and Reynolds numbers and the transition phenomenon was examined.
Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.
2014-01-01
An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645
Thermodynamic volume of cosmological solitons
NASA Astrophysics Data System (ADS)
Mbarek, Saoussen; Mann, Robert B.
2017-02-01
We present explicit expressions of the thermodynamic volume inside and outside the cosmological horizon of Eguchi-Hanson solitons in general odd dimensions. These quantities are calculable and well-defined regardless of whether or not the regularity condition for the soliton is imposed. For the inner case, we show that the reverse isoperimetric inequality is not satisfied for general values of the soliton parameter a, though a narrow range exists for which the inequality does hold. For the outer case, we find that the mass Mout satisfies the maximal mass conjecture and the volume is positive. We also show that, by requiring Mout to yield the mass of dS spacetime when the soliton parameter vanishes, the associated cosmological volume is always positive.
Bell's Theorem and Entangled Solitons
NASA Astrophysics Data System (ADS)
Rybakov, Yu. P.; Kamalov, T. F.
2016-09-01
Entangled solitons construction being introduced in the nonlinear spinor field model, the Einstein—Podolsky—Rosen (EPR) spin correlation is calculated and shown to coincide with the quantum mechanical one for the 1/2-spin particles.
Novel compressive seals for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Le, Shiru; Sun, Kening; Zhang, Naiqing; An, Maozhong; Zhou, Derui; Zhang, Jingdong; Li, Donggang
Traditional seals for planar solid oxide fuel cells (pSOFCs) are rigid glass and glass-ceramic, which have caused the problem of being unable to replace malfunctioning components. Non-glass sealants have become a recent trend. In this paper, fumed silica-infiltrated alumina-silica fiber paper gaskets were investigated as a novel compressive seal for planar solid oxide fuel cells. The leak rates decreased with increase of the silica-infiltration amount and the compressive load. Samples pre-stressed at 10 MPa indicated far superior sealing characteristics, with leak rates as low as 0.04 sccm cm -1 at a 1 MPa compressive stress and a 10 kPa pressure gradient, and 0.05 sccm cm -1 for 0.05 MPa, and a 1.4 kPa pressure gradient.
NASA Astrophysics Data System (ADS)
Anabalón, Andrés; Astefanesei, Dumitru; Choque, David
2016-11-01
We construct exact hairy AdS soliton solutions in Einstein-dilaton gravity theory. We examine their thermodynamic properties and discuss the role of these solutions for the existence of first order phase transitions for hairy black holes. The negative energy density associated to hairy AdS solitons can be interpreted as the Casimir energy that is generated in the dual filed theory when the fermions are antiperiodic on the compact coordinate.
Internal Solitons in the Oceans
2006-01-01
of complex geography , inland seas with differing tidal responses, and a deep pycnocline formed by the stress of the trade winds all work to cause the...analysis and filtering of ocean surface waves, Chaos, solitons and fractals , 5, 2623-2637. 180. Osborne, A. R., and T. I. Burch, 1980, Internal solitons...n. 7, 844-854. 196. Parkes, E. J., 2005, Explicit solutions of the reduced Ostrovsky equation, Chaos, Soli- tons and Fractals , in press. 197
Soliton structure in crystalline acetanilide
NASA Astrophysics Data System (ADS)
Eilbeck, J. C.; Lomdahl, P. S.; Scott, A. C.
1984-10-01
The theory of self-trapping of amide I vibrational energy in crystalline acetanilide is studied in detail. A spectrum of stationary, self-trapped (soliton) solutions is determined and tested for dynamic stability. Only those solutions for which the amide I energy is concentrated near a single molecule were found to be stable. Exciton modes were found to be unstable to decay into solitons.
Soliton structure in crystalline acetanilide
Eilbeck, J.C.; Lomdahl, P.S.; Scott, A.C.
1984-10-15
The theory of self-trapping of amide I vibrational energy in crystalline acetanilide is studied in detail. A spectrum of stationary, self-trapped (soliton) solutions is determined and tested for dynamic stability. Only those solutions for which the amide I energy is concentrated near a single molecule were found to be stable. Exciton modes were found to be unstable to decay into solitons.
Discrete solitons in electromechanical resonators.
Syafwan, M; Susanto, H; Cox, S M
2010-02-01
We consider a particular type of parametrically driven discrete Klein-Gordon system describing microdevices and nanodevices, with integrated electrical and mechanical functionality. Using a multiscale expansion method we reduce the system to a discrete nonlinear Schrödinger equation. Analytical and numerical calculations are performed to determine the existence and stability of fundamental bright and dark discrete solitons admitted by the Klein-Gordon system through the discrete Schrödinger equation. We show that a parametric driving can not only destabilize onsite bright solitons, but also stabilize intersite bright discrete solitons and onsite and intersite dark solitons. Most importantly, we show that there is a range of values of the driving coefficient for which dark solitons are stable, for any value of the coupling constant, i.e., oscillatory instabilities are totally suppressed. Stability windows of all the fundamental solitons are presented and approximations to the onset of instability are derived using perturbation theory, with accompanying numerical results. Numerical integrations of the Klein-Gordon equation are performed, confirming the relevance of our analysis.
Progressive compression versus graduated compression for the management of venous insufficiency.
Shepherd, Jan
2016-09-01
Venous leg ulceration (VLU) is a chronic condition associated with chronic venous insufficiency (CVI), where the most frequent complication is recurrence of ulceration after healing. Traditionally, graduated compression therapy has been shown to increase healing rates and also to reduce recurrence of VLU. Graduated compression occurs because the circumference of the limb is narrower at the ankle, thereby producing a higher pressure than at the calf, which is wider, creating a lower pressure. This phenomenon is explained by the principle known as Laplace's Law. Recently, the view that compression therapy must provide a graduated pressure gradient has been challenged. However, few studies so far have focused on the potential benefits of progressive compression where the pressure profile is inverted. This article will examine the contemporary concept that progressive compression may be as effective as traditional graduated compression therapy for the management of CVI.
NASA Astrophysics Data System (ADS)
Sobanik, John Bertram
1993-01-01
A high aspect ratio slot flow (which emulates the gas leakage path in a gas turbine engine outer turbine air seal) is studied by use of a high aspect ratio slot using water as the working fluid. The cross section of the geometry is similar to a 'T', the slot being the vertical stroke and the main flow being the cross bar. A pressure gradient in the axial direction is created by blocking the main flow at a discreet location with an orifice plate (or blade tip simulator), located above the slot. Seven individually metered secondary flow injectors are located periodically along the bottom of the wall of the slot. Two slot widths, 1/8 and 1/4 inch, were investigated for length to width aspect ratios of 384 and 192 and height to width aspect ratios 33.2 and 16.6 respectively. Orifice plate pressure drops sufficient to give Reynolds numbers based upon half width of the slot, without secondary injection turned on, of 2350 and 4700 in the 1/8 inch slot and 4700 and 9400 in the 1/4 inch slot were run. Various secondary injection scenarios were added to the flow, the cases most studied being the no-injection and the all injectors flowing equal mass rates. Total injection rates for all seven injectors of 3.78 and 7.56 slot volumes per second were run. Laser velocimetry data and flow visualization pictures using fluorescein dye in the secondary flow are compared with computational results form the TEACH 3-D computer code. Major features and trends of the flow are captured by the computational model. Recommendations for further improvement of the numerical accuracy involves modification of the TEACH 3-D code to allow the 'slip condition' on all confining boundaries of the flow, or using a code which permits the 'slip condition' on all boundaries as a built-in option.
Lin, Yu-Sheng; Yang, Cheng-Hsu; Chu, Chi-Ming; Fang, Chi-Yung Chen, Chien-Jen; Hsu, Jen-Te Yang, Teng-Yao; Hang, Chi-Ling Wu, Chiung-Jen
2013-10-15
Purpose: The severity of residual stenosis (RS) sometimes cannot be accurately measured by angiography during central vein intervention. This study evaluated the role of pullback pressure measurement during central vein stenosis (CVS) intervention. Methods: A retrospective review enrolled 94 consecutive dialysis patients who underwent CVS interventions but not stenting procedures. Patients were classified into 2 groups by either angiography or pressure gradient (PG) criteria, respectively. Groups divided by angiographic result were successful group (RS {<=}30 %) and acceptable group (50 % {>=} RS > 30 %), while groups divided by PG were low PG group (PG {<=}5 mmHg) and high PG group (PG >5 mmHg). Baseline characteristics and 12-month patency rates between the groups were analyzed. Results: The angiography results placed 63 patients in the successful group and 31 patients in the acceptable group. The patency rate at 12 month was not statistically different (P = 0.167). When the patients were reclassified by the postintervention pullback PG, the patency rate at 12 months was significant (P = 0.048). Further analysis in groups redivided by different combinations of RS and PG criteria identified significant differences in the group with both RS {<=}30 % and PG {<=}5 mmHg compared with those with either RS >30 % (P = 0.047) or PG >5 mmHg (P = 0.027). In addition, there was a significant difference between those with both RS {<=}30 % and PG {<=}5 mmHg compared with those with both RS >30 % and PG >5 mmHg (P = 0.027). Conclusion: Postintervention PG can better predict long-term outcomes after angioplasty for CVS in nonstented dialysis patients than angiography.
Sierad, Leslie Neil; Shaw, Eliza Laine; Bina, Alexander; Brazile, Bryn; Rierson, Nicholas; Patnaik, Sourav S.; Kennamer, Allison; Odum, Rebekah; Cotoi, Ovidiu; Terezia, Preda; Branzaniuc, Klara; Smallwood, Harrison; Deac, Radu; Egyed, Imre; Pavai, Zoltan; Szanto, Annamaria; Harceaga, Lucian; Suciu, Horatiu; Raicea, Victor; Olah, Peter; Simionescu, Agneta; Liao, Jun; Movileanu, Ionela
2015-01-01
There is a great need for living valve replacements for patients of all ages. Such constructs could be built by tissue engineering, with perspective of the unique structure and biology of the aortic root. The aortic valve root is composed of several different tissues, and careful structural and functional consideration has to be given to each segment and component. Previous work has shown that immersion techniques are inadequate for whole-root decellularization, with the aortic wall segment being particularly resistant to decellularization. The aim of this study was to develop a differential pressure gradient perfusion system capable of being rigorous enough to decellularize the aortic root wall while gentle enough to preserve the integrity of the cusps. Fresh porcine aortic roots have been subjected to various regimens of perfusion decellularization using detergents and enzymes and results compared to immersion decellularized roots. Success criteria for evaluation of each root segment (cusp, muscle, sinus, wall) for decellularization completeness, tissue integrity, and valve functionality were defined using complementary methods of cell analysis (histology with nuclear and matrix stains and DNA analysis), biomechanics (biaxial and bending tests), and physiologic heart valve bioreactor testing (with advanced image analysis of open–close cycles and geometric orifice area measurement). Fully acellular porcine roots treated with the optimized method exhibited preserved macroscopic structures and microscopic matrix components, which translated into conserved anisotropic mechanical properties, including bending and excellent valve functionality when tested in aortic flow and pressure conditions. This study highlighted the importance of (1) adapting decellularization methods to specific target tissues, (2) combining several methods of cell analysis compared to relying solely on histology, (3) developing relevant valve-specific mechanical tests, and (4) in vitro testing
Sierad, Leslie Neil; Shaw, Eliza Laine; Bina, Alexander; Brazile, Bryn; Rierson, Nicholas; Patnaik, Sourav S; Kennamer, Allison; Odum, Rebekah; Cotoi, Ovidiu; Terezia, Preda; Branzaniuc, Klara; Smallwood, Harrison; Deac, Radu; Egyed, Imre; Pavai, Zoltan; Szanto, Annamaria; Harceaga, Lucian; Suciu, Horatiu; Raicea, Victor; Olah, Peter; Simionescu, Agneta; Liao, Jun; Movileanu, Ionela; Harpa, Marius; Simionescu, Dan Teodor
2015-12-01
There is a great need for living valve replacements for patients of all ages. Such constructs could be built by tissue engineering, with perspective of the unique structure and biology of the aortic root. The aortic valve root is composed of several different tissues, and careful structural and functional consideration has to be given to each segment and component. Previous work has shown that immersion techniques are inadequate for whole-root decellularization, with the aortic wall segment being particularly resistant to decellularization. The aim of this study was to develop a differential pressure gradient perfusion system capable of being rigorous enough to decellularize the aortic root wall while gentle enough to preserve the integrity of the cusps. Fresh porcine aortic roots have been subjected to various regimens of perfusion decellularization using detergents and enzymes and results compared to immersion decellularized roots. Success criteria for evaluation of each root segment (cusp, muscle, sinus, wall) for decellularization completeness, tissue integrity, and valve functionality were defined using complementary methods of cell analysis (histology with nuclear and matrix stains and DNA analysis), biomechanics (biaxial and bending tests), and physiologic heart valve bioreactor testing (with advanced image analysis of open-close cycles and geometric orifice area measurement). Fully acellular porcine roots treated with the optimized method exhibited preserved macroscopic structures and microscopic matrix components, which translated into conserved anisotropic mechanical properties, including bending and excellent valve functionality when tested in aortic flow and pressure conditions. This study highlighted the importance of (1) adapting decellularization methods to specific target tissues, (2) combining several methods of cell analysis compared to relying solely on histology, (3) developing relevant valve-specific mechanical tests, and (4) in vitro testing
NASA Astrophysics Data System (ADS)
Tait, Alastair W.; Fisher, Kent R.; Srinivasan, Poorna; Simon, Justin I.
2016-11-01
Carbonaceous chondrites, such as those associated with the Vigarano (CV) parent body, exhibit a diverse range of oxidative/reduced alteration mineralogy (McSween, 1977). Although fluids are often cited as the medium by which this occurs (Rubin, 2012), a mechanism to explain how this fluid migrates, and why some meteorite subtypes from the same planetary body are more oxidized than others remains elusive. In our study we examined a slab of the well-known Allende (CV3OxA) meteorite. Using several petrological techniques (e.g., Fry's and Flinn) and Computerized Tomography (CT) we discover it exhibits a strong penetrative planar fabric, resulting from strain partitioning among its major components: Calcium-Aluminum-rich Inclusions (CAIs) (64.5%CT) > matrix (21.5%Fry) > chondrules (17.6%CT). In addition to the planar fabric, we found a strong lineation defined by the alignment of the maximum elongation of flattened particles interpreted to have developed by an impact event. The existence of a lineation could either be non-coaxial deformation, or the result of a mechanically heterogeneous target material. In the later case it could have formed due to discontinuous patches of sub-surface ice and/or fabrics developed through prior impact compaction (MacPherson and Krot, 2014), which would have encouraged preferential flow within the target material immediately following the impact, compacting pore spaces. We suggest that structurally controlled movement of alteration fluids in the asteroid parent body along pressure gradients contributed to the formation of secondary minerals, which may have ultimately lead to the different oxidized subtypes.
Abnormal single or composite dissipative solitons generation
NASA Astrophysics Data System (ADS)
Zhong, Xianqiong; Liu, Dingyao; Cheng, Ke; Sheng, Jianan
2016-12-01
The evolution dynamics of the initial finite energy Airy pulses and Airy pulse pairs are numerically investigated in the cubic-quintic complex Ginzberg-Laudau equation governed dissipative system. Depending on different initial excitations and system parameters, abnormal double, triple, and quadruple composite dissipative solitons as well as single dissipative solitons can be observed. The composite dissipative solitons may consist of identical or different types of pulsating solitons. Moreover, the creeping solitons and the single ordinary pulsating solitons can even appear in the parameter regions where originally the other types of pulsating solitons exist. Besides, before evolving into each abnormal dissipative soliton, the initial finite energy Airy pulse or pulse pairs generally exhibit very interesting and unique early evolution behavior.
Geometric solitons of Hamiltonian flows on manifolds
Song, Chong; Sun, Xiaowei; Wang, Youde
2013-12-15
It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.
The Soliton-Soliton Interaction in the Chiral Dilaton Model
NASA Astrophysics Data System (ADS)
Mantovani-Sarti, Valentina; Park, Byung-Yoon; Vento, Vicente
2013-10-01
We study the interaction between two B = 1 states in the Chiral Dilaton Model where baryons are described as nontopological solitons arising from the interaction of chiral mesons and quarks. By using the hedgehog solution for B = 1 states we construct, via a product ansatz, three possible B = 2 configurations to analyse the role of the relative orientation of the hedgehog quills in the dynamics of the soliton-soliton interaction and investigate the behavior of these solutions in the range of long/intermediate distance. One of the solutions is quite binding due to the dynamics of the π and σ fields at intermediate distance and should be used for nuclear matter studies. Since the product ansatz break down as the two solitons get close, we explore the short range distance regime with a model that describes the interaction via a six-quark bag ansatz. We calculate the interaction energy as a function of the inter-soliton distance and show that for small separations the six quarks bag, assuming a hedgehog structure, provides a stable bound state that at large separations connects with a special configuration coming from the product ansatz.
Analytical solution for photorefractive screening solitons
NASA Astrophysics Data System (ADS)
Królikowski, Wieslaw; Luther-Davies, Barry; McCarthy, Glen; Bledowski, Aleksander
2000-02-01
We study formation and interaction of one-dimensional screening solitons in a photorefractive medium with sublinear dependence of the photoconductivity on light intensity. We find an exact analytical solution to the corresponding nonlinear Schrödinger equation. We show that these solitons are stable in propagation and their interaction is generic for solitons of saturable nonlinearity. In particular, they may fuse or ``give birth'' to new solitons upon collision.
Spontaneous transition from flat to cylindrical solitons
Frycz, P.; Infeld, E. )
1989-07-24
Flat, cylindrical, and spherical soliton solutions to various model equations are known. Many of these exact solutions have been seen in numerical simulations. However, there are few simulations that actually show that exact flat solitons can break up into an array of exact cylindrical or spherical solitons and follow this on a step by step basis. This Letter presents the first of these two kinds of transition for the Zakharov-Kuznetsov equation governing ion acoustic solitons in strongly magnetized plasmas.
Properties of an optical soliton gas
NASA Astrophysics Data System (ADS)
Schwache, A.; Mitschke, F.
1997-06-01
We consider light pulses propagating in an optical fiber ring resonator with anomalous dispersion. New pulses are fed into the resonator in synchronism with its round-trip time. We show that solitary pulse shaping leads to a formation of an ensemble of subpulses that are identified as solitons. All solitons in the ensemble are in perpetual relative motion like molecules in a fluid; thus we refer to the ensemble as a soliton gas. Properties of this soliton gas are determined numerically.
Slow oscillations of dispersion-managed solitons
Hartwig, H.; Boehm, M.; Hause, A.; Mitschke, F.
2010-03-15
In dispersion-managed fibers, soliton-like solutions with periodically recurring shapes exist. These so called dispersion-managed solitons are relevant for fiber-optic telecommunication. In this article we address their behavior when there is deviation from the stationary solution, which is accompanied by the excitation of a long-lived periodic oscillation. We give a possible interpretation by applying soliton radiation beat analysis, a method capable of analyzing the soliton content.
On-chip Electrical Soliton Oscillators for Picosecond Pulse Self-Generation and THz Electronics
2012-01-17
nonlinear line substantially sharpens the pulse . This work is in contrast to our earlier circular soliton oscillator... sharpening mechanism provided at the open end of the nonlinear line further compresses the pulse . In an experimental prototype (discrete prototype for proof... nonlinear properties, to ensure oscillation stability. The nonlinear line substantially sharpens the pulse . This work is in contrast to our
Soliton quenching NLTL impulse circuit with a pulse forming network at the output
McEwan, T.E.; Dallum, G.E.
1998-09-08
An impulse forming circuit is disclosed which produces a clean impulse from a nonlinear transmission line compressed step function without customary soliton ringing by means of a localized pulse shaping and differentiating network which shunts the nonlinear transmission line output to ground. 5 figs.
Soliton quenching NLTL impulse circuit with a pulse forming network at the output
McEwan, Thomas E.; Dallum, Gregory E.
1998-01-01
An impulse forming circuit is disclosed which produces a clean impulse from a nonlinear transmission line compressed step function without customary soliton ringing by means of a localized pulse shaping and differentiating network which shunts the nonlinear transmission line output to ground.
Stable spatial solitons in semiconductor optical amplifiers.
Ultanir, E A; Michaelis, D; Lederer, F; Stegeman, G I
2003-02-15
The existence of stable dissipative spatial solitons at low intensities in patterned electrode semiconductor optical amplifiers (SOAs) is predicted theoretically. In contrast to conventional SOAs, this system may support stable solitons because the inherent saturating losses provide subcritical bifurcations for both the plane-wave and the soliton solution.
Stable dissipative solitons in semiconductor optical amplifiers.
Ultanir, Erdem A; Stegeman, George I; Michaelis, Dirk; Lange, Christoph H; Lederer, Falk
2003-06-27
We have observed for the first time stable spatial solitons in semiconductor optical amplifiers. Soliton destabilization due to the growth of background noise was suppressed by using patterned electrodes on the device. Numerical simulations fit very well with the experiment results. We show that it is possible to excite these solitons with about 60 mW input power.
Soliton resonance in bose-einstein condensate
NASA Technical Reports Server (NTRS)
Zak, Michail; Kulikov, I.
2002-01-01
A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.
Observation of vector solitons with hidden vorticity.
Izdebskaya, Yana V; Rebling, Johannes; Desyatnikov, Anton S; Kivshar, Yuri S
2012-03-01
This letter reports the first experimental observation, to our knowledge, of optical vector solitons composed of two incoherently coupled vortex components. We employ nematic liquid crystal to generate stable vector solitons with counterrotating vortices and hidden vorticity. In contrast, the solitons with explicit vorticity and corotating vortex components show azimuthal splitting.
Critical density of a soliton gas
El, G. A.
2016-02-15
We quantify the notion of a dense soliton gas by establishing an upper bound for the integrated density of states of the quantum-mechanical Schrödinger operator associated with the Korteweg–de Vries soliton gas dynamics. As a by-product of our derivation, we find the speed of sound in the soliton gas with Gaussian spectral distribution function.
NASA Astrophysics Data System (ADS)
Buschmann, Matthias
2000-03-01
The paper presents an analysis of two-dimensional zero pressure gradient (ZPG) turbulent boundary layers (TBL) with regard to the application of power laws. Only TBL with low Reynolds number 300 < Reδ2 < 6200 are taken into account. It is found that a certain region of the mean velocity profile can be described with a power law of the formu +=C Pow{*}y +a. This power law region is not a priori identical with the overlap region. An algorithm for the determination of the wall skin friction using the power law is proposed. The method was applied with good result to ZPG TBL and to adverse pressure gradient (APG) TBL. To bridge the gap between the wall and the power law region an approach for the turbulent viscosity is suggested.
NASA Technical Reports Server (NTRS)
Anderson, P. S.; Kays, W. M.; Moffat, R. J.
1972-01-01
An experimental investigation of transpired turbulent boundary layers in zero and adverse pressure gradients has been carried out. Profiles of: (1) the mean velocity, (2) the three intensities of the turbulent fluctuations, and (3) the Reynolds stress were obtained by hot-wire anemometry. The friction coefficients were measured by using an integrated form of the boundary layer equation to extrapolate the measured shear stress profiles to the wall.
NASA Technical Reports Server (NTRS)
Nagamatsu, H. T.; Duffy, R. E.
1984-01-01
Low and high pressure shock tubes were designed and constructed for the purpose of obtaining heat transfer data over a temperature range of 390 to 2500 K, pressures of 0.3 to 42 atm, and Mach numbers of 0.15 to 1.5 with and without pressure gradient. A square test section with adjustable top and bottom walls was constructed to produce the favorable and adverse pressure gradient over the flat plate with heat gages. A water cooled gas turbine nozzle cascade which is attached to the high pressure shock tube was obtained to measuse the heat flux over pressure and suction surfaces. Thin-film platinum heat gages with a response time of a few microseconds were developed and used to measure the heat flux for laminar, transition, and turbulent boundary layers. The laminar boundary heat flux on the shock tube wall agreed with Mirel's flat plate theory. Stagnation point heat transfer for circular cylinders at low temperature compared with the theoretical prediction, but for a gas temperature of 922 K the heat fluxes were higher than the predicted values. Preliminary flat plate heat transfer data were measured for laminar, transition, and turbulent boundary layers with and without pressure gradients for free-stream temperatures of 350 to 2575 K and flow Mach numbers of 0.11 to 1.9. The experimental heat flux data were correlated with the laminar and turbulent theories and the agreement was good at low temperatures which was not the case for higher temperatures.
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1975-01-01
An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer to space shuttle reusable surface insulation (RSI) tile array gaps under thick, turbulent boundary layer conditions. Heat transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel wall boundary layer at a nominal freestream Mach number of 10.3 and freestream unit Reynolds numbers of 1.6, 3.3, and and 6.1 million per meter. Transverse pressure gradients were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel wall boundary layer flow was obtained by measurement of boundary layer pitot pressure profiles, and flat plate wall pressure and heat transfer. Flat plate wall heat transfer data were correlated and a method was derived for prediction of smooth, curved array heat transfer in the highly three-dimensional tunnel wall boundary layer flow and simulation of full-scale space shuttle vehicle pressure gradient levels was assessed.
Dual compression is not an uncommon type of iliac vein compression syndrome.
Shi, Wan-Yin; Gu, Jian-Ping; Liu, Chang-Jian; Lou, Wen-Sheng; He, Xu
2017-03-13
Typical iliac vein compression syndrome (IVCS) is characterized by compression of left common iliac vein (LCIV) by the overlying right common iliac artery (RCIA). We described an underestimated type of IVCS with dual compression by right and left common iliac arteries (LCIA) simultaneously. Thirty-one patients with IVCS were retrospectively included. All patients received trans-catheter venography and computed tomography (CT) examinations for diagnosing and evaluating IVCS. Late venography and reconstructed CT were used for evaluating the anatomical relationship among LCIV, RCIA and LCIA. Imaging manifestations as well as demographic data were collected and evaluated by two experienced radiologists. Sole and dual compression were found in 32.3% (n = 10) and 67.7% (n = 21) of 31 patients respectively. No statistical differences existed between them in terms of age, gender, LCIV diameter at the maximum compression point, pressure gradient across stenosis, and the percentage of compression level. On CT and venography, sole compression was commonly presented with a longitudinal compression at the orifice of LCIV while dual compression was usually presented as two types: one had a lengthy stenosis along the upper side of LCIV and the other was manifested by a longitudinal compression near to the orifice of external iliac vein. The presence of dual compression seemed significantly correlated with the tortuous LCIA (p = 0.006). Left common iliac vein can be presented by dual compression. This type of compression has typical manifestations on late venography and CT.
NASA Technical Reports Server (NTRS)
Firstenberg, M. S.; Smedira, N. G.; Greenberg, N. L.; Prior, D. L.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.
2001-01-01
BACKGROUND: Early diastolic intraventricular pressure gradients (IVPGs) have been proposed to relate to left ventricular (LV) elastic recoil and early ventricular "suction." Animal studies have demonstrated relationships between IVPGs and systolic and diastolic indices during acute ischemia. However, data on the effects of improvements in LV function in humans and the relationship to IVPGs are lacking. METHODS AND RESULTS: Eight patients undergoing CABG and/or infarct exclusion surgery had a triple-sensor high-fidelity catheter placed across the mitral valve intraoperatively for simultaneous recording of left atrial (LA), basal LV, and apical LV pressures. Hemodynamic data obtained before bypass were compared with those with similar LA pressures and heart rates obtained after bypass. From each LV waveform, the time constant of LV relaxation (tau), +dP/dt(max), and -dP/dt(max) were determined. Transesophageal echocardiography was used to determined end-diastolic (EDV) and end-systolic (ESV) volumes and ejection fractions (EF). At similar LA pressures and heart rates, IVPG increased after bypass (before bypass 1.64+/-0.79 mm Hg; after bypass 2.67+/-1.25 mm Hg; P<0.01). Significant improvements were observed in ESV, as well as in apical and basal +dP/dt(max), -dP/dt(max), and tau (each P<0.05). Overall, IVPGs correlated inversely with both ESV (IVPG=-0.027[ESV]+3.46, r=-0.64) and EDV (IVPG=-0.027[EDV]+4.30, r=-0.70). Improvements in IVPGs correlated with improvements in apical tau (Deltatau =5.93[DeltaIVPG]+4.76, r=0.91) and basal tau (Deltatau =2.41[DeltaIVPG]+5.13, r=-0.67). Relative changes in IVPGs correlated with changes in ESV (DeltaESV=-0.97[%DeltaIVPG]+23.34, r=-0.79), EDV (DeltaEDV=-1.16[%DeltaIVPG]+34.92, r=-0.84), and EF (DeltaEF=0.38[%DeltaIVPG]-8.39, r=0.85). CONCLUSIONS: Improvements in LV function also increase IVPGs. These changes in IVPGs, suggestive of increases in LV suction and elastic recoil, correlate directly with improvements in LV relaxation
Quark structure of chiral solitons
Dmitri Diakonov
2004-05-01
There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ''chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ''soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.
2008-08-01
END >RUN 2 ISEN 1.0e0 SHCK 1.300 >END >RCT &REAC_PARAMETERS / >END > VOD &VODE_PARAMETERS / >END >END >--- Figure 2: Input file 1ns for cmpexp for Mach...SPC 2 N2 0.77 O2 0.23 >END >RUN 1 ISEN 1.0e0 >END >RCT &REAC_PARAMETERS / >END > VOD &VODE_PARAMETERS / >END >END >--- (a) 1ns &ZPG_QDOT_PARAMETERS...REAC_PARAMETERS / >END > VOD &VODE_PARAMETERS / >END >END >--- (a) 1ns &ZPG_QDOT_PARAMETERS T_wall = 300.0, platelength = 1.5, xpoints = 100, shockcase = 0
Phase structure of soliton molecules
Hause, A.; Hartwig, H.; Seifert, B.; Stolz, H.; Boehm, M.; Mitschke, F.
2007-06-15
Temporal optical soliton molecules were recently demonstrated; they potentially allow further increase of data rates in optical telecommunication. Their binding mechanism relies on the internal phases, but these have not been experimentally accessible so far. Conventional frequency-resolved optical gating techniques are not suited for measurement of their phase profile: Their algorithms fail to converge due to zeros both in their temporal and their spectral profile. We show that the VAMPIRE (very advanced method of phase and intensity retrieval of E-fields) method performs reliably. With VAMPIRE the phase profile of soliton molecules has been measured, and further insight into the mechanism is obtained.
Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups
NASA Astrophysics Data System (ADS)
Batat, W.; Onda, K.
2017-04-01
We study algebraic Ricci solitons of three-dimensional Lorentzian Lie groups. All algebraic Ricci solitons that we obtain are solvsolitons. In particular, we obtain new solitons on G2, G5, and G6, and we prove that, contrary to the Riemannian case, Lorentzian Ricci solitons need not be algebraic Ricci solitons.
A study of turbulence on compression ramps with k-epsilon and Reynolds stress models
NASA Technical Reports Server (NTRS)
Lee, J.; Taulbee, D. B.; Holden, M. S.
1990-01-01
A theoretical study was conducted to determine the effects of adverse pressure gradient and compressibility in modeling turbulent compressible flows. The kinetic energy/dissipation and Reynolds stress model predictions are presented and compared with experimental data. The effects of compressibility, which include the mass averaged fluctuation term, the pressure dilatation term, and the dilatation dissipation, are important in modeling the turbulent compressible flows. The normal stresses and longitudinal strain rates also have an effect in the prediction of turbulent energy productions on the curved surfaces. A new compressible formulation of the pressure strain term, which includes the dilatation effects, in the Reynolds stress equation is presented.
Soliton interactions and the formation of solitonic patterns
NASA Astrophysics Data System (ADS)
Sears, Suzanne M.
From the stripes of a zebra, to the spirals of cream in a hot cup of coffee, we are surrounded by patterns in the natural world. But why are there patterns? Why drives their formation? In this thesis we study some of the diverse ways patterns can arise due to the interactions between solitary waves in nonlinear systems, sometimes starting from nothing more than random noise. What follows is a set of three studies. In the first, we show how a nonlinear system that supports solitons can be driven to generate exact (regular) Cantor set fractals. As an example, we use numerical simulations to demonstrate the formation of Cantor set fractals by temporal optical solitons. This fractal formation occurs in a cascade of nonlinear optical fibers through the dynamical evolution of a single input soliton. In the second study, we investigate pattern formation initiated by modulation instability in nonlinear partially coherent wave fronts and show that anisotropic noise and/or anisotropic correlation statistics can lead to ordered patterns such as grids and stripes. For the final study, we demonstrate the spontaneous clustering of solitons in partially coherent wavefronts during the final stages of pattern formation initiated by modulation instability and noise. Experimental observations are in agreement with theoretical predictions and are confirmed using numerical simulations.
PIC simulation of compressive and rarefactive dust ion-acoustic solitary waves
NASA Astrophysics Data System (ADS)
Li, Zhong-Zheng; Zhang, Heng; Hong, Xue-Ren; Gao, Dong-Ning; Zhang, Jie; Duan, Wen-Shan; Yang, Lei
2016-08-01
The nonlinear propagations of dust ion-acoustic solitary waves in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated by the particle-in-cell method. By comparing the simulation results with those obtained from the traditional reductive perturbation method, it is observed that the rarefactive KdV solitons propagate stably at a low amplitude, and when the amplitude is increased, the prime wave form evolves and then gradually breaks into several small amplitude solitary waves near the tail of soliton structure. The compressive KdV solitons propagate unstably and oscillation arises near the tail of soliton structure. The finite amplitude rarefactive and compressive Gardner solitons seem to propagate stably.
Soliton molecules: Experiments and optimization
Mitschke, Fedor
2014-10-06
Stable compound states of several fiber-optic solitons have recently been demonstrated. In the first experiment their shape was approximated, for want of a better description, by a sum of Gaussians. Here we discuss an optimization strategy which helps to find preferable shapes so that the generation of radiative background is reduced.
Vibrational soliton: an experimental overview
Bigio, I.J.
1986-03-08
To date the most convincing evidence of vibrational solitons in biopolymers has been found in two very disparate systems: Davydov-like excitations in hydrogen-bonded linear chains (acetanilide and N-methylacetamide) which are not biopolymers but plausible structural paradigms for biopolymers, and longitudinal accoustic modes of possibly nonlinear character in biologically viable DNA. 17 refs., 4 figs.
Stability and control of compressible flows over a surface with concave-conves curvature
NASA Technical Reports Server (NTRS)
Maestrello, L.; Bayliss, A.; Parikh, P.; Turkel, E.
1986-01-01
The active control of spatially unstable disturbances in a laminar, two-dimensional, compressible boundary layer over a curved surface is numerically simulated. The control is effected by localized time-periodic surface heating. We consider two similar surfaces of different heights with concave-convex curvature. In one, the height is sufficiently large so that the favorable pressure gradient is sufficient to stabilize a particular disturbance. In the other case the pressure gradient induced by the curvature is destabilizing. It is shown that by using active control that the disturbance can be stabilized. The results demonstrate that the curvature induced mean pressure gradient significantly enhances the receptivity of the flow localized time-periodic surface heating and that this is a potentially viable mechanism in air.
Kherada, Nisharahmed; Brenes, Juan Carlos; Kini, Annapoorna S; Dangas, George D
2017-03-15
Accurate evaluation of trans-aortic valvular pressure gradients is challenging in cases where dual mechanical aortic and mitral valve prostheses are present. Non-invasive Doppler echocardiographic imaging has its limitations due to multiple geometric assumptions. Invasive measurement of trans-valvular gradients with cardiac catheterization can provide further information in patients with two mechanical valves, where simultaneous pressure measurements in the left ventricle and ascending aorta must be obtained. Obtaining access to the left ventricle via the mitral valve after a trans-septal puncture is not feasible in the case of a concomitant mechanical mitral valve, whereas left ventricular apical puncture technique is associated with high procedural risks. Retrograde crossing of a bileaflet mechanical aortic prosthesis with standard catheters is associated with the risk of catheter entrapment and acute valvular regurgitation. In these cases, the assessment of trans-valvular gradients using a 0.014˝ diameter coronary pressure wire technique has been described in a few case reports. We present the case of a 76-year-old female with rheumatic valvular heart disease who underwent mechanical aortic and mitral valve replacement in the past. She presented with decompensated heart failure and echocardiographic findings suggestive of elevated pressure gradient across the mechanical aortic valve prosthesis. The use of a high-fidelity 0.014˝ diameter coronary pressure guidewire resulted in the detection of a normal trans-valvular pressure gradient across the mechanical aortic valve. This avoided a high-risk third redo valve surgery in our patient. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wang, QingQing; Chen, Tong; Li, Mingshan; Zhang, Botao; Lu, Yongfeng; Chen, Kevin P.
2013-07-01
An ultrafast thulium-doped fiber laser with large net normal dispersion has been developed to produce dissipative soliton and noise-like outputs at 1.9 μm. The mode-locked operation was enabled by using single-wall carbon nanotubes as saturable absorber for all-fiber configuration. Dissipative soliton in normal dispersion produced by the fiber laser oscillator was centered at 1947 nm with 4.1-nm FWHM bandwidth and 0.45 nJ/pulse. The output dissipative soliton pulses were compressed to 2.3 ps outside the laser cavity.
NASA Astrophysics Data System (ADS)
Bi, Wanjun; Li, Xia; Xing, Zhaojun; Zhou, Qinling; Fang, Yongzheng; Gao, Weiqing; Xiong, Liangming; Hu, Lili; Liao, Meisong
2016-01-01
Wavelength conversion to the wavelength range that is not covered by commercially available lasers could be accomplished through the soliton self-frequency shift (SSFS) effect. In this study, the phenomenon of SSFS pumped by a picosecond-order pulse in a tellurite microstructured fiber is investigated both theoretically and experimentally. The balance between the dispersion and the nonlinearity achieved by a 1958 nm pump laser induces a distinct SSFS effect. Attributed to the large spectral distance between the pump pulse and the fiber zero-dispersion wavelength, the SSFS is not cancelled due to energy shedding from the soliton to the dispersive wave. Details about the physical mechanisms behind this phenomenon and the variations of the wavelength shift, the conversion efficiency are revealed based on numerical simulations. Owing to the large soliton number N, the pulse width of the first split fundamental soliton is approximately 40 fs, producing a pulse compression factor of ˜38, much higher than that pumped by a femtosecond pulse. Experiments were also conducted to confirm the validity of the simulation results. By varying the pump power, a continuous soliton shift from 1990 nm to 2264 nm was generated. The generation of SSFS in tellurite microstructured fibers with picosecond pump pulse can provide a new approach for wavelength conversion in the mid-infrared range and could be useful in medical and some other areas.
Mode-locked fiber laser with cascaded generation of coherent Raman dissipative solitons
NASA Astrophysics Data System (ADS)
Kharenko, Denis S.; Bednyakova, Anastasia E.; Podivilov, Evgenii V.; Fedoruk, Mikhail P.; Apolonskiy, Alexander A.; Babin, Sergey A.
2016-03-01
We experimentally demonstrate a cascaded generation of a conventional dissipative soliton (DS) at 1020 nm and Raman dissipative solitons (RDS) of the first (1065 nm) and second (1115 nm) orders inside a common fiber laser cavity. The generated high-energy pulses are shown to be linearly-chirped and compressible to 200-300 fs durations for all wavelengths. Moreover, the pulses are mutually coherent that has been confirmed by efficient coherent combining exhibiting ~75 fs and <40 fs interference fringes within the combined pulse envelope of a DS with the first-order RDS and the second-order RDS respectively. The numerical simulation was performed with sinusoidal (soft) and step-like (hard) spectral filters and took into account the discreetness of the laser elements. Shown that even higher degree of coherence and shorter pulses could be achieved with hard spectral filtering. This approach opens the door towards cascaded generation of multiple coherent dissipative solitons in a broad spectral range (so-called dissipative soliton comb). The demonstrated source of coherent dissipative solitons can improve numerous areas such as frequency comb generation, pulse synthesis, biomedical imaging and the generation of coherent mid-infrared supercontinuum.
Solitons in the midst of chaos
Seghete, Vlad; Menyuk, Curtis R.; Marks, Brian S.
2007-10-15
A system of coupled nonlinear Schroedinger equations describes pulse propagation in weakly birefringent optical fibers. Soliton solutions of this system are found numerically through the shooting method. We employ Poincare surface of section plots - a standard dynamical systems approach - to analyze the phase space behavior of these solutions and neighboring trajectories. Chaotic behavior around the solitons is apparent and suggests dynamical instability. A Lyapunov stability analysis confirms this result. Thus, solitons exist in the midst of chaos.
Zhang Yanpeng; Wang Zhiguo; Zheng Huaibin; Yuan Chenzhi; Li Changbiao; Lu Keqing; Xiao Min
2010-11-15
We report an experimental demonstration of generating gap soliton trains in a four-wave-mixing (FWM) signal. Such spatial FWM surfacelike gap soliton trains are induced in a periodically modulated self-defocusing atomic medium by the cross-phase modulation, which can be reshaped under different experimental conditions, such as different atomic densities, nonlinear dispersions, and dressing fields. Controlling spatial gap solitons can have important applications in image memory, processing, and communication.
Discrete dark solitons with multiple holes.
Susanto, Hadi; Johansson, Magnus
2005-07-01
We consider staggered dark solitons admitted by the discrete nonlinear Schrödinger equation with focusing cubic nonlinearity. In particular, we focus on the study of dark solitons with several holes characterized by the number of zeros in the uncoupled case. Such structures reveal interesting behaviors, such as stable intersite dark solitons. All of the structures have no counterpart in the strong coupling limit since they disappear in a saddle-node bifurcation. We also consider the evolution of structures with multiple holes representing an interaction between multiple dark solitons in a very discrete case.
Soliton splitting in quenched classical integrable systems
NASA Astrophysics Data System (ADS)
Gamayun, O.; Semenyakin, M.
2016-08-01
We take a soliton solution of a classical non-linear integrable equation and quench (suddenly change) its non-linearity parameter. For that we multiply the amplitude or the width of a soliton by a numerical factor η and take the obtained profile as a new initial condition. We find the values of η for which the post-quench solution consists of only a finite number of solitons. The parameters of these solitons are found explicitly. Our approach is based on solving the direct scattering problem analytically. We demonstrate how it works for Korteweg-de Vries, sine-Gordon and non-linear Schrödinger integrable equations.
Davydov's solitons in a homogeneous nucleotide chain
NASA Astrophysics Data System (ADS)
Lakhno, Victor D.
Charge transfer in homogeneous nucleotide chains is modeled on the basis of Holstein Hamiltonian. The path length of Davydov solitons in these chains is being studied. It is shown that in a dispersionless case, when the soliton velocity V is small, the path length grows exponentially as V decreases. In this case, the state of a moving soliton is quasisteady. In the presence of dispersion determined by the dependenceΩ2 =Ω 02 + V 02κ2, the path length in the region 0 < V < V0 is equal to infinity. In this case, the phonon environment follows the charge motion. In the region V > V0, the soliton motion is accompanied by emission of phonons which leads to a finite path length of a soliton. The latter tends to infinity as V → V0 + 0 and V → ∞. The presence of dissipation leads to a finite soliton path length. An equilibrium velocity of soliton in an external electric field is calculated. It is shown that there is a maximum intensity of an electric field at which a steady motion of a soliton is possible. The soliton mobility is calculated for the stable or ohmic brunch.
Coupled spatial multimode solitons in microcavity wires
NASA Astrophysics Data System (ADS)
Slavcheva, G.; Gorbach, A. V.; Pimenov, A.
2016-12-01
A modal expansion approach is developed and employed to investigate and elucidate the nonlinear mechanism behind the multistability and formation of coupled multimode polariton solitons in microcavity wires. With pump switched on and realistic dissipation parameters, truncating the expansion up to the second-order wire mode, our model predicts two distinct coupled soliton branches: stable and unstable. Modulational stability of the stationary homogeneous solution and soliton branches stability are studied. Our simplified 1D model is in remarkably good agreement with the full 2D mean-field Gross-Pitaevskii model, reproducing correctly the soliton existence domain upon variation of pump amplitude and the onset of multistability.
Varela, J.; Watanabe, K. Y.; Ohdachi, S.; Narushima, Y.
2014-09-15
The aim of this study was to analyze the feedback process between the magnetic turbulence and the pressure gradients in Large Helical Device (LHD) inward-shifted configurations as well as its role in the transition between the soft-hard magnetohydrodynamic (MHD) regimes for instabilities driven by the mode 1/2 in the middle plasma. In the present paper, we summarize the results of two simulations with different Lundquist numbers, S=2.5×10{sup 5} and 10{sup 6}, assuming a plasma in the slow reconnection regime. The results for the high Lundquist number simulation show that the magnetic turbulence and the pressure gradient in the middle plasma region of LHD are below the critical value to drive the transition to the hard MHD regime, therefore only relaxations in the soft MHD limit are triggered (1/2 sawtooth-like events) [Phys. Plasmas 19, 082512 (2012)]. In the case of the simulation with low Lundquist number, the system reaches the hard MHD limit and a plasma collapse is observed.
NASA Technical Reports Server (NTRS)
Schobeiri, M. T.; Radke, R. E.
1996-01-01
Boundary layer transition and development on a turbomachinery blade is subjected to highly periodic unsteady turbulent flow, pressure gradient in longitudinal as well as lateral direction, and surface curvature. To study the effects of periodic unsteady wakes on the concave surface of a turbine blade, a curved plate was utilized. On the concave surface of this plate, detailed experimental investigations were carried out under zero and negative pressure gradient. The measurements were performed in an unsteady flow research facility using a rotating cascade of rods positioned upstream of the curved plate. Boundary layer measurements using a hot-wire probe were analyzed by the ensemble-averaging technique. The results presented in the temporal-spatial domain display the transition and further development of the boundary layer, specifically the ensemble-averaged velocity and turbulence intensity. As the results show, the turbulent patches generated by the wakes have different leading and trailing edge velocities and merge with the boundary layer resulting in a strong deformation and generation of a high turbulence intensity core. After the turbulent patch has totally penetrated into the boundary layer, pronounced becalmed regions were formed behind the turbulent patch and were extended far beyond the point they would occur in the corresponding undisturbed steady boundary layer.
Regularized degenerate multi-solitons
NASA Astrophysics Data System (ADS)
Correa, Francisco; Fring, Andreas
2016-09-01
We report complex {P}{T} -symmetric multi-soliton solutions to the Korteweg de-Vries equation that asymptotically contain one-soliton solutions, with each of them possessing the same amount of finite real energy. We demonstrate how these solutions originate from degenerate energy solutions of the Schrödinger equation. Technically this is achieved by the application of Darboux-Crum transformations involving Jordan states with suitable regularizing shifts. Alternatively they may be constructed from a limiting process within the context Hirota's direct method or on a nonlinear superposition obtained from multiple Bäcklund transformations. The proposed procedure is completely generic and also applicable to other types of nonlinear integrable systems.
Discrete solitons in graphene metamaterials
NASA Astrophysics Data System (ADS)
Bludov, Yu. V.; Smirnova, D. A.; Kivshar, Yu. S.; Peres, N. M. R.; Vasilevskiy, M. I.
2015-01-01
We study nonlinear properties of multilayer metamaterials created by graphene sheets separated by dielectric layers. We demonstrate that such structures can support localized nonlinear modes described by the discrete nonlinear Schrödinger equation and that its solutions are associated with stable discrete plasmon solitons. We also analyze the nonlinear surface modes in truncated graphene metamaterials being a nonlinear analog of surface Tamm states.
1984-08-01
second statement is demonstrated to be false. The% Kadomtsev-.1etviashvile equation relevant to Internal Waves is shown not to have SOliL -solutions. This...more than one space dimension. The second statement is demonstrated to be false. The Kadomtsev-Petviashvile equation relevant to Internal Waves Is...observed by SeaSat has led to suggestions that the phenomena may be related to Internal 0 Wave Solitons. Most observations were made under conditions for
Compressibility Corrections to Closure Approximations for Turbulent Flow Simulations
Cloutman, L D
2003-02-01
We summarize some modifications to the usual closure approximations for statistical models of turbulence that are necessary for use with compressible fluids at all Mach numbers. We concentrate here on the gradient-flu approximation for the turbulent heat flux, on the buoyancy production of turbulence kinetic energy, and on a modification of the Smagorinsky model to include buoyancy. In all cases, there are pressure gradient terms that do not appear in the incompressible models and are usually omitted in compressible-flow models. Omission of these terms allows unphysical rates of entropy change.
Guo, Hairun; Zhou, Binbin; Zeng, Xianglong; Bache, Morten
2014-05-19
We numerically investigate self-defocusing solitons in a lithium niobate (LN) waveguide designed to have a large refractive index (RI) change. The waveguide evokes strong waveguide dispersion and all-normal dispersion is found in the entire guiding band spanning the near-IR and the beginning of the mid-IR. Meanwhile, a self-defocusing nonlinearity is invoked by the cascaded (phase-mismatched) second-harmonic generation under a quasi-phase-matching pitch. Combining this with the all-normal dispersion, mid-IR solitons can form and the waveguide presents the first all-nonlinear and solitonic device where no linear dispersion (i.e. non-solitonic) regimes exist within the guiding band. Soliton compressions at 2 μm and 3 μm are investigated, with nano-joule single cycle pulse formations and highly coherent octave-spanning supercontinuum generations. With an alternative design on the waveguide dispersion, the soliton spectral tunneling effect is also investigated, with which few-cycle pico-joule pulses at 2 μm are formed by a near-IR pump.
Nicholson, J W; Desantolo, A; Kaenders, W; Zach, A
2016-10-03
We demonstrate soliton self-frequency-shifted, femtosecond-pulse amplification in a newly-developed, polarization-maintaining, Er-doped, very-large-mode-area fiber amplifier. The PM-VLMA Er fiber had a core diameter of 50 μm, an effective area of ~1050 μm^{2}, and Er absorption of 50 dB/m. The measured birefringence beat length of the PM-VLMA Er fiber was 14.1 mm. The soliton wavelength could be shifted by more than 90 nm. The soliton generation process resulted in remarkably clean, 86 fs pulses with 21 nJ energy at 1650 nm and 244 kW peak power from an all-fiber, fusion spliced system without bulk-optics for pulse compression. The polarization extinction ratio of the soliton was greater than 40 dB, and the M^{2} was 1.1. The fully polarization-maintaining fiber laser system provides robust and stable soliton generation. Peak-to-peak variation in the soliton wavelength, measured over the course of an hour was only 0.03% and pulse energy variation was only 0.5%.
Coherent interactions of dissipative spatial solitons.
Ultanir, Erdem A; Stegeman, George I; Lange, Christoph H; Lederer, Falk
2004-02-01
We report observation of the interaction between two coherent dissipative spatial solitons in a periodically patterned semiconductor optical amplifier with power levels of tens of milliwatts. The interactions are nonlocal and phase dependent and exhibit surprising features, such as soliton birth. The experimental results are in good agreement with the numerical simulations.
Dissipative Solitons that Cannot be Trapped
Pardo, Rosa; Perez-Garcia, Victor M.
2006-12-22
We show that dissipative solitons in systems with high-order nonlinear dissipation cannot survive in the presence of trapping potentials of the rigid wall or asymptotically increasing type. Solitons in such systems can survive in the presence of a weak potential but only with energies out of the interval of existence of linear quantum mechanical stationary states.
Dispersive solitons in magneto-optic waveguides
NASA Astrophysics Data System (ADS)
Vega-Guzman, Jose; Ullah, Malik Zaka; Asma, Mir; Zhou, Qin; Biswas, Anjan
2017-03-01
This paper obtains bright, dark and singular dispersive optical soliton solutions with magneto-optic waveguides. The governing equation is the coupled Schrödinger-Hirota equation. The existence criteria of these solitons are also presented. Both Kerr law and power law of nonlinearity are considered.
Nonplanar solitons collision in ultracold neutral plasmas
El-Tantawy, S. A.; Moslem, W. M.; El-Metwally, M.; Sabry, R.; El-Labany, S. K.; Schlickeiser, R.
2013-09-15
Collisions between two nonplanar ion-acoustic solitons in strongly coupled ultracold neutral plasmas composed of ion fluid and non-Maxwellian (nonthermal or superthermal) electron distributions are investigated. The extended Poincare-Lighthill-Kuo method is used to obtain coupled nonplanar Kortweg-de Vries equations for describing the system. The nonplanar phase shifts after the interaction of the two solitons are calculated. It is found that the properties of the nonplanar colliding solitons and its corresponding phase shifts are different from those in the planar case. The polarity of the colliding solitons strongly depends on the type of the non-Maxwellian electron distributions. A critical nonthermality parameter β{sub c} is identified. For values of β ≤ β{sub c} solitons with double polarity exist, while this behavior cannot occur for superthermal plasmas. The phase shift for nonthermal plasmas increases below β{sub c} for a positive soliton, but it decreases for β > β{sub c} for a negative soliton. For superthermal plasmas, the phase shift enhances rapidly for low values of spectral index κ and higher values of ions effective temperature ratio σ{sub *}. For 2 ≲ κ<10, the phase shift decreases but does not change for κ > 10. The nonlinear structure, as reported here, is useful for controlling the solitons created in forthcoming ultracold neutral plasma experiments.
NASA Technical Reports Server (NTRS)
Elrod, D. A.; Childs, D. W.
1986-01-01
A brief review of current annular seal theory and a discussion of the predicted effect on stiffness of tapering the seal stator are presented. An outline of Nelson's analytical-computational method for determining rotordynamic coefficients for annular compressible-flow seals is included. Modifications to increase the maximum rotor speed of an existing air-seal test apparatus at Texas A&M University are described. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and normalized rotordynamic coefficients, are presented for four convergent-tapered, smooth-rotor, smooth-stator seals. A comparison of the test results shows that an inlet-to-exit clearance ratio of 1.5 to 2.0 provides the maximum direct stiffness, a clearance ratio of 2.5 provides the greatest stability, and a clearance ratio of 1.0 provides the least stability. The experimental results are compared to theoretical results from Nelson's analysis with good agreement. Test results for cross-coupled stiffness show less sensitivity of fluid prerotation than predicted.
Borja, Angel; Barbone, Enrico; Basset, Alberto; Borgersen, Gunhild; Brkljacic, Marijana; Elliott, Michael; Garmendia, Joxe Mikel; Marques, João Carlos; Mazik, Krysia; Muxika, Iñigo; Magalhães Neto, João; Norling, Karl; Rodríguez, J Germán; Rosati, Ilaria; Rygg, Brage; Teixeira, Heliana; Trayanova, Antoaneta
2011-03-01
In recent times many benthic indices have been proposed to assess the ecological quality of marine waters worldwide. In this study we compared single metrics and multi-metric methods to assess coastal and transitional benthic status along human pressure gradients in five distinct environments across Europe: Varna bay and lake (Bulgaria), Lesina lagoon (Italy), Mondego estuary (Portugal), Basque coast (Spain) and Oslofjord (Norway). Hence, 13 single metrics (abundance, number of taxa, and several diversity and sensitivity indices) and eight of the most common indices used within the European Water Framework Directive (WFD) for benthic assessment were selected: index of size spectra (ISS), Benthic assessment tool (BAT), Norwegian quality index (NQI), Multivariate AMBI (M-AMBI), Benthic quality index (BQI), (Benthic ecosystem quality index (BEQI), Benthic index based on taxonomic sufficiency (BITS), and infaunal quality index (IQI). Within each system, sampling sites were ordered in an increasing pressure gradient according to a preliminary classification based on professional judgement. The different indices are largely consistent in their response to pressure gradient, except in some particular cases (i.e. BITS, in all cases, or ISS when a low number of individuals is present). Inconsistencies between indicator responses were most pronounced in transitional waters (i.e. IQI, BEQI), highlighting the difficulties of the generic application of indicators to all marine, estuarine and lagoonal environments. However, some of the single (i.e. ecological groups approach, diversity, richness) and multi-metric methods (i.e. BAT, M-AMBI, NQI) were able to detect such gradients both in transitional and coastal environments, being these multi-metric methods more consistent in the detection than single indices. This study highlights the importance of survey design and good reference conditions for some indicators. The agreement observed between different methodologies and their
Peak compression factor of proteins.
Gritti, Fabrice; Guiochon, Georges
2009-08-14
An experimental protocol is proposed in order to measure with accuracy and precision the band compression factor G(12)(2) of a protein in gradient RPLC. Extra-column contributions to bandwidth and the dependency of both the retention factor and the reduced height equivalent to a theoretical plate (HETP) on the mobile phase composition were taken into account. The band compression factor of a small protein (insulin, MW kDa) was measured on a 2.1mm x 50mm column packed with 1.7 microm C(4)-bonded bridged ethylsiloxane BEH-silica particles, for 1 microL samples of dilute insulin solution (<0.05g/L). A linear gradient profile of acetonitrile (25-28% acetonitrile in water containing 0.1% trifluoroacetic acid) was applied during three different gradient times (5, 12.5, and 20 min). The mobile phase flow rate was set at 0.20 mL/min in order to avoid heat friction effects (maximum column inlet pressure 180 bar). The band compression factor of insulin is defined as the ratio of the experimental space band variance measured under gradient conditions to the reference space band variance, which would be observed if no thermodynamic compression would take place during gradient elution. It was 0.56, 0.71, and 0.76 with gradient times of 5, 12.5, and 20 min, respectively. These factors are 20-30% smaller than the theoretical band compression factors (0.79, 0.89, and 0.93) calculated from an equation derived from the well-known Poppe equation, later extended to any retention models and columns whose HETP depends on the mobile phase composition. This difference is explained in part by the omission in the model of the effect of the pressure gradient on the local retention factor of insulin during gradient elution. A much better agreement is obtained for insulin when this effect is taken into account. For lower molecular weight compounds, the pressure gradient has little effect but the finite retention of acetonitrile causes a distortion of the gradient shape during the migration of
NASA Astrophysics Data System (ADS)
Tagare, S. G.
2000-03-01
It is found that a two-electron temperature plasma with isothermal electrons and cold ions admits both compressive and rarefactive solitons, as well as compressive and rarefactive double layers (depending on the concentration of low-temperature electrons). In this paper, a Korteweg-de Vries (K-dV) equation and a K-dV-type equation with cubic and fourth-order nonlinearity at the critical density of the low-temperature isothermal electrons are derived to discuss the properties of ion-acoustic solitons in a two-electron temperature plasma. In the vicinity of the critical electron density of low-temperature isothermal electrons, we have derived a K-dV-type equation with mixed nonlinearity, and the solution of this equation will have both compressive and rarefactive double layers for those values of critical electron density of low-temperature electrons for which ion-acoustic solitons do not exist. By using quasipotential analysis, critical Mach numbers M1c and M2c are obtained such that compressive ion-acoustic solitons exist when 1
Brownian motion of solitons in a Bose-Einstein condensate.
Aycock, Lauren M; Hurst, Hilary M; Efimkin, Dmitry K; Genkina, Dina; Lu, Hsin-I; Galitski, Victor M; Spielman, I B
2017-03-07
We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated [Formula: see text] Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.
NASA Astrophysics Data System (ADS)
van Hinsberg, M. A. T.; Clercx, H. J. H.; Toschi, F.
2017-02-01
The Stokes drag force and the gravity force are usually sufficient to describe the behavior of sub-Kolmogorov-size (or pointlike) heavy particles in turbulence, in particular when the particle-to-fluid density ratio ρp/ρf≳103 (with ρp and ρf the particle and fluid density, respectively). This is, in general, not the case for smaller particle-to-fluid density ratios, in particular not for ρp/ρf≲102 . In that case the pressure gradient force, added mass effects, and the Basset history force also play important roles. In this study we focus on the understanding of the role of these additional forces, all of hydrodynamic origin, in the settling of particles in turbulence. In order to qualitatively elucidate the complex dynamics of such particles in homogeneous isotropic turbulence, we first focus on the case of settling of such particles in the flow field of a single vortex. After having explored this simplified case we extend our analysis to homogeneous isotropic turbulence. In general, we found that the pressure gradient force leads to a decrease in the settling velocity. This can be qualitatively understood by the fact that this force prevents the particles from sweeping out of vortices, a mechanism known as preferential sweeping which causes enhanced settling. Additionally, we found that the Basset history force can both increase and decrease the enhanced settling, depending on the particle Stokes number. Finally, the role of the nonlinear Stokes drag has been explored, confirming that it affects settling of inertial particles in turbulence, but only in a limited way for the parameter settings used in this investigation.
Effects of hot electron inertia on electron-acoustic solitons and double layers
Verheest, Frank; Hellberg, Manfred A.
2015-07-15
The propagation of arbitrary amplitude electron-acoustic solitons and double layers is investigated in a plasma containing cold positive ions, cool adiabatic and hot isothermal electrons, with the retention of full inertial effects for all species. For analytical tractability, the resulting Sagdeev pseudopotential is expressed in terms of the hot electron density, rather than the electrostatic potential. The existence domains for Mach numbers and hot electron densities clearly show that both rarefactive and compressive solitons can exist. Soliton limitations come from the cool electron sonic point, followed by the hot electron sonic point, until a range of rarefactive double layers occurs. Increasing the relative cool electron density further yields a switch to compressive double layers, which ends when the model assumptions break down. These qualitative results are but little influenced by variations in compositional parameters. A comparison with a Boltzmann distribution for the hot electrons shows that only the cool electron sonic point limit remains, giving higher maximum Mach numbers but similar densities, and a restricted range in relative hot electron density before the model assumptions are exceeded. The Boltzmann distribution can reproduce neither the double layer solutions nor the switch in rarefactive/compressive character or negative/positive polarity.
NASA Astrophysics Data System (ADS)
Chen, Zhaopin; Malomed, Boris A.
2017-03-01
We introduce a two-component one-dimensional system, which is based on two nonlinear Schrödinger or Gross-Pitaevskii equations (GPEs) with spatially periodic modulation of linear coupling ("Rabi lattice") and self-repulsive nonlinearity. The system may be realized in a binary Bose-Einstein condensate, whose components are resonantly coupled by a standing optical wave, as well as in terms of the bimodal light propagation in periodically twisted waveguides. The system supports various types of gap solitons (GSs), which are constructed, and their stability is investigated, in the first two finite bandgaps of the underlying spectrum. These include on- and off-site-centered solitons (the GSs of the off-site type are additionally categorized as spatially even and odd ones), which may be symmetric or antisymmetric, with respect to the coupled components. The GSs are chiefly stable in the first finite bandgap and unstable in the second one. In addition to that, there are narrow regions near the right edge of the first bandgap, and in the second one, which feature intricate alternation of stability and instability. Unstable solitons evolve into robust breathers or spatially confined turbulent modes. On-site-centered GSs are also considered in a version of the system that is made asymmetric by the Zeeman effect, or by birefringence of the optical waveguide. A region of alternate stability is found in the latter case too. In the limit of strong asymmetry, GSs are obtained in a semianalytical approximation, which reduces two coupled GPEs to a single one with an effective lattice potential.
ERIC Educational Resources Information Center
Bookstein, Abraham; Storer, James A.
1992-01-01
Introduces this issue, which contains papers from the 1991 Data Compression Conference, and defines data compression. The two primary functions of data compression are described, i.e., storage and communications; types of data using compression technology are discussed; compression methods are explained; and current areas of research are…
Song, Y F; Zhang, H; Zhao, L M; Shen, D Y; Tang, D Y
2016-01-25
We report on the experimental observation of vector and bound vector solitons in a fiber laser passively mode locked by graphene. Localized interactions between vector solitons, vector soliton with bound vector solitons, and vector soliton with a bunch of vector solitons are experimentally investigated. We show that depending on the soliton interactions, various stable and dynamic multiple vector soliton states could be formed.
Diode-Pumped Soliton and Non-Soliton Mode-Locked Yb:GYSO Lasers
NASA Astrophysics Data System (ADS)
He, Jin-Ping; Liang, Xiao-Yan; Li, Jin-Feng; Zheng, Li-He; Su, Liang-Bi; Xu, Jun
2011-08-01
Diode-pumped soliton and non-soliton mode-locked Yb:(Gd1-x Yx)2SiO5(x = 0.5) lasers are demonstrated. Pulses as short as 1.4 ps are generated for the soliton mode-locked operation, with a pair of SF10 prisms as the negative dispersion elements. The central wavelength is 1056 nm and the repetition rate is 48 MHz. For the non-soliton mode locking, the output power could achieve ~1.2 W, and the pulse width is about 20 ps. The critical pulse energy in the soliton-mode locked operation against the Q-switched mode locking is much lower than the critical pulse energy in the non-soliton mode-locked operation.
Soliton approach to magnetic holes
NASA Astrophysics Data System (ADS)
Baumgärtel, Klaus
``Magnetic holes'' (MHs), depressions in the magnetic field magnitude associated with enhancements in density and kinetic pressure, have been observed in the solar wind, the magnetosheaths of terrestrial planets and in the environments of comets, suggesting that this phenomenon may be a common occurrence in space plasmas. MHs are usually believed to result from the mirror instability which can develop in high-beta plasmas with a temperature anisotropy, T⊥/T∥>1. Motivated by the fact that solar wind MHs are often observed in a mirror mode stable environment [Winterhalter et al., 1994], this paper proposes a mechanism for the maintenance of MHs in an equilibrium plasma. We suggest an explanation in terms of magnetically rarefactive (``dark'') MHD solitons with anticorrelation of magnetic field and density, which propagate with small velocities at large angles to the ambient magnetic field. This intrinsically nonlinear approach is based on a magnetohydrodynamic plasma description including Hall inertia effects and utilizes the well-developed soliton theory of the Derivative Nonlinear Schrödinger Equation (DNLS) which appears as a partly adequate approximation to the parent Hall-MHD system. The approach introduces an alternative mechanism into the discussion over the physical nature of MHs that is not related to an instability and provides an explanation for various aspects of the observations including amplitude, thickness, and spatial structure of MHs.
Rarefaction solitons initiated by sheath instability
Levko, Dmitry
2015-09-15
The instability of the cathode sheath initiated by the cold energetic electron beam is studied by the one-dimensional fluid model. Numerical simulations show the generation of travelling rarefaction solitons at the cathode. It is obtained that the parameters of these solitons strongly depend on the parameters of electron beam. The “stretched” variables are derived using the small-amplitude analysis. These variables are used in order to obtain the Korteweg-de Vries equation describing the propagation of the rarefaction solitons through the plasma with cold energetic electron beam.
Solitons in curved space of constant curvature
Batz, Sascha; Peschel, Ulf
2010-05-15
We consider spatial solitons as, for example, self-confined optical beams in spaces of constant curvature, which are a natural generalization of flat space. Due to the symmetries of these spaces we are able to define respective dynamical parameters, for example, velocity and position. For positively curved space we find stable multiple-hump solitons as a continuation from the linear modes. In the case of negatively curved space we show that no localized solution exists and a bright soliton will always decay through a nonlinear tunneling process.
Spectral tunneling of lattice nonlocal solitons
Kartashov, Yaroslav V.; Torner, Lluis; Vysloukh, Victor A.
2010-07-15
We address spectral tunneling of walking spatial solitons in photorefractive media with nonlocal diffusion component of the nonlinear response and an imprinted shallow optical lattice. In contrast to materials with local nonlinearities, where solitons traveling across the lattice close to the Bragg angle suffer large radiative losses, in photorefractive media with diffusion nonlinearity resulting in self-bending, solitons survive when their propagation angle approaches and even exceeds the Bragg angle. In the spatial frequency domain this effect can be considered as tunneling through the band of spatial frequencies centered around the Bragg frequency where the spatial group velocity dispersion is positive.
Anisotropic hydraulic permeability in compressed articular cartilage.
Reynaud, Boris; Quinn, Thomas M
2006-01-01
The extent to which articular cartilage hydraulic permeability is anisotropic is largely unknown, despite its importance for understanding mechanisms of joint lubrication, load bearing, transport phenomena, and mechanotransduction. We developed and applied new techniques for the direct measurement of hydraulic permeability within statically compressed adult bovine cartilage explant disks, dissected such that disk axes were perpendicular to the articular surface. Applied pressure gradients were kept small to minimize flow-induced matrix compaction, and fluid outflows were measured by observation of a meniscus in a glass capillary under a microscope. Explant disk geometry under radially unconfined axial compression was measured by direct microscopic observation. Pressure, flow, and geometry data were input to a finite element model where hydraulic permeabilities in the disk axial and radial directions were determined. At less than 10% static compression, near free-swelling conditions, hydraulic permeability was nearly isotropic, with values corresponding to those of previous studies. With increasing static compression, hydraulic permeability decreased, but the radially directed permeability decreased more dramatically than the axially directed permeability such that strong anisotropy (a 10-fold difference between axial and radial directions) in the hydraulic permeability tensor was evident for static compression of 20-40%. Results correspond well with predictions of a previous microstructurally-based model for effects of tissue mechanical deformations on glycosaminoglycan architecture and cartilage hydraulic permeability. Findings inform understanding of structure-function relationships in cartilage matrix, and suggest several biomechanical roles for compression-induced anisotropic hydraulic permeability in articular cartilage.
Progress in turbulence modeling for complex flow fields including effects of compressibility
NASA Technical Reports Server (NTRS)
Wilcox, D. C.; Rubesin, M. W.
1980-01-01
Two second-order-closure turbulence models were devised that are suitable for predicting properties of complex turbulent flow fields in both incompressible and compressible fluids. One model is of the "two-equation" variety in which closure is accomplished by introducing an eddy viscosity which depends on both a turbulent mixing energy and a dissipation rate per unit energy, that is, a specific dissipation rate. The other model is a "Reynolds stress equation" (RSE) formulation in which all components of the Reynolds stress tensor and turbulent heat-flux vector are computed directly and are scaled by the specific dissipation rate. Computations based on these models are compared with measurements for the following flow fields: (a) low speed, high Reynolds number channel flows with plane strain or uniform shear; (b) equilibrium turbulent boundary layers with and without pressure gradients or effects of compressibility; and (c) flow over a convex surface with and without a pressure gradient.
Observation of spherical ion-acoustic solitons
Nakamura, Y.; Ooyama, M.; Ogino, T.
1980-11-10
Spherically converging positive and negative ion-acoustic pulses are investigated experimentally. Their behavior agrees with computer simulations based on the fluid model of plasma. Large positive pulses are identified as solitons.
Relativistic projection and boost of solitons
Wilets, L.
1991-12-31
This report discusses the following topics on the relativistic projection and boost of solitons: The center of mass problem; momentum eigenstates; variation after projection; and the nucleon as a composite. (LSP).
Relativistic projection and boost of solitons
Wilets, L.
1991-01-01
This report discusses the following topics on the relativistic projection and boost of solitons: The center of mass problem; momentum eigenstates; variation after projection; and the nucleon as a composite. (LSP).
Nonlinear Dynamics: Maps, Integrators and Solitons
Parsa, Z.
1998-10-01
For many physical systems of interest in various disciplines, the solution to nonlinear differential equations describing the physical systems can be generated using maps, symplectic integrators and solitons. We discuss these methods and apply them for various examples.
Chiral nontopological solitons with perturbative quantum pions
NASA Astrophysics Data System (ADS)
Williams, A. G.; Dodd, L. R.
1988-04-01
We investigate chiral extensions of a broad class of nontopological soliton bag models. Chiral symmetry is restored in a nonlinear realization through the introduction of an elementary pion field. We show in particular that it is consistent to treat the pions as a perturbative quantum field, as is done in the cloudy-bag model. The cloudy-bag model is recovered as a limiting case. A careful comparison is made between predictions of chiral extensions of the Friedberg-Lee and the Nielsen-Patkos color-dielectric nontopological soliton models and the cloudy-bag model. Once the overall distance scale is fixed we find relative insensitivity to the detailed choice of nontopological soliton parameters. We investigate two versions of chiral nontopological solitons, analogous to the surface- and volume-coupled cloudy-bag model, and discuss their relation to current algebra.
Envelope Solitons in Acoustically Dispersive Vitreous Silica
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Yost, William T.
2012-01-01
Acoustic radiation-induced static strains, displacements, and stresses are manifested as rectified or dc waveforms linked to the energy density of an acoustic wave or vibrational mode via the mode nonlinearity parameter of the material. An analytical model is developed for acoustically dispersive media that predicts the evolution of the energy density of an initial waveform into a series of energy solitons that generates a corresponding series of radiation-induced static strains (envelope solitons). The evolutionary characteristics of the envelope solitons are confirmed experimentally in Suprasil W1 vitreous silica. The value (-11.9 plus or minus 1.43) for the nonlinearity parameter, determined from displacement measurements of the envelope solitons via a capacitive transducer, is in good agreement with the value (-11.6 plus or minus 1.16) obtained independently from acoustic harmonic generation measurements. The agreement provides strong, quantitative evidence for the validity of the model.
Successive soliton explosions in an ultrafast fiber laser.
Liu, Meng; Luo, Ai-Ping; Yan, Yu-Rong; Hu, Song; Liu, Yi-Chen; Cui, Hu; Luo, Zhi-Chao; Xu, Wen-Cheng
2016-03-15
Soliton explosions, as one of the most fascinating nonlinear phenomena in dissipative systems, have been investigated in different branches of physics, including the ultrafast laser community. Herein, we reported on the soliton dynamics of an ultrafast fiber laser from steady state to soliton explosions, and to huge explosions by simply adjusting the pump power level. In particular, the huge soliton explosions show that the exploding behavior could operate in a sustained, but periodic, mode from one explosion to another, which we term as "successive soliton explosions." The experimental results will prove to be fruitful to the various communities interested in soliton explosions.
Observation of Soliton Fusion in a Josephson Array
Pfeiffer, J.; Schuster, M.; Abdumalikov, A.A. Jr.; Ustinov, A.V.
2006-01-27
The behavior of topological solitons in a parallel array of a Josephson junction is studied experimentally. We observe the fusion of two relativistic 2{pi} solitons of the same polarity into a single 4{pi} soliton. The 4{pi} soliton carries two quanta of magnetic flux and, most strikingly, travels 18% faster than an ordinary 2{pi} soliton under the same driving force. We also find a variety of bunched states composed of 2{pi} solitons of the same polarity, moving with fixed separation.
Interaction soliton sable dans un canal en eau peu profonde
NASA Astrophysics Data System (ADS)
Marin, François; Abcha, Nizar; Brossard, Jérôme; Ezersky, Alexander
2005-03-01
Interaction between solitons and a sandy bed in shallow water is investigated. In our experiments, solitons are generated on the background of a harmonic wave, in a wave flume used in resonant mode. It is found that the sand ripples formed by the solitons propagation induce a significant decrease of solitons amplitude and of the phase shift between the soliton and the harmonic wave. However, the amplitude of the harmonic wave is approximately constant. The possible physical processes of such behaviour for the soliton amplitude and for the harmonic wave amplitude are discussed. To cite this article: F. Marin et al., C. R. Mecanique 333 (2005).
Exact kink solitons in Skyrme crystals
NASA Astrophysics Data System (ADS)
Chen, Shouxin; Li, Yijun; Yang, Yisong
2014-01-01
We present an explicit integration of the kink soliton equation obtained in a recent interesting study of the classical Skyrme model where the field configurations are of a generalized hedgehog form which is of a domain-wall type. We also show that in such a reduced one-dimensional setting the first-order and second-order equations are equivalent. Consequently, in such a context, all finite-energy solitons are Bogomolnyi-Prasad-Sommerfield type and precisely known.
Quantum Lattice Representation of Dark Solitons
2004-01-01
Gross - Pitaevskii equation, which for a highly anisotropic (cigar-shaped) magnetic trap reduces to a one-dimensional (ID) cubic NLS, in an external...solitons Vector dark-bright solitons Nonlinear Schrodinger equation Gross - Pitaevskii equation Quantum lattice representation 16. SECURITY CLASSIFICATION...condensate (BEC) is described by the Gross - Pitaevskii equation, which for a highly anisotropic (cigar-shaped) magnetic trap reduces to a one
Gap soliton propagation in optical fiber gratings
NASA Astrophysics Data System (ADS)
Mohideen, U.; Slusher, R. E.; Mizrahi, V.; Erdogan, T.; Kuwata-Gonokami, M.; Lemaire, P. J.; Sipe, J. E.; Martijn de Sterke, C.; Broderick, Neil G. R.
1995-08-01
Intense optical pulse propagation in a GeO2 -doped silica glass fiber grating results in nonlinear pulse propagation velocities and increased transmission at wavelengths where the grating reflects light in the linear limit. These nonlinear pulse propagation effects are predicted by numerical simulations of gap soliton propagation. The large linear refractive-index variations used for the fiber gratings in these experiments permit the propagation of gap solitons in short lengths of fiber.
Quantum lattice representation of dark solitons
NASA Astrophysics Data System (ADS)
Vahala, George; Vahala, Linda; Yepez, Jeffrey
2004-08-01
The nonlinear Schrodinger (NLS) equation in a self-defocusing Kerr medium supports dark solitons. Moreover the mean field description of a dilute Bose-Einstein condensate (BEC) is described by the Gross-Pitaevskii equation, which for a highly anisotropic (cigar-shaped) magnetic trap reduces to a one-dimensional (1D) cubic NLS in an external potential. A quantum lattice algorithm is developed for the dark solitons. Simulations are presented for both black (stationary) solitons as well as (moving) dark solitons. Collisions of dark solitons are compared with the exact analytic solutions and coupled dark-bright vector solitons are examined. The quantum algorithm requires 2 qubits per scalar field at each spatial node. The unitary collision operator quantum mechanically entangles the on-site qubits, and this transitory entanglement is spread throughout the lattice by the streaming operators. These algorithms are suitable for a Type-II quantum computers, with wave function collapse induced by quantum measurements required to determine the coupling potentials.
Soliton dynamics in the multiphoton plasma regime
Husko, Chad A.; Combrié, Sylvain; Colman, Pierre; Zheng, Jiangjun; De Rossi, Alfredo; Wong, Chee Wei
2013-01-01
Solitary waves have consistently captured the imagination of scientists, ranging from fundamental breakthroughs in spectroscopy and metrology enabled by supercontinuum light, to gap solitons for dispersionless slow-light, and discrete spatial solitons in lattices, amongst others. Recent progress in strong-field atomic physics include impressive demonstrations of attosecond pulses and high-harmonic generation via photoionization of free-electrons in gases at extreme intensities of 1014 W/cm2. Here we report the first phase-resolved observations of femtosecond optical solitons in a semiconductor microchip, with multiphoton ionization at picojoule energies and 1010 W/cm2 intensities. The dramatic nonlinearity leads to picojoule observations of free-electron-induced blue-shift at 1016 cm−3 carrier densities and self-chirped femtosecond soliton acceleration. Furthermore, we evidence the time-gated dynamics of soliton splitting on-chip, and the suppression of soliton recurrence due to fast free-electron dynamics. These observations in the highly dispersive slow-light media reveal a rich set of physics governing ultralow-power nonlinear photon-plasma dynamics.
Radiating subdispersive fractional optical solitons
NASA Astrophysics Data System (ADS)
Fujioka, J.; Espinosa, A.; Rodríguez, R. F.; Malomed, B. A.
2014-09-01
It was recently found [Fujioka et al., Phys. Lett. A 374, 1126 (2010)] that the propagation of solitary waves can be described by a fractional extension of the nonlinear Schrödinger (NLS) equation which involves a temporal fractional derivative (TFD) of order α > 2. In the present paper, we show that there is also another fractional extension of the NLS equation which contains a TFD with α < 2, and in this case, the new equation describes the propagation of radiating solitons. We show that the emission of the radiation (when α < 2) is explained by resonances at various frequencies between the pulses and the linear modes of the system. It is found that the new fractional NLS equation can be derived from a suitable Lagrangian density, and a fractional Noether's theorem can be applied to it, thus predicting the conservation of the Hamiltonian, momentum and energy.
Radiating subdispersive fractional optical solitons
Fujioka, J. Espinosa, A.; Rodríguez, R. F.; Malomed, B. A.
2014-09-01
It was recently found [Fujioka et al., Phys. Lett. A 374, 1126 (2010)] that the propagation of solitary waves can be described by a fractional extension of the nonlinear Schrödinger (NLS) equation which involves a temporal fractional derivative (TFD) of order α > 2. In the present paper, we show that there is also another fractional extension of the NLS equation which contains a TFD with α < 2, and in this case, the new equation describes the propagation of radiating solitons. We show that the emission of the radiation (when α < 2) is explained by resonances at various frequencies between the pulses and the linear modes of the system. It is found that the new fractional NLS equation can be derived from a suitable Lagrangian density, and a fractional Noether's theorem can be applied to it, thus predicting the conservation of the Hamiltonian, momentum and energy.
NASA Astrophysics Data System (ADS)
Su, Chuan-Qi; Gao, Yi-Tian; Xue, Long; Wang, Qi-Min
2016-07-01
Under investigation in this paper is the Gross-Pitaevskii equation which describes the dynamics of the Bose-Einstein condensate. Lax pair, conservation laws and Darboux transformation (DT) are constructed. Nonautonomous solitons and breathers are derived based on the DT obtained. A kind of modulation instability process is generated. Nonautonomous rogue waves are obtained via the generalized DT. Influence of the nonlinearity, linear external potential, harmonic external potential, and spectral parameter on the propagation and interaction of the nonautonomous solitons, breathers and rogue waves is also discussed. Amplitude of the first-order nonautonomous soliton is proportional to the imaginary part of the spectral parameter and inversely proportional to the nonlinearity parameter. Linear external potential parameter affects the location of the first-order nonautonomous soliton. Head-on interaction, overtaking interaction and bound-state-like nonautonomous solitons can be formed based on the signs of the real parts of the spectral parameters. Quasi-periodic behaviors are exhibited for the nonautonomous breathers. If the harmonic external potential parameter is negative, quasi-period decreases along the positive time axis, with an increase in the amplitude and a compression in the width. Quasi-period decreases with the increase of the nonlinearity parameter. The second-order nonautonomous rogue wave can split into three first-order ones. Nonlinearity parameter has an effect on the amplitude of the rogue wave. Linear external potential parameter influences the location of the rogue wave, while harmonic external potential parameter affects the curved direction of the background.
NASA Technical Reports Server (NTRS)
Rued, Klaus
1987-01-01
The requirements for fundamental experimental studies of the influence of free stream turbulence, pressure gradients and wall cooling are discussed. Under turbine-like free stream conditions, comprehensive tests of transitional boundary layers with laminar, reversing and turbulent flow increments were performed to decouple the effects of the parameters and to determine the effects during mutual interaction.
NASA Technical Reports Server (NTRS)
Hunt, L. Roane; Notestine, Kristopher K.
1990-01-01
Surface and gap pressures and heating-rate distributions were obtained for simulated Thermal Protection System (TPS) tile arrays on the curved surface test apparatus of the Langley 8-Foot High Temperature Tunnel at Mach 6.6. The results indicated that the chine gap pressures varied inversely with gap width because larger gap widths allowed greater venting from the gap to the lower model side pressures. Lower gap pressures caused greater flow ingress from the surface and increased gap heating. Generally, gap heating was greater in the longitudinal gaps than in the circumferential gaps. Gap heating decreased with increasing gap depth. Circumferential gap heating at the mid-depth was generally less than about 10 percent of the external surface value. Gap heating was most severe at local T-gap junctions and tile-to-tile forward-facing steps that caused the greatest heating from flow impingement. The use of flow stoppers at discrete locations reduced heating from flow impingement. The use of flow stoppers at discrete locations reduced heating in most gaps but increased heating in others. Limited use of flow stoppers or gap filler in longitudinal gaps could reduce gap heating in open circumferential gaps in regions of high surface pressure gradients.
NASA Astrophysics Data System (ADS)
Heinze, Rieke; Mironov, Dmitrii; Raasch, Siegfried
2016-03-01
A detailed analysis of the pressure-scrambling terms (i.e., the pressure-strain and pressure gradient-scalar covariances) in the Reynolds-stress and scalar-flux budgets for cloud-topped boundary layers (CTBLs) is performed using high-resolution large-eddy simulation (LES). Two CTBLs are simulated — one with trade wind shallow cumuli, and the other with nocturnal marine stratocumuli. The pressure-scrambling terms are decomposed into contributions due to turbulence-turbulence interactions, mean velocity shear, buoyancy, and Coriolis effects. Commonly used models of these contributions, including a simple linear model most often used in geophysical applications and a more sophisticated two-component-limit (TCL) nonlinear model, are tested against the LES data. The decomposition of the pressure-scrambling terms shows that the turbulence-turbulence and buoyancy contributions are most significant for cloud-topped boundary layers. The Coriolis contribution is negligible. The shear contribution is generally of minor importance inside the cloudy layers, but it is the leading-order contribution near the surface. A comparison of models of the pressure-scrambling terms with the LES data suggests that the more complex TCL model is superior to the simple linear model only for a few contributions. The linear model is able to reproduce the principal features of the pressure-scrambling terms reasonably well. It can be applied in the second-order turbulence modeling of cloud-topped boundary layer flows, provided some uncertainties are tolerated.
Chladni Solitons and the Onset of the Snaking Instability for Dark Solitons in Confined Superfluids
NASA Astrophysics Data System (ADS)
Muñoz Mateo, A.; Brand, J.
2014-12-01
Complex solitary waves composed of intersecting vortex lines are predicted in a channeled superfluid. Their shapes in a cylindrical trap include a cross, spoke wheels, and Greek Φ , and trace the nodal lines of unstable vibration modes of a planar dark soliton in analogy to Chladni's figures of membrane vibrations. The stationary solitary waves extend a family of solutions that include the previously known solitonic vortex and vortex rings. Their bifurcation points from the dark soliton indicating the onset of new unstable modes of the snaking instability are predicted from scale separation for Bose-Einstein condensates (BECs) and superfluid Fermi gases across the BEC-BCS crossover, and confirmed by full numerical calculations. Chladni solitons could be observed in ultracold gas experiments by seeded decay of dark solitons.
Compressible octave spanning supercontinuum generation by two-pulse collisions.
Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Steinmeyer, Günter
2013-06-07
We demonstrate a novel method for supercontinuum generation in an optical fiber based on two-color pumping with a delay and a group velocity matching. The scheme relies on the enhanced cross-phase-modulation at an intensity induced refractive index barrier between a dispersive wave and a soliton. The generation mechanism neither incorporates soliton fission nor a modulation instability and therefore exhibits extraordinary coherence properties, enabling the temporal compression of octave bandwidth into a short pulse. Moreover, the properties of the supercontinuum are adjustable over a wide range in the frequency domain by suitable choice of the dispersive wave.
BOOK REVIEW: Solitons, Instantons, and Twistors Solitons, Instantons, and Twistors
NASA Astrophysics Data System (ADS)
Witt, Donald M.
2011-04-01
Solitons and instantons play important roles both in pure and applied mathematics as well as in theoretical physics where they are related to the topological structure of the vacuum. Twistors are a useful tool for solving nonlinear differential equations and are useful for the study of the antiself-dual Yang-Mills equations and the Einstein equations. Many books and more advanced monographs have been written on these topics. However, this new book by Maciej Dunajski is a complete first introduction to all of the topics in the title. Moreover, it covers them in a very unique way, through integrable systems. The approach taken in this book is that of mathematical physics à la field theory. The book starts by giving an introduction to integrable systems of ordinary and partial differential equations and proceeds from there. Gauge theories are not covered until chapter 6 which means the reader learning the material for the first time can build up confidence with simpler models of solitons and instantons before encountering them in gauge theories. The book also has an extremely clear introduction to twistor theory useful to both mathematicians and physicists. In particular, the twistor theory presentation may be of interest to string theorists wanting understand twistors. There are many useful connections to research into general relativity. Chapter 9 on gravitational instantons is great treatment useful to anyone doing research in classical or quantum gravity. There is also a nice discussion of Kaluza-Klein monopoles. The three appendices A-C cover the necessary background material of basic differential geometry, complex manifolds, and partial differential equations needed to fully understand the subject. The reader who has some level of expertise in any of the topics covered can jump right into that material without necessarily reading all of the earlier chapters because of the extremely clear writing style of the author. This makes the book an excellent reference on
Optical spatial solitons: historical overview and recent advances.
Chen, Zhigang; Segev, Mordechai; Christodoulides, Demetrios N
2012-08-01
Solitons, nonlinear self-trapped wavepackets, have been extensively studied in many and diverse branches of physics such as optics, plasmas, condensed matter physics, fluid mechanics, particle physics and even astrophysics. Interestingly, over the past two decades, the field of solitons and related nonlinear phenomena has been substantially advanced and enriched by research and discoveries in nonlinear optics. While optical solitons have been vigorously investigated in both spatial and temporal domains, it is now fair to say that much soliton research has been mainly driven by the work on optical spatial solitons. This is partly due to the fact that although temporal solitons as realized in fiber optic systems are fundamentally one-dimensional entities, the high dimensionality associated with their spatial counterparts has opened up altogether new scientific possibilities in soliton research. Another reason is related to the response time of the nonlinearity. Unlike temporal optical solitons, spatial solitons have been realized by employing a variety of noninstantaneous nonlinearities, ranging from the nonlinearities in photorefractive materials and liquid crystals to the nonlinearities mediated by the thermal effect, thermophoresis and the gradient force in colloidal suspensions. Such a diversity of nonlinear effects has given rise to numerous soliton phenomena that could otherwise not be envisioned, because for decades scientists were of the mindset that solitons must strictly be the exact solutions of the cubic nonlinear Schrödinger equation as established for ideal Kerr nonlinear media. As such, the discoveries of optical spatial solitons in different systems and associated new phenomena have stimulated broad interest in soliton research. In particular, the study of incoherent solitons and discrete spatial solitons in optical periodic media not only led to advances in our understanding of fundamental processes in nonlinear optics and photonics, but also had a
Peregrine soliton generation and breakup in standard telecommunications fiber.
Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Morin, Philippe; Fatome, Julien; Dudley, John M; Millot, Guy
2011-01-15
We present experimental and numerical results showing the generation and breakup of the Peregrine soliton in standard telecommunications fiber. The impact of nonideal initial conditions is studied through direct cutback measurements of the longitudinal evolution of the emerging soliton dynamics and is shown to be associated with the splitting of the Peregrine soliton into two subpulses, with each subpulse itself exhibiting Peregrine soliton characteristics. Experimental results are in good agreement with simulations.
Some properties for a new integrable soliton equation
NASA Astrophysics Data System (ADS)
Pan, Chaohong; Ling, Liming
2015-02-01
In this paper, we introduce an integrable soliton equation and present its Lax pair and bi-Hamiltonian structure. We demonstrate that this integrable equation possesses special kink waves. The relationship between the integrable soliton equation and Gardner's equation is established by a reciprocal transformation. Our study extends previous research through a comparison between the soliton equation and its generalized version.
A new class of non-topological solitons
NASA Technical Reports Server (NTRS)
Frieman, Joshua A.; Lynn, Bryan W.
1989-01-01
A class of non-topological solitons was constructed in renormalizable scalar field theories with nonlinear self-interactions. For large charge Q, the soliton mass increases linearly with Q, i.e., the soliton mass density is approximately independent of charge. Such objects could be naturally produced in a phase transition in the early universe or in the decay of superconducting cosmic strings.
DNABIT Compress - Genome compression algorithm.
Rajarajeswari, Pothuraju; Apparao, Allam
2011-01-22
Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.
Solitons and dynamic analysis for a (2 + 1)-dimensional breaking soliton equation
NASA Astrophysics Data System (ADS)
Chai, Jun; Tian, Bo; Sun, Wen-Rong; Xie, Xi-Yang
2017-01-01
In this paper, we study a (2 + 1)-dimensional breaking soliton equation, which describes the (2 + 1)-dimensional interaction of a Riemann wave propagating along the y axis with a long wave along the x axis, where x and y are the scaled space coordinates. Grammian N-soliton solutions for the equation are derived. With N = 1 and 2, the one- and two-soliton solutions are given. Graphic analysis shows that the soliton amplitude and velocity are related to the dispersion. An overtaking interaction between the two parallel solitons is shown. We find that the two solitons always have the same soliton direction. Then, we investigate the equation from a planar-dynamic-system viewpoint. That equation is reduced to a two-dimensional planar dynamic system, which is proved to be a Hamiltonian system. Through the qualitative analysis, we give the phase portraits of the dynamic system, based on which the relation among the Hamiltonian, orbits of the dynamic system and types of the analytic solutions are discussed. The analysis shows that the solitary- and periodic-wave solutions for that equation correspond to the homoclinic and periodic orbits of the dynamic system, respectively.
Discrete solitons and vortices on anisotropic lattices.
Kevrekidis, P G; Frantzeskakis, D J; Carretero-González, R; Malomed, B A; Bishop, A R
2005-10-01
We consider the effects of anisotropy on solitons of various types in two-dimensional nonlinear lattices, using the discrete nonlinear Schrödinger equation as a paradigm model. For fundamental solitons, we develop a variational approximation that predicts that broad quasicontinuum solitons are unstable, while their strongly anisotropic counterparts are stable. By means of numerical methods, it is found that, in the general case, the fundamental solitons and simplest on-site-centered vortex solitons ("vortex crosses") feature enhanced or reduced stability areas, depending on the strength of the anisotropy. More surprising is the effect of anisotropy on the so-called "super-symmetric" intersite-centered vortices ("vortex squares"), with the topological charge equal to the square's size : we predict in an analytical form by means of the Lyapunov-Schmidt theory, and confirm by numerical results, that arbitrarily weak anisotropy results in dramatic changes in the stability and dynamics in comparison with the degenerate, in this case, isotropic, limit.
Chiral solitons in the spectral quark model
NASA Astrophysics Data System (ADS)
Arriola, Enrique Ruiz; Broniowski, Wojciech; Golli, Bojan
2007-07-01
Chiral solitons with baryon number one are investigated in the spectral quark model. In this model the quark propagator is a superposition of complex-mass propagators weighted with a suitable spectral function. This technique is a method of regularizing the effective quark theory in a way preserving many desired features crucial in analysis of solitons. We review the model in the vacuum sector, stressing the feature of the absence of poles in the quark propagator. We also investigate in detail the analytic structure of meson two-point functions. We provide an appropriate prescription for constructing valence states in the spectral approach. The valence state in the baryonic soliton is identified with a saddle point of the Dirac eigenvalue treated as a function of the spectral mass. Because of this feature the valence quarks never become unbound nor dive into the negative spectrum, hence providing stable solitons as absolute minima of the action. This is a manifestation of the absence of poles in the quark propagator. Self-consistent mean-field hedgehog solutions are found numerically and some of their properties are determined and compared to previous chiral soliton models. Our analysis constitutes an involved example of a treatment of a relativistic complex-mass system.
Symbiotic two-component gap solitons.
Roeksabutr, Athikom; Mayteevarunyoo, Thawatchai; Malomed, Boris A
2012-10-22
We consider a two-component one-dimensional model of gap solitons (GSs), which is based on two nonlinear Schrödinger equations, coupled by repulsive XPM (cross-phase-modulation) terms, in the absence of the SPM (self-phase-modulation) nonlinearity. The equations include a periodic potential acting on both components, thus giving rise to GSs of the "symbiotic" type, which exist solely due to the repulsive interaction between the two components. The model may be implemented for "holographic solitons" in optics, and in binary bosonic or fermionic gases trapped in the optical lattice. Fundamental symbiotic GSs are constructed, and their stability is investigated, in the first two finite bandgaps of the underlying spectrum. Symmetric solitons are destabilized, including their entire family in the second bandgap, by symmetry-breaking perturbations above a critical value of the total power. Asymmetric solitons of intra-gap and inter-gap types are studied too, with the propagation constants of the two components falling into the same or different bandgaps, respectively. The increase of the asymmetry between the components leads to shrinkage of the stability areas of the GSs. Inter-gap GSs are stable only in a strongly asymmetric form, in which the first-bandgap component is a dominating one. Intra-gap solitons are unstable in the second bandgap. Unstable two-component GSs are transformed into persistent breathers. In addition to systematic numerical considerations, analytical results are obtained by means of an extended ("tailed") Thomas-Fermi approximation (TFA).
Dark solitons as quasiparticles in trapped condensates
Brazhnyi, V. A.; Konotop, V. V.; Pitaevskii, L. P.
2006-05-15
We present a theory of dark soliton dynamics in trapped quasi-one-dimensional Bose-Einstein condensates, which is based on the local-density approximation. The approach is applicable for arbitrary polynomial nonlinearities of the mean-field equation governing the system as well as to arbitrary polynomial traps. In particular, we derive a general formula for the frequency of the soliton oscillations in confining potentials. A special attention is dedicated to the study of the soliton dynamics in adiabatically varying traps. It is shown that the dependence of the amplitude of oscillations vs the trap frequency (strength) is given by the scaling law X{sub 0}{proportional_to}{omega}{sup -{gamma}} where the exponent {gamma} depends on the type of the two-body interactions, on the exponent of the polynomial confining potential, on the density of the condensate, and on the initial soliton velocity. Analytical results obtained within the framework of the local-density approximation are compared with the direct numerical simulations of the dynamics, showing a remarkable match. Various limiting cases are addressed. In particular for the slow solitons we computed a general formula for the effective mass and for the frequency of oscillations.
Laboratory realization of KP-solitons
NASA Astrophysics Data System (ADS)
Yeh, Harry; Li, Wenwen
2014-03-01
Kodama and his colleagues presented a classification theorem for exact soliton solutions of the quasi-two-dimensional Kadomtsev-Petviashvili (KP) equation. The classification theorem is related to non-negative Grassmann manifold, Gr(N, M) that is parameterized by a unique chord diagram based on the derangement of the permutation group. The cord diagram can infer the asymptotic behavior of the solution with arbitrary number of line solitons. Here we present the realization of a variety of the KP soliton formations in the laboratory environment. The experiments are performed in a water tank designed and constructed for precision experiments for long waves. The tank is equipped with a directional-wave maker, capable of generating arbitrary-shaped multi-dimensional waves. Temporal and spatial variations of water-surface profiles are captured using the Laser Induces Fluorescent method - a nonintrusive optical measurement technique with sub-millimeter precision. The experiments yield accurate anatomy of the KP soliton formations and their evolution behaviors. Physical interpretations are discussed for a variety of KP soliton formations predicted by the classification theorem.
Kumar, Ashish; Khan, Noor Muhammad; Anikhindi, Shrihari Anil; Sharma, Praveen; Bansal, Naresh; Singla, Vikas; Arora, Anil
2017-01-01
AIM To study the diagnostic accuracy of transient elastography (TE) for detecting clinically significant portal hypertension (CSPH) in Indian patients with cirrhotic portal hypertension. METHODS This retrospective study was conducted at the Institute of Liver, Gastroenterology, and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, on consecutive patients with cirrhosis greater than 15 years of age who underwent hepatic venous pressure gradient (HVPG) and TE from July 2011 to May 2016. Correlation between HVPG and TE was analyzed using the Spearman’s correlation test. Receiver operating characteristic (ROC) curves were prepared for determining the utility of TE in predicting various stages of portal hypertension. The best cut-off value of TE for the diagnosis of CSPH was obtained using the Youden index. RESULTS The study included 326 patients [median age 52 (range 16-90) years; 81% males]. The most common etiology of cirrhosis was cryptogenic (45%) followed by alcohol (34%). The median HVPG was 16.0 (range 1.5 to 30.5) mmHg. Eighty-five percent of patients had CSPH. A significant positive correlation was noted between TE and HVPG (rho 0.361, P < 0.001). The area under ROC curve for TE in predicting CSPH was 0.740 (95%CI: 0.662-0.818) (P < 0.01). A cut-off value of TE of 21.6 kPa best predicted CSPH with a positive predictive value (PPV) of 93%. CONCLUSION TE has a fair positive correlation with HVPG; thus, TE can be used as a non-invasive modality to assess the degree of portal hypertension. A cut-off TE value of 21.6 kPa identifies CSPH with a PPV of 93%. PMID:28216976
Tey, Tze Tong; Gogna, Apoorva; Irani, Farah Gillan; Too, Chow Wei; Lo, Hoau Gong Richard; Tan, Bien Soo; Tay, Kiang Hiong; Lui, Hock Foong; Chang, Pik Eu Jason
2016-01-01
INTRODUCTION Hepatic venous pressure gradient (HVPG) measurement is recommended for prognostic and therapeutic indications in centres with adequate resources and expertise. Our study aimed to evaluate the quality of HVPG measurements at our centre before and after introduction of a standardised protocol, and the clinical relevance of the HVPG to variceal bleeding in cirrhotics. METHODS HVPG measurements performed at Singapore General Hospital from 2005–2013 were retrospectively reviewed. Criteria for quality HVPG readings were triplicate readings, absence of negative pressure values and variability of ≤ 2 mmHg. The rate of variceal bleeding was compared in cirrhotics who achieved a HVPG response to pharmacotherapy (reduction of the HVPG to < 12 mmHg or by ≥ 20% of baseline) and those who did not. RESULTS 126 HVPG measurements were performed in 105 patients (mean age 54.7 ± 11.4 years; 55.2% men). 80% had liver cirrhosis and 20% had non-cirrhotic portal hypertension (NCPH). The mean overall HVPG was 13.5 ± 7.2 mmHg, with a significant difference between the cirrhosis and NCPH groups (p < 0.001). The proportion of quality readings significantly improved after the protocol was introduced. HVPG response was achieved in 28 (33.3%, n = 84) cirrhotics. Nine had variceal bleeding over a median follow-up of 29 months. The rate of variceal bleeding was significantly lower in HVPG responders compared to nonresponders (p = 0.025). CONCLUSION The quality of HVPG measurements in our centre improved after the introduction of a standardised protocol. A HVPG response can prognosticate the risk of variceal bleeding in cirrhotics. PMID:26996384
280 GHz dark soliton fiber laser.
Song, Y F; Guo, J; Zhao, L M; Shen, D Y; Tang, D Y
2014-06-15
We report on an ultrahigh repetition rate dark soliton fiber laser. We show both numerically and experimentally that by taking advantage of the cavity self-induced modulation instability and the dark soliton formation in a net normal dispersion cavity fiber laser, stable ultrahigh repetition rate dark soliton trains can be formed in a dispersion-managed cavity fiber laser. Stable dark soliton trains with a repetition rate as high as ∼280 GHz have been generated in our experiment. Numerical simulations have shown that the effective gain bandwidth limitation plays an important role on the stabilization of the formed dark solitons in the laser.
Black and gray Helmholtz-Kerr soliton refraction
Sanchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S.
2011-01-15
Refraction of black and gray solitons at boundaries separating different defocusing Kerr media is analyzed within a Helmholtz framework. A universal nonlinear Snell's law is derived that describes gray soliton refraction, in addition to capturing the behavior of bright and black Kerr solitons at interfaces. Key regimes, defined by beam and interface characteristics, are identified, and predictions are verified by full numerical simulations. The existence of a unique total nonrefraction angle for gray solitons is reported; both internal and external refraction at a single interface is shown possible (dependent only on incidence angle). This, in turn, leads to the proposal of positive or negative lensing operations on soliton arrays at planar boundaries.
Formation of discrete solitons in light-induced photonic lattices.
Chen, Zhigang; Martin, Hector; Eugenieva, Eugenia; Xu, Jingjun; Yang, Jianke
2005-03-21
We present both experimental and theoretical results on discrete solitons in two-dimensional optically-induced photonic lattices in a variety of settings, including fundamental discrete solitons, vector-like discrete solitons, discrete dipole solitons, and discrete soliton trains. In each case, a clear transition from two-dimensional discrete diffraction to discrete trapping is demonstrated with a waveguide lattice induced by partially coherent light in a bulk photorefractive crystal. Our experimental results are in good agreement with the theoretical analysis of these effects.
A spin dynamics approach to solitonics
Koumpouras, Konstantinos; Bergman, Anders; Eriksson, Olle; Yudin, Dmitry
2016-01-01
In magnetic materials a variety of non-collinear ground state configurations may emerge as a result of competition among exchange, anisotropy, and dipole-dipole interaction, yielding magnetic states far more complex than those of homogenous ferromagnets. Of particular interest in this study are particle-like configurations. These particle-like states, e.g., magnetic solitons, skyrmions, or domain walls, form a spatially localised clot of magnetic energy. In this paper we address topologically protected magnetic solitons and explore concepts that potentially might be relevant for logical operations and/or information storage in the rapidly advancing filed of solitonics (and skyrmionics). An ability to easily create, address, and manipulate such structures is among the prerequisite forming a basis of “-onics technology”, and is investigated in detail here using numerical and analytical tools. PMID:27156906
Phase shielding soliton in parametrically driven systems.
Clerc, Marcel G; Garcia-Ñustes, Mónica A; Zárate, Yair; Coulibaly, Saliya
2013-05-01
Parametrically driven extended systems exhibit dissipative localized states. Analytical solutions of these states are characterized by a uniform phase and a bell-shaped modulus. Recently, a type of dissipative localized state with a nonuniform phase structure has been reported: the phase shielding solitons. Using the parametrically driven and damped nonlinear Schrödinger equation, we investigate the main properties of this kind of solution in one and two dimensions and develop an analytical description for its structure and dynamics. Numerical simulations are consistent with our analytical results, showing good agreement. A numerical exploration conducted in an anisotropic ferromagnetic system in one and two dimensions indicates the presence of phase shielding solitons. The structure of these dissipative solitons is well described also by our analytical results. The presence of corrective higher-order terms is relevant in the description of the observed phase dynamical behavior.
A spin dynamics approach to solitonics
NASA Astrophysics Data System (ADS)
Koumpouras, Konstantinos; Bergman, Anders; Eriksson, Olle; Yudin, Dmitry
2016-05-01
In magnetic materials a variety of non-collinear ground state configurations may emerge as a result of competition among exchange, anisotropy, and dipole-dipole interaction, yielding magnetic states far more complex than those of homogenous ferromagnets. Of particular interest in this study are particle-like configurations. These particle-like states, e.g., magnetic solitons, skyrmions, or domain walls, form a spatially localised clot of magnetic energy. In this paper we address topologically protected magnetic solitons and explore concepts that potentially might be relevant for logical operations and/or information storage in the rapidly advancing filed of solitonics (and skyrmionics). An ability to easily create, address, and manipulate such structures is among the prerequisite forming a basis of “-onics technology”, and is investigated in detail here using numerical and analytical tools.
Dark solitons near potential and nonlinearity steps
NASA Astrophysics Data System (ADS)
Tsitoura, F.; Anastassi, Z. A.; Marzuola, J. L.; Kevrekidis, P. G.; Frantzeskakis, D. J.
2016-12-01
We study dark solitons near potential and nonlinearity steps and combinations thereof, forming rectangular barriers. This setting is relevant to the contexts of atomic Bose-Einstein condensates (where such steps can be realized by using proper external fields) and nonlinear optics (for beam propagation near interfaces separating optical media of different refractive indices). We use perturbation theory to develop an equivalent particle theory, describing the matter-wave or optical soliton dynamics as the motion of a particle in an effective potential. This Newtonian dynamical problem provides information for the soliton statics and dynamics, including scenarios of reflection, transmission, or quasitrapping at such steps. The case of multiple such steps and its connection to barrier potentials is additionally touched upon. The range of validity of the analytical approximation and radiation effects are also investigated. Our analytical predictions are found to be in very good agreement with the corresponding numerical results, where appropriate.
Conserved momenta of a ferromagnetic soliton
Tchernyshyov, Oleg
2015-12-15
Linear and angular momenta of a soliton in a ferromagnet are commonly derived through the application of Noether’s theorem. We show that these quantities exhibit unphysical behavior: they depend on the choice of a gauge potential in the spin Lagrangian and can be made arbitrary. To resolve this problem, we exploit a similarity between the dynamics of a ferromagnetic soliton and that of a charged particle in a magnetic field. For the latter, canonical momentum is also gauge-dependent and thus unphysical; the physical momentum is the generator of magnetic translations, a symmetry combining physical translations with gauge transformations. We use this analogy to unambiguously define conserved momenta for ferromagnetic solitons. General considerations are illustrated on simple models of a domain wall in a ferromagnetic chain and of a vortex in a thin film.
Capillary solitons on a levitated medium.
Perrard, S; Deike, L; Duchêne, C; Pham, C-T
2015-07-01
A water cylinder deposited on a heated channel levitates on its own generated vapor film owing to the Leidenfrost effect. This experimental setup permits the study of the one-dimensional propagation of surface waves in a free-to-move liquid system. We report the observation of gravity-capillary waves under a dramatic reduction of gravity (up to a factor 30), leading to capillary waves at the centimeter scale. The generated nonlinear structures propagate without deformation and undergo mutual collisions and reflections at the boundaries of the domain. They are identified as Korteweg-de Vries solitons with negative amplitude and subsonic velocity. The typical width and amplitude-dependent velocities are in excellent agreement with theoretical predictions based on a generalized Korteweg-de Vries equation adapted to any substrate geometry. When multiple solitons are present, they interact and form a soliton turbulencelike spectrum.
Conserved momenta of a ferromagnetic soliton
NASA Astrophysics Data System (ADS)
Tchernyshyov, Oleg
2015-12-01
Linear and angular momenta of a soliton in a ferromagnet are commonly derived through the application of Noether's theorem. We show that these quantities exhibit unphysical behavior: they depend on the choice of a gauge potential in the spin Lagrangian and can be made arbitrary. To resolve this problem, we exploit a similarity between the dynamics of a ferromagnetic soliton and that of a charged particle in a magnetic field. For the latter, canonical momentum is also gauge-dependent and thus unphysical; the physical momentum is the generator of magnetic translations, a symmetry combining physical translations with gauge transformations. We use this analogy to unambiguously define conserved momenta for ferromagnetic solitons. General considerations are illustrated on simple models of a domain wall in a ferromagnetic chain and of a vortex in a thin film.
Bright Solitonic Matter-Wave Interferometer
NASA Astrophysics Data System (ADS)
McDonald, G. D.; Kuhn, C. C. N.; Hardman, K. S.; Bennetts, S.; Everitt, P. J.; Altin, P. A.; Debs, J. E.; Close, J. D.; Robins, N. P.
2014-07-01
We present the first realization of a solitonic atom interferometer. A Bose-Einstein condensate of 1×104 atoms of rubidium-85 is loaded into a horizontal optical waveguide. Through the use of a Feshbach resonance, the s-wave scattering length of the Rb85 atoms is tuned to a small negative value. This attractive atomic interaction then balances the inherent matter-wave dispersion, creating a bright solitonic matter wave. A Mach-Zehnder interferometer is constructed by driving Bragg transitions with the use of an optical lattice colinear with the waveguide. Matter-wave propagation and interferometric fringe visibility are compared across a range of s-wave scattering values including repulsive, attractive and noninteracting values. The solitonic matter wave is found to significantly increase fringe visibility even compared with a noninteracting cloud.
Turbulent shear stresses in compressible boundary layers
NASA Technical Reports Server (NTRS)
Laderman, A. J.; Demetriades, A.
1979-01-01
Hot-wire anemometer measurements of turbulent shear stresses in a Mach 3 compressible boundary layer were performed in order to investigate the effects of heat transfer on turbulence. Measurements were obtained by an x-probe in a flat plate, zero pressure gradient, two dimensional boundary layer in a wind tunnel with wall to freestream temperature ratios of 0.94 and 0.71. The measured shear stress distributions are found to be in good agreement with previous results, supporting the contention that the shear stress distribution is essentially independent of Mach number and heat transfer for Mach numbers from incompressible to hypersonic and wall to freestream temperature ratios of 0.4 to 1.0. It is also found that corrections for frequency response limitations of the electronic equipment are necessary to determine the correct shear stress distribution, particularly at the walls.
Breather solitons in highly nonlocal media
NASA Astrophysics Data System (ADS)
Alberucci, Alessandro; Jisha, Chandroth P.; Assanto, Gaetano
2016-12-01
We investigate the breathing of optical spatial solitons in highly nonlocal media. We use a generalization of the Ehrenfest theorem (1990 Am. J. Phys. 58 742) leading to a fourth-order ordinary differential equation, the latter ruling the beam width evolution in propagation. In actual highly nonlocal materials, the original accessible soliton model by Snyder and Mitchell (1997 Science 276 1538) cannot accurately describe the dynamics of self-confined beams: the transverse size oscillations have a period which not only depends on power, but also on the initial width. Modeling the nonlinear response by a Poisson equation driven by the beam intensity we verify the theoretical results against numerical simulations.
Resonant radiation from oscillating higher order solitons
Driben, R.; Yulin, A. V.; Efimov, A.
2015-07-15
We present radiation mechanism exhibited by a higher order soliton. In a course of its evolution the higher-order soliton emits polychromatic radiation resulting in formation of multipeak frequency comb-like spectral band. The shape and spectral position of this band can be effectively controlled by the relative strength of the third order dispersion. An analytical description is corroborated by numerical simulations. Research showed that for longer pulses the described effect persists also under the action of higher order perturbations such as Raman and self-steepening.
Three-dimensional relativistic electromagnetic subcycle solitons.
Esirkepov, Timur; Nishihara, Katsunobu; Bulanov, Sergei V; Pegoraro, Francesco
2002-12-30
Three-dimensional (3D) relativistic electromagnetic subcycle solitons were observed in 3D particle-in-cell simulations of an intense short-laser-pulse propagation in an underdense plasma. Their structure resembles that of an oscillating electric dipole with a poloidal electric field and a toroidal magnetic field that oscillate in phase with the electron density with frequency below the Langmuir frequency. On the ion time scale, the soliton undergoes a Coulomb explosion of its core, resulting in ion acceleration, and then evolves into a slowly expanding quasineutral cavity.
Magnetic Soliton, Homotopy and Higgs Theory,
1986-04-24
OD-AL67 366 NAGETIC SOLITON ONOTOPY ND HIGGS THEORY(U) FOREIGNI n1/ 1TECHNOLOGY D V NRIGHT-PATTERSON AFD ON Y LI ET AL. UNCLSSIIED24 APR 86 FTD-ID...MAGNETIC SOLITON, HOMOTOPY AND HIGGS THEORY by Li Yuanjie and Lei Shizu *. . * . .%..**% . . .-..C./ ~~~Approved for public release; -," Distribution...HOMOTOPY AND HIGGS THEORY By: Li Yuanjie and Lei Shizu English pages: 9 Source: Huazhong Gongxueyuan Xuebao, Vol. 11, Nr. 6, 1983, pp. 65-70 Country of
Single-mode dispersive waves and soliton microcomb dynamics
NASA Astrophysics Data System (ADS)
Yi, Xu; Yang, Qi-Fan; Zhang, Xueyue; Yang, Ki Youl; Li, Xinbai; Vahala, Kerry
2017-03-01
Dissipative Kerr solitons are self-sustaining optical wavepackets in resonators. They use the Kerr nonlinearity to both compensate dispersion and offset optical loss. Besides providing insights into nonlinear resonator physics, they can be applied in frequency metrology, precision clocks, and spectroscopy. Like other optical solitons, the dissipative Kerr soliton can radiate power as a dispersive wave through a process that is the optical analogue of Cherenkov radiation. Dispersive waves typically consist of an ensemble of optical modes. Here, a limiting case is studied in which the dispersive wave is concentrated into a single cavity mode. In this limit, its interaction with the soliton induces hysteresis behaviour in the soliton's spectral and temporal properties. Also, an operating point of enhanced repetition-rate stability occurs through balance of dispersive-wave recoil and Raman-induced soliton-self-frequency shift. The single-mode dispersive wave can therefore provide quiet states of soliton comb operation useful in many applications.
Sandford, M.T. II; Handel, T.G.; Bradley, J.N.
1998-07-07
A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.
Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.
1998-01-01
A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%.
NASA Astrophysics Data System (ADS)
Slunyaev, Alexey; Klein, Marco; Clauss, Günther F.
2016-04-01
Envelope soliton solutions are key elements governing the nonlinear wave dynamics within a simplified theory for unidirectional weakly modulated weakly nonlinear wave groups on the water surface. Within integrable models the solitons preserve their structure in collisions with other waves; they do not disperse and can carry energy infinitively long. Steep and short soliton-like wave groups have been shown to exist in laboratory tests [1] and, even earlier, in numerical simulations [2, 3]. Thus, long-living wave groups may play important role in the dynamics of intense sea waves and wave-structure interactions. The solitary wave groups may change the wave statistics and can be taken into account when developing approaches for the deterministic forecasting of dangerous waves, including so-called rogue waves. An experimental campaign has been conducted in the wave basin of the Technical University of Berlin on simulations of intense solitary wave groups. The first successful experimental observation of intense envelope solitons took place in this facility [1]. The new experiments aimed at following main goals: 1) to reproduce intense envelope solitons with different carrier wave lengths; 2) to estimate the rate of envelope soliton dissipation; 3) to consider the reflection of envelope solitons on a vertical wall; 4) to consider head-on collisions of envelope solitons, and 5) to consider overtaking interactions of envelope solitons. Up to 9 wave gauges were used in each experimental run, which enabled registration of the surface movement at different distances from the wavemaker, at different locations across the wave flume and near the wall. Besides surface displacements, the group envelope shapes were directly recorded, with use of phase shifts applied to the modulated waves generated by the wavemaker. [1] A. Slunyaev, G.F. Clauss, M. Klein, M. Onorato, Simulations and experiments of short intense envelope solitons of surface water waves. Phys. Fluids 25, 067105
Kalita, B. C.; Barman, S. N.
2009-05-15
The propagation of ion-acoustic solitary waves in magnetized plasma with cold ions and ion-beams together with electron inertia has been investigated theoretically through the Korteweg-de Vries equation. Subject to the drift velocity of the ion beam, the existence of compressive solitons is found to become extinct as {alpha} (=cold ion mass/ion-beam mass) tends to 0.01 when {gamma}=0.985 ({gamma} is the beam velocity/phase velocity). Interestingly, a transitional direction of propagation of solitary waves has been unearthed for change over, from compressive solitons to rarefactive solitons based on {alpha} and {sigma}{sub {upsilon}}(=cosine of the angle {theta} made by the wave propagation direction {xi} with the direction of the magnetic field) for fixed Q(=electron mass/ion mass). Further, the direction of propagation of ion-acoustic waves is found to be the deterministic factor to admit compressive or rarefactive solitons subject to beam outsource.
Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.
1998-01-01
A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method.
Sandford, M.T. II; Handel, T.G.; Bradley, J.N.
1998-03-10
A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique is disclosed. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method. 11 figs.
A chiral soliton bag model of nucleons
NASA Astrophysics Data System (ADS)
Seki, Ryoichi; Ohta, Shigemi
1984-11-01
As a possible phenomenological model of nucleons, a model Lagrangian is numerically solved in the semiclassical approximation using the hedgehog ansatz. Soliton solutions with winding numbers Z=0 and 1 are examined as functions of the pion decay constant. The Z=0 solution is similar to the cloudy bag model, but the Z=1 solution is quite different from the little (chiral) bag model.
Towards a quantum theory of solitons
NASA Astrophysics Data System (ADS)
Dvali, Gia; Gomez, Cesar; Gruending, Lukas; Rug, Tehseen
2015-12-01
We formulate a quantum coherent state picture for topological and non-topological solitons. We recognize that the topological charge arises from the infinite occupation number of zero momentum quanta flowing in one direction. Thus, the Noether charge of microscopic constituents gives rise to a topological charge in the macroscopic description. This fact explains the conservation of topological charge from the basic properties of coherent states. It also shows that no such conservation exists for non-topological solitons, which have finite mean occupation number. Consequently, they can have an exponentially-small but non-zero overlap with the vacuum, leading to vacuum instability. This amplitude can be interpreted as a coherent state description of false vacuum decay. Next we show that we can represent topological solitons as a convolution of two sectors that carry information about topology and energy separately, which makes their difference very transparent. Finally, we show how interaction among the solitons can be understood from basic properties of quantum coherent states.
Nonlinear Scattering and Analyticity Properties of Solitons
NASA Astrophysics Data System (ADS)
Bronski, J. C.
1998-04-01
In this paper we consider the scattering of a soliton or solitary wave by a linear potential. By careful treatment of the radiation we show that the amount of mass and energy lost by the solitary wave during a scattering event is exponentially small for strong nonlinearities. The constant associated with this exponentially small radiation is expressed in terms of the binding energy of the soliton (solitary wave), and the analyticity properties of the potential and the soliton (solitary wave). This calculation does not use integrability in any way. In the case of a delta function potential and the cubic NLS, our results agree with the more explicit results derived by Kivshar, Gredeskul, Sánchez, and Vásquez using perturbation theory based on the inverse scattering transform. Following them, we take the limit of a continuum of well separated scatterers, and derive a closed system of ordinary differential equations. Analyzing the limiting behavior of these equations for large distance Z into the medium we find that the velocity of the soliton decays as (log(Z)) -1 for a delta function potential or a potential which is meromorphic as a function of a complex variable, and more slowly than (log(Z)) -1 for a potential which is an entire function of a complex variable.
Soliton mode locking by nonlinear Faraday rotation
Wabnitz, S.; Westin, E.; Frey, R.; Flytzanis, C.
1996-11-01
We propose nonlinear Faraday rotation as a mechanism for achieving stable polarization mode locking of a soliton laser. We analyze by perturbation theory and beam-propagation simulations the interplay between bandwidth-limited gain, gain dichroism, and linear and nonlinear Faraday rotation. {copyright} {ital 1996 Optical Society of America.}
NASA Astrophysics Data System (ADS)
Lim, Se Hoon
Compressive holography estimates images from incomplete data by using sparsity priors. Compressive holography combines digital holography and compressive sensing. Digital holography consists of computational image estimation from data captured by an electronic focal plane array. Compressive sensing enables accurate data reconstruction by prior knowledge on desired signal. Computational and optical co-design optimally supports compressive holography in the joint computational and optical domain. This dissertation explores two examples of compressive holography: estimation of 3D tomographic images from 2D data and estimation of images from under sampled apertures. Compressive holography achieves single shot holographic tomography using decompressive inference. In general, 3D image reconstruction suffers from underdetermined measurements with a 2D detector. Specifically, single shot holographic tomography shows the uniqueness problem in the axial direction because the inversion is ill-posed. Compressive sensing alleviates the ill-posed problem by enforcing some sparsity constraints. Holographic tomography is applied for video-rate microscopic imaging and diffuse object imaging. In diffuse object imaging, sparsity priors are not valid in coherent image basis due to speckle. So incoherent image estimation is designed to hold the sparsity in incoherent image basis by support of multiple speckle realizations. High pixel count holography achieves high resolution and wide field-of-view imaging. Coherent aperture synthesis can be one method to increase the aperture size of a detector. Scanning-based synthetic aperture confronts a multivariable global optimization problem due to time-space measurement errors. A hierarchical estimation strategy divides the global problem into multiple local problems with support of computational and optical co-design. Compressive sparse aperture holography can be another method. Compressive sparse sampling collects most of significant field
3D simulation for solitons used in optical fibers
NASA Astrophysics Data System (ADS)
Vasile, F.; Tebeica, C. M.; Schiopu, P.; Vladescu, M.
2016-12-01
In this paper is described 3D simulation for solitions used in optical fibers. In the scientific works is started from nonlinear propagation equation and the solitons represents its solutions. This paper presents the simulation of the fundamental soliton in 3D together with simulation of the second order soliton in 3D. These simulations help in the study of the optical fibers for long distances and in the interactions between the solitons. This study helps the understanding of the nonlinear propagation equation and for nonlinear waves. These 3D simulations are obtained using MATLAB programming language, and we can observe fundamental difference between the soliton and the second order/higher order soliton and in their evolution.
Ricci solitons on low-dimensional generalized symmetric spaces
NASA Astrophysics Data System (ADS)
Calvaruso, Giovanni; Rosado, Eugenia
2017-02-01
We consider three- and four-dimensional pseudo-Riemannian generalized symmetric spaces, whose invariant metrics were explicitly described in Černý and Kowalski (1982). While four-dimensional pseudo-Riemannian generalized symmetric spaces of types A, C and D are algebraic Ricci solitons, the ones of type B are not so. The Ricci soliton equation for their metrics yields a system of partial differential equations. Solving such system, we prove that almost all the four-dimensional pseudo-Riemannian generalized symmetric spaces of type B are Ricci solitons. These examples show some deep differences arising for the Ricci soliton equation between the Riemannian and the pseudo-Riemannian cases, as any homogeneous Riemannian Ricci soliton is algebraic Jablonski (2015). We also investigate three-dimensional generalized symmetric spaces of any signature and prove that they are Ricci solitons.
Adiabatic theory of solitons fed by dispersive waves
NASA Astrophysics Data System (ADS)
Pickartz, Sabrina; Bandelow, Uwe; Amiranashvili, Shalva
2016-09-01
We consider scattering of low-amplitude dispersive waves at an intense optical soliton which constitutes a nonlinear perturbation of the refractive index. Specifically, we consider a single-mode optical fiber and a group velocity matched pair: an optical soliton and a nearly perfectly reflected dispersive wave, a fiber-optical analog of the event horizon. By combining (i) an adiabatic approach that is used in soliton perturbation theory and (ii) scattering theory from quantum mechanics, we give a quantitative account of the evolution of all soliton parameters. In particular, we quantify the increase in the soliton peak power that may result in the spontaneous appearance of an extremely large, so-called champion soliton. The presented adiabatic theory agrees well with the numerical solutions of the pulse propagation equation. Moreover, we predict the full frequency band of the scattered dispersive waves and explain an emerging caustic structure in the space-time domain.
Higher-order Dirac solitons in binary waveguide arrays
Tran, Truong X.; Duong, Dũng C.
2015-10-15
We study optical analogues of higher-order Dirac solitons (HODSs) in binary waveguide arrays. Like higher-order solitons obtained from the well-known nonlinear Schrödinger equation governing the pulse propagation in an optical fiber, these HODSs have amplitude profiles which are numerically shown to be periodic over large propagation distances. At the same time, HODSs possess some unique features. Firstly, the period of a HODS depends on its order parameter. Secondly, the discrete nature in binary waveguide arrays imposes the upper limit on the order parameter of HODSs. Thirdly, the order parameter of HODSs can vary continuously in a certain range. - Highlights: • Higher-order Dirac solitons in nonlinear binary waveguide arrays are numerically demonstrated. • Amplitude profiles of higher-order Dirac solitons are periodic during propagation. • The period of higher-order Dirac solitons decreases when the soliton order increases.
Lattice-cavity solitons in a degenerate optical parametric oscillator
Egorov, O. A.; Lederer, F.
2007-11-15
We predict the existence of lattice-cavity solitons for a quadratic nonlinear cavity, where the linear losses are compensated for by the optical pump at second harmonic (degenerate optical parametric oscillator), and which is endowed with a one-dimensional photonic lattice. In the limit of strong discreteness (weak coupling) this kind of soliton solution contains as the subclass the quadratic discrete cavity solitons. The nonlinear coupling between the Bloch waves of different photonics bands allows for the formation of a reach variety of localized solutions. In particular, different types of multiband lattice-cavity solitons can be identified. Most types of lattice-cavity solitons do not have counterparts, neither in conventional planar microresonators nor in genuine discrete systems as an array of weakly coupled cavities. We show that these solitons may destabilize as a consequence of the competition between Bloch waves of different photonic bands.
Finding exact spatial soliton profiles in nematic liquid crystals.
Beeckman, J; Neyts, K; Vanbrabant, P J M; James, R; Fernandez, F A
2010-02-15
Finding exact analytical soliton profile solutions is only possible for certain types of non-linear media. In most cases one must resort to numerical techniques to find the soliton profile. In this work we present numerical calculations of spatial soliton profiles in nematic liquid crystals. The nonlinearity is governed by the optical-field-induced liquid crystal director reorientation, which is described by a system of coupled nonlinear partial differential equations. The soliton profile is found using an iterative scheme whereby the induced waveguide and mode profiles are calculated alternatively until convergence is achieved. In this way it is also possible to find higher order solitons. The results in this work can be used to accurately design all-optical interconnections with soliton beams.
Soliton and kink jams in traffic flow with open boundaries.
Muramatsu, M; Nagatani, T
1999-07-01
Soliton density wave is investigated numerically and analytically in the optimal velocity model (a car-following model) of a one-dimensional traffic flow with open boundaries. Soliton density wave is distinguished from the kink density wave. It is shown that the soliton density wave appears only at the threshold of occurrence of traffic jams. The Korteweg-de Vries (KdV) equation is derived from the optimal velocity model by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability line. The soliton solution is analytically obtained from the perturbed KdV equation. It is shown that the soliton solution obtained from the nonlinear analysis is consistent with that of the numerical simulation.
Gravitational two solitons in Levi-Cività spacetime
NASA Astrophysics Data System (ADS)
Igata, Takahisa; Tomizawa, Shinya
2016-09-01
Applying the Pomeransky inverse scattering method to the four-dimensional vacuum Einstein equations and using the Levi-Cività solution as a seed, we construct a two-soliton solution with cylindrical symmetry. In our previous work, we constructed the one-soliton solution with a real pole and showed that the singularities that the Levi-Cività background has on an axis can be removed by the choice of certain special parameters, but it still has unavoidable null singularities, as usual one-solitons do. In this work, we show that for the two-soliton solutions, any singularities can be removed by suitable parameter-setting and such solutions describe the propagation of gravitational wave packets. Moreover, in terms of the two-soliton solutions, we mention a time shift phenomenon, the coalescence and the split of solitons as the nonlinear effect of gravitational waves.
3 GHz, watt-level femtosecond Raman soliton source.
Lim, Jinkang; Chen, Hung-Wen; Xu, Shanhui; Yang, Zhongmin; Chang, Guoqing; Kärtner, Franz X
2014-04-01
We demonstrate a 3 GHz repetition rate, femtosecond Raman soliton source with its wavelength tunable from 1.15 to 1.35 μm. We investigate the dependence of Raman soliton formation on different photonic-crystal fibers (PCFs), input powers, and fiber lengths. To produce a Raman soliton peaking at the same wavelength, shorter PCFs demand higher input average powers and consequently generate stronger Raman soliton pulses. Using 30 cm PCF NL-3.2-945, the resulting Raman soliton pulse at 1.35 μm has 0.9 W average power. The integrated relative intensity noise of the Raman soliton pulse at 1.35 μm generated from the 54-cm PCF NL-3.2-945 is as low as 0.33% from 100 Hz to 10 MHz.
Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser.
Song, Yu Feng; Li, Lei; Zhang, Han; Shen, De Yuan; Tang, Ding Yuan; Loh, Kian Ping
2013-04-22
We experimentally investigated the vector multi-soliton operation and vector soliton interaction in an erbium doped fiber laser passively mode locked by atomic layer graphene. It is found that the vector multi-soliton operation exhibited several characteristic modes. These are the random static distribution of vector solitons, stable bunches of vector solitons, restless oscillations of vector solitons, rain of vector solitons, and emission of a so-called "giant vector soliton". The formation mechanisms of the operation modes were also experimentally investigated.
Few-cycle optical solitons in linearly coupled waveguides
NASA Astrophysics Data System (ADS)
Terniche, Said; Leblond, Hervé; Mihalache, Dumitru; Kellou, Abdelhamid
2016-12-01
We consider soliton propagation in two parallel optical waveguides, in the presence of a linear nondispersive coupling and in the few-cycle regime. The numerical analysis is based on a set of two coupled modified Korteweg-de Vries equations. The evidenced few-cycle vector solitons are optical breathers. In addition to the usual breathing due to carrier-envelope velocity mismatch, we observe, and describe in detail, spatial oscillations of soliton's amplitude and energy.
Davydov soliton evolution in temperature gradients driven by hyperbolic waves
NASA Astrophysics Data System (ADS)
Herrera, J.; Maza, M. A.; Minzoni, A. A.; Smyth, Noel F.; Worthy, Annette L.
2004-04-01
In the present work the evolution of a Davydov soliton in an inhomogeneous medium will be considered. The Zakharov system of equations, which describes this soliton, consists of a perturbed non-linear Schrödinger (NLS) type equation plus a forced wave equation. This system is not exactly integrable for a homogeneous medium and its Lagrangian is non-local. It has recently been shown that this type of soliton has a long enough lifetime, even for non-zero temperature, so as to be a possible mechanism for the transfer of energy along an α helix. In the present work, the effect of temperature inhomogeneities on the behaviour of this soliton will be studied. As the soliton propagates through such an inhomogeneity, both dispersive and non-dispersive waves are generated. The stability of the soliton to this radiation is studied. The evolution of the Davydov soliton solution of the Zakharov equations in an inhomogeneous medium will be studied using an approximate method based on averaged conservation laws, which results in ordinary differential equations for the pulse parameters. It is shown that the inclusion of the effect of the dispersive radiation shed by the soliton for the NLS equation and the non-dispersive (hyperbolic) radiation shed by the soliton for the forced wave equation is vital for an accurate description of the evolution of the Davydov soliton. It is found that the soliton is stable even in the presence of hyperbolic radiation and that the temperature gradients have significant effects on the propagation of the soliton, even to the extent of reversing its motion.
Soliton matter as a model of dense nuclear matter
Glendenning, N.K.
1985-01-01
We employ the hybrid soliton model of the nucleon consisting of a topological meson field and deeply bound quarks to investigate the behavior of the quarks in soliton matter as a function of density. To organize the calculation, we place the solitons on a spatial lattice. The model suggests the transition of matter from a color insulator to a color conductor above a critical density of a few times normal nuclear density. 9 references, 5 figures.
Asymmetric partially coherent solitons in saturable nonlinear media.
Litchinitser, N M; Królikowski, W; Akhmediev, N N; Agrawal, G P
1999-08-01
We investigate theoretically properties of partially coherent solitons in optical nonlinear media with slow saturable nonlinearity. We have found numerically that such a medium can support spatial solitons which are asymmetric in shape and are composed of only a finite number of modes associated with the self-induced waveguide. It is shown that these asymmetric spatial solitons can propagate many diffraction lengths without changes, but that collisions change their shape and may split them apart.
Protonic transport through solitons in hydrogen-bonded systems
NASA Astrophysics Data System (ADS)
Kavitha, L.; Jayanthi, S.; Muniyappan, A.; Gopi, D.
2011-09-01
We offer an alternative route for investigating soliton solutions in hydrogen-bonded (HB) chains. We invoke the modified extended tangent hyperbolic function method coupled with symbolic computation to solve the governing equation of motion for proton dynamics. We investigate the dynamics of proton transfer in HB chains through bell-shaped soliton excitations, which trigger the bio-energy transport in most biological systems. This solitonic mechanism of proton transfer could play functional roles in muscular contraction, enzymatic activity and oxidative phosphorylation.
NASA Astrophysics Data System (ADS)
Zhao, Chen; Gao, Yi-Tian; Lan, Zhong-Zhou; Yang, Jin-Wei
2016-09-01
In this article, a (3+1)-dimensional variable-coefficient breaking soliton equation is investigated. Based on the Bell polynomials and symbolic computation, the bilinear forms and Bäcklund transformation for the equation are derived. One-, two-, and three-soliton solutions are obtained via the Hirota method. N-soliton solutions are also constructed. Propagation characteristics and interaction behaviors of the solitons are discussed graphically: (i) solitonic direction and position depend on the sign of the wave numbers; (ii) shapes of the multisoliton interactions in the scaled space and time coordinates are affected by the variable coefficients; (iii) multisoliton interactions are elastic for that the velocity and amplitude of each soliton remain unchanged after each interaction except for a phase shift.
Motion of discrete solitons assisted by nonlinearity management.
Cuevas, Jesús; Malomed, Boris A; Kevrekidis, P G
2005-06-01
We demonstrate that time-periodic modulation of the nonlinearity coefficient in the discrete nonlinear Schrödinger equation strongly facilitates creation of traveling solitons in the lattice. We predict this possibility in a semi-qualitative form analytically, and test it in direct numerical simulations. Systematic computations reveal several generic dynamical regimes, depending on the amplitude and frequency of the time modulation, and on the initial thrust which sets the soliton in motion. These regimes include irregular motion of the soliton, regular motion of a decaying one, and regular motion of a stable soliton. The motion may occur in both the straight and reverse directions, relative to the initial thrust. In the case of stable motion, extremely long simulations in a lattice with periodic boundary conditions demonstrate that the soliton keeps moving indefinitely long without any visible loss. Velocities of moving stable solitons are in good agreement with the analytical prediction, which is based on requiring a resonance between the ac drive and motion of the soliton through the periodic lattice. The generic dynamical regimes are mapped in the model's parameter space. Collisions between moving stable solitons are briefly investigated too, with a conclusion that two different outcomes are possible: elastic bounce, or bounce with mass transfer from one soliton to the other. The model can be realized experimentally in a Bose-Einstein condensate trapped in a deep optical lattice.
Magnetic solitons in Rabi-coupled Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Qu, Chunlei; Tylutki, Marek; Stringari, Sandro; Pitaevskii, Lev P.
2017-03-01
We study magnetic solitons, solitary waves of spin polarization (i.e., magnetization), in binary Bose-Einstein condensates in the presence of Rabi coupling. We show that the system exhibits two types of magnetic solitons, called 2 π and 0 π solitons, characterized by a different behavior of the relative phase between the two spin components. 2 π solitons exhibit a 2 π jump of the relative phase, independent of their velocity, the static domain wall explored by Son and Stephanov being an example of such 2 π solitons with vanishing velocity and magnetization. 0 π solitons instead do not exhibit any asymptotic jump in the relative phase. Systematic results are provided for both types of solitons in uniform matter. Numerical calculations in the presence of a one-dimensional harmonic trap reveal that a 2 π soliton evolves in time into a 0 π soliton, and vice versa, oscillating around the center of the trap. Results for the effective mass, the Landau critical velocity, and the role of the transverse confinement are also discussed.
Peaked and smooth solitons for K *(3, 1) equation
NASA Astrophysics Data System (ADS)
Fu, H.; Tang, Y.; Tang, S.; Yan, H.; Liu, Q.
2014-01-01
The qualitative theory of differential equations is applied to K *(3, 1) equation, u t = u x u + 2α( uu xxx + 2 u x u xx ). Our procedure shows that K *(3, 1) equation has the regular peakon soliton, cuspon soliton and smooth soliton solutions when sitting on non-zero constant pedestal lim_{x→±∞}u=A≠ 0, or possesses compacton solutions only when lim_{x→±∞}u=A=0. In particular, mathematical analysis and numerical graph are provided for those peakon, cuspon, compacton and smooth soliton solutions.
Dynamics of matter solitons in weakly modulated optical lattices
Brazhnyi, V.A.; Konotop, V.V.; Kuzmiak, V.
2004-10-01
It is shown that matter solitons can be effectively managed by means of smooth variations of parameters of optical lattices in which the condensate is loaded. The phenomenon is based on the effect of lattice modulations on the carrier wave transporting the soliton and that is why it is well understood in terms of the effective mass approach, where a particular spatial configuration of the band structure is of primary importance. Linear, parabolic, and spatially localized modulations are considered as case examples. It is shown that these defects can originate an accelerating and oscillating motion of matter solitons as well as they can simulate soliton interactions with attractive and repulsive defects.
Bending of solitons in weak and slowly varying inhomogeneous plasma
Mukherjee, Abhik Janaki, M. S. Kundu, Anjan
2015-12-15
The bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev-Petviashvili equation is obtained with a chosen unperturbed ion density profile. The exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, while the amplitude of the soliton remains constant.
Helmholtz solitons in power-law optical materials
Christian, J. M.; McDonald, G. S.; Potton, R. J.; Chamorro-Posada, P.
2007-09-15
A nonlinear Helmholtz equation for optical materials with regimes of power-law type of nonlinearity is proposed. This model captures the evolution of broad beams at any angle with respect to the reference direction in a wide range of media, including some semiconductors, doped glasses, and liquid crystals. Exact analytical soliton solutions are presented for a generic nonlinearity, within which known Kerr solitons comprise a subset. Three general conservation laws are also reported. Analysis and numerical simulations examine the stability of the Helmholtz power-law solitons. A propagation feature, associated with spatial solitons in power-law media, constituting a class of oscillatory solution, is identified.
Engineering bright matter-wave solitons of dipolar condensates
NASA Astrophysics Data System (ADS)
Edmonds, M. J.; Bland, T.; Doran, R.; Parker, N. G.
2017-02-01
We present a comprehensive analysis of the form and interaction of dipolar bright solitons across the full parameter space afforded by dipolar Bose–Einstein condensates, revealing the rich behavior introduced by the non-local nonlinearity. Working within an effective one-dimensional description, we map out the existence of the soliton solutions and show three collisional regimes: free collisions, bound state formation and soliton fusion. Finally, we examine the solitons in their full three-dimensional form through a variational approach; along with regimes of instability to collapse and runaway expansion, we identify regimes of stability which are accessible to current experiments.
Higher-order-mode fiber optimized for energetic soliton propagation.
Pedersen, Martin E V; Cheng, Ji; Charan, Kriti; Wang, Ke; Xu, Chris; Grüner-Nielsen, Lars; Jakobsen, Dan
2012-08-15
We describe the design optimization of a higher-order-mode (HOM) fiber for energetic soliton propagation at wavelengths below 1300 nm. A new HOM fiber is fabricated according to our design criteria. The HOM fiber is pumped at 1045 nm by an energetic femtosecond fiber laser. The soliton self-frequency shift process shifts the center wavelength of the soliton to 1085 nm. The soliton has a temporal duration of 216 fs and a pulse energy of 6.3 nJ. The demonstrated pulse energy is approximately six times higher than the previous record in a solid core fiber at wavelengths below 1300 nm.
Bistable moving optical solitons in resonant photonic crystals
Vlasov, R. A.; Lemeza, A. M.
2011-08-15
We consider some new aspects of the formation of moving optical solitons in a medium of Bragg-type resonant grating doped with two-level atoms. For generality, account is taken of the local-field effect assisted by a sufficiently high density of resonant atoms. It is established analytically that there exists a family of soliton solutions to the two-wave Maxwell-Bloch system of equations, with these solitons exhibiting bistable properties. The existence of bistable solitons and their properties are confirmed by numerical simulations.
Vector pulsing soliton of self-induced transparency in waveguide
NASA Astrophysics Data System (ADS)
Adamashvili, G. T.
2015-01-01
A theory of an optical resonance vector pulsing soliton in waveguide is developed. A thin transition layer containing semiconductor quantum dots forms the boundary between the waveguide and one of the connected media. Analytical and numerical solutions for the optical vector pulsing soliton in waveguide are obtained. The vector pulsing soliton in the presence of excitonic and bi-excitonic excitations is compared with the soliton for waveguide TM-modes with parameters that can be used in modern optical experiments. It is shown that these nonlinear waves have significantly different parameters and shapes.
Supermode spatial optical solitons in liquid crystals with competing nonlinearities
NASA Astrophysics Data System (ADS)
Jung, Pawel S.; Krolikowski, Wieslaw; Laudyn, Urszula A.; Trippenbach, Marek; Karpierz, Miroslaw A.
2017-02-01
We study numerically the formation of spatial optical solitons in nematic liquid crystals with competing nonlocal nonlinearities. We demonstrate that at a sufficiently high input power the interplay between focusing and thermally induced defocusing may lead to the formation of two-peak fundamental spatial solitons. These solitons have a constant spatial phase and hence represent supermodes of the self-induced extended waveguide structure. We show that these two-peak solitons are stable in propagation and exhibit an adiabatic transition to a single-peak state under weak absorption.
Spatial solitons in two-photon photorefractive media
Hou Chunfeng; Pei Yanbo; Zhou Zhongxiang; Sun Xiudong
2005-05-15
We provide a theory for spatial solitons due to the two-photon photorefractive effect based on the Castro-Camus model [Opt. Lett. 28, 1129 (2003)]. We present the evolution equation of one-dimensional spatial solitons in two-photon photorefractive media. In steady state and under appropriate external bias conditions, we obtain the dark and bright soliton solutions of the optical wave evolution equation, and also discuss the self-deflection of the bright solitons theoretically by taking into account the diffusion effect.
Properties of the Skyrme soliton configuration
NASA Astrophysics Data System (ADS)
Ananias Neto, Jorge; Galain, Ramón Méndez; Ferreira, Erasmo
1991-07-01
Properties of the Euler-Lagrange differential equation for cos F, where F is the chiral angle of the classical Skyrme soliton in the hedgehog ansatz, are investigated. The power series solution for y=cos F, is obtained that presents the behavior of an almost geometric series, and the existence of single poles located at imaginary values of the radial variable r is shown. Padé approximants are built to the series expansion about the origin, and its terms are modified in order to incorporate the main features of the asymptotic behavior of the field configuration. Thus rational fractions are constructed which provide very good and practical analytical representations of the Skyrme soliton profile function.
Strong gravity and structure of topological solitons
NASA Astrophysics Data System (ADS)
Rybakov, Yu. P.
The unification of Skyrme and Faddeev chiral models describing baryons and leptons respectively as topological solitons is suggested within the framework of 16-spinor field ψ = ψ1 ⊕ ψ2 nonlinear model containing two 8-semispinors ψ1 and ψ2. Using Brioschi identity for 8-spinors and special structure of the Higgs potential V implying the spontaneous symmetry breaking, it is possible to realize topological soliton-like excitations of two kinds due to the choice of S2- or S3- manifolds as phase spaces. The interactions with electromagnetic, Yang--Mills and gravitational fields are exhibited through the extention of derivatives via gauge invariance principle. Specific inclusion in the Higgs potential of the Kretschmann gravitational invariant K = RμνσλRμνσλ/48 permits one to obtain the strong gravity behavior at small distances and guarantee the correspondence with Quantum Mechanics at large distances.
Topological solitons in the supersymmetric Skyrme model
NASA Astrophysics Data System (ADS)
Gudnason, Sven Bjarke; Nitta, Muneto; Sasaki, Shin
2017-01-01
A supersymmetric extension of the Skyrme model was obtained recently, which consists of only the Skyrme term in the Nambu-Goldstone (pion) sector complemented by the same number of quasi-Nambu-Goldstone bosons. Scherk-Schwarz dimensional reduction yields a kinetic term in three or lower dimensions and a potential term in two dimensions, preserving supersymmetry. Euclidean solitons (instantons) are constructed in the supersymmetric Skyrme model. In four dimensions, the soliton is an instanton first found by Speight. Scherk-Schwarz dimensional reduction is then performed once to get a 3-dimensional theory in which a 3d Skyrmion-instanton is found and then once more to get a 2d theory in which a 2d vortex-instanton is obtained. Although the last one is a global vortex it has finite action in contrast to conventional theory. All of them are non-BPS states breaking all supersymmetries.
Solitonic vortices in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Tylutki, M.; Donadello, S.; Serafini, S.; Pitaevskii, L. P.; Dalfovo, F.; Lamporesi, G.; Ferrari, G.
2015-04-01
We analyse, theoretically and experimentally, the nature of solitonic vortices (SV) in an elongated Bose-Einstein condensate. In the experiment, such defects are created via the Kibble-Zurek mechanism, when the temperature of a gas of sodium atoms is quenched across the BEC transition, and are imaged after a free expansion of the condensate. By using the Gross-Pitaevskii equation, we calculate the in-trap density and phase distributions characterizing a SV in the crossover from an elongated quasi-1D to a bulk 3D regime. The simulations show that the free expansion strongly amplifies the key features of a SV and produces a remarkable twist of the solitonic plane due to the quantized vorticity associated with the defect. Good agreement is found between simulations and experiments.
Vibron Solitons and Soliton-Induced Infrared Spectra of Crystalline Acetanilide
NASA Astrophysics Data System (ADS)
Takeno, S.
1986-01-01
Red-shifted infrared spectra at low temperatures of amide I (C=O stretching) vibrations of crystalline acetanilide measured by Careri et al. are shown to be due to vibron solitons, which are nonlinearity-induced localized modes of vibrons arising from their nonlinear interactions with optic-type phonons. A nonlinear eigenvalue equation giving the eigenfrequency of stationary solitons is solved approximately by introducing lattice Green's functions, and the obtained result is in good agreement with the experimental result. Inclusion of interactions with acoustic phonons yields the Debye-Waller factor in the zero-phonon line spectrum of vibron solitons, in a manner analogous to the case of impurity-induced localized harmonic phonon modes in alkali halides.
Linking numbers, spin, and statistics of solitons
NASA Technical Reports Server (NTRS)
Wilczek, F.; Zee, A.
1983-01-01
The spin and statistics of solitons in the (2 + 1)- and (3 + 1)-dimensional nonlinear sigma models is considered. For the (2 + 1)-dimensional case, there is the possibility of fractional spin and exotic statistics; for 3 + 1 dimensions, the usual spin-statistics relation is demonstrated. The linking-number interpretation of the Hopf invariant and the use of suspension considerably simplify the analysis.
Sigma-Model Solitons on Noncommutative Spaces
NASA Astrophysics Data System (ADS)
Dabrowski, Ludwik; Landi, Giovanni; Luef, Franz
2015-12-01
We use results from time-frequency analysis and Gabor analysis to construct new classes of sigma-model solitons over the Moyal plane and over noncommutative tori, taken as source spaces, with a target space made of two points. A natural action functional leads to self-duality equations for projections in the source algebra. Solutions, having nontrivial topological content, are constructed via suitable Morita duality bimodules.
Infrared Absorption in Acetanilide by Solitons
NASA Astrophysics Data System (ADS)
Careri, G.; Buontempo, U.; Carta, F.; Gratton, E.; Scott, A. C.
1983-07-01
The infrared spectrum of acetanilide shows a new band that is red shifted from the main amide-I maximum by about 15 cm-1, the intensity of which increases at low temperature. It is suggested that this band may arise from the creation of amide-I solitons that are similar (but not identical) to those proposed by Davydov for the alpha helix in proteins.
Soliton molecules for advanced optical telecommunications
NASA Astrophysics Data System (ADS)
Mitschke, Fedor; Hause, Alexander; Mahnke, Christoph
2016-11-01
Recent developments in the technology of optical telecommunications are pushed forward by the rapidly growing demand for data-carrying capacity. Current approaches are discussed; most lines of investigation are limited to the linear (i.e. low power) regime. It is shown how this restriction poses a limit for further evolution. If, on the other hand, the nonlinear regime is entered, recent developments about soliton molecules offer a possibility to advance further.
Single-electron solitons in magnetic field
NASA Astrophysics Data System (ADS)
Rudenko, M.; Svintsov, D.; Filippov, S.; Vyurkov, V.
2016-12-01
Single-electron solitons (or movable polarons) can originate near a metal surface owing to interaction with image charges. Image charges (really, surface charges) appear in response to the `instant' electron density (probability density). Interaction with metal electrodes (as well as any polarization of the environment) much affects a charge qubits functioning. To verify this theory we propose a crucial experiment based on the motion of electrons in a magnetic field in presence of weak and strong polarization.
Coupled dust-lattice solitons in monolayer plasma crystals.
Ivlev, A V; Zhdanov, S K; Morfill, G E
2003-12-01
Nonlinearly coupled dust-lattice (DL) waves in monolayer plasma crystals are studied theoretically. It is shown that the high-frequency transverse (vertical) oscillations can form localized wave envelopes--solitons coupled with "slow" longitudinal DL perturbations. Using the molecular dynamics simulations, the derived soliton solution is shown to be stable.
Studies on interactions between bound solitons in the Hirota equation
NASA Astrophysics Data System (ADS)
Hao, Hui-Qin; Zhang, Jian-Wen
2017-01-01
Under investigation in this paper is the Hirota equation, which describes pulse propagation in optical fibers with higher-order effects. Three different types of soliton interactions are investigated in detail, the formulas for the corresponding approximate eigenvalues and interaction periods are presented. In addition, the methods for restraining the mutual interactions between neighboring bound solitons are concluded.
Stability properties of multiwavelength, incoherent, dissipative spatial solitons.
Ultanir, E A; Stegeman, G I; Lange, C H
2005-03-01
We have investigated the interaction between two dissipative spatial solitons of different frequencies in periodically patterned semiconductor optical amplifiers. The experimental results are in good agreement with the theory. Simulations suggest that multiwavelength interactions do not produce stable bound solitons unless the system's modeling equations are completely symmetric.
Nucleon-antinucleon annihilation in chiral soliton model
Musakhanov, M.M. . Inst. for Nuclear Theory Tashkentskij Gosudarstvennyj Univ., Tashkent . Dept. of Theoretical Physics); Musatov, I.V. . Research Inst. of Applied Physics)
1991-09-07
We investigate annihilation process of nucleons in the chiral soliton model by the path integral method. A soliton-antisoliton pair is shown to decay into mesons at range of about 1fm, defined by the S{bar S} potential. Contribution of the annihilation channel to the elastic scattering is discussed.
Beam evolutions of solitons in strongly nonlocal media with fading optical lattices
NASA Astrophysics Data System (ADS)
Dai, Zhi-Ping; Lu, Shi-Zhuan; You, Kai-Ming
2013-01-01
We address the impact of imprinted fading optical lattices on the beam evolution of solitons in strongly nonlocal nonlinear media. The results show that the width of the soliton experiences a change with the increasing propagation distance, the critical power for the soliton varies with the lattice fading away, and the soliton breathing is affected by the initial lattice depth and the nonlocality degree.
1-Soliton solutions of complex modified KdV equation with time-dependent coefficients
NASA Astrophysics Data System (ADS)
Kumar, H.; Chand, F.
2013-09-01
In this paper, we have obtained exact 1-soliton solutions of complex modified KdV equation with variable—coefficients using solitary wave ansatz. Restrictions on parameters of the soliton have been observed in course of the derivation of soliton solutions. Finally, a few numerical simulations of dark and bright solitons have been given.
Soliton-induced relativistic-scattering and amplification
Rubino, E.; Lotti, A.; Belgiorno, F.; Cacciatori, S. L.; Couairon, A.; Leonhardt, U.; Faccio, D.
2012-01-01
Solitons are of fundamental importance in photonics due to applications in optical data transmission and also as a tool for investigating novel phenomena ranging from light generation at new frequencies and wave-trapping to rogue waves. Solitons are also moving scatterers: they generate refractive index perturbations moving at the speed of light. Here we found that such perturbations scatter light in an unusual way: they amplify light by the mixing of positive and negative frequencies, as we describe using a first Born approximation and numerical simulations. The simplest scenario in which these effects may be observed is within the initial stages of optical soliton propagation: a steep shock front develops that may efficiently scatter a second, weaker probe pulse into relatively intense positive and negative frequency modes with amplification at the expense of the soliton. Our results show a novel all-optical amplification scheme that relies on soliton induced scattering. PMID:23226830
Dark spatial solitons splitting in logarithmically saturable nonlinear media
NASA Astrophysics Data System (ADS)
Zhang, Yuhong; Liu, Baoyuan; Lu, Keqing; Liu, Wangyun; Han, Jun
2014-12-01
We numerically simulate the evolution of the dark-notch-bearing optical beam in the logarithmically saturable nonlinear media based on beam propagation method (BPM). The simulation results indicate that the multiple dark spatial solitons are deep, possible in this type of nonlinear media. The number of multiple dark spatial solitons depends on the width of the dark notch, the initial conditions and the peak intensity of the initial input beam. Under the odd and even initial conditions, the odd and even number sequence of multiple dark spatial solitons can be obtained, respectively. For an input beam with fixed optical intensity, the number of dark solitons increases with the width of the initial input dark notch. The behavior of the multiple dark solitons in this type of media is similar to that in a photorefractive nonlinear crystal.
Soliton repetition rate in a silicon-nitride microresonator.
Bao, Chengying; Xuan, Yi; Wang, Cong; Jaramillo-Villegas, Jose A; Leaird, Daniel E; Qi, Minghao; Weiner, Andrew M
2017-02-15
The repetition rate of a Kerr comb composed of a single soliton in an anomalous group velocity dispersion silicon-nitride microcavity is measured as a function of pump frequency. By comparing operation in the soliton and non-soliton states, the contributions from the Raman soliton self-frequency shift (SSFS) and the thermal effects are evaluated; the SSFS is found to dominate the changes in the repetition rate, similar to silica cavities. The relationship between the changes in the repetition rate and the pump frequency detuning is found to be independent of the nonlinearity coefficient and dispersion of the cavity. Modeling of the repetition rate change by using the generalized Lugiato-Lefever equation is discussed; the Kerr shock is found to have only a minor effect on repetition rate for cavity solitons with duration down to ∼50 fs.
Solitons in spiraling systems: a continuum model for dynamical phyllotaxis
Nisoli, Cristiano
2009-01-01
A novel, protean, topological soliton has been shown to emerge in systems of repulsive particles in cylindrical geometries, whose statics is described by the number-theoretical objects of Phyllotaxis. We present a minimal and local continuum model that can explain many of the features of the phyllotactic soliton, such as speed, screw shift, energy transport and, for Wigner crystal on a nanotube, charge. The treatment applies just as well in general to solitons in spiraling systems. Unlike e.g. Sine-Gornon-like solitons, our soliton can exist between non degenerate structure, implies a power flow through the system, dynamics of the domains it separates, and possesses pulses, both static and dynamic. Its applications include from charge transfer in Wigner Crystals on nanotubes or A to B-DNA transitions.
Optical analogue of relativistic Dirac solitons in binary waveguide arrays
Tran, Truong X.; Longhi, Stefano; Biancalana, Fabio
2014-01-15
We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.
Onset of transverse instabilities of confined dark solitons
NASA Astrophysics Data System (ADS)
Hoefer, M. A.; Ilan, B.
2016-07-01
We investigate propagating dark soliton solutions of the two-dimensional defocusing nonlinear Schrödinger or Gross-Pitaevskii (NLS-GP) equation that are transversely confined to propagate in an infinitely long channel. Families of single, vortex, and multilobed solitons are computed using a spectrally accurate numerical scheme. The multilobed solitons are unstable to small transverse perturbations. However, the single-lobed solitons are stable if they are sufficiently confined along the transverse direction, which explains their effective one-dimensional dynamics. The emergence of a transverse modulational instability is characterized in terms of a spectral bifurcation. The critical confinement width for this bifurcation is found to coincide with the existence of a propagating vortex solution and the onset of a "snaking" instability in the dark soliton dynamics that, in turn, give rise to vortex or multivortex excitations. These results shed light on the superfluidic hydrodynamics of dispersive shock waves in Bose-Einstein condensates and nonlinear optics.
Matter-wave dark solitons in boxlike traps
NASA Astrophysics Data System (ADS)
Sciacca, M.; Barenghi, C. F.; Parker, N. G.
2017-01-01
Motivated by the experimental development of quasihomogeneous Bose-Einstein condensates confined in boxlike traps, we study numerically the dynamics of dark solitons in such traps at zero temperature. We consider the cases where the side walls of the box potential rise either as a power law or a Gaussian. While the soliton propagates through the homogeneous interior of the box without dissipation, it typically dissipates energy during a reflection from a wall through the emission of sound waves, causing a slight increase in the soliton's speed. We characterize this energy loss as a function of the wall parameters. Moreover, over multiple oscillations and reflections in the boxlike trap, the energy loss and speed increase of the soliton can be significant, although the decay eventually becomes stabilized when the soliton equilibrates with the ambient sound field.
Quantum solitons in the Fermi-Pasta-Ulam model
NASA Astrophysics Data System (ADS)
Li, De-Jun; Tang, Bing
2014-03-01
In this paper, quantum solitons in the Fermi-Pasta-Ulam (FPU) model are investigated analytically. By using the canonical transform method and number-conserving approximation, we obtain the normal form of the phonon-conserving quantized Hamiltonian. In order to convert the quantized Hamiltonian into the coordinate space, we employ the inverse Fourier transform. With the help of the Hartree approximate and the semidiscrete multiple-scale method, the nonlinear Schrödinger (NLS) equation is derived. The results show that quantum solitons may exist in the FPU model. Moreover, it is found that moving quantum solitons become quantum intrinsic localized modes under certain condition. In addition, we obtain the energy level of quantum solitons, which indicates that the energy of such quantum solitons is quantized.
Soliton-induced relativistic-scattering and amplification.
Rubino, E; Lotti, A; Belgiorno, F; Cacciatori, S L; Couairon, A; Leonhardt, U; Faccio, D
2012-01-01
Solitons are of fundamental importance in photonics due to applications in optical data transmission and also as a tool for investigating novel phenomena ranging from light generation at new frequencies and wave-trapping to rogue waves. Solitons are also moving scatterers: they generate refractive index perturbations moving at the speed of light. Here we found that such perturbations scatter light in an unusual way: they amplify light by the mixing of positive and negative frequencies, as we describe using a first Born approximation and numerical simulations. The simplest scenario in which these effects may be observed is within the initial stages of optical soliton propagation: a steep shock front develops that may efficiently scatter a second, weaker probe pulse into relatively intense positive and negative frequency modes with amplification at the expense of the soliton. Our results show a novel all-optical amplification scheme that relies on soliton induced scattering.
Influence of gain dynamics on dissipative soliton interaction in the presence of a continuous wave
NASA Astrophysics Data System (ADS)
Niang, A.; Amrani, F.; Salhi, M.; Leblond, H.; Sanchez, F.
2015-09-01
We investigate the effect of the gain dynamics on the motion and interactions of solitons in the frame of a complex Ginzburg-Landau-type model, which accounts for dissipative soliton formation and propagation in a ring fiber laser. It is shown that the gain dynamics modifies the soliton velocity and their interactions. In the presence of an injected continuous wave, an initial crystal of a few solitons gets broken, either into bunches or into individual solitons. Quasielastic collisions analogous to Newton's cradle have been seen. The soliton set may evolve into gas, solitons, or harmonic mode-locked patterns. The time jitter present in the last situation has been considered.
Konyukhov, A I; Dorokhova, M A; Melnikov, L A; Plastun, A S
2015-11-30
This paper considers interaction between two fundamental optical solitons in an optical fibre with a periodically varying dispersion. Numerical simulation results indicate that, by properly adjusting the modulation period, one can change the type of interaction between solitons. We consider three particular cases: the fission of a soliton pair into two separate pulses, the generation of an intense pulse as a result of the fusion of two solitons and the formation of a coupled state of two solitons (soliton molecule). The present findings demonstrate the possibility of controlling the number and group velocity of solitons using passive single-mode optical fibres. (nonlinear optical phenomena)
The stability of the laminar boundary layer in a compressible fluid
NASA Technical Reports Server (NTRS)
Lees, Lester
1947-01-01
Report is a continuation of a theoretical investigation of the stability of the laminar boundary layer in a compressible fluid. An approximate estimate for the minimum critical Reynolds number, or stability limit, is obtained in terms of the distribution of the kinematic viscosity and the product of the mean density and mean vorticity across the boundary layer. The extension of the results of the stability analysis to laminar boundary-layer gas flows with a pressure gradient in the direction of the free stream is discussed. (author)
Compressible seal flow analysis using the finite element method with Galerkin solution technique
NASA Technical Reports Server (NTRS)
Zuk, J.
1974-01-01
High pressure gas sealing involves not only balancing the viscous force with the pressure gradient force but also accounting for fluid inertia--especially for choked flow. The conventional finite element method which uses a Rayleigh-Ritz solution technique is not convenient for nonlinear problems. For these problems, a finite element method with a Galerkin solution technique (FEMGST) was formulated. One example, a three-dimensional axisymmetric flow formulation has nonlinearities due to compressibility, area expansion, and convective inertia. Solutions agree with classical results in the limiting cases. The development of the choked flow velocity profile is shown.
... knee bend. Compression Stockings Can Be Hard to Put on If it's hard for you to put on the stockings, try these tips: Apply lotion ... your legs, but let it dry before you put on the stockings. Use a little baby powder ...
Solitons in Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Carr, Lincoln D.
2003-05-01
The stationary form, dynamical properties, and experimental criteria for creation of matter-wave bright and dark solitons, both singly and in trains, are studied numerically and analytically in the context of Bose-Einstein condensates [1]. The full set of stationary solutions in closed analytic form to the mean field model in the quasi-one-dimensional regime, which is a nonlinear Schrodinger equation equally relevant in nonlinear optics, is developed under periodic and box boundary conditions [2]. These solutions are extended numerically into the two and three dimensional regimes, where it is shown that dark solitons can be used to create vortex-anti-vortex pairs under realistic conditions. Specific experimental prescriptions for creating viable dark and bright solitons in the quasi-one-dimensional regime are provided. These analytic methods are then extended to treat the nonlinear Schrodinger equation with a generalized lattice potential, which models a Bose-Einstein condensate trapped in the potential generated by a standing light wave. A novel solution family is developed and stability criterion are presented. Experiments which successfully carried out these ideas are briefly discussed [3]. [1] Dissertation research completed at the University of Washington Physics Department under the advisorship of Prof. William P. Reinhardt. [2] L. D. Carr, C. W. Clark, and W. P. Reinhardt, Phys. Rev. A v. 62 p. 063610-1--10 and Phys. Rev. A v.62, p.063611-1--10 (2000). [3] L. Khaykovich, F. Schreck, T. Bourdel, J. Cubizolles, G. Ferrari, L. D. Carr, Y. Castin, and C. Salomon, Science v. 296, p.1290--1293 (2002).
Study of soliton interactions in sodium vapor
NASA Astrophysics Data System (ADS)
Dolfi, D. W.; Hahn, E. L.
1980-04-01
Collision properties of optical solitons are studied experimentally using the technique of self-induced transparency. Numerical plane-wave simulations of collisions using parameters for the input pulses and the atomic system appropriate to the actual experimental situation are presented and compared to matching analytic solutions derived previously by other workers. Experimental studies of overtaking collisions in sodium vapor are presented for the first time and found to be in qualitative agreement with numerical results at intermediate optical absorption. At higher absorption, dynamic transverse effects cause a rapid attenuation of the pulses which prevents the observation of complete collisions. Attempts to compensate for losses by focusing the input beam are described.
Dissipative Phase Solitons in Semiconductor Lasers
NASA Astrophysics Data System (ADS)
Gustave, F.; Columbo, L.; Tissoni, G.; Brambilla, M.; Prati, F.; Kelleher, B.; Tykalewicz, B.; Barland, S.
2015-07-01
We experimentally demonstrate the existence of nondispersive solitary waves associated with a 2 π phase rotation in a strongly multimode ring semiconductor laser with coherent forcing. Similarly to Bloch domain walls, such structures host a chiral charge. The numerical simulations based on a set of effective Maxwell-Bloch equations support the experimental evidence that only one sign of chiral charge is stable, which strongly affects the motion of the phase solitons. Furthermore, the reduction of the model to a modified Ginzburg-Landau equation with forcing demonstrates the generality of these phenomena and exposes the impact of the lack of parity symmetry in propagative optical systems.
Kadomstev-Petviashvili solitons in quantum plasmas
NASA Astrophysics Data System (ADS)
Sahu, Biswajit; Ghosh, Naba Kumar
2013-01-01
The propagation of nonlinear waves in a quantum plasma is studied. A quantum magnetohydrodynamic (QHD) model is used to take into account the effects of quantum force associated with the Bohm potential. Using the standard reductive perturbation technique, nonlinear Kadomtsev-Petviashvili (KP) equation is obtained to study the properties of ion acoustic waves (IAWs). For such waves the amplitude of the solitary waves is independent of the quantum parameter H (the ratio of the electron plasmon to electron Fermi energy), whereas the width and energy of the soliton increases with H.
Instabilities and Solitons in Minimal Strips.
Machon, Thomas; Alexander, Gareth P; Goldstein, Raymond E; Pesci, Adriana I
2016-07-01
We show that highly twisted minimal strips can undergo a nonsingular transition, unlike the singular transitions seen in the Möbius strip and the catenoid. If the strip is nonorientable, this transition is topologically frustrated, and the resulting surface contains a helicoidal defect. Through a controlled analytic approximation, the system can be mapped onto a scalar ϕ^{4} theory on a nonorientable line bundle over the circle, where the defect becomes a topologically protected kink soliton or domain wall, thus establishing their existence in minimal surfaces. Demonstrations with soap films confirm these results and show how the position of the defect can be controlled through boundary deformation.
Instabilities and Solitons in Minimal Strips
NASA Astrophysics Data System (ADS)
Machon, Thomas; Alexander, Gareth P.; Goldstein, Raymond E.; Pesci, Adriana I.
2016-07-01
We show that highly twisted minimal strips can undergo a nonsingular transition, unlike the singular transitions seen in the Möbius strip and the catenoid. If the strip is nonorientable, this transition is topologically frustrated, and the resulting surface contains a helicoidal defect. Through a controlled analytic approximation, the system can be mapped onto a scalar ϕ4 theory on a nonorientable line bundle over the circle, where the defect becomes a topologically protected kink soliton or domain wall, thus establishing their existence in minimal surfaces. Demonstrations with soap films confirm these results and show how the position of the defect can be controlled through boundary deformation.
Elastic Rotational Solitons as Elementary Particles
NASA Astrophysics Data System (ADS)
Close, Robert
2010-03-01
By assuming a linear response to variations of orientation in an ideal isotropic elastic solid, we derive a nonlinear Dirac equation which describes rotational waves. This result provides a simple mechanical interpretation of relativistic quantum mechanical dynamics. The energy, momentum, and angular momentum operators are derived. Fermion and boson solutions may both be possible. Correlations between states have the quantum mechanical form. Half-integer spin arises from the fact that waves propagating in opposite directions form independent states 180 degrees apart. The Pauli exclusion principle and interaction potentials are derived from the assumption of independent interacting soliton ``particles.''
Dark-bright soliton interactions beyond the integrable limit
NASA Astrophysics Data System (ADS)
Katsimiga, G. C.; Stockhofe, J.; Kevrekidis, P. G.; Schmelcher, P.
2017-01-01
In this work we present a systematic theoretical analysis regarding dark-bright solitons and their interactions, motivated by recent advances in atomic two-component repulsively interacting Bose-Einstein condensates. In particular, we study analytically via a two-soliton ansatz adopted within a variational formulation the interaction between two dark-bright solitons in a homogeneous environment beyond the integrable regime, by considering general inter- and intra-atomic interaction coefficients. We retrieve the possibility of a fixed point in the case where the bright solitons are out of phase. As the intercomponent interaction is increased, we also identify an exponential instability of the two-soliton state, associated with a subcritical pitchfork bifurcation. The latter gives rise to an asymmetric partition of the bright soliton mass and dynamically leads to spontaneous splitting of the bound pair. In the case of the in-phase bright solitons, we explain via parsing the analytical approximations and monitoring the direct dynamics why no such pair is identified, despite its prediction by the variational analysis.
Accessible solitons in complex Ginzburg-Landau media
NASA Astrophysics Data System (ADS)
He, Yingji; Malomed, Boris A.
2013-10-01
We construct dissipative spatial solitons in one- and two-dimensional (1D and 2D) complex Ginzburg-Landau (CGL) equations with spatially uniform linear gain; fully nonlocal complex nonlinearity, which is proportional to the integral power of the field times the harmonic-oscillator (HO) potential, similar to the model of “accessible solitons;” and a diffusion term. This CGL equation is a truly nonlinear one, unlike its actually linear counterpart for the accessible solitons. It supports dissipative spatial solitons, which are found in a semiexplicit analytical form, and their stability is studied semianalytically, too, by means of the Routh-Hurwitz criterion. The stability requires the presence of both the nonlocal nonlinear loss and diffusion. The results are verified by direct simulations of the nonlocal CGL equation. Unstable solitons spontaneously spread out into fuzzy modes, which remain loosely localized in the effective complex HO potential. In a narrow zone close to the instability boundary, both 1D and 2D solitons may split into robust fragmented structures, which correspond to excited modes of the 1D and 2D HOs in the complex potentials. The 1D solitons, if shifted off the center or kicked, feature persistent swinging motion.
Bright nonlocal quadratic solitons induced by boundary confinement
NASA Astrophysics Data System (ADS)
Zheng, Yizhou; Gao, Yan; Wang, Jing; Lv, Fang; Lu, Daquan; Hu, Wei
2017-01-01
Under the Dirichlet boundary conditions, a family of bright quadratic solitons exists in the regime where the second harmonic can be regarded as the refractive index of the fundamental wave with an oscillatory nonlocal response. By simplifying the governing equations into the Snyder-Mitchell mode, the approximate analytical solutions are obtained. Taking them as the initial guess and using a numerical code, we found two branches of bright solitons, of which the beam width increases (branch I) and decreases (branch II) with the increase of the sample size, respectively. If the nonlocality is fixed and the sample size is varied, the soliton width varies piecewise and approximately periodically. In each period, solitons only exist in a small range of sample size. Single-hump fundamental wave solitons with the same beam width in narrower samples can be, if the second harmonics are connected smoothly, jointed to be a multihump soliton in a wider sample whose size is the sum of those for the narrower ones. The dynamical simulation shows that the found solitons are unstable.
Solitons supported by singular spatial modulation of the Kerr nonlinearity
NASA Astrophysics Data System (ADS)
Borovkova, Olga V.; Lobanov, Valery E.; Malomed, Boris A.
2012-02-01
We introduce a setting based on the one-dimensional nonlinear Schrödinger equation (NLSE) with the self-focusing cubic term modulated by a singular function of the coordinate |x|-α. It may be additionally combined with the uniform self-defocusing (SDF) nonlinear background, and with a similar singular repulsive linear potential. The setting, which can be implemented in optics and Bose-Einstein condensates, aims to extend the general analysis of the existence and stability of solitons in NLSEs. Results for fundamental solitons are obtained analytically and verified numerically. The solitons feature a quasicuspon shape, with the second derivative diverging at the center, and are stable in the entire existence range, which is 0≤α<1. Dipole (odd) solitons are also found. They are unstable in the infinite domain, but stable in the semi-infinite one. In the presence of the SDF background, there are two subfamilies of fundamental solitons, one stable and one unstable, which exist together above a threshold value of the norm (total power of the soliton). The system, which additionally includes the singular repulsive linear potential, emulates solitons in a uniform space of the fractional dimension, 0
Non-Markovian Quantum Friction of Bright Solitons in Superfluids.
Efimkin, Dmitry K; Hofmann, Johannes; Galitski, Victor
2016-06-03
We explore the quantum dynamics of a bright matter-wave soliton in a quasi-one-dimensional bosonic superfluid with attractive interactions. Specifically, we focus on the dissipative forces experienced by the soliton due to its interaction with Bogoliubov excitations. Using the collective coordinate approach and the Keldysh formalism, a Langevin equation of motion for the soliton is derived from first principles. The equation contains a stochastic Langevin force (associated with quantum noise) and a nonlocal in time dissipative force, which appears due to inelastic scattering of Bogoliubov quasiparticles off of the moving soliton. It is shown that Ohmic friction (i.e., a term proportional to the soliton's velocity) is absent in the integrable setup. However, the Markovian approximation gives rise to the Abraham-Lorentz force (i.e., a term proportional to the derivative of the soliton's acceleration), which is known from classical electrodynamics of a charged particle interacting with its own radiation. These Abraham-Lorentz equations famously contain a fundamental causality paradox, where the soliton (particle) interacts with excitations (radiation) originating from future events. We show, however, that the causality paradox is an artifact of the Markovian approximation, and our exact non-Markovian dissipative equations give rise to physical trajectories. We argue that the quantum friction discussed here should be observable in current quantum gas experiments.
Multidimensional solitons: Well-established results and novel findings
NASA Astrophysics Data System (ADS)
Malomed, Boris A.
2016-11-01
A brief review is given of some well-known and some very recent results obtained in studies of two- and three-dimensional (2D and 3D) solitons. Both zero-vorticity (fundamental) solitons and ones carrying vorticity S = 1 are considered. Physical realizations of multidimensional solitons in atomic Bose-Einstein condensates (BECs) and nonlinear optics are briefly discussed too. Unlike 1D solitons, which are typically stable, 2D and 3D ones are vulnerable to instabilities induced by the occurrence of the critical and supercritical collapse, respectively, in the same 2D and 3D models that give rise to the solitons. Vortex solitons are subject to a still stronger splitting instability. For this reason, a central problem is looking for physical settings in which 2D and 3D solitons may be stabilized. The review specifically addresses one well-established topic, viz., the stabilization of the 3D and 2D states, with S = 0 and 1, trapped in harmonic-oscillator (HO) potentials, and another topic which was developed very recently: the stabilization of 2D and 3D free-space solitons, which mix components with S = 0 and ± 1 (semi-vortices and mixed modes), in a binary system with the (pseudo-) spin-orbit coupling (SOC) between its components. The former model is based on the single cubic nonlinear Schrödinger/Gross-Pitaevskii equation (NLSE/GPE), while the latter one is represented by a system of two coupled GPEs. In both cases, the generic situations are drastically different in the 2D and 3D geometries. In the 2D settings, the stabilization mechanism creates a stable ground state (GS, which was absent without it), whose norm falls below the threshold value at which the critical collapse sets in. In the 3D geometry, the supercritical collapse does not allow to create a GS, but metastable solitons can be constructed.
Precursor solitons in a flowing complex plasma
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Pintu; Jaiswal, Surabhi; Sen, Abhijit
2015-11-01
We report the first experimental observation of precursor solitons in a flowing dusty plasma. The nonlinear solitary dust acoustic waves (DAWs) are excited by a supersonic mass flow of the dust particles passing over an electrostatic potential hill. In a frame where the fluid is stationary and the hill is moving the solitons propagate in the upstream direction while wake structures consisting of linear DAWs are seen to propagate in the downstream direction. The experiments have been carried out in a U-shaped Dusty Plasma Experimental (DPEx) device where kaolin particles are immersed in a DC discharge argon plasma to form the dusty plasma and a floating wire mounted on the cathode creates a potential hill. The dust flow is induced by sudden changes in the hill height and the solitary structures are seen only for supersonic flows and up to an upper limit of the flow. A theoretical model description of the phenomenon will be provided and some practical implications of such precursor excitations for a charged object moving in a plasma will be discussed.
Femtosecond soliton source with fast and broad spectral tunability.
Masip, Martin E; Rieznik, A A; König, Pablo G; Grosz, Diego F; Bragas, Andrea V; Martinez, Oscar E
2009-03-15
We present a complete set of measurements and numerical simulations of a femtosecond soliton source with fast and broad spectral tunability and nearly constant pulse width and average power. Solitons generated in a photonic crystal fiber, at the low-power coupling regime, can be tuned in a broad range of wavelengths, from 850 to 1200 nm using the input power as the control parameter. These solitons keep almost constant time duration (approximately 40 fs) and spectral widths (approximately 20 nm) over the entire measured spectra regardless of input power. Our numerical simulations agree well with measurements and predict a wide working wavelength range and robustness to input parameters.
Classification of the line-soliton solutions of KPII
NASA Astrophysics Data System (ADS)
Chakravarty, Sarbarish; Kodama, Yuji
2008-07-01
In the previous papers (notably, Kodama Y 2004 J. Phys. A: Math. Gen. 37 11169-90, Biondini G and Chakravarty S 2006 J. Math. Phys. 47 033514), a large variety of line-soliton solutions of the Kadomtsev-Petviashvili II (KPII) equation was found. The line-soliton solutions are solitary waves which decay exponentially in the (x, y)-plane except along certain rays. In this paper, it is shown that those solutions are classified by asymptotic information of the solution as |y| → ∞. The present work then unravels some interesting relations between the line-soliton classification scheme and classical results in the theory of permutations.
Symmetry breaking and multipeaked solitons in inhomogeneous gain landscapes
Kartashov, Yaroslav V.; Vysloukh, Victor A.; Konotop, Vladimir V.
2011-04-15
We address one-dimensional soliton formation in a cubic nonlinear medium with two-photon absorption and transversally inhomogeneous gain landscape consisting of a single or several amplifying channels. Existence of the solitons requires certain threshold gain while the properties of solitons strongly depend on whether the number of the amplifying channels is odd or even. In the former case, an increase of the gain leads to symmetry breaking, which occurs through the pitchfork bifurcation, and to emergence of a single or several coexisting stable asymmetric modes. In the case of an even number of amplifying channels, we have found only asymmetric stable states.
Dark and singular optical solitons perturbation with fractional temporal evolution
NASA Astrophysics Data System (ADS)
Younis, Muhammad; ur Rehman, Hamood; Rizvi, Syed Tahir Raza; Mahmood, Syed Amer
2017-04-01
The article studies the dynamics of dark, singular, combined optical solitons and many other periodic solutions to fractional temporal perturbed nonlinear Schrödinger equation in nonlinear optics. The fractional extended Fan sub-equation method is first time used for any fractional temporal nonlinear Schrödinger equation. The solutions are of qualitatively different nature, depending on the five parameters. The constraint conditions, for the existence of the solitons, are also listed. Moreover a couple of other solutions known as combined soliton and combined periodic solution, fall out as a by product in limiting cases.
Bistable Helmholtz solitons in cubic-quintic materials
Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.
2007-09-15
We propose a nonlinear Helmholtz equation for modeling the evolution of broad optical beams in media with a cubic-quintic intensity-dependent refractive index. This type of nonlinearity is appropriate for some semiconductor materials, glasses, and polymers. Exact analytical soliton solutions are presented that describe self-trapped nonparaxial beams propagating at any angle with respect to the reference direction. These spatially symmetric solutions are, to the best of our knowledge, the first bistable Helmholtz solitons to be derived. Accompanying conservation laws (both integral and particular forms) are also reported. Numerical simulations investigate the stability of the solitons, which appear to be remarkably robust against perturbations.
Freezing of Energy of a Soliton in an External Potential
NASA Astrophysics Data System (ADS)
Bambusi, D.; Maspero, A.
2016-05-01
In this paper we study the dynamics of a soliton in the generalized NLS with a small external potential ɛV of Schwartz class. We prove that there exists an effective mechanical system describing the dynamics of the soliton and that, for any positive integer r, the energy of such a mechanical system is almost conserved up to times of order ɛ - r . In the rotational invariant case we deduce that the true orbit of the soliton remains close to the mechanical one up to times of order ɛ - r .
Bright solitons in non-equilibrium coherent quantum matter
Pinsker, F.; Flayac, H.
2016-01-01
We theoretically demonstrate a mechanism for bright soliton generation in spinor non-equilibrium Bose–Einstein condensates made of atoms or quasi-particles such as polaritons in semiconductor microcavities. We give analytical expressions for bright (half) solitons as minimizing functions of a generalized non-conservative Lagrangian elucidating the unique features of inter and intra-competition in non-equilibrium systems. The analytical results are supported by a detailed numerical analysis that further shows the rich soliton dynamics inferred by their instability and mutual cross-interactions. PMID:26997892
Nuclear Matter Stability in a Soliton Model for Finite Nuclei
NASA Astrophysics Data System (ADS)
Derreth, Ch.; Elze, H.-Th.; Greiner, W.
A relativistic band structure method for the computation of the electronic structure of atomic clusters is adapter to the Friedberg-Lee nontopological soliton model. Thus, finite nuclei can be studied in the soliton model. As a verification of our method, we calculated the equation of state of nuclear matter. In order to achieve nuclear matter stability, we added the colour magnetic interaction for an inhomogeneous dielectric medium as well as a phenomenological residual interaction to the soliton model. Both modifications are examined in detail. Nuclear matter stability near the empirical ground state density and binding energy has been achieved.
Exciton-polariton gap solitons in two-dimensional lattices.
Cerda-Méndez, E A; Sarkar, D; Krizhanovskii, D N; Gavrilov, S S; Biermann, K; Skolnick, M S; Santos, P V
2013-10-04
We report on the two-dimensional gap-soliton nature of exciton-polariton macroscopic coherent phases (PMCP) in a square lattice with a tunable amplitude. The resonantly excited PMCP forms close to the negative mass M point of the lattice band structure with energy within the lattice band gap and its wave function localized within a few lattice periods. The PMCPs are well described as gap solitons resulting from the interplay between repulsive polariton-polariton interactions and effective attractive forces due to the negative mass. The solitonic nature accounts for the reduction of the PMCP coherence length and optical excitation threshold with increasing lattice amplitude.
Breatherlike solitons extracted from the Peregrine rogue wave.
Yang, Guangye; Wang, Yan; Qin, Zhenyun; Malomed, Boris A; Mihalache, Dumitru; Li, Lu
2014-12-01
Based on the Peregrine solution (PS) of the nonlinear Schrödinger (NLS) equation, the evolution of rational fraction pulses surrounded by zero background is investigated. These pulses display the behavior of a breatherlike solitons. We study the generation and evolution of such solitons extracted, by means of the spectral-filtering method, from the PS in the model of the optical fiber with realistic values of coefficients accounting for the anomalous dispersion, Kerr nonlinearity, and higher-order effects. The results demonstrate that the breathing solitons stably propagate in the fibers. Their robustness against small random perturbations applied to the initial background is demonstrated too.
Experimental Observation of Dark Solitons on Water Surface
2016-06-13
Experimental observation of dark solitons on water surface A. Chabchoub1,∗, O. Kimmoun2, H. Branger3, N. Hoffmann1, D. Proment4, M. Onorato4,5, and N...observation of dark solitons on the water surface. It takes the form of an amplitude drop of the carrier wave which does not change shape in propagation...The shape and width of the soliton depend on the water depth, carrier frequency and the amplitude of the background wave. The experimental data
Sakkaravarthi, K; Kanna, T; Vijayajayanthi, M; Lakshmanan, M
2014-11-01
We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one- and two-soliton solutions and studied their dynamics briefly.
Dynamics of soliton fields in the framework of modified Korteweg - de Vries equation
NASA Astrophysics Data System (ADS)
Pelinovsky, Efim; Shurgalina, Ekaterina
2014-05-01
The dynamics of soliton field in the framework of modified Korteweg-de Vries (mKdV) equation is studied. Two-soliton interactions play a definitive role in the formation of the structure of soliton field. Three types of soliton interaction are considered: exchange and overtaking for solitons of the same polarity, and absorb-emit for solitons of different polarity. Features of soliton interaction are studied in details. Since the interaction of solitons is an elementary act of soliton turbulence, the moments of the wave field up to fourth are studied, which are usually applied in the turbulence theory. It is shown that in the case of interaction of solitons of the same polarity the third and fourth moments of the wave field, which determine the coefficients of skewness and kurtosis in the turbulence theory, are reduced, while in the case of interaction of solitons of different polarity these moments are increased. Numerical study of the statistical characteristics of multi-soliton fields which are generated from the initially isolated solitons with random phases and amplitudes is made. The effect of the nonlinear interaction between solitons and dispersive trains is analysed. It is confirmed that first two moments being the invariants of the modified Korteweg - de Vries equation remain to be constant. The skewness and kurtosis vary in time in each realization but tends to the constants in the average.
Polarization instability of Raman solitons ejected during supercontinuum generation.
Chao, Qing; Wagner, Kelvin H
2015-12-28
We numerically investigate polarization instability of soliton fission and the polarization dynamics of Raman solitons ejected during supercontinuum generation in a photonics crystal fiber using the coupled vector generalized nonlinear Schrödinger equations for both linear and circular birefringent fibers. The evolution of the state of polarizations of the ejected Raman soliton as representated on the Poincaré sphere is affected by both nonlinear and linear polarization rotations on the Poincaré sphere. The polarization dynamics reveal the presence of a polarization separatrix and the emergence of stable slow and unstable fast eigen-polarizations for the Raman solitons ejected in the supercontinuum generation process. Circularly birefringent fiber is investigated and found to simplify the nonlinear polarization dynamics.
Alfvén solitons in a Fermionic quantum plasma.
Keane, A J; Mushtaq, A; Wheatland, M S
2011-06-01
The propagation of Alfvén envelope solitons through a Fermionic quantum plasma is considered. Starting from the governing equations for Hall magnetohydrodynamics including quantum corrections, coupled Zakharov-type equations are derived for circularly polarized Alfvén waves. The equations are numerically solved for time-independent and time-dependent cases. The time-independent case shows that variations in density take the form of dressed density solitons in which an approximately Gaussian peak is surrounded by smaller sinusoidal variations in the density envelope. The mathematical basis for this behavior is explained. A limited time-dependent case is obtained which uses the numerical time-independent soliton solutions as the initial conditions. This confirms that the soliton solutions retain the same profile as they propagate. The relevance of this work to dense astrophysical plasmas like the interiors of white dwarf stars is discussed.
Quantum gates controlled by spin chain soliton excitations
Cuccoli, Alessandro; Nuzzi, Davide; Vaia, Ruggero; Verrucchi, Paola
2014-05-07
Propagation of soliton-like excitations along spin chains has been proposed as a possible way for transmitting both classical and quantum information between two distant parties with negligible dispersion and dissipation. In this work, a somewhat different use of solitons is considered. Solitons propagating along a spin chain realize an effective magnetic field, well localized in space and time, which can be exploited as a means to manipulate the state of an external spin (i.e., a qubit) that is weakly coupled to the chain. We have investigated different couplings between the qubit and the chain, as well as different soliton shapes, according to a Heisenberg chain model. It is found that symmetry properties strongly affect the effectiveness of the proposed scheme, and the most suitable setups for implementing single qubit quantum gates are singled out.
Soliton switching in a site-dependent ferromagnet
NASA Astrophysics Data System (ADS)
Senjudarvannan, R.; Sathishkumar, P.; Vijayalakshmi, S.
2017-02-01
Switching of soliton in a ferromagnetic medium offers the possibility of developing a new innovative approach for information storage technologies. The nonlinear spin dynamics of a site-dependent Heisenberg ferromagnetic spin chain with Gilbert damping under the influence of external magnetic field is expressed in the form of the Landau-Lifshitz-Gilbert equation in the classical continuum limit. The corresponding evolution equation is developed through stereographic projection technique by projecting the unit sphere of spin onto a complex plane. The exact soliton solutions are constructed by solving the associated evolution equation through the modified extended tanh-function method. The impact of damping and external magnetic field on the magnetic soliton under the invariant inhomogeneity is investigated and finally, the magnetization switching in the form of shape changing solitons are demonstrated.
Acoustic solitons in waveguides with Helmholtz resonators: transmission line approach.
Achilleos, V; Richoux, O; Theocharis, G; Frantzeskakis, D J
2015-02-01
We report experimental results and study theoretically soliton formation and propagation in an air-filled acoustic waveguide side loaded with Helmholtz resonators. We propose a theoretical modeling of the system, which relies on a transmission-line approach, leading to a nonlinear dynamical lattice model. The latter allows for an analytical description of the various soliton solutions for the pressure, which are found by means of dynamical systems and multiscale expansion techniques. These solutions include Boussinesq-like and Korteweg-de Vries pulse-shaped solitons that are observed in the experiment, as well as nonlinear Schrödinger envelope solitons, that are predicted theoretically. The analytical predictions are in excellent agreement with direct numerical simulations and in qualitative agreement with the experimental observations.
Bistable dark solitons of a cubic-quintic Helmholtz equation
Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.
2010-05-15
We provide a report on exact analytical bistable dark spatial solitons of a nonlinear Helmholtz equation with a cubic-quintic refractive-index model. Our analysis begins with an investigation of the modulational instability characteristics of Helmholtz plane waves. We then derive a dark soliton by mapping the desired asymptotic form onto a uniform background field and obtain a more general solution by deploying rotational invariance laws in the laboratory frame. The geometry of the new soliton is explored in detail, and a range of new physical predictions is uncovered. Particular attention is paid to the unified phenomena of arbitrary-angle off-axis propagation and nondegenerate bistability. Crucially, the corresponding solution of paraxial theory emerges in a simultaneous multiple limit. We conclude with a set of computer simulations that examine the role of Helmholtz dark solitons as robust attractors.
Soliton communication lines based on spectrally efficient modulation formats
Yushko, O V; Redyuk, A A
2014-06-30
We report the results of mathematical modelling of optical-signal propagation in soliton fibre-optic communication lines (FOCLs) based on spectrally efficient signal modulation formats. We have studied the influence of spontaneous emission noise, nonlinear distortions and FOCL length on the data transmission quality. We have compared the characteristics of a received optical signal for soliton and conventional dispersion compensating FOCLs. It is shown that in the presence of strong nonlinearity long-haul soliton FOCLs provide a higher data transmission performance, as well as allow higher order modulation formats to be used as compared to conventional communication lines. In the context of a coherent data transmission, soliton FOCLs allow the use of phase modulation with many levels, thereby increasing the spectral efficiency of the communication line. (optical communication lines)
Formation of infrared solitons in graphene ensemble under Raman excitation
NASA Astrophysics Data System (ADS)
Ding, Chunling; Yu, Rong; Yang, Xiaoxue; Zhang, Duo; Huang, Mingju
2015-11-01
The formation of infrared solitons in graphene under Raman excitation is investigated using density-matrix approach. We find that the unique band structure and selection rules for the optical transitions near the Dirac point can result in extremely strong optical nonlinearity. Theoretical investigations with the aid of slowly varying envelope approximation and perturbation theory clearly indicate the existence of bright and dark solitons in Landau-quantized graphene. Actually, the formation of spatial soliton in such a material is the consequence of the balance between nonlinear effects and the dispersion properties. Also, the corresponding carrier frequency is tunable in the infrared range. These results can make us know better the crossover between optical solitons and graphene metamaterials. The predicted nonlinear optical effect in graphene may provide a new possibility for designing high-fidelity graphene-based information processing device.
(2+1) -dimensional stable spatial Raman solitons
NASA Astrophysics Data System (ADS)
Shverdin, M. Y.; Yavuz, D. D.; Walker, D. R.
2004-03-01
We analyze the formation, propagation, and interaction of stable two-frequency (2+1) -dimensional solitons, formed in a Raman media driven near maximum molecular coherence. The propagating light is trapped in the two transverse dimensions.
Experimental and Numerical Study of Bright Matter- Wave Soliton Collisions
NASA Astrophysics Data System (ADS)
Luo, H.; Nguyen, J. H. V.; Dyke, P.; Hulet, R. G.
2014-05-01
We create pairs of bright matter-wave solitons from Bose-Einstein condensates of 7Li atoms by tuning the scattering length to a negative value. We examine the collision of a pair of solitons formed in a quasi-1-D harmonic trap as a function of their relative phase. While the solitons pass through one another without change in shape or amplitude, they nonetheless exhibit an effective interaction that can be either repulsive or attractive depending on their relative phase. Furthermore, we observe a discontinuous jump in the soliton motion that causes the dipole mode oscillation frequency to shift to values greater than the trap frequency. The result is compared to numerical solution of the 3-D Gross-Pitaevskii equation. Work supported by the NSF, ONR, an ARO MURI, and the Welch Foundation.
Stabilization of ring dark solitons in Bose-Einstein condensates
Wang, Wenlong; Kevrekidis, P. G.; Carretero-González, R.; ...
2015-09-14
Earlier work has shown that ring dark solitons in two-dimensional Bose-Einstein condensates are generically unstable. In this work, we propose a way of stabilizing the ring dark soliton via a radial Gaussian external potential. We investigate the existence and stability of the ring dark soliton upon variations of the chemical potential and also of the strength of the radial potential. Numerical results show that the ring dark soliton can be stabilized in a suitable interval of external potential strengths and chemical potentials. Furthermore, we also explore different proposed particle pictures considering the ring as a moving particle and find, wheremore » appropriate, results in very good qualitative and also reasonable quantitative agreement with the numerical findings.« less
Stabilization of ring dark solitons in Bose-Einstein condensates
Wang, Wenlong; Kevrekidis, P. G.; Carretero-González, R.; Frantzeskakis, D. J.; Kaper, Tasso J.; Ma, Manjun
2015-09-14
Earlier work has shown that ring dark solitons in two-dimensional Bose-Einstein condensates are generically unstable. In this work, we propose a way of stabilizing the ring dark soliton via a radial Gaussian external potential. We investigate the existence and stability of the ring dark soliton upon variations of the chemical potential and also of the strength of the radial potential. Numerical results show that the ring dark soliton can be stabilized in a suitable interval of external potential strengths and chemical potentials. Furthermore, we also explore different proposed particle pictures considering the ring as a moving particle and find, where appropriate, results in very good qualitative and also reasonable quantitative agreement with the numerical findings.
Coupled matter-wave solitons in optical lattices
Golam Ali, Sk; Talukdar, B.
2009-06-15
We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (V{sub eff}(NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well V{sub eff}(LOL). But these effective potentials have opposite k dependence in the sense that the depth of V{sub eff}(LOL) increases as k increases and that of V{sub eff}(NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter {tau} drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation
Coupled matter-wave solitons in optical lattices
NASA Astrophysics Data System (ADS)
Golam Ali, Sk; Talukdar, B.
2009-06-01
We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (Veff(NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well Veff(LOL). But these effective potentials have opposite k dependence in the sense that the depth of Veff(LOL) increases as k increases and that of Veff(NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter τ drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation indicates that during evolution