ERIC Educational Resources Information Center
Miller, Julie Ann
1978-01-01
The functional architecture of the primary visual cortex has been explored by monitoring the responses of individual brain cells to visual stimuli. A combination of anatomical and physiological techniques reveals groups of functionally related cells, juxtaposed and superimposed, in a sometimes complex, but presumably efficient, structure. (BB)
Sahin, Ozlem; Ziaei, Alireza
2014-07-01
This study was designed to investigate whether the antiinflammatory and antiproliferative activity of oral and intravitreal methotrexate (MTX) suppresses intraocular inflammation in patients with presumed latent syphilitic uveitis and presumed tuberculosis-related uveitis. Interventional prospective study including three cases with presumed latent syphilitic uveitis treated with intravenous penicillin and oral MTX, and two cases with presumed tuberculosis-related uveitis treated with standard antituberculosis therapy and intravitreal MTX injections. Treatment efficacy of all cases was assessed by best-corrected visual acuity, fundus fluorescein angiography, and optical coherence tomography. Four eyes of 3 patients with presumed latent syphilitic uveitis had improved best-corrected visual acuity, suppression of intraocular inflammation, and resolution of cystoid macular edema in 6 months with oral MTX therapy. No recurrence of intraocular inflammation was observed in 6 months to 18 months of follow-up period after cessation of MTX. Two eyes of two patients with presumed tuberculosis-related uveitis showed improved best-corrected visual acuity, suppression of intraocular inflammation, and resolution of cystoid macular edema after intravitreal injections of MTX. No recurrence of intraocular inflammation was observed in 6 months to 8 months of follow-up period after cessation of antituberculous therapy. For the first time in the treatment of presumed latent syphilitic uveitis and presumed tuberculosis-related uveitis, we believe that MTX might have an adjunctive role to suppress intraocular inflammation, reduce uveitic macular edema, and prevent the recurrences of the diseases.
Cortical connective field estimates from resting state fMRI activity.
Gravel, Nicolás; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V; Dumoulin, Serge O; Renken, Remco; Curčić-Blake, Branislava; Cornelissen, Frans W
2014-01-01
One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another visual area. In combination with pRF mapping, CF locations on the cortical surface can be interpreted in visual space, thus enabling reconstruction of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization. Therefore, we conclude that-despite some variability in CF estimates between RS scans-neural properties such as CF maps and CF size can be derived from resting state data.
Frontal–Occipital Connectivity During Visual Search
Pantazatos, Spiro P.; Yanagihara, Ted K.; Zhang, Xian; Meitzler, Thomas
2012-01-01
Abstract Although expectation- and attention-related interactions between ventral and medial prefrontal cortex and stimulus category-selective visual regions have been identified during visual detection and discrimination, it is not known if similar neural mechanisms apply to other tasks such as visual search. The current work tested the hypothesis that high-level frontal regions, previously implicated in expectation and visual imagery of object categories, interact with visual regions associated with object recognition during visual search. Using functional magnetic resonance imaging, subjects searched for a specific object that varied in size and location within a complex natural scene. A model-free, spatial-independent component analysis isolated multiple task-related components, one of which included visual cortex, as well as a cluster within ventromedial prefrontal cortex (vmPFC), consistent with the engagement of both top-down and bottom-up processes. Analyses of psychophysiological interactions showed increased functional connectivity between vmPFC and object-sensitive lateral occipital cortex (LOC), and results from dynamic causal modeling and Bayesian Model Selection suggested bidirectional connections between vmPFC and LOC that were positively modulated by the task. Using image-guided diffusion-tensor imaging, functionally seeded, probabilistic white-matter tracts between vmPFC and LOC, which presumably underlie this effective interconnectivity, were also observed. These connectivity findings extend previous models of visual search processes to include specific frontal–occipital neuronal interactions during a natural and complex search task. PMID:22708993
Longitudinal decrease in blood oxygenation level dependent response in cerebral amyloid angiopathy.
Switzer, Aaron R; McCreary, Cheryl; Batool, Saima; Stafford, Randall B; Frayne, Richard; Goodyear, Bradley G; Smith, Eric E
2016-01-01
Lower blood oxygenation level dependent (BOLD) signal changes in response to a visual stimulus in functional magnetic resonance imaging (fMRI) have been observed in cross-sectional studies of cerebral amyloid angiopathy (CAA), and are presumed to reflect impaired vascular reactivity. We used fMRI to detect a longitudinal change in BOLD responses to a visual stimulus in CAA, and to determine any correlations between these changes and other established biomarkers of CAA progression. Data were acquired from 22 patients diagnosed with probable CAA (using the Boston Criteria) and 16 healthy controls at baseline and one year. BOLD data were generated from the 200 most active voxels of the primary visual cortex during the fMRI visual stimulus (passively viewing an alternating checkerboard pattern). In general, BOLD amplitudes were lower at one year compared to baseline in patients with CAA (p = 0.01) but were unchanged in controls (p = 0.18). The longitudinal difference in BOLD amplitudes was significantly lower in CAA compared to controls (p < 0.001). White matter hyperintensity (WMH) volumes and number of cerebral microbleeds, both presumed to reflect CAA-mediated vascular injury, increased over time in CAA (p = 0.007 and p = 0.001, respectively). Longitudinal increases in WMH (rs = 0.04, p = 0.86) or cerebral microbleeds (rs = -0.18, p = 0.45) were not associated with the longitudinal decrease in BOLD amplitudes.
Ethofer, Thomas; Brück, Carolin; Alter, Kai; Grodd, Wolfgang; Kreifelts, Benjamin
2013-01-01
Laughter is an ancient signal of social communication among humans and non-human primates. Laughter types with complex social functions (e.g., taunt and joy) presumably evolved from the unequivocal and reflex-like social bonding signal of tickling laughter already present in non-human primates. Here, we investigated the modulations of cerebral connectivity associated with different laughter types as well as the effects of attention shifts between implicit and explicit processing of social information conveyed by laughter using functional magnetic resonance imaging (fMRI). Complex social laughter types and tickling laughter were found to modulate connectivity in two distinguishable but partially overlapping parts of the laughter perception network irrespective of task instructions. Connectivity changes, presumably related to the higher acoustic complexity of tickling laughter, occurred between areas in the prefrontal cortex and the auditory association cortex, potentially reflecting higher demands on acoustic analysis associated with increased information load on auditory attention, working memory, evaluation and response selection processes. In contrast, the higher degree of socio-relational information in complex social laughter types was linked to increases of connectivity between auditory association cortices, the right dorsolateral prefrontal cortex and brain areas associated with mentalizing as well as areas in the visual associative cortex. These modulations might reflect automatic analysis of acoustic features, attention direction to informative aspects of the laughter signal and the retention of those in working memory during evaluation processes. These processes may be associated with visual imagery supporting the formation of inferences on the intentions of our social counterparts. Here, the right dorsolateral precentral cortex appears as a network node potentially linking the functions of auditory and visual associative sensory cortices with those of the mentalizing-associated anterior mediofrontal cortex during the decoding of social information in laughter. PMID:23667619
Wildgruber, Dirk; Szameitat, Diana P; Ethofer, Thomas; Brück, Carolin; Alter, Kai; Grodd, Wolfgang; Kreifelts, Benjamin
2013-01-01
Laughter is an ancient signal of social communication among humans and non-human primates. Laughter types with complex social functions (e.g., taunt and joy) presumably evolved from the unequivocal and reflex-like social bonding signal of tickling laughter already present in non-human primates. Here, we investigated the modulations of cerebral connectivity associated with different laughter types as well as the effects of attention shifts between implicit and explicit processing of social information conveyed by laughter using functional magnetic resonance imaging (fMRI). Complex social laughter types and tickling laughter were found to modulate connectivity in two distinguishable but partially overlapping parts of the laughter perception network irrespective of task instructions. Connectivity changes, presumably related to the higher acoustic complexity of tickling laughter, occurred between areas in the prefrontal cortex and the auditory association cortex, potentially reflecting higher demands on acoustic analysis associated with increased information load on auditory attention, working memory, evaluation and response selection processes. In contrast, the higher degree of socio-relational information in complex social laughter types was linked to increases of connectivity between auditory association cortices, the right dorsolateral prefrontal cortex and brain areas associated with mentalizing as well as areas in the visual associative cortex. These modulations might reflect automatic analysis of acoustic features, attention direction to informative aspects of the laughter signal and the retention of those in working memory during evaluation processes. These processes may be associated with visual imagery supporting the formation of inferences on the intentions of our social counterparts. Here, the right dorsolateral precentral cortex appears as a network node potentially linking the functions of auditory and visual associative sensory cortices with those of the mentalizing-associated anterior mediofrontal cortex during the decoding of social information in laughter.
Lorenz, R; Baier, M; Eckl, G; Raile, A
1996-07-01
The survey shows the frequency and distribution of diseases evaluated by electroophthalmological methods. Patients with retinal diseases (51.2%) and those with diseases of the optic nerve (21.8%) were examined most frequently. In a high percentage these investigations lead to a clinically useful assessment: described as confirmation or exclusion of a clinical diagnosis, as establishing a possible differential diagnosis or clearing up formerly unknown aspects of a disease. In cases of hereditary retinal disorders only 11% remained unclear, with presumed optic neuritis only 6%. The importance of electroophthalmological investigations is there ability to assess functional deficits in the visual system especially in somehow more rare retinal and centrally located disorders, functional deficits of unknown origins or in general diseases including the visual system.
Snyder, Michael E; Osher, Robert H; Wladecki, Trisha M; Perez, Mauricio A; Augsburger, James J; Corrêa, Zélia
2017-03-01
To present visual and functional results following implantation of iris prosthesis combined with cataract surgery in eyes with previous iridocyclectomy for iris melanoma or presumed iris melanoma. Retrospective noncomparative case series. Sixteen patients (16 eyes) with iris defects after iridocyclectomy for iris melanoma in 15 cases and iris adenoma in 1 case underwent prosthetic iris device implantation surgery. Prosthetic iris implantation was combined with phacoemulsification and intraocular lens (IOL) implantation. The visual acuity, subjective glare and photophobia reduction, anatomic outcome, and complications were reviewed. Best-corrected visual acuity was improved in 13 eyes (81.25%), remained stable in 2 eyes (12.25%), and decreased in 1 eye (6.25%). Photophobia and glare improved in every case except for 1 (93.75%). Notably, after surgery 12 patients (75.00%) reported no photophobia and 10 patients (62.50%) reported no glare. The median postoperative follow-up was 29.5 months, with a minimum of 5 months and a maximum of 189 months. All iris devices were in the correct position, and all eyes achieved the desired anatomic result. The IOL optic edges were covered in all areas by either residual iris or opaque portions of a prosthetic iris device. In patients who have undergone previous iridocyclectomy for presumed iris melanoma, combined cataract surgery and iris prosthesis placement, with or without iris reconstruction, can lead to visual improvement as well as reduction of both glare and photophobia. Copyright © 2016 Elsevier Inc. All rights reserved.
Shi, Qing; Stell, William K.
2013-01-01
Background Through adaptation, animals can function visually under an extremely broad range of light intensities. Light adaptation starts in the retina, through shifts in photoreceptor sensitivity and kinetics plus modulation of visual processing in retinal circuits. Although considerable research has been conducted on retinal adaptation in nocturnal species with rod-dominated retinas, such as the mouse, little is known about how cone-dominated avian retinas adapt to changes in mean light intensity. Methodology/Principal Findings We used the optokinetic response to characterize contrast sensitivity (CS) in the chick retina as a function of spatial frequency and temporal frequency at different mean light intensities. We found that: 1) daytime, cone-driven CS was tuned to spatial frequency; 2) nighttime, presumably rod-driven CS was tuned to temporal frequency and spatial frequency; 3) daytime, presumably cone-driven CS at threshold intensity was invariant with temporal and spatial frequency; and 4) daytime photopic CS was invariant with clock time. Conclusion/Significance Light- and dark-adaptational changes in CS were investigated comprehensively for the first time in the cone-dominated retina of an avian, diurnal species. The chick retina, like the mouse retina, adapts by using a “day/night” or “cone/rod” switch in tuning preference during changes in lighting conditions. The chick optokinetic response is an attractive model for noninvasive, behavioral studies of adaptation in retinal circuitry in health and disease. PMID:24098693
Presumed topiramate retinopathy: a case report.
Yeung, Tiffany L M; Li, Patrick S H; Li, Kenneth K W
2016-08-01
We report a case of peripheral pigmentary retinopathy and visual field loss following topiramate use for uncontrolled seizures. Such side effects have not been well documented despite the increasing use of topiramate in the past 10 years. A thorough search of available English literature revealed only a small number of reports of topiramate-induced retinopathy or visual field defects in humans. One similar case has been described. We are concerned about the possible rare instances of this occurrence in future patients and hence would like to propose a presumed correlation. A 48-year-old Chinese woman developed blurred vision after 9 months of topiramate use. Her visual acuity dropped from 1.2 to 0.7 in both eyes, with bilateral diffuse pigmentary retinopathy and a constricted visual field. Despite an improvement in visual acuity after cessation of the drug, the other clinical findings remained. The temporal relationship between the initiation of topiramate and the visual disturbance suggests that topiramate could be the cause of such signs and symptoms. Topiramate potentially causes pigmentary retinopathy and constricted visual field.
Rissman, Jesse; Gazzaley, Adam; D'Esposito, Mark
2008-07-01
The maintenance of visual stimuli across a delay interval in working memory tasks is thought to involve reverberant neural communication between the prefrontal cortex and posterior visual association areas. Recent studies suggest that the hippocampus might also contribute to this retention process, presumably via reciprocal interactions with visual regions. To characterize the nature of these interactions, we performed functional connectivity analysis on an event-related functional magnetic resonance imaging data set in which participants performed a delayed face recognition task. As the number of faces that participants were required to remember was parametrically increased, the right inferior frontal gyrus (IFG) showed a linearly decreasing degree of functional connectivity with the fusiform face area (FFA) during the delay period. In contrast, the hippocampus linearly increased its delay period connectivity with both the FFA and the IFG as the mnemonic load increased. Moreover, the degree to which participants' FFA showed a load-dependent increase in its connectivity with the hippocampus predicted the degree to which its connectivity with the IFG decreased with load. Thus, these neural circuits may dynamically trade off to accommodate the particular mnemonic demands of the task, with IFG-FFA interactions mediating maintenance at lower loads and hippocampal interactions supporting retention at higher loads.
Imagery in the Congenitally Blind: How Visual Are Visual Images?
ERIC Educational Resources Information Center
Zimler, Jerome; Keenan, Janice M.
1983-01-01
Three experiments compared congenitally blind and sighted adults and children on paired-associate, free-recall, and imaging tasks presumed to involve visual imagery in memory. In all three, blind subjects' performances were remarkably similar to the sighted. Results challenge previous explanations of performance such as Paivio's (1971). (Author/RD)
Social Vision: Functional Forecasting and the Integration of Compound Social Cues
Adams, Reginald B.; Kveraga, Kestutis
2017-01-01
For decades the study of social perception was largely compartmentalized by type of social cue: race, gender, emotion, eye gaze, body language, facial expression etc. This was partly due to good scientific practice (e.g., controlling for extraneous variability), and partly due to assumptions that each type of social cue was functionally distinct from others. Herein, we present a functional forecast approach to understanding compound social cue processing that emphasizes the importance of shared social affordances across various cues (see too Adams, Franklin, Nelson, & Stevenson, 2010; Adams & Nelson, 2011; Weisbuch & Adams, 2012). We review the traditional theories of emotion and face processing that argued for dissociable and noninteracting pathways (e.g., for specific emotional expressions, gaze, identity cues), as well as more recent evidence for combinatorial processing of social cues. We argue here that early, and presumably reflexive, visual integration of such cues is necessary for adaptive behavioral responding to others. In support of this claim, we review contemporary work that reveals a flexible visual system, one that readily incorporates meaningful contextual influences in even nonsocial visual processing, thereby establishing the functional and neuroanatomical bases necessary for compound social cue integration. Finally, we explicate three likely mechanisms driving such integration. Together, this work implicates a role for cognitive penetrability in visual perceptual abilities that have often been (and in some cases still are) ascribed to direct encapsulated perceptual processes. PMID:29242738
Auditory and Visual Evoked Potentials as a Function of Sleep Deprivation and Irregular Sleep
1989-08-15
and a slow diminution in amplitude within a block of 35 targets. The gradual decrement between blocks is presumably due to the "waning of attention...scoring of the CNV. With the stimulus parameters used in the present study, the CNV is a slow negative wave which begins from 260-460 ms after tone onset...attended (e.g., Hillyard, Hink , Schwent, & Picton, 1973; Schwent & Hillyard, 1975), little research has focused on the effects when a particular
Schurz, Matthias; Sturm, Denise; Richlan, Fabio; Kronbichler, Martin; Ladurner, Gunther; Wimmer, Heinz
2010-01-01
Based on our previous work, we expected the Visual Word Form Area (VWFA) in the left ventral visual pathway to be engaged by both whole-word recognition and by serial sublexical coding of letter strings. To examine this double function, a phonological lexical decision task (i.e., “Does xxx sound like an existing word?”) presented short and long letter strings of words, pseudohomophones, and pseudowords (e.g., Taxi, Taksi and Tazi). Main findings were that the length effect for words was limited to occipital regions and absent in the VWFA. In contrast, a marked length effect for pseudowords was found throughout the ventral visual pathway including the VWFA, as well as in regions presumably engaged by visual attention and silent-articulatory processes. The length by lexicality interaction on brain activation corresponds to well-established behavioral findings of a length by lexicality interaction on naming latencies and speaks for the engagement of the VWFA by both lexical and sublexical processes. PMID:19896538
Schurz, Matthias; Sturm, Denise; Richlan, Fabio; Kronbichler, Martin; Ladurner, Gunther; Wimmer, Heinz
2010-02-01
Based on our previous work, we expected the Visual Word Form Area (VWFA) in the left ventral visual pathway to be engaged by both whole-word recognition and by serial sublexical coding of letter strings. To examine this double function, a phonological lexical decision task (i.e., "Does xxx sound like an existing word?") presented short and long letter strings of words, pseudohomophones, and pseudowords (e.g., Taxi, Taksi and Tazi). Main findings were that the length effect for words was limited to occipital regions and absent in the VWFA. In contrast, a marked length effect for pseudowords was found throughout the ventral visual pathway including the VWFA, as well as in regions presumably engaged by visual attention and silent-articulatory processes. The length by lexicality interaction on brain activation corresponds to well-established behavioral findings of a length by lexicality interaction on naming latencies and speaks for the engagement of the VWFA by both lexical and sublexical processes. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Jiang, Fang; Stecker, G. Christopher; Boynton, Geoffrey M.; Fine, Ione
2016-01-01
Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness—competition across different cortical areas for functional role. PMID:27458357
Attention enhances contrast appearance via increased input baseline of neural responses
Cutrone, Elizabeth K.; Heeger, David J.; Carrasco, Marisa
2014-01-01
Covert spatial attention increases the perceived contrast of stimuli at attended locations, presumably via enhancement of visual neural responses. However, the relation between perceived contrast and the underlying neural responses has not been characterized. In this study, we systematically varied stimulus contrast, using a two-alternative, forced-choice comparison task to probe the effect of attention on appearance across the contrast range. We modeled performance in the task as a function of underlying neural contrast-response functions. Fitting this model to the observed data revealed that an increased input baseline in the neural responses accounted for the enhancement of apparent contrast with spatial attention. PMID:25549920
2000-12-01
To investigate the effect of cataract on visual function and the role of cataract in explaining a race-treatment interaction in outcomes of glaucoma surgery. The Advanced Glaucoma Intervention Study (AGIS) enrolled 332 black patients (451 eyes) and 249 white patients (325 eyes) with advanced glaucoma. Eyes were randomly assigned to an argon laser trabeculoplasty (ALT)-trabeculectomy-trabeculectomy sequence or a trabeculectomy-ALT-trabeculectomy sequence. From the AGIS experience with cataract surgery during follow-up, we estimated the expected change in visual function scores from before cataract surgery to after cataract surgery. Then, for eyes with cataract not removed, we used these estimates of expected change to adjust visual function scores for the presumed effects of cataract. In turn, we used the adjusted scores to obtain cataract-adjusted main outcome measures. Average percent of eyes with decrease of visual field (APDVF) and average percent of eyes with decrease of visual acuity (APDVA). Within the 2 months before cataract surgery, visual acuity was better in eyes of white patients than of black patients by an average of approximately 2 lines on the visual acuity test chart. Cataract surgery improved visual acuity and visual field defect scores, with the amounts of improvement greater when preoperative visual acuity was lower. Adjustments for cataract brought about the following relative reductions: for APDVF, a relative reduction of 5% to 11% in black patients and 9% to 11% in white patients; for APDVA, a relative reduction of 45% to 49% in black patients and 31% to 38% in white patients; and for the APDVF and APDVA race-treatment interactions, relative reductions of 25% and 45%, respectively. On average, visual function scores improved after cataract surgery. The findings of reduced race-treatment interactions after adjustment for cataract do not alter our earlier conclusion that the AGIS 7-year results support use of the ALT-trabeculectomy-trabeculectomy sequence for black patients and of the trabeculectomy-ALT-trabeculectomy sequence for white patients without life-threatening health problems. The choice of treatment should take into account individual patient characteristics and needs.
[Effects on visual functions following several hours' usage of a head mounted display].
Hara, N; Ukai, K; Ishikawa, S; Takagi, M; Bando, T; Oyamada, H
1996-07-01
We investigated the effects of viewing video movies with a head-mounted display (HMD) for 4 to 6 hours on visual functions such as refraction, visual acuity, and accommodation-vergence system. Two or three video movies were watched without any breaks by 13 normal volunteers (age: 22 approximately 40). Measurements were made of (1) objective and subjective refraction, (2) corrected visual acuity, (3) tonic level and step response of accommodation with a computer-assisted infrared optometer, and (4) near and far phorias and AC/A ratio. Significant transient myopia was found following 4 hours' viewing, but not following 6 hours' viewing. Scrutinizing individual data, myopia was consistently found in some subjects, and hyperopia in others. We presumed that many subjects might have been influenced by initial instrumental myopia when they adjusted the focus by using the mechanism built in the HMD. No significant change was observed in any other examination. However, there was a tendency for the AC/A ratio to change after a short time, and then to recover to its original value. Based on the results in this study, it appears that some changes in accommodation and vergence systems are caused by viewing video movies with the HMD. Although the amount of changes was within normal physiological variation in this study, the possibility still remains that usage for a longer time may lead to other changes in visual function. Care is also necessary when using the HMD in subjects with subclinical problems.
Presumed atypical HDR syndrome associated with Band Keratopathy and pigmentary retinopathy.
Kim, Cinoo; Cheong, Hae Il; Kim, Jeong Hun; Yu, Young Suk; Kwon, Ji Won
2011-01-01
This report describes presumed atypical hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome associated with unexpected ocular findings. The patient had exotropia, bilateral band keratopathy, and pigmentary retinopathy, including attenuated retinal vessels and atrophy of the retinal pigment epithelium. Even though the calcific plaques were successfully removed, visual acuity in both eyes gradually decreased and electroretinography was extinguished. Copyright 2009, SLACK Incorporated.
Behavioral and Physiological Findings of Gender Differences in Global-Local Visual Processing
ERIC Educational Resources Information Center
Roalf, David; Lowery, Natasha; Turetsky, Bruce I.
2006-01-01
Hemispheric asymmetries in global-local visual processing are well-established, as are gender differences in cognition. Although hemispheric asymmetry presumably underlies gender differences in cognition, the literature on gender differences in global-local processing is sparse. We employed event related brain potential (ERP) recordings during…
Proprioceptive versus Visual Control in Autistic Children.
ERIC Educational Resources Information Center
Masterton, B. A.; Biederman, G. B.
1983-01-01
The autistic children's presumed preference for proximal over distal sensory input was studied by requiring that "autistic," retarded, and "normal" children (7-15 years old) adapt to lateral displacement of the visual field. Only autistic Ss demonstrated transfer of adaptation to the nonadapted hand, indicating reliance on proprioception rather…
Photoacoustic and Colorimetric Visualization of Latent Fingerprints.
Song, Kai; Huang, Peng; Yi, Chenglin; Ning, Bo; Hu, Song; Nie, Liming; Chen, Xiaoyuan; Nie, Zhihong
2015-12-22
There is a high demand on a simple, rapid, accurate, user-friendly, cost-effective, and nondestructive universal method for latent fingerprint (LFP) detection. Herein, we describe a combination imaging strategy for LFP visualization with high resolution using poly(styrene-alt-maleic anhydride)-b-polystyrene (PSMA-b-PS) functionalized gold nanoparticles (GNPs). This general approach integrates the merits of both colorimetric imaging and photoacoustic imaging. In comparison with the previous methods, our strategy is single-step and does not require the signal amplification by silver staining. The PSMA-b-PS functionalized GNPs have good stability, tunable color, and high affinity for universal secretions (proteins/polypeptides/amino acids), which makes our approach general and flexible for visualizing LFPs on different substrates (presumably with different colors) and from different people. Moreover, the unique optical property of GNPs enables the photoacoustic imaging of GNPs-deposited LFPs with high resolution. This allows observation of level 3 hyperfine features of LFPs such as the pores and ridge contours by photoacoustic imaging. This technique can potentially be used to identify chemicals within LFP residues. We believe that this dual-modality imaging of LFPs will find widespread use in forensic investigations and medical diagnostics.
Ahlfors, Seppo P.; Jones, Stephanie R.; Ahveninen, Jyrki; Hämäläinen, Matti S.; Belliveau, John W.; Bar, Moshe
2014-01-01
Identifying inter-area communication in terms of the hierarchical organization of functional brain areas is of considerable interest in human neuroimaging. Previous studies have suggested that the direction of magneto- and electroencephalography (MEG, EEG) source currents depends on the layer-specific input patterns into a cortical area. We examined the direction in MEG source currents in a visual object recognition experiment in which there were specific expectations of activation in the fusiform region being driven by either feedforward or feedback inputs. The source for the early non-specific visual evoked response, presumably corresponding to feedforward driven activity, pointed outward, i.e., away from the white matter. In contrast, the source for the later, object-recognition related signals, expected to be driven by feedback inputs, pointed inward, toward the white matter. Associating specific features of the MEG/EEG source waveforms to feedforward and feedback inputs could provide unique information about the activation patterns within hierarchically organized cortical areas. PMID:25445356
Visual Hemispheric Specialization: A Computational Theory.
1985-10-31
representations. Presumably, the intepretation of these representations makes use of other modules that are also recruited in language processing. If...8217. . . ... . ., ~ --. , . ,,.-,-. -. .. -~ ~ .. ’ SS .. . . . . .... . . . r . . .. -. ... .- . .. . . ,--. _ _ FILMED ~DTIC -.. -. . -•. . . . . .. .-. - . ,.-. . .•..-. .-... .... . . ,-.. ... , - , - .- . .... ..- ,.,- .. ,.
Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann
2013-01-01
In blind people, the visual channel cannot assist face-to-face communication via lipreading or visual prosody. Nevertheless, the visual system may enhance the evaluation of auditory information due to its cross-links to (1) the auditory system, (2) supramodal representations, and (3) frontal action-related areas. Apart from feedback or top-down support of, for example, the processing of spatial or phonological representations, experimental data have shown that the visual system can impact auditory perception at more basic computational stages such as temporal signal resolution. For example, blind as compared to sighted subjects are more resistant against backward masking, and this ability appears to be associated with activity in visual cortex. Regarding the comprehension of continuous speech, blind subjects can learn to use accelerated text-to-speech systems for "reading" texts at ultra-fast speaking rates (>16 syllables/s), exceeding by far the normal range of 6 syllables/s. A functional magnetic resonance imaging study has shown that this ability, among other brain regions, significantly covaries with BOLD responses in bilateral pulvinar, right visual cortex, and left supplementary motor area. Furthermore, magnetoencephalographic measurements revealed a particular component in right occipital cortex phase-locked to the syllable onsets of accelerated speech. In sighted people, the "bottleneck" for understanding time-compressed speech seems related to higher demands for buffering phonological material and is, presumably, linked to frontal brain structures. On the other hand, the neurophysiological correlates of functions overcoming this bottleneck, seem to depend upon early visual cortex activity. The present Hypothesis and Theory paper outlines a model that aims at binding these data together, based on early cross-modal pathways that are already known from various audiovisual experiments on cross-modal adjustments during space, time, and object recognition.
Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann
2013-01-01
In blind people, the visual channel cannot assist face-to-face communication via lipreading or visual prosody. Nevertheless, the visual system may enhance the evaluation of auditory information due to its cross-links to (1) the auditory system, (2) supramodal representations, and (3) frontal action-related areas. Apart from feedback or top-down support of, for example, the processing of spatial or phonological representations, experimental data have shown that the visual system can impact auditory perception at more basic computational stages such as temporal signal resolution. For example, blind as compared to sighted subjects are more resistant against backward masking, and this ability appears to be associated with activity in visual cortex. Regarding the comprehension of continuous speech, blind subjects can learn to use accelerated text-to-speech systems for “reading” texts at ultra-fast speaking rates (>16 syllables/s), exceeding by far the normal range of 6 syllables/s. A functional magnetic resonance imaging study has shown that this ability, among other brain regions, significantly covaries with BOLD responses in bilateral pulvinar, right visual cortex, and left supplementary motor area. Furthermore, magnetoencephalographic measurements revealed a particular component in right occipital cortex phase-locked to the syllable onsets of accelerated speech. In sighted people, the “bottleneck” for understanding time-compressed speech seems related to higher demands for buffering phonological material and is, presumably, linked to frontal brain structures. On the other hand, the neurophysiological correlates of functions overcoming this bottleneck, seem to depend upon early visual cortex activity. The present Hypothesis and Theory paper outlines a model that aims at binding these data together, based on early cross-modal pathways that are already known from various audiovisual experiments on cross-modal adjustments during space, time, and object recognition. PMID:23966968
Cell replacement and visual restoration by retinal sheet transplants
Seiler, Magdalene J.; Aramant, Robert B.
2012-01-01
Retinal diseases such as age-related macular degeneration (ARMD) and retinitis pigmentosa (RP) affect millions of people. Replacing lost cells with new cells that connect with the still functional part of the host retina might repair a degenerating retina and restore eyesight to an unknown extent. A unique model, subretinal transplantation of freshly dissected sheets of fetal-derived retinal progenitor cells, combined with its retinal pigment epithelium (RPE), has demonstrated successful results in both animals and humans. Most other approaches are restricted to rescue endogenous retinal cells of the recipient in earlier disease stages by a ‘nursing’ role of the implanted cells and are not aimed at neural retinal cell replacement. Sheet transplants restore lost visual responses in several retinal degeneration models in the superior colliculus (SC) corresponding to the location of the transplant in the retina. They do not simply preserve visual performance – they increase visual responsiveness to light. Restoration of visual responses in the SC can be directly traced to neural cells in the transplant, demonstrating that synaptic connections between transplant and host contribute to the visual improvement. Transplant processes invade the inner plexiform layer of the host retina and form synapses with presumable host cells. In a Phase II trial of RP and ARMD patients, transplants of retina together with its RPE improved visual acuity. In summary, retinal progenitor sheet transplantation provides an excellent model to answer questions about how to repair and restore function of a degenerating retina. Supply of fetal donor tissue will always be limited but the model can set a standard and provide an informative base for optimal cell replacement therapies such as embryonic stem cell (ESC)-derived therapy. PMID:22771454
ERIC Educational Resources Information Center
Bowers, P. G.; And Others
A study investigated whether a visual selective attention deficit with its presumed basis in slow visual processing referred to the same phonological recoding deficit, or whether they were two independent sources of reading disability. Subjects were children aged 7 to 15 referred to a university clinic (the Waterloo Child Assessment…
Schuster, Sarah; Hawelka, Stefan; Hutzler, Florian; Kronbichler, Martin; Richlan, Fabio
2016-01-01
Word length, frequency, and predictability count among the most influential variables during reading. Their effects are well-documented in eye movement studies, but pertinent evidence from neuroimaging primarily stem from single-word presentations. We investigated the effects of these variables during reading of whole sentences with simultaneous eye-tracking and functional magnetic resonance imaging (fixation-related fMRI). Increasing word length was associated with increasing activation in occipital areas linked to visual analysis. Additionally, length elicited a U-shaped modulation (i.e., least activation for medium-length words) within a brain stem region presumably linked to eye movement control. These effects, however, were diminished when accounting for multiple fixation cases. Increasing frequency was associated with decreasing activation within left inferior frontal, superior parietal, and occipito-temporal regions. The function of the latter region—hosting the putative visual word form area—was originally considered as limited to sublexical processing. An exploratory analysis revealed that increasing predictability was associated with decreasing activation within middle temporal and inferior frontal regions previously implicated in memory access and unification. The findings are discussed with regard to their correspondence with findings from single-word presentations and with regard to neurocognitive models of visual word recognition, semantic processing, and eye movement control during reading. PMID:27365297
A Study on Analysis of EEG Caused by Grating Stimulation Imaging
NASA Astrophysics Data System (ADS)
Urakawa, Hiroshi; Nishimura, Toshihiro; Tsubai, Masayoshi; Itoh, Kenji
Recently, many researchers have studied a visual perception. Focus is attended to studies of the visual perception phenomenon by using the grating stimulation images. The previous researches have suggested that a subset of retinal ganglion cells responds to motion in the receptive field center, but only if the wider surround moves with a different trajectory. We discuss the function of human retina, and measure and analysis EEG(electroencephalography) of a normal subject who looks on grating stimulation images. We confirmed the visual perception of human by EEG signal analysis. We also have obtained that a sinusoidal grating stimulation was given, asymmetry was observed the α wave element in EEG of the symmetric part in a left hemisphere and a right hemisphere of the brain. Therefore, it is presumed that projected image is even when the still picture is seen and the image projected onto retinas of right and left eyes is not even for the dynamic scene. It evaluated it by taking the envelope curve for the detected α wave, and using the average and standard deviation.
Patient DF's visual brain in action: Visual feedforward control in visual form agnosia.
Whitwell, Robert L; Milner, A David; Cavina-Pratesi, Cristiana; Barat, Masihullah; Goodale, Melvyn A
2015-05-01
Patient DF, who developed visual form agnosia following ventral-stream damage, is unable to discriminate the width of objects, performing at chance, for example, when asked to open her thumb and forefinger a matching amount. Remarkably, however, DF adjusts her hand aperture to accommodate the width of objects when reaching out to pick them up (grip scaling). While this spared ability to grasp objects is presumed to be mediated by visuomotor modules in her relatively intact dorsal stream, it is possible that it may rely abnormally on online visual or haptic feedback. We report here that DF's grip scaling remained intact when her vision was completely suppressed during grasp movements, and it still dissociated sharply from her poor perceptual estimates of target size. We then tested whether providing trial-by-trial haptic feedback after making such perceptual estimates might improve DF's performance, but found that they remained significantly impaired. In a final experiment, we re-examined whether DF's grip scaling depends on receiving veridical haptic feedback during grasping. In one condition, the haptic feedback was identical to the visual targets. In a second condition, the haptic feedback was of a constant intermediate width while the visual target varied trial by trial. Despite this incongruent feedback, DF still scaled her grip aperture to the visual widths of the target blocks, showing only normal adaptation to the false haptically-experienced width. Taken together, these results strengthen the view that DF's spared grasping relies on a normal mode of dorsal-stream functioning, based chiefly on visual feedforward processing. Copyright © 2014 Elsevier B.V. All rights reserved.
Rangel, Carlos Mario; Atencia, Cesar; Merayo-Lloves, Jesus; Fernandez-Vega Sanz, Alvaro
2015-06-04
A 59-year-old Hispanic woman presented with a 3-year history of floaters associated with bilateral reduced visual acuity. Her best-corrected visual acuity (BCVA) was 20/40. Both anterior segments were without inflammation, but fundoscopy showed mild vitreous inflammation and multiple inflammatory choroidal lesions. Tests for inflammatory and infectious diseases were negative except for human leucocyte antigen A29. The patient was diagnosed with birdshot choroidoretinopathy, and treatment was initiated with cyclosporine A 2.5 mg/kg/day. One year after treatment, the patient reported systemic symptoms with no improvement in visual acuity. Fundus findings remained with vitreal inflammation. QuantiFERON-TB Gold In-Tube Test was positive, and a diagnosis of presumed latent ocular tuberculosis (TB) was made. We initiated anti-TB treatment for 9 months. At 6 months of anti-TB therapy, there was no active inflammation. The patient was followed for 2 years with no medications and no active inflammation. Her final BCVA was 20/25. 2015 BMJ Publishing Group Ltd.
Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.
Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo
2013-02-16
We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.
The structural and functional correlates of the efficiency in fearful face detection.
Wang, Yongchao; Guo, Nana; Zhao, Li; Huang, Hui; Yao, Xiaonan; Sang, Na; Hou, Xin; Mao, Yu; Bi, Taiyong; Qiu, Jiang
2017-06-01
Human visual system is found to be much efficient in searching for a fearful face. Some individuals are more sensitive to this threat-related stimulus. However, we still know little about the neural correlates of such variability. In the current study, we exploited a visual search paradigm, and asked the subjects to search for a fearful face or a target gender. Every subject showed a shallower search function for fearful face search than face gender search, indicating a stable fearful face advantage. We then used voxel-based morphometry (VBM) analysis and correlated this advantage to the gray matter volume (GMV) of some presumably face related cortical areas. The result revealed that only the left fusiform gyrus showed a significant positive correlation. Next, we defined the left fusiform gyrus as the seed region and calculated its resting state functional connectivity to the whole brain. Correlations were also calculated between fearful face advantage and these connectivities. In this analysis, we found positive correlations in the inferior parietal lobe and the ventral medial prefrontal cortex. These results suggested that the anatomical structure of the left fusiform gyrus might determine the search efficiency of fearful face, and frontoparietal attention network involved in this process through top-down attentional modulation. Copyright © 2017. Published by Elsevier Ltd.
Normal central retinal function and structure preserved in retinitis pigmentosa.
Jacobson, Samuel G; Roman, Alejandro J; Aleman, Tomas S; Sumaroka, Alexander; Herrera, Waldo; Windsor, Elizabeth A M; Atkinson, Lori A; Schwartz, Sharon B; Steinberg, Janet D; Cideciyan, Artur V
2010-02-01
To determine whether normal function and structure, as recently found in forms of Usher syndrome, also occur in a population of patients with nonsyndromic retinitis pigmentosa (RP). Patients with simplex, multiplex, or autosomal recessive RP (n = 238; ages 9-82 years) were studied with static chromatic perimetry. A subset was evaluated with optical coherence tomography (OCT). Co-localized visual sensitivity and photoreceptor nuclear layer thickness were measured across the central retina to establish the relationship of function and structure. Comparisons were made to patients with Usher syndrome (n = 83, ages 10-69 years). Cross-sectional psychophysical data identified patients with RP who had normal rod- and cone-mediated function in the central retina. There were two other patterns with greater dysfunction, and longitudinal data confirmed that progression can occur from normal rod and cone function to cone-only central islands. The retinal extent of normal laminar architecture by OCT corresponded to the extent of normal visual function in patients with RP. Central retinal preservation of normal function and structure did not show a relationship with age or retained peripheral function. Usher syndrome results were like those in nonsyndromic RP. Regional disease variation is a well-known finding in RP. Unexpected was the observation that patients with presumed recessive RP can have regions with functionally and structurally normal retina. Such patients will require special consideration in future clinical trials of either focal or systemic treatment. Whether there is a common molecular mechanism shared by forms of RP with normal regions of retina warrants further study.
Cell-fusion method to visualize interphase nuclear pore formation.
Maeshima, Kazuhiro; Funakoshi, Tomoko; Imamoto, Naoko
2014-01-01
In eukaryotic cells, the nucleus is a complex and sophisticated organelle that organizes genomic DNA to support essential cellular functions. The nuclear surface contains many nuclear pore complexes (NPCs), channels for macromolecular transport between the cytoplasm and nucleus. It is well known that the number of NPCs almost doubles during interphase in cycling cells. However, the mechanism of NPC formation is poorly understood, presumably because a practical system for analysis does not exist. The most difficult obstacle in the visualization of interphase NPC formation is that NPCs already exist after nuclear envelope formation, and these existing NPCs interfere with the observation of nascent NPCs. To overcome this obstacle, we developed a novel system using the cell-fusion technique (heterokaryon method), previously also used to analyze the shuttling of macromolecules between the cytoplasm and the nucleus, to visualize the newly synthesized interphase NPCs. In addition, we used a photobleaching approach that validated the cell-fusion method. We recently used these methods to demonstrate the role of cyclin-dependent protein kinases and of Pom121 in interphase NPC formation in cycling human cells. Here, we describe the details of the cell-fusion approach and compare the system with other NPC formation visualization methods. Copyright © 2014 Elsevier Inc. All rights reserved.
Alho, Kimmo; Vorobyev, Victor A; Medvedev, Svyatoslav V; Pakhomov, Sergey V; Starchenko, Maria G; Tervaniemi, Mari; Näätänen, Risto
2006-02-23
Regional cerebral blood flow was measured with positron emission tomography (PET) in 10 healthy male volunteers. They heard two binaurally delivered concurrent stories, one spoken by a male voice and the other by a female voice. A third story was presented at the same time as a text running on a screen. The subjects were instructed to attend silently to one of the stories at a time. In an additional resting condition, no stories were delivered. PET data showed that in comparison with the reading condition, the brain activity in the speech-listening conditions was enhanced bilaterally in the anterior superior temporal sulcus including cortical areas that have been reported to be specifically sensitive to human voice. Previous studies on attention to non-linguistic sounds and visual objects, in turn, showed prefrontal activations that are presumably related to attentional control functions. However, comparisons of the present speech-listening and reading conditions with each other or with the resting condition indicated no prefrontal activity, except for an activation in the inferior frontal cortex that was presumably associated with semantic and syntactic processing of the attended story. Thus, speech listening, as well as reading, even in a distracting environment appears to depend less on the prefrontal control functions than do other types of attention-demanding tasks, probably because selective attention to speech and written text are over-learned actions rehearsed daily.
Effects of Stereoscopic 3D Digital Radar Displays on Air Traffic Controller Performance
2013-03-01
between men and women , but no significant influence was found. Experience in ATC was considered as a potential covariate that would be presumed to have...depicts altitude through the use of stereoscopic disparity, permitting vertical separation to be visually represented as differences in disparity...handling information via different sources (e.g., radar screen with a series of automated visual cues, paper or electronic flight progress strips, radio
Spatial vision in older adults: perceptual changes and neural bases.
McKendrick, Allison M; Chan, Yu Man; Nguyen, Bao N
2018-05-17
The number of older adults is rapidly increasing internationally, leading to a significant increase in research on how healthy ageing impacts vision. Most clinical assessments of spatial vision involve simple detection (letter acuity, grating contrast sensitivity, perimetry). However, most natural visual environments are more spatially complicated, requiring contrast discrimination, and the delineation of object boundaries and contours, which are typically present on non-uniform backgrounds. In this review we discuss recent research that reports on the effects of normal ageing on these more complex visual functions, specifically in the context of recent neurophysiological studies. Recent research has concentrated on understanding the effects of healthy ageing on neural responses within the visual pathway in animal models. Such neurophysiological research has led to numerous, subsequently tested, hypotheses regarding the likely impact of healthy human ageing on specific aspects of spatial vision. Healthy normal ageing impacts significantly on spatial visual information processing from the retina through to visual cortex. Some human data validates that obtained from studies of animal physiology, however some findings indicate that rethinking of presumed neural substrates is required. Notably, not all spatial visual processes are altered by age. Healthy normal ageing impacts significantly on some spatial visual processes (in particular centre-surround tasks), but leaves contrast discrimination, contrast adaptation, and orientation discrimination relatively intact. The study of older adult vision contributes to knowledge of the brain mechanisms altered by the ageing process, can provide practical information regarding visual environments that older adults may find challenging, and may lead to new methods of assessing visual performance in clinical environments. © 2018 The Authors Ophthalmic & Physiological Optics © 2018 The College of Optometrists.
Selective transfer of visual working memory training on Chinese character learning.
Opitz, Bertram; Schneiders, Julia A; Krick, Christoph M; Mecklinger, Axel
2014-01-01
Previous research has shown a systematic relationship between phonological working memory capacity and second language proficiency for alphabetic languages. However, little is known about the impact of working memory processes on second language learning in a non-alphabetic language such as Mandarin Chinese. Due to the greater complexity of the Chinese writing system we expect that visual working memory rather than phonological working memory exerts a unique influence on learning Chinese characters. This issue was explored in the present experiment by comparing visual working memory training with an active (auditory working memory training) control condition and a passive, no training control condition. Training induced modulations in language-related brain networks were additionally examined using functional magnetic resonance imaging in a pretest-training-posttest design. As revealed by pre- to posttest comparisons and analyses of individual differences in working memory training gains, visual working memory training led to positive transfer effects on visual Chinese vocabulary learning compared to both control conditions. In addition, we found sustained activation after visual working memory training in the (predominantly visual) left infero-temporal cortex that was associated with behavioral transfer. In the control conditions, activation either increased (active control condition) or decreased (passive control condition) without reliable behavioral transfer effects. This suggests that visual working memory training leads to more efficient processing and more refined responses in brain regions involved in visual processing. Furthermore, visual working memory training boosted additional activation in the precuneus, presumably reflecting mental image generation of the learned characters. We, therefore, suggest that the conjoint activity of the mid-fusiform gyrus and the precuneus after visual working memory training reflects an interaction of working memory and imagery processes with complex visual stimuli that fosters the coherent synthesis of a percept from a complex visual input in service of enhanced Chinese character learning. © 2013 Published by Elsevier Ltd.
Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex.
Samonds, Jason M; Bonds, A B
2005-01-01
Visual cortical cells demonstrate both oscillation and synchronization, although the underlying causes and functional significance of these behaviors remain uncertain. We simultaneously recorded single-unit activity with microelectrode arrays in supragranular layers of area 17 of cats paralyzed and anesthetized with propofol and N(2)O. Rate-normalized autocorrelograms of 24 cells reveal bursting (100%) and gamma oscillation (63%). Renewal density analysis, used to explore the source of oscillation, suggests a contribution from extrinsic influences such as feedback. However, a bursting refractory period, presumably membrane-based, could also encourage oscillatory firing. When we investigated the source of synchronization for 60 cell pairs we found only moderate correlation of synchrony with bursts and oscillation. We did, nonetheless, discover a possible functional role for oscillation. In all cases of cross-correlograms that exhibited oscillation, the strength of the synchrony was maintained throughout the stimulation period. When no oscillation was apparent, 75% of the cell pairs showed decay in their synchronization. The synchrony between cells is strongly dependent on similar response onset latencies. We therefore propose that structured input, which yields tight organization of latency, is a more likely candidate for the source of synchronization than oscillation. The reliable synchrony at response onset could be driven by spatial and temporal correlation of the stimulus that is preserved through the earlier stages of the visual system. Oscillation then contributes to maintenance of the synchrony to enhance reliable transmission of the information for higher cognitive processing.
Developmental remodeling of corticocortical feedback circuits in ferret visual cortex
Khalil, Reem; Levitt, Jonathan B.
2014-01-01
Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from four to ten weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1, and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at four weeks postnatal, the retinotopic arrangement of feedback appears essentially adultlike; however, Suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also find significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18 which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. PMID:24665018
Developmental remodeling of corticocortical feedback circuits in ferret visual cortex.
Khalil, Reem; Levitt, Jonathan B
2014-10-01
Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from 4-10 weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1 and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at 4 weeks postnatal, the retinotopic arrangement of feedback appears essentially adult-like; however, suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also found significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18, which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. © 2014 Wiley Periodicals, Inc.
Schmidt, K; Forkmann, K; Sinke, C; Gratz, M; Bitz, A; Bingel, U
2016-07-01
Compared to peripheral pain, trigeminal pain elicits higher levels of fear, which is assumed to enhance the interruptive effects of pain on concomitant cognitive processes. In this fMRI study we examined the behavioral and neural effects of trigeminal (forehead) and peripheral (hand) pain on visual processing and memory encoding. Cerebral activity was measured in 23 healthy subjects performing a visual categorization task that was immediately followed by a surprise recognition task. During the categorization task subjects received concomitant noxious electrical stimulation on the forehead or hand. Our data show that fear ratings were significantly higher for trigeminal pain. Categorization and recognition performance did not differ between pictures that were presented with trigeminal and peripheral pain. However, object categorization in the presence of trigeminal pain was associated with stronger activity in task-relevant visual areas (lateral occipital complex, LOC), memory encoding areas (hippocampus and parahippocampus) and areas implicated in emotional processing (amygdala) compared to peripheral pain. Further, individual differences in neural activation between the trigeminal and the peripheral condition were positively related to differences in fear ratings between both conditions. Functional connectivity between amygdala and LOC was increased during trigeminal compared to peripheral painful stimulation. Fear-driven compensatory resource activation seems to be enhanced for trigeminal stimuli, presumably due to their exceptional biological relevance. Copyright © 2016 Elsevier Inc. All rights reserved.
Jeffs, Janelle; Ichida, Jennifer M.; Federer, Frederick
2009-01-01
In primates, a split of the horizontal meridian (HM) representation at the V2 rostral border divides this area into dorsal (V2d) and ventral (V2v) halves (representing lower and upper visual quadrants, respectively), causing retinotopically neighboring loci across the HM to be distant within V2. How is perceptual continuity maintained across this discontinuous HM representation? Injections of neuroanatomical tracers in marmoset V2d demonstrated that cells near the V2d rostral border can maintain retinotopic continuity within their classical and extra-classical receptive field (RF), by making both local and long-range intra- and interareal connections with ventral cortex representing the upper visual quadrant. V2d neurons located <0.9–1.3 mm from the V2d rostral border, whose RFs presumably do not cross the HM, make nonretinotopic horizontal connections with V2v neurons in the supra- and infragranular layers. V2d neurons located <0.6–0.9 mm from the border, whose RFs presumably cross the HM, in addition make retinotopic local connections with V2v neurons in layer 4. V2d neurons also make interareal connections with upper visual field regions of extrastriate cortex, but not of MT or MTc outside the foveal representation. Labeled connections in ventral cortex appear to represent the “missing” portion of the connectional fields in V2d across the HM. We conclude that connections between dorsal and ventral cortex can create visual field continuity within a second-order discontinuous visual topography. PMID:18755777
Visual cycle modulation in neurovascular retinopathy.
Akula, James D; Hansen, Ronald M; Tzekov, Radouil; Favazza, Tara L; Vyhovsky, Tanya C; Benador, Ilan Y; Mocko, Julie A; McGee, David; Kubota, Ryo; Fulton, Anne B
2010-08-01
Rats with oxygen-induced retinopathy (OIR) model the pediatric retinal disease retinopathy of prematurity (ROP). Recent findings in OIR rats imply a causal role for the rods in the ROP disease process, although only experimental manipulation of rod function can establish this role conclusively. Accordingly, a visual cycle modulator (VCM) - with no known direct effect on retinal vasculature - was administered to "50/10 model" OIR Sprague-Dawley rats to test the hypotheses that it would 1) alter rod function and 2) consequently alter vascular outcome. Four litters of pups (N=46) were studied. For two weeks, beginning on postnatal day (P) 7, the first and fourth litters were administered 6 mg kg(-1) N-retinylacetamide (the VCM) intraperitoneally; the second and third litters received vehicle (DMSO) alone. Following a longitudinal design, retinal function was assessed by electroretinography (ERG) and the status of the retinal vessels was monitored using computerized fundus photograph analysis. Rod photoreceptor and post-receptor response amplitudes were significantly higher in VCM-treated than in vehicle-treated rats; deactivation of phototransduction was also significantly more rapid. Notably, the arterioles of VCM-treated rats showed significantly greater recovery from OIR. Presuming that the VCM did not directly affect the retinal vessels, a causal role for the neural retina - particularly the rod photoreceptors - in OIR was confirmed. There was no evidence of negative alteration of photoreceptor function consequent to VCM treatment. This finding implicates the rods as a possible therapeutic target in neurovascular diseases such as ROP. Copyright 2010 Elsevier Ltd. All rights reserved.
Functional MRI evidence for the importance of visual short-term memory in logographic reading.
Koyama, Maki S; Stein, John F; Stoodley, Catherine J; Hansen, Peter C
2011-02-01
Logographic symbols are visually complex, and thus children's abilities for visual short-term memory (VSTM) predict their reading competence in logographic systems. In the present study, we investigated the importance of VSTM in logographic reading in adults, both behaviorally and by means of fMRI. Outside the scanner, VSTM predicted logographic Kanji reading in native Japanese adults (n=45), a finding consistent with previous observations in Japanese children. In the scanner, participants (n=15) were asked to perform a visual one-back task. For this fMRI experiment, we took advantage of the unique linguistic characteristic of the Japanese writing system, whereby syllabic Kana and logographic Kanji can share the same sound and meaning, but differ only in the complexity of their visual features. Kanji elicited greater activation than Kana in the cerebellum and two regions associated with VSTM, the lateral occipital complex and the superior intraparietal sulcus, bilaterally. The same regions elicited the highest activation during the control condition (an unfamiliar, unpronounceable script to the participants), presumably due to the increased VSTM demands for processing the control script. In addition, individual differences in VSTM performance (outside the scanner) significantly predicted blood oxygen level-dependent signal changes in the identified VSTM regions, during the Kanji and control conditions, but not during the Kana condition. VSTM appears to play an important role in reading logographic words, even in skilled adults, as evidenced at the behavioral and neural level, most likely due to the increased VSTM/visual attention demands necessary for processing complex visual features inherent in logographic symbols. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd. No claim to original US government works.
Images of Place: Visuals from Migrant Women Sex Workers in South Africa.
Oliveira, Elsa; Vearey, Jo
2015-01-01
Many migrants in inner-city Johannesburg survive through unconventional and sometimes criminalized livelihood activities. In this article, we draw on data from a study that applied a participatory visual methodology to work with migrant women who sell sex, and explored the suitability of this approach as a way to engage with a presumed 'hard to reach' urban population. The lived experiences of migrant women sex workers were documented by combining participatory visual methods with a more traditional ethnographic approach, and this approach led us to new ways of seeing their worlds. This methodological approach raises important considerations for working with marginalized and criminalized urban groups.
Feature Integration across Space, Time, and Orientation
ERIC Educational Resources Information Center
Otto, Thomas U.; Ogmen, Haluk; Herzog, Michael H.
2009-01-01
The perception of a visual target can be strongly influenced by flanking stimuli. In static displays, performance on the target improves when the distance to the flanking elements increases--presumably because feature pooling and integration vanishes with distance. Here, we studied feature integration with dynamic stimuli. We show that features of…
Butterfly wing colours: scale beads make white pierid wings brighter.
Stavenga, D. G.; Stowe, S.; Siebke, K.; Zeil, J.; Arikawa, K.
2004-01-01
The wing-scale morphologies of the pierid butterflies Pieris rapae (small white) and Delias nigrina (common jezabel), and the heliconine Heliconius melpomene are compared and related to the wing-reflectance spectra. Light scattering at the wing scales determines the wing reflectance, but when the scales contain an absorbing pigment, reflectance is suppressed in the absorption wavelength range of the pigment. The reflectance of the white wing areas of P. rapae, where the scales are studded with beads, is considerably higher than that of the white wing areas of H. melpomene, which has scales lacking beads. The beads presumably cause the distinct matt-white colour of the wings of pierids and function to increase the reflectance amplitude. This will improve the visual discrimination between conspecific males and females. PMID:15306303
Strategy in short-term memory for pictures in childhood: a near-infrared spectroscopy study.
Sanefuji, Masafumi; Takada, Yui; Kimura, Naoko; Torisu, Hiroyuki; Kira, Ryutaro; Ishizaki, Yoshito; Hara, Toshiro
2011-02-01
In Baddeley's working memory model, verbalizable visual material such as pictures are recoded into a phonological form and then rehearsed, while auditory material is rehearsed directly. The recoding and rehearsal processes are mediated by articulatory control process in the left ventrolateral prefrontal cortex (VLPFC). Developmentally, the phonological strategy for serially-presented visual material emerges around 7 years of age, while that for auditory material is consistently present by 4 years of age. However, the strategy change may actually be correlated with memory ability as this usually increases with age. To investigate the relationship between the strategy for pictures and memory ability, we monitored the left VLPFC activation in 5 to 11 year-old children during free recall of visually- or auditorily-presented familiar objects using event-related near-infrared spectroscopy. We hypothesized that the phonological strategy of rehearsal and recoding for visual material would provoke greater activation than only rehearsal for auditory material in the left VLPFC. Therefore, we presumed that the activation difference for visual material compared with auditory material in the left VLPFC may represent the tendency to use a phonological strategy. We found that the activation difference in the left VLPFC showed a significant positive correlation with memory ability but not with age, suggesting that children with high memory ability make more use of phonological strategy for pictures. The present study provides functional evidence that the strategy in short-term memory for pictures shifts gradually from non-phonological to phonological as memory ability increases in childhood. Copyright © 2010 Elsevier Inc. All rights reserved.
Schwarz, Sebastian; Albert, Laurence; Wystrach, Antoine; Cheng, Ken
2011-03-15
Many animal species, including some social hymenoptera, use the visual system for navigation. Although the insect compound eyes have been well studied, less is known about the second visual system in some insects, the ocelli. Here we demonstrate navigational functions of the ocelli in the visually guided Australian desert ant Melophorus bagoti. These ants are known to rely on both visual landmark learning and path integration. We conducted experiments to reveal the role of ocelli in the perception and use of celestial compass information and landmark guidance. Ants with directional information from their path integration system were tested with covered compound eyes and open ocelli on an unfamiliar test field where only celestial compass cues were available for homing. These full-vector ants, using only their ocelli for visual information, oriented significantly towards the fictive nest on the test field, indicating the use of celestial compass information that is presumably based on polarised skylight, the sun's position or the colour gradient of the sky. Ants without any directional information from their path-integration system (zero-vector) were tested, also with covered compound eyes and open ocelli, on a familiar training field where they have to use the surrounding panorama to home. These ants failed to orient significantly in the homeward direction. Together, our results demonstrated that M. bagoti could perceive and process celestial compass information for directional orientation with their ocelli. In contrast, the ocelli do not seem to contribute to terrestrial landmark-based navigation in M. bagoti.
Craig, Jennifer P; Wang, Michael T M; Ganesalingam, Kalaivarny; Rupenthal, Ilva D; Swift, Simon; Loh, Chee Seang; Te Weehi, Leah; Cheung, Isabella M Y; Watters, Grant A
2017-01-01
Objective To assess the clinical safety and tolerability of a novel MGO Manuka Honey microemulsion (MHME) eye cream for the management of blepharitis in human subjects. Methods and analysis Twenty-five healthy subjects were enrolled in a prospective, randomised, paired-eye, investigator-masked trial. The MHME eye cream (Manuka Health New Zealand) was applied to the closed eyelids of one eye (randomised) overnight for 2 weeks. LogMAR visual acuity, eyelid irritation symptoms, ocular surface characteristics and tear film parameters were assessed at baseline, day 7 and day 14. Expression of markers of ocular surface inflammation (matrix metalloproteinase-9 and interleukin-6) and goblet cell function (MUC5AC) were quantified using impression cytology at baseline and day 14. Results There were no significant changes in visual acuity, eyelid irritation symptoms, ocular surface characteristics, tear film parameters and inflammatory marker expression during the 2-week treatment period in treated and control eyes (all p>0.05), and measurements did not differ significantly between eyes (all p>0.05). No major adverse events were reported. Two subjects experienced transient ocular stinging, presumably due to migration of the product into the eye, which resolved following aqueous irrigation. Conclusion The MHME eye cream application was found to be well tolerated in healthy human subjects and was not associated with changes in visual acuity, ocular surface characteristics, tear film parameters, expression of markers of inflammation or goblet cell function. The findings support future clinical efficacy trials in patients with blepharitis. Trial registration number ACTRN12616000540415 PMID:29354710
O'Daniels, Sean T; Kesler, Dylan C; Mihail, Jeanne D; Webb, Elisabeth B; Werner, Scott J
2017-05-15
Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms. Published by Elsevier Inc.
O'Daniels, Sean T.; Kesler, Dylan C.; Mihail, Jeanne D.; Webb, Elisabeth B.; Werner, Scott J.
2017-01-01
Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2 m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2 m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms.
Evolution of the circuitry for conscious color vision in primates
Neitz, J; Neitz, M
2017-01-01
There are many ganglion cell types and subtypes in our retina that carry color information. These have appeared at different times over the history of the evolution of the vertebrate visual system. They project to several different places in the brain and serve a variety of purposes allowing wavelength information to contribute to diverse visual functions. These include circadian photoentrainment, regulation of sleep and mood, guidance of orienting movements, detection and segmentation of objects. Predecessors to some of the circuits serving these purposes presumably arose before mammals evolved and different functions are represented by distinct ganglion cell types. However, while other animals use color information to elicit motor movements and regulate activity rhythms, as do humans, using phylogenetically ancient circuitry, the ability to appreciate color appearance may have been refined in ancestors to primates, mediated by a special set of ganglion cells that serve only that purpose. Understanding the circuitry for color vision has implications for the possibility of treating color blindness using gene therapy by recapitulating evolution. In addition, understanding how color is encoded, including how chromatic and achromatic percepts are separated is a step toward developing a complete picture of the diversity of ganglion cell types and their functions. Such knowledge could be useful in developing therapeutic strategies for blinding eye disorders that rely on stimulating elements in the retina, where more than 50 different neuron types are organized into circuits that transform signals from photoreceptors into specialized detectors many of which are not directly involved in conscious vision. PMID:27935605
Evolution of the circuitry for conscious color vision in primates.
Neitz, J; Neitz, M
2017-02-01
There are many ganglion cell types and subtypes in our retina that carry color information. These have appeared at different times over the history of the evolution of the vertebrate visual system. They project to several different places in the brain and serve a variety of purposes allowing wavelength information to contribute to diverse visual functions. These include circadian photoentrainment, regulation of sleep and mood, guidance of orienting movements, detection and segmentation of objects. Predecessors to some of the circuits serving these purposes presumably arose before mammals evolved and different functions are represented by distinct ganglion cell types. However, while other animals use color information to elicit motor movements and regulate activity rhythms, as do humans, using phylogenetically ancient circuitry, the ability to appreciate color appearance may have been refined in ancestors to primates, mediated by a special set of ganglion cells that serve only that purpose. Understanding the circuitry for color vision has implications for the possibility of treating color blindness using gene therapy by recapitulating evolution. In addition, understanding how color is encoded, including how chromatic and achromatic percepts are separated is a step toward developing a complete picture of the diversity of ganglion cell types and their functions. Such knowledge could be useful in developing therapeutic strategies for blinding eye disorders that rely on stimulating elements in the retina, where more than 50 different neuron types are organized into circuits that transform signals from photoreceptors into specialized detectors many of which are not directly involved in conscious vision.
Decoding and reconstructing color from responses in human visual cortex.
Brouwer, Gijs Joost; Heeger, David J
2009-11-04
How is color represented by spatially distributed patterns of activity in visual cortex? Functional magnetic resonance imaging responses to several stimulus colors were analyzed with multivariate techniques: conventional pattern classification, a forward model of idealized color tuning, and principal component analysis (PCA). Stimulus color was accurately decoded from activity in V1, V2, V3, V4, and VO1 but not LO1, LO2, V3A/B, or MT+. The conventional classifier and forward model yielded similar accuracies, but the forward model (unlike the classifier) also reliably reconstructed novel stimulus colors not used to train (specify parameters of) the model. The mean responses, averaged across voxels in each visual area, were not reliably distinguishable for the different stimulus colors. Hence, each stimulus color was associated with a unique spatially distributed pattern of activity, presumably reflecting the color selectivity of cortical neurons. Using PCA, a color space was derived from the covariation, across voxels, in the responses to different colors. In V4 and VO1, the first two principal component scores (main source of variation) of the responses revealed a progression through perceptual color space, with perceptually similar colors evoking the most similar responses. This was not the case for any of the other visual cortical areas, including V1, although decoding was most accurate in V1. This dissociation implies a transformation from the color representation in V1 to reflect perceptual color space in V4 and VO1.
Head position of helicopter pilots during slalom maneuvers.
Temme, Leonard A; Still, David L
2007-01-01
Pilots typically tilt their heads when executing coordinated banking turns, a phenomenon commonly attributed to the putative opto-kinetic cervical reflex (OKCR). The OKCR is usually described as a reflex, primarily driven by stimuli in the visual periphery, and is important to a pilot's spatial orientation by providing a relatively stabilized horizontal frame of reference. The present paper presents an alternative hypothesis for the observed head tilting seen in pilots. An archived data set, originally collected for other purposes, contained the head turn, pitch, and tilt of 4 helicopter pilots recorded at 10 Hz as the pilots executed 42 slalom maneuvers in an AH Mk 7 Lynx helicopter under visual flight conditions. The analytic method was a correlational analysis of head turn, pitch, and tilt. As expected, pilots routinely tilted their heads during the slaloms in a fashion typically attributed to the OKCR. Correlations among head turn, tilt, and pitch showed that when the helicopter turned left, the head, presumably to look into the turn, turned left and also pitched up and tilted right. Similarly, when the helicopter turned right, the head, presumably to look into the turn, turned right, pitched up, and tilted left. The head tilting usually attributed to a neuromuscular reflex driven by visual stimuli may be a biomechanical consequence of the head posture pilots assume when they simply look where they are going, eliminating the need to postulate the existence of a novel neuromuscular reflex.
Rolfs, Martin; Carrasco, Marisa
2012-01-01
Humans and other animals with foveate vision make saccadic eye movements to prioritize the visual analysis of behaviorally relevant information. Even before movement onset, visual processing is selectively enhanced at the target of a saccade, presumably gated by brain areas controlling eye movements. Here we assess concurrent changes in visual performance and perceived contrast before saccades, and show that saccade preparation enhances perception rapidly, altering early visual processing in a manner akin to increasing the physical contrast of the visual input. Observers compared orientation and contrast of a test stimulus, appearing briefly before a saccade, to a standard stimulus, presented previously during a fixation period. We found simultaneous progressive enhancement in both orientation discrimination performance and perceived contrast as time approached saccade onset. These effects were robust as early as 60 ms after the eye movement was cued, much faster than the voluntary deployment of covert attention (without eye movements), which takes ~300 ms. Our results link the dynamics of saccade preparation, visual performance, and subjective experience and show that upcoming eye movements alter visual processing by increasing the signal strength. PMID:23035086
Using Prosopagnosia to Test and Modify Visual Recognition Theory.
O'Brien, Alexander M
2018-02-01
Biederman's contemporary theory of basic visual object recognition (Recognition-by-Components) is based on structural descriptions of objects and presumes 36 visual primitives (geons) people can discriminate, but there has been no empirical test of the actual use of these 36 geons to visually distinguish objects. In this study, we tested for the actual use of these geons in basic visual discrimination by comparing object discrimination performance patterns (when distinguishing varied stimuli) of an acquired prosopagnosia patient (LB) and healthy control participants. LB's prosopagnosia left her heavily reliant on structural descriptions or categorical object differences in visual discrimination tasks versus the control participants' additional ability to use face recognition or coordinate systems (Coordinate Relations Hypothesis). Thus, when LB performed comparably to control participants with a given stimulus, her restricted reliance on basic or categorical discriminations meant that the stimuli must be distinguishable on the basis of a geon feature. By varying stimuli in eight separate experiments and presenting all 36 geons, we discerned that LB coded only 12 (vs. 36) distinct visual primitives (geons), apparently reflective of human visual systems generally.
Does the Modality Effect Exist? And if so, Which Modality Effect?
ERIC Educational Resources Information Center
Reinwein, Joachim
2012-01-01
The modality effect is a central issue in multimedia learning [see Mayer (Cambridge University Press, 2005a), for a review]. Sweller's Cognitive Load Theory (CLT), for example, presumes that an illustrated text is better understood when presented visually rather than orally. The predictive power of CLT lies in how it links in to Baddeley's (1986)…
Damasceno, Eduardo F; Damasceno, Nadyr A
2012-02-01
To report a case of recurrent unilateral presumed ocular toxocariasis after treatment of hepatitis C. Case study. Clinical findings, ultrasonography, computed tomography, and serological tests were performed. Once diagnosis was made, effective treatment was administered. A 46-year-old woman with a long history of decreased unilateral visual acuity presented with anterior uveitis after the use of interferon alpha and ribavirin for treatment of hepatitis C. A biomicroscopic examination revealed active anterior uveitis, with ultrasonography and computed tomography demonstrating a central granuloma due to partially calcified toxocariasis. After treatment with corticosteroids and cycloplegics, the symptoms were alleviated. immunostimulation could cause a relapse of the inflammatory reaction found in uveitis due to toxocariasis.
Han, Ying; Lam, Har Hiu; Stewart, Jay M
2009-06-01
A 31-year-old woman presented with visual acuity of counting fingers and presumed bacterial endophthalmitis in the left eye 10 days after refractive surgery. During the procedure, a retrobulbar injection of balanced salt solution had been performed to assist with globe suction by the microkeratome. A perforation site was identified in the inferonasal retina. Following intravitreal antibiotic injection and surgical intervention, the visual acuity returned to 20/20. Retrobulbar injection to facilitate laser in situ keratomileusis carries risks. Careful monitoring for signs of infection is recommended if globe perforation is recognized.
Tracking the first two seconds: three stages of visual information processing?
Jacob, Jane; Breitmeyer, Bruno G; Treviño, Melissa
2013-12-01
We compared visual priming and comparison tasks to assess information processing of a stimulus during the first 2 s after its onset. In both tasks, a 13-ms prime was followed at varying SOAs by a 40-ms probe. In the priming task, observers identified the probe as rapidly and accurately as possible; in the comparison task, observers determined as rapidly and accurately as possible whether or not the probe and prime were identical. Priming effects attained a maximum at an SOA of 133 ms and then declined monotonically to zero by 700 ms, indicating reliance on relatively brief visuosensory (iconic) memory. In contrast, the comparison effects yielded a multiphasic function, showing a maximum at 0 ms followed by a minimum at 133 ms, followed in turn by a maximum at 240 ms and another minimum at 720 ms, and finally a third maximum at 1,200 ms before declining thereafter. The results indicate three stages of prime processing that we take to correspond to iconic visible persistence, iconic informational persistence, and visual working memory, with the first two used in the priming task and all three in the comparison task. These stages are related to stages presumed to underlie stimulus processing in other tasks, such as those giving rise to the attentional blink.
Urzica, Eugen I.; Casero, David; Yamasaki, Hiroaki; Hsieh, Scott I.; Adler, Lital N.; Karpowicz, Steven J.; Blaby-Haas, Crysten E.; Clarke, Steven G.; Loo, Joseph A.; Pellegrini, Matteo; Merchant, Sabeeha S.
2012-01-01
We surveyed the iron nutrition-responsive transcriptome of Chlamydomonas reinhardtii using RNA-Seq methodology. Presumed primary targets were identified in comparisons between visually asymptomatic iron-deficient versus iron-replete cells. This includes the known components of high-affinity iron uptake as well as candidates for distributive iron transport in C. reinhardtii. Comparison of growth-inhibited iron-limited versus iron-replete cells revealed changes in the expression of genes in chloroplastic oxidative stress response pathways, among hundreds of other genes. The output from the transcriptome was validated at multiple levels: by quantitative RT-PCR for assessing the data analysis pipeline, by quantitative proteomics for assessing the impact of changes in RNA abundance on the proteome, and by cross-species comparison for identifying conserved or universal response pathways. In addition, we assessed the functional importance of three target genes, VITAMIN C 2 (VTC2), MONODEHYDROASCORBATE REDUCTASE 1 (MDAR1), and CONSERVED IN THE GREEN LINEAGE AND DIATOMS 27 (CGLD27), by biochemistry or reverse genetics. VTC2 and MDAR1, which are key enzymes in de novo ascorbate synthesis and ascorbate recycling, respectively, are likely responsible for the 10-fold increase in ascorbate content of iron-limited cells. CGLD27/At5g67370 is a highly conserved, presumed chloroplast-localized pioneer protein and is important for growth of Arabidopsis thaliana in low iron. PMID:23043051
Dietrich, Susanne; Hertrich, Ingo; Kumar, Vinod; Ackermann, Hermann
2015-01-01
Late-blind humans can learn to understand speech at ultra-fast syllable rates (ca. 20 syllables/s), a capability associated with hemodynamic activation of the central-visual system. Thus, the observed functional cross-modal recruitment of occipital cortex might facilitate ultra-fast speech processing in these individuals. To further elucidate the structural prerequisites of this skill, diffusion tensor imaging (DTI) was conducted in late-blind subjects differing in their capability of understanding ultra-fast speech. Fractional anisotropy (FA) was determined as a quantitative measure of the directionality of water diffusion, indicating fiber tract characteristics that might be influenced by blindness as well as the acquired perceptual skills. Analysis of the diffusion images revealed reduced FA in late-blind individuals relative to sighted controls at the level of the optic radiations at either side and the right-hemisphere dorsal thalamus (pulvinar). Moreover, late-blind subjects showed significant positive correlations between FA and the capacity of ultra-fast speech comprehension within right-hemisphere optic radiation and thalamus. Thus, experience-related structural alterations occurred in late-blind individuals within visual pathways that, presumably, are linked to higher order frontal language areas. PMID:25830371
Szabo, Miruna; Deco, Gustavo; Fusi, Stefano; Del Giudice, Paolo; Mattia, Maurizio; Stetter, Martin
2006-05-01
Recent experiments on behaving monkeys have shown that learning a visual categorization task makes the neurons in infero-temporal cortex (ITC) more selective to the task-relevant features of the stimuli (Sigala and Logothetis in Nature 415 318-320, 2002). We hypothesize that such a selectivity modulation emerges from the interaction between ITC and other cortical area, presumably the prefrontal cortex (PFC), where the previously learned stimulus categories are encoded. We propose a biologically inspired model of excitatory and inhibitory spiking neurons with plastic synapses, modified according to a reward based Hebbian learning rule, to explain the experimental results and test the validity of our hypothesis. We assume that the ITC neurons, receiving feature selective inputs, form stronger connections with the category specific neurons to which they are consistently associated in rewarded trials. After learning, the top-down influence of PFC neurons enhances the selectivity of the ITC neurons encoding the behaviorally relevant features of the stimuli, as observed in the experiments. We conclude that the perceptual representation in visual areas like ITC can be strongly affected by the interaction with other areas which are devoted to higher cognitive functions.
Recurrent network dynamics reconciles visual motion segmentation and integration.
Medathati, N V Kartheek; Rankin, James; Meso, Andrew I; Kornprobst, Pierre; Masson, Guillaume S
2017-09-12
In sensory systems, a range of computational rules are presumed to be implemented by neuronal subpopulations with different tuning functions. For instance, in primate cortical area MT, different classes of direction-selective cells have been identified and related either to motion integration, segmentation or transparency. Still, how such different tuning properties are constructed is unclear. The dominant theoretical viewpoint based on a linear-nonlinear feed-forward cascade does not account for their complex temporal dynamics and their versatility when facing different input statistics. Here, we demonstrate that a recurrent network model of visual motion processing can reconcile these different properties. Using a ring network, we show how excitatory and inhibitory interactions can implement different computational rules such as vector averaging, winner-take-all or superposition. The model also captures ordered temporal transitions between these behaviors. In particular, depending on the inhibition regime the network can switch from motion integration to segmentation, thus being able to compute either a single pattern motion or to superpose multiple inputs as in motion transparency. We thus demonstrate that recurrent architectures can adaptively give rise to different cortical computational regimes depending upon the input statistics, from sensory flow integration to segmentation.
Pérez i de Lanuza, Guillem; Font, Enrique
2014-08-15
Ultraviolet (UV) vision and UV colour patches have been reported in a wide range of taxa and are increasingly appreciated as an integral part of vertebrate visual perception and communication systems. Previous studies with Lacertidae, a lizard family with diverse and complex coloration, have revealed the existence of UV-reflecting patches that may function as social signals. However, confirmation of the signalling role of UV coloration requires demonstrating that the lizards are capable of vision in the UV waveband. Here we use a multidisciplinary approach to characterize the visual sensitivity of a diverse sample of lacertid species. Spectral transmission measurements of the ocular media show that wavelengths down to 300 nm are transmitted in all the species sampled. Four retinal oil droplet types can be identified in the lacertid retina. Two types are pigmented and two are colourless. Fluorescence microscopy reveals that a type of colourless droplet is UV-transmitting and may thus be associated with UV-sensitive cones. DNA sequencing shows that lacertids have a functional SWS1 opsin, very similar at 13 critical sites to that in the presumed ancestral vertebrate (which was UV sensitive) and other UV-sensitive lizards. Finally, males of Podarcis muralis are capable of discriminating between two views of the same stimulus that differ only in the presence/absence of UV radiance. Taken together, these results provide convergent evidence of UV vision in lacertids, very likely by means of an independent photopigment. Moreover, the presence of four oil droplet types suggests that lacertids have a four-cone colour vision system. © 2014. Published by The Company of Biologists Ltd.
Population Response Profiles in Early Visual Cortex Are Biased in Favor of More Valuable Stimuli
Saproo, Sameer
2010-01-01
Voluntary and stimulus-driven shifts of attention can modulate the representation of behaviorally relevant stimuli in early areas of visual cortex. In turn, attended items are processed faster and more accurately, facilitating the selection of appropriate behavioral responses. Information processing is also strongly influenced by past experience and recent studies indicate that the learned value of a stimulus can influence relatively late stages of decision making such as the process of selecting a motor response. However, the learned value of a stimulus can also influence the magnitude of cortical responses in early sensory areas such as V1 and S1. These early effects of stimulus value are presumed to improve the quality of sensory representations; however, the nature of these modulations is not clear. They could reflect nonspecific changes in response amplitude associated with changes in general arousal or they could reflect a bias in population responses so that high-value features are represented more robustly. To examine this issue, subjects performed a two-alternative forced choice paradigm with a variable-interval payoff schedule to dynamically manipulate the relative value of two stimuli defined by their orientation (one was rotated clockwise from vertical, the other counterclockwise). Activation levels in visual cortex were monitored using functional MRI and feature-selective voxel tuning functions while subjects performed the behavioral task. The results suggest that value not only modulates the relative amplitude of responses in early areas of human visual cortex, but also sharpens the response profile across the populations of feature-selective neurons that encode the critical stimulus feature (orientation). Moreover, changes in space- or feature-based attention cannot easily explain the results because representations of both the selected and the unselected stimuli underwent a similar feature-selective modulation. This sharpening in the population response profile could theoretically improve the probability of correctly discriminating high-value stimuli from low-value alternatives. PMID:20410360
The differential effects of acute right- vs. left-sided vestibular failure on brain metabolism.
Becker-Bense, Sandra; Dieterich, Marianne; Buchholz, Hans-Georg; Bartenstein, Peter; Schreckenberger, Mathias; Brandt, Thomas
2014-07-01
The human vestibular system is represented in the brain bilaterally, but it has functional asymmetries, i.e., a dominance of ipsilateral pathways and of the right hemisphere in right-handers. To determine if acute right- or left-sided unilateral vestibular neuritis (VN) is associated with differential patterns of brain metabolism in areas representing the vestibular network and the visual-vestibular interaction, patients with acute VN (right n = 9; left n = 13) underwent resting state (18)F-FDG PET once in the acute phase and once 3 months later after central vestibular compensation. The contrast acute vs. chronic phase showed signal differences in contralateral vestibular areas and the inverse contrast in visual cortex areas, both more pronounced in VN right. In VN left additional regions were found in the cerebellar hemispheres and vermis bilaterally, accentuated in severe cases. In general, signal changes appeared more pronounced in patients with more severe vestibular deficits. Acute phase PET data of patients compared to that of age-matched healthy controls disclosed similarities to these patterns, thus permitting the interpretation that the signal changes in vestibular temporo-parietal areas reflect signal increases, and in visual areas, signal decreases. These data imply that brain activity in the acute phase of right- and left-sided VN exhibits different compensatory patterns, i.e., the dominant ascending input is shifted from the ipsilateral to the contralateral pathways, presumably due to the missing ipsilateral vestibular input. The visual-vestibular interaction patterns were preserved, but were of different prominence in each hemisphere and more pronounced in patients with right-sided failure and more severe vestibular deficits.
Sensitive periods for the functional specialization of the neural system for human face processing.
Röder, Brigitte; Ley, Pia; Shenoy, Bhamy H; Kekunnaya, Ramesh; Bottari, Davide
2013-10-15
The aim of the study was to identify possible sensitive phases in the development of the processing system for human faces. We tested the neural processing of faces in 11 humans who had been blind from birth and had undergone cataract surgery between 2 mo and 14 y of age. Pictures of faces and houses, scrambled versions of these pictures, and pictures of butterflies were presented while event-related potentials were recorded. Participants had to respond to the pictures of butterflies (targets) only. All participants, even those who had been blind from birth for several years, were able to categorize the pictures and to detect the targets. In healthy controls and in a group of visually impaired individuals with a history of developmental or incomplete congenital cataracts, the well-known enhancement of the N170 (negative peak around 170 ms) event-related potential to faces emerged, but a face-sensitive response was not observed in humans with a history of congenital dense cataracts. By contrast, this group showed a similar N170 response to all visual stimuli, which was indistinguishable from the N170 response to faces in the controls. The face-sensitive N170 response has been associated with the structural encoding of faces. Therefore, these data provide evidence for the hypothesis that the functional differentiation of category-specific neural representations in humans, presumably involving the elaboration of inhibitory circuits, is dependent on experience and linked to a sensitive period. Such functional specialization of neural systems seems necessary to archive high processing proficiency.
Adverse ophthalmic reaction in poppers users: case series of ‘poppers maculopathy'
Davies, A J; Kelly, S P; Naylor, S G; Bhatt, P R; Mathews, J P; Sahni, J; Haslett, R; McKibbin, M
2012-01-01
Background Poppers are a recreational substance of abuse belonging to the alkyl nitrite family of compounds. In the United Kingdom, where they are legal to purchase but illegal to sell for human consumption, 10% of the general population have tried them. They are considered low risk to physical and mental health. Two recent case series from France demonstrated foveal pathology in individuals associated with poppers use. Method A case series of seven patients presenting to four hospitals in the United Kingdom with visual impairment and maculopathy associated with inhalation of poppers. Results All patients experienced visual symptoms associated with poppers use. The majority had impaired visual acuity, central scotomata, distortion, or phosphenes. Clinical signs on fundoscopy ranged from normal foveal appearance to yellow, dome-shaped lesions at the foveola. Spectral domain optical coherence tomography (SD-OCT) showed varying degrees of disruption of the presumed inner segment/outer segment (IS/OS) junction. Discussion Although poppers have been in use for several decades, in 2007, following legislative changes, there was a change in the most commonly used compound from isobutyl nitrite to isopropyl nitrite. There were no reports of ‘poppers maculopathy' before this. Poppers maculopathy may be missed if patients are not directly questioned about their use. The disruption or loss of the presumed IS/OS junction on SD-OCT are a characteristic feature. Further study of maculopathy in poppers users is now needed. Raising public awareness of the ocular risks associated with their use may be necessary. PMID:23079752
Adverse ophthalmic reaction in poppers users: case series of 'poppers maculopathy'.
Davies, A J; Kelly, S P; Naylor, S G; Bhatt, P R; Mathews, J P; Sahni, J; Haslett, R; McKibbin, M
2012-11-01
Poppers are a recreational substance of abuse belonging to the alkyl nitrite family of compounds. In the United Kingdom, where they are legal to purchase but illegal to sell for human consumption, 10% of the general population have tried them. They are considered low risk to physical and mental health. Two recent case series from France demonstrated foveal pathology in individuals associated with poppers use. A case series of seven patients presenting to four hospitals in the United Kingdom with visual impairment and maculopathy associated with inhalation of poppers. All patients experienced visual symptoms associated with poppers use. The majority had impaired visual acuity, central scotomata, distortion, or phosphenes. Clinical signs on fundoscopy ranged from normal foveal appearance to yellow, dome-shaped lesions at the foveola. Spectral domain optical coherence tomography (SD-OCT) showed varying degrees of disruption of the presumed inner segment/outer segment (IS/OS) junction. Although poppers have been in use for several decades, in 2007, following legislative changes, there was a change in the most commonly used compound from isobutyl nitrite to isopropyl nitrite. There were no reports of 'poppers maculopathy' before this. Poppers maculopathy may be missed if patients are not directly questioned about their use. The disruption or loss of the presumed IS/OS junction on SD-OCT are a characteristic feature. Further study of maculopathy in poppers users is now needed. Raising public awareness of the ocular risks associated with their use may be necessary.
Diagnosis and treatment of tuberculous uveitis in a low endemic setting.
Vos, A G; Wassenberg, M W M; de Hoog, J; Oosterheert, J J
2013-11-01
To determine factors associated with the diagnosis of tuberculous uveitis and the response to anti-tuberculous treatment (ATT). A retrospective case study was performed at the University Medical Centre Utrecht between October 2007 and December 2009. Patients with possible tuberculous uveitis (TBU) were selected from all patients with an unexplained uveitis. Demographics, ethnicity, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), tuberculin skin test (TST), QuantiFERON (QFT) test, and ocular findings were evaluated. An interdisciplinary panel discussed if there was a presumed TBU and decided to start treatment. When there was a decrease in intraocular cell count and/or improvement in visual acuity after ATT, the confirmation of presumed TBU was made. Of 585 patients with unexplained uveitis, 66 (11.3%) fulfilled the definition of possible TBU. Ten (15.4%) patients were regarded as having presumed TBU and received ATT. All of them had latent tuberculosis (LTB). The ocular situation improved in seven patients (70%). A history of TB contact, abnormalities on chest radiology, and extraocular manifestations of TB were associated with a good response to ATT in the case of presumed tuberculous uveitis. Tuberculous uveitis remains difficult to diagnose. No clearly correlating factors that predicted the response to ATT, including ocular parameters, could be identified. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Machinskaya, R I; Rozovskaya, R I; Kurgansky, A V; Pechenkova, E V
2016-01-01
A pattern of cortical functional connectivity in the source space was studied in a group of right-handed adult participants (N = 44:17 women, 27 men, aged M = 29.61 ± 6.45 years) who retained in their working memory (WM) traces of realistic pictures of positive, neutral, and negative emotional valence while in their working memory (WM) while performing same different task in which participants had to compare an etalon picture against a target picture that followed after a specified delay. A coherence (COH) between pairs of cortical sources chosen in advance according to fMRI data was estimated in the theta frequency range for the period of time preceding the etalon stimulus, distinct sets of functional links are found. The links of the first type that presumably reflect the involvement of sustained attention were between the dorsal anterior cingulate cortex, the prefrontal areas, and temporal areas of the right hemispheres. When compared to the rest period, links of this type showed strengthening not only during the retention period but also during the period preceding the etalon picture. The links of the second type presumably reflecting a progressive neocortex-to-hippocampus functional integration with increasing memory load and strengthened exclusively during retention period. Those links were between parietal, temporal and prefrontal cortices in the lateral surface of both hemispheres with the additional inclusion of the posterior cingulate cortex and the medial parietal cortex in the left hemisphere. An impact of emotional valence onto the strength and topography of the functional links of the second type was found. In the left hemisphere, an increase in the strength of cortical interaction was more pronounced for pictures of positive valence than for pictures of either neutral or negative valences. When compared to the pictures of neutral valence, the retention of pictorial information of both positive and negative valence showed some extraneous integration of the cortical areas for the theta rhythm. This finding might be related to the additional load exerted by emotionally colored pictures onto the mechanisms of short-time retention of visual information.
Enzymic Pathways for Formation of Carotenoid Cleavage Products
NASA Astrophysics Data System (ADS)
Fleischmann, Peter; Zorn, Holger
Degraded carotenoids (apocarotenoids, norisoprenoids) have been a subject of intensive research for several decades. From the perspective of human physiology and nutrition, the retinoids, acting as vitamins, signalling molecules, and visual pigments, attracted the greatest attention (Chapters 15 and 16). Plant scientists, however, detected a wealth of different apocarotenoids, presumably derived by the excentric cleavage of carotenoids in various species, the plant hormone abscisic acid (1, Scheme 6) being the best-investigated example. With the onset of fruit ripening, flower opening or senescence of green tissues, carotenoids are degraded oxidatively to smaller, volatile compounds. The natural biological functions of the reaction products are outlined in Chapter 15. As many of these apocarotenoids act as potent flavour compounds, food chemists and flavourists worldwide have investigated meticulously their structural and sensory properties. Many aspects of carotenoid metabolites and breakdown products as aroma compounds are presented in a comprehensive book [1].
Ng, Ken K; Nisbet, Mitzi; Damato, Erika M; Sims, Joanne L
2017-05-01
To describe the clinical spectrum of presumed tuberculous (TB) uveitis in a developed, non-endemic country of high immigrant population. Retrospective review of a consecutive case series. All 39 patients diagnosed with presumed TB uveitis at the tertiary uveitis service in Auckland from 2007 to 2014. Clinical chart review. Patient demographics, risk factors, ophthalmic manifestations, management and outcome. The median age was 37 years (interquartile range [IQR] 31-52) and 56% were female. The majority (97%) were born outside of New Zealand, and 77% had no TB-related history. Radiological abnormalities consistent with TB were evident in seven patients, including three who had culture positive pulmonary disease. Anterior uveitis was diagnosed in ten patients (26%), anterior and intermediate uveitis in eight (21%), posterior uveitis in 13 (33%) and panuveitis in eight (21%). Sixteen (41%) had retinal vasculitis, and five (13%) had multifocal serpiginoid choroiditis. Common complications included cataract (51%), ocular hypertension (36%), broad posterior synechiae (33%) and cystoid macular oedema (28%). Anti-TB treatment was initiated in 30 patients (76%). All but three patients completed the intended course of six to 12 months. Following anti-TB treatment, 67% remained in remission for at least 12 months, and all but two patients successfully stopped systemic steroids. The median initial and final visual acuity was 6/9 (IQR 6/6-6/18) and 6/6 (IQR 6/6-6/9), respectively. Despite a wide range of ocular presentations and complications, our cohort demonstrated good remission rate and visual prognosis following anti-TB treatment in carefully selected patients. © 2016 Royal Australian and New Zealand College of Ophthalmologists.
Richer, Stuart P; Stiles, William; Graham-Hoffman, Kelly; Levin, Marc; Ruskin, Dennis; Wrobel, James; Park, Dong-Wouk; Thomas, Carla
2011-11-01
The purpose of this study is to evaluate whether dietary supplementation with the carotenoid zeaxanthin (Zx) raises macula pigment optical density (MPOD) and has unique visual benefits for patients with early atrophic macular degeneration having visual symptoms but lower-risk National Institute of Health/National Eye Institute/Age-Related Eye Disease Study characteristics. This was a 1-year, n = 60 (57 men, 3 women), 4-visit, intention-to-treat, prospective, randomized controlled clinical trial of patients (74.9 years, standard deviation [SD] 10) with mild-to-moderate age-related macular degeneration (AMD) randomly assigned to 1 of 2 dietary supplement carotenoid pigment intervention groups: 8 mg Zx (n = 25) and 8 mg Zx plus 9 mg lutein (L) (n = 25) or 9 mg L ("Faux Placebo," control group, n = 10). Analysis was by Bartlett's test for equal variance, 3-way repeated factors analysis of variance, independent t test (P < 0.05) for variance and between/within group differences, and post-hoc Scheffé's tests. Estimated foveal heterochromic flicker photometry, 1° macular pigment optical density (MPOD QuantifEye(®)), low- and high-contrast visual acuity, foveal shape discrimination (Retina Foundation of the Southwest), 10° yellow kinetic visual fields (KVF), glare recovery, contrast sensitivity function (CSF), and 6° blue cone ChromaTest(®) color thresholds were obtained serially at 4, 8, and 12 months. Ninety percent of subjects completed ≥ 2 visits with an initial Age-Related Eye Disease Study report #18 retinopathy score of 1.4 (1.0 SD)/4.0 and pill intake compliance of 96% with no adverse effects. There were no intergroup differences in 3 major AMD risk factors: age, smoking, and body mass index as well as disease duration and Visual Function Questionnaire 25 composite score differences. Randomization resulted in equal MPOD variance and MPOD increasing in each of the 3 groups from 0.33 density units (du) (0.17 SD) baseline to 0.51 du (0.18 SD) at 12 m, (P = 0.03), but no between-group differences (Analysis of Variance; P = 0.47). In the Zx group, detailed high-contrast visual acuity improved by 1.5 lines, Retina Foundation of the Southwest shape discrimination sharpened from 0.97 to 0.57 (P = 0.06, 1-tail), and a larger percentage of Zx patients experienced clearing of their KVF central scotomas (P = 0.057). The "Faux Placebo" L group was superior in terms of low-contrast visual acuity, CSF, and glare recovery, whereas Zx showed a trend toward significance. In older male patients with AMD, Zx-induced foveal MPOD elevation mirrored that of L and provided complementary distinct visual benefits by improving foveal cone-based visual parameters, whereas L enhanced those parameters associated with gross detailed rod-based vision, with considerable overlap between the 2 carotenoids. The equally dosed (atypical dietary ratio) Zx plus L group fared worse in terms of raising MPOD, presumably because of duodenal, hepatic-lipoprotein or retinal carotenoid competition. These results make biological sense based on retinal distribution and Zx foveal predominance. Published by Elsevier Inc.
2013-01-01
Background Individuals suffering from vision loss of a peripheral origin may learn to understand spoken language at a rate of up to about 22 syllables (syl) per second - exceeding by far the maximum performance level of normal-sighted listeners (ca. 8 syl/s). To further elucidate the brain mechanisms underlying this extraordinary skill, functional magnetic resonance imaging (fMRI) was performed in blind subjects of varying ultra-fast speech comprehension capabilities and sighted individuals while listening to sentence utterances of a moderately fast (8 syl/s) or ultra-fast (16 syl/s) syllabic rate. Results Besides left inferior frontal gyrus (IFG), bilateral posterior superior temporal sulcus (pSTS) and left supplementary motor area (SMA), blind people highly proficient in ultra-fast speech perception showed significant hemodynamic activation of right-hemispheric primary visual cortex (V1), contralateral fusiform gyrus (FG), and bilateral pulvinar (Pv). Conclusions Presumably, FG supports the left-hemispheric perisylvian “language network”, i.e., IFG and superior temporal lobe, during the (segmental) sequencing of verbal utterances whereas the collaboration of bilateral pulvinar, right auditory cortex, and ipsilateral V1 implements a signal-driven timing mechanism related to syllabic (suprasegmental) modulation of the speech signal. These data structures, conveyed via left SMA to the perisylvian “language zones”, might facilitate – under time-critical conditions – the consolidation of linguistic information at the level of verbal working memory. PMID:23879896
'Visual’ parsing can be taught quickly without visual experience during critical periods
Reich, Lior; Amedi, Amir
2015-01-01
Cases of invasive sight-restoration in congenital blind adults demonstrated that acquiring visual abilities is extremely challenging, presumably because visual-experience during critical-periods is crucial for learning visual-unique concepts (e.g. size constancy). Visual rehabilitation can also be achieved using sensory-substitution-devices (SSDs) which convey visual information non-invasively through sounds. We tested whether one critical concept – visual parsing, which is highly-impaired in sight-restored patients – can be learned using SSD. To this end, congenitally blind adults participated in a unique, relatively short (~70 hours), SSD-‘vision’ training. Following this, participants successfully parsed 2D and 3D visual objects. Control individuals naïve to SSDs demonstrated that while some aspects of parsing with SSD are intuitive, the blind’s success could not be attributed to auditory processing alone. Furthermore, we had a unique opportunity to compare the SSD-users’ abilities to those reported for sight-restored patients who performed similar tasks visually, and who had months of eyesight. Intriguingly, the SSD-users outperformed the patients on most criteria tested. These suggest that with adequate training and technologies, key high-order visual features can be quickly acquired in adulthood, and lack of visual-experience during critical-periods can be somewhat compensated for. Practically, these highlight the potential of SSDs as standalone-aids or combined with invasive restoration approaches. PMID:26482105
Learning LM Specificity for Ganglion Cells
NASA Technical Reports Server (NTRS)
Ahumada, Albert J.
2015-01-01
Unsupervised learning models have been proposed based on experience (Ahumada and Mulligan, 1990;Wachtler, Doi, Lee and Sejnowski, 2007) that allow the cortex to develop units with LM specific color opponent receptive fields like the blob cells reported by Hubel and Wiesel on the basis of visual experience. These models used ganglion cells with LM indiscriminate wiring as inputs to the learning mechanism, which was presumed to occur at the cortical level.
Data Acquisition and Preparation for Social Network Analysis Based on Email: Lessons Learned
2009-06-01
Mrvar , A., and Batagelj , V. (2005), Exploratory Social Network Analysis with Pajek (Structural Analysis in the Social Sciences series). Cambridge, New...visualization of large networks. This program was developed by Vladimir Batagelj and Andrej Mrvar of the University of Ljubljana in Slovenia. Pajek evolved...theory, presumes Wasserman & Faust as foundation Amazon: 55% purchase rate among viewers 5. de Nooy, W., Mrvar , A., and Batagelj , V. (2005
What is presumed when we presume consent?
Pierscionek, Barbara K
2008-01-01
Background The organ donor shortfall in the UK has prompted calls to introduce legislation to allow for presumed consent: if there is no explicit objection to donation of an organ, consent should be presumed. The current debate has not taken in account accepted meanings of presumption in law and science and the consequences for rights of ownership that would arise should presumed consent become law. In addition, arguments revolve around the rights of the competent autonomous adult but do not always consider the more serious implications for children or the disabled. Discussion Any action or decision made on a presumption is accepted in law and science as one based on judgement of a provisional situation. It should therefore allow the possibility of reversing the action or decision. Presumed consent to organ donation will not permit such reversal. Placing prime importance on the functionality of body organs and their capacity to sustain life rather than on explicit consent of the individual will lead to further debate about rights of ownership and potentially to questions about financial incentives and to whom benefits should accrue. Factors that influence donor rates are not fully understood and attitudes of the public to presumed consent require further investigation. Presuming consent will also necessitate considering how such a measure would be applied in situations involving children and mentally incompetent adults. Summary The presumption of consent to organ donation cannot be understood in the same way as is presumption when applied to science or law. Consideration should be given to the consequences of presuming consent and to the questions of ownership and organ monetary value as these questions are likely to arise should presumed consent be permitted. In addition, the implications of presumed consent on children and adults who are unable to object to organ donation, requires serious contemplation if these most vulnerable members of society are to be protected. PMID:18439242
Children with Heavy Prenatal Alcohol Exposure Experience Reduced Control of Isotonic Force
Nguyen, Tanya T.; Levy, Susan S.; Riley, Edward P.; Thomas, Jennifer D.; Simmons, Roger W.
2013-01-01
Background Heavy prenatal alcohol exposure can result in diverse and extensive damage to the central nervous system, including the cerebellum, basal ganglia, and cerebral cortex. Given that these brain regions are involved in the generation and maintenance of motor force, we predicted that prenatal alcohol exposure would adversely affect this parameter of motor control. We previously reported that children with gestational alcohol exposure experience significant deficits in regulating isometric (i.e., constant) force. The purpose of the present study was to determine if these children exhibit similar deficits when producing isotonic (i.e., graded) force. Methods Children with heavy prenatal alcohol exposure and typically developing children completed a series of isotonic force contractions by exerting force on a load cell to match a criterion target force displayed on a computer monitor. Two levels of target force (5% or 20% of maximum voluntary force) were investigated in combination with varying levels of visual feedback. Results Compared to controls, children with heavy prenatal alcohol exposure generated isotonic force signals that were less accurate, more variable, and less complex in the time domain compared to control children. Specifically, interactions were found between group and visual feedback for response accuracy and signal complexity, suggesting that these children have greater difficulty altering their motor output when visual feedback is low. Conclusions These data suggest that prenatal alcohol exposure produces deficits in regulating isotonic force, which presumably result from alcohol-related damage to developing brain regions involved in motor control. These children will most likely experience difficulty performing basic motor skills and daily functional skills that require coordination of finely graded force. Therapeutic strategies designed to increase feedback and, consequently, facilitate visual-motor integration could improve isotonic force production in these children. PMID:22834891
Perea, Manuel; Panadero, Victoria
2014-01-01
The vast majority of neural and computational models of visual-word recognition assume that lexical access is achieved via the activation of abstract letter identities. Thus, a word's overall shape should play no role in this process. In the present lexical decision experiment, we compared word-like pseudowords like viotín (same shape as its base word: violín) vs. viocín (different shape) in mature (college-aged skilled readers), immature (normally reading children), and immature/impaired (young readers with developmental dyslexia) word-recognition systems. Results revealed similar response times (and error rates) to consistent-shape and inconsistent-shape pseudowords for both adult skilled readers and normally reading children - this is consistent with current models of visual-word recognition. In contrast, young readers with developmental dyslexia made significantly more errors to viotín-like pseudowords than to viocín-like pseudowords. Thus, unlike normally reading children, young readers with developmental dyslexia are sensitive to a word's visual cues, presumably because of poor letter representations.
Effects of Visual Information on Wind-Evoked Escape Behavior of the Cricket, Gryllus bimaculatus.
Kanou, Masamichi; Matsuyama, Akane; Takuwa, Hiroyuki
2014-09-01
We investigated the effects of visual information on wind-evoked escape behavior in the cricket, Gryllus bimaculatus. Most agitated crickets were found to retreat into a shelter made of cardboard installed in the test arena within a short time. As this behavior was thought to be a type of escape, we confirmed how a visual image of a shelter affected wind-evoked escape behavior. Irrespective of the brightness of the visual background (black or white) or the absence or presence of a shelter, escape jumps were oriented almost 180° opposite to the source of the air puff stimulus. Therefore, the direction of wind-evoked escape depends solely depended on the direction of the stimulus air puff. In contrast, the turning direction of the crickets during the escape was affected by the position of the visual image of the shelter. During the wind-evoked escape jump, most crickets turned in the direction in which a shelter was presented. This behavioral nature is presumably necessary for crickets to retreat into a shelter within a short time after their escape jump.
Maheux, Manon; Jolicœur, Pierre
2017-04-01
We examined the role of attention and visual working memory in the evaluation of the number of target stimuli as well as their relative spatial position using the N2pc and the SPCN. Participants performed two tasks: a simple counting task in which they had to determine if a visual display contained one or two coloured items among grey fillers and one in which they had to identify a specific relation between two coloured items. The same stimuli were used for both tasks. Each task was designed to permit an easier evaluation of either the same-coloured or differently-coloured stimuli. We predicted a greater involvement of attention and visual working memory for more difficult stimulus-task pairings. The results confirmed these predictions and suggest that visuospatial configurations that require more time to evaluate induce a greater (and presumably longer) involvement of attention and visual working memory. Copyright © 2017 Elsevier B.V. All rights reserved.
Using the Human Eye to Characterize Displays
NASA Technical Reports Server (NTRS)
Gille, Jennifer; Larimer, James
2001-01-01
Monitor characterization has taken on new importance for non-professional users, who are not usually equipped to make photometric measurements. Our purpose was to examine some of the visual judgments used in characterization schemes that have been proposed for web users. We studied adjusting brightness to set the black level, banding effects due to digitization, and gamma estimation in the light and in the dark, and a color-matching task in the light, on a desktop CRT and a laptop LCD. Observers demonstrated the sensitivity of the visual system for comparative judgments in black-level adjustment, banding visibility, and gamma estimation. The results of the color-matching task were ambiguous. In the brightness adjustment task, the action of the adjustment was not as presumed; however, perceptual judgments were as expected under the actual conditions. When the gamma estimates of observers were compared to photometric measurements, problems with the definition of gamma were identified. Information about absolute light levels that would be important for characterizing a display, given the shortcomings of gamma in measuring apparent contrast, are not measurable by eye alone. The LCD was not studied as extensively as the CRT because of viewing-angle problems, and its transfer function did not follow a power law, rendering gamma estimation meaningless.
NASA Astrophysics Data System (ADS)
Zhang, Hongda; Han, Chao; Ye, Taohong; Ren, Zhuyin
2016-03-01
A method of chemistry tabulation combined with presumed probability density function (PDF) is applied to simulate piloted premixed jet burner flames with high Karlovitz number using large eddy simulation. Thermo-chemistry states are tabulated by the combination of auto-ignition and extended auto-ignition model. To evaluate the predictive capability of the proposed tabulation method to represent the thermo-chemistry states under the condition of different fresh gases temperature, a-priori study is conducted by performing idealised transient one-dimensional premixed flame simulations. Presumed PDF is used to involve the interaction of turbulence and flame with beta PDF to model the reaction progress variable distribution. Two presumed PDF models, Dirichlet distribution and independent beta distribution, respectively, are applied for representing the interaction between two mixture fractions that are associated with three inlet streams. Comparisons of statistical results show that two presumed PDF models for the two mixture fractions are both capable of predicting temperature and major species profiles, however, they are shown to have a significant effect on the predictions for intermediate species. An analysis of the thermo-chemical state-space representation of the sub-grid scale (SGS) combustion model is performed by comparing correlations between the carbon monoxide mass fraction and temperature. The SGS combustion model based on the proposed chemistry tabulation can reasonably capture the peak value and change trend of intermediate species. Aspects regarding model extensions to adequately predict the peak location of intermediate species are discussed.
Kishi, Masahiko; Sakakibara, Ryuji; Yoshida, Tomoe; Yamamoto, Masahiko; Suzuki, Mitsuya; Kataoka, Manabu; Tsuyusaki, Yohei; Tateno, Akihiko; Tateno, Fuyuki
2012-01-01
Positional vertigo is a common neurologic emergency and mostly the etiology is peripheral. However, central diseases may mimic peripheral positional vertigo at their initial presentation. We here describe the results of a visual suppression test in six patients with spinocerebellar ataxia type 6 (SCA6), a central positional vertigo, and nine patients with benign paroxysmal positional vertigo (BPPV), the major peripheral positional vertigo. As a result, the visual suppression value of both diseases differed significantly; e.g., 22.5% in SCA6 and 64.3% in BPPV (p < 0.001). There was a positive correlation between the visual suppression value and disease duration, cerebellar atrophy, and CAG repeat length of SCA6 but they were not statistically significant. In conclusion, the present study showed for the first time that visual suppression is impaired in SCA6, a central positional vertigo, but preserved in BPPV, the major peripheral positional vertigo, by directly comparing both groups. The abnormality in the SCA6 group presumably reflects dysfunction in the central visual fixation pathway at the cerebellar flocculus and nodulus. This simple test might aid differential diagnosis of peripheral and central positional vertigo at the earlier stage of disease. PMID:26859398
Bosenbark, Danielle D; Krivitzky, Lauren; Ichord, Rebecca; Vossough, Arastoo; Bhatia, Aashim; Jastrzab, Laura E; Billinghurst, Lori
2017-04-01
Children with perinatal arterial ischemic stroke (PAIS) are at risk for later neurocognitive and behavioral deficits, yet the clinical predictors of these outcomes are understudied. We examined the influence of clinical and infarct characteristics on attention and executive functioning in children following PAIS. Forty children born at term (≥37 weeks' gestation) with PAIS (28 with neonatal arterial ischemic stroke and 12 with presumed PAIS) underwent a comprehensive neuropsychological battery at age three to 16 years (median age 7.2 years; 58% male) to assess attention and executive functioning. Parents also completed questionnaires regarding real-world functioning. Clinical variables including perinatal stroke subtype, infarct characteristics (location, laterality, and volume), and the presence of comorbid epilepsy were ascertained from the medical record. Presumed PAIS, larger infarct volume, and comorbid epilepsy negatively influenced the performance on attention and executive functioning measures. These clinical variables were also associated with greater functional problems on parent reports, including a higher frequency of attention-deficit/hyperactivity disorder symptoms and greater difficulties in some subdomains of executive functioning. Infarct location and laterality were not associated with performance measures or parental report of functioning. Although all children with PAIS are at risk for later deficits in attention and executive functioning, those with presumed PAIS, larger infarct size, and comorbid epilepsy appear to be the most vulnerable. As they approach and reach school age, these children should undergo neuropsychological assessment to ensure timely implementation of therapeutic interventions and behavioral strategies. Copyright © 2017 Elsevier Inc. All rights reserved.
Chorioretinal Lesions Presumed Secondary to Zika Virus Infection in an Immunocompromised Adult.
Henry, Christopher R; Al-Attar, Luma; Cruz-Chacón, Alexis M; Davis, Janet L
2017-04-01
Zika virus has spread rapidly throughout the Americas since 2015. The public health implications of Zika virus infection lend special importance to identifying the virus in unsuspected hosts. To describe relevant imaging studies and clinical features of chorioretinal lesions that are presumably associated with Zika virus and that share analogous features with chorioretinal lesions reported in cases of Dengue fever and West Nile virus. This is a case report from an academic referral center in Miami, Florida, of a woman in her 60s from Guaynabo, Puerto Rico, who presented with reduced visual acuity and bilateral diffuse, subretinal, confluent, placoid, and multifocal chorioretinal lesions. The patient was observed over a 5-month period. Visual acuity, clinical course, and multimodal imaging study results. Fluorescein angiography revealed early hypofluorescence and late staining of the chorioretinal lesions. Optical coherence tomography demonstrated outer retinal disruption in the placoid macular lesions. Zika RNA was detected in a plasma sample by real-time reverse transcription polymerase chain reaction testing and was suspected to be the cause of chorioretinal lesions after other viral and infectious causes were ruled out. Three weeks after the onset of symptoms, the patient's visual acuity had improved to 20/60 OD and 20/25 OS, with intraocular pressures of 18 mm Hg OD and 19 mm Hg OS. In 6 weeks, the chorioretinal lesions had healed and visual acuity had improved to 20/25 OD and 20/20 OS. Follow-up optical coherence tomography demonstrated interval recovery of the outer retina and photoreceptors. Acute-onset, self-resolving, placoid, or multifocal nonnecrotizing chorioretinal lesions may be a feature of active Zika virus chorioretinitis, as reported in other Flavivirus infections in adults. Similar findings in potentially exposed adults suggest that clinicians should consider IgM antibody or polymerase chain reaction testing for Zika virus as well as diagnostic testing for Dengue fever and West Nile virus.
Harris, Joseph A; Wu, Chien-Te; Woldorff, Marty G
2011-06-07
It is generally agreed that considerable amounts of low-level sensory processing of visual stimuli can occur without conscious awareness. On the other hand, the degree of higher level visual processing that occurs in the absence of awareness is as yet unclear. Here, event-related potential (ERP) measures of brain activity were recorded during a sandwich-masking paradigm, a commonly used approach for attenuating conscious awareness of visual stimulus content. In particular, the present study used a combination of ERP activation contrasts to track both early sensory-processing ERP components and face-specific N170 ERP activations, in trials with versus without awareness. The electrophysiological measures revealed that the sandwich masking abolished the early face-specific N170 neural response (peaking at ~170 ms post-stimulus), an effect that paralleled the abolition of awareness of face versus non-face image content. Furthermore, however, the masking appeared to render a strong attenuation of earlier feedforward visual sensory-processing signals. This early attenuation presumably resulted in insufficient information being fed into the higher level visual system pathways specific to object category processing, thus leading to unawareness of the visual object content. These results support a coupling of visual awareness and neural indices of face processing, while also demonstrating an early low-level mechanism of interference in sandwich masking.
Dynamic and kinematic strategies for head movement control
NASA Technical Reports Server (NTRS)
Peterson, B. W.; Choi, H.; Hain, T.; Keshner, E.; Peng, G. C.
2001-01-01
This paper describes our analysis of the complex head-neck system using a combination of experimental and modeling approaches. Dynamical analysis of head movements and EMG activation elicited by perturbation of trunk position has examined functional contributions of biomechanically and neurally generated forces in lumped systems with greatly simplified kinematics. This has revealed that visual and voluntary control of neck muscles and the dynamic and static vestibulocollic and cervicocollic reflexes preferentially govern head-neck system state in different frequency domains. It also documents redundant control, which allows the system to compensate for lesions and creates a potential for substantial variability within and between subjects. Kinematic studies have indicated the existence of reciprocal and co-contraction strategies for voluntary force generation, of a vestibulocollic strategy for stabilizing the head during body perturbations and of at least two strategies for voluntary head tracking. Each strategy appears to be executed by a specific muscle synergy that is presumably optimized to efficiently meet the demands of the task.
Fairn, Gregory D; Hermansson, Martin; Somerharju, Pentti; Grinstein, Sergio
2011-10-02
Polarity is key to the function of eukaryotic cells. On the establishment of a polarity axis, cells can vectorially target secretion, generating an asymmetric distribution of plasma membrane proteins. From Saccharomyces cerevisiae to mammals, the small GTPase Cdc42 is a pivotal regulator of polarity. We used a fluorescent probe to visualize the distribution of phosphatidylserine in live S. cerevisiae. Remarkably, phosphatidylserine was polarized in the plasma membrane, accumulating in bud necks, the bud cortex and the tips of mating projections. Polarization required vectorial delivery of phosphatidylserine-containing secretory vesicles, and phosphatidylserine was largely excluded from endocytic vesicles, contributing to its polarized retention. Mutants lacking phosphatidylserine synthase had impaired polarization of the Cdc42 complex, leading to a delay in bud emergence, and defective mating. The addition of lysophosphatidylserine resulted in resynthesis and polarization of phosphatidylserine, as well as repolarization of Cdc42. The results indicate that phosphatidylserine--and presumably its polarization--are required for optimal Cdc42 targeting and activation during cell division and mating.
Koefoed, Vilhelm F; Assmuss, Jörg; Høvding, Gunnar
2018-03-25
To examine the relevance of visual acuity (VA) and index of contrast sensitivity (ICS) as predictors for visual observation task performance in a maritime environment. Sixty naval cadets were recruited to a study on observation tasks in a simulated maritime environment under three different light settings. Their ICS were computed based on contrast sensitivity (CS) data recorded by Optec 6500 and CSV-1000E CS tests. The correlation between object identification distance and VA/ICS was examined by stepwise linear regression. The object detection distance was significantly correlated to the level of environmental light (p < 0.001), but not to the VA or ICS recorded in the test subjects. Female cadets had a significantly shorter target identification range than the male cadets. Neither CS nor VA were found to be significantly correlated to observation task performance. This apparent absence of proven predictive value of visual parameters for observation tasks in a maritime environment may presumably be ascribed to the normal and uniform visual capacity in all our study subjects. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Laudate, Thomas M.; Neargarder, Sandy; Dunne, Tracy E.; Sullivan, Karen D.; Joshi, Pallavi; Gilmore, Grover C.; Riedel, Tatiana M.; Cronin-Golomb, Alice
2011-01-01
External support may improve task performance regardless of an individual’s ability to compensate for cognitive deficits through internally-generated mechanisms. We investigated if performance of a complex, familiar visual search task (the game of bingo) could be enhanced in groups with suboptimal vision by providing external support through manipulation of task stimuli. Participants were 19 younger adults, 14 individuals with probable Alzheimer’s disease (AD), 13 AD-matched healthy adults, 17 non-demented individuals with Parkinson’s disease (PD), and 20 PD-matched healthy adults. We varied stimulus contrast, size, and visual complexity during game play. The externally-supported performance interventions of increased stimulus size and decreased complexity resulted in improvements in performance by all groups. Performance improvement through increased stimulus size and decreased complexity was demonstrated by all groups. AD also obtained benefit from increasing contrast, presumably by compensating for their contrast sensitivity deficit. The general finding of improved performance across healthy and afflicted groups suggests the value of visual support as an easy-to-apply intervention to enhance cognitive performance. PMID:22066941
Do we understand high-level vision?
Cox, David Daniel
2014-04-01
'High-level' vision lacks a single, agreed upon definition, but it might usefully be defined as those stages of visual processing that transition from analyzing local image structure to analyzing structure of the external world that produced those images. Much work in the last several decades has focused on object recognition as a framing problem for the study of high-level visual cortex, and much progress has been made in this direction. This approach presumes that the operational goal of the visual system is to read-out the identity of an object (or objects) in a scene, in spite of variation in the position, size, lighting and the presence of other nearby objects. However, while object recognition as a operational framing of high-level is intuitive appealing, it is by no means the only task that visual cortex might do, and the study of object recognition is beset by challenges in building stimulus sets that adequately sample the infinite space of possible stimuli. Here I review the successes and limitations of this work, and ask whether we should reframe our approaches to understanding high-level vision. Copyright © 2014. Published by Elsevier Ltd.
Femtosecond laser cutting of human corneas for the subbasal nerve plexus evaluation.
Kowtharapu, B S; Marfurt, C; Hovakimyan, M; Will, F; Richter, H; Wree, A; Stachs, O; Guthoff, R F
2017-01-01
Assessment of various morphological parameters of the corneal subbasal nerve plexus is a valuable method of documenting the structural and presumably functional integrity of the corneal innervation in health and disease. The aim of this work is to establish a rapid, reliable and reproducible method for visualization of the human corneal SBP using femtosecond laser cut corneal tissue sections. Trephined healthy corneal buttons were fixed and processed using TissueSurgeon-a femtosecond laser based microtome, to obtain thick tissue sections of the corneal epithelium and anterior stroma cut parallel to the ocular surface within approximately 15 min. A near infrared femtosecond laser was focused on to the cornea approximately 70-90 μm from the anterior surface to induce material separation using TissueSurgeon. The obtained corneal sections were stained following standard immunohistochemical procedures with anti-neuronal β-III tubulin antibody for visualization of the corneal nerves. Sections that contained the epithelium and approximately 20-30 μm of anterior stroma yielded excellent visualisation of the SBP with minimal optical interference from underlying stromal nerves. In conclusion, the results of this study have demonstrated that femtosecond laser cutting of the human cornea offers greater speed, ease and reliability than standard tissue preparation methods for obtaining high quality thick sections of the anterior cornea cut parallel to the ocular surface. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Intrinsic physiological properties of rat retinal ganglion cells with a comparative analysis.
Wong, Raymond C S; Cloherty, Shaun L; Ibbotson, Michael R; O'Brien, Brendan J
2012-10-01
Mammalian retina contains 15-20 different retinal ganglion cell (RGC) types, each of which is responsible for encoding different aspects of the visual scene. The encoding is defined by a combination of RGC synaptic inputs, the neurotransmitter systems used, and their intrinsic physiological properties. Each cell's intrinsic properties are defined by its morphology and membrane characteristics, including the complement and localization of the ion channels expressed. In this study, we examined the hypothesis that the intrinsic properties of individual RGC types are conserved among mammalian species. To do so, we measured the intrinsic properties of 16 morphologically defined rat RGC types and compared these data with cat RGC types. Our data demonstrate that in the rat different morphologically defined RGC types have distinct patterns of intrinsic properties. Variation in these properties across cell types was comparable to that found for cat RGC types. When presumed morphological homologs in rat and cat retina were compared directly, some RGC types had very similar properties. The rat A2 cell exhibited patterns of intrinsic properties nearly identical to the cat alpha cell. In contrast, rat D2 cells (ON-OFF directionally selective) had a very different pattern of intrinsic properties than the cat iota cell. Our data suggest that the intrinsic properties of RGCs with similar morphology and suspected visual function may be subject to variation due to the behavioral needs of the species.
Rasool, Nailyn; Boudreault, Katherine; Lessell, Simmons; Prasad, Sashank; Cestari, Dean M
2018-06-01
Tacrolimus (FK506, Prograf) is a potent immunosuppressant, which inhibits cytokine synthesis and blocks T-cell development. Optic neuropathy from tacrolimus toxicity is very uncommon but, when present, can result in severe vision loss. Case series and review of the literature. We present 3 patients with tacrolimus optic neuropathy after bone marrow transplantation complicated by graft-vs-host disease and demonstrate the differing clinical and radiologic presentation of this presumed toxic optic neuropathy. Tacrolimus optic neuropathy can manifest in a multitude of clinical presentations and can have devastating visual consequences.
Lens-induced astigmatism after perforating scleral injury.
Ludwig, Klaus; Moradi, Said; Rudolph, Guenther; Boergen, Klaus Peter
2002-10-01
Within 6 weeks of a penetrating scleral injury that included vitreous prolapse, a 6-year-old boy developed lenticular astigmatism with a regular component of 5.5 diopters (D). Visible indentational folds in the posterior lens capsule, caused by anterior vitreous fibers and anterior hyaloid, were presumed to be the origin of the astigmatism. Because of decreased visual acuity and the suspicion of early amblyopia, a pars plana vitrectomy with removal of the anterior hyaloid and the critical anterior vitreous fibers was performed. Dense fibrotic tissue between the lens equator and the site of the original scleral perforation limited reduction of the preoperative astigmatism to 4.0 D. However, the striae-like lenticular deformation disappeared completely, and full visual acuity was restored. During the 12-month follow-up, the lens remained clear
How anomalous is the interstellar extinction in NGC 3372, the Carina Nebula?
NASA Astrophysics Data System (ADS)
Tapia, M.; Roth, M.; Marraco, H.; Ruiz, M. T.
Near-infrared JHKL photometry of more than 200 stars in the open clusters Tr 14, Tr 15, Tr 16, Cr 228, and Cr 232 in the Carina Nebula is presented. By comparing these results with the available visual photometry and spectroscopy, it is found that the intracluster reddening is characterized, except in Tr 15, by a 'normal' extinction law for lambda greater than 0.5 micron, but is highly anomalous and variable in the U and B bands. Provisional two-color visual polarimetry suggests that the wavelength of maximum polarization is similar to that in the general interstellar medium. This behavior may be explained by the presence of intracluster interstellar grains 'processed' by the passage of shock waves, presumably associated with the violent history of Eta Carinae.
Does working memory capacity predict cross-modally induced failures of awareness?
Kreitz, Carina; Furley, Philip; Simons, Daniel J; Memmert, Daniel
2016-01-01
People often fail to notice unexpected stimuli when they are focusing attention on another task. Most studies of this phenomenon address visual failures induced by visual attention tasks (inattentional blindness). Yet, such failures also occur within audition (inattentional deafness), and people can even miss unexpected events in one sensory modality when focusing attention on tasks in another modality. Such cross-modal failures are revealing because they suggest the existence of a common, central resource limitation. And, such central limits might be predicted from individual differences in cognitive capacity. We replicated earlier evidence, establishing substantial rates of inattentional deafness during a visual task and inattentional blindness during an auditory task. However, neither individual working memory capacity nor the ability to perform the primary task predicted noticing in either modality. Thus, individual differences in cognitive capacity did not predict failures of awareness even though the failures presumably resulted from central resource limitations. Copyright © 2015 Elsevier Inc. All rights reserved.
Various background pattern-effect on saccadic suppression.
Mitrani, L; Radil-Weiss, T; Yakimoff, N; Mateeff, S; Bozkov, V
1975-09-01
It has been proved that the saccadic suppression is a phenomenon closely related to the presence of contours and structures in the visual field. Experiments were performed to clarify whether the structured background influences the pattern of attention distribution (making the stimulus detection more difficult) or whether the elevation of visual threshold is due to the "masking' effect of the moving background image over the retina. Two types of backgrounds were used therefore: those with symbolic meaning in the processing of which "psychological' mechanisms are presumably involved like picture reproductions of famous painters and photographs of nudes, and those lacking semantic significance like computer figures composed of randomly distributed black and white squares with different grain expressed as the entropy of the pattern. The results show that saccadic suppression is primarily a consequence of peripheral mechanisms, probably of lateral inhibition in the visual field occurring in the presence of moving edges over the retina. Psychological factors have to be excluded as being fundamental for saccadic suppression.
Dynamic representation of partially occluded objects in primate prefrontal and visual cortex
Choi, Hannah; Shea-Brown, Eric
2017-01-01
Successful recognition of partially occluded objects is presumed to involve dynamic interactions between brain areas responsible for vision and cognition, but neurophysiological evidence for the involvement of feedback signals is lacking. Here, we demonstrate that neurons in the ventrolateral prefrontal cortex (vlPFC) of monkeys performing a shape discrimination task respond more strongly to occluded than unoccluded stimuli. In contrast, neurons in visual area V4 respond more strongly to unoccluded stimuli. Analyses of V4 response dynamics reveal that many neurons exhibit two transient response peaks, the second of which emerges after vlPFC response onset and displays stronger selectivity for occluded shapes. We replicate these findings using a model of V4/vlPFC interactions in which occlusion-sensitive vlPFC neurons feed back to shape-selective V4 neurons, thereby enhancing V4 responses and selectivity to occluded shapes. These results reveal how signals from frontal and visual cortex could interact to facilitate object recognition under occlusion. PMID:28925354
Escribano, Julio; Coca-Prados, Miguel
2002-08-28
The ciliary body is largely known for its major roles in the regulation of aqueous humor secretion, intraocular pressure, and accommodation of the lens. In this review article we applied bioinformatics to re-examine hundreds of expressed sequence tags (ESTs) previously isolated by subtractive hybridization from a human ciliary body library [1]. The DNA sequences of these clones have been recently added to the web site of NEIBank. DNA sequence comparisons of subtracted ESTs were performed against all entries in the last available release of the non-redundant database containing GenBank, EMBL, DDBJ and PDB sequences using the BlastN program accessed through NCBI's BLAST services on the internet (NCBI). Sequences were also compared and mapped using the Blast search program provided through the Internet by the Human Genome Project (UCSC). A total number of 284 independent ESTs were classified in 17 functional groups. Analysis of their relationships allowed to define the expression of five major groups of known genes: (i) protein synthesis, folding, secretion and degradation (20%); (ii) energy supply and biosynthesis (12%); (iii) contractility and cytoskeleton structure (6%); (iv) cellular signaling and cell cycle regulation (7%); and (v) nerve cell related tasks (2%), including neuropeptide processing and putative non-visual phototransduction and circadian rhythm control. The largest group contain unidentified sequences, a total of 105 sequences, accounting for 37% of ESTs. The unidentified sequences show similarity to genomic non-coding regions, or genes of unknown function. The most highly represented EST, correspond to myocilin, a gene involved in glaucoma. The data also confirms the secretory functions of the ciliary epithelium, and its high metabolism; the presence of a neuroendocrine peptidergic system presumably involved in the regulation of the intraocular pressure and/or aqueous humor secretion. Additional genes may be related to a non-visual phototransduction cascade and/or to circadian rhythms. Overall this initial group of subtracted ESTs can lead to uncover novel physiological functions of the ciliary body in normal and in disease, as well as novel candidate genes for ocular diseases.
van der Vos, Kristan E.; Abels, Erik R.; Zhang, Xuan; Lai, Charles; Carrizosa, Esteban; Oakley, Derek; Prabhakar, Shilpa; Mardini, Osama; Crommentuijn, Matheus H. W.; Skog, Johan; Krichevsky, Anna M.; Stemmer-Rachamimov, Anat; Mempel, Thorsten R.; El Khoury, Joseph; Hickman, Suzanne E.; Breakefield, Xandra O.
2016-01-01
Background To understand the ability of gliomas to manipulate their microenvironment, we visualized the transfer of vesicles and the effects of tumor-released extracellular RNA on the phenotype of microglia in culture and in vivo. Methods Extracellular vesicles (EVs) released from primary human glioblastoma (GBM) cells were isolated and microRNAs (miRNAs) were analyzed. Primary mouse microglia were exposed to GBM-EVs, and their uptake and effect on proliferation and levels of specific miRNAs, mRNAs, and proteins were analyzed. For in vivo analysis, mouse glioma cells were implanted in the brains of mice, and EV release and uptake by microglia and monocytes/macrophages were monitored by intravital 2-photon microscopy, immunohistochemistry, and fluorescence activated cell sorting analysis, as well as RNA and protein levels. Results Microglia avidly took up GBM-EVs, leading to increased proliferation and shifting of their cytokine profile toward immune suppression. High levels of miR-451/miR-21 in GBM-EVs were transferred to microglia with a decrease in the miR-451/miR-21 target c-Myc mRNA. In in vivo analysis, we directly visualized release of EVs from glioma cells and their uptake by microglia and monocytes/macrophages in brain. Dissociated microglia and monocytes/macrophages from tumor-bearing brains revealed increased levels of miR-21 and reduced levels of c-Myc mRNA. Conclusions Intravital microscopy confirms the release of EVs from gliomas and their uptake into microglia and monocytes/macrophages within the brain. Our studies also support functional effects of GBM-released EVs following uptake into microglia, associated in part with increased miRNA levels, decreased target mRNAs, and encoded proteins, presumably as a means for the tumor to manipulate its environs. PMID:26433199
2012-01-01
Background Real-time cardiovascular magnetic resonance (rtCMR) is considered attractive for guiding TAVI. Owing to an unlimited scan plane orientation and an unsurpassed soft-tissue contrast with simultaneous device visualization, rtCMR is presumed to allow safe device navigation and to offer optimal orientation for precise axial positioning. We sought to evaluate the preclinical feasibility of rtCMR-guided transarterial aortic valve implatation (TAVI) using the nitinol-based Medtronic CoreValve bioprosthesis. Methods rtCMR-guided transfemoral (n = 2) and transsubclavian (n = 6) TAVI was performed in 8 swine using the original CoreValve prosthesis and a modified, CMR-compatible delivery catheter without ferromagnetic components. Results rtCMR using TrueFISP sequences provided reliable imaging guidance during TAVI, which was successful in 6 swine. One transfemoral attempt failed due to unsuccessful aortic arch passage and one pericardial tamponade with subsequent death occurred as a result of ventricular perforation by the device tip due to an operating error, this complication being detected without delay by rtCMR. rtCMR allowed for a detailed, simultaneous visualization of the delivery system with the mounted stent-valve and the surrounding anatomy, resulting in improved visualization during navigation through the vasculature, passage of the aortic valve, and during placement and deployment of the stent-valve. Post-interventional success could be confirmed using ECG-triggered time-resolved cine-TrueFISP and flow-sensitive phase-contrast sequences. Intended valve position was confirmed by ex-vivo histology. Conclusions Our study shows that rtCMR-guided TAVI using the commercial CoreValve prosthesis in conjunction with a modified delivery system is feasible in swine, allowing improved procedural guidance including immediate detection of complications and direct functional assessment with reduction of radiation and omission of contrast media. PMID:22453050
Kahlert, Philipp; Parohl, Nina; Albert, Juliane; Schäfer, Lena; Reinhardt, Renate; Kaiser, Gernot M; McDougall, Ian; Decker, Brad; Plicht, Björn; Erbel, Raimund; Eggebrecht, Holger; Ladd, Mark E; Quick, Harald H
2012-03-27
Real-time cardiovascular magnetic resonance (rtCMR) is considered attractive for guiding TAVI. Owing to an unlimited scan plane orientation and an unsurpassed soft-tissue contrast with simultaneous device visualization, rtCMR is presumed to allow safe device navigation and to offer optimal orientation for precise axial positioning. We sought to evaluate the preclinical feasibility of rtCMR-guided transarterial aortic valve implatation (TAVI) using the nitinol-based Medtronic CoreValve bioprosthesis. rtCMR-guided transfemoral (n = 2) and transsubclavian (n = 6) TAVI was performed in 8 swine using the original CoreValve prosthesis and a modified, CMR-compatible delivery catheter without ferromagnetic components. rtCMR using TrueFISP sequences provided reliable imaging guidance during TAVI, which was successful in 6 swine. One transfemoral attempt failed due to unsuccessful aortic arch passage and one pericardial tamponade with subsequent death occurred as a result of ventricular perforation by the device tip due to an operating error, this complication being detected without delay by rtCMR. rtCMR allowed for a detailed, simultaneous visualization of the delivery system with the mounted stent-valve and the surrounding anatomy, resulting in improved visualization during navigation through the vasculature, passage of the aortic valve, and during placement and deployment of the stent-valve. Post-interventional success could be confirmed using ECG-triggered time-resolved cine-TrueFISP and flow-sensitive phase-contrast sequences. Intended valve position was confirmed by ex-vivo histology. Our study shows that rtCMR-guided TAVI using the commercial CoreValve prosthesis in conjunction with a modified delivery system is feasible in swine, allowing improved procedural guidance including immediate detection of complications and direct functional assessment with reduction of radiation and omission of contrast media.
Functional vision in children with perinatal brain damage.
Alimović, Sonja; Jurić, Nikolina; Bošnjak, Vlatka Mejaški
2014-09-01
Many authors have discussed the effects of visual stimulations on visual functions, but there is no research about the effects on using vision in everyday activities (i.e. functional vision). Children with perinatal brain damage can develop cerebral visual impairment with preserved visual functions (e.g. visual acuity, contrast sensitivity) but poor functional vision. Our aim was to discuss the importance of assessing and stimulating functional vision in children with perinatal brain damage. We assessed visual functions (grating visual acuity, contrast sensitivity) and functional vision (the ability of maintaining visual attention and using vision in communication) in 99 children with perinatal brain damage and visual impairment. All children were assessed before and after the visual stimulation program. Our first assessment results showed that children with perinatal brain damage had significantly more problems in functional vision than in basic visual functions. During the visual stimulation program both variables of functional vision and contrast sensitivity improved significantly, while grating acuity improved only in 2.7% of children. We also found that improvement of visual attention significantly correlated to improvement on all other functions describing vision. Therefore, functional vision assessment, especially assessment of visual attention is indispensable in early monitoring of child with perinatal brain damage.
Ajaiyeoba, A I; Isawumi, M A; Adeoye, A O; Oluleye, T S
2005-01-01
The aim of the study was to assess the prevalence and identify the causes of blindness and visual impairment in school children of Ilesa-East Local Government Area of Osun State, Nigeria. A total of 1144 school children in primary and secondary schools were selected using a 2-stage random sampling method and examined to determine the prevalence and causes of blindness and visual impairment. A total of 17 (1.48%) children were blind or visually impaired. These comprised of 11 (0.96%) children who were visually impaired and 4 (0.3%) who were severely visually impaired. Only 2 (0.15%) school children were blind. The causes of visual impairment were refractive error 10 (0.87%) and immature cataract 1 (0.08%), causes of severe visual impairment included corneal opacities 2 (0.2%), amblyopia leading to squint 1 (0.08%) and 1 cataract 1 (0.08%). The causes of blindness in school children were corneal scars presumed to be due to vitamin A deficiency 1 (0.08%) and keratoconus 1 (0.08%). Causes of blindness and visual impairment in children attending regular schools in Nigeria were treatable. Prevention, early recognition and prompt treatment of these diseases by regular screening of school children would definitely reduce unnecessary visual handicap in Nigerian school children so that they can attain their full potential in the course of their education. Also, information from this study is relevant for the purpose of planning eye care programmes for the prevention of blindness in Nigerian school children. This will go a long way in the prevention of unnecessary blindness and visual impairment in school children.
Aviation spatial orientation in relationship to head position and attitude interpretation.
Patterson, F R; Cacioppo, A J; Gallimore, J J; Hinman, G E; Nalepka, J P
1997-06-01
Conventional wisdom describing aviation spatial awareness assumes that pilots view a moving horizon through the windscreen. This assumption presupposes head alignment with the cockpit "Z" axis during both visual (VMC) and instrument (IMC) maneuvers. Even though this visual paradigm is widely accepted, its accuracy has not been verified. The purpose of this research was to determine if a visually induced neck reflex causes pilots to align their heads toward the horizon, rather than the cockpit vertical axis. Based on literature describing reflexive head orientation in terrestrial environments it was hypothesized that during simulated VMC aircraft maneuvers, pilots would align their heads toward the horizon. Some 14 military pilots completed two simulated flights in a stationary dome simulator. The flight profile consisted of five separate tasks, four of which evaluated head tilt during exposure to unique visual conditions and one examined occurrences of disorientation during unusual attitude recovery. During simulated visual flight maneuvers, pilots tilted their heads toward the horizon (p < 0.0001). Under IMC, pilots maintained head alignment with the vertical axis of the aircraft. During VMC maneuvers pilots reflexively tilt their heads toward the horizon, away from the Gz axis of the cockpit. Presumably, this behavior stabilizes the retinal image of the horizon (1 degree visual-spatial cue), against which peripheral images of the cockpit (2 degrees visual-spatial cue) appear to move. Spatial disorientation, airsickness, and control reversal error may be related to shifts in visual-vestibular sensory alignment during visual transitions between VMC (head tilt) and IMC (Gz head stabilized) conditions.
Shostak, Yuri; Wenger, Ashley; Mavity-Hudson, Julia; Casagrande, Vivien A
2014-09-24
Glutamate is used as an excitatory neurotransmitter by the koniocellular (K), magnocellular (M), and parvocellular (P) pathways to transfer signals from the primate lateral geniculate nucleus (LGN) to primary visual cortex (V1). Glutamate acts through both fast ionotropic receptors, which appear to carry the main sensory message, and slower, modulatory metabotropic receptors (mGluRs). In this study, we asked whether mGluR5 relates in distinct ways to the K, M, and P LGN axons in V1. To answer this question, we used light microscopic immunocytochemistry and preembedding electron microscopic immunogold labeling to determine the localization of mGluR5 within the layers of V1 in relation to the K, M, and P pathways in macaque and squirrel monkeys. These pathways were labeled separately via wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injections targeting the LGN layers. mGluR5 is of interest because it: 1) has been shown to be expressed in the thalamic input layers; 2) appears to be responsible for some types of oscillatory firing, which could be important in the binding of visual features; and 3) has been associated with a number of sensory-motor gating-related pathologies, including schizophrenia and autism. Our results demonstrated the presence of mGluR5 in the neuropil of all V1 layers. This protein was lowest in IVCα (M input) and the infragranular layers. In layer IVC, mGluR5 also was found postsynaptic to about 30% of labeled axons, but the distribution was uneven, such that postsynaptic mGluR5 label tended to occur opposite smaller (presumed P), and not larger (presumed M) axon terminals. Only in the K pathway in layer IIIB, however, was mGluR5 always found in the axon terminals themselves. The presence of mGluR5 in K axons and not in M and P axons, and the presence of mGluR5 postsynaptic mainly to smaller P and not larger M axons suggest that the response to the release of glutamate is modulated in distinct ways within and between the parallel visual pathways of primates.
Fundus Autofluorescence Imaging of the White Dot Syndromes
Yeh, Steven; Forooghian, Farzin; Wong, Wai T.; Faia, Lisa J.; Cukras, Catherine; Lew, Julie C.; Wroblewski, Keith; Weichel, Eric D.; Meyerle, Catherine B.; Sen, Hatice Nida; Chew, Emily Y.; Nussenblatt, Robert B.
2011-01-01
Objective To characterize the fundus autofluorescence (FAF) findings in patients with white dot syndromes (WDSs). Methods Patients with WDSs underwent ophthalmic examination, fundus photography, fluorescein angiography, and FAF imaging. Patients were categorized as having no, minimal, or predominant foveal hypoautofluorescence. The severity of visual impairment was then correlated with the degree of foveal hypoautofluorescence. Results Fifty-five eyes of 28 patients with WDSs were evaluated. Visual acuities ranged from 20/12.5 to hand motions. Diagnoses included serpiginous choroidopathy (5 patients), birdshot retinochoroidopathy (10), multifocal choroiditis (8), relentless placoid chorioretinitis (1), presumed tuberculosis-associated serpiginouslike choroidopathy (1), acute posterior multifocal placoid pigment epitheliopathy (1), and acute zonal occult outer retinopathy (2). In active serpiginous choroidopathy, notable hyperautofluorescence in active disease distinguished it from the variegated FAF features of tuberculosis-associated serpiginouslike choroidopathy. The percentage of patients with visual acuity impairment of less than 20/40 differed among eyes with no, minimal, and predominant foveal hypoautofluorescence (P<.001). Patients with predominant foveal hypoautofluorescence demonstrated worse visual acuity than those with minimal or no foveal hypoautofluorescence (both P<.001). Conclusions Fundus autofluorescence imaging is useful in the evaluation of the WDS. Visual acuity impairment is correlated with foveal hypoautofluorescence. Further studies are needed to evaluate the precise role of FAF imaging in the WDSs. PMID:20065216
Fundus autofluorescence imaging of the white dot syndromes.
Yeh, Steven; Forooghian, Farzin; Wong, Wai T; Faia, Lisa J; Cukras, Catherine; Lew, Julie C; Wroblewski, Keith; Weichel, Eric D; Meyerle, Catherine B; Sen, Hatice Nida; Chew, Emily Y; Nussenblatt, Robert B
2010-01-01
To characterize the fundus autofluorescence (FAF) findings in patients with white dot syndromes (WDSs). Patients with WDSs underwent ophthalmic examination, fundus photography, fluorescein angiography, and FAF imaging. Patients were categorized as having no, minimal, or predominant foveal hypoautofluorescence. The severity of visual impairment was then correlated with the degree of foveal hypoautofluorescence. Fifty-five eyes of 28 patients with WDSs were evaluated. Visual acuities ranged from 20/12.5 to hand motions. Diagnoses included serpiginous choroidopathy (5 patients), birdshot retinochoroidopathy (10), multifocal choroiditis (8), relentless placoid chorioretinitis (1), presumed tuberculosis-associated serpiginouslike choroidopathy (1), acute posterior multifocal placoid pigment epitheliopathy (1), and acute zonal occult outer retinopathy (2). In active serpiginous choroidopathy, notable hyperautofluorescence in active disease distinguished it from the variegated FAF features of tuberculosis-associated serpiginouslike choroidopathy. The percentage of patients with visual acuity impairment of less than 20/40 differed among eyes with no, minimal, and predominant foveal hypoautofluorescence (P < .001). Patients with predominant foveal hypoautofluorescence demonstrated worse visual acuity than those with minimal or no foveal hypoautofluorescence (both P < .001). Fundus autofluorescence imaging is useful in the evaluation of the WDS. Visual acuity impairment is correlated with foveal hypoautofluorescence. Further studies are needed to evaluate the precise role of FAF imaging in the WDSs.
Delhey, Kaspar; Hall, Michelle; Kingma, Sjouke A; Peters, Anne
2013-01-07
Colour signals are expected to match visual sensitivities of intended receivers. In birds, evolutionary shifts from violet-sensitive (V-type) to ultraviolet-sensitive (U-type) vision have been linked to increased prevalence of colours rich in shortwave reflectance (ultraviolet/blue), presumably due to better perception of such colours by U-type vision. Here we provide the first test of this widespread idea using fairy-wrens and allies (Family Maluridae) as a model, a family where shifts in visual sensitivities from V- to U-type eyes are associated with male nuptial plumage rich in ultraviolet/blue colours. Using psychophysical visual models, we compared the performance of both types of visual systems at two tasks: (i) detecting contrast between male plumage colours and natural backgrounds, and (ii) perceiving intraspecific chromatic variation in male plumage. While U-type outperforms V-type vision at both tasks, the crucial test here is whether U-type vision performs better at detecting and discriminating ultraviolet/blue colours when compared with other colours. This was true for detecting contrast between plumage colours and natural backgrounds (i), but not for discriminating intraspecific variability (ii). Our data indicate that selection to maximize conspicuousness to conspecifics may have led to the correlation between ultraviolet/blue colours and U-type vision in this clade of birds.
Biases in rhythmic sensorimotor coordination: effects of modality and intentionality.
Debats, Nienke B; Ridderikhoff, Arne; de Boer, Betteco J; Peper, C Lieke E
2013-08-01
Sensorimotor biases were examined for intentional (tracking task) and unintentional (distractor task) rhythmic coordination. The tracking task involved unimanual tracking of either an oscillating visual signal or the passive movements of the contralateral hand (proprioceptive signal). In both conditions the required coordination patterns (isodirectional and mirror-symmetric) were defined relative to the body midline and the hands were not visible. For proprioceptive tracking the two patterns did not differ in stability, whereas for visual tracking the isodirectional pattern was performed more stably than the mirror-symmetric pattern. However, when visual feedback about the unimanual hand movements was provided during visual tracking, the isodirectional pattern ceased to be dominant. Together these results indicated that the stability of the coordination patterns did not depend on the modality of the target signal per se, but on the combination of sensory signals that needed to be processed (unimodal vs. cross-modal). The distractor task entailed rhythmic unimanual movements during which a rhythmic visual or proprioceptive distractor signal had to be ignored. The observed biases were similar as for intentional coordination, suggesting that intentionality did not affect the underlying sensorimotor processes qualitatively. Intentional tracking was characterized by active sensory pursuit, through muscle activity in the passively moved arm (proprioceptive tracking task) and rhythmic eye movements (visual tracking task). Presumably this pursuit afforded predictive information serving the coordination process. Copyright © 2013 Elsevier B.V. All rights reserved.
Ordóñez-Gómez, José D; Santillán-Doherty, Ana M; Fischer, Julia; Hammerschmidt, Kurt
2018-04-01
Due to several factors such as ecological conditions, group size, and social organization, primates frequently spend time out of visual contact with individuals of their own group. Through the use of long-distance vocalizations, often termed "contact calls," primates are able to maintain contact with out-of-sight individuals. Contact calls have been shown to be individually distinct, and reverberation and attenuation provide information about caller distance. It is less clear, however, whether callers actively change the structure of contact calls depending on the distance to the presumed listeners. We studied this question in spider monkeys (Ateles geoffroyi), a species with complex spatial dynamics (fission-fusion society) that produces highly frequency modulated contact calls, denominated "whinnies." We determined the acoustic characteristics of 566 whinnies recorded from 35 free-ranging spider monkeys that belong to a community located in Mexico, and used cluster analyses, discriminant function analyses, and generalized linear mixed models to assess if they varied in relation to the presumed distance to the listener. Whinnies could be grouped into five subtypes. Since the lowest frequency subtype was mainly produced by spider monkeys that exchanged whinnies at longer distances, and lower frequency calls propagate across longer distances, our results suggest that whinnies vary in order to enhance vocal contact between individuals separated by different distances. Our results also revealed that whinnies convey potential information about caller immediate behaviors and corroborated that these calls are individually distinct. Overall, our results suggest that whinny acoustic variation facilitates the maintenance of vocal contact between individuals living in a society with complex spatial dynamics. © 2018 Wiley Periodicals, Inc.
Gilaie-Dotan, Sharon
2016-03-01
A key question in visual neuroscience is the causal link between specific brain areas and perceptual functions; which regions are necessary for which visual functions? While the contribution of primary visual cortex and high-level visual regions to visual perception has been extensively investigated, the contribution of intermediate visual areas (e.g. V2/V3) to visual processes remains unclear. Here I review more than 20 visual functions (early, mid, and high-level) of LG, a developmental visual agnosic and prosopagnosic young adult, whose intermediate visual regions function in a significantly abnormal fashion as revealed through extensive fMRI and ERP investigations. While expectedly, some of LG's visual functions are significantly impaired, some of his visual functions are surprisingly normal (e.g. stereopsis, color, reading, biological motion). During the period of eight-year testing described here, LG trained on a perceptual learning paradigm that was successful in improving some but not all of his visual functions. Following LG's visual performance and taking into account additional findings in the field, I propose a framework for how different visual areas contribute to different visual functions, with an emphasis on intermediate visual regions. Thus, although rewiring and plasticity in the brain can occur during development to overcome and compensate for hindering developmental factors, LG's case seems to indicate that some visual functions are much less dependent on strict hierarchical flow than others, and can develop normally in spite of abnormal mid-level visual areas, thereby probably less dependent on intermediate visual regions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Attention mechanisms in visual search -- an fMRI study.
Leonards, U; Sunaert, S; Van Hecke, P; Orban, G A
2000-01-01
The human visual system is usually confronted with many different objects at a time, with only some of them reaching consciousness. Reaction-time studies have revealed two different strategies by which objects are selected for further processing: an automatic, efficient search process, and a conscious, so-called inefficient search [Treisman, A. (1991). Search, similarity, and integration of features between and within dimensions. Journal of Experimental Psychology: Human Perception and Performance, 17, 652--676; Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97--136; Wolfe, J. M. (1996). Visual search. In H. Pashler (Ed.), Attention. London: University College London Press]. Two different theories have been proposed to account for these search processes. Parallel theories presume that both types of search are treated by a single mechanism that is modulated by attentional and computational demands. Serial theories, in contrast, propose that parallel processing may underlie efficient search, but inefficient searching requires an additional serial mechanism, an attentional "spotlight" (Treisman, A., 1991) that successively shifts attention to different locations in the visual field. Using functional magnetic resonance imaging (fMRI), we show that the cerebral networks involved in efficient and inefficient search overlap almost completely. Only the superior frontal region, known to be involved in working memory [Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., & Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex. Science, 279, 1347--1351], and distinct from the frontal eye fields, that control spatial shifts of attention, was specifically involved in inefficient search. Activity modulations correlated with subjects' behavior best in the extrastriate cortical areas, where the amount of activity depended on the number of distracting elements in the display. Such a correlation was not observed in the parietal and frontal regions, usually assumed as being involved in spatial attention processing. These results can be interpreted in two ways: the most likely is that visual search does not require serial processing, otherwise we must assume the existence of a serial searchlight that operates in the extrastriate cortex but differs from the visuospatial shifts of attention involving the parietal and frontal regions.
van Hoesel, Richard J M
2015-04-01
One of the key benefits of using cochlear implants (CIs) in both ears rather than just one is improved localization. It is likely that in complex listening scenes, improved localization allows bilateral CI users to orient toward talkers to improve signal-to-noise ratios and gain access to visual cues, but to date, that conjecture has not been tested. To obtain an objective measure of that benefit, seven bilateral CI users were assessed for both auditory-only and audio-visual speech intelligibility in noise using a novel dynamic spatial audio-visual test paradigm. For each trial conducted in spatially distributed noise, first, an auditory-only cueing phrase that was spoken by one of four talkers was selected and presented from one of four locations. Shortly afterward, a target sentence was presented that was either audio-visual or, in another test configuration, audio-only and was spoken by the same talker and from the same location as the cueing phrase. During the target presentation, visual distractors were added at other spatial locations. Results showed that in terms of speech reception thresholds (SRTs), the average improvement for bilateral listening over the better performing ear alone was 9 dB for the audio-visual mode, and 3 dB for audition-alone. Comparison of bilateral performance for audio-visual and audition-alone showed that inclusion of visual cues led to an average SRT improvement of 5 dB. For unilateral device use, no such benefit arose, presumably due to the greatly reduced ability to localize the target talker to acquire visual information. The bilateral CI speech intelligibility advantage over the better ear in the present study is much larger than that previously reported for static talker locations and indicates greater everyday speech benefits and improved cost-benefit than estimated to date.
Wang, Xian-Ling; Dou, Jing-Tao; Lü, Zhao-Hui; Zhong, Wen-Wen; Ba, Jian-Ming; Jin, Du; Lu, Ju-Ming; Pan, Chang-Yu; Mu, Yi-Ming
2011-11-01
Subclinical apoplexy of pituitary functional adenoma can cause spontaneous remission of hormone hypersecretion. The typical presence of pituitary growth hormone (GH) adenoma is gigantism and/or acromegaly. We investigated the clinical characteristics of patients with spontaneous partial remission of acromegaly or gigantism due to subclinical apoplexy of GH adenoma. Six patients with spontaneous remission of acromegaly or gigantism were enrolled. The clinical characteristics, endocrinological evaluation and imageological characteristics were retrospectively analyzed. In these cases, the initial clinical presences were diabetes mellitus or hypogonadism. No abrupt headache, vomiting, visual function impairment, or conscious disturbance had ever been complained of. The base levels of GH and insulin growth factor-1 (IGF-1) were normal or higher, but nadir GH levels were all still > 1 µg/L in 75 g oral glucose tolerance test. Magnetic resonance imaging detected enlarged sella, partial empty sella and compressed pituitary. The transsphenoidal surgery was performed in 2 cases, and the other patients were conservatively managed. All the patients were in clinical remission. When the clinical presences, endocrine evaluation, biochemical examination and imageology indicate spontaneous remission of GH hypersecretion in patients with gigantism or acromegaly, the diagnosis of subclinical apoplexy of pituitary GH adenoma should be presumed. To these patients, conservative therapy may be appropriate.
Incekara, Fatih; Satoer, Djaina; Visch-Brink, Evy; Vincent, Arnaud; Smits, Marion
2018-06-08
OBJECTIVE The authors conducted a study to determine whether cognitive functioning of patients with presumed low-grade glioma is associated with white matter (WM) tract changes. METHODS The authors included 77 patients with presumed low-grade glioma who underwent awake surgery between 2005 and 2013. Diffusion tensor imaging with deterministic tractography was performed preoperatively to identify the arcuate, inferior frontooccipital, and uncinate fasciculi and to obtain the mean fractional anisotropy (FA) and mean diffusivity per tract. All patients were evaluated preoperatively using an extensive neuropsychological protocol that included assessments of the language, memory, and attention/executive function domains. Linear regression models were used to analyze each cognitive domain and each diffusion tensor imaging metric of the 3 WM tracts. RESULTS Significant correlations (corrected for multiple testing) were found between FA of the arcuate fasciculus and results of the repetition test for the language domain (β = 0.59, p < 0.0001) and between FA of the inferior frontooccipital fasciculus and results of the imprinting test for the memory domain (β = -0.55, p = 0.002) and the attention test for the attention and executive function domain (β = -0.62, p = 0.006). CONCLUSIONS In patients with glioma, language deficits in repetition of speech, imprinting, and attention deficits are associated with changes in the microarchitecture of the arcuate and inferior frontooccipital fasciculi.
"The Memory of Beauty" Survives Alzheimer's Disease (but Cannot Help Memory).
Silveri, Maria Caterina; Ferrante, Ilaria; Brita, Anna Clelia; Rossi, Paola; Liperoti, Rosa; Mammarella, Federica; Bernabei, Roberto; Marini Chiarelli, Maria Vittoria; De Luca, Martina
2015-01-01
The aesthetic experience, in particular the experience of beauty in the visual arts, should have neural correlates in the human brain. Neuroesthetics is principally implemented by functional studies in normal subjects, but the neuropsychology of the aesthetic experience, that is, the impact of brain damage on the appreciation of works of art, is a neglected field. Here, 16 mild to moderate Alzheimer's disease patients and 15 caregivers expressed their preference on 16 works of art (eight representational and eight abstract) during programmed visits to an art gallery. A week later, all subjects expressed a preference rate on reproductions of the same works presented in the gallery. Both patients and caregivers were consistent in assigning preference ratings, and in patients consistency was independent of the ability to recognize the works on which the preference rate had been given in an explicit memory task. Caregivers performed at ceiling in the memory task. Both patients and caregivers assigned higher preference ratings for representational than for abstract works and preference consistency was comparable in representational and abstract works. Furthermore, in the memory task, patients did not recognize better artworks they had assigned higher preference ratings to, suggesting that emotional stimuli (as presumably visual works of art are) cannot enhance declarative memory in this pathology. Our data, which were gathered in an ecological context and with real-world stimuli, confirm previous findings on the stability of aesthetic preference in patients with Alzheimer's disease and on the independence of aesthetic preference from cognitive abilities such as memory.
Exploration of thermal counterflow in He II using particle tracking velocimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mastracci, Brian; Guo, Wei
Flow visualization using particle image velocimetry (PIV) and particularly particle tracking velocimetry (PTV) has been applied to thermal counterflow in He II for nearly two decades now, but the results remain difficult to interpret because tracer particle motion can be influenced by both the normal fluid and superfluid components of He II as well as the quantized vortex tangle. For instance, in one early experiment it was observed (using PTV) that tracer particles move at the normal fluid velocity v n, while in another it was observed (using PIV) that particles move at v n/2. Besides the different visualization methods,more » the range of applied heat flux investigated by these experiments differed by an order of magnitude. To resolve this apparent discrepancy and explore the statistics of particle motion in thermal counterflow, we apply the PTV method to a wide range of heat flux at a number of different fluid temperatures. In our analysis, we introduce a scheme for analyzing the velocity of particles presumably moving with the normal fluid separately from those presumably influenced by the quantized vortex tangle. Our results show that for lower heat flux there are two distinct peaks in the streamwise particle velocity probability density function (PDF), with one centered at the normal fluid velocity v n (named G2 for convenience) while the other is centered near v n/2 (G1). For higher heat flux there is a single peak centered near v n/2 (G3). Using our separation scheme, we show quantitatively that there is no size difference between the particles contributing to G1 and G2. We also show that nonclassical features of the transverse particle velocity PDF arise entirely from G1, while the corresponding PDF for G2 exhibits the classical Gaussian form. The G2 transverse velocity fluctuation, backed up by second sound attenuation in decaying counterflow, suggests that large-scale turbulence in the normal fluid is absent from the two-peak region. We offer a brief discussion of the physical mechanisms that may be responsible for our observations, revealing that G1 velocity fluctuations may be linked to fluctuations of quantized vortex line velocity, and suggest a number of numerical simulations that may reveal the underlying physics in detail.« less
Exploration of thermal counterflow in He II using particle tracking velocimetry
Mastracci, Brian; Guo, Wei
2018-06-22
Flow visualization using particle image velocimetry (PIV) and particularly particle tracking velocimetry (PTV) has been applied to thermal counterflow in He II for nearly two decades now, but the results remain difficult to interpret because tracer particle motion can be influenced by both the normal fluid and superfluid components of He II as well as the quantized vortex tangle. For instance, in one early experiment it was observed (using PTV) that tracer particles move at the normal fluid velocity v n, while in another it was observed (using PIV) that particles move at v n/2. Besides the different visualization methods,more » the range of applied heat flux investigated by these experiments differed by an order of magnitude. To resolve this apparent discrepancy and explore the statistics of particle motion in thermal counterflow, we apply the PTV method to a wide range of heat flux at a number of different fluid temperatures. In our analysis, we introduce a scheme for analyzing the velocity of particles presumably moving with the normal fluid separately from those presumably influenced by the quantized vortex tangle. Our results show that for lower heat flux there are two distinct peaks in the streamwise particle velocity probability density function (PDF), with one centered at the normal fluid velocity v n (named G2 for convenience) while the other is centered near v n/2 (G1). For higher heat flux there is a single peak centered near v n/2 (G3). Using our separation scheme, we show quantitatively that there is no size difference between the particles contributing to G1 and G2. We also show that nonclassical features of the transverse particle velocity PDF arise entirely from G1, while the corresponding PDF for G2 exhibits the classical Gaussian form. The G2 transverse velocity fluctuation, backed up by second sound attenuation in decaying counterflow, suggests that large-scale turbulence in the normal fluid is absent from the two-peak region. We offer a brief discussion of the physical mechanisms that may be responsible for our observations, revealing that G1 velocity fluctuations may be linked to fluctuations of quantized vortex line velocity, and suggest a number of numerical simulations that may reveal the underlying physics in detail.« less
Wang, Xiaoying; Peelen, Marius V; Han, Zaizhu; He, Chenxi; Caramazza, Alfonso; Bi, Yanchao
2015-09-09
Classical animal visual deprivation studies and human neuroimaging studies have shown that visual experience plays a critical role in shaping the functionality and connectivity of the visual cortex. Interestingly, recent studies have additionally reported circumscribed regions in the visual cortex in which functional selectivity was remarkably similar in individuals with and without visual experience. Here, by directly comparing resting-state and task-based fMRI data in congenitally blind and sighted human subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. We found a close agreement between connectional and functional maps, pointing to a strong interdependence of connectivity and function. Visual experience (or the absence thereof) had a pronounced effect on the resting-state connectivity and functional response profile of occipital cortex and the posterior lateral fusiform gyrus. By contrast, connectional and functional fingerprints in the anterior medial and posterior lateral parts of the ventral visual cortex were statistically indistinguishable between blind and sighted individuals. These results provide a large-scale mapping of the influence of visual experience on the development of both functional and connectivity properties of visual cortex, which serves as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions. Significance statement: How is the functionality and connectivity of the visual cortex shaped by visual experience? By directly comparing resting-state and task-based fMRI data in congenitally blind and sighted subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. In addition to revealing regions that are strongly dependent on visual experience (early visual cortex and posterior fusiform gyrus), our results showed regions in which connectional and functional patterns are highly similar in blind and sighted individuals (anterior medial and posterior lateral ventral occipital temporal cortex). These results serve as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions of the visual cortex. Copyright © 2015 the authors 0270-6474/15/3512545-15$15.00/0.
Functional Differences between Statistical Learning with and without Explicit Training
ERIC Educational Resources Information Center
Batterink, Laura J.; Reber, Paul J.; Paller, Ken A.
2015-01-01
Humans are capable of rapidly extracting regularities from environmental input, a process known as statistical learning. This type of learning typically occurs automatically, through passive exposure to environmental input. The presumed function of statistical learning is to optimize processing, allowing the brain to more accurately predict and…
Sauvanet, Alain; Gaujoux, Sébastien; Blanc, Benjamin; Couvelard, Anne; Dokmak, Safi; Vullierme, Marie-Pierre; Ruszniewski, Philippe; Belghiti, Jacques; Lévy, Philippe
2014-08-01
To assess the feasibility and outcomes of parenchyma-sparing pancreatectomy (PSP), including enucleation (EN), resection of uncinate process (RUP), and central pancreatectomy (CP), as an alternative to standard pancreatectomy for presumed noninvasive intraductal papillary and mucinous neoplasms (IPMNs). Pancreaticoduodenectomy and distal pancreatectomy are associated with significant perioperative morbidity, a substantial risk of pancreatic insufficiency, and may overtreat noninvasive IPMNs. From 1999 to 2011, PSP was attempted in 91 patients with presumed noninvasive IPMNs, after complete preoperative work-up including computed tomography, magnetic resonance imaging, and endoscopic ultrasonography. Intraoperative frozen section examination was routinely performed to assess surgical margins and rule out invasive malignancy. Follow-up included clinical, biochemical, and radiological assessments. Overall PSP was achieved with a feasibility rate of 89% (n = 81), including 44 ENs, 5 RUPs, and 32 CPs. Postoperative mortality rate was 1.3% (n = 1), and overall morbidity was noteworthy (61%; n = 47). Definitive pathological examination confirmed IPMN diagnosis in 95% of patients (n = 77), all except 2 (3%), without invasive component. After a median follow-up of 50 months, both pancreatic endocrine/exocrine functions were preserved in 92% of patients. Ten-year progression-free survival was 76%, and reoperation for recurrence was required in 4% of patients (n = 3). In selected patients, PSP for presumed noninvasive IPMN in experienced hands is highly feasible and avoids inappropriate standard resections for IPMN-mimicking lesions. Early morbidity is greater than that after standard resections but counterbalanced by preservation of pancreatic endocrine/exocrine functions and a low rate of reoperation for tumor recurrence.
Mailleux, Lisa; Klingels, Katrijn; Fiori, Simona; Simon-Martinez, Cristina; Demaerel, Philippe; Locus, Marlies; Fosseprez, Eva; Boyd, Roslyn N; Guzzetta, Andrea; Ortibus, Els; Feys, Hilde
2017-09-01
Upper limb (UL) function in children with unilateral cerebral palsy (CP) vary largely depending on presumed timing, location and extent of brain lesions. These factors might exhibit a complex interaction and the combined prognostic value warrants further investigation. This study aimed to map lesion location and extent and assessed whether these differ according to presumed lesion timing and to determine the impact of structural brain damage on UL function within different lesion timing groups. Seventy-three children with unilateral CP (mean age 10 years 2 months) were classified according to lesion timing: malformations (N = 2), periventricular white matter (PWM, N = 42) and cortical and deep grey matter (CDGM, N = 29) lesions. Neuroanatomical damage was scored using a semi-quantitative MRI scale. UL function was assessed at body function and activity level. CDGM lesions were more pronounced compared to PWM lesions (p = 0.0003). Neuroanatomical scores were correlated with a higher degree to UL function in the CDGM group (r s = -0.39 to r s = -0.84) compared to the PWM group (r rb = -0.42 to r s = -0.61). Regression analysis found lesion location and extent to explain 75% and 65% (p < 0.02) respectively, of the variance in AHA performance in the CDGM group, but only 24% and 12% (p < 0.03) in the PWM group. In the CDGM group, lesion location and extent seems to impact more on UL function compared to the PWM group. In children with PWM lesions, other factors like corticospinal tract (re)organization and structural connectivity may play an additional role. Copyright © 2017 European Paediatric Neurology Society. All rights reserved.
Sakura, Midori; Lambrinos, Dimitrios; Labhart, Thomas
2008-02-01
Many insects exploit skylight polarization for visual compass orientation or course control. As found in crickets, the peripheral visual system (optic lobe) contains three types of polarization-sensitive neurons (POL neurons), which are tuned to different ( approximately 60 degrees diverging) e-vector orientations. Thus each e-vector orientation elicits a specific combination of activities among the POL neurons coding any e-vector orientation by just three neural signals. In this study, we hypothesize that in the presumed orientation center of the brain (central complex) e-vector orientation is population-coded by a set of "compass neurons." Using computer modeling, we present a neural network model transforming the signal triplet provided by the POL neurons to compass neuron activities coding e-vector orientation by a population code. Using intracellular electrophysiology and cell marking, we present evidence that neurons with the response profile of the presumed compass neurons do indeed exist in the insect brain: each of these compass neuron-like (CNL) cells is activated by a specific e-vector orientation only and otherwise remains silent. Morphologically, CNL cells are tangential neurons extending from the lateral accessory lobe to the lower division of the central body. Surpassing the modeled compass neurons in performance, CNL cells are insensitive to the degree of polarization of the stimulus between 99% and at least down to 18% polarization and thus largely disregard variations of skylight polarization due to changing solar elevations or atmospheric conditions. This suggests that the polarization vision system includes a gain control circuit keeping the output activity at a constant level.
d'Orsi, Giuseppe; Tinuper, Paolo
2006-08-01
Some consider the "voices" of Joan of Arc to have been ecstatic epileptic auras, such as Dostoevsky's epilepsy. We performed a critical analysis of this hypothesis and suggest that the "voices" may be the expression of an epileptic syndrome recently described: idiopathic partial epilepsy with auditory features (IPEAF). Joan's symptoms were obtained from the documentation of her Trial of Condemnation. We investigated Joan of Arc from a strictly semiologic point of view, focusing on symptoms and possible trigger factors. From ages 13 to 19, the episodes were characterized by a prevalent auditory component, followed by "a great light" or images that Joan identified as saints. Sometimes, the visual component was missing and replaced by comprehension verbal disturbance. The spells were sudden, brief in duration, and frequent, and also occurred during sleep. In some cases, the sound of bells could trigger the "voices." Joan's spells were characterized by a constant auditory component, complex, spontaneous, or evoked by sudden auditory stimuli, that could be associated with an inconstant visual component, sometimes simple and, more often, complex, and comprehension verbal disturbance. These spells differ from ecstatic epilepsy with respect to clinical features and involvement of cerebral regions. The negative family history, the ictal semiology, and the possibility that the spells were triggered by acoustic stimuli suggest IPEAF, and the search for the epitempin/LGI1 gene or other new gene mutations on a hair of the Maid of Orléans may enhance our knowledge about her presumed epilepsy.
Milner, A D; Paulignan, Y; Dijkerman, H C; Michel, F; Jeannerod, M
1999-11-07
We tested a patient (A. T.) with bilateral brain damage to the parietal lobes, whose resulting 'optic ataxia' causes her to make large pointing errors when asked to locate single light emitting diodes presented in her visual field. We report here that, unlike normal individuals, A. T.'s pointing accuracy improved when she was required to wait for 5 s before responding. This counter-intuitive result is interpreted as reflecting the very brief time-scale on which visuomotor control systems in the superior parietal lobe operate. When an immediate response was required, A. T.'s damaged visuomotor system caused her to make large errors; but when a delay was required, a different, more flexible, visuospatial coding system--presumably relatively intact in her brain--came into play, resulting in much more accurate responses. The data are consistent with a dual processing theory whereby motor responses made directly to visual stimuli are guided by a dedicated system in the superior parietal and premotor cortices, while responses to remembered stimuli depend on perceptual processing and may thus crucially involve processing within the temporal neocortex.
Bell, Sherry Mee; McCallum, R Steve; Cox, Elizabeth A
2003-01-01
One hundred five participants from a random sample of elementary and middle school children completed measures of reading achievement and cognitive abilities presumed, based on a synthesis of current dyslexia research, to underlie reading. Factor analyses of these cognitive variables (including auditory processing, phonological awareness, short-term auditory memory, visual memory, rapid automatized naming, and visual processing speed) produced three empirically and theoretically derived factors (auditory processing, visual processing/speed, and memory), each of which contributed to the prediction of reading and spelling skills. Factor scores from the three factors combined predicted 85% of the variance associated with letter/sight word naming, 70% of the variance associated with reading comprehension, 73% for spelling, and 61% for phonetic decoding. The auditory processing factor was the strongest predictor, accounting for 27% to 43% of the variance across the different achievement areas. The results provide practitioner and researcher with theoretical and empirical support for the inclusion of measures of the three factors, in addition to specific measures of reading achievement, in a standardized assessment of dyslexia. Guidelines for a thorough, research-based assessment are provided.
Serrano-Ahumada, Ana Silvia; Cortes-González, Vianney; González-Huerta, Luz María; Cuevas, Sergio; Aguilar-Lozano, Luis; Villanueva-Mendoza, Cristina
2018-02-01
The aim of this study was to describe a case of severe keratitis-ichthyosis-deafness (KID) syndrome with ocular surface squamous neoplasia. The affected patient underwent complete ocular and systemic examinations. The molecular studies included polymerase chain reaction amplification and automated DNA sequencing of the complete gap junction beta-2 (GJB2) gene coding sequence. A 30-year-old man presented with generalized erythro-hyperkeratosis and deafness and complaints of decreased visual acuity, tearing, and photophobia. Ophthalmic examination showed corneal erosion, vascularization, and a gray gelatinous lesion partially covering the right cornea, suggestive of squamous neoplasia. The clinical features were characteristic of KID syndrome. This diagnosis was confirmed with a DNA analysis showing the pathogenic variant p.D50N in the GJB2 gene. Presumed squamous neoplasia was treated with topical interferon α2b. KID syndrome is a very rare disease that has been reported with an incremental incidence of squamous cell carcinoma of the mucous membranes and skin (12%-15%). Here, we presented a case of severe systemic KID syndrome with ocular surface squamous neoplasia.
Nonoperative treatment of patients with presumed penile fracture.
Mydlo, J H; Gershbein, A B; Macchia, R J
2001-02-01
Immediate surgical intervention is the basis for treatment of penile fractures due to the high risk of complications associated with conservative management. Unfortunately, patient refusal to undergo surgery has led to conservative treatment of a small group of patients with presumed penile fractures at our institution. We followed these patients in regard to clinical outcome. Between 1992 and 1999, 5 patients were evaluated after blunt trauma to an erect penis. Patient age at presentation ranged from 19 to 31 years (mean 25). The interval from time of injury to presentation was 24 to 72 hours. Of these patients 4 had been injured during sexual intercourse, while 1 had been injured during masturbation. All 5 patients refused immediate surgical exploration for presumed penile fracture. No patient had any immediate complications. At 6 and 12-month followup all patients reported erections adequate for intercourse without associated pain. One patient reported only mild curvature for which he did not seek treatment. We report on a subset of young males with presumed penile fracture who refused diagnostic evaluation and therapy, and were able to maintain normal erectile and voiding function. However, longer followup and radiographic evidence will be necessary to corroborate or refute these initial observations.
Delhey, Kaspar; Hall, Michelle; Kingma, Sjouke A.; Peters, Anne
2013-01-01
Colour signals are expected to match visual sensitivities of intended receivers. In birds, evolutionary shifts from violet-sensitive (V-type) to ultraviolet-sensitive (U-type) vision have been linked to increased prevalence of colours rich in shortwave reflectance (ultraviolet/blue), presumably due to better perception of such colours by U-type vision. Here we provide the first test of this widespread idea using fairy-wrens and allies (Family Maluridae) as a model, a family where shifts in visual sensitivities from V- to U-type eyes are associated with male nuptial plumage rich in ultraviolet/blue colours. Using psychophysical visual models, we compared the performance of both types of visual systems at two tasks: (i) detecting contrast between male plumage colours and natural backgrounds, and (ii) perceiving intraspecific chromatic variation in male plumage. While U-type outperforms V-type vision at both tasks, the crucial test here is whether U-type vision performs better at detecting and discriminating ultraviolet/blue colours when compared with other colours. This was true for detecting contrast between plumage colours and natural backgrounds (i), but not for discriminating intraspecific variability (ii). Our data indicate that selection to maximize conspicuousness to conspecifics may have led to the correlation between ultraviolet/blue colours and U-type vision in this clade of birds. PMID:23118438
Evaluating System Parameters on a Dragonfly using Simulation and Visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatele, Abhinav; Jain, Nikhil; Livnat, Yarden
The dragon y topology is becoming a popular choice for build- ing high-radix, low-diameter networks with high-bandwidth links. Even with a powerful network, preliminary experi- ments on Edison at NERSC have shown that for communica- tion heavy applications, job interference and thus presumably job placement remains an important factor. In this paper, we explore the e ects of job placement, job sizes, parallel workloads and network con gurations on network through- put to better understand inter-job interference. We use a simulation tool called Damsel y to model the network be- havior of Edison and study the impact of various systemmore » parameters on network throughput. Parallel workloads based on ve representative communication patters are used and the simulation studies on up to 131,072 cores are aided by a new visualization of the dragon y network.« less
Auditory environmental context affects visual distance perception.
Etchemendy, Pablo E; Abregú, Ezequiel; Calcagno, Esteban R; Eguia, Manuel C; Vechiatti, Nilda; Iasi, Federico; Vergara, Ramiro O
2017-08-03
In this article, we show that visual distance perception (VDP) is influenced by the auditory environmental context through reverberation-related cues. We performed two VDP experiments in two dark rooms with extremely different reverberation times: an anechoic chamber and a reverberant room. Subjects assigned to the reverberant room perceived the targets farther than subjects assigned to the anechoic chamber. Also, we found a positive correlation between the maximum perceived distance and the auditorily perceived room size. We next performed a second experiment in which the same subjects of Experiment 1 were interchanged between rooms. We found that subjects preserved the responses from the previous experiment provided they were compatible with the present perception of the environment; if not, perceived distance was biased towards the auditorily perceived boundaries of the room. Results of both experiments show that the auditory environment can influence VDP, presumably through reverberation cues related to the perception of room size.
Ruling in the diagnosis of methanol intoxication in a young heavy drinker: a case report
Anyfantakis, D; Symvoulakis, EK; Cristodoulakis, EV; Frantzeskakis, G
2012-01-01
Methanol poisoning is a relatively rare but potentially serious medical emergency. Toxicity results when methanol is successively oxidized to the active metabolites formaldehyde and formic acid. We report a case of a 23-year-old male, a high daily alcohol consumer, who attended the local primary health care centre complaining of sudden visual loss. A presumed diagnosis of methanol intoxication was suggested based on the patient’s visual impairment and the history of alcohol ingestion. Specific therapy was initiated before a definitive diagnosis. Gas chromatographic determination of methanol levels confirmed the initial diagnostic suspicion. In this case, prompt recognition of methanol intoxication and treatment conditioned a favorable clinical outcome. Given that timely diagnosis and antidote administration are crucial issues in terms of prognosis, we underline the necessity for physicians to be alert for entities provoked by rare environmental factors. PMID:23049639
Heinen, Klaartje; Feredoes, Eva; Ruff, Christian C; Driver, Jon
2017-05-01
It is well established that the frontal eye-fields (FEF) in the dorsal attention network (DAN) guide top-down selective attention. In addition, converging evidence implies a causal role for the FEF in attention shifting, which is also known to recruit the ventral attention network (VAN) and fronto-striatal regions. To investigate the causal influence of the FEF as (part of) a central hub between these networks, we applied thetaburst transcranial magnetic stimulation (TBS) off-line, combined with functional magnetic resonance (fMRI) during a cued visuo-spatial attention shifting paradigm. We found that TBS over the right FEF impaired performance on a visual discrimination task in both hemifields following attention shifts, while only left hemifield performance was affected when participants were cued to maintain the focus of attention. These effects recovered ca. 20min post stimulation. Furthermore, particularly following attention shifts, TBS suppressed the neural signal in bilateral FEF, right inferior and superior parietal lobule (IPL/SPL) and bilateral supramarginal gyri (SMG). Immediately post stimulation, functional connectivity was impaired between right FEF and right SMG as well as right putamen. Importantly, the extent of decreased connectivity between right FEF and right SMG correlated with behavioural impairment following attention shifts. The main finding of this study demonstrates that influences from right FEF on SMG in the ventral attention network causally underly attention shifts, presumably by enabling disengagement from the current focus of attention. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wang, Y; Ogawa, Y; Dogru, M; Kawai, M; Tatematsu, Y; Uchino, M; Okada, N; Igarashi, A; Kujira, A; Fujishima, H; Okamoto, S; Shimazaki, J; Tsubota, K
2008-02-01
We investigated the effect of 0.05% topical cyclosporine (Cys) on the ocular surface and tear functions in dry eye patients with chronic GVHD (cGVHD) in a prospective comparative study. Thirty eyes of 15 patients refractory to baseline treatment were recruited and the patients assigned for topical Cys treatment group (14 eyes of 7 patients) and control group (12 eyes of 6 patients) respectively. Two patients dropped out because of intolerable irritation while using topical Cys eye drops. Visual analog scale symptom scores, corneal sensitivity, Schirmer I test value, tear film break-up time (TBUT), tear evaporation rate and ocular surface vital staining scores were recorded at baseline and at the end of the following one month. Conjunctival impression and brush cytology were performed before and after the treatment. After topical Cys treatment, significant improvements were found in symptom scores, corneal sensitivity, tear evaporation rate, TBUT, vital staining scores, goblet cells density, conjunctival squamous metaplasia grade, inflammatory cell numbers and the MUC5AC expression. Our study suggests that 0.05% topical Cys may be an effective treatment for dry eye patients with cGVHD. The improvements in the ocular surface and tear functions resulted presumably from the decreased inflammation, increased goblet cell density and MUC5AC mRNA expression. Bone Marrow Transplantation (2008) 41, 293-302; doi:10.1038/sj.bmt.1705900; published online 5 November 2007.
Resting-state functional connectivity indexes reading competence in children and adults.
Koyama, Maki S; Di Martino, Adriana; Zuo, Xi-Nian; Kelly, Clare; Mennes, Maarten; Jutagir, Devika R; Castellanos, F Xavier; Milham, Michael P
2011-06-08
Task-based neuroimaging studies face the challenge of developing tasks capable of equivalently probing reading networks across different age groups. Resting-state fMRI, which requires no specific task, circumvents these difficulties. Here, in 25 children (8-14 years) and 25 adults (21-46 years), we examined the extent to which individual differences in reading competence can be related to resting-state functional connectivity (RSFC) of regions implicated in reading. In both age groups, reading standard scores correlated positively with RSFC between the left precentral gyrus and other motor regions, and between Broca's and Wernicke's areas. This suggests that, regardless of age group, stronger coupling among motor regions, as well as between language/speech regions, subserves better reading, presumably reflecting automatized articulation. We also observed divergent RSFC-behavior relationships in children and adults, particularly those anchored in the left fusiform gyrus (FFG) (the visual word form area). In adults, but not children, better reading performance was associated with stronger positive correlations between FFG and phonology-related regions (Broca's area and the left inferior parietal lobule), and with stronger negative relationships between FFG and regions of the "task-negative" default network. These results suggest that both positive RSFC (functional coupling) between reading regions and negative RSFC (functional segregation) between a reading region and default network regions are important for automatized reading, characteristic of adult readers. Together, our task-independent RSFC findings highlight the importance of appreciating developmental changes in the neural correlates of reading competence, and suggest that RSFC may serve to facilitate the identification of reading disorders in different age groups.
The Functional Classification of Brain Damage-Related Vision Loss
ERIC Educational Resources Information Center
Colenbrander, August
2009-01-01
This article provides a terminological framework to show the relationships among different types of visual deficits. It distinguishes between visual functions, which describe how the eye and the lower visual system function, and functional vision, which describes how a person functions. When visual functions are disturbed, the term "visual…
Interpolation and Polynomial Curve Fitting
ERIC Educational Resources Information Center
Yang, Yajun; Gordon, Sheldon P.
2014-01-01
Two points determine a line. Three noncollinear points determine a quadratic function. Four points that do not lie on a lower-degree polynomial curve determine a cubic function. In general, n + 1 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree. The process of finding such a…
Vergara, Gaston R; Vijayakumar, Sathya; Kholmovski, Eugene G; Blauer, Joshua J E; Guttman, Mike A; Gloschat, Christopher; Payne, Gene; Vij, Kamal; Akoum, Nazem W; Daccarett, Marcos; McGann, Christopher J; Macleod, Rob S; Marrouche, Nassir F
2011-02-01
Magnetic resonance imaging (MRI) allows visualization of location and extent of radiofrequency (RF) ablation lesion, myocardial scar formation, and real-time (RT) assessment of lesion formation. In this study, we report a novel 3-Tesla RT -RI based porcine RF ablation model and visualization of lesion formation in the atrium during RF energy delivery. The purpose of this study was to develop a 3-Tesla RT MRI-based catheter ablation and lesion visualization system. RF energy was delivered to six pigs under RT MRI guidance. A novel MRI-compatible mapping and ablation catheter was used. Under RT MRI, this catheter was safely guided and positioned within either the left or right atrium. Unipolar and bipolar electrograms were recorded. The catheter tip-tissue interface was visualized with a T1-weighted gradient echo sequence. RF energy was then delivered in a power-controlled fashion. Myocardial changes and lesion formation were visualized with a T2-weighted (T2W) half Fourier acquisition with single-shot turbo spin echo (HASTE) sequence during ablation. RT visualization of lesion formation was achieved in 30% of the ablations performed. In the other cases, either the lesion was formed outside the imaged region (25%) or the lesion was not created (45%) presumably due to poor tissue-catheter tip contact. The presence of lesions was confirmed by late gadolinium enhancement MRI and macroscopic tissue examination. MRI-compatible catheters can be navigated and RF energy safely delivered under 3-Tesla RT MRI guidance. Recording electrograms during RT imaging also is feasible. RT visualization of lesion as it forms during RF energy delivery is possible and was demonstrated using T2W HASTE imaging. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
REAL TIME MRI GUIDED RADIOFREQUENCY ATRIAL ABLATION AND VISUALIZATION OF LESION FORMATION AT 3-TESLA
Vergara, Gaston R.; Vijayakumar, Sathya; Kholmovski, Eugene G.; Blauer, Joshua J.E.; Guttman, Mike A.; Gloschat, Christopher; Payne, Gene; Vij, Kamal; Akoum, Nazem W.; Daccarett, Marcos; McGann, Christopher J.; MacLeod, Rob S.; Marrouche, Nassir F.
2011-01-01
Background MRI allows visualization of location and extent of RF ablation lesion, myocardial scar formation, and real-time (RT) assessment of lesion formation. In this study, we report a novel 3-Tesla RT-MRI based porcine RF ablation model and visualization of lesion formation in the atrium during RF energy delivery. Objective To develop of a 3-Tesla RT-MRI based catheter ablation and lesion visualization system. Methods RF energy was delivered to six pigs under RT-MRI guidance. A novel MRI compatible mapping and ablation catheter was used. Under RT-MRI this catheter was safely guided and positioned within either the left or right atrium. Unipolar and bi-polar electrograms were recorded. The catheter tip-tissue interface was visualized with a T1-weighted gradient echo sequence. RF energy was then delivered in a power-controlled fashion. Myocardial changes and lesion formation were visualized with a T2-weighted (T2w) HASTE sequence during ablation. Results Real-time visualization of lesion formation was achieved in 30% of the ablations performed. In the other cases, either the lesion was formed outside the imaged region (25%) or lesion was not created (45%) presumably due to poor tissue-catheter tip contact. The presence of lesions was confirmed by late gadolinium enhancement (LGE) MRI and macroscopic tissue examination. Conclusion MRI compatible catheters can be navigated and RF energy safely delivered under 3-Tesla RT-MRI guidance. It is also feasible to record electrograms during RT imaging. Real-time visualization of lesion as it forms during delivery of RF energy is possible and was demonstrated using T2w HASTE imaging. PMID:21034854
Zhou, Zhiyi; Bernard, Melanie R; Bonds, A B
2008-04-02
Spatiotemporal relationships among contour segments can influence synchronization of neural responses in the primary visual cortex. We performed a systematic study to dissociate the impact of spatial and temporal factors in the signaling of contour integration via synchrony. In addition, we characterized the temporal evolution of this process to clarify potential underlying mechanisms. With a 10 x 10 microelectrode array, we recorded the simultaneous activity of multiple cells in the cat primary visual cortex while stimulating with drifting sine-wave gratings. We preserved temporal integrity and systematically degraded spatial integrity of the sine-wave gratings by adding spatial noise. Neural synchronization was analyzed in the time and frequency domains by conducting cross-correlation and coherence analyses. The general association between neural spike trains depends strongly on spatial integrity, with coherence in the gamma band (35-70 Hz) showing greater sensitivity to the change of spatial structure than other frequency bands. Analysis of the temporal dynamics of synchronization in both time and frequency domains suggests that spike timing synchronization is triggered nearly instantaneously by coherent structure in the stimuli, whereas frequency-specific oscillatory components develop more slowly, presumably through network interactions. Our results suggest that, whereas temporal integrity is required for the generation of synchrony, spatial integrity is critical in triggering subsequent gamma band synchronization.
Frick, Kevin D; Drye, Lea T; Kempen, John H; Dunn, James P; Holland, Gary N; Latkany, Paul; Rao, Narsing A; Sen, H Nida; Sugar, Elizabeth A; Thorne, Jennifer E; Wang, Robert C; Holbrook, Janet T
2012-03-01
To evaluate the associations between visual acuity and self-reported visual function; visual acuity and health-related quality of life (QoL) metrics; a summary measure of self-reported visual function and health-related QoL; and individual domains of self-reported visual function and health-related QoL in patients with uveitis. Best-corrected visual acuity, vision-related functioning as assessed by the NEI VFQ-25, and health-related QoL as assessed by the SF-36 and EuroQoL EQ-5D questionnaires were obtained at enrollment in a clinical trial of uveitis treatments. Multivariate regression and Spearman correlations were used to evaluate associations between visual acuity, vision-related function, and health-related QoL. Among the 255 patients, median visual acuity in the better-seeing eyes was 20/25, the vision-related function score indicated impairment (median, 60), and health-related QoL scores were within the normal population range. Better visual acuity was predictive of higher visual function scores (P ≤ 0.001), a higher SF-36 physical component score, and a higher EQ-5D health utility score (P < 0.001). The vision-specific function score was predictive of all general health-related QoL (P < 0.001). The correlations between visual function score and general quality of life measures were moderate (ρ = 0.29-0.52). The vision-related function score correlated positively with visual acuity and moderately positively with general QoL measures. Cost-utility analyses relying on changes in generic healthy utility measures will be more likely to detect changes when there are clinically meaningful changes in vision-related function, rather than when there are only changes in visual acuity. (ClinicalTrials.gov number, NCT00132691.).
Holographic optical coherence imaging of tumor spheroids
NASA Astrophysics Data System (ADS)
Yu, P.; Mustata, M.; Turek, J. J.; French, P. M. W.; Melloch, M. R.; Nolte, D. D.
2003-07-01
We present depth-resolved coherence-domain images of living tissue using a dynamic holographic semiconductor film. An AlGaAs photorefractive quantum-well device is used in an adaptive interferometer that records coherent backscattered (image-bearing) light from inside rat osteogenic sarcoma tumor spheroids up to 1 mm in diameter in vitro. The data consist of sequential holographic image frames at successive depths through the tumor represented as a visual video "fly-through." The images from the tumor spheroids reveal heterogeneous structures presumably caused by necrosis and microcalcifications characteristic of human tumors in their early avascular growth.
Geldof, Christiaan J A; van Hus, Janeline W P; Jeukens-Visser, Martine; Nollet, Frans; Kok, Joke H; Oosterlaan, Jaap; van Wassenaer-Leemhuis, Aleid G
2016-01-01
To extend understanding of impaired motor functioning of very preterm (VP)/very low birth weight (VLBW) children by investigating its relationship with visual attention, visual and visual-motor functioning. Motor functioning (Movement Assessment Battery for Children, MABC-2; Manual Dexterity, Aiming & Catching, and Balance component), as well as visual attention (attention network and visual search tests), vision (oculomotor, visual sensory and perceptive functioning), visual-motor integration (Beery Visual Motor Integration), and neurological status (Touwen examination) were comprehensively assessed in a sample of 106 5.5-year-old VP/VLBW children. Stepwise linear regression analyses were conducted to investigate multivariate associations between deficits in visual attention, oculomotor, visual sensory, perceptive and visual-motor integration functioning, abnormal neurological status, neonatal risk factors, and MABC-2 scores. Abnormal MABC-2 Total or component scores occurred in 23-36% of VP/VLBW children. Visual and visual-motor functioning accounted for 9-11% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Visual perceptive deficits only were associated with Aiming & Catching. Abnormal neurological status accounted for an additional 19-30% of variance in MABC-2 Total, Manual Dexterity and Balance scores, and 5% of variance in Aiming & Catching, and neonatal risk factors for 3-6% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Motor functioning is weakly associated with visual and visual-motor integration deficits and moderately associated with abnormal neurological status, indicating that motor performance reflects long term vulnerability following very preterm birth, and that visual deficits are of minor importance in understanding motor functioning of VP/VLBW children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Post-surgical effects on language in patients with presumed low-grade glioma.
Antonsson, M; Jakola, A; Longoni, F; Carstam, L; Hartelius, L; Thordstein, M; Tisell, M
2018-05-01
Low-grade glioma (LGG) is a slow-growing brain tumour often situated in or near areas involved in language and/or cognitive functions. Thus, language impairments due to tumour growth or surgical resection are obvious risks. We aimed to investigate language outcome following surgery in patients with presumed LGG, using a comprehensive and sensitive language assessment. Thirty-two consecutive patients with presumed LGG were assessed preoperative, early post-operative, and 3 months post-operative using sensitive tests including lexical retrieval, language comprehension and high-level language. The patients' preoperative language ability was compared with a reference group, but also with performance at post-operative controls. Further, the association between tumour location and language performance pre- and post-operatively was explored. Before surgery, the patients with presumed LGG performed worse on tests of lexical retrieval when compared to a reference group (BNT: LGG-group median 52, Reference-group median 54, P = .002; Animals: LGG-group mean 21.0, Reference-group mean 25, P = 001; Verbs: LGG-group mean 17.3, Reference-group mean 21.4, P = .001). At early post-operative assessment, we observed a decline in all language tests, whereas at 3 months there was only a decline on a single test of lexical retrieval (Animals: preoperative. median 20, post-op median 14, P = .001). The highest proportion of language impairment was found in the group with a tumour in language-eloquent areas at all time-points. Although many patients with a tumour in the left hemisphere deteriorated in their language function directly after surgery, their prognosis for recovery was good. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Functional visual fields: relationship of visual field areas to self-reported function.
Subhi, Hikmat; Latham, Keziah; Myint, Joy; Crossland, Michael D
2017-07-01
The aim of this study is to relate areas of the visual field to functional difficulties to inform the development of a binocular visual field assessment that can reflect the functional consequences of visual field loss. Fifty-two participants with peripheral visual field loss undertook binocular assessment of visual fields using the 30-2 and 60-4 SITA Fast programs on the Humphrey Field Analyser, and mean thresholds were derived. Binocular visual acuity, contrast sensitivity and near reading performance were also determined. Self-reported overall and mobility function were assessed using the Dutch ICF Activity Inventory. Greater visual field loss (0-60°) was associated with worse self-reported function both overall (R 2 = 0.50; p < 0.0001), and for mobility (R 2 = 0.64; p < 0.0001). Central (0-30°) and peripheral (30-60°) visual field areas were similarly related to mobility function (R 2 = 0.61, p < 0.0001 and R 2 = 0.63, p < 0.0001 respectively), although the peripheral (30-60°) visual field was the best predictor of mobility self-reported function in multiple regression analyses. Superior and inferior visual field areas related similarly to mobility function (R 2 = 0.56, p < 0.0001 and R 2 = 0.67, p < 0.0001 respectively). The inferior field was found to be the best predictor of mobility function in multiple regression analysis. Mean threshold of the binocular visual field to 60° eccentricity is a good predictor of self-reported function overall, and particularly of mobility function. Both the central (0-30°) and peripheral (30-60°) mean threshold are good predictors of self-reported function, but the peripheral (30-0°) field is a slightly better predictor of mobility function, and should not be ignored when considering functional consequences of field loss. The inferior visual field is a slightly stronger predictor of perceived overall and mobility function than the superior field. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Objective Measures of Visual Function in Papilledema
Moss, Heather E.
2016-01-01
Synopsis Visual function is an important parameter to consider when managing patients with papilledema. Though the current standard of care uses standard automated perimetry (SAP) to obtain this information, this test is inherently subjective and prone to patient errors. Objective visual function tests including the visual evoked potential, pattern electroretinogram, photopic negative response of the full field electroretinogram, and pupillary light response have the potential to replace or supplement subjective visual function tests in papilledema management. This article reviews the evidence for use of objective visual function tests to assess visual function in papilledema and discusses future investigations needed to develop them as clinically practical and useful measures for this purpose. PMID:28451649
Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks
Ruiz-Rizzo, Adriana L.; Neitzel, Julia; Müller, Hermann J.; Sorg, Christian; Finke, Kathrin
2018-01-01
Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's “theory of visual attention” (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity. PMID:29662444
Ruiz-Rizzo, Adriana L; Neitzel, Julia; Müller, Hermann J; Sorg, Christian; Finke, Kathrin
2018-01-01
Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's "theory of visual attention" (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity.
NASA Technical Reports Server (NTRS)
Oneal, Melvin R.; Task, H. Lee; Genco, Louis V.
1992-01-01
Viewgraphs on the effect of microgravity on several visual functions during STS shuttle missions are presented. The purpose, methods, results, and discussion are discussed. The visual function tester model 1 is used.
Yep, Rachel; Soncin, Stephen; Brien, Donald C; Coe, Brian C; Marin, Alina; Munoz, Douglas P
2018-04-23
Despite distinct diagnostic criteria, attention-deficit hyperactivity disorder (ADHD) and bipolar disorder (BD) share cognitive and emotion processing deficits that complicate diagnoses. The goal of this study was to use an emotional saccade task to characterize executive functioning and emotion processing in adult ADHD and BD. Participants (21 control, 20 ADHD, 20 BD) performed an interleaved pro/antisaccade task (look toward vs. look away from a visual target, respectively) in which the sex of emotional face stimuli acted as the cue to perform either the pro- or antisaccade. Both patient groups made more direction (erroneous prosaccades on antisaccade trials) and anticipatory (saccades made before cue processing) errors than controls. Controls exhibited lower microsaccade rates preceding correct anti- vs. prosaccade initiation, but this task-related modulation was absent in both patient groups. Regarding emotion processing, the ADHD group performed worse than controls on neutral face trials, while the BD group performed worse than controls on trials presenting faces of all valence. These findings support the role of fronto-striatal circuitry in mediating response inhibition deficits in both ADHD and BD, and suggest that such deficits are exacerbated in BD during emotion processing, presumably via dysregulated limbic system circuitry involving the anterior cingulate and orbitofrontal cortex. Copyright © 2018 Elsevier Inc. All rights reserved.
Melin, Amanda D; Moritz, Gillian L; Fosbury, Robert A E; Kawamura, Shoji; Dominy, Nathaniel J
2012-03-01
The capacity for cone-mediated color vision varies among nocturnal primates. Some species are colorblind, having lost the functionality of their short-wavelength-sensitive-1 (SWS1) opsin pigment gene. In other species, such as the aye-aye (Daubentonia madagascariensis), the SWS1 gene remains intact. Recent studies focused on aye-ayes indicate that this gene has been maintained by natural selection and that the pigment has a peak sensitivity (lambda(max)) of 406 nm, which is -20 nm closer to the ultraviolet region of the spectrum than in most primates. The functional significance behind the retention and unusual lambda(max) of this opsin pigment is unknown, and it is perplexing given that all mammals are presumed to be colorblind in the dark. Here we comment on this puzzle and discuss recent findings on the color vision intensity thresholds of terrestrial vertebrates with comparable optics to aye-ayes. We draw attention to the twilight activities of aye-ayes and report that twilight is enriched in short-wavelength (bluish) light. We also show that the intensity of twilight and full moonlight is probably sufficient to support cone-mediated color vision. We speculate that the intact SWS1 opsin pigment gene of aye-ayes is a crepuscular adaptation and we report on the blueness of potential visual targets, such as scent marks and the brilliant blue arils of Ravenala madagascariensis.
Deschrijver, Eliane; Wiersema, Jan R; Brass, Marcel
2017-04-01
For more than 15 years, motor interference paradigms have been used to investigate the influence of action observation on action execution. Most research on so-called automatic imitation has focused on variables that play a modulating role or investigated potential confounding factors. Interestingly, furthermore, a number of functional magnetic resonance imaging (fMRI) studies have tried to shed light on the functional mechanisms and neural correlates involved in imitation inhibition. However, these fMRI studies, presumably due to poor temporal resolution, have primarily focused on high-level processes and have neglected the potential role of low-level motor and perceptual processes. In the current EEG study, we therefore aimed to disentangle the influence of low-level perceptual and motoric mechanisms from high-level cognitive mechanisms. We focused on potential congruency differences in the visual N190 - a component related to the processing of biological motion, the Readiness Potential - a component related to motor preparation, and the high-level P3 component. Interestingly, we detected congruency effects in each of these components, suggesting that the interference effect in an automatic imitation paradigm is not only related to high-level processes such as self-other distinction but also to more low-level influences of perception on action and action on perception. Moreover, we documented relationships of the neural effects with (autistic) behavior.
The contribution of single case studies to the neuroscience of vision.
Zihl, Josef; Heywood, Charles A
2016-03-01
Visual neuroscience is concerned with the neurobiological foundations of visual perception, that is, the morphological, physiological, and functional organization of the visual brain and its co-operative partners. One important approach for understanding the functional organization of the visual brain is the study of visual perception from the pathological perspective. The study of patients with focal injury to the visual brain allows conclusions about the representation of visual perceptual functions in the framework of association and dissociation of functions. Selective disorders have been reported for more "elementary" visual capabilities, for example, color and movement vision, but also for visuo-cognitive capacities, such as visual agnosia or the visual field of attention. Because these visual disorders occur rather seldom as selective and specific dysfunctions, single cases have always played, and still play, a significant role in gaining insights into the functional organization of the visual brain. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Melatonin, The Pineal Gland and Circadian Rhythms
1992-04-30
physiological rhythms including locomotion, sleep/wake, thermoregulation , car- diovascular function and many endocrine processes. Among the rhythms under SCN...control of a wide array of behavioral and physiological rhythms including locomotion, sleep/wake, thermoregulation , cardiovascular function and many... reptiles and birds, overt rhythmicity results from the integration of multiple circadian oscillators within the pineal gland, eyes and the presumed
The spectrum of presumed tubercular uveitis in Tunisia, North Africa.
Khochtali, Sana; Gargouri, Salma; Abroug, Nesrine; Ksiaa, Imen; Attia, Sonia; Sellami, Dorra; Feki, Jamel; Khairallah, Moncef
2015-10-01
The purpose of this study was to analyze the spectrum of presumed tubercular uveitis in Tunisia, North Africa. We retrospectively reviewed the clinical records of 38 patients (65 eyes) diagnosed with presumed tubercular uveitis at two referral centers in Tunisia, between January 2009 and December 2011. Mean age at presentation was 42.7 years. Twenty-four patients were women (63.2%) and 14 (36.8%) were men. Twenty-three eyes (35.4%) had posterior uveitis, 21 eyes (32.3%) had intermediate uveitis, 13 eyes (20%) had panuveitis, and 8 eyes (12.3%) had anterior uveitis. Ocular findings included vitritis in 67.7% of eyes, posterior synechiae in 47.7%, multifocal non-serpiginoid choroiditis in 23.1%, multifocal serpiginoid choroiditis in 21.5%, periphlebitis in 21.5%, and mutton-fat keratic precipitates in 20%. Anti-tubercular treatment was prescribed in 33 patients (86.8%) and was associated with systemic corticosteroids in 20 patients (52.6%) and periocular injections of corticosteroids in four patients (10.5%). After a mean follow-up of 14.2 months (range, 10-58), inflammation was controlled, with a significant improvement in visual acuity (VA) (p = 0.028). However, recurrences developed in two patients (5.3%). Final VA was better than 20/40 in 27 eyes (41.5%) and less than 20/200 in five eyes (7.7%). In Tunisia, all anatomic types are possible in tuberculosis-associated uveitis, but posterior and intermediate uveitis are more frequent. Vitritis, posterior synechiae, multifocal serpiginoid or non-serpiginoid choroiditis, and periphlebitis are the most common manifestations.
Three more semantic serial position functions and a SIMPLE explanation.
Kelley, Matthew R; Neath, Ian; Surprenant, Aimée M
2013-05-01
There are innumerable demonstrations of serial position functions-with characteristic primacy and recency effects-in episodic tasks, but there are only a handful of such demonstrations in semantic memory tasks, and those demonstrations have used only two types of stimuli. Here, we provide three more examples of serial position functions when recalling from semantic memory. Participants were asked to reconstruct the order of (1) two cartoon theme song lyrics, (2) the seven Harry Potter books, and (3) two sets of movies, and all three demonstrations yielded conventional-looking serial position functions with primacy and recency effects. The data were well-fit by SIMPLE, a local distinctiveness model of memory that was originally designed to account for serial position effects in short- and long-term episodic memory. According to SIMPLE, serial position functions in both episodic and semantic memory tasks arise from the same type of processing: Items that are more separated from their close neighbors in psychological space at the time of recall will be better remembered. We argue that currently available evidence suggests that serial position functions observed when recalling items that are presumably in semantic memory arise because of the same processes as those observed when recalling items that are presumably in episodic memory.
Chan, Kevin C.; Fan, Shu-Juan; Chan, Russell W.; Cheng, Joe S.; Zhou, Iris Y.; Wu, Ed X.
2014-01-01
The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn2+ administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn2+ injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport after Mn2+ injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies. PMID:24394694
Maffei, Vincenzo; Mazzarella, Elisabetta; Piras, Fabrizio; Spalletta, Gianfranco; Caltagirone, Carlo; Lacquaniti, Francesco; Daprati, Elena
2016-05-01
Rich behavioral evidence indicates that the brain estimates the visual direction and acceleration of gravity quite accurately, and the underlying mechanisms have begun to be unraveled. While the neuroanatomical substrates of gravity direction processing have been studied extensively in brain-damaged patients, to our knowledge no such study exists for the processing of visual gravitational motion. Here we asked 31 stroke patients to intercept a virtual ball moving along the vertical under either natural gravity or artificial reversed gravity. Twenty-seven of them also aligned a luminous bar to the vertical direction (subjective visual vertical, SVV). Using voxel-based lesion-symptom mapping as well as lesion subtraction analysis, we found that lesions mainly centered on the posterior insula are associated with greater deviations of SVV, consistent with several previous studies. Instead, lesions mainly centered on the parietal operculum decrease the ability to discriminate natural from unnatural gravitational acceleration with a timed motor response in the interception task. Both the posterior insula and the parietal operculum belong to the vestibular cortex, and presumably receive multisensory information about the gravity vector. We speculate that an internal model estimating the effects of gravity on visual objects is constructed by transforming the vestibular estimates of mechanical gravity, which are computed in the brainstem and cerebellum, into internalized estimates of virtual gravity, which are stored in the cortical vestibular network. The present lesion data suggest a specific role for the parietal operculum in detecting the mismatch between predictive signals from the internal model and the online visual signals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dopamine D2-receptor blockade enhances decoding of prefrontal signals in humans.
Kahnt, Thorsten; Weber, Susanna C; Haker, Helene; Robbins, Trevor W; Tobler, Philippe N
2015-03-04
The prefrontal cortex houses representations critical for ongoing and future behavior expressed in the form of patterns of neural activity. Dopamine has long been suggested to play a key role in the integrity of such representations, with D2-receptor activation rendering them flexible but weak. However, it is currently unknown whether and how D2-receptor activation affects prefrontal representations in humans. In the current study, we use dopamine receptor-specific pharmacology and multivoxel pattern-based functional magnetic resonance imaging to test the hypothesis that blocking D2-receptor activation enhances prefrontal representations. Human subjects performed a simple reward prediction task after double-blind and placebo controlled administration of the D2-receptor antagonist amisulpride. Using a whole-brain searchlight decoding approach we show that D2-receptor blockade enhances decoding of reward signals in the medial orbitofrontal cortex. Examination of activity patterns suggests that amisulpride increases the separation of activity patterns related to reward versus no reward. Moreover, consistent with the cortical distribution of D2 receptors, post hoc analyses showed enhanced decoding of motor signals in motor cortex, but not of visual signals in visual cortex. These results suggest that D2-receptor blockade enhances content-specific representations in frontal cortex, presumably by a dopamine-mediated increase in pattern separation. These findings are in line with a dual-state model of prefrontal dopamine, and provide new insights into the potential mechanism of action of dopaminergic drugs. Copyright © 2015 the authors 0270-6474/15/354104-08$15.00/0.
Nakamura, Hisashi; Hioki, Hiroyuki; Furuta, Takahiro; Kaneko, Takeshi
2015-05-01
The lateral posterior thalamic nucleus (LP) is one of the components of the extrageniculate pathway in the rat visual system, and is cytoarchitecturally divided into three subdivisions--lateral (LPl), rostromedial (LPrm), and caudomedial (LPcm) portions. To clarify the differences in the dendritic fields and axonal arborisations among the three subdivisions, we applied a single-neuron labeling technique with viral vectors to LP neurons. The proximal dendrites of LPl neurons were more numerous than those of LPrm and LPcm neurons, and LPrm neurons tended to have wider dendritic fields than LPl neurons. We then analysed the axonal arborisations of LP neurons by reconstructing the axon fibers in the cortex. The LPl, LPrm and LPcm were different from one another in terms of the projection targets--the main target cortical regions of LPl and LPrm neurons were the secondary and primary visual areas, whereas those of LPcm neurons were the postrhinal and temporal association areas. Furthermore, the principal target cortical layers of LPl neurons in the visual areas were middle layers, but that of LPrm neurons was layer 1. This indicates that LPl and LPrm neurons can be categorised into the core and matrix types of thalamic neurons, respectively, in the visual areas. In addition, LPl neurons formed multiple axonal clusters within the visual areas, whereas the fibers of LPrm neurons were widely and diffusely distributed. It is therefore presumed that these two types of neurons play different roles in visual information processing by dual thalamocortical innervation of the visual areas. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
38 CFR 4.75 - General considerations for evaluating visual impairment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... refraction), visual field, and muscle function. (b) Examination for visual impairment. The examination must.... Examinations of visual fields or muscle function will be conducted only when there is a medical indication of disease or injury that may be associated with visual field defect or impaired muscle function. Unless...
38 CFR 4.75 - General considerations for evaluating visual impairment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... refraction), visual field, and muscle function. (b) Examination for visual impairment. The examination must.... Examinations of visual fields or muscle function will be conducted only when there is a medical indication of disease or injury that may be associated with visual field defect or impaired muscle function. Unless...
38 CFR 4.75 - General considerations for evaluating visual impairment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... refraction), visual field, and muscle function. (b) Examination for visual impairment. The examination must.... Examinations of visual fields or muscle function will be conducted only when there is a medical indication of disease or injury that may be associated with visual field defect or impaired muscle function. Unless...
Clinical heterogeneity of mitochondrial NAD kinase deficiency caused by a NADK2 start loss variant.
Pomerantz, Daniel J; Ferdinandusse, Sacha; Cogan, Joy; Cooper, David N; Reimschisel, Tyler; Robertson, Amy; Bican, Anna; McGregor, Tracy; Gauthier, Jackie; Millington, David S; Andrae, Jaime L W; Tschannen, Michael R; Helbling, Daniel C; Demos, Wendy M; Denis, Simone; Wanders, Ronald J A; Newman, John N; Hamid, Rizwan; Phillips, John A
2018-03-01
Mitochondrial NAD kinase deficiency (NADK2D, OMIM #615787) is a rare autosomal recessive disorder of NADPH biosynthesis that can cause hyperlysinemia and dienoyl-CoA reductase deficiency (DECRD, OMIM #616034). NADK2 deficiency has been reported in only three unrelated patients. Two had severe, unremitting disease; one died at 4 months and the other at 5 years of age. The third was a 10 year old female with CNS anomalies, ataxia, and incoordination. In two cases mutations in NADK2 have been demonstrated. Here, we report the fourth known case, a 15 year old female with normal intelligence and a mild clinical and biochemical phenotype presumably without DECRD. Her clinical symptoms, which are now stable, became evident at the age of 9 with the onset of decreased visual acuity, bilateral optic atrophy, nystagmus, episodic lower extremity weakness, peripheral neuropathy, and gait abnormalities. Plasma amino acid levels were within normal limits except for mean lysine and proline levels that were 3.7 and 2.5 times the upper limits of normal. Whole exome sequencing (WES) revealed homozygosity for a g.36241900 A>G p. Met1Val start loss mutation in the primary NADK2 transcript (NM_001085411.1) encoding the 442 amino acid isoform. This presumed hypomorphic mutation has not been previously reported and is absent from the v1000GP, EVS, and ExAC databases. Our patient's normal intelligence and stable disease expands the clinical heterogeneity and the prognosis associated with NADK2 deficiency. Our findings also clarify the mechanism underlying NADK2 deficiency and suggest that this disease should be ruled out in cases of hyperlysinemia, especially those with visual loss, and neurological phenotypes. © 2018 Wiley Periodicals, Inc.
The Task-Relevant Attribute Representation Can Mediate the Simon Effect
Chen, Antao
2014-01-01
Researchers have previously suggested a working memory (WM) account of spatial codes, and based on this suggestion, the present study carries out three experiments to investigate how the task-relevant attribute representation (verbal or visual) in the typical Simon task affects the Simon effect. Experiment 1 compared the Simon effect between the between- and within-category color conditions, which required subjects to discriminate between red and blue stimuli (presumed to be represented by verbal WM codes because it was easy and fast to name the colors verbally) and to discriminate between two similar green stimuli (presumed to be represented by visual WM codes because it was hard and time-consuming to name the colors verbally), respectively. The results revealed a reliable Simon effect that only occurs in the between-category condition. Experiment 2 assessed the Simon effect by requiring subjects to discriminate between two different isosceles trapezoids (within-category shapes) and to discriminate isosceles trapezoid from rectangle (between-category shapes), and the results replicated and expanded the findings of Experiment 1. In Experiment 3, subjects were required to perform both tasks from Experiment 1. Wherein, in Experiment 3A, the between-category task preceded the within-category task; in Experiment 3B, the task order was opposite. The results showed the reliable Simon effect when subjects represented the task-relevant stimulus attributes by verbal WM encoding. In addition, the response times (RTs) distribution analysis for both the between- and within-category conditions of Experiments 3A and 3B showed decreased Simon effect with the RTs lengthened. Altogether, although the present results are consistent with the temporal coding account, we put forth that the Simon effect also depends on the verbal WM representation of task-relevant stimulus attribute. PMID:24618692
Sequential sampling of visual objects during sustained attention.
Jia, Jianrong; Liu, Ling; Fang, Fang; Luo, Huan
2017-06-01
In a crowded visual scene, attention must be distributed efficiently and flexibly over time and space to accommodate different contexts. It is well established that selective attention enhances the corresponding neural responses, presumably implying that attention would persistently dwell on the task-relevant item. Meanwhile, recent studies, mostly in divided attentional contexts, suggest that attention does not remain stationary but samples objects alternately over time, suggesting a rhythmic view of attention. However, it remains unknown whether the dynamic mechanism essentially mediates attentional processes at a general level. Importantly, there is also a complete lack of direct neural evidence reflecting whether and how the brain rhythmically samples multiple visual objects during stimulus processing. To address these issues, in this study, we employed electroencephalography (EEG) and a temporal response function (TRF) approach, which can dissociate responses that exclusively represent a single object from the overall neuronal activity, to examine the spatiotemporal characteristics of attention in various attentional contexts. First, attention, which is characterized by inhibitory alpha-band (approximately 10 Hz) activity in TRFs, switches between attended and unattended objects every approximately 200 ms, suggesting a sequential sampling even when attention is required to mostly stay on the attended object. Second, the attentional spatiotemporal pattern is modulated by the task context, such that alpha-mediated switching becomes increasingly prominent as the task requires a more uniform distribution of attention. Finally, the switching pattern correlates with attentional behavioral performance. Our work provides direct neural evidence supporting a generally central role of temporal organization mechanism in attention, such that multiple objects are sequentially sorted according to their priority in attentional contexts. The results suggest that selective attention, in addition to the classically posited attentional "focus," involves a dynamic mechanism for monitoring all objects outside of the focus. Our findings also suggest that attention implements a space (object)-to-time transformation by acting as a series of concatenating attentional chunks that operate on 1 object at a time.
Sequential sampling of visual objects during sustained attention
Jia, Jianrong; Liu, Ling; Fang, Fang
2017-01-01
In a crowded visual scene, attention must be distributed efficiently and flexibly over time and space to accommodate different contexts. It is well established that selective attention enhances the corresponding neural responses, presumably implying that attention would persistently dwell on the task-relevant item. Meanwhile, recent studies, mostly in divided attentional contexts, suggest that attention does not remain stationary but samples objects alternately over time, suggesting a rhythmic view of attention. However, it remains unknown whether the dynamic mechanism essentially mediates attentional processes at a general level. Importantly, there is also a complete lack of direct neural evidence reflecting whether and how the brain rhythmically samples multiple visual objects during stimulus processing. To address these issues, in this study, we employed electroencephalography (EEG) and a temporal response function (TRF) approach, which can dissociate responses that exclusively represent a single object from the overall neuronal activity, to examine the spatiotemporal characteristics of attention in various attentional contexts. First, attention, which is characterized by inhibitory alpha-band (approximately 10 Hz) activity in TRFs, switches between attended and unattended objects every approximately 200 ms, suggesting a sequential sampling even when attention is required to mostly stay on the attended object. Second, the attentional spatiotemporal pattern is modulated by the task context, such that alpha-mediated switching becomes increasingly prominent as the task requires a more uniform distribution of attention. Finally, the switching pattern correlates with attentional behavioral performance. Our work provides direct neural evidence supporting a generally central role of temporal organization mechanism in attention, such that multiple objects are sequentially sorted according to their priority in attentional contexts. The results suggest that selective attention, in addition to the classically posited attentional “focus,” involves a dynamic mechanism for monitoring all objects outside of the focus. Our findings also suggest that attention implements a space (object)-to-time transformation by acting as a series of concatenating attentional chunks that operate on 1 object at a time. PMID:28658261
Successful elimination of Ascaris lumbricoides from the gallbladder by conservative medical therapy.
Cha, Dong Youb; Song, In Kwan; Choi, Hwan Won; Chung, Eun A; Shin, Bong Seok; Song, Young Wook; Lee, Sang Mi; Kim, Hong Min; Kim, Young Kwan; Lee, Young-Ha; Lee, Gye Sung
2002-01-01
Migration of Ascaris lumbricoides into the gallbladder is rare, unlike ascariasis of the bile duct, and, when it does occur, treatment is generally by endoscopic or surgical extraction. We describe a case of the successful treatment of gallbladder ascariasis with conservative therapy. A 44-year-old Korean man was admitted because of nausea and right upper quadrant pain that did not respond to medical control and had worsened 1 day before admission. Abdominal ultrasonography showed a long, linear, moving echogenic structure in the distended lumen of the gallbladder, but no abnormal dilation of the bile duct. Computerized tomography showed a linear soft-tissue density in the dependent portion of the gallbladder. The patient presented with eosinophilia, and abnormal liver function results, but no fever or hepatomegaly. Based on these findings, and presuming a diagnosis of gallbladder ascariasis, we administered antiparasitic medication (albendazole 400 mg/day for 1 day). Seven days later, we obtained one adult female A. lumbricoides from the feces. The symptoms were fully resolved, and no moving structure could be visualized in the gallbladder by ultrasonography. We recommend that initial therapy for gallbladder ascariasis should involve conservative treatment, unless an associated disease is present or a complication arises.
Stokowy, Tomasz; Garbulowski, Mateusz; Fiskerstrand, Torunn; Holdhus, Rita; Labun, Kornel; Sztromwasser, Pawel; Gilissen, Christian; Hoischen, Alexander; Houge, Gunnar; Petersen, Kjell; Jonassen, Inge; Steen, Vidar M
2016-10-01
The search for causative genetic variants in rare diseases of presumed monogenic inheritance has been boosted by the implementation of whole exome (WES) and whole genome (WGS) sequencing. In many cases, WGS seems to be superior to WES, but the analysis and visualization of the vast amounts of data is demanding. To aid this challenge, we have developed a new tool-RareVariantVis-for analysis of genome sequence data (including non-coding regions) for both germ line and somatic variants. It visualizes variants along their respective chromosomes, providing information about exact chromosomal position, zygosity and frequency, with point-and-click information regarding dbSNP IDs, gene association and variant inheritance. Rare variants as well as de novo variants can be flagged in different colors. We show the performance of the RareVariantVis tool in the Genome in a Bottle WGS data set. https://www.bioconductor.org/packages/3.3/bioc/html/RareVariantVis.html tomasz.stokowy@k2.uib.no Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Motion transparency: making models of motion perception transparent.
Snowden; Verstraten
1999-10-01
In daily life our visual system is bombarded with motion information. We see cars driving by, flocks of birds flying in the sky, clouds passing behind trees that are dancing in the wind. Vision science has a good understanding of the first stage of visual motion processing, that is, the mechanism underlying the detection of local motions. Currently, research is focused on the processes that occur beyond the first stage. At this level, local motions have to be integrated to form objects, define the boundaries between them, construct surfaces and so on. An interesting, if complicated case is known as motion transparency: the situation in which two overlapping surfaces move transparently over each other. In that case two motions have to be assigned to the same retinal location. Several researchers have tried to solve this problem from a computational point of view, using physiological and psychophysical results as a guideline. We will discuss two models: one uses the traditional idea known as 'filter selection' and the other a relatively new approach based on Bayesian inference. Predictions from these models are compared with our own visual behaviour and that of the neural substrates that are presumed to underlie these perceptions.
Effects of refractive errors on visual evoked magnetic fields.
Suzuki, Masaya; Nagae, Mizuki; Nagata, Yuko; Kumagai, Naoya; Inui, Koji; Kakigi, Ryusuke
2015-11-09
The latency and amplitude of visual evoked cortical responses are known to be affected by refractive states, suggesting that they may be used as an objective index of refractive errors. In order to establish an easy and reliable method for this purpose, we herein examined the effects of refractive errors on visual evoked magnetic fields (VEFs). Binocular VEFs following the presentation of a simple grating of 0.16 cd/m(2) in the lower visual field were recorded in 12 healthy volunteers and compared among four refractive states: 0D, +1D, +2D, and +4D, by using plus lenses. The low-luminance visual stimulus evoked a main MEG response at approximately 120 ms (M100) that reversed its polarity between the upper and lower visual field stimulations and originated from the occipital midline area. When refractive errors were induced by plus lenses, the latency of M100 increased, while its amplitude decreased with an increase in power of the lens. Differences from the control condition (+0D) were significant for all three lenses examined. The results of dipole analyses showed that evoked fields for the control (+0D) condition were explainable by one dipole in the primary visual cortex (V1), while other sources, presumably in V3 or V6, slightly contributed to shape M100 for the +2D or +4D condition. The present results showed that the latency and amplitude of M100 are both useful indicators for assessing refractive states. The contribution of neural sources other than V1 to M100 was modest under the 0D and +1D conditions. By considering the nature of the activity of M100 including its high sensitivity to a spatial frequency and lower visual field dominance, a simple low-luminance grating stimulus at an optimal spatial frequency in the lower visual field appears appropriate for obtaining data on high S/N ratios and reducing the load on subjects.
Visual function of children with visual and other disabilities in Oman: A case series.
Gogri, Urmi; Khandekar, Rajiv; Al Harby, Salah
2016-12-01
We assessed the visual functioning of the children with special needs in Oman between 2009 and 2012. We present the methods of assessing different visual functions, outcomes, and interventions carried out to improve their functioning. Optometrists assessed visual functions of children of "Day care centres" in Oman. Experts further assessed them and provided low vision care. Ocular movements, refractive corrections, near, distance, contrast color, motion, field of vision, and cognitive visual function test results were noted. Feedback to caregivers was given to improve visual functioning of these children. We grouped 321 participants, (196 [61.1%] boys, age range of 3-18 years) into 61; Down syndrome (DS), 72 with intellectual disabilities (IDs), 67; hearing impaired and 121 with other conditions. Refractive error and lag of accommodation were 26 (42.6%) and 14 (22.6%) among children with DS. Contrast sensitivity was impaired in 8 (12.7%) among hearing impaired children. Defective distant and near vision was in 162 (70%) and 104 (42%) of our cohort. Children with ID were most difficult to assess. Children in a group of other disabilities had a higher proportion of impaired visual functioning. They were given low vision aids (telescopes [22], filters [7], and magnifiers [3]) in large numbers compared to those in other groups. Visual functioning of children with other disabilities show great variation and difficult to group. The care, therefore, should be at individual level. All visual functions cannot be assessed at one time.
Effect of Reinforcer Magnitude on Performance Maintained by Progressive-Ratio Schedules
Rickard, J.F; Body, S; Zhang, Z; Bradshaw, C.M; Szabadi, E
2009-01-01
This experiment examined the relationship between reinforcer magnitude and quantitative measures of performance on progressive-ratio schedules. Fifteen rats were trained under a progressive-ratio schedule in seven phases of the experiment in which the volume of a 0.6-M sucrose solution reinforcer was varied within the range 6–300 µl. Overall response rates in successive ratios conformed to a bitonic equation derived from Killeen's (1994) Mathematical Principles of Reinforcement. The “specific activation” parameter, a, which is presumed to reflect the incentive value of the reinforcer, was a monotonically increasing function of reinforcer volume; the “response time” parameter, δ, which defines the minimum response time, increased as a function of reinforcer volume; the “currency” parameter, β, which is presumed to reflect the coupling of responses to the reinforcer, declined as a function of volume. Running response rate (response rate calculated after exclusion of the postreinforcement pause) decayed monotonically as a function of ratio size; the index of curvature of this function increased as a function of reinforcer volume. Postreinforcement pause increased as a function of ratio size. Estimates of a derived from overall response rates and postreinforcement pauses showed a modest positive correlation across conditions and between animals. Implications of the results for the quantification of reinforcer value and for the use of progressive-ratio schedules in behavioral neuroscience are discussed. PMID:19230513
Effect of reinforcer magnitude on performance maintained by progressive-ratio schedules.
Rickard, J F; Body, S; Zhang, Z; Bradshaw, C M; Szabadi, E
2009-01-01
This experiment examined the relationship between reinforcer magnitude and quantitative measures of performance on progressive-ratio schedules. Fifteen rats were trained under a progressive-ratio schedule in seven phases of the experiment in which the volume of a 0.6-M sucrose solution reinforcer was varied within the range 6-300 microl. Overall response rates in successive ratios conformed to a bitonic equation derived from Killeen's (1994) Mathematical Principles of Reinforcement. The "specific activation" parameter, a, which is presumed to reflect the incentive value of the reinforcer, was a monotonically increasing function of reinforcer volume; the "response time" parameter, delta, which defines the minimum response time, increased as a function of reinforcer volume; the "currency" parameter, beta, which is presumed to reflect the coupling of responses to the reinforcer, declined as a function of volume. Running response rate (response rate calculated after exclusion of the postreinforcement pause) decayed monotonically as a function of ratio size; the index of curvature of this function increased as a function of reinforcer volume. Postreinforcement pause increased as a function of ratio size. Estimates of a derived from overall response rates and postreinforcement pauses showed a modest positive correlation across conditions and between animals. Implications of the results for the quantification of reinforcer value and for the use of progressive-ratio schedules in behavioral neuroscience are discussed.
Classification of echolocation clicks from odontocetes in the Southern California Bight.
Roch, Marie A; Klinck, Holger; Baumann-Pickering, Simone; Mellinger, David K; Qui, Simon; Soldevilla, Melissa S; Hildebrand, John A
2011-01-01
This study presents a system for classifying echolocation clicks of six species of odontocetes in the Southern California Bight: Visually confirmed bottlenose dolphins, short- and long-beaked common dolphins, Pacific white-sided dolphins, Risso's dolphins, and presumed Cuvier's beaked whales. Echolocation clicks are represented by cepstral feature vectors that are classified by Gaussian mixture models. A randomized cross-validation experiment is designed to provide conditions similar to those found in a field-deployed system. To prevent matched conditions from inappropriately lowering the error rate, echolocation clicks associated with a single sighting are never split across the training and test data. Sightings are randomly permuted before assignment to folds in the experiment. This allows different combinations of the training and test data to be used while keeping data from each sighting entirely in the training or test set. The system achieves a mean error rate of 22% across 100 randomized three-fold cross-validation experiments. Four of the six species had mean error rates lower than the overall mean, with the presumed Cuvier's beaked whale clicks showing the best performance (<2% error rate). Long-beaked common and bottlenose dolphins proved the most difficult to classify, with mean error rates of 53% and 68%, respectively.
Rentz, Anne M; Kowalski, Jonathan W; Walt, John G; Hays, Ron D; Brazier, John E; Yu, Ren; Lee, Paul; Bressler, Neil; Revicki, Dennis A
2014-03-01
Understanding how individuals value health states is central to patient-centered care and to health policy decision making. Generic preference-based measures of health may not effectively capture the impact of ocular diseases. Recently, 6 items from the National Eye Institute Visual Function Questionnaire-25 were used to develop the Visual Function Questionnaire-Utility Index health state classification, which defines visual function health states. To describe elicitation of preferences for health states generated from the Visual Function Questionnaire-Utility Index health state classification and development of an algorithm to estimate health preference scores for any health state. Nonintervention, cross-sectional study of the general community in 4 countries (Australia, Canada, United Kingdom, and United States). A total of 607 adult participants were recruited from local newspaper advertisements. In the United Kingdom, an existing database of participants from previous studies was used for recruitment. Eight of 15,625 possible health states from the Visual Function Questionnaire-Utility Index were valued using time trade-off technique. A θ severity score was calculated for Visual Function Questionnaire-Utility Index-defined health states using item response theory analysis. Regression models were then used to develop an algorithm to assign health state preference values for all potential health states defined by the Visual Function Questionnaire-Utility Index. Health state preference values for the 8 states ranged from a mean (SD) of 0.343 (0.395) to 0.956 (0.124). As expected, preference values declined with worsening visual function. Results indicate that the Visual Function Questionnaire-Utility Index describes states that participants view as spanning most of the continuum from full health to dead. Visual Function Questionnaire-Utility Index health state classification produces health preference scores that can be estimated in vision-related studies that include the National Eye Institute Visual Function Questionnaire-25. These preference scores may be of value for estimating utilities in economic and health policy analyses.
Visual cortex in dementia with Lewy bodies: magnetic resonance imaging study
Taylor, John-Paul; Firbank, Michael J.; He, Jiabao; Barnett, Nicola; Pearce, Sarah; Livingstone, Anthea; Vuong, Quoc; McKeith, Ian G.; O’Brien, John T.
2012-01-01
Background Visual hallucinations and visuoperceptual deficits are common in dementia with Lewy bodies, suggesting that cortical visual function may be abnormal. Aims To investigate: (1) cortical visual function using functional magnetic resonance imaging (fMRI); and (2) the nature and severity of perfusion deficits in visual areas using arterial spin labelling (ASL)-MRI. Method In total, 17 participants with dementia with Lewy bodies (DLB group) and 19 similarly aged controls were presented with simple visual stimuli (checkerboard, moving dots, and objects) during fMRI and subsequently underwent ASL-MRI (DLB group n = 15, control group n = 19). Results Functional activations were evident in visual areas in both the DLB and control groups in response to checkerboard and objects stimuli but reduced visual area V5/MT (middle temporal) activation occurred in the DLB group in response to motion stimuli. Posterior cortical perfusion deficits occurred in the DLB group, particularly in higher visual areas. Conclusions Higher visual areas, particularly occipito-parietal, appear abnormal in dementia with Lewy bodies, while there is a preservation of function in lower visual areas (V1 and V2/3). PMID:22500014
Mori, T; Ishida, K; Mukumoto, S; Yamada, Y; Imokawa, G; Kabashima, K; Kobayashi, M; Bito, T; Nakamura, M; Ogasawara, K; Tokura, Y
2010-01-01
Background Two types of atopic dermatitis (AD) have been proposed, with different pathophysiological mechanisms underlying this seemingly heterogeneous disorder. The extrinsic type shows high IgE levels presumably as a consequence of skin barrier damage and feasible allergen permeation, whereas the intrinsic type exhibits normal IgE levels and is not mediated by allergen-specific IgE. Objectives To investigate the relationship between pruritus perception threshold and skin barrier function of patients with AD in a comparison between the extrinsic and intrinsic types. Methods Enrolled in this study were 32 patients with extrinsic AD, 17 with intrinsic AD and 24 healthy individuals. The barrier function of the stratum corneum was assessed by skin surface hydration and transepidermal water loss (TEWL), and pruritus perception was evaluated by the electric current perception threshold (CPT) of sensory nerves upon neuroselective transcutaneous electric stimulation. Results Skin surface hydration was significantly lower and TEWL was significantly higher in extrinsic AD than intrinsic AD or normal controls. Although there was no statistically significant difference in CPT among extrinsic AD, intrinsic AD and normal controls, CPT was significantly correlated with skin surface hydration and inversely with TEWL in intrinsic AD and normal controls, but not extrinsic AD. Finally, CPT was correlated with the visual analogue scale of itch in the nonlesional skin of patients with extrinsic but not intrinsic AD. Conclusions Patients with extrinsic AD have an impaired barrier, which increases the pre-existing pruritus but rather decreases sensitivity to external stimuli. In contrast, patients with intrinsic AD retain a normal barrier function and sensory reactivity to external pruritic stimuli.
The identification of liquid ethane in Titan's Ontario Lacus
Brown, R.H.; Soderblom, L.A.; Soderblom, J.M.; Clark, R.N.; Jaumann, R.; Barnes, J.W.; Sotin, Christophe; Buratti, B.; Baines, K.H.; Nicholson, P.D.
2008-01-01
Titan was once thought to have global oceans of light hydrocarbons on its surface, but after 40 close flybys of Titan by the Cassini spacecraft, it has become clear that no such oceans exist. There are, however, features similar to terrestrial lakes and seas, and widespread evidence for fluvial erosion, presumably driven by precipitation of liquid methane from Titan's dense, nitrogen-dominated atmosphere. Here we report infrared spectroscopic data, obtained by the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini spacecraft, that strongly indicate that ethane, probably in liquid solution with methane, nitrogen and other low-molecular-mass hydrocarbons, is contained within Titan's Ontario Lacus.
Cat scratch disease of the eye: a case report and literature review.
Alaan, Kristina; Fisher, Melanie; Ellis, Brian
2014-01-01
This is the case of a middle-aged male with no other medical issues who presented with acute, unilateral visual disturbance. In lieu of specific ophthalmologic findings, his age and presentation, he was treated for presumed inflammatory process. It was only after steroids and the results of serological testing that an infectious agent was determined. He was eventually diagnosed with ocular Bartonellosis. He was treated with oral doxycycline and rifampin and slowly improved. The thesis of this case report is that a thorough history prior to rapid and somewhat presumptive treatment may have prevented unnecessary immunosuppression and delay in appropriate antimicrobial therapy.
Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Kräutler, Bernhard
2012-01-01
Abstract The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels, chlorophyll catabolites were found in an unprecedented structural richness: a variety of new fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs) were detected. As a rule, FCCs exist only "fleetingly" and are hard to observe. However, in bananas several of the FCCs (named Mc-FCCs) were persistent and carried an ester function at the propionate side-chain. NCCs were less abundant, and exhibited a free propionic acid group, but functional modifications elsewhere. The modifications of NCCs in banana peels were similar to those found in NCCs from senescent leaves. They are presumed to be introduced by enzymatic transformations at the stage of the mostly unobserved, direct FCC-precursors. The observed divergent functional group characteristics of the Mc-FCCs versus those of the Mc-NCCs indicated two major "late" processing lines of chlorophyll breakdown in ripening bananas. The "last common precursor" at the branching point to either the persistent FCCs, or towards the NCCs, was identified as a temporarily abundant "secondary" FCC. The existence of two "downstream" branches of chlorophyll breakdown in banana peels, and the striking accumulation of persistent Mc-FCCs call for attention as to the still-elusive biological roles of the resulting colorless linear tetrapyrroles. PMID:22807397
Van Overwalle, Frank; Heleven, Elien; Ma, Ning; Mariën, Peter
2017-01-01
This multi-study analysis (6 fMRI studies; 142 participants) explores the functional activation and connectivity of the cerebellum with the cerebrum during repeated behavioral information uptake informing about personality traits of different persons. The results suggest that trait repetition recruits activity in areas belonging to the mentalizing and executive control networks in the cerebrum, and the executive control areas in the cerebellum. Cerebral activation was observed in the executive control network including the posterior medial frontal cortex (pmFC), the bilateral prefrontal cortex (PFC) and bilateral inferior parietal cortex (IPC), in the mentalizing network including the bilateral middle temporal cortex (MTC) extending to the right superior temporal cortex (STC), as well as in the visual network including the left cuneus (Cun) and the left inferior occipital cortex. Moreover, cerebellar activation was found bilaterally in lobules VI and VII belonging to the executive control network. Importantly, significant patterns of functional connectivity were found linking these cerebellar executive areas with cerebral executive areas in the medial pmFC, the left PFC and the left IPC, and mentalizing areas in the left MTC. In addition, connectivity was found between the cerebral areas in the left hemisphere involved in the executive and mentalizing networks, as well as with their homolog areas in the right hemisphere. The discussion centers on the role of these cerebello-cerebral connections in matching internal predictions generated by the cerebellum with external information from the cerebrum, presumably involving the sequencing of behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.
Decoding Reveals Plasticity in V3A as a Result of Motion Perceptual Learning
Shibata, Kazuhisa; Chang, Li-Hung; Kim, Dongho; Náñez, José E.; Kamitani, Yukiyasu; Watanabe, Takeo; Sasaki, Yuka
2012-01-01
Visual perceptual learning (VPL) is defined as visual performance improvement after visual experiences. VPL is often highly specific for a visual feature presented during training. Such specificity is observed in behavioral tuning function changes with the highest improvement centered on the trained feature and was originally thought to be evidence for changes in the early visual system associated with VPL. However, results of neurophysiological studies have been highly controversial concerning whether the plasticity underlying VPL occurs within the visual cortex. The controversy may be partially due to the lack of observation of neural tuning function changes in multiple visual areas in association with VPL. Here using human subjects we systematically compared behavioral tuning function changes after global motion detection training with decoded tuning function changes for 8 visual areas using pattern classification analysis on functional magnetic resonance imaging (fMRI) signals. We found that the behavioral tuning function changes were extremely highly correlated to decoded tuning function changes only in V3A, which is known to be highly responsive to global motion with human subjects. We conclude that VPL of a global motion detection task involves plasticity in a specific visual cortical area. PMID:22952849
Active versus passive maintenance of visual nonverbal memory.
McKeown, Denis; Holt, Jessica; Delvenne, Jean-Francois; Smith, Amy; Griffiths, Benjamin
2014-08-01
Forgetting over the short term has challenged researchers for more than a century, largely because of the difficulty of controlling what goes on within the memory retention interval. But the "recent-negative-probe" procedure offers a valuable paradigm, by examining the influences of (presumably) unattended memoranda from prior trials. Here we used a recent-probe task to investigate forgetting for visual nonverbal short-term memory. The target stimuli (two visually presented abstract shapes) on a trial were followed after a retention interval by a probe, and participants indicated whether the probe matched one of the target items. Proactive interference, and hence memory for old trial probes, was observed, whereby participants were slowed in rejecting a nonmatching probe on the current trial that nevertheless matched a target item on the previous trial (a recent-negative probe). The attraction of the paradigm is that, by uncovering proactive influences of past-trial probe stimuli, it can be argued that active maintenance in memory of those probes is unlikely. In two experiments, we recorded such proactive interference of prior-trial items over a range of interstimulus (ISI) and intertrial (ITI) intervals (between 1 and 6 s, respectively). Consistent with a proposed two-process memory conception (the active-passive memory model, or APM), actively maintained memories on current trials decayed, but passively "maintained," or unattended, visual memories of stimuli on past trials did not.
Food Avoidance Learning in Squirrel Monkeys and Common Marmosets
Laska, Matthias; Metzker, Karin
1998-01-01
Using a conditioned food avoidance learning paradigm, six squirrel monkeys (Saimiri sciureus) and six common marmosets (Callithrix jacchus) were tested for their ability to (1) reliably form associations between visual or olfactory cues of a potential food and its palatability and (2) remember such associations over prolonged periods of time. We found (1) that at the group level both species showed one-trial learning with the visual cues color and shape, whereas only the marmosets were able to do so with the olfactory cue, (2) that all individuals from both species learned to reliably avoid the unpalatable food items within 10 trials, (3) a tendency in both species for quicker acquisition of the association with the visual cues compared with the olfactory cue, (4) a tendency for quicker acquisition and higher reliability of the aversion by the marmosets compared with the squirrel monkeys, and (5) that all individuals from both species were able to reliably remember the significance of the visual cues, color and shape, even after 4 months, whereas only the marmosets showed retention of the significance of the olfactory cues for up to 4 weeks. Furthermore, the results suggest that in both species tested, illness is not a necessary prerequisite for food avoidance learning but that the presumably innate rejection responses toward highly concentrated but nontoxic bitter and sour tastants are sufficient to induce robust learning and retention. PMID:10454364
Peripheral Vision of Youths with Low Vision: Motion Perception, Crowding, and Visual Search
Tadin, Duje; Nyquist, Jeffrey B.; Lusk, Kelly E.; Corn, Anne L.; Lappin, Joseph S.
2012-01-01
Purpose. Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. Methods. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10–17) and low vision (n = 24, ages 9–18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. Results. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Conclusions. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function. PMID:22836766
Peripheral vision of youths with low vision: motion perception, crowding, and visual search.
Tadin, Duje; Nyquist, Jeffrey B; Lusk, Kelly E; Corn, Anne L; Lappin, Joseph S
2012-08-24
Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10-17) and low vision (n = 24, ages 9-18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function.
Does visual impairment lead to additional disability in adults with intellectual disabilities?
Evenhuis, H M; Sjoukes, L; Koot, H M; Kooijman, A C
2009-01-01
This study addresses the question to what extent visual impairment leads to additional disability in adults with intellectual disabilities (ID). In a multi-centre cross-sectional study of 269 adults with mild to profound ID, social and behavioural functioning was assessed with observant-based questionnaires, prior to expert assessment of visual function. With linear regression analysis the percentage of variance, explained by levels of visual function, was calculated for the total population and per ID level. A total of 107/269 participants were visually impaired or blind (WHO criteria). On top of the decrease by ID visual impairment significantly decreased daily living skills, communication & language, recognition/communication. Visual impairment did not cause more self-absorbed and withdrawn behaviour or anxiety. Peculiar looking habits correlated with visual impairment and not with ID. In the groups with moderate and severe ID this effect seems stronger than in the group with profound ID. Although ID alone impairs daily functioning, visual impairment diminishes the daily functioning even more. Timely detection and treatment or rehabilitation of visual impairment may positively influence daily functioning, language development, initiative and persistence, social skills, communication skills and insecure movement.
Three-dimensional entertainment as a novel cause of takotsubo cardiomyopathy.
Taylor, Montoya; Amin, Anish; Bush, Charles
2011-11-01
Takotsubo cardiomyopathy (TC) is an uncommon entity. It is known to occur in the setting of extreme catecholamine release and results in left ventricular dysfunction without evidence of angiographically definable coronary artery disease. There have been no published reports of TC occurring with visual stimuli, specifically 3-dimensional (3D) entertainment. We present a 55-year-old woman who presented to her primary care physician's office with extreme palpitations, nausea, vomiting, and malaise <48 hours after watching a 3D action movie at her local theater. Her electrocardiogram demonstrated ST elevations in aVL and V1, prolonged QTc interval, and T-wave inversions in leads I, II, aVL, and V2-V6. Coronary angiography revealed angiographically normal vessels, elevated left ventricular filling pressures, and decreased ejection fraction with a pattern of apical ballooning. The presumed final diagnosis was TC, likely due to visual-auditory-triggered catecholamine release causing impaired coronary microcirculation. © 2011 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Moses, Tim; Liu, Jinghua
2011-01-01
In equating research and practice, equating functions that are smooth are typically assumed to be more accurate than equating functions with irregularities. This assumption presumes that population test score distributions are relatively smooth. In this study, two examples were used to reconsider common beliefs about smoothing and equating. The…
Provably secure Rabin-p cryptosystem in hybrid setting
NASA Astrophysics Data System (ADS)
Asbullah, Muhammad Asyraf; Ariffin, Muhammad Rezal Kamel
2016-06-01
In this work, we design an efficient and provably secure hybrid cryptosystem depicted by a combination of the Rabin-p cryptosystem with an appropriate symmetric encryption scheme. We set up a hybrid structure which is proven secure in the sense of indistinguishable against the chosen-ciphertext attack. We presume that the integer factorization problem is hard and the hash function that modeled as a random function.
Cohn, Neil; Kutas, Marta
2015-01-01
Inference has long been emphasized in the comprehension of verbal and visual narratives. Here, we measured event-related brain potentials to visual sequences designed to elicit inferential processing. In Impoverished sequences, an expressionless “onlooker” watches an undepicted event (e.g., person throws a ball for a dog, then watches the dog chase it) just prior to a surprising finale (e.g., someone else returns the ball), which should lead to an inference (i.e., the different person retrieved the ball). Implied sequences alter this narrative structure by adding visual cues to the critical panel such as a surprised facial expression to the onlooker implying they saw an unexpected, albeit undepicted, event. In contrast, Expected sequences show a predictable, but then confounded, event (i.e., dog retrieves ball, then different person returns it), and Explicit sequences depict the unexpected event (i.e., different person retrieves then returns ball). At the critical penultimate panel, sequences representing depicted events (Explicit, Expected) elicited a larger posterior positivity (P600) than the relatively passive events of an onlooker (Impoverished, Implied), though Implied sequences were slightly more positive than Impoverished sequences. At the subsequent and final panel, a posterior positivity (P600) was greater to images in Impoverished sequences than those in Explicit and Implied sequences, which did not differ. In addition, both sequence types requiring inference (Implied, Impoverished) elicited a larger frontal negativity than those explicitly depicting events (Expected, Explicit). These results show that neural processing differs for visual narratives omitting events versus those depicting events, and that the presence of subtle visual cues can modulate such effects presumably by altering narrative structure. PMID:26320706
Duncan, Robert O; Sample, Pamela A; Bowd, Christopher; Weinreb, Robert N; Zangwill, Linda M
2012-05-01
Altered metabolic activity has been identified as a potential contributing factor to the neurodegeneration associated with primary open angle glaucoma (POAG). Consequently, we sought to determine whether there is a relationship between the loss of visual function in human glaucoma and resting blood perfusion within primary visual cortex (V1). Arterial spin labeling (ASL) functional magnetic resonance imaging (fMRI) was conducted in 10 participants with POAG. Resting cerebral blood flow (CBF) was measured from dorsal and ventral V1. Behavioral measurements of visual function were obtained using standard automated perimetry (SAP), short-wavelength automated perimetry (SWAP), and frequency-doubling technology perimetry (FDT). Measurements of CBF were compared to differences in visual function for the superior and inferior hemifield. Differences in CBF between ventral and dorsal V1 were correlated with differences in visual function for the superior versus inferior visual field. A statistical bootstrapping analysis indicated that the observed correlations between fMRI responses and measurements of visual function for SAP (r=0.49), SWAP (r=0.63), and FDT (r=0.43) were statistically significant (all p<0.05). Resting blood perfusion in human V1 is correlated with the loss of visual function in POAG. Altered CBF may be a contributing factor to glaucomatous optic neuropathy, or it may be an indication of post-retinal glaucomatous neurodegeneration caused by damage to the retinal ganglion cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
PERSPECTIVE: Is acuity enough? Other considerations in clinical investigations of visual prostheses
NASA Astrophysics Data System (ADS)
Lepri, Bernard P.
2009-06-01
Visual impairing eye diseases are the major frontier facing ophthalmic research today in light of our rapidly aging population. The visual skills necessary for improving the quality of daily function and life are inextricably linked to these impairing diseases. Both research and reimbursement programs are emphasizing outcome-based results. Is improvement in visual acuity alone enough to improve the function and quality of life of visually impaired persons? This perspective summarizes the types of effectiveness endpoints for clinical investigations of visual prostheses that go beyond visual acuity. The clinical investigation of visual prostheses should include visual function, functional vision and quality of life measures. Specifically, they encompass contrast sensitivity, orientation and mobility, activities of daily living and quality of life assessments. The perspective focuses on the design of clinical trials for visual prostheses and the methods of determining effectiveness above and beyond visual acuity that will yield outcomes that are measured by improved function in the visual world and quality of life. The visually impaired population is the primary consideration in this presentation with particular emphases on retinitis pigmentosa and age-related macular degeneration. Clinical trials for visual prostheses cannot be isolated from the need for medical rehabilitation in order to obtain measurements of effectiveness that produce outcomes/evidence-based success. This approach will facilitate improvement in daily function and quality of life of patients with diseases that cause chronic vision impairment. The views and opinions are those of the author and do not necessarily reflect those of the US Food and Drug Administration, the US Department of Health and Human Services or the Public Health Service.
Stimulation of functional vision in children with perinatal brain damage.
Alimović, Sonja; Mejaski-Bosnjak, Vlatka
2011-01-01
Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual stimulation on development of functional vision at early age of life. We initially assessed 30 children with perinatal brain damage up to 3 years of age, who were reffered to our pediatric low vision cabinet in "Little house" from child neurologists, ophthalmologists Type and degree of visual impairment was determined according to functional vision assessment of each child. On the bases of those assessments different kind of visual stimulations were carried out with children who have been identified to have a certain visual impairment. Through visual stimulation program some of the children were stimulated with light stimulus, some with different materials under the ultraviolet (UV) light, and some with bright color and high contrast materials. Children were also involved in program of early stimulation of overall sensory motor development. Goals and methods of therapy were determined individually, based on observation of child's possibilities and need. After one year of program, reassessment was done. Results for visual functions and functional vision were compared to evaluate the improvement of the vision development. These results have shown that there was significant improvement in functional vision, especially in visual attention and visual communication.
Visual function at 11 years of age in preterm-born children with and without fetal brain sparing.
Kok, Joke H; Prick, Liesbeth; Merckel, Elly; Everhard, Yolande; Verkerk, Gijs J Q; Scherjon, Sicco A
2007-06-01
We have demonstrated earlier an accelerated maturation of the visual evoked potential in the first year of life in preterm infants with antenatal brain sparing. We have now assessed visual functioning at 11 years of age in the same cohort and compared the groups with and without brain sparing. One hundred sixteen survivors included in a study on the outcome of preterm infants born at <33 weeks' gestation with and without fetal brain sparing and admitted to the NICU were followed extensively. Ninety-eight infants (85%) were again assessed at 11 years of age. Data were available for fetal Doppler measurements indicating brain sparing, neonatal cerebral ultrasound scanning, and developmental outcome in the first 5 years. Mean birth weight was 1303 g; mean gestational age was 29.8 weeks. The infants were divided into 2 groups with and without brain sparing. Visual functioning was estimated by measuring visual acuity, visual fields, eye position, and binocular function and by visual motor tests. Six percent of the children were found to have a visual acuity of <0.8, 12% had strabismus, and 14% to 46% showed abnormal results on the visual motor tests. No statistical differences were found between the 2 groups. However, children with severe cerebral ultrasound diagnoses in the neonatal period were found to have significantly more abnormalities on visual functioning and lower scores on visual motor tests than children without these morbidities. Children with fetal brain sparing do not demonstrate a different development of their visual functioning at late school age. However, an abnormal cerebral ultrasound in the neonatal period is associated with impaired visual function in later life.
Evaluation of stereoscopic display with visual function and interview
NASA Astrophysics Data System (ADS)
Okuyama, Fumio
1999-05-01
The influence of binocular stereoscopic (3D) television display on the human eye were compared with one of a 2D display, using human visual function testing and interviews. A 40- inch double lenticular display was used for 2D/3D comparison experiments. Subjects observed the display for 30 minutes at a distance 1.0 m, with a combination of 2D material and one of 3D material. The participants were twelve young adults. Main optometric test with visual function measured were visual acuity, refraction, phoria, near vision point, accommodation etc. The interview consisted of 17 questions. Testing procedures were performed just before watching, just after watching, and forty-five minutes after watching. Changes in visual function are characterized as prolongation of near vision point, decrease of accommodation and increase in phoria. 3D viewing interview results show much more visual fatigue in comparison with 2D results. The conclusions are: 1) change in visual function is larger and visual fatigue is more intense when viewing 3D images. 2) The evaluation method with visual function and interview proved to be very satisfactory for analyzing the influence of stereoscopic display on human eye.
[Multifocal visual electrophysiology in visual function evaluation].
Peng, Shu-Ya; Chen, Jie-Min; Liu, Rui-Jue; Zhou, Shu; Liu, Dong-Mei; Xia, Wen-Tao
2013-08-01
Multifocal visual electrophysiology, consisting of multifocal electroretinography (mfERG) and multifocal visual evoked potential (mfVEP), can objectively evaluate retina function and retina-cortical conduction pathway status by stimulating many local retinal regions and obtaining each local response simultaneously. Having many advantages such as short testing time and high sensitivity, it has been widely used in clinical ophthalmology, especially in the diagnosis of retinal disease and glaucoma. It is a new objective technique in clinical forensic medicine involving visual function evaluation of ocular trauma in particular. This article summarizes the way of stimulation, the position of electrodes, the way of analysis, the visual function evaluation of mfERG and mfVEP, and discussed the value of multifocal visual electrophysiology in forensic medicine.
Relationship between premature ejaculation and depression in Korean males.
Son, Hwancheol; Song, Sang Hoon; Lee, Jun-Young; Paick, Jae-Seung
2011-07-01
The psychological impacts of premature ejaculation (PE), which include guilt, anxiety, and distress, have been well established in Western countries. However, in Asia, although a substantial number of epidemiological studies have surveyed the prevalence of PE, researchers have not thoroughly investigated the relationship between PE and depression, or have defined PE properly. We studied the association between PE and depression and other psychological disturbances, in a Korean cohort by applying an appropriate definition for PE and validated outcome measures of depression. METHODS. A total of 956 males (≥20 years) were initially approached via an Internet survey company. Participants were asked to complete a questionnaire requesting detailed medical and sexual histories, which included questions from the Erectile Function Domain score in the International Index of Erectile Function (IIEF-EF) and the Beck Depression Inventory (BDI). The prevalence of PE was evaluated using two different definitions-self-assessed PE and presumed PE. Presumed PE was defined as a short ejaculation time (an estimated intravaginal ejaculatory latency time ≤5 minutes), an inability to control ejaculation, and the presence of distress resulting from PE. Ejaculation-related questionnaire, the IIEF-EF, and BDI. A total of 334 men were evaluated. The prevalence of PE was 10.5% according to the Presumed PE definition, whereas by self-assessment, it was 25.4%. Self-assessed PE patients suffered from various psychological problems, such as depression, low self-esteem, bother, and low sexual satisfaction. Even after excluding erectile dysfunction (ED) subjects, a significant relationship was found between self-assessed PE and depression. Moreover, after further classification of the Self-assessed PE group, we found that subjects included in this group, but not in the Presumed PE group, suffered more from psychological burden than any other members of the cohort. Korean men with subjective perceptions of PE are prone to various psychological problems, which include depression. © 2011 International Society for Sexual Medicine.
Visual Learning Alters the Spontaneous Activity of the Resting Human Brain: An fNIRS Study
Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan
2014-01-01
Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning. PMID:25243168
Visual learning alters the spontaneous activity of the resting human brain: an fNIRS study.
Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan
2014-01-01
Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, M Pauline
2007-06-30
The VisPort visualization portal is an experiment in providing Web-based access to visualization functionality from any place and at any time. VisPort adopts a service-oriented architecture to encapsulate visualization functionality and to support remote access. Users employ browser-based client applications to choose data and services, set parameters, and launch visualization jobs. Visualization products typically images or movies are viewed in the user's standard Web browser. VisPort emphasizes visualization solutions customized for specific application communities. Finally, VisPort relies heavily on XML, and introduces the notion of visualization informatics - the formalization and specialization of information related to the process and productsmore » of visualization.« less
Visual, Musculoskeletal, and Balance Complaints in AMD: A Follow-Up Study
Richter, Hans Olof
2016-01-01
Purpose. To investigate whether patients with age-related macular degeneration (AMD) run a potentially higher risk of developing visual, musculoskeletal, and balance complaints than age-matched controls with normal vision. Methods. Visual assessments, self-rated visual function, self-rated visual, musculoskeletal, and balance complaints, and perceived general health were obtained in 37 AMD patients and 18 controls, at baseline and after an average of 3.8 years later. Results. At follow-up both groups reported decreased visual acuity (VA) and visual function, but only AMD patients reported significantly increased visual, musculoskeletal, and balance complaints. Decreased VA, need for larger font size when reading, need for larger magnification, and decreased self-rated visual function were identified as risk markers for increased complaints in AMD patients. These complaints were also identified as risk markers for decreased health. For controls, decreased VA and self-reported visual function were associated with increased visual and balance complaints. Conclusions. Visual deterioration was a risk marker for increased visual, musculoskeletal, balance, and health complaints in AMD patients. Specifically, magnifying visual aids, such as CCTV, were a risk marker for increased complaints in AMD patients. This calls for early and coordinated actions to treat and prevent visual, musculoskeletal, balance, and health complaints in AMD patients. PMID:27830084
Visual impairment, visual functioning, and quality of life assessments in patients with glaucoma.
Parrish, R K
1996-01-01
BACKGROUND/PURPOSE: To determine the relation between visual impairment, visual functioning, and the global quality of life in patients with glaucoma. METHODS: Visual impairment, defined with the American Medical Association Guides to the Evaluation of Permanent Impairment; visual functioning, measured with the VF-14 and the Field Test Version of the National Eye Institute-Visual Functioning Questionnaire (NEI-VFQ); and the global quality of life, assessed with the Medical Outcomes Study 36-Item Short Form Health Survey (SF-36), were determined in 147 consecutive patients with glaucoma. RESULTS: None of the SF-36 domains demonstrated more than a weak correlation with visual impairment. The VF-14 scores were moderately correlated with visual impairment. Of the twelve NEI-VFQ scales, distance activities and vision specific dependency were moderately correlated with visual impairment. Of the twelve NEI-VFQ scales, distance activities and vision specific dependency were moderately correlated with visual field impairment; vision specific social functioning, near activities, vision specific role difficulties, general vision, vision specific mental health, color vision, and driving were modestly correlated; visual pain was weakly correlated; and two were not significantly correlated. Correcting for visual actuity weakened the strength of the correlation coefficients. CONCLUSIONS: The SF-36 is unlikely to be useful in determining visual impairment in patients with glaucoma. Based on the moderate correlation between visual field impairment and the VF-14 score, this questionnaire may be generalizable to patients with glaucoma. Several of the NEI-VFQ scales correlate with visual field impairment scores in patients with a wide range of glaucomatous damage. PMID:8981717
The Puzzle of Visual Development: Behavior and Neural Limits.
Kiorpes, Lynne
2016-11-09
The development of visual function takes place over many months or years in primate infants. Visual sensitivity is very poor near birth and improves over different times courses for different visual functions. The neural mechanisms that underlie these processes are not well understood despite many decades of research. The puzzle arises because research into the factors that limit visual function in infants has found surprisingly mature neural organization and adult-like receptive field properties in very young infants. The high degree of visual plasticity that has been documented during the sensitive period in young children and animals leaves the brain vulnerable to abnormal visual experience. Abnormal visual experience during the sensitive period can lead to amblyopia, a developmental disorder of vision affecting ∼3% of children. This review provides a historical perspective on research into visual development and the disorder amblyopia. The mismatch between the status of the primary visual cortex and visual behavior, both during visual development and in amblyopia, is discussed, and several potential resolutions are considered. It seems likely that extrastriate visual areas further along the visual pathways may set important limits on visual function and show greater vulnerability to abnormal visual experience. Analyses based on multiunit, population activity may provide useful representations of the information being fed forward from primary visual cortex to extrastriate processing areas and to the motor output. Copyright © 2016 the authors 0270-6474/16/3611384-10$15.00/0.
A cute and highly contrast-sensitive superposition eye - the diurnal owlfly Libelloides macaronius.
Belušič, Gregor; Pirih, Primož; Stavenga, Doekele G
2013-06-01
The owlfly Libelloides macaronius (Insecta: Neuroptera) has large bipartite eyes of the superposition type. The spatial resolution and sensitivity of the photoreceptor array in the dorsofrontal eye part was studied with optical and electrophysiological methods. Using structured illumination microscopy, the interommatidial angle in the central part of the dorsofrontal eye was determined to be Δϕ=1.1 deg. Eye shine measurements with an epi-illumination microscope yielded an effective superposition pupil size of about 300 facets. Intracellular recordings confirmed that all photoreceptors were UV-receptors (λmax=350 nm). The average photoreceptor acceptance angle was 1.8 deg, with a minimum of 1.4 deg. The receptor dynamic range was two log units, and the Hill coefficient of the intensity-response function was n=1.2. The signal-to-noise ratio of the receptor potential was remarkably high and constant across the whole dynamic range (root mean square r.m.s. noise=0.5% Vmax). Quantum bumps could not be observed at any light intensity, indicating low voltage gain. Presumably, the combination of large aperture superposition optics feeding an achromatic array of relatively insensitive receptors with a steep intensity-response function creates a low-noise, high spatial acuity instrument. The sensitivity shift to the UV range reduces the clutter created by clouds within the sky image. These properties of the visual system are optimal for detecting small insect prey as contrasting spots against both clear and cloudy skies.
ERIC Educational Resources Information Center
Newcomb, Sandra
2010-01-01
Children who are identified as visually impaired frequently have a functional vision assessment as one way to determine how their visual impairment affects their educational performance. The CVI Range is a functional vision assessment for children with cortical visual impairment. The purpose of the study presented here was to examine the…
Imaging when acting: picture but not word cues induce action-related biases of visual attention.
Wykowska, Agnieszka; Hommel, Bernhard; Schubö, Anna
2012-01-01
In line with the Theory of Event Coding (Hommel et al., 2001a), action planning has been shown to affect perceptual processing - an effect that has been attributed to a so-called intentional weighting mechanism (Wykowska et al., 2009; Memelink and Hommel, 2012), whose functional role is to provide information for open parameters of online action adjustment (Hommel, 2010). The aim of this study was to test whether different types of action representations induce intentional weighting to various degrees. To meet this aim, we introduced a paradigm in which participants performed a visual search task while preparing to grasp or to point. The to-be performed movement was signaled either by a picture of a required action or a word cue. We reasoned that picture cues might trigger a more concrete action representation that would be more likely to activate the intentional weighting of perceptual dimensions that provide information for online action control. In contrast, word cues were expected to trigger a more abstract action representation that would be less likely to induce intentional weighting. In two experiments, preparing for an action facilitated the processing of targets in an unrelated search task if they differed from distractors on a dimension that provided information for online action control. As predicted, however, this effect was observed only if action preparation was signaled by picture cues but not if it was signaled by word cues. We conclude that picture cues are more efficient than word cues in activating the intentional weighting of perceptual dimensions, presumably by specifying not only invariant characteristics of the planned action but also the dimensions of action-specific parameters.
Imaging When Acting: Picture but Not Word Cues Induce Action-Related Biases of Visual Attention
Wykowska, Agnieszka; Hommel, Bernhard; Schubö, Anna
2012-01-01
In line with the Theory of Event Coding (Hommel et al., 2001a), action planning has been shown to affect perceptual processing – an effect that has been attributed to a so-called intentional weighting mechanism (Wykowska et al., 2009; Memelink and Hommel, 2012), whose functional role is to provide information for open parameters of online action adjustment (Hommel, 2010). The aim of this study was to test whether different types of action representations induce intentional weighting to various degrees. To meet this aim, we introduced a paradigm in which participants performed a visual search task while preparing to grasp or to point. The to-be performed movement was signaled either by a picture of a required action or a word cue. We reasoned that picture cues might trigger a more concrete action representation that would be more likely to activate the intentional weighting of perceptual dimensions that provide information for online action control. In contrast, word cues were expected to trigger a more abstract action representation that would be less likely to induce intentional weighting. In two experiments, preparing for an action facilitated the processing of targets in an unrelated search task if they differed from distractors on a dimension that provided information for online action control. As predicted, however, this effect was observed only if action preparation was signaled by picture cues but not if it was signaled by word cues. We conclude that picture cues are more efficient than word cues in activating the intentional weighting of perceptual dimensions, presumably by specifying not only invariant characteristics of the planned action but also the dimensions of action-specific parameters. PMID:23087656
The Cortical Network for Braille Writing in the Blind.
Likova, Lora T; Tyler, Christopher W; Cacciamani, Laura; Mineff, Kristyo; Nicholas, Spero
2016-01-01
Fundamental forms of high-order cognition, such as reading and writing, are usually studied in the context of one modality - vision. People without sight, however, use the kinesthetic-based Braille writing, and haptic-based Braille reading. We asked whether the cognitive and motor control mechanisms underlying writing and reading are modality-specific or supramodal. While a number of previous functional Magnetic Resonance Imaging (fMRI) studies have investigated the brain network for Braille reading in the blind, such studies on Braille writing are lacking. Consequently, no comparative network analysis of Braille writing vs. reading exists. Here, we report the first study of Braille writing, and a comparison of the brain organization for Braille writing vs Braille reading. FMRI was conducted in a Siemens 3T Trio scanner. Our custom MRI-compatible drawing/writing lectern was further modified to provide for Braille reading and writing. Each of five paragraphs of novel Braille text describing objects, faces and navigation sequences was read, then reproduced twice by Braille writing from memory, then read a second time. During Braille reading, the haptic-sensing of the Braille letters strongly activated not only the early visual area V1 and V2, but some highly specialized areas, such as the classical visual grapheme area and the Exner motor grapheme area. Braille-writing-from-memory, engaged a significantly more extensive network in dorsal motor, somatosensory/kinesthetic, dorsal parietal and prefrontal cortex. However, in contrast to the largely extended V1 activation in drawing-from-memory in the blind after training (Likova, 2012), Braille writing from memory generated focal activation restricted to the most foveal part of V1, presumably reflecting topographically the focal demands of such a "pin-pricking" task.
The Cortical Network for Braille Writing in the Blind
Likova, Lora T.; Tyler, Christopher W.; Cacciamani, Laura; Mineff, Kristyo; Nicholas, Spero
2017-01-01
Fundamental forms of high-order cognition, such as reading and writing, are usually studied in the context of one modality - vision. People without sight, however, use the kinesthetic-based Braille writing, and haptic-based Braille reading. We asked whether the cognitive and motor control mechanisms underlying writing and reading are modality-specific or supramodal. While a number of previous functional Magnetic Resonance Imaging (fMRI) studies have investigated the brain network for Braille reading in the blind, such studies on Braille writing are lacking. Consequently, no comparative network analysis of Braille writing vs. reading exists. Here, we report the first study of Braille writing, and a comparison of the brain organization for Braille writing vs Braille reading. FMRI was conducted in a Siemens 3T Trio scanner. Our custom MRI-compatible drawing/writing lectern was further modified to provide for Braille reading and writing. Each of five paragraphs of novel Braille text describing objects, faces and navigation sequences was read, then reproduced twice by Braille writing from memory, then read a second time. During Braille reading, the haptic-sensing of the Braille letters strongly activated not only the early visual area V1 and V2, but some highly specialized areas, such as the classical visual grapheme area and the Exner motor grapheme area. Braille-writing-from-memory, engaged a significantly more extensive network in dorsal motor, somatosensory/kinesthetic, dorsal parietal and prefrontal cortex. However, in contrast to the largely extended V1 activation in drawing-from-memory in the blind after training (Likova, 2012), Braille writing from memory generated focal activation restricted to the most foveal part of V1, presumably reflecting topographically the focal demands of such a “pin-pricking” task. PMID:28890944
Cressey, Anna; Jacobs, Deborah S; Remington, Crystal; Carrasquillo, Karen G
2018-06-01
To demonstrate clearing of chronic corneal opacities and improvement of visual acuity with the use of BostonSight prosthetic replacement of the ocular surface ecosystem (PROSE) treatment in ocular surface disease. We undertook retrospective analysis of the medical records of a series of patients who underwent PROSE treatment from August 2006 to December 2014. Patients were referred for ocular surface disease of various etiologies. Primary inclusion criterion was corneal opacity that improved with PROSE treatment. Patients were excluded if topical steroids or adjuvant therapy used once PROSE treatment was initiated. Underlying disease, prior treatment, clinical presentation, and clinical course were extracted from the medical record. Four patients are included in this series. There were three females and one male; median age at time of treatment initiation was 30 years (range = 0.5-58 years). Median duration of PROSE treatment at time of retrospective analysis was 3.5 years (range = 1-8 years). Two cases had corneal opacification in the context of neurotrophic keratopathy: a unilateral case due to presumed herpes simplex keratitis and a bilateral case due to congenital corneal anesthesia associated with familial dysautonomia. One case had corneal opacity from exposure related to seventh nerve palsy, and one had corneal opacification associated with recurrent surface breakdown, neurotrophic keratopathy, and limbal stem deficiency of uncertain etiology. After consistent wear of prosthetic devices used in PROSE treatment for support of the ocular surface, visual acuity improved and clearing of the opacities was observed, without use of topical steroids or adjuvant therapy. These cases demonstrate clearing of chronic corneal opacity with PROSE treatment for ocular surface disease. This clearing can occur with no adjuvant therapy, suggesting that restoration of ocular surface function and integrity allows for corneal remodeling.
McNally, Colin P.; Eng, Alexander; Noecker, Cecilia; Gagne-Maynard, William C.; Borenstein, Elhanan
2018-01-01
The abundance of both taxonomic groups and gene categories in microbiome samples can now be easily assayed via various sequencing technologies, and visualized using a variety of software tools. However, the assemblage of taxa in the microbiome and its gene content are clearly linked, and tools for visualizing the relationship between these two facets of microbiome composition and for facilitating exploratory analysis of their co-variation are lacking. Here we introduce BURRITO, a web tool for interactive visualization of microbiome multi-omic data with paired taxonomic and functional information. BURRITO simultaneously visualizes the taxonomic and functional compositions of multiple samples and dynamically highlights relationships between taxa and functions to capture the underlying structure of these data. Users can browse for taxa and functions of interest and interactively explore the share of each function attributed to each taxon across samples. BURRITO supports multiple input formats for taxonomic and metagenomic data, allows adjustment of data granularity, and can export generated visualizations as static publication-ready formatted figures. In this paper, we describe the functionality of BURRITO, and provide illustrative examples of its utility for visualizing various trends in the relationship between the composition of taxa and functions in complex microbiomes. PMID:29545787
2007-07-01
been put into place to guide the standards process. 6. If the balloting results in 75% approval then the draft standard is sub- mitted to the IEEE-SA...as functionality and timeliness. Such a design process presumably guided the design for the AMRFC test bed. The multifunction apertures for...Integrated Topside should be guided by the same design process. Engaging in a spiral design process will lead to the most effective selection of research
ERIC Educational Resources Information Center
Reimer, Bryan; Fried, Ronna; Mehler, Bruce; Joshi, Gagan; Bolfek, Anela; Godfrey, Kathryn M.; Zhao, Nan; Goldin, Rachel; Biederman, Joseph
2013-01-01
Although it is speculated that impairments associated with autism spectrum disorder (ASD) will adversely affect driving performance, little is known about the actual extent and nature of the presumed deficits. Ten males (18-24 years of age) with a diagnosis of high functioning autism and 10 age matched community controls were recruited for a…
Pacific Northwest tide channel utilization by fish as an ecosystem service
Background/Question/Methods: Saltwater marsh tide channels are considered to be important in the ecology of estuarine fish serving both as a refuge and as a provider of enhanced food resources. However, this presumed function of tide channels in Pacific Northwest estuaries has ...
Phosphorylation of K[superscript +] Channels at Single Residues Regulates Memory Formation
ERIC Educational Resources Information Center
Vernon, Jeffrey; Irvine, Elaine E.; Peters, Marco; Jeyabalan, Jeshmi; Giese, K. Peter
2016-01-01
Phosphorylation is a ubiquitous post-translational modification of proteins, and a known physiological regulator of K[superscript +] channel function. Phosphorylation of K[superscript +] channels by kinases has long been presumed to regulate neuronal processing and behavior. Although circumstantial evidence has accumulated from behavioral studies…
Critical periods and amblyopia.
Daw, N W
1998-04-01
During the past 20 years, basic science has shown that there are different critical periods for different visual functions during the development of the visual system. Visual functions processed at higher anatomical levels within the system have a later critical period than functions processed at lower levels. This general principle suggests that treatments for amblyopia should be followed in a logical sequence, with treatment for each visual function to be started before its critical period is over. However, critical periods for some visual functions, such as stereopsis, are not yet fully determined, and the optimal treatment is, therefore, unknown. This article summarizes the current extent of our knowledge and points to the gaps that need to be filled.
NASA Astrophysics Data System (ADS)
Yao, Xiuya; Chaganti, Shikha; Nabar, Kunal P.; Nelson, Katrina; Plassard, Andrew; Harrigan, Rob L.; Mawn, Louise A.; Landman, Bennett A.
2017-02-01
Eye diseases and visual impairment affect millions of Americans and induce billions of dollars in annual economic burdens. Expounding upon existing knowledge of eye diseases could lead to improved treatment and disease prevention. This research investigated the relationship between structural metrics of the eye orbit and visual function measurements in a cohort of 470 patients from a retrospective study of ophthalmology records for patients (with thyroid eye disease, orbital inflammation, optic nerve edema, glaucoma, intrinsic optic nerve disease), clinical imaging, and visual function assessments. Orbital magnetic resonance imaging (MRI) and computed tomography (CT) images were retrieved and labeled in 3D using multi-atlas label fusion. Based on the 3D structures, both traditional radiology measures (e.g., Barrett index, volumetric crowding index, optic nerve length) and novel volumetric metrics were computed. Using stepwise regression, the associations between structural metrics and visual field scores (visual acuity, functional acuity, visual field, functional field, and functional vision) were assessed. Across all models, the explained variance was reasonable (R2 0.1-0.2) but highly significant (p < 0.001). Instead of analyzing a specific pathology, this study aimed to analyze data across a variety of pathologies. This approach yielded a general model for the connection between orbital structural imaging biomarkers and visual function.
Plow, Ela B; Obretenova, Souzana N; Halko, Mark A; Kenkel, Sigrid; Jackson, Mary Lou; Pascual-Leone, Alvaro; Merabet, Lotfi B
2011-09-01
To standardize a protocol for promoting visual rehabilitative outcomes in post-stroke hemianopia by combining occipital cortical transcranial direct current stimulation (tDCS) with Vision Restoration Therapy (VRT). A comparative case study assessing feasibility and safety. A controlled laboratory setting. Two patients, both with right hemianopia after occipital stroke damage. METHODS AND OUTCOME MEASUREMENTS: Both patients underwent an identical VRT protocol that lasted 3 months (30 minutes, twice a day, 3 days per week). In patient 1, anodal tDCS was delivered to the occipital cortex during VRT training, whereas in patient 2 sham tDCS with VRT was performed. The primary outcome, visual field border, was defined objectively by using high-resolution perimetry. Secondary outcomes included subjective characterization of visual deficit and functional surveys that assessed performance on activities of daily living. For patient 1, the neural correlates of visual recovery were also investigated, by using functional magnetic resonance imaging. Delivery of combined tDCS with VRT was feasible and safe. High-resolution perimetry revealed a greater shift in visual field border for patient 1 versus patient 2. Patient 1 also showed greater recovery of function in activities of daily living. Contrary to the expectation, patient 2 perceived greater subjective improvement in visual field despite objective high-resolution perimetry results that indicated otherwise. In patient 1, visual function recovery was associated with functional magnetic resonance imaging activity in surviving peri-lesional and bilateral higher-order visual areas. Results of preliminary case comparisons suggest that occipital cortical tDCS may enhance recovery of visual function associated with concurrent VRT through visual cortical reorganization. Future studies may benefit from incorporating protocol refinements such as those described here, which include global capture of function, control for potential confounds, and investigation of underlying neural substrates of recovery. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Zebehazy, Kim T.
2014-01-01
This study reports opinions and practices of teachers of students with visual impairments (TSVIs) in 34 states regarding functional literacy for students with visual impairments (VIs) and significant cognitive disabilities (SCDs). The survey asked TSVIs to select a definition of functional literacy, indicate agreement with a series of literacy…
van Boxtel, M P; ten Tusscher, M P; Metsemakers, J F; Willems, B; Jolles, J
2001-10-01
It is unknown to what extent the performance on the Stroop color-word test is affected by reduced visual function in older individuals. We tested the impact of common deficiencies in visual function (reduced distant and close acuity, reduced contrast sensitivity, and color weakness) on Stroop performance among 821 normal individuals aged 53 and older. After adjustment for age, sex, and educational level, low contrast sensitivity was associated with more time needed on card I (word naming), red/green color weakness with slower card 2 performance (color naming), and reduced distant acuity with slower performance on card 3 (interference). Half of the age-related variance in speed performance was shared with visual function. The actual impact of reduced visual function may be underestimated in this study when some of this age-related variance in Stroop performance is mediated by visual function decrements. It is suggested that reduced visual function has differential effects on Stroop performance which need to be accounted for when the Stroop test is used both in research and in clinical settings. Stroop performance measured from older individuals with unknown visual status should be interpreted with caution.
Novel mouse model of colitis characterized by hapten-protein visualization.
Ishiguro, Kazuhiro; Ando, Takafumi; Maeda, Osamu; Watanabe, Osamu; Goto, Hidemi
2010-09-01
Trinitrobenzene sulfonic acid (TNBS) and oxazolone are used to induce colitis for the investigation of inflammatory reactions in the colon. Although these chemicals are presumed to bind proteins in the colonic mucosa and then induce colitis as haptens, hapten-protein formation has not yet been confirmed in the colonic mucosa. We developed a mouse model of colitis characterized by hapten-protein visualization, using 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl), which emits fluorescence after binding to proteins. The enema of 1 mg/mL NBD-Cl induced severe diarrhea, rectal bleeding, and body weight reductions in BALB/c mice. Mucosal signs indicative of colitis, such as redness and swelling observed under stereomicroscopy or inflammatory cell infiltration and crypt-epithelium destruction under microscopy, were manifested around NBD-proteins visualized with fluorescence. Fluorescence microscopy showed the infiltration of F4/80+ cells around areas of NBD-proteins, and flow cytometry indicated the uptake of NBD-proteins by CD11b+ cells. We also found critical roles for T cells and interleukin-6 in colitis induction with NBD-proteins. NBD-Cl-induced colitis presents a unique model to study the relevance between hapten-protein formation and inflammatory reactions and offers a method to assess experimental interventions on colitis induction in the mucosa, where hapten-protein formation is confirmed.
Ota, Nao; Gahr, Manfred; Soma, Masayo
2015-11-19
According to classical sexual selection theory, complex multimodal courtship displays have evolved in males through female choice. While it is well-known that socially monogamous songbird males sing to attract females, we report here the first example of a multimodal dance display that is not a uniquely male trait in these birds. In the blue-capped cordon-bleu (Uraeginthus cyanocephalus), a socially monogamous songbird, both sexes perform courtship displays that are characterised by singing and simultaneous visual displays. By recording these displays with a high-speed video camera, we discovered that in addition to bobbing, their visual courtship display includes quite rapid step-dancing, which is assumed to produce vibrations and/or presumably non-vocal sounds. Dance performances did not differ between sexes but varied among individuals. Both male and female cordon-bleus intensified their dance performances when their mate was on the same perch. The multimodal (acoustic, visual, tactile) and multicomponent (vocal and non-vocal sounds) courtship display observed was a combination of several motor behaviours (singing, bobbing, stepping). The fact that both sexes of this socially monogamous songbird perform such a complex courtship display is a novel finding and suggests that the evolution of multimodal courtship display as an intersexual communication should be considered.
Biasing spatial attention with semantic information: an event coding approach.
Amer, Tarek; Gozli, Davood G; Pratt, Jay
2017-04-21
We investigated the influence of conceptual processing on visual attention from the standpoint of Theory of Event Coding (TEC). The theory makes two predictions: first, an important factor in determining the influence of event 1 on processing event 2 is whether features of event 1 are bound into a unified representation (i.e., selection or retrieval of event 1). Second, whether processing the two events facilitates or interferes with each other should depend on the extent to which their constituent features overlap. In two experiments, participants performed a visual-attention cueing task, in which the visual target (event 2) was preceded by a relevant or irrelevant explicit (e.g., "UP") or implicit (e.g., "HAPPY") spatial-conceptual cue (event 1). Consistent with TEC, we found relevant explicit cues (which featurally overlap to a greater extent with the target) and implicit cues (which featurally overlap to a lesser extent), respectively, facilitated and interfered with target processing at compatible locations. Irrelevant explicit and implicit cues, on the other hand, both facilitated target processing, presumably because they were less likely selected or retrieved as an integrated and unified event file. We argue that such effects, often described as "attentional cueing", are better accounted for within the event coding framework.
Cognitive dissonance and the perception of natural environments.
Balcetis, Emily; Dunning, David
2007-10-01
Two studies demonstrated that the motivation to resolve cognitive dissonance affects the visual perception of physical environments. In Study 1, subjects crossed a campus quadrangle wearing a costume reminiscent of Carmen Miranda. In Study 2, subjects pushed themselves up a hill while kneeling on a skateboard. Subjects performed either task under a high-choice, low-choice, or control condition. Subjects in the high-choice conditions, presumably to resolve dissonance, perceived the environment to be less aversive than did subjects in the low-choice and control conditions, seeing a shorter distance to travel (Study 1) and a shallower slope to climb (Study 2). These studies suggest that the impact of motivational states extends from social judgment down into perceptual processes.
Tinbergen, Jan; Wilts, Bodo D; Stavenga, Doekele G
2013-12-01
The feathers of Amazon parrots are brightly coloured. They contain a unique class of pigments, the psittacofulvins, deposited in both barbs and barbules, causing yellow or red coloured feathers. In specific feather areas, spongy nanostructured barb cells exist, reflecting either in the blue or blue-green wavelength range. The blue-green spongy structures are partly enveloped by a blue-absorbing, yellow-colouring pigment acting as a spectral filter, thus yielding a green coloured barb. Applying reflection and transmission spectroscopy, we characterized the Amazons' pigments and spongy structures, and investigated how they contribute to the feather coloration. The reflectance spectra of Amazon feathers are presumably tuned to the sensitivity spectra of the visual photoreceptors.
The identification of liquid ethane in Titan's Ontario Lacus
Brown, R.H.; Soderblom, L.A.; Soderblom, J.M.; Clark, R.N.; Jaumann, R.; Barnes, J.W.; Sotin, Christophe; Buratti, B.; Baines, K.H.; Nicholson, P.D.
2008-01-01
Titan was once thought to have global oceans of light hydrocarbons on its surface, but after 40 close flybys of Titan by the Cassini spacecraft, it has become clear that no such oceans exist. There are, however, features similar to terrestrial lakes and seas, and widespread evidence for fluvial erosion, presumably driven by precipitation of liquid methane from Titan's dense, nitrogen-dominated atmosphere. Here we report infrared spectroscopic data, obtained by the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini spacecraft, that strongly indicate that ethane, probably in liquid solution with methane, nitrogen and other low-molecular-mass hydrocarbons, is contained within Titan's Ontario Lacus. ??2008 Macmillan Publishers Limited. All rights reserved.
Goldstein, Judith E; Jackson, Mary Lou; Fox, Sandra M; Deremeik, James T; Massof, Robert W
2015-07-01
To facilitate comparative clinical outcome research in low vision rehabilitation, we must use patient-centered measurements that reflect clinically meaningful changes in visual ability. To quantify the effects of currently provided low vision rehabilitation (LVR) on patients who present for outpatient LVR services in the United States. Prospective, observational study of new patients seeking outpatient LVR services. From April 2008 through May 2011, 779 patients from 28 clinical centers in the United States were enrolled in the Low Vision Rehabilitation Outcomes Study. The Activity Inventory, a visual function questionnaire, was administered to measure overall visual ability and visual ability in 4 functional domains (reading, mobility, visual motor function, and visual information processing) at baseline and 6 to 9 months after usual LVR care. The Geriatric Depression Scale, Telephone Interview for Cognitive Status, and Medical Outcomes Study 36-Item Short-Form Health Survey physical functioning questionnaires were also administered to measure patients' psychological, cognitive, and physical health states, respectively, and clinical findings of patients were provided by study centers. Mean changes in the study population and minimum clinically important differences in the individual in overall visual ability and in visual ability in 4 functional domains as measured by the Activity Inventory. Baseline and post-rehabilitation measures were obtained for 468 patients. Minimum clinically important differences (95% CIs) were observed in nearly half (47% [95% CI, 44%-50%]) of patients in overall visual ability. The prevalence rates of patients with minimum clinically important differences in visual ability in functional domains were reading (44% [95% CI, 42%-48%]), visual motor function (38% [95% CI, 36%-42%]), visual information processing (33% [95% CI, 31%-37%]), and mobility (27% [95% CI, 25%-31%]). The largest average effect size (Cohen d = 0.87) for the population was observed in overall visual ability. Age (P = .006) was an independent predictor of changes in overall visual ability, and logMAR visual acuity (P = .002) was predictive of changes in visual information processing. Forty-four to fifty percent of patients presenting for outpatient LVR show clinically meaningful differences in overall visual ability after LVR, and the average effect sizes in overall visual ability are large, close to 1 SD.
Functional and visual acuity outcomes of cataract surgery in Timor-Leste (East Timor).
Naidu, Girish; Correia, Marcelino; Nirmalan, Praveen; Verma, Nitin; Thomas, Ravi
2014-12-01
To report functional outcomes following cataract surgery in Timor-Leste. Pre- and post-intervention study measuring visual function improvement following cataract surgery. Presenting visual acuity (VA) was measured and visual function documented using the Indian vision function questionnaire (IND-VFQ). All 174 persons undergoing cataract surgery from November 2009 to January 2011 in Timor-Leste were included. Mean age was 65.4 years; 113 (64.9%) were male, 143 (82.1%) were from a rural background and 151 (86.8%) were illiterate. Pre-operatively, 77 of 174 patients (44.3%, 95% confidence interval, CI, 37.0-51.7%) were blind (VA ≤3/60), 77 (44.3%, 95% CI 37.0-51.7%) were visually impaired (VA <6/18->3/60), while 20 (11.5%, 95% CI 7.4-16.9%) had presenting acuity ≥6/18 in the better eye. Following surgery, significant improvement in visual function was demonstrated by an effect size of 2.8, 3.7 and 3.9 in the domains of general functioning, psychosocial impact and visual symptoms, respectively. Four weeks following surgery, 85 patients (48.9%, 95% CI 41.5-66.3%) had a presenting VA ≥6/18, 74 (42.5%, 95% CI 35.3-45.9%) were visually impaired and 15 (8.6%, 95% CI 5.0-13.6%) were blind. IND-VFQ improvement occurred even in patients remaining visually impaired or blind following surgery. In this setting, cataract surgery led to a significant improvement in visual function but the VA results did not meet World Health Organization quality criteria. IND-VFQ results, although complementary to clinical VA outcomes did not, in isolation, reflect the need to improve program quality.
Zhu, X; Ye, H; He, W; Yang, J; Dai, J; Lu, Y
2017-01-01
Purpose To explore the objective functional visual outcomes of cataract surgery in patients with good preoperative visual acuity. Methods We enrolled 130 cataract patients whose best-corrected visual acuity (BCVA) was 20/40 or better preoperatively. Objective visual functions were evaluated with a KR-1W analyzer before and at 1 month after cataract surgery. Results The nuclear (N), cortical (C), and N+C groups had very high preoperative ocular and internal total high-order aberrations (HOAs), coma, and abnormal spherical aberrations. At 1 month after cataract surgery, in addition to the remarkable increase of both uncorrected visual acuity and BCVA, both ocular and internal HOAs in the three groups decreased significantly after cataract surgery (all P<0.05). Point spread function and modulation transfer functions were also improved significantly in these patients (all P<0.05). Conclusions The objective functional vision of patients with 20/40 or better preoperative BCVA improved significantly after cataract surgery. This finding shows that the arbitrary threshold of BCVA worse than 20/40 in China cannot always be used to determine who will benefit from cataract surgery. PMID:27858933
Altered Functional Connectivity of the Primary Visual Cortex in Subjects with Amblyopia
Ding, Kun; Liu, Yong; Yan, Xiaohe; Lin, Xiaoming; Jiang, Tianzi
2013-01-01
Amblyopia, which usually occurs during early childhood and results in poor or blurred vision, is a disorder of the visual system that is characterized by a deficiency in an otherwise physically normal eye or by a deficiency that is out of proportion with the structural or functional abnormalities of the eye. Our previous study demonstrated alterations in the spontaneous activity patterns of some brain regions in individuals with anisometropic amblyopia compared to subjects with normal vision. To date, it remains unknown whether patients with amblyopia show characteristic alterations in the functional connectivity patterns in the visual areas of the brain, particularly the primary visual area. In the present study, we investigated the differences in the functional connectivity of the primary visual area between individuals with amblyopia and normal-sighted subjects using resting functional magnetic resonance imaging. Our findings demonstrated that the cerebellum and the inferior parietal lobule showed altered functional connectivity with the primary visual area in individuals with amblyopia, and this finding provides further evidence for the disruption of the dorsal visual pathway in amblyopic subjects. PMID:23844297
NASA Technical Reports Server (NTRS)
Oneal, Melvin R.; Task, H. Lee; Genco, Louis V.
1992-01-01
Viewgraphs on effect of microgravity on visual contrast threshold during STS shuttle missions are presented. The purpose, methods, and results are discussed. The visual function tester model 2 is used.
Child behavior check list and Korean personality inventory for children with functional visual loss.
Kyung, Sung Eun; Lee, Sang Mi; Lim, Myung Ho
2014-08-01
To investigate the clinical psychiatric characteristics of children with the main complaint of functional visual loss, their behavior and personality were evaluated by the means of the Korean child behavior check list (K-CBCL), and the Korean personality inventory for children (KPI-C). The evaluation was carried out by the K-CBCL and the KPI-C, the domestically standardized tools, with 20 child subjects suspected of functional visual loss, among the patients who visited our hospital, between August, 2005 and December, 2012. The control group included 160 children in general schools of the same region. The 20 patients whose main complaint was functional visual loss were diagnosed as having a functional visual disorder. The child patient group showed a higher score for the K-CBCL and KPI-C sub-scales of somatic complaints, social problems, aggressive behavior, internalizing problems, externalizing problems, total behavioral problems, somatization and hyperactivity, than that of the control group. The results of the K-CBCL and KPI-C tests among children with functional visual loss, were significantly different from those of the normal control group. This result suggested that psychological factors may influence children with a main complaint of functional visual loss.
Stimulus homogeneity enhances implicit learning: evidence from contextual cueing.
Feldmann-Wüstefeld, Tobias; Schubö, Anna
2014-04-01
Visual search for a target object is faster if the target is embedded in a repeatedly presented invariant configuration of distractors ('contextual cueing'). It has also been shown that the homogeneity of a context affects the efficiency of visual search: targets receive prioritized processing when presented in a homogeneous context compared to a heterogeneous context, presumably due to grouping processes at early stages of visual processing. The present study investigated in three Experiments whether context homogeneity also affects contextual cueing. In Experiment 1, context homogeneity varied on three levels of the task-relevant dimension (orientation) and contextual cueing was most pronounced for context configurations with high orientation homogeneity. When context homogeneity varied on three levels of the task-irrelevant dimension (color) and orientation homogeneity was fixed, no modulation of contextual cueing was observed: high orientation homogeneity led to large contextual cueing effects (Experiment 2) and low orientation homogeneity led to low contextual cueing effects (Experiment 3), irrespective of color homogeneity. Enhanced contextual cueing for homogeneous context configurations suggest that grouping processes do not only affect visual search but also implicit learning. We conclude that memory representation of context configurations are more easily acquired when context configurations can be processed as larger, grouped perceptual units. However, this form of implicit perceptual learning is only improved by stimulus homogeneity when stimulus homogeneity facilitates grouping processes on a dimension that is currently relevant in the task. Copyright © 2014 Elsevier B.V. All rights reserved.
En face spectral domain optical coherence tomography analysis of lamellar macular holes.
Clamp, Michael F; Wilkes, Geoff; Leis, Laura S; McDonald, H Richard; Johnson, Robert N; Jumper, J Michael; Fu, Arthur D; Cunningham, Emmett T; Stewart, Paul J; Haug, Sara J; Lujan, Brandon J
2014-07-01
To analyze the anatomical characteristics of lamellar macular holes using cross-sectional and en face spectral domain optical coherence tomography. Forty-two lamellar macular holes were retrospectively identified for analysis. The location, cross-sectional length, and area of lamellar holes were measured using B-scans and en face imaging. The presence of photoreceptor inner segment/outer segment disruption and the presence or absence of epiretinal membrane formation were recorded. Forty-two lamellar macular holes were identified. Intraretinal splitting occurred within the outer plexiform layer in 97.6% of eyes. The area of intraretinal splitting in lamellar holes did not correlate with visual acuity. Eyes with inner segment/outer segment disruption had significantly worse mean logMAR visual acuity (0.363 ± 0.169; Snellen = 20/46) than in eyes without inner segment/outer segment disruption (0.203 ± 0.124; Snellen = 20/32) (analysis of variance, P = 0.004). Epiretinal membrane was present in 34 of 42 eyes (81.0%). En face imaging allowed for consistent detection and quantification of intraretinal splitting within the outer plexiform layer in patients with lamellar macular holes, supporting the notion that an area of anatomical weakness exists within Henle's fiber layer, presumably at the synaptic connection of these fibers within the outer plexiform layer. However, the en face area of intraretinal splitting did not correlate with visual acuity, disruption of the inner segment/outer segment junction was associated with significantly worse visual acuity in patients with lamellar macular holes.
The role of the right posterior parietal cortex in temporal order judgment.
Woo, Sung-Ho; Kim, Ki-Hyun; Lee, Kyoung-Min
2009-03-01
Perceived order of two consecutive stimuli may not correspond to the order of their physical onsets. Such a disagreement presumably results from a difference in the speed of stimulus processing toward central decision mechanisms. Since previous evidence suggests that the right posterior parietal cortex (PPC) plays a role in modulating the processing speed of a visual target, we applied single-pulse TMS over the region in 14 normal subjects, while they judged the temporal order of two consecutive visual stimuli. Stimulus-onset-asynchrony (SOA) randomly varied between -100 and 100 ms in 20-ms steps (with a positive SOA when a target appeared on the right hemi-field before the other on the left), and a point of subjective simultaneity was measured for individual subjects. TMS stimulation was time-locked at 50, 100, 150, and 200 ms after the onset of the first stimulus, and results in trials with TMS on right PPC were compared with those in trials without TMS. TMS over the right PPC delayed the detection of a visual target in the contralateral, i.e., left hemi-field by 24 (+/-7 SE) ms and 16 (+/-4 SE) ms, when the stimulation was given at 50 and 100 ms after the first target onset. In contrast, TMS on the left PPC was not effective. These results show that the right PPC is important in a timely detection of a target appearing on the left visual field, especially in competition with another target simultaneously appearing in the opposite field.
Dalferth, M
1989-01-01
Autistic symptoms become apparent at the earliest during the 2nd-3rd month of life when the spontaneous registration of the meaning of specific-visual stimuli (eyes, configuration of the mother's face) do not occur and also learning experiences by reason of mimic and gestures repeatedly shown by the interaction partner can neither evoke a social smile nor stimulate anticipational behaviour. Even with increasing age an empathetic perception of feelings in the corresponding mimical gesticular formation is very difficult and they themselves are only insufficiently able to express their own feelings intelligibly to everyone. As mimic and gestures are, however, visually perceived, the autistic perceptive child's competence is of great importance. On the basis of the examinations of visual perception (retinal pathology, tunnel vision) perceptual processing (recognition of feelings, sex and age) and the disintegration of multimodal stimuli it can be presumed that social and emotional deficits are to be seen in connection with a deviant perceptive interpretation of the world and irregular processing on the basis of a neuro-biological handicap (the absence of a genetic determined reference-system for emotionally significant stimuli), which can have various causes (comp. Gillberg 1988) and also impede the adequate expression of feelings in mimic, gestures and voice. Autistic people see, experience and understand the world in a specific way in which and by which they differ from non-handicapped people.(ABSTRACT TRUNCATED AT 250 WORDS)
Mental object rotation and the planning of hand movements.
Wohlschläger, A
2001-05-01
Recently, we showed that the simultaneous execution of rotational hand movements interferes with mental object rotation, provided that the axes of rotation coincide in space. We hypothesized that mental object rotation and the programming of rotational hand movements share a common process presumably involved in action planning. Two experiments are reported here that show that the mere planning of a rotational hand movement is sufficient to cause interference with mental object rotation. Subjects had to plan different spatially directed hand movements that they were asked to execute only after they had solved a mental object rotation task. Experiment 1 showed that mental object rotation was slower if hand movements were planned in a direction opposite to the presumed mental rotation direction, but only if the axes of hand rotation and mental object rotation were parallel in space. Experiment 2 showed that this interference occurred independent of the preparatory hand movements observed in Experiment 1. Thus, it is the planning of hand movements and not their preparation or execution that interferes with mental object rotation. This finding underlines the idea that mental object rotation is an imagined (covert) action, rather than a pure visual-spatial imagery task, and that the interference between mental object rotation and rotational hand movements is an interference between goals of actions.
Visual Vestibular Interaction in the Dynamic Visual Acuity Test during Voluntary Head Rotation
NASA Technical Reports Server (NTRS)
Lee, Moo Hoon; Durnford, Simon; Crowley, John; Rupert, Angus
1996-01-01
Although intact vestibular function is essential in maintaining spatial orientation, no good screening tests of vestibular function are available to the aviation community. High frequency voluntary head rotation was selected as a vestibular stimulus to isolate the vestibulo-ocular reflex (VOR) from visual influence. A dynamic visual acuity test that incorporates voluntary head rotation was evaluated as a potential vestibular function screening tool. Twenty-seven normal subjects performed voluntary sinusoidal head rotation at frequencies from 0.7-4.0 Hz under three different visual conditions: visually-enhanced VOR, normal VOR, and visually suppressed VOR. Standardized Baily-Lovie chart letters were presented on a computer monitor in front of the subject, who then was asked to read the letters while rotating his head horizontally. The electro-oculogram and dynamic visual acuity score were recorded and analyzed. There were no significant differences in gain or phase shift among three visual conditions in the frequency range of 2.8 to 4.0 Hz. The dynamic visual acuity score shifted less than 0.3 logMAR at frequencies under 2.0 Hz. The dynamic visual acuity test at frequencies a round 2.0 Hz can be recommended for evaluating vestibular function.
Sharma, Gyanendra; Sharma, Anshu
2017-12-01
To differentiate a nonobstructive dilatation from an obstructive dilatation in prenatally detected presumed pelvi-ureteric junction obstruction so that intervention can be planned before irreversible damage can occur to the renal unit. From January 2012 to December 2016, all patients with prenatally detected or asymptomatic incidentally detected presumed pelvi-ureteric junction obstruction were evaluated by ultrasonography and renogram. The anteroposterior diameter of the renal pelvis was measured in supine and prone position. Presence of calyceal dilatation in prone position was noted. They were categorized into obstructed, nonobstructed, and equivocal groups based on sonography findings. The differential renal function and the cortical transit time (CTT) was calculated and compared with the sonography groups. Of the 98 patients, 72 were in the obstructed, 18 were in the nonobstructed, and 8 were in the equivocal category. All except 1 in the nonobstructed category had a function of >40% with CTT of <3 minutes. Seventy patients in the obstructed category had a CTT of >3 minutes, whereas 61 had function <40% on initial evaluation. Eleven patients in the obstructed category with an initial function of >40% had CTT of >3 minutes. All of them showed increasing hydronephrosis and deterioration of function during follow-up, necessitating pyeloplasty. All patients in the equivocal group had function >40% and CTT <3 minutes. Ultrasonography along with CTT can help to differentiate nonobstructive from obstructive dilatation. Copyright © 2017 Elsevier Inc. All rights reserved.
Classification of EEG abnormalities in partial epilepsy with simultaneous EEG-fMRI recordings.
Pedreira, C; Vaudano, A E; Thornton, R C; Chaudhary, U J; Vulliemoz, S; Laufs, H; Rodionov, R; Carmichael, D W; Lhatoo, S D; Guye, M; Quian Quiroga, R; Lemieux, L
2014-10-01
Scalp EEG recordings and the classification of interictal epileptiform discharges (IED) in patients with epilepsy provide valuable information about the epileptogenic network, particularly by defining the boundaries of the "irritative zone" (IZ), and hence are helpful during pre-surgical evaluation of patients with severe refractory epilepsies. The current detection and classification of epileptiform signals essentially rely on expert observers. This is a very time-consuming procedure, which also leads to inter-observer variability. Here, we propose a novel approach to automatically classify epileptic activity and show how this method provides critical and reliable information related to the IZ localization beyond the one provided by previous approaches. We applied Wave_clus, an automatic spike sorting algorithm, for the classification of IED visually identified from pre-surgical simultaneous Electroencephalogram-functional Magnetic Resonance Imagining (EEG-fMRI) recordings in 8 patients affected by refractory partial epilepsy candidate for surgery. For each patient, two fMRI analyses were performed: one based on the visual classification and one based on the algorithmic sorting. This novel approach successfully identified a total of 29 IED classes (compared to 26 for visual identification). The general concordance between methods was good, providing a full match of EEG patterns in 2 cases, additional EEG information in 2 other cases and, in general, covering EEG patterns of the same areas as expert classification in 7 of the 8 cases. Most notably, evaluation of the method with EEG-fMRI data analysis showed hemodynamic maps related to the majority of IED classes representing improved performance than the visual IED classification-based analysis (72% versus 50%). Furthermore, the IED-related BOLD changes revealed by using the algorithm were localized within the presumed IZ for a larger number of IED classes (9) in a greater number of patients than the expert classification (7 and 5, respectively). In contrast, in only one case presented the new algorithm resulted in fewer classes and activation areas. We propose that the use of automated spike sorting algorithms to classify IED provides an efficient tool for mapping IED-related fMRI changes and increases the EEG-fMRI clinical value for the pre-surgical assessment of patients with severe epilepsy. Copyright © 2014 Elsevier Inc. All rights reserved.
Pacific Northwest tide channel utilization by fish as an ecosystem service - August 2013
Background/Question/Methods: Saltwater marsh tide channels are considered to be important in the ecology of estuarine fish serving both as a refuge and as a provider of enhanced food resources. However, this presumed function of tide channels in Pacific Northwest estuaries has r...
USDA-ARS?s Scientific Manuscript database
Oxidation of Methionine (Met) to Met sulfoxide (MetSO) is a frequently found reversible post-translational modification. It has been presumed that the major functional role for oxidation-labile Met residues is to protect proteins/cells from oxidative stress. However, Met oxidation has been establi...
Bridge Circuits: One Topic in the Modular Course in Electronics Instrumentation.
ERIC Educational Resources Information Center
Aldridge, Bill G.; Stringer, Gene A.
This learning module is intended to illustrate the functioning and uses of bridge circuits. The discussion and laboratory procedures suggested in the module presume familiarity with basic concepts of electronics such as voltage, current, resistance, capacitance, inductance, phase, and knowledge of such skills as breadboarding circuits from…
Macchi, Beatrice; Balestrieri, Emanuela; Frezza, Caterina; Grelli, Sandro; Valletta, Elena; Marçais, Ambroise; Marino-Merlo, Francesca; Turpin, Jocelyn; Bangham, Charles R; Hermine, Olivier; Mastino, Antonio; Bazarbachi, Ali
2017-05-09
The therapeutic efficacy of the AZT and IFN combination in ATL presumably reflects the inhibition of RT-related functions.HTLV-1-RT activity from short-term cultured PBMCs may represent a predictive correlate of clinical response to AZT/IFN in ATL patients.
Cataract Surgery Outcomes in Uveitis: The Multicenter Uveitis Steroid Treatment Trial.
Sen, H Nida; Abreu, Francis M; Louis, Thomas A; Sugar, Elizabeth A; Altaweel, Michael M; Elner, Susan G; Holbrook, Janet T; Jabs, Douglas A; Kim, Rosa Y; Kempen, John H
2016-01-01
To assess the visual outcomes of cataract surgery in eyes that received fluocinolone acetonide implant or systemic therapy with oral corticosteroids and immunosuppression during the Multicenter Uveitis Steroid Treatment (MUST) Trial. Nested prospective cohort study of patients enrolled in a randomized clinical trial. Patients that underwent cataract surgery during the first 2 years of follow-up in the MUST Trial. Visual outcomes of cataract surgery were evaluated 3, 6, and 9 months after surgery using logarithmic visual acuity charts. Change in visual acuity over time was assessed using a mixed-effects model. Best-corrected visual acuity. After excluding eyes that underwent cataract surgery simultaneously with implant surgery, among the 479 eyes in the MUST Trial, 117 eyes (28 eyes in the systemic, 89 in the implant group) in 82 patients underwent cataract surgery during the first 2 years of follow-up. Overall, visual acuity increased by 23 letters from the preoperative visit to the 3-month visit (95% confidence interval [CI], 17-29 letters; P < 0.001) and was stable through 9 months of follow-up. Eyes presumed to have a more severe cataract, as measured by inability to grade vitreous haze, gained an additional 42 letters (95% CI, 34-56 letters; P < 0.001) beyond the 13-letter gain in eyes that had gradable vitreous haze before surgery (95% CI, 9-18 letters; P < 0.001) 3 months after surgery, making up for an initial difference of -45 letters at the preoperative visit (95% CI, -56 to -34 letters; P < 0.001). Black race, longer time from uveitis onset, and hypotony were associated with worse preoperative visual acuity (P < 0.05), but did not affect postsurgical recovery (P > 0.05, test of interaction). After adjusting for other risk factors, there was no significant difference in the improvement in visual acuity between the 2 treatment groups (implant vs. systemic therapy, 2 letters; 95% CI, -10 to 15 letters; P = 0.70). Cataract surgery resulted in substantial, sustained, and similar visual acuity improvement in the eyes of patients with uveitis treated with the fluocinolone acetonide implant or standard systemic therapy. Published by Elsevier Inc.
Small-spot laser-exposure effects on visual function
NASA Astrophysics Data System (ADS)
Zwick, Harry; Robbins, David O.; Stuck, Bruce E.; Lund, David J.; Reynolds, Scottie B.; Nawim, Maqsood; Schuschereba, Steven T.
1990-07-01
Laser field exposure effects on visual function involve produc tJon of minimal spot irradiation on or near the huntan fovea. Functional effects of such exposure may involve transient or perinanent change in visual function depending upon exposure dose. While Maximun Permissible Exposure (MPE) lirrtits define exposure in terins of threshold retinal niorphological change such limits are not applicable with regard to transient changes in visual function below MPE limits induced by alteration in retinal physiological processes. Mechanisms of transient and permanent functional change reported in these exper iments point out the need to examine laser safety limits in terms of both the functional as well as the morphological disturbance induced in retinal tissue. L
[Visual perception and its disorders].
Ruf-Bächtiger, L
1989-11-21
It's the brain and not the eye that decides what is perceived. In spite of this fact, quite a lot is known about the functioning of the eye and the first sections of the optic tract, but little about the actual process of perception. Examination of visual perception and its malfunctions relies therefore on certain hypotheses. Proceeding from the model of functional brain systems, variant functional domains of visual perception can be distinguished. Among the more important of these domains are: digit span, visual discrimination and figure-ground discrimination. Evaluation of these functional domains allows us to understand those children with disorders of visual perception better and to develop more effective treatment methods.
Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Kräutler, Bernhard
2012-08-27
The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels, chlorophyll catabolites were found in an unprecedented structural richness: a variety of new fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs) were detected. As a rule, FCCs exist only "fleetingly" and are hard to observe. However, in bananas several of the FCCs (named Mc-FCCs) were persistent and carried an ester function at the propionate side-chain. NCCs were less abundant, and exhibited a free propionic acid group, but functional modifications elsewhere. The modifications of NCCs in banana peels were similar to those found in NCCs from senescent leaves. They are presumed to be introduced by enzymatic transformations at the stage of the mostly unobserved, direct FCC-precursors. The observed divergent functional group characteristics of the Mc-FCCs versus those of the Mc-NCCs indicated two major "late" processing lines of chlorophyll breakdown in ripening bananas. The "last common precursor" at the branching point to either the persistent FCCs, or towards the NCCs, was identified as a temporarily abundant "secondary" FCC. The existence of two "downstream" branches of chlorophyll breakdown in banana peels, and the striking accumulation of persistent Mc-FCCs call for attention as to the still-elusive biological roles of the resulting colorless linear tetrapyrroles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Auditory connections and functions of prefrontal cortex
Plakke, Bethany; Romanski, Lizabeth M.
2014-01-01
The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931
Martin, Anna; Kronbichler, Martin
2016-01-01
Abstract We used coordinate‐based meta‐analysis to objectively quantify commonalities and differences of dyslexic functional brain abnormalities between alphabetic languages differing in orthographic depth. Specifically, we compared foci of under‐ and overactivation in dyslexic readers relative to nonimpaired readers reported in 14 studies in deep orthographies (DO: English) and in 14 studies in shallow orthographies (SO: Dutch, German, Italian, Swedish). The separate meta‐analyses of the two sets of studies showed universal reading‐related dyslexic underactivation in the left occipitotemporal cortex (including the visual word form area (VWFA)). The direct statistical comparison revealed higher convergence of underactivation for DO compared with SO in bilateral inferior parietal regions, but this abnormality disappeared when foci resulting from stronger dyslexic task‐negative activation (i.e., deactivation relative to baseline) were excluded. Higher convergence of underactivation for DO compared with SO was further identified in the left inferior frontal gyrus (IFG) pars triangularis, left precuneus, and right superior temporal gyrus, together with higher convergence of overactivation in the left anterior insula. Higher convergence of underactivation for SO compared with DO was found in the left fusiform gyrus, left temporoparietal cortex, left IFG pars orbitalis, and left frontal operculum, together with higher convergence of overactivation in the left precentral gyrus. Taken together, the findings support the notion of a biological unity of dyslexia, with additional orthography‐specific abnormalities and presumably different compensatory mechanisms. The results are discussed in relation to current functional neuroanatomical models of developmental dyslexia. Hum Brain Mapp 37:2676–2699, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27061464
The Role of Eye Movement Driven Attention in Functional Strabismic Amblyopia
2015-01-01
Strabismic amblyopia “blunt vision” is a developmental anomaly that affects binocular vision and results in lowered visual acuity. Strabismus is a term for a misalignment of the visual axes and is usually characterized by impaired ability of the strabismic eye to take up fixation. Such impaired fixation is usually a function of the temporally and spatially impaired binocular eye movements that normally underlie binocular shifts in visual attention. In this review, we discuss how abnormal eye movement function in children with misaligned eyes influences the development of normal binocular visual attention and results in deficits in visual function such as depth perception. We also discuss how eye movement function deficits in adult amblyopia patients can also lead to other abnormalities in visual perception. Finally, we examine how the nonamblyopic eye of an amblyope is also affected in strabismic amblyopia. PMID:25838941
Memisevic, Haris; Sinanovic, Osman
2013-12-01
The goal of this study was to assess the relationship between visual-motor integration and executive functions, and in particular, the extent to which executive functions can predict visual-motor integration skills in children with intellectual disability. The sample consisted of 90 children (54 boys, 36 girls; M age = 11.3 yr., SD = 2.7, range 7-15) with intellectual disabilities of various etiologies. The measure of executive functions were 8 subscales of the Behavioral Rating Inventory of Executive Function (BRIEF) consisting of Inhibition, Shifting, Emotional Control, Initiating, Working memory, Planning, Organization of material, and Monitoring. Visual-motor integration was measured with the Acadia test of visual-motor integration (VMI). Regression analysis revealed that BRIEF subscales explained 38% of the variance in VMI scores. Of all the BRIEF subscales, only two were statistically significant predictors of visual-motor integration: Working memory and Monitoring. Possible implications of this finding are further elaborated.
O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C
2016-11-09
Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.
Madden, David J.
2007-01-01
Older adults are often slower and less accurate than are younger adults in performing visual-search tasks, suggesting an age-related decline in attentional functioning. Age-related decline in attention, however, is not entirely pervasive. Visual search that is based on the observer’s expectations (i.e., top-down attention) is relatively preserved as a function of adult age. Neuroimaging research suggests that age-related decline occurs in the structure and function of brain regions mediating the visual sensory input, whereas activation of regions in the frontal and parietal lobes is often greater for older adults than for younger adults. This increased activation may represent an age-related increase in the role of top-down attention during visual tasks. To obtain a more complete account of age-related decline and preservation of visual attention, current research is beginning to explore the relation of neuroimaging measures of brain structure and function to behavioral measures of visual attention. PMID:18080001
Akuffo, Kwadwo Owusu; Nolan, John M; Peto, Tunde; Stack, Jim; Leung, Irene; Corcoran, Laura; Beatty, Stephen
2017-02-01
To investigate the relationship between macular pigment (MP) and visual function in subjects with early age-related macular degeneration (AMD). 121 subjects with early AMD enrolled as part of the Central Retinal Enrichment Supplementation Trial (CREST; ISRCTN13894787) were assessed using a range of psychophysical measures of visual function, including best corrected visual acuity (BCVA), letter contrast sensitivity (CS), mesopic and photopic CS, mesopic and photopic glare disability (GD), photostress recovery time (PRT), reading performance and subjective visual function, using the National Eye Institute Visual Function Questionnaire-25 (NEI VFQ-25). MP was measured using customised heterochromatic flicker photometry. Letter CS, mesopic and photopic CS, photopic GD and mean reading speed were each significantly (p<0.05) associated with MP across a range of retinal eccentricities, and these statistically significant relationships persisted after controlling for age, sex and cataract grade. BCVA, NEI VFQ-25 score, PRT and mesopic GD were unrelated to MP after controlling for age, sex and cataract grade (p>0.05, for all). MP relates positively to many measures of visual function in unsupplemented subjects with early AMD. The CREST trial will investigate whether enrichment of MP influences visual function among those afflicted with this condition. ISRCTN13894787. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Immunity to Attentional Capture at Ignored Locations
Ruthruff, Eric; Gaspelin, Nicholas
2017-01-01
Certain stimuli have the power to rapidly and involuntarily capture spatial attention against our will. The present study investigated whether such stimuli capture spatial attention even when they appear in ignored regions of visual space. In other words, which force is more powerful: attentional capture or spatial filtering? Participants performed a spatial cuing task, searching for a letter target defined by color (e.g., green) and then reporting that letter’s identity. Two of the four search locations were always irrelevant. Unlike many previous experiments, participants were forced to ignore these locations because they always contained a target-colored distractor letter. Experiment 1 assessed capture by a salient-but-irrelevant abrupt onset cue appearing 150 ms before the search display. One might expect onset cues to capture attention even at ignored locations given that the main function of capture, presumably, is to rapidly alert observers to unexpected yet potentially important stimuli. However, they did not. Experiment 2 replicated this result with a different neutral baseline condition. Experiment 3 replicated the absence of capture effects at ignored locations with an even more potent stimulus: a relevant cue possessing the target color. We propose that people are effectively immune to attentional capture by objects in ignored locations – spatial filtering dominates attentional capture. PMID:29116615
Forisome performance in artificial sieve tubes.
Knoblauch, Michael; Stubenrauch, Mike; van Bel, Aart J E; Peters, Winfried S
2012-08-01
In the legume phloem, sieve element occlusion (SEO) proteins assemble into Ca(2+)-dependent contractile bodies. These forisomes presumably control phloem transport by forming reversible sieve tube plugs. This function, however, has never been directly demonstrated, and appears questionable as forisomes were reported to be too small to plug sieve tubes, and failed to block flow efficiently in artificial microchannels. Moreover, plugs of SEO-related proteins in Arabidopsis sieve tubes do not affect phloem translocation. We improved existing procedures for forisome isolation and storage, and found that the degree of Ca(2+)-driven deformation that is possible in forisomes of Vicia faba, the standard object of earlier research, has been underestimated substantially. Forisomes deform particularly strongly under reducing conditions and high sugar concentrations, as typically found in sieve tubes. In contrast to our previous inference, Ca(2+)-inducible forisome swelling certainly seems sufficient to plug sieve tubes. This conclusion was supported by 3D-reconstructions of forisome plugs in Canavalia gladiata. For a direct test, we built microfluidics chips with artificial sieve tubes. Using fluorescent dyes to visualize flow, we demonstrated the complete blockage of these biomimetic microtubes by Ca(2+)-induced forisome plugs, and concluded by analogy that forisomes are capable of regulating phloem flow in vivo. © 2012 Blackwell Publishing Ltd.
Idiopathic Juxtafoveolar Retinal Telangiectasis: A Current Review
Nowilaty, Sawsan R.; Al-Shamsi, Hanan N.; Al-Khars, Wajeeha
2010-01-01
Idiopathic juxtafoveolar retinal telangiectasis (IJFT), also known as parafoveal telangiectasis or idiopathic macular telangiectasia, refers to a heterogeneous group of well-recognized clinical entities characterized by telangiectatic alterations of the juxtafoveolar capillary network of one or both eyes, but which differ in appearance, presumed pathogenesis, and management strategies. Classically, three groups of IJFT are identified. Group I is unilateral easily visible telangiectasis occurring predominantly in males, and causing visual loss as a result of macular edema. Group II, the most common, is bilateral occurring in both middle-aged men and women, and presenting with telangiectasis that is more difficult to detect on biomicroscopy, but with characteristic and diagnostic angiographic and optical coherence tomography features. Vision loss is due to retinal atrophy, not exudation, and subretinal neovascularization is common. Group III is very rare characterized predominantly by progressive obliteration of the perifoveal capillary network, occurring usually in association with a medical or neurologic disease. This paper presents a current review of juxtafoveolar retinal telangiectasis, reviewing the classification of these entities and focusing primarily on the two most common types encountered in clinical practice, i.e., groups I and II, describing their clinical features, histopathology, natural history, complications, latest results from imaging modalities and functional studies, differential diagnosis, and treatment modalities. PMID:20844678
Orthostatic intolerance: potential pathophysiology and therapy.
Lu, Chih-Cherng; Tseng, Ching-Jiunn; Tang, Hung-Shang; Tung, Che-Se
2004-09-30
Orthostatic intolerance affects an estimated 1 in 500 persons and causes a wide range of disabilities. After essential hypertension, it is the most frequently encountered dysautonomia, accounting for the majority of patients referred to centers specializing in autonomic disorders. Patients are typically young females with symptoms such as dizziness, visual changes, head and neck discomfort, poor concentration, fatigue, palpitations, tremulousness, anxiety, and, in some cases, syncope. Syncope is the most hazardous symptom of orthostatic intolerance, presumably occurring because of impaired cerebral perfusion and in part to compensatory autonomic mechanisms. The etiology of this syndrome is still unclear but is heterogeneous. Orthostatic intolerance used to be characterized by an overall enhancement of noradrenergic tone at rest in some patients and by a patchy dysautonomia of postganglionic sympathetic fibers with a compensatory cardiac sympathetic activation in others. However, recent advances in molecular genetics are improving our understanding of orthostatic intolerance, such as several genetic diseases (such as Ehler-Danlos syndrome and norepinephrine transporter deficiency) presenting with symptoms typical of orthostatic intolerance. Future work will include investigation of genetic functional mutations underlying interindividual differences in autonomic cardiovascular control, body fluid regulation, and vascular regulation in orthostatic intolerance patients. The goal of this review article is to describe recent advances in understanding the pathophysiological mechanisms of orthostatic intolerance and their clinical significance.
Organization of transport from endoplasmic reticulum to Golgi in higher plants.
Andreeva, A V; Zheng, H; Saint-Jore, C M; Kutuzov, M A; Evans, D E; Hawes, C R
2000-01-01
In plant cells, the organization of the Golgi apparatus and its interrelationships with the endoplasmic reticulum differ from those in mammalian and yeast cells. Endoplasmic reticulum and Golgi apparatus can now be visualized in plant cells in vivo with green fluorescent protein (GFP) specifically directed to these compartments. This makes it possible to study the dynamics of the membrane transport between these two organelles in the living cells. The GFP approach, in conjunction with a considerable volume of data about proteins participating in the transport between endoplasmic reticulum and Golgi in yeast and mammalian cells and the identification of their putative plant homologues, should allow the establishment of an experimental model in which to test the involvement of the candidate proteins in plants. As a first step towards the development of such a system, we are using Sar1, a small G-protein necessary for vesicle budding from the endoplasmic reticulum. This work has demonstrated that the introduction of Sar1 mutants blocks the transport from endoplasmic reticulum to Golgi in vivo in tobacco leaf epidermal cells and has therefore confirmed the feasibility of this approach to test the function of other proteins that are presumably involved in this step of endomembrane trafficking in plant cells.
Castillo Cajas, Ruth F.; Selz, Oliver M.; Ripmeester, Erwin A. P.; Seehausen, Ole; Maan, Martine E.
2012-01-01
Environmental variation in signalling conditions affects animal communication traits, with possible consequences for sexual selection and reproductive isolation. Using spectrophotometry, we studied how male coloration within and between populations of two closely related Lake Victoria cichlid species (Pundamilia pundamilia and P. nyererei) covaries with water transparency. Focusing on coloration patches implicated in sexual selection, we predicted that in clear waters, with broad-spectrum light, (1) colours should become more saturated and (2) shift in hue away from the dominant ambient wavelengths, compared to more turbid waters. We found support for these predictions for the red and yellow coloration of P. nyererei but not the blue coloration of P. pundamilia. This may be explained by the species difference in depth distribution, which generates a steeper gradient in visual conditions for P. nyererei compared to P. pundamilia. Alternatively, the importance of male coloration in intraspecific sexual selection may differ between the species. We also found that anal fin spots, that is, the orange spots on male haplochromine anal fins that presumably mimic eggs, covaried with water transparency in a similar way for both species. This is in contrast to the other body regions studied and suggests that, while indeed functioning as signals, these spots may not play a role in species differentiation. PMID:22888462
Moderate perinatal thyroid hormone insufficiency alters visual system function in adult rats.
Boyes, William K; Degn, Laura; George, Barbara Jane; Gilbert, Mary E
2018-04-21
Thyroid hormone (TH) is critical for many aspects of neurodevelopment and can be disrupted by a variety of environmental contaminants. Sensory systems, including audition and vision are vulnerable to TH insufficiencies, but little data are available on visual system development at less than severe levels of TH deprivation. The goal of the current experiments was to explore dose-response relations between graded levels of TH insufficiency during development and the visual function of adult offspring. Pregnant Long Evans rats received 0 or 3 ppm (Experiment 1), or 0, 1, 2, or 3 ppm (Experiment 2) of propylthiouracil (PTU), an inhibitor of thyroid hormone synthesis, in drinking water from gestation day (GD) 6 to postnatal day (PN) 21. Treatment with PTU caused dose-related reductions of serum T4, with recovery on termination of exposure, and euthyroidism by the time of visual function testing. Tests of retinal (electroretinograms; ERGs) and visual cortex (visual evoked potentials; VEPs) function were assessed in adult offspring. Dark-adapted ERG a-waves, reflecting rod photoreceptors, were increased in amplitude by PTU. Light-adapted green flicker ERGs, reflecting M-cone photoreceptors, were reduced by PTU exposure. UV-flicker ERGs, reflecting S-cones, were not altered. Pattern-elicited VEPs were significantly reduced by 2 and 3 ppm PTU across a range of stimulus contrast values. The slope of VEP amplitude-log contrast functions was reduced by PTU, suggesting impaired visual contrast gain. Visual contrast gain primarily reflects function of visual cortex, and is responsible for adjusting sensitivity of perceptual mechanisms in response to changing visual scenes. The results indicate that moderate levels of pre-and post-natal TH insufficiency led to alterations in visual function of adult rats, including both retinal and visual cortex sites of dysfunction. Copyright © 2018. Published by Elsevier B.V.
Neural and Behavioral Evidence for an Online Resetting Process in Visual Working Memory.
Balaban, Halely; Luria, Roy
2017-02-01
Visual working memory (VWM) guides behavior by holding a set of active representations and modifying them according to changes in the environment. This updating process relies on a unique mapping between each VWM representation and an actual object in the environment. Here, we destroyed this mapping by either presenting a coherent object but then breaking it into independent parts or presenting an object but then abruptly replacing it with a different object. This allowed us to introduce the neural marker and behavioral consequence of an online resetting process in humans' VWM. Across seven experiments, we demonstrate that this resetting process involves abandoning the old VWM contents because they no longer correspond to the objects in the environment. Then, VWM encodes the novel information and reestablishes the correspondence between the new representations and the objects. The resetting process was marked by a unique neural signature: a sharp drop in the amplitude of the electrophysiological index of VWM contents (the contralateral delay activity), presumably indicating the loss of the existent object-to-representation mappings. This marker was missing when an updating process occurred. Moreover, when tracking moving items, VWM failed to detect salient changes in the object's shape when these changes occurred during the resetting process. This happened despite the object being fully visible, presumably because the mapping between the object and a VWM representation was lost. Importantly, we show that resetting, its neural marker, and the behavioral cost it entails, are specific to situations that involve a destruction of the objects-to-representations correspondence. Visual working memory (VWM) maintains task-relevant information in an online state. Previous studies showed that VWM representations are accessed and modified after changes in the environment. Here, we show that this updating process critically depends on an ongoing mapping between the representations and the objects in the environment. When this mapping breaks, VWM cannot access the old representations and instead resets. The novel resetting process that we introduce removes the existing representations instead of modifying them and this process is accompanied by a unique neural marker. During the resetting process, VWM was blind to salient changes in the object's shape. The resetting process highlights the flexibility of our cognitive system in handling the dynamic environment by abruptly abandoning irrelevant schemas. Copyright © 2017 the authors 0270-6474/17/371225-15$15.00/0.
A method to determine the impact of reduced visual function on nodule detection performance.
Thompson, J D; Lança, C; Lança, L; Hogg, P
2017-02-01
In this study we aim to validate a method to assess the impact of reduced visual function and observer performance concurrently with a nodule detection task. Three consultant radiologists completed a nodule detection task under three conditions: without visual defocus (0.00 Dioptres; D), and with two different magnitudes of visual defocus (-1.00 D and -2.00 D). Defocus was applied with lenses and visual function was assessed prior to each image evaluation. Observers evaluated the same cases on each occasion; this comprised of 50 abnormal cases containing 1-4 simulated nodules (5, 8, 10 and 12 mm spherical diameter, 100 HU) placed within a phantom, and 25 normal cases (images containing no nodules). Data was collected under the free-response paradigm and analysed using Rjafroc. A difference in nodule detection performance would be considered significant at p < 0.05. All observers had acceptable visual function prior to beginning the nodule detection task. Visual acuity was reduced to an unacceptable level for two observers when defocussed to -1.00 D and for one observer when defocussed to -2.00 D. Stereoacuity was unacceptable for one observer when defocussed to -2.00 D. Despite unsatisfactory visual function in the presence of defocus we were unable to find a statistically significant difference in nodule detection performance (F(2,4) = 3.55, p = 0.130). A method to assess visual function and observer performance is proposed. In this pilot evaluation we were unable to detect any difference in nodule detection performance when using lenses to reduce visual function. Copyright © 2016 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.
Ganesh, Suma; Sethi, Sumita; Srivastav, Sonia; Chaudhary, Amrita; Arora, Priyanka
2013-09-01
To evaluate the impact of low vision rehabilitation on functional vision of children with visual impairment. The LV Prasad-Functional Vision Questionnaire, designed specifically to measure functional performance of visually impaired children of developing countries, was used to assess the level of difficulty in performing various tasks pre and post visual rehabilitation in children with documented visual impairment. Chi-square test was used to assess the impact of rehabilitation intervention on functional vision performance; a P < 0.05 was considered significant. LogMAR visual acuity prior to the introduction of low vision devices (LVDs) was 0.90 ± 0.05 for distance and for near it was 0.61 ± 0.05. After the intervention, the acuities improved significantly for distance (0.2 ± 0.27; P < 0.0001) and near (0.42 ± 0.17; P = 0.001). The most common reported difficulties were related to their academic activities like copying from the blackboard (80%), reading textbook at arm's length (77.2%), and writing along a straight line (77.2%). Absolute raw score of disability pre-LVD was 15.05 which improved to 7.58 post-LVD. An improvement in functional vision post visual rehabilitation was especially found in those activities related to their studying lifestyle like copying from the blackboard (P < 0.0001), reading textbook at arm's length (P < 0.0001), and writing along a straight line (P = 0.003). In our study group, there was a significant improvement in functional vision post visual rehabilitation, especially with those activities which are related to their academic output. It is important for these children to have an early visual rehabilitation to decrease the impairment associated with these decreased visual output and to enhance their learning abilities.
Kalyani, Partho S; Fawzi, Amani A; Gangaputra, Sapna; van Natta, Mark L; Hubbard, Larry D; Danis, Ronald P; Thorne, Jennifer E; Holland, Gary N
2012-03-01
To evaluate relationships between retinal vessel caliber and tests of visual function among people with AIDS. Longitudinal, observational cohort study. We evaluated data for participants without ocular opportunistic infections at initial examination (baseline) in the Longitudinal Studies of the Ocular Complications of AIDS (1998-2008). Visual function was evaluated with best-corrected visual acuity, Goldmann perimetry, automated perimetry (Humphrey Field Analyzer), and contrast sensitivity (CS) testing. Semi-automated grading of fundus photographs (1 eye/participant) determined central retinal artery equivalent (CRAE), central retinal vein equivalent (CRVE), and arteriole-to-venule ratio (AVR) at baseline. Multiple linear regression models, using forward selection, sought independent relationships between indices and visual function variables. Included were 1250 participants. Smaller AVR was associated with reduced visual field by Goldmann perimetry (P = .003) and worse mean deviation (P = .02) on automated perimetry and possibly with worse pattern standard deviation (PSD) on automated perimetry (P = .06). There was a weak association between smaller AVR and worse CS (P = .07). Relationships were independent of antiretroviral therapy and level of immunodeficiency (CD4+ T lymphocyte count, human immunodeficiency virus [HIV] RNA blood level). On longitudinal analysis, retinal vascular indices at baseline did not predict changes in visual function. Variation in retinal vascular indices is associated with abnormal visual function in people with AIDS, manifested by visual field loss and possibly by reduced CS. Relationships are consistent with the hypothesis that HIV-related retinal vasculopathy is a contributing factor to vision dysfunction among HIV-infected individuals. Longitudinal studies are needed to determine whether changes in indices predict change in visual function. Copyright © 2012 Elsevier Inc. All rights reserved.
Supplementation with macular carotenoids improves visual performance of transgenic mice.
Li, Binxing; Rognon, Gregory T; Mattinson, Ty; Vachali, Preejith P; Gorusupudi, Aruna; Chang, Fu-Yen; Ranganathan, Arunkumar; Nelson, Kelly; George, Evan W; Frederick, Jeanne M; Bernstein, Paul S
2018-07-01
Carotenoid supplementation can improve human visual performance, but there is still no validated rodent model to test their effects on visual function in laboratory animals. We recently showed that mice deficient in β-carotene oxygenase 2 (BCO2) and/or β-carotene oxygenase 1 (BCO1) enzymes can accumulate carotenoids in their retinas, allowing us to investigate the effects of carotenoids on the visual performance of mice. Using OptoMotry, a device to measure visual function in rodents, we examined the effect of zeaxanthin, lutein, and β-carotene on visual performance of various BCO knockout mice. We then transgenically expressed the human zeaxanthin-binding protein GSTP1 (hGSTP1) in the rods of bco2 -/- mice to examine if delivering more zeaxanthin to retina will improve their visual function further. The visual performance of bco2 -/- mice fed with zeaxanthin or lutein was significantly improved relative to control mice fed with placebo beadlets. β-Carotene had no significant effect in bco2 -/- mice but modestly improved cone visual function of bco1 -/- mice. Expression of hGSTP1 in the rods of bco2 -/- mice resulted in a 40% increase of retinal zeaxanthin and further improvement of visual performance. This work demonstrates that these "macular pigment mice" may serve as animal models to study carotenoid function in the retina. Copyright © 2018 Elsevier Inc. All rights reserved.
Oliveira, Francisco Gilberto; Nascimento-Júnior, Expedito Silva do; Cavalcante, Judney Cley; Guzen, Fausto Pierdoná; Cavalcante, Jeferson de Souza; Soares, Joacil Germano; Cavalcanti, José Rodolfo Lopes de Paiva; Freitas, Leandro Moura de; Costa, Miriam Stela Maris de Oliveira; Andrade-da-Costa, Belmira Lara da Silveira
2018-07-01
The rock cavy (Kerodon rupestris) is a crepuscular Hystricomorpha rodent that has been used in comparative analysis of retinal targets, but its retinal organization remains to be investigated. In order to better characterize its visual system, the present study analyzed neurochemical features related to the topographic organization of catecholaminergic cells and ganglion cells, as well the distribution of calcium-binding proteins in the outer and inner retina. Retinal sections and/or wholemounts were processed using tyrosine hydroxylase (TH), GABA, calbindin, parvalbumin and calretinin immunohistochemistry or Nissl staining. Two types of TH-immunoreactive (TH-IR) cells were found which differ in soma size, dendritic arborization, intensity of TH immunoreactivity and stratification pattern in the inner plexiform layer. The topographic distribution of all TH-IR cells defines a visual streak along the horizontal meridian in the superior retina. The ganglion cells are also distributed in a visual streak and the visual acuity estimated considering their peak density is 4.13 cycles/degree. A subset of TH-IR cells express GABA or calbindin. Calretinin is abundant in most of retinal layers and coexists with calbindin in horizontal cells. Parvalbumin is less abundant and expressed by presumed amacrine cells in the INL and some ganglion cells in the GCL. The topographic distribution of TH-IR cells and ganglion cells in the rock cavy retina indicate a suitable adaptation for using a broad extension of its inferior visual field in aspects that involve resolution, adjustment to ambient light intensity and movement detection without specialized eye movements. Copyright © 2017 Elsevier B.V. All rights reserved.
Wren, Patricia A; Musch, David C; Janz, Nancy K; Niziol, Leslie M; Guire, Kenneth E; Gillespie, Brenda W
2009-01-01
To compare 2 vision-specific functional status measures to each other and to clinical parameters in the Collaborative Initial Glaucoma Treatment Study (CIGTS). CIGTS participants completed the Visual Activities Questionnaire (VAQ) and the National Eye Institute-Visual Function Questionnaire (NEI-VFQ) and were tested for visual field (VF) and visual acuity (VA). In all, 426 subjects contributed the VAQ and NEI-VFQ scores at 54 months. Pearson correlations were used to assess associations. The VAQ subscales (range, 0 to 100) that assessed light-dark adaptation (mean=66.1), glare disability (66.4), and acuity/spatial vision (67.7) indicated vision-related functions that CIGTS participants found most difficult. On the NEI-VFQ, subjects reported high levels of visual functioning, with mean >/=90 (out of 100) on the total score and in 9 of 12 subscales. General vision (mean=82.6) received the lowest subscale score. Two subscales common to both questionnaires were highly correlated: VA (r=0.68) and peripheral vision (r=0.77) (both P<0.0001). Correlations between participants' perceptions and clinical measures of visual function were in the expected direction, but weaker. Stronger associations were found between clinical measures and the NEI-VFQ than the VAQ. Better eye VF and worse eye VA had the highest number of significant correlations with subjects' perceptions of their visual function. Increasing VF loss was associated with a significant decrease in the overall and peripheral vision subscale scores from both questionnaires, and also several other subscales. CIGTS patients reported excellent visual function on both the NEI-VFQ and VAQ. These findings will help researchers interested in assessing patients' perceptions of their visual function make an informed selection when choosing between the VAQ and the NEI-VFQ.
Hajek, André; Brettschneider, Christian; Lühmann, Dagmar; Eisele, Marion; Mamone, Silke; Wiese, Birgitt; Weyerer, Siegfried; Werle, Jochen; Pentzek, Michael; Fuchs, Angela; Riedel-Heller, Steffi G; Luck, Tobias; Bickel, Horst; Weeg, Dagmar; Koppara, Alexander; Wagner, Michael; Scherer, Martin; Maier, Wolfgang; König, Hans-Helmut
2016-11-01
To examine how visual impairment affects physical and cognitive function in old age. A longitudinal population-based prospective cohort study. General practitioner offices at six study centers in Germany. They were observed every 1.5 years over four waves. Individuals aged 77-101 at follow-up Wave 2 (N = 2,394). Physical and cognitive function were assessed using an adapted scale that had been previously developed, and visual impairment was rated on a Likert scale (none, mild, severe or profound). Adjusting for sociodemographic factors and comorbidity, linear fixed-effects regression showed that the onset of severe visual impairment was associated with a decline in physical function score in the total sample (β = -0.15, P = .01) and in women (β = -.15, P = .03). Moreover, the onset of severe visual impairment was associated with decline in cognitive function score in the total sample (β = -0.38, P < .001) and in women (β = -0.38, P < .001) and men (β = -0.37, P = .001). Visual impairment affects physical and cognitive function in old age. Interventional strategies to postpone visual impairment may contribute to maintaining physical and cognitive function. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.
How the blind "see" Braille: lessons from functional magnetic resonance imaging.
Sadato, Norihiro
2005-12-01
What does the visual cortex of the blind do during Braille reading? This process involves converting simple tactile information into meaningful patterns that have lexical and semantic properties. The perceptual processing of Braille might be mediated by the somatosensory system, whereas visual letter identity is accomplished within the visual system in sighted people. Recent advances in functional neuroimaging techniques, such as functional magnetic resonance imaging, have enabled exploration of the neural substrates of Braille reading. The primary visual cortex of early-onset blind subjects is functionally relevant to Braille reading, suggesting that the brain shows remarkable plasticity that potentially permits the additional processing of tactile information in the visual cortical areas.
Flanagan, Esther; Herron, Katherine A; O'Driscoll, Ciarán; Williams, Amanda C de C
2015-01-01
Classification of vaginal pain within medical or psychiatric diagnostic systems draws mainly on the presumed presence or absence (respectively) of underlying medical etiology. A focus on the experience of pain, rather than etiology, emphasizes common ground in the aims of treatment to improve pain and sexual, emotional, and cognitive experience. Thus, exploring how vaginal pain conditions with varying etiology respond to psychological treatment could cast light on the extent to which they are the same or distinct. To examine the combined and relative efficacy of psychological treatments for vaginal pain conditions. A systematic search of EMBASE, MEDLINE, PsycINFO, and CINAHL was undertaken. Eleven randomized controlled trials were entered into a meta-analysis, and standardized mean differences and odds ratios were calculated. Effect sizes for individual psychological trial arms were also calculated. Main outcome measures were pain and sexual function. Equivalent effects were found for psychological and medical treatments. Effect sizes for psychological treatment arms were comparable across vaginal pain conditions. Effectiveness was equivalent regardless of presumed medical or psychiatric etiology, indicating that presumed etiology may not be helpful in selecting treatment. Research recommendations and clinical implications are discussed. © 2014 International Society for Sexual Medicine.
Congdon, Nathan; Wang, Yunfei; Song, Yue; Choi, Kai; Zhang, Mingzhi; Zhou, Zhongxia; Xie, Zhenling; Li, Liping; Liu, Xueyu; Sharma, Abhishek; Wu, Bin; Lam, Dennis S C
2008-07-01
To evaluate visual acuity, visual function, and prevalence of refractive error among Chinese secondary-school children in a cross-sectional school-based study. Uncorrected, presenting, and best corrected visual acuity, cycloplegic autorefraction with refinement, and self-reported visual function were assessed in a random, cluster sample of rural secondary school students in Xichang, China. Among the 1892 subjects (97.3% of the consenting children, 84.7% of the total sample), mean age was 14.7 +/- 0.8 years, 51.2% were female, and 26.4% were wearing glasses. The proportion of children with uncorrected, presenting, and corrected visual disability (< or = 6/12 in the better eye) was 41.2%, 19.3%, and 0.5%, respectively. Myopia < -0.5, < -2.0, and < -6.0 D in both eyes was present in 62.3%, 31.1%, and 1.9% of the subjects, respectively. Among the children with visual disability when tested without correction, 98.7% was due to refractive error, while only 53.8% (414/770) of these children had appropriate correction. The girls had significantly (P < 0.001) more presenting visual disability and myopia < -2.0 D than did the boys. More myopic refractive error was associated with worse self-reported visual function (ANOVA trend test, P < 0.001). Visual disability in this population was common, highly correctable, and frequently uncorrected. The impact of refractive error on self-reported visual function was significant. Strategies and studies to understand and remove barriers to spectacle wear are needed.
Neely, David; Zarubina, Anna V; Clark, Mark E; Huisingh, Carrie E; Jackson, Gregory R; Zhang, Yuhua; McGwin, Gerald; Curcio, Christine A; Owsley, Cynthia
2017-07-01
To examine the association between subretinal drusenoid deposits (SDDs) identified by multimodal retinal imaging and visual function in older eyes with normal macular health or in the earliest phases of age-related macular degeneration (AMD). Age-related macular degeneration status for each eye was defined according to the Age-Related Eye Disease Study (AREDS) 9-step classification system (normal = Step 1, early AMD = Steps 2-4) based on color fundus photographs. Visual functions measured were best-corrected photopic visual acuity, contrast and light sensitivity, mesopic visual acuity, low-luminance deficit, and rod-mediated dark adaptation. Subretinal drusenoid deposits were identified through multimodal imaging (color fundus photographs, infrared reflectance and fundus autofluorescence images, and spectral domain optical coherence tomography). The sample included 1,202 eyes (958 eyes with normal health and 244 eyes with early AMD). In normal eyes, SDDs were not associated with any visual function evaluated. In eyes with early AMD, dark adaptation was markedly delayed in eyes with SDDs versus no SDD (a 4-minute delay on average), P = 0.0213. However, this association diminished after age adjustment, P = 0.2645. Other visual functions in early AMD eyes were not associated with SDDs. In a study specifically focused on eyes in normal macular health and in the earliest phases of AMD, early AMD eyes with SDDs have slower dark adaptation, largely attributable to the older ages of eyes with SDD; they did not exhibit deficits in other visual functions. Subretinal drusenoid deposits in older eyes in normal macular health are not associated with any visual functions evaluated.
Huisingh, Carrie; McGwin, Gerald; Owsley, Cynthia
2017-01-01
Background Many studies on vision and driving cessation have relied on measures of sensory function, which are insensitive to the higher order cognitive aspects of visual processing. The purpose of this study was to examine the association between traditional measures of visual sensory function and higher order visual processing skills with incident driving cessation in a population-based sample of older drivers. Methods Two thousand licensed drivers aged ≥70 were enrolled and followed-up for three years. Tests for central vision and visual processing were administered at baseline and included visual acuity, contrast sensitivity, sensitivity in the driving visual field, visual processing speed (Useful Field of View (UFOV) Subtest 2 and Trails B), and spatial ability measured by the Visual Closure Subtest of the Motor-free Visual Perception Test. Participants self-reported the month and year of driving cessation and provided a reason for cessation. Cox proportional hazards models were used to generate crude and adjusted hazard ratios with 95% confidence intervals between visual functioning characteristics and risk of driving cessation over a three-year period. Results During the study period, 164 participants stopped driving which corresponds to a cumulative incidence of 8.5%. Impaired contrast sensitivity, visual fields, visual processing speed (UFOVand Trails B), and spatial ability were significant risk factors for subsequent driving cessation after adjusting for age, gender, marital status, number of medical conditions, and miles driven. Visual acuity impairment was not associated with driving cessation. Medical problems (63%), specifically musculoskeletal and neurological problems, as well as vision problems (17%) were cited most frequently as the reason for driving cessation. Conclusion Assessment of cognitive and visual functioning can provide useful information about subsequent risk of driving cessation among older drivers. In addition, a variety of factors, not just vision, influenced the decision to stop driving and may be amenable to intervention. PMID:27353969
Oswestry Disability Index is a better indicator of lumbar motion than the Visual Analogue Scale.
Ruiz, Ferrin K; Bohl, Daniel D; Webb, Matthew L; Russo, Glenn S; Grauer, Jonathan N
2014-09-01
Lumbar pathology is often associated with axial pain or neurologic complaints. It is often presumed that such pain is associated with decreased lumbar motion; however, this correlation is not well established. The utility of various outcome measures that are used in both research and clinical practice have been studied, but the connection with range of motion (ROM) has not been well documented. The current study was performed to assess objectively the postulated correlation of lumbar complaints (based on standardized outcome measures) with extremes of lumbar ROM and functional ROM (fROM) with activities of daily living (ADLs) as assessed with an electrogoniometer. This study was a clinical cohort study. Subjects slated to undergo a lumbar intervention (injection, decompression, and/or fusion) were enrolled voluntarily in the study. The two outcome measures used in the study were the Visual Analogue Scale (VAS) for axial extremity, lower extremity, and combined axial and lower extremity, as well as the Oswestry Disability Index (ODI). Pain and disability scores were assessed with the VAS score and ODI. A previously validated electrogoniometer was used to measure ROM (extremes of motion in three planes) and fROM (functional motion during 15 simulated activities of daily living). Pain and disability scores were analyzed for statistically significant association with the motion assessments using linear regression analyses. Twenty-eight men and 39 women were enrolled, with an average age of 55.6 years (range, 18-79 years). The ODI and VAS were associated positively (p<.001). Combined axial and lower extremity VAS scores were associated with lateral and rotational ROM (p<.05), but not with flexion/extension or any fROM. Similar findings were noted for separately analyzed axial and lower extremity VAS scores. On the other hand, the ODI correlated inversely with ROM in all planes, and fROM in at least one plane for 10 of 15 ADLs (p<.05). Extremes of lumbar motion and motions associated with ADLs are of increasing clinical interest. Although the ODI and VAS are associated with each other, the ODI appears to be a better predictor of these motion parameters than the VAS (axial extremity, lower extremity, or combined) and may be more useful in the clinical setting when considering functional movement parameters. Copyright © 2014 Elsevier Inc. All rights reserved.
Visual functioning and quality of life among the older people in Hong Kong.
Leung, Jason C S; Kwok, Timothy C Y; Chan, Dicken C C; Yuen, Kay W K; Kwok, Anthony W L; Choy, Dicky T K; Lau, Edith M C; Leung, P C
2012-08-01
This study aimed to examine the association of visual functioning and health-related quality of life (HRQOL) among the older community in Hong Kong. This study used the baseline examination of a cohort study MrOs and MsOs (a large study for osteoporosis in men and women). This study was set in the Hong Kong community. A total of 4000 ambulatory community-dwelling Chinese men and women aged 65 years or above participated in this study. Health-related quality of life was assessed by Medical Outcomes Study Short Form-12 (SF-12), with physical component summary (PCS) and mental component summary (MCS) scores. Demographics, medical history, mental status, and quality of life were obtained from face-to-face interviews, using standard structured questionnaire. Visual functions (i.e., binocular visual acuity, contrast sensitivity, and stereopsis) were assessed by different visual tests after refraction corrections. Different visual functions were tested simultaneously in multiple ordinal logistic regression models. Better binocular visual acuity, contrast sensitivity, and stereopsis were associated with higher PCS. Visual acuity and contrast sensitivity was associated with PCS after adjustment of different visual functions and sex, age, education level, cognitive status, and history of diabetes in multivariate analysis, (OR = 0.73, 95% CI = 0.54 0.98) for low vision (≤6/24) compared with ≥6/9 in visual acuity and (OR = 1.34, 95% CI = 1.09 1.64) for contrast sensitivity row b 5-8 (best) compared with 0-1 (worst). MCS was only associated with visual acuity and contrast sensitivity, but no association was found after adjustment. Apparent association was found between visual functions and HRQOL among older community in Hong Kong. In addition to visual acuity, contrast sensitivity is also important, so eye care should also cover. Copyright © 2011 John Wiley & Sons, Ltd.
Melatonin and deprivation myopia in chickens.
Hoffmann, M; Schaeffel, F
1996-01-01
Chicken eyes elongate and become myopic if they are covered with translucent diffusors which degrade the retinal image ('deprivation myopia'). Since it has been shown that dopamine D2/D4 receptors (which mediate inhibition of melatonin synthesis) are also implicated in deprivation myopia, we have studied the role of melatonin in the visual control of eye growth. We have found that (1) diurnal melatonin rhythms and melatonin content in the retina are unchanged during deprivation myopia development despite the breakdown of both diurnal growth rhythms of the eye and diurnal rhythms in retinal dopamine metabolism, (2) diurnal melatonin rhythms and melatonin content in the retina remain unchanged after application of the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) and presumably also after 6-hydroxydopamine (6-OHDA) application which both have a suppressive effect on deprivation myopia and (3) deprivation myopia was slightly reduced in both eyes after unilateral intravitreal injection of melatonin, despite that deprivation myopia is based on a mechanism intrinsic to the eye. We conclude that melatonin is not involved in the retinal signaling pathway translating visual experience to deprivation myopia.
Acoustic telemetry reveals cryptic residency of whale sharks
Cagua, E. Fernando; Cochran, Jesse E. M.; Rohner, Christoph A.; Prebble, Clare E. M.; Sinclair-Taylor, Tane H.; Pierce, Simon J.; Berumen, Michael L.
2015-01-01
Although whale sharks (Rhincodon typus) have been documented to move thousands of kilometres, they are most frequently observed at a few predictable seasonal aggregation sites. The absence of sharks at the surface during visual surveys has led to the assumption that sharks disperse to places unknown during the long ‘off-seasons’ at most of these locations. Here we compare 2 years of R. typus visual sighting records from Mafia Island in Tanzania to concurrent acoustic telemetry of tagged individuals. Sightings revealed a clear seasonal pattern with a peak between October and February and no sharks observed at other times. By contrast, acoustic telemetry demonstrated year-round residency of R. typus. The sharks use a different habitat in the off-season, swimming deeper and further away from shore, presumably in response to prey distributions. This behavioural change reduces the sharks' visibility, giving the false impression that they have left the area. We demonstrate, for the first time to our knowledge, year-round residency of unprovisioned, individual R. typus at an aggregation site, and highlight the importance of using multiple techniques to study the movement ecology of marine megafauna. PMID:25832816
Visual dysfunction in Parkinson’s disease
Weil, Rimona S.; Schrag, Anette E.; Warren, Jason D.; Crutch, Sebastian J.; Lees, Andrew J.; Morris, Huw R.
2016-01-01
Patients with Parkinson’s disease have a number of specific visual disturbances. These include changes in colour vision and contrast sensitivity and difficulties with complex visual tasks such as mental rotation and emotion recognition. We review changes in visual function at each stage of visual processing from retinal deficits, including contrast sensitivity and colour vision deficits to higher cortical processing impairments such as object and motion processing and neglect. We consider changes in visual function in patients with common Parkinson’s disease-associated genetic mutations including GBA and LRRK2. We discuss the association between visual deficits and clinical features of Parkinson’s disease such as rapid eye movement sleep behavioural disorder and the postural instability and gait disorder phenotype. We review the link between abnormal visual function and visual hallucinations, considering current models for mechanisms of visual hallucinations. Finally, we discuss the role of visuo-perceptual testing as a biomarker of disease and predictor of dementia in Parkinson’s disease. PMID:27412389
A Microsaccadic Account of Attentional Capture and Inhibition of Return in Posner Cueing
Tian, Xiaoguang; Yoshida, Masatoshi; Hafed, Ziad M.
2016-01-01
Microsaccades exhibit systematic oscillations in direction after spatial cueing, and these oscillations correlate with facilitatory and inhibitory changes in behavioral performance in the same tasks. However, independent of cueing, facilitatory and inhibitory changes in visual sensitivity also arise pre-microsaccadically. Given such pre-microsaccadic modulation, an imperative question to ask becomes: how much of task performance in spatial cueing may be attributable to these peri-movement changes in visual sensitivity? To investigate this question, we adopted a theoretical approach. We developed a minimalist model in which: (1) microsaccades are repetitively generated using a rise-to-threshold mechanism, and (2) pre-microsaccadic target onset is associated with direction-dependent modulation of visual sensitivity, as found experimentally. We asked whether such a model alone is sufficient to account for performance dynamics in spatial cueing. Our model not only explained fine-scale microsaccade frequency and direction modulations after spatial cueing, but it also generated classic facilitatory (i.e., attentional capture) and inhibitory [i.e., inhibition of return (IOR)] effects of the cue on behavioral performance. According to the model, cues reflexively reset the oculomotor system, which unmasks oscillatory processes underlying microsaccade generation; once these oscillatory processes are unmasked, “attentional capture” and “IOR” become direct outcomes of pre-microsaccadic enhancement or suppression, respectively. Interestingly, our model predicted that facilitatory and inhibitory effects on behavior should appear as a function of target onset relative to microsaccades even without prior cues. We experimentally validated this prediction for both saccadic and manual responses. We also established a potential causal mechanism for the microsaccadic oscillatory processes hypothesized by our model. We used retinal-image stabilization to experimentally control instantaneous foveal motor error during the presentation of peripheral cues, and we found that post-cue microsaccadic oscillations were severely disrupted. This suggests that microsaccades in spatial cueing tasks reflect active oculomotor correction of foveal motor error, rather than presumed oscillatory covert attentional processes. Taken together, our results demonstrate that peri-microsaccadic changes in vision can go a long way in accounting for some classic behavioral phenomena. PMID:27013991
Visual function, driving safety, and the elderly.
Keltner, J L; Johnson, C A
1987-09-01
The authors have conducted a survey of the Departments of Motor Vehicles in all 50 states, the District of Columbia, and Puerto Rico requesting information about the visual standards, accidents, and conviction rates for different age groups. In addition, we have reviewed the literature on visual function and traffic safety. Elderly drivers have a greater number of vision problems that affect visual acuity and/or peripheral visual fields. Although the elderly are responsible for a small percentage of the total number of traffic accidents, the types of accidents they are involved in (e.g., failure to yield the right-of-way, intersection collisions, left turns onto crossing streets) may be related to peripheral and central visual field problems. Because age-related changes in performance occur at different rates for various individuals, licensing of the elderly driver should be based on functional abilities rather than age. Based on information currently available, we can make the following recommendations: (1) periodic evaluations of visual acuity and visual fields should be performed every 1 to 2 years in the population over age 65; (2) drivers of any age with multiple accidents or moving violations should have visual acuity and visual fields evaluated; and (3) a system should be developed for physicians to report patients with potentially unsafe visual function. The authors believe that these recommendations may help to reduce the number of traffic accidents that result from peripheral visual field deficits.
O’Connell, Caitlin; Ho, Leon C.; Murphy, Matthew C.; Conner, Ian P.; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C.
2016-01-01
Human visual performance has been observed to exhibit superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine if the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI (DKI), respectively in 15 healthy individuals at 3 Tesla. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In DKI, the brain regions mapping to the lower visual field exhibited higher mean kurtosis but not fractional anisotropy or mean diffusivity when compared to the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing. PMID:27631541
ERIC Educational Resources Information Center
Lam, Fook Chang; Lovett, Fiona; Dutton, Gordon N.
2010-01-01
Damage to the areas of the brain that are responsible for higher visual processing can lead to severe cerebral visual impairment (CVI). The prognosis for higher cognitive visual functions in children with CVI is not well described. We therefore present our six-year follow-up of a boy with CVI and highlight intervention approaches that have proved…
Attitudes towards and perceptions of visual loss and its causes among Hong Kong Chinese adults.
Lau, Joseph Tak Fai; Lee, Vincent; Fan, Dorothy; Lau, Mason; Michon, John
2004-06-01
As part of a study of visual function among Hong Kong Chinese adults, their attitudes and perceptions related to visual loss were examined. These included fear of visual loss, negative functional impacts of visual loss, the relationship between ageing and visual loss and help-seeking behaviours related to visual loss. Demographic factors associated with these variables were also studied. The study population were people aged 40 and above randomly selected from the Shatin district of Hong Kong. The participants underwent eye examinations that included visual acuity, intraocular pressure measurement, visual field, slit-lamp biomicroscopy and ophthalmoscopy. The primary cause of visual disability was recorded. The participants were also asked about their attitudes and perceptions regarding visual loss using a structured questionnaire. The prevalence of bilateral visual disability was 2.2% among adults aged 40 or above and 6.4% among adults aged 60 or above. Nearly 36% of the participants selected blindness as the most feared disabling medical condition, which was substantially higher than conditions such as dementia, loss of limbs, deafness or aphasia. Inability to take care of oneself (21.0%), inconvenience related to mobility (20.2%) and inability to work (14.8%) were the three most commonly mentioned 'worst impact' effects of visual loss. Fully 68% of the participants believed that loss of vision is related to ageing. A majority of participants would seek help and advice from family members in case of visual loss. Visual function is perceived to be very important by Hong Kong Chinese adults. The fear of visual loss is widespread and particularly affects self-care and functional abilities. Visual loss is commonly seen as related to ageing. Attitudes and perceptions in this population may be modified by educational and outreach efforts in order to take advantage of preventive measures.
What explains health in persons with visual impairment?
2014-01-01
Background Visual impairment is associated with important limitations in functioning. The International Classification of Functioning, Disability and Health (ICF) adopted by the World Health Organisation (WHO) relies on a globally accepted framework for classifying problems in functioning and the influence of contextual factors. Its comprehensive perspective, including biological, individual and social aspects of health, enables the ICF to describe the whole health experience of persons with visual impairment. The objectives of this study are (1) to analyze whether the ICF can be used to comprehensively describe the problems in functioning of persons with visual impairment and the environmental factors that influence their lives and (2) to select the ICF categories that best capture self-perceived health of persons with visual impairment. Methods Data from 105 persons with visual impairment were collected, including socio-demographic data, vision-related data, the Extended ICF Checklist and the visual analogue scale of the EuroQoL-5D, to assess self-perceived health. Descriptive statistics and a Group Lasso regression were performed. The main outcome measures were functioning defined as impairments in Body functions and Body structures, limitations in Activities and restrictions in Participation, influencing Environmental factors and self-perceived health. Results In total, 120 ICF categories covering a broad range of Body functions, Body structures, aspects of Activities and Participation and Environmental factors were identified. Thirteen ICF categories that best capture self-perceived health were selected based on the Group Lasso regression. While Activities-and-Participation categories were selected most frequently, the greatest impact on self-perceived health was found in Body-functions categories. The ICF can be used as a framework to comprehensively describe the problems of persons with visual impairment and the Environmental factors which influence their lives. Conclusions There are plenty of ICF categories, Environmental-factors categories in particular, which are relevant to persons with visual impairment, but have hardly ever been taken into consideration in literature and visual impairment-specific patient-reported outcome measures. PMID:24886326
ERIC Educational Resources Information Center
Jacobson, Lena; Rydberg, Agneta; Eliasson, Ann-Christin; Kits, Annika; Flodmark, Olof
2010-01-01
Aim: To relate visual field function to brain morphology in children with unilateral cerebral palsy (CP). Method: Visual field function was assessed using the confrontation technique and Goldmann perimetry in 29 children (15 males, 14 females; age range 7-17y, median age 11y) with unilateral CP classified at Gross Motor Function Classification…
Kaido, Minako; Toda, Ikuko; Oobayashi, Tomoo; Kawashima, Motoko; Katada, Yusaku; Tsubota, Kazuo
2016-01-01
To investigate whether suppression of blue light can improve visual function in patients with short tear break up time (BUT) dry eye (DE). Twenty-two patients with short BUT DE (10 men, 12 women; mean age, 32.4 ± 6.4 years; age range, 23-43 years) and 18 healthy controls (10 men, 8 women; mean age, 30.1 ± 7.4 years; age range, 20-49 years) underwent functional visual acuity (VA) examinations with and without wearing eyeglasses with 50% blue light blocked lenses. The functional VA parameters were starting VA, functional VA, and visual maintenance ratio. The baseline mean values (logarithm of the minimum angle of resolution, logMAR) of functional VA and the visual maintenance ratio were significantly worse in the DE patients than in the controls (P < 0.05), while no significant difference was observed in the baseline starting VA (P > 0.05). The DE patients had significant improvement in mean functional VA and visual maintenance ratio while wearing the glasses (P < 0.05), while there were no significant changes with and without the glasses in the control group (P > 0.05). Protecting the eyes from short-wavelength blue light may help to ameliorate visual impairment associated with tear instability in patients with DE. This finding represents a new concept, which is that the blue light exposure might be harmful to visual function in patients with short BUT DE.
Kaido, Minako
2016-01-01
Purpose To investigate whether suppression of blue light can improve visual function in patients with short tear break up time (BUT) dry eye (DE). Methods Twenty-two patients with short BUT DE (10 men, 12 women; mean age, 32.4 ± 6.4 years; age range, 23–43 years) and 18 healthy controls (10 men, 8 women; mean age, 30.1 ± 7.4 years; age range, 20–49 years) underwent functional visual acuity (VA) examinations with and without wearing eyeglasses with 50% blue light blocked lenses. The functional VA parameters were starting VA, functional VA, and visual maintenance ratio. Results The baseline mean values (logarithm of the minimum angle of resolution, logMAR) of functional VA and the visual maintenance ratio were significantly worse in the DE patients than in the controls (P < 0.05), while no significant difference was observed in the baseline starting VA (P > 0.05). The DE patients had significant improvement in mean functional VA and visual maintenance ratio while wearing the glasses (P < 0.05), while there were no significant changes with and without the glasses in the control group (P > 0.05), Conclusions Protecting the eyes from short-wavelength blue light may help to ameliorate visual impairment associated with tear instability in patients with DE. This finding represents a new concept, which is that the blue light exposure might be harmful to visual function in patients with short BUT DE. PMID:27045760
Jacob, Joseph; Bartholmai, Brian J; Brun, Anne Laure; Egashira, Ryoko; Rajagopalan, Srinivasan; Karwoski, Ronald; Kouranos, Vasileios; Kokosi, Maria; Hansell, David M; Wells, Athol U
2017-11-01
To determine whether computer-based quantification (CALIPER software) is superior to visual computed tomography (CT) scoring in the identification of CT patterns indicative of restrictive and obstructive functional indices in hypersensitivity pneumonitis (HP). A total of 135 consecutive HP patients had CT parenchymal patterns evaluated quantitatively by both visual scoring and CALIPER. Results were evaluated against: forced vital capacity (FVC), total lung capacity (TLC), diffusing capacity for carbon monoxide (DL CO ) and a composite physiological index (CPI) to identify which CT scoring method better correlated with functional indices. CALIPER-derived scores of total interstitial lung disease extent correlated more strongly than visual scores: FVC (CALIPER R = 0.73, visual R = 0.51); DL CO (CALIPER R = 0.61, visual R = 0.48); and CPI (CALIPER R = 0·70, visual R = 0·55). The CT variable that correlated most strongly with restrictive functional indices was CALIPER pulmonary vessel volume (PVV): FVC R = 0.75, DL CO R = 0.68 and CPI R = 0.76. Ground-glass opacity quantified by CALIPER alone demonstrated strong associations with restrictive functional indices: CALIPER FVC R = 0.65; DL CO R = 0.59; CPI R = 0.64; and visual = not significant. Decreased attenuation lung quantified by CALIPER was a better morphological measure of obstructive lung disease than equivalent visual scores as judged by relationships with TLC (CALIPER R = 0.63 and visual R = 0.12). All results were maintained on multivariate analysis. CALIPER improved on visual scoring in HP as judged by restrictive and obstructive functional correlations. Decreased attenuation regions of the lung quantified by CALIPER demonstrated better linkages to obstructive lung physiology than visually quantified CT scores. A novel CALIPER variable, the PVV, demonstrated the strongest linkages with restrictive functional indices and could represent a new automated index of disease severity in HP. © 2017 Asian Pacific Society of Respirology.
Shakespeare, C. F.; Katritsis, D.; Crowther, A.; Cooper, I. C.; Coltart, J. D.; Webb-Peploe, M. W.
1994-01-01
BACKGROUND--Autonomic neuropathy provides a mechanism for the absence of symptoms in silent myocardial ischaemia, but characterisation of the type of neuropathy is lacking. AIM--To characterise and compare autonomic nerve function in patients with silent and symptomatic myocardial ischaemia. METHODS AND RESULTS--The Valsalva manoeuvre, heart rate variation (HRV) in response to deep breathing and standing, lower body negative pressure, isometric handgrip, and the cold pressor test were performed by patients with silent (n = 25) and symptomatic (n = 25) ambulatory ischaemia and by controls (n = 21). No difference in parasympathetic efferent function between patients with silent and symptomatic ischaemia was recorded, but both had significantly less HRV in response to standing than the controls (p < 0.005 for silent and p < 0.01 for symptomatic). Patients with silent ischaemia showed an increased propensity for peripheral vasodilatation compared with symptomatic patients (p < 0.02) and controls (p < 0.04). Impaired sympathetic function was found in patients with pure silent ischaemia (n = 4) compared with the remaining patients with silent ischaemia whose pain pathways were presumed to be intact. CONCLUSIONS--Patients with silent ischaemia and pain pathways presumed to be intact have an enhanced peripheral vasodilator response, and if this applied to the coronary vasculature it could provide a mechanism for limiting ischaemia to below the pain threshold. Patients with pure silent ischaemia have evidence of sympathetic autonomic dysfunction. Images PMID:8297687
28 CFR 104.43 - Determination of presumed economic loss for decedents.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Determination of presumed economic loss... of presumed economic loss for decedents. In reaching presumed determinations for economic loss for...-time outside the home, economic loss may be determined with reference to replacement services and...
28 CFR 104.43 - Determination of presumed economic loss for decedents.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Determination of presumed economic loss... of presumed economic loss for decedents. In reaching presumed determinations for economic loss for...-time outside the home, economic loss may be determined with reference to replacement services and...
28 CFR 104.43 - Determination of presumed economic loss for decedents.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Determination of presumed economic loss... of presumed economic loss for decedents. In reaching presumed determinations for economic loss for...-time outside the home, economic loss may be determined with reference to replacement services and...
Cultural practices for restoring and maintaining ecosystem function
David H. Van Lear; Tricia L. Wurtz
2005-01-01
Forest restoration, in a general sense, suggests a transition from a degraded state to some "natural" condition, presumably devoid of human influence (Stanturf, this volume). Yet, because nearly all temperate and boreal forests have been influenced to varying and unknown degrees by aborigional man, as well as being subject to continually changing climate and...
Educators' Relational Experiences with Learners Identified with Fetal Alcohol Spectrum Disorder
ERIC Educational Resources Information Center
Van Schalkwyk, Izanette; Marais, Sandra
2017-01-01
The focus of this research is educators' relational experiences with learners presumed to have Fetal Alcohol Spectrum Disorder (FASD) in a South African school community. Although relational interaction (usually seen as trusting and caring) is an integral aspect of the learning environment, relational functioning within this context is seriously…
ERIC Educational Resources Information Center
Brick, John
Alcohol intoxication increases the risk of highway accidents, the relative risk of crash probability increasing as a function of blood alcohol content (BAC). Because alcohol use is more prevalent than use of other drugs, more is known about the relationship between alcohol use and driving. Most states presume a BAC of .10% to be evidence of drunk…
Gender Differences in Performance of Script Analysis by Older Adults
ERIC Educational Resources Information Center
Helmes, E.; Bush, J. D.; Pike, D. L.; Drake, D. G.
2006-01-01
Script analysis as a test of executive functions is presumed sensitive to cognitive changes seen with increasing age. Two studies evaluated if gender differences exist in performance on scripts for familiar and unfamiliar tasks in groups of cognitively intact older adults. In Study 1, 26 older adults completed male and female stereotypical…
Symptoms versus Impairment: The Case for Respecting "DSM-IV"'s Criterion D
ERIC Educational Resources Information Center
Gordon, Michael; Antshel, Kevin; Faraone, Stephen; Barkley, Russell; Lewandowski, Larry; Hudziak, James J.; Biederman, Joseph; Cunningham, Charles
2006-01-01
Diagnosing ADHD based primarily on symptom reports assumes that the number/frequency of symptoms is tied closely to the impairment imposed on an individual's functioning. That presumed linkage encourages diagnosis more by "Diagnostic and Statistical Manual of Mental Disorders" (4th ed.) style symptom lists than well-defined,…
26 CFR 1.985-1 - Functional currency.
Code of Federal Regulations, 2010 CFR
2010-04-01
... does not keep books and records in the currency of any economic environment in which a significant part... paragraph (c)(3) of this section to keep, its books and records in such currency. (2) Economic environment... presumed to keep books and records in the currency of the economic environment in which a significant part...
A Presynaptic Role for FMRP during Protein Synthesis-Dependent Long-Term Plasticity in "Aplysia"
ERIC Educational Resources Information Center
Till, Sally M.; Li, Hsiu-Ling; Miniaci, Maria Concetta; Kandel, Eric R.; Choi, Yun-Beom
2011-01-01
Loss of the Fragile X mental retardation protein (FMRP) is associated with presumed postsynaptic deficits in mouse models of Fragile X syndrome. However, the possible presynaptic roles of FMRP in learning-related plasticity have received little attention. As a result, the mechanisms whereby FMRP influences synaptic function remain poorly…
Cultural Diversity and Anti-Poverty Policy
ERIC Educational Resources Information Center
Lamont, Michele; Small, Mario Luis
2010-01-01
This article examines how anti-poverty policy has considered the role of culture and how it ought to do so. While some have explained poverty as a function of the presumed cultural deficiency or distinctiveness of the poor, we suggest that these explanations have not been convincing and that policy requires a broader and more sophisticated…
Expectations for Visual Function: An Initial Evaluation of a New Clinical Instrument.
ERIC Educational Resources Information Center
Corn, Anne L.; Webne, Steve L.
2001-01-01
A study explored the internal consistency of items in a visual screening instrument developed by Project PAVE: Expectations for Visual Functioning (EVF). The test includes 20 items that evaluate a child's functional use of vision. A pilot test involving 129 teachers indicates the EFV is internally consistent. (Contains three references.) (CR)
Globe, Denise R; Wu, Joanne; Azen, Stanley P; Varma, Rohit
2004-06-01
To assess the association between presenting binocular visual acuity (VA) and self-reported visual function as measured by the 25-item National Eye Institute Visual Function Questionnaire (NEI-VFQ-25). A population-based, prevalence study of eye disease in Latinos 40 years and older residing in La Puente, California (Los Angeles Latino Eye Study [LALES]). Six thousand three hundred fifty-seven Latinos 40 years and older from 6 census tracts in La Puente. All participants completed a standardized interview, including the NEI-VFQ-25 to measure visual functioning, and a detailed eye examination. Two definitions of visual impairment were used: (1) presenting binocular distance VA of 20/40 or worse and (2) presenting binocular distance VA worse than 20/40. Analysis of variance was used to determine any systematic differences in mean NEI-VFQ-25 scores by visual impairment. Regression analyses were completed (1) to determine the association of age, gender, number of systemic comorbidities, depression, and VA with self-reported visual function and (2) to estimate a visual impairment-related difference for each subscale based on differences in VA. The NEI-VFQ-25 scores in persons with visual impairment. Of the 5287 LALES participants with complete NEI-VFQ-25 data, 6.3% (including 20/40) and 4.2% (excluding 20/40) were visually impaired. In the visually impaired participants, the NEI-VFQ-25 subscale scores ranged from 46.2 (General Health) to 93.8 (Color Vision). In the regression model, only VA, depression, and number of comorbidities were significantly associated with all subscale scores (R(2) ranged from 0.09 for Ocular Pain to 0.33 for the composite score). For 9 of 11 subscales, a 5-point change was equivalent to a 1- or 2-line difference in VA. Relationships were similar regardless of the definition of visual impairment. In this population-based study of Latinos, the NEI-VFQ-25 was sensitive to differences in VA. A 5-point difference on the NEI-VFQ-25 seems to be a minimal criterion for a visual impairment-related difference. Self-reported visual function is essentially unchanged if the definition of visual impairment includes or excludes a VA of 20/40.
ERIC Educational Resources Information Center
Jan, James E.; Heaven, Roberta K. B.; Matsuba, Carey; Langley, M. Beth; Roman-Lantzy, Christine; Anthony, Tanni L
2013-01-01
Introduction: In recent years, major progress has been made in understanding the human visual system because of new investigative techniques. These developments often contradict older concepts about visual function. Methods: A detailed literature search and interprofessional discussions. Results: Recent innovative neurological tests are described…
Visual development in primates: Neural mechanisms and critical periods
Kiorpes, Lynne
2015-01-01
Despite many decades of research into the development of visual cortex, it remains unclear what neural processes set limitations on the development of visual function and define its vulnerability to abnormal visual experience. This selected review examines the development of visual function and its neural correlates, and highlights the fact that in most cases receptive field properties of infant neurons are substantially more mature than infant visual function. One exception is temporal resolution, which can be accounted for by resolution of neurons at the level of the LGN. In terms of spatial vision, properties of single neurons alone are not sufficient to account for visual development. Different visual functions develop over different time courses. Their onset may be limited by the existence of neural response properties that support a given perceptual ability, but the subsequent time course of maturation to adult levels remains unexplained. Several examples are offered suggesting that taking account of weak signaling by infant neurons, correlated firing, and pooled responses of populations of neurons brings us closer to an understanding of the relationship between neural and behavioral development. PMID:25649764
Prusky, Glen T; Silver, Byron D; Tschetter, Wayne W; Alam, Nazia M; Douglas, Robert M
2008-09-24
Developmentally regulated plasticity of vision has generally been associated with "sensitive" or "critical" periods in juvenile life, wherein visual deprivation leads to loss of visual function. Here we report an enabling form of visual plasticity that commences in infant rats from eye opening, in which daily threshold testing of optokinetic tracking, amid otherwise normal visual experience, stimulates enduring, visual cortex-dependent enhancement (>60%) of the spatial frequency threshold for tracking. The perceptual ability to use spatial frequency in discriminating between moving visual stimuli is also improved by the testing experience. The capacity for inducing enhancement is transitory and effectively limited to infancy; however, enhanced responses are not consolidated and maintained unless in-kind testing experience continues uninterrupted into juvenile life. The data show that selective visual experience from infancy can alone enable visual function. They also indicate that plasticity associated with visual deprivation may not be the only cause of developmental visual dysfunction, because we found that experientially inducing enhancement in late infancy, without subsequent reinforcement of the experience in early juvenile life, can lead to enduring loss of function.
Visual imagery and functional connectivity in blindness: a single-case study
Boucard, Christine C.; Rauschecker, Josef P.; Neufang, Susanne; Berthele, Achim; Doll, Anselm; Manoliu, Andrej; Riedl, Valentin; Sorg, Christian; Wohlschläger, Afra; Mühlau, Mark
2016-01-01
We present a case report on visual brain plasticity after total blindness acquired in adulthood. SH lost her sight when she was 27. Despite having been totally blind for 43 years, she reported to strongly rely on her vivid visual imagery. Three-Tesla magnetic resonance imaging (MRI) of SH and age-matched controls was performed. The MRI sequence included anatomical MRI, resting-state functional MRI, and task-related functional MRI where SH was instructed to imagine colours, faces, and motion. Compared to controls, voxel-based analysis revealed white matter loss along SH's visual pathway as well as grey matter atrophy in the calcarine sulci. Yet we demonstrated activation in visual areas, including V1, using functional MRI. Of the four identified visual resting-state networks, none showed alterations in spatial extent; hence, SH's preserved visual imagery seems to be mediated by intrinsic brain networks of normal extent. Time courses of two of these networks showed increased correlation with that of the inferior posterior default mode network, which may reflect adaptive changes supporting SH's strong internal visual representations. Overall, our findings demonstrate that conscious visual experience is possible even after years of absence of extrinsic input. PMID:25690326
Visual imagery and functional connectivity in blindness: a single-case study.
Boucard, Christine C; Rauschecker, Josef P; Neufang, Susanne; Berthele, Achim; Doll, Anselm; Manoliu, Andrej; Riedl, Valentin; Sorg, Christian; Wohlschläger, Afra; Mühlau, Mark
2016-05-01
We present a case report on visual brain plasticity after total blindness acquired in adulthood. SH lost her sight when she was 27. Despite having been totally blind for 43 years, she reported to strongly rely on her vivid visual imagery. Three-Tesla magnetic resonance imaging (MRI) of SH and age-matched controls was performed. The MRI sequence included anatomical MRI, resting-state functional MRI, and task-related functional MRI where SH was instructed to imagine colours, faces, and motion. Compared to controls, voxel-based analysis revealed white matter loss along SH's visual pathway as well as grey matter atrophy in the calcarine sulci. Yet we demonstrated activation in visual areas, including V1, using functional MRI. Of the four identified visual resting-state networks, none showed alterations in spatial extent; hence, SH's preserved visual imagery seems to be mediated by intrinsic brain networks of normal extent. Time courses of two of these networks showed increased correlation with that of the inferior posterior default mode network, which may reflect adaptive changes supporting SH's strong internal visual representations. Overall, our findings demonstrate that conscious visual experience is possible even after years of absence of extrinsic input.
Matsui, Teppei; Ohki, Kenichi
2013-01-01
Higher order visual areas that receive input from the primary visual cortex (V1) are specialized for the processing of distinct features of visual information. However, it is still incompletely understood how this functional specialization is acquired. Here we used in vivo two photon calcium imaging in the mouse visual cortex to investigate whether this functional distinction exists at as early as the level of projections from V1 to two higher order visual areas, AL and LM. Specifically, we examined whether sharpness of orientation and direction selectivity and optimal spatial and temporal frequency of projection neurons from V1 to higher order visual areas match with that of target areas. We found that the V1 input to higher order visual areas were indeed functionally distinct: AL preferentially received inputs from V1 that were more orientation and direction selective and tuned for lower spatial frequency compared to projection of V1 to LM, consistent with functional differences between AL and LM. The present findings suggest that selective projections from V1 to higher order visual areas initiates parallel processing of sensory information in the visual cortical network. PMID:24068987
Luo, Di; Niu, Xiangli; Yu, Jinde; Yan, Jun; Gou, Xiaojun; Lu, Bao-Rong; Liu, Yongsheng
2012-09-01
Glycine betaine (GB) is a compatible quaternary amine that enables plants to tolerate abiotic stresses, including salt, drought and cold. In plants, GB is synthesized through two-step of successive oxidations from choline, catalyzed by choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH), respectively. Rice is considered as a typical non-GB accumulating species, although the entire genome sequencing revealed rice contains orthologs of both CMO and BADH. Several studies unraveled that rice has a functional BADH gene, but whether rice CMO gene (OsCMO) is functional or a pseudogene remains to be elucidated. In the present study, we report the functional characterization of rice CMO gene. The OsCMO gene was isolated from rice cv. Nipponbare (Oryza sativa L. ssp. japonica) using RT-PCR. Northern blot demonstrated the transcription of OsCMO is enhanced by salt stress. Transgenic tobacco plants overexpressing OsCMO results in increased GB content and elevated tolerance to salt stress. Immunoblotting analysis demonstrates that a functional OsCMO protein with correct size was present in transgenic tobacco but rarely accumulated in wild-type rice plants. Surprisingly, a large amount of truncated proteins derived from OsCMO was induced in the rice seedlings in response to salt stresses. This suggests that it is the lack of a functional OsCMO protein that presumably results in non-GB accumulation in the tested rice plant. Expression and transgenic studies demonstrate OsCMO is transcriptionally induced in response to salt stress and functions in increasing glycinebetaine accumulation and enhancing tolerance to salt stress. Immunoblotting analysis suggests that no accumulation of glycinebetaine in the Japonica rice plant presumably results from lack of a functional OsCMO protein.
Eccentric correction for off-axis vision in central visual field loss.
Gustafsson, Jörgen; Unsbo, Peter
2003-07-01
Subjects with absolute central visual field loss use eccentric fixation and magnifying devices to utilize their residual vision. This preliminary study investigated the importance of an accurate eccentric correction of off-axis refractive errors to optimize the residual visual function for these subjects. Photorefraction using the PowerRefractor instrument was used to evaluate the ametropia in eccentric fixation angles. Methods were adapted for measuring visual acuity outside the macula using filtered optotypes from high-pass resolution perimetry. Optical corrections were implemented, and the visual function of subjects with central visual field loss was measured with and without eccentric correction. Of the seven cases reported, five experienced an improvement in visual function in their preferred retinal locus with eccentric refraction. The main result was that optical correction for better image quality on the peripheral retina is important for the vision of subjects with central visual field loss, objectively as well as subjectively.
Viswanathan, Pooja; Nieder, Andreas
2017-09-13
The basic organization principles of the primary visual cortex (V1) are commonly assumed to also hold in the association cortex such that neurons within a cortical column share functional connectivity patterns and represent the same region of the visual field. We mapped the visual receptive fields (RFs) of neurons recorded at the same electrode in the ventral intraparietal area (VIP) and the lateral prefrontal cortex (PFC) of rhesus monkeys. We report that the spatial characteristics of visual RFs between adjacent neurons differed considerably, with increasing heterogeneity from VIP to PFC. In addition to RF incongruences, we found differential functional connectivity between putative inhibitory interneurons and pyramidal cells in PFC and VIP. These findings suggest that local RF topography vanishes with hierarchical distance from visual cortical input and argue for increasingly modified functional microcircuits in noncanonical association cortices that contrast V1. SIGNIFICANCE STATEMENT Our visual field is thought to be represented faithfully by the early visual brain areas; all the information from a certain region of the visual field is conveyed to neurons situated close together within a functionally defined cortical column. We examined this principle in the association areas, PFC, and ventral intraparietal area of rhesus monkeys and found that adjacent neurons represent markedly different areas of the visual field. This is the first demonstration of such noncanonical organization of these brain areas. Copyright © 2017 the authors 0270-6474/17/378919-10$15.00/0.
Schwitzer, Thomas; Schwan, Raymund; Angioi-Duprez, Karine; Ingster-Moati, Isabelle; Lalanne, Laurence; Giersch, Anne; Laprevote, Vincent
2015-01-01
Cannabis is one of the most prevalent drugs used worldwide. Regular cannabis use is associated with impairments in highly integrative cognitive functions such as memory, attention and executive functions. To date, the cerebral mechanisms of these deficits are still poorly understood. Studying the processing of visual information may offer an innovative and relevant approach to evaluate the cerebral impact of exogenous cannabinoids on the human brain. Furthermore, this knowledge is required to understand the impact of cannabis intake in everyday life, and especially in car drivers. Here we review the role of the endocannabinoids in the functioning of the visual system and the potential involvement of cannabis use in visual dysfunctions. This review describes the presence of the endocannabinoids in the critical stages of visual information processing, and their role in the modulation of visual neurotransmission and visual synaptic plasticity, thereby enabling them to alter the transmission of the visual signal. We also review several induced visual changes, together with experimental dysfunctions reported in cannabis users. In the discussion, we consider these results in relation to the existing literature. We argue for more involvement of public health research in the study of visual function in cannabis users, especially because cannabis use is implicated in driving impairments. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
2012-01-01
Background Economic viability of treatments for primary open-angle glaucoma (POAG) should be assessed objectively to prioritise health care interventions. This study aims to identify the methods for eliciting utility values (UVs) most sensitive to differences in visual field and visual functioning in patients with POAG. As a secondary objective, the dimensions of generic health-related and vision-related quality of life most affected by progressive vision loss will be identified. Methods A total of 132 POAG patients were recruited. Three sets of utility values (EuroQoL EQ-5D, Short Form SF-6D, Time Trade Off) and a measure of perceived visual functioning from the National Eye Institute Visual Function Questionnaire (VFQ-25) were elicited during face-to-face interviews. The sensitivity of UVs to differences in the binocular visual field, visual acuity and visual functioning measures was analysed using non-parametric statistical methods. Results Median utilities were similar across Integrated Visual Field score quartiles for EQ-5D (P = 0.08) whereas SF-6D and Time-Trade-Off UVs significantly decreased (p = 0.01 and p = 0.001, respectively). The VFQ-25 score varied across Integrated Visual Field and binocular visual acuity groups and was associated with all three UVs (P ≤ 0.001); most of its vision-specific sub-scales were associated with the vision markers. The most affected dimension was driving. A relationship with vision markers was found for the physical component of SF-36 and not for any dimension of EQ-5D. Conclusions The Time-Trade-Off was more sensitive than EQ-5D and SF-6D to changes in vision and visual functioning associated with glaucoma progression but could not measure quality of life changes in the mildest disease stages. PMID:22909264
Lev, Maria; Gilaie-Dotan, Sharon; Gotthilf-Nezri, Dana; Yehezkel, Oren; Brooks, Joseph L; Perry, Anat; Bentin, Shlomo; Bonneh, Yoram; Polat, Uri
2015-01-01
Long-term deprivation of normal visual inputs can cause perceptual impairments at various levels of visual function, from basic visual acuity deficits, through mid-level deficits such as contour integration and motion coherence, to high-level face and object agnosia. Yet it is unclear whether training during adulthood, at a post-developmental stage of the adult visual system, can overcome such developmental impairments. Here, we visually trained LG, a developmental object and face agnosic individual. Prior to training, at the age of 20, LG's basic and mid-level visual functions such as visual acuity, crowding effects, and contour integration were underdeveloped relative to normal adult vision, corresponding to or poorer than those of 5–6 year olds (Gilaie-Dotan, Perry, Bonneh, Malach & Bentin, 2009). Intensive visual training, based on lateral interactions, was applied for a period of 9 months. LG's directly trained but also untrained visual functions such as visual acuity, crowding, binocular stereopsis and also mid-level contour integration improved significantly and reached near-age-level performance, with long-term (over 4 years) persistence. Moreover, mid-level functions that were tested post-training were found to be normal in LG. Some possible subtle improvement was observed in LG's higher-order visual functions such as object recognition and part integration, while LG's face perception skills have not improved thus far. These results suggest that corrective training at a post-developmental stage, even in the adult visual system, can prove effective, and its enduring effects are the basis for a revival of a developmental cascade that can lead to reduced perceptual impairments. PMID:24698161
Lev, Maria; Gilaie-Dotan, Sharon; Gotthilf-Nezri, Dana; Yehezkel, Oren; Brooks, Joseph L; Perry, Anat; Bentin, Shlomo; Bonneh, Yoram; Polat, Uri
2015-01-01
Long-term deprivation of normal visual inputs can cause perceptual impairments at various levels of visual function, from basic visual acuity deficits, through mid-level deficits such as contour integration and motion coherence, to high-level face and object agnosia. Yet it is unclear whether training during adulthood, at a post-developmental stage of the adult visual system, can overcome such developmental impairments. Here, we visually trained LG, a developmental object and face agnosic individual. Prior to training, at the age of 20, LG's basic and mid-level visual functions such as visual acuity, crowding effects, and contour integration were underdeveloped relative to normal adult vision, corresponding to or poorer than those of 5-6 year olds (Gilaie-Dotan, Perry, Bonneh, Malach & Bentin, 2009). Intensive visual training, based on lateral interactions, was applied for a period of 9 months. LG's directly trained but also untrained visual functions such as visual acuity, crowding, binocular stereopsis and also mid-level contour integration improved significantly and reached near-age-level performance, with long-term (over 4 years) persistence. Moreover, mid-level functions that were tested post-training were found to be normal in LG. Some possible subtle improvement was observed in LG's higher-order visual functions such as object recognition and part integration, while LG's face perception skills have not improved thus far. These results suggest that corrective training at a post-developmental stage, even in the adult visual system, can prove effective, and its enduring effects are the basis for a revival of a developmental cascade that can lead to reduced perceptual impairments. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.
Rise and fall of the two visual systems theory.
Rossetti, Yves; Pisella, Laure; McIntosh, Robert D
2017-06-01
Among the many dissociations describing the visual system, the dual theory of two visual systems, respectively dedicated to perception and action, has yielded a lot of support. There are psychophysical, anatomical and neuropsychological arguments in favor of this theory. Several behavioral studies that used sensory and motor psychophysical parameters observed differences between perceptive and motor responses. The anatomical network of the visual system in the non-human primate was very readily organized according to two major pathways, dorsal and ventral. Neuropsychological studies, exploring optic ataxia and visual agnosia as characteristic deficits of these two pathways, led to the proposal of a functional double dissociation between visuomotor and visual perceptual functions. After a major wave of popularity that promoted great advances, particularly in knowledge of visuomotor functions, the guiding theory is now being reconsidered. Firstly, the idea of a double dissociation between optic ataxia and visual form agnosia, as cleanly separating visuomotor from visual perceptual functions, is no longer tenable; optic ataxia does not support a dissociation between perception and action and might be more accurately viewed as a negative image of action blindsight. Secondly, dissociations between perceptive and motor responses highlighted in the framework of this theory concern a very elementary level of action, even automatically guided action routines. Thirdly, the very rich interconnected network of the visual brain yields few arguments in favor of a strict perception/action dissociation. Overall, the dissociation between motor function and perceptive function explored by these behavioral and neuropsychological studies can help define an automatic level of action organization deficient in optic ataxia and preserved in action blindsight, and underlines the renewed need to consider the perception-action circle as a functional ensemble. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
A flavonoid from Brassica rapa flower as the UV-absorbing nectar guide.
Sasaki, Katsunori; Takahashi, Takashi
2002-10-01
The corolla of Brassica rapa has an UV-absorbing zone in its center, known as the nectar guide for attracting pollinating insects. The pigment which plays the role of the nectar guide was isolated from the petals and identified to be isorhamnetin 3,7-O-di-beta-D-glucopyranoside on the basis of MS and NMR spectroscopic data. The D-, L-configurations of the sugar moieties were determined by the fluorometric HPLC method. In plants raised in open field, there was a 13-fold higher content of the compound in the basal parts of the petals compared with the apical parts. This difference in flavonoid content is presumed to contribute to the visual attractiveness of B. rapa flowers to insect pollinators.
NASA Technical Reports Server (NTRS)
Paloski, William H.
2008-01-01
Balance control and locomotor patterns were altered in Apollo crewmembers on the lunar surface, owing, presumably, to a combination of sensory-motor adaptation during transit and lunar surface operations, decreased environmental affordances associated with the reduced gravity, and restricted joint mobility as well as altered center-of-gravity caused by the EVA pressure suits. Dr. Paloski will discuss these factors, as well as the potential human and mission impacts of falls and malcoordination during planned lunar sortie and outpost missions. Learning objectives: What are the potential impacts of postural instabilities on the lunar surface? CME question: What factors affect balance control and gait stability on the moon? Answer: Sensory-motor adaptation to the lunar environment, reduced mechanical and visual affordances, and altered biomechanics caused by the EVA suit.
HD 38452 - J. R. Hind's star that changed colour
NASA Technical Reports Server (NTRS)
Warner, Brian; Sneden, Christopher
1988-01-01
In 1851, John Russell Hind announced that a star previously observed by him to be very red had become bluish white in color. It is shown that this star, HD 38451, is a ninth magnitude shell star which presumably was ejecting a shell when Hind first observed it. From high dispersion coude spectra, low dispersion IUE spectra, and ground-based photometry, HD 38451 is found to be a normal A21V shell star. Its current values of E(B-V) of about 0.14 is probably caused by interstellar rather than circumstellar reddening. There remains a problem to reconcile the large amount of reddening present when Hind first observed the star with its evidently small diminution in visual brightness at that time.
28 CFR 104.43 - Determination of presumed economic loss for decedents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Determination of presumed economic loss... Determination of presumed economic loss for decedents. In reaching presumed determinations for economic loss for... prior earned income, or who worked only part time outside the home, economic loss may be determined with...
28 CFR 104.43 - Determination of presumed economic loss for decedents.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Determination of presumed economic loss... Determination of presumed economic loss for decedents. In reaching presumed determinations for economic loss for... prior earned income, or who worked only part time outside the home, economic loss may be determined with...
Mergner, T; Schweigart, G; Maurer, C; Blümle, A
2005-12-01
The role of visual orientation cues for human control of upright stance is still not well understood. We, therefore, investigated stance control during motion of a visual scene as stimulus, varying the stimulus parameters and the contribution from other senses (vestibular and leg proprioceptive cues present or absent). Eight normal subjects and three patients with chronic bilateral loss of vestibular function participated. They stood on a motion platform inside a cabin with an optokinetic pattern on its interior walls. The cabin was sinusoidally rotated in anterior-posterior (a-p) direction with the horizontal rotation axis through the ankle joints (f=0.05-0.4 Hz; A (max)=0.25 degrees -4 degrees ; v (max)=0.08-10 degrees /s). The subjects' centre of mass (COM) angular position was calculated from opto-electronically measured body sway parameters. The platform was either kept stationary or moved by coupling its position 1:1 to a-p hip position ('body sway referenced', BSR, platform condition), by which proprioceptive feedback of ankle joint angle became inactivated. The visual stimulus evoked in-phase COM excursions (visual responses) in all subjects. (1) In normal subjects on a stationary platform, the visual responses showed saturation with both increasing velocity and displacement of the visual stimulus. The saturation showed up abruptly when visually evoked COM velocity and displacement reached approximately 0.1 degrees /s and 0.1 degrees , respectively. (2) In normal subjects on a BSR platform (proprioceptive feedback disabled), the visual responses showed similar saturation characteristics, but at clearly higher COM velocity and displacement values ( approximately 1 degrees /s and 1 degrees , respectively). (3) In patients on a stationary platform (no vestibular cues), the visual responses were basically similar to those of the normal subjects, apart from somewhat higher gain values and less-pronounced saturation effects. (4) In patients on a BSR platform (no vestibular and proprioceptive cues, presumably only somatosensory graviceptive and visual cues), the visual responses showed an abnormal increase in gain with increasing stimulus frequency in addition to a displacement saturation. On the normal subjects we performed additional experiments in which we varied the gain of the visual response by using a 'virtual reality' visual stimulus or by applying small lateral platform tilts. This did not affect the saturation characteristics of the visual response to a considerable degree. We compared the present results to previous psychophysical findings on motion perception, noting similarities of the saturation characteristics in (1) with leg proprioceptive detection thresholds of approximately 0.1 degrees /s and 0.1 degrees and those in (2) with vestibular detection thresholds of 1 degrees /s and 1 degrees , respectively. From the psychophysical data one might hypothesise that a proprioceptive postural mechanism limits the visually evoked body excursions if these excursions exceed 0.1 degrees /s and 0.1 degrees in condition (1) and that a vestibular mechanism is doing so at 1 degrees /s and 1 degrees in (2). To better understand this, we performed computer simulations using a posture control model with multiple sensory feedbacks. We had recently designed the model to describe postural responses to body pull and platform tilt stimuli. Here, we added a visual input and adjusted its gain to fit the simulated data to the experimental data. The saturation characteristics of the visual responses of the normals were well mimicked by the simulations. They were caused by central thresholds of proprioceptive, vestibular and somatosensory signals in the model, which, however, differed from the psychophysical thresholds. Yet, we demonstrate in a theoretical approach that for condition (1) the model can be made monomodal proprioceptive with the psychophysical 0.1 degrees /s and 0.1 degrees thresholds, and for (2) monomodal vestibular with the psychophysical 1 degrees /s and 1 degrees thresholds, and still shows the corresponding saturation characteristics (whereas our original model covers both conditions without adjustments). The model simulations also predicted the almost normal visual responses of patients on a stationary platform and their clearly abnormal responses on a BSR platform.
Peng, Huamao; Gao, Yue; Mao, Xiaofei
2017-02-01
To explore the roles of visual function and cognitive load in aging of inhibition, the present study adopted a 2 (visual perceptual stress: noise, nonnoise) × 2 (cognitive load: low, high) × 2 (age: young, old) mixed design. The Stroop task was adopted to measure inhibition. The task presentation was masked with Gaussian noise according to the visual function of each individual in order to match visual perceptual stress between age groups. The results indicated that age differences in the Stroop effect were influenced by visual function and cognitive load. When the cognitive load was low, older adults exhibited a larger Stroop effect than did younger adults in the nonnoise condition, and this age difference disappeared when the visual noise of the 2 age groups was matched. Conversely, in the high cognitive load condition, we observed significant age differences in the Stroop effect in both the nonnoise and noise conditions. The additional cognitive load made the age differences in the Stroop task reappear even when visual perceptual stress was equivalent. These results demonstrate that visual function plays an important role in the aging of inhibition and its role is moderated by cognitive load. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Geddes, Maiya R; Tie, Yanmei; Gabrieli, John D E; McGinnis, Scott M; Golby, Alexandra J; Whitfield-Gabrieli, Susan
2016-01-01
Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Kahn, Itamar; Wig, Gagan S.; Schacter, Daniel L.
2012-01-01
Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes. PMID:21968568
Stevens, W Dale; Kahn, Itamar; Wig, Gagan S; Schacter, Daniel L
2012-08-01
Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes.
The Anatomical and Functional Organization of the Human Visual Pulvinar
Pinsk, Mark A.; Kastner, Sabine
2015-01-01
The pulvinar is the largest nucleus in the primate thalamus and contains extensive, reciprocal connections with visual cortex. Although the anatomical and functional organization of the pulvinar has been extensively studied in old and new world monkeys, little is known about the organization of the human pulvinar. Using high-resolution functional magnetic resonance imaging at 3 T, we identified two visual field maps within the ventral pulvinar, referred to as vPul1 and vPul2. Both maps contain an inversion of contralateral visual space with the upper visual field represented ventrally and the lower visual field represented dorsally. vPul1 and vPul2 border each other at the vertical meridian and share a representation of foveal space with iso-eccentricity lines extending across areal borders. Additional, coarse representations of contralateral visual space were identified within ventral medial and dorsal lateral portions of the pulvinar. Connectivity analyses on functional and diffusion imaging data revealed a strong distinction in thalamocortical connectivity between the dorsal and ventral pulvinar. The two maps in the ventral pulvinar were most strongly connected with early and extrastriate visual areas. Given the shared eccentricity representation and similarity in cortical connectivity, we propose that these two maps form a distinct visual field map cluster and perform related functions. The dorsal pulvinar was most strongly connected with parietal and frontal areas. The functional and anatomical organization observed within the human pulvinar was similar to the organization of the pulvinar in other primate species. SIGNIFICANCE STATEMENT The anatomical organization and basic response properties of the visual pulvinar have been extensively studied in nonhuman primates. Yet, relatively little is known about the functional and anatomical organization of the human pulvinar. Using neuroimaging, we found multiple representations of visual space within the ventral human pulvinar and extensive topographically organized connectivity with visual cortex. This organization is similar to other nonhuman primates and provides additional support that the general organization of the pulvinar is consistent across the primate phylogenetic tree. These results suggest that the human pulvinar, like other primates, is well positioned to regulate corticocortical communication. PMID:26156987
NASA Technical Reports Server (NTRS)
Tucker, Bryan J.; Mendonca, Margarida M.
1995-01-01
Transition from a normal gravitational environment to that of microgravity eventually results in decreased plasma and blood volumes, increasing with duration of exposure to microgravity. This loss of vascular fluid is presumably due to negative fluid and electrolyte balance and most likely contributes to the orthostatic intolerance associated with the return to gravity. The decrease in plasma volume is presumed to be a reflection of a concurrent decrease in extracellular fluid volume with maintenance of normal plasma-interstitial fluid balance. In addition, the specific alterations in renal function contributing to these changes in fluid and electrolyte homeostasis are potentially responding to neuro-humoral signals that are not consistent with systemic fluid volume status. We have previously demonstrated an early increase in both glomerular filtration rate and extracellular fluid volume and that this decreases towards control values by 7 days of simulated microgravity. However, longer duration studies relating these changes to plasma volume alterations and the response to return to orthostasis have not been fully addressed. Male Wistar rats were chronically cannulated, submitted to 30 days heat-down tilt (HDT) and followed for 7 days after return to orthostasis from HDT. Measurements of renal function and extracellular and blood volumes were performed in the awake rat.
Expression of ionotropic receptors in terrestrial hermit crab's olfactory sensory neurons
Groh-Lunow, Katrin C.; Getahun, Merid N.; Grosse-Wilde, Ewald; Hansson, Bill S.
2015-01-01
Coenobitidae are one out of at least five crustacean lineages which independently succeeded in the transition from water to land. This change in lifestyle required adaptation of the peripheral olfactory organs, the antennules, in order to sense chemical cues in the new terrestrial habitat. Hermit crab olfactory aesthetascs are arranged in a field on the distal segment of the antennular flagellum. Aesthetascs house approximately 300 dendrites with their cell bodies arranged in spindle-like complexes of ca. 150 cell bodies each. While the aesthetascs of aquatic crustaceans have been shown to be the place of odor uptake and previous studies identified ionotropic receptors (IRs) as the putative chemosensory receptors expressed in decapod antennules, the expression of IRs besides the IR co-receptors IR25a and IR93a in olfactory sensory neurons (OSNs) has not been documented yet. Our goal was to reveal the expression and distribution pattern of non-co-receptor IRs in OSNs of Coenobita clypeatus, a terrestrial hermit crab, with RNA in situ hybridization. We expanded our previously published RNAseq dataset, and revealed 22 novel IR candidates in the Coenobita antennules. We then used RNA probes directed against three different IRs to visualize their expression within the OSN cell body complexes. Furthermore we aimed to characterize ligand spectra of single aesthetascs by recording local field potentials and responses from individual dendrites. This also allowed comparison to functional data from insect OSNs expressing antennal IRs. We show that this orphan receptor subgroup with presumably non-olfactory function in insects is likely the basis of olfaction in terrestrial hermit crabs. PMID:25698921
A fast neural signature of motivated attention to consumer goods separates the sexes.
Junghöfer, Markus; Kissler, Johanna; Schupp, Harald T; Putsche, Christian; Elling, Ludger; Dobel, Christian
2010-01-01
Emotional stimuli guide selective visual attention and receive enhanced processing. Previous event-related potential studies have identified an early (>120 ms) negative potential shift over occipito-temporal regions (early posterior negativity, EPN) presumed to indicate the facilitated processing of survival-relevant stimuli. The present study investigated whether this neural signature of motivated attention is also responsive to the intrinsic significance of man-made objects and consumer goods. To address this issue, we capitalized on gender differences towards specific man-made objects, shoes and motorcycles, for which the Statistical Yearbook 2005 of Germany's Federal Statistical Office (Statistisches Bundesamt, 2005) revealed pronounced differences in consumer behavior. In a passive viewing paradigm, male and female participants viewed pictures of motorcycles and shoes, while their magnetoencephalographic brain responses were measured. Source localization of the magnetic counterpart of the EPN (EPNm) revealed pronounced gender differences in picture processing. Specifically, between 130 and 180 ms, all female participants generated stronger activity in occipito-temporal regions when viewing shoes compared to motorcycles, while all men except one showed stronger activation for motorcycles than shoes. Thus, the EPNm allowed a sex-dimorphic classification of the processing of consumer goods. Self-report data confirmed gender differences in consumer behavior, which, however, were less distinct compared to the brain based measure. Considering the latency of the EPNm, the reflected automatic emotional network activity is most likely not yet affected by higher cognitive functions such as response strategies or social expectancy. Non-invasive functional neuroimaging measures of early brain activity may thus serve as objective measure for individual preferences towards consumer goods.
ERIC Educational Resources Information Center
Gegenfurtner, Andreas; Kok, Ellen M.; van Geel, Koos; de Bruin, Anique B. H.; Sorger, Bettina
2017-01-01
Functional neuroimaging is a useful approach to study the neural correlates of visual perceptual expertise. The purpose of this paper is to review the functional-neuroimaging methods that have been implemented in previous research in this context. First, we will discuss research questions typically addressed in visual expertise research. Second,…
ERIC Educational Resources Information Center
Heyl, Vera; Hintermair, Manfred
2015-01-01
Introduction: In this study, executive function of school-aged children with visual impairments (that is, those who are blind or have low vision) is examined in the context of behavioral problems and communicative competence. Methods: Teachers assessed the executive function of a sample of 226 visually impaired students from mainstream schools and…
Impact of presumed consent for organ donation on donation rates: a systematic review
Rithalia, Amber; Suekarran, Sara; Myers, Lindsey; Sowden, Amanda
2009-01-01
Objectives To examine the impact of a system of presumed consent for organ donation on donation rates and to review data on attitudes towards presumed consent. Design Systematic review. Data sources Studies retrieved by online searches to January 2008 of Medline, Medline In-Process, Embase, CINAHL, PsycINFO, HMIC, PAIS International, and OpenSIGLE. Studies reviewed Five studies comparing donation rates before and after the introduction of legislation for presumed consent (before and after studies); eight studies comparing donation rates in countries with and without presumed consent systems (between country comparisons); 13 surveys of public and professional attitudes to presumed consent. Results The five before and after studies represented three countries: all reported an increase in donation rates after the introduction of presumed consent, but there was little investigation of any other changes taking place concurrently with the change in legislation. In the four best quality between country comparisons, presumed consent law or practice was associated with increased organ donation—increases of 25-30%, 21-26%, 2.7 more donors per million population, and 6.14 more donors per million population in the four studies. Other factors found to be important in at least one study were mortality from road traffic accidents and cerebrovascular causes, transplant capacity, gross domestic product per capita, health expenditure per capita, religion (Catholicism), education, public access to information, and a common law legal system. Eight surveys of attitudes to presumed consent were of the UK public. These surveys varied in the level of support for presumed consent, with surveys conducted before 2000 reporting the lowest levels of support (28-57%). The most recent survey, in 2007, reported that 64% of respondents supported a change to presumed consent. Conclusion Presumed consent alone is unlikely to explain the variation in organ donation rates between countries. Legislation, availability of donors, organisation and infrastructure of the transplantation service, wealth and investment in health care, and public attitudes to and awareness of organ donation may all play a part, but their relative importance is unclear. Recent UK surveys show support for presumed consent, though with variation in results that may reflect differences in survey methods. PMID:19147479
When apperceptive agnosia is explained by a deficit of primary visual processing.
Serino, Andrea; Cecere, Roberto; Dundon, Neil; Bertini, Caterina; Sanchez-Castaneda, Cristina; Làdavas, Elisabetta
2014-03-01
Visual agnosia is a deficit in shape perception, affecting figure, object, face and letter recognition. Agnosia is usually attributed to lesions to high-order modules of the visual system, which combine visual cues to represent the shape of objects. However, most of previously reported agnosia cases presented visual field (VF) defects and poor primary visual processing. The present case-study aims to verify whether form agnosia could be explained by a deficit in basic visual functions, rather that by a deficit in high-order shape recognition. Patient SDV suffered a bilateral lesion of the occipital cortex due to anoxia. When tested, he could navigate, interact with others, and was autonomous in daily life activities. However, he could not recognize objects from drawings and figures, read or recognize familiar faces. He was able to recognize objects by touch and people from their voice. Assessments of visual functions showed blindness at the centre of the VF, up to almost 5°, bilaterally, with better stimulus detection in the periphery. Colour and motion perception was preserved. Psychophysical experiments showed that SDV's visual recognition deficits were not explained by poor spatial acuity or by the crowding effect. Rather a severe deficit in line orientation processing might be a key mechanism explaining SDV's agnosia. Line orientation processing is a basic function of primary visual cortex neurons, necessary for detecting "edges" of visual stimuli to build up a "primal sketch" for object recognition. We propose, therefore, that some forms of visual agnosia may be explained by deficits in basic visual functions due to widespread lesions of the primary visual areas, affecting primary levels of visual processing. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wei, Qing; Khan, Ishita K; Ding, Ziyun; Yerneni, Satwica; Kihara, Daisuke
2017-03-20
The number of genomics and proteomics experiments is growing rapidly, producing an ever-increasing amount of data that are awaiting functional interpretation. A number of function prediction algorithms were developed and improved to enable fast and automatic function annotation. With the well-defined structure and manual curation, Gene Ontology (GO) is the most frequently used vocabulary for representing gene functions. To understand relationship and similarity between GO annotations of genes, it is important to have a convenient pipeline that quantifies and visualizes the GO function analyses in a systematic fashion. NaviGO is a web-based tool for interactive visualization, retrieval, and computation of functional similarity and associations of GO terms and genes. Similarity of GO terms and gene functions is quantified with six different scores including protein-protein interaction and context based association scores we have developed in our previous works. Interactive navigation of the GO function space provides intuitive and effective real-time visualization of functional groupings of GO terms and genes as well as statistical analysis of enriched functions. We developed NaviGO, which visualizes and analyses functional similarity and associations of GO terms and genes. The NaviGO webserver is freely available at: http://kiharalab.org/web/navigo .
Toward a Unified Theory of Visual Area V4
Roe, Anna W.; Chelazzi, Leonardo; Connor, Charles E.; Conway, Bevil R.; Fujita, Ichiro; Gallant, Jack L.; Lu, Haidong; Vanduffel, Wim
2016-01-01
Visual area V4 is a midtier cortical area in the ventral visual pathway. It is crucial for visual object recognition and has been a focus of many studies on visual attention. However, there is no unifying view of V4’s role in visual processing. Neither is there an understanding of how its role in feature processing interfaces with its role in visual attention. This review captures our current knowledge of V4, largely derived from electrophysiological and imaging studies in the macaque monkey. Based on recent discovery of functionally specific domains in V4, we propose that the unifying function of V4 circuitry is to enable selective extraction of specific functional domain-based networks, whether it be by bottom-up specification of object features or by top-down attentionally driven selection. PMID:22500626
Late maturation of visual spatial integration in humans
Kovács, Ilona; Kozma, Petra; Fehér, Ákos; Benedek, György
1999-01-01
Visual development is thought to be completed at an early age. We suggest that the maturation of the visual brain is not homogeneous: functions with greater need for early availability, such as visuomotor control, mature earlier, and the development of other visual functions may extend well into childhood. We found significant improvement in children between 5 and 14 years in visual spatial integration by using a contour-detection task. The data show that long-range spatial interactions—subserving the integration of orientational information across the visual field—span a shorter spatial range in children than in adults. Performance in the task improves in a cue-specific manner with practice, which indicates the participation of fairly low-level perceptual mechanisms. We interpret our findings in terms of a protracted development of ventral visual-stream function in humans. PMID:10518600
Extraordinary diversity of visual opsin genes in dragonflies
Futahashi, Ryo; Kawahara-Miki, Ryouka; Kinoshita, Michiyo; Yoshitake, Kazutoshi; Yajima, Shunsuke; Arikawa, Kentaro; Fukatsu, Takema
2015-01-01
Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15–33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies. PMID:25713365
Yoshimura, Hidekane; Iwasaki, Satoshi; Kanda, Yukihiko; Nakanishi, Hiroshi; Murata, Toshinori; Iwasa, Yoh-ichiro; Nishio, Shin-ya; Takumi, Yutaka; Usami, Shin-ichi
2013-02-01
Usher syndrome type 1 (USH1) appears to have only profound non-syndromic hearing loss in childhood and retinitis pigmentosa develops in later years. This study examined the frequency of USH1 before the appearance of visual symptoms in Japanese deaf children by MYO7A mutation analysis. We report the case of 6-year-old male with profound hearing loss, who did not have visual symptoms. The frequency of MYO7A mutations in profound hearing loss children is also discussed. We sequenced all exons of the MYO7A gene in 80 Japanese children with severe to profound non-syndromic HL not due to mutations of the GJB2 gene (ages 0-14 years). A total of nine DNA variants were found and six of them were presumed to be non-pathogenic variants. In addition, three variants of them were found in two patients (2.5%) with deafness and were classified as possible pathogenic variants. Among them, at least one nonsense mutation and one missense mutation from the patient were confirmed to be responsible for deafness. After MYO7A mutation analysis, the patient was diagnosed with RP, and therefore, also diagnosed with USH1. This is the first case report to show the advantage of MYO7A mutation analysis to diagnose USH1 before the appearance of visual symptoms. We believed that MYO7A mutation analysis is valid for the early diagnosis of USH1. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Perceptual evaluation of visual alerts in surveillance videos
NASA Astrophysics Data System (ADS)
Rogowitz, Bernice E.; Topkara, Mercan; Pfeiffer, William; Hampapur, Arun
2015-03-01
Visual alerts are commonly used in video monitoring and surveillance systems to mark events, presumably making them more salient to human observers. Surprisingly, the effectiveness of computer-generated alerts in improving human performance has not been widely studied. To address this gap, we have developed a tool for simulating different alert parameters in a realistic visual monitoring situation, and have measured human detection performance under conditions that emulated different set-points in a surveillance algorithm. In the High-Sensitivity condition, the simulated alerts identified 100% of the events with many false alarms. In the Lower-Sensitivity condition, the simulated alerts correctly identified 70% of the targets, with fewer false alarms. In the control condition, no simulated alerts were provided. To explore the effects of learning, subjects performed these tasks in three sessions, on separate days, in a counterbalanced, within subject design. We explore these results within the context of cognitive models of human attention and learning. We found that human observers were more likely to respond to events when marked by a visual alert. Learning played a major role in the two alert conditions. In the first session, observers generated almost twice as many False Alarms as in the No-Alert condition, as the observers responded pre-attentively to the computer-generated false alarms. However, this rate dropped equally dramatically in later sessions, as observers learned to discount the false cues. Highest observer Precision, Hits/(Hits + False Alarms), was achieved in the High Sensitivity condition, but only after training. The successful evaluation of surveillance systems depends on understanding human attention and performance.
Assessing Functional Vision Using Microcomputers.
ERIC Educational Resources Information Center
Spencer, Simon; Ross, Malcolm
1989-01-01
The paper describes a software system which uses microcomputers to aid in the assessment of functional vision in visually impaired students. The software also aims to be visually stimulating and to develop hand-eye coordination, visual memory, and cognitive abilities. (DB)
BIOLOGICAL NETWORK EXPLORATION WITH CYTOSCAPE 3
Su, Gang; Morris, John H.; Demchak, Barry; Bader, Gary D.
2014-01-01
Cytoscape is one of the most popular open-source software tools for the visual exploration of biomedical networks composed of protein, gene and other types of interactions. It offers researchers a versatile and interactive visualization interface for exploring complex biological interconnections supported by diverse annotation and experimental data, thereby facilitating research tasks such as predicting gene function and pathway construction. Cytoscape provides core functionality to load, visualize, search, filter and save networks, and hundreds of Apps extend this functionality to address specific research needs. The latest generation of Cytoscape (version 3.0 and later) has substantial improvements in function, user interface and performance relative to previous versions. This protocol aims to jump-start new users with specific protocols for basic Cytoscape functions, such as installing Cytoscape and Cytoscape Apps, loading data, visualizing and navigating the network, visualizing network associated data (attributes) and identifying clusters. It also highlights new features that benefit experienced users. PMID:25199793
20 CFR 219.24 - Evidence of presumed death.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Evidence of presumed death. 219.24 Section... EVIDENCE REQUIRED FOR PAYMENT Evidence of Age and Death § 219.24 Evidence of presumed death. When a person cannot be proven dead but evidence of death is needed, the Board may presume he or she died at a certain...
NEUROSARCOIDOSIS MASQUERADING AS A CENTRAL NERVOUS SYSTEM TUMOR.
Elia, Maxwell; Kombo, Ninani; Huang, John
2017-01-01
To report a case of neurosarcoidosis with an isolated brain lesion mimicking a low-grade glioma. A 38-year-old woman presented with 2 weeks of blurry vision in the left eye. Ophthalmic examination, visual field testing, fluorescein angiography, laboratory testing, and MRI of the brain were performed. Ophthalmic examination revealed left-sided optic nerve infiltration, and MRI of the brain demonstrated a solitary lesion in the brain. The visual symptoms and ophthalmic examination improved significantly with initiation of high-dose oral prednisone. Because the MRI appearance was concerning for malignancy, a brain biopsy was performed. Pathology demonstrated gliosis consistent with a low-grade central nervous system (CNS) glioma. One year later, after initial loss to ophthalmic follow-up, the right optic nerve became involved, and the patient was again treated successfully for presumed ocular sarcoidosis. At this time, serial neuroimaging demonstrated enlargement of the CNS lesion, prompting rebiopsy. Rebiopsy demonstrated a noncaseating granuloma, confirming the diagnosis of neurosarcoidosis. The patient was treated with 20 mg of methotrexate weekly and a prednisone taper with improvement in visual and neurologic symptoms. The authors present an unusual case of neurosarcoidosis masquerading as a CNS glioma. In cases of solitary CNS granulomas, radiographically differentiating neurosarcoidosis from a glioma can be challenging. In this case, serial ophthalmic examination identifying sequential involvement of both optic nerves helped to identify the underlying cause of the CNS disease as sarcoidosis.
Normal-tension glaucoma (Low-tension glaucoma)
Anderson, Douglas R
2011-01-01
Glaucoma is now considered an abnormal physiology in the optic nerve head that interacts with the level of intraocular pressure (IOP), with the degree and rate of damage depending on the IOP and presumably the degree of abnormal physiology. Diagnosis of normal-tension glaucoma (NTG), defined as glaucoma without a clearly abnormal IOP, depends on recognizing symptoms and signs associated with optic nerve vulnerability, in addition to absence of other explanations for disc abnormality and visual field loss. Among the findings are a halo or crescent of absence of retinal pigment epithelium around the disc, bilateral pre-chiasmal visual field defects, splinter hemorrhages at the disc margin, vascular dysregulation (low blood pressure, cold hands and feet, migraine headache with aura, and the like), or a family history of glaucoma. Possibly relevant, is a history of hemodynamic crisis, arterial obstructive disease, or sleep apnea. Neurological evaluation with imaging is needed only for atypical cases or ones that progress unexpectedly. Management follows the same principle of other chronic glaucomas, to lower the IOP by a substantial amount, enough to prevent disabling visual loss. However, many NTG cases are non-progressive. Therefore, it may often be wisein mild cases to determine whether the case is progressive and the rate of progression before deciding on how aggressivene to be with therapy. Efforts at neuroprotection and improvement in blood flow have not yet been shown effective. PMID:21150042
Hudson, C; Flanagan, J G; Turner, G S; Chen, H C; Young, L B; McLeod, D
2003-04-01
To correlate change of an oedema index derived by scanning laser tomography with change of visual function in patients undergoing grid laser photocoagulation for clinically significant diabetic macular oedema (DMO). The sample comprised 24 diabetic patients with retinal thickening within 500 micro m of the fovea. Inclusion criteria included a logMAR visual acuity of 0.25, or better. Patients were assessed twice before a single session of grid laser treatment and within 1 week of, and at 1, 2, 4, and 12 weeks after, treatment. At each visit, patients underwent logMAR visual acuity, conventional and short wavelength automated perimetry (SWAP), and scanning laser tomography. Each visual function parameter was correlated with the mean oedema index. The mean oedema index represented the z-profile signal width divided by the maximum reflectance intensity (arbitrary units). A Pearson correlation coefficient (Bonferroni corrected) was undertaken on the data set of each patient. 13 patients exhibited significant correlation of the mean oedema index and at least one measure of visual function for the 10 degrees x 10 degrees scan field while 10 patients correlated for the 20 degrees x 20 degrees scan field. Seven patients demonstrated correlation for both scan fields. Laser photocoagulation typically resulted in an immediate loss of perimetric sensitivity whereas the oedema index changed over a period of weeks. Localised oedema did not impact upon visual acuity or letter contrast sensitivity when situated extrafoveally. Correlation of change of the oedema index and of visual function following grid laser photocoagulation was not found in all patients. An absence of correlation can be explained by the localised distribution of DMO in this sample of patients, as well as by differences in the time course of change of the oedema index and visual function. The study has objectively documented change in the magnitude and distribution of DMO following grid laser treatment and has established the relation of this change to the change in visual function.
Functional neural substrates of posterior cortical atrophy patients.
Shames, H; Raz, N; Levin, Netta
2015-07-01
Posterior cortical atrophy (PCA) is a neurodegenerative syndrome in which the most pronounced pathologic involvement is in the occipito-parietal visual regions. Herein, we aimed to better define the cortical reflection of this unique syndrome using a thorough battery of behavioral and functional MRI (fMRI) tests. Eight PCA patients underwent extensive testing to map their visual deficits. Assessments included visual functions associated with lower and higher components of the cortical hierarchy, as well as dorsal- and ventral-related cortical functions. fMRI was performed on five patients to examine the neuronal substrate of their visual functions. The PCA patient cohort exhibited stereopsis, saccadic eye movements and higher dorsal stream-related functional impairments, including simultant perception, image orientation, figure-from-ground segregation, closure and spatial orientation. In accordance with the behavioral findings, fMRI revealed intact activation in the ventral visual regions of face and object perception while more dorsal aspects of perception, including motion and gestalt perception, revealed impaired patterns of activity. In most of the patients, there was a lack of activity in the word form area, which is known to be linked to reading disorders. Finally, there was evidence of reduced cortical representation of the peripheral visual field, corresponding to the behaviorally assessed peripheral visual deficit. The findings are discussed in the context of networks extending from parietal regions, which mediate navigationally related processing, visually guided actions, eye movement control and working memory, suggesting that damage to these networks might explain the wide range of deficits in PCA patients.
Functional neuroanatomy of visual masking deficits in schizophrenia.
Green, Michael F; Lee, Junghee; Cohen, Mark S; Engel, Steven A; Korb, Alexander S; Nuechterlein, Keith H; Wynn, Jonathan K; Glahn, David C
2009-12-01
Visual masking procedures assess the earliest stages of visual processing. Patients with schizophrenia reliably show deficits on visual masking, and these procedures have been used to explore vulnerability to schizophrenia, probe underlying neural circuits, and help explain functional outcome. To identify and compare regional brain activity associated with one form of visual masking (ie, backward masking) in schizophrenic patients and healthy controls. Subjects received functional magnetic resonance imaging scans. While in the scanner, subjects performed a backward masking task and were given 3 functional localizer activation scans to identify early visual processing regions of interest (ROIs). University of California, Los Angeles, and the Department of Veterans Affairs Greater Los Angeles Healthcare System. Nineteen patients with schizophrenia and 19 healthy control subjects. Main Outcome Measure The magnitude of the functional magnetic resonance imaging signal during backward masking. Two ROIs (lateral occipital complex [LO] and the human motion selective cortex [hMT+]) showed sensitivity to the effects of masking, meaning that signal in these areas increased as the target became more visible. Patients had lower activation than controls in LO across all levels of visibility but did not differ in other visual processing ROIs. Using whole-brain analyses, we also identified areas outside the ROIs that were sensitive to masking effects (including bilateral inferior parietal lobe and thalamus), but groups did not differ in signal magnitude in these areas. The study results support a key role in LO for visual masking, consistent with previous studies in healthy controls. The current results indicate that patients fail to activate LO to the same extent as controls during visual processing regardless of stimulus visibility, suggesting a neural basis for the visual masking deficit, and possibly other visual integration deficits, in schizophrenia.
Non-verbal emotion communication training induces specific changes in brain function and structure
Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk
2013-01-01
The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure. PMID:24146641
Non-verbal emotion communication training induces specific changes in brain function and structure.
Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk
2013-01-01
The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure.
ERIC Educational Resources Information Center
Heyl, Vera; Wahl, Hans-Werner
2010-01-01
This article reports on a study that investigated the role of cognitive resources in the everyday functioning of 121 older adults who were visually impaired and 150 sighted older adults, with a mean age of 82 years. Cognitive performance and everyday functioning were most strongly related in the group who were visually impaired. The authors…
Szakáts, Ildikó; Sebestyén, Margit; Tóth, Éva; Purebl, György
2017-06-01
To evaluate how patient satisfaction after cataract surgery is associated with postoperative visual acuity, visual functioning, dry eye signs and symptoms, health anxiety, and depressive symptoms. Fifty-four patients (mean age: 68.02 years) were assessed 2 months after uneventful phacoemulsification; 27 were unsatisfied with their postoperative results and 27 were satisfied. They completed the following questionnaires: Visual Function Index-14 (VF-14), Ocular Surface Disease Index (OSDI), Shortened Health Anxiety Inventory (SHAI), and Shortened Beck Depression Inventory. Testing included logarithm of the Minimum Angle of Resolution (logMAR) uncorrected visual acuity (UCVA) and best-corrected visual acuity (BCVA), dry eye tests (tear meniscus height and depth measured by spectral optical coherence tomography, tear film break-up time (TBUT), ocular surface staining, Schirmer 1 test, and meibomian gland dysfunction grading). Postoperative UCVA, BCVA, and the dry eye parameters - except TBUT - showed no statistically significant difference between the two groups (p > 0.130). However, the VF-14 scores, the OSDI scores, and the SHAI scores were significantly worse in the unsatisfied patient group (p < 0.002). No significant correlations were found between visual acuity measures and visual functioning (r < 0.170, p > 0.05). However, the VF-14 scores correlated with the OSDI scores (r = -0.436, p < 0.01) and the OSDI scores correlated with the SHAI scores (r = 0.333, p < 0.05). Multiple logistic regression revealed an adjusted association between patient satisfaction and dry eye symptoms (odds ratio = 1.46, 95% CI = 1.02-2.09, p = 0.038) and visual functioning (odds ratio = 0.78, 95% CI = 0.60-1.0, p = 0.048). Our results suggest that patient-reported visual functioning, dry eye symptoms, and health anxiety are more closely associated with patients' postoperative satisfaction than with the objective clinical measures of visual acuity or the signs of dry eye.
ERIC Educational Resources Information Center
Rogow, Sally M.
1987-01-01
The manual development of 148 blind, visually impaired, and visually impaired multi-handicapped students, aged 3-19, was studied. Results indicated a significant relationship between object manipulation and speech, and an inverse relationship between object manipulation and stereotypic hand mannerisms. Optimal development of manual functions and…
The cost of misremembering: Inferring the loss function in visual working memory.
Sims, Chris R
2015-03-04
Visual working memory (VWM) is a highly limited storage system. A basic consequence of this fact is that visual memories cannot perfectly encode or represent the veridical structure of the world. However, in natural tasks, some memory errors might be more costly than others. This raises the intriguing possibility that the nature of memory error reflects the costs of committing different kinds of errors. Many existing theories assume that visual memories are noise-corrupted versions of afferent perceptual signals. However, this additive noise assumption oversimplifies the problem. Implicit in the behavioral phenomena of visual working memory is the concept of a loss function: a mathematical entity that describes the relative cost to the organism of making different types of memory errors. An optimally efficient memory system is one that minimizes the expected loss according to a particular loss function, while subject to a constraint on memory capacity. This paper describes a novel theoretical framework for characterizing visual working memory in terms of its implicit loss function. Using inverse decision theory, the empirical loss function is estimated from the results of a standard delayed recall visual memory experiment. These results are compared to the predicted behavior of a visual working memory system that is optimally efficient for a previously identified natural task, gaze correction following saccadic error. Finally, the approach is compared to alternative models of visual working memory, and shown to offer a superior account of the empirical data across a range of experimental datasets. © 2015 ARVO.
Ludwig, Karin; Sterzer, Philipp; Kathmann, Norbert; Hesselmann, Guido
2016-10-01
As a functional organization principle in cortical visual information processing, the influential 'two visual systems' hypothesis proposes a division of labor between a dorsal "vision-for-action" and a ventral "vision-for-perception" stream. A core assumption of this model is that the two visual streams are differentially involved in visual awareness: ventral stream processing is closely linked to awareness while dorsal stream processing is not. In this functional magnetic resonance imaging (fMRI) study with human observers, we directly probed the stimulus-related information encoded in fMRI response patterns in both visual streams as a function of stimulus visibility. We parametrically modulated the visibility of face and tool stimuli by varying the contrasts of the masks in a continuous flash suppression (CFS) paradigm. We found that visibility - operationalized by objective and subjective measures - decreased proportionally with increasing log CFS mask contrast. Neuronally, this relationship was closely matched by ventral visual areas, showing a linear decrease of stimulus-related information with increasing mask contrast. Stimulus-related information in dorsal areas also showed a dependency on mask contrast, but the decrease rather followed a step function instead of a linear function. Together, our results suggest that both the ventral and the dorsal visual stream are linked to visual awareness, but neural activity in ventral areas more closely reflects graded differences in awareness compared to dorsal areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tu, Joanna H; Foote, Katharina G; Lujan, Brandon J; Ratnam, Kavitha; Qin, Jia; Gorin, Michael B; Cunningham, Emmett T; Tuten, William S; Duncan, Jacque L; Roorda, Austin
2017-09-01
Confocal adaptive optics scanning laser ophthalmoscope (AOSLO) images provide a sensitive measure of cone structure. However, the relationship between structural findings of diminished cone reflectivity and visual function is unclear. We used fundus-referenced testing to evaluate visual function in regions of apparent cone loss identified using confocal AOSLO images. A patient diagnosed with acute bilateral foveolitis had spectral-domain optical coherence tomography (SD-OCT) (Spectralis HRA + OCT system [Heidelberg Engineering, Vista, CA, USA]) images indicating focal loss of the inner segment-outer segment junction band with an intact, but hyper-reflective, external limiting membrane. Five years after symptom onset, visual acuity had improved from 20/80 to 20/25, but the retinal appearance remained unchanged compared to 3 months after symptoms began. We performed structural assessments using SD-OCT, directional OCT (non-standard use of a prototype on loan from Carl Zeiss Meditec) and AOSLO (custom-built system). We also administered fundus-referenced functional tests in the region of apparent cone loss, including analysis of preferred retinal locus (PRL), AOSLO acuity, and microperimetry with tracking SLO (TSLO) (prototype system). To determine AOSLO-corrected visual acuity, the scanning laser was modulated with a tumbling E consistent with 20/30 visual acuity. Visual sensitivity was assessed in and around the lesion using TSLO microperimetry. Complete eye examination, including standard measures of best-corrected visual acuity, visual field tests, color fundus photos, and fundus auto-fluorescence were also performed. Despite a lack of visible cone profiles in the foveal lesion, fundus-referenced vision testing demonstrated visual function within the lesion consistent with cone function. The PRL was within the lesion of apparent cone loss at the fovea. AOSLO visual acuity tests were abnormal, but measurable: for trials in which the stimulus remained completely within the lesion, the subject got 48% correct, compared to 78% correct when the stimulus was outside the lesion. TSLO microperimetry revealed reduced, but detectible, sensitivity thresholds within the lesion. Fundus-referenced visual testing proved useful to identify functional cones despite apparent photoreceptor loss identified using AOSLO and SD-OCT. While AOSLO and SD-OCT appear to be sensitive for the detection of abnormal or absent photoreceptors, changes in photoreceptors that are identified with these imaging tools do not correlate completely with visual function in every patient. Fundus-referenced vision testing is a useful tool to indicate the presence of cones that may be amenable to recovery or response to experimental therapies despite not being visible on confocal AOSLO or SD-OCT images.
ERIC Educational Resources Information Center
Dannels, Deanna; Gaffney, Amy Housley; Martin, Kelly Norris
2008-01-01
In design education, the critique is a communication event in which students present their design and critics provide feedback. Presumably, the feedback gives the students information about their progress on the design. Yet critic feedback also serves a socializing function--providing students information about what it means to communicate well in…
IRT-LR-DIF with Estimation of the Focal-Group Density as an Empirical Histogram
ERIC Educational Resources Information Center
Woods, Carol M.
2008-01-01
Item response theory-likelihood ratio-differential item functioning (IRT-LR-DIF) is used to evaluate the degree to which items on a test or questionnaire have different measurement properties for one group of people versus another, irrespective of group-mean differences on the construct. Usually, the latent distribution is presumed normal for both…
Code of Federal Regulations, 2010 CFR
2010-04-01
... benefit from them, an injured employee who has a loss of wage-earning capacity shall be presumed to be... monetary compensation based on the amount which would likely have been his or her wage-earning capacity had... rehabilitation effort (that is, meetings with the OWCP nurse, interviews, testing, counseling, functional...
Teresa N. Hollingsworth; Andrea H. Lloyd; Dana R. Nossov; Roger W. Ruess; Brian A. Charlton; Knut Kielland
2010-01-01
Along the Tanana River floodplain, several turning points have been suggested to characterize the changes in ecosystem structure and function that accompany plant community changes through primary succession. In the past, much of tills research focused on a presumed chronosequence that uses space for time substitutions. Within this chronosequence, permanent vegetation...
ERIC Educational Resources Information Center
Finlayson, Shannon B.; Obrzut, John E.
1993-01-01
Administered Quick Neurological Screening Test-Revised (QNST-R) to 122 elementary-aged children diagnosed with learning disabilities. QNST-R appeared to measure primarily lower order sensory perception/processing and fine and gross motoric skills, which are thought presumably to serve as basis for later higher order cognitive functions. Age, but…
ERIC Educational Resources Information Center
Goodrich-Hunsaker, Naomi J.; Wong, Ling M.; McLennan, Yingratana; Srivastava, Siddharth; Tassone, Flora; Harvey, Danielle; Rivera, Susan M.; Simon, Tony J.
2011-01-01
The high frequency of the fragile X premutation in the general population and its emerging neurocognitive implications highlight the need to investigate the effects of the premutation on lifespan cognitive development. Until recently, cognitive function in fragile X premutation carriers (fXPCs) was presumed to be unaffected by the mutation. Here…
A Model-Free Diagnostic for Single-Peakedness of Item Responses Using Ordered Conditional Means
ERIC Educational Resources Information Center
Polak, Marike; De Rooij, Mark; Heiser, Willem J.
2012-01-01
In this article we propose a model-free diagnostic for single-peakedness (unimodality) of item responses. Presuming a unidimensional unfolding scale and a given item ordering, we approximate item response functions of all items based on ordered conditional means (OCM). The proposed OCM methodology is based on Thurstone & Chave's (1929) "criterion…
Who's Who? Memory Updating and Character Reference in Children's Narratives
ERIC Educational Resources Information Center
Whitely, Cristy; Colozzo, Paola
2013-01-01
Purpose: The capacity to update and monitor the contents of working memory is an executive function presumed to play a critical role in language processing. The current study used an individual differences approach to consider the relationship between memory updating and accurate reference to story characters in the narratives of typically…
USDA-ARS?s Scientific Manuscript database
The CD4+ T-cell response is central for control of Anaplasma marginale infection in cattle. However, the infection induces a functional exhaustion of antigen-specific CD4+ T cells in cattle immunized with A. marginale outer membrane proteins or purified outer membranes (OM), which presumably facilit...
Spectrin tetramer-dimer equilibrium and the stability of erythrocyte membrane skeletons
NASA Astrophysics Data System (ADS)
Liu, Shih-Chun; Palek, Jiri
1980-06-01
The inner side of the red-cell membrane is laminated by a two-dimensional network of membrane proteins which include spectrin, actin and some other components1-4. After extraction of lipids and integral proteins from the membrane, this membrane skeleton can be visualized as a ball-shaped network consisting of twisted fibres1-4 and globular protrusions4; however, the assembly of the individual proteins in the membrane skeleton is not well understood. Spectrin can be eluted from the membrane in the form of dimers and tetramers5-8. Electron microscopic study with low-angle shadowing technique shows that spectrin dimers are two parallel strands of twisted fibres presumably representing bands 1 and 2 of spectrin9. Spectrin tetramers presumably formed by head-to-head associations of two dimers are twice as long9. In solution, the spectrin dimer-tetramer equilibrium depends on temperature and salt concentration7,8; however, it is not known whether the same equilibrium exists in the membrane and whether it affects the physical properties of the membrane, such as its structural stability and deformability. We now demonstrate that spectrin dimers and tetramers are in a reversible equilibrium in the membrane and that in physiological conditions this equilibrium favours spectrin tetramers. Furthermore, we show that transformation of spectrin tetramers to dimers, as induced by ghost incubation in hypotonic conditions, diminishes the structural stability of the Triton-insoluble membrane skeletons.
20 CFR 219.24 - Evidence of presumed death.
Code of Federal Regulations, 2012 CFR
2012-04-01
... cannot be proven dead but evidence of death is needed, the Board may presume he or she died at a certain... presumed to be dead as stated in Federal law (5 U.S.C. 5565). Unless other evidence is submitted showing an...) When a person has been missing for less than 7 years but may be presumed dead due to drowning or common...
20 CFR 219.24 - Evidence of presumed death.
Code of Federal Regulations, 2013 CFR
2013-04-01
... cannot be proven dead but evidence of death is needed, the Board may presume he or she died at a certain... presumed to be dead as stated in Federal law (5 U.S.C. 5565). Unless other evidence is submitted showing an...) When a person has been missing for less than 7 years but may be presumed dead due to drowning or common...
20 CFR 219.24 - Evidence of presumed death.
Code of Federal Regulations, 2014 CFR
2014-04-01
... cannot be proven dead but evidence of death is needed, the Board may presume he or she died at a certain... presumed to be dead as stated in Federal law (5 U.S.C. 5565). Unless other evidence is submitted showing an...) When a person has been missing for less than 7 years but may be presumed dead due to drowning or common...
20 CFR 219.24 - Evidence of presumed death.
Code of Federal Regulations, 2011 CFR
2011-04-01
... cannot be proven dead but evidence of death is needed, the Board may presume he or she died at a certain... presumed to be dead as stated in Federal law (5 U.S.C. 5565). Unless other evidence is submitted showing an...) When a person has been missing for less than 7 years but may be presumed dead due to drowning or common...
Perceptual learning and adult cortical plasticity.
Gilbert, Charles D; Li, Wu; Piech, Valentin
2009-06-15
The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.
Visual functions and disability in diabetic retinopathy patients
Shrestha, Gauri Shankar; Kaiti, Raju
2013-01-01
Purpose This study was undertaken to find correlations between visual functions and visual disabilities in patients with diabetic retinopathy. Method A cross-sectional study was carried out among 38 visually impaired diabetic retinopathy subjects at the Low Vision Clinic of B.P. Koirala Lions Centre for Ophthalmic Studies, Kathmandu. The subjects underwent assessment of distance and near visual acuity, objective and subjective refraction, contrast sensitivity, color vision, and central and peripheral visual fields. The visual disabilities of each subject in their daily lives were evaluated using a standard questionnaire. Multiple regression analysis between visual functions and visual disabilities index was assessed. Result The majority of subjects (42.1%) were of the age group 60–70 years. Best corrected visual acuity was found to be 0.73 ± 0.2 in the better eye and 0.93 ± 0.27 in the worse eye, which was significantly different at p = 0.002. Visual disability scores were significantly higher for legibility of letters (1.2 ± 0.3) and sentences (1.4 ± 0.4), and least for clothing (0.7 ± 0.3). Visual disability index for legibility of letters and sentences was significantly correlated with near visual acuity and peripheral visual field. Contrast sensitivity was also significantly correlated with the visual disability index, and total scores. Conclusion Impairment of near visual acuity, contrast sensitivity, and peripheral visual field correlated significantly with different types of visual disability. Hence, these clinical tests should be an integral part of the visual assessment of diabetic eyes. PMID:24646899
Visual functions and disability in diabetic retinopathy patients.
Shrestha, Gauri Shankar; Kaiti, Raju
2014-01-01
This study was undertaken to find correlations between visual functions and visual disabilities in patients with diabetic retinopathy. A cross-sectional study was carried out among 38 visually impaired diabetic retinopathy subjects at the Low Vision Clinic of B.P. Koirala Lions Centre for Ophthalmic Studies, Kathmandu. The subjects underwent assessment of distance and near visual acuity, objective and subjective refraction, contrast sensitivity, color vision, and central and peripheral visual fields. The visual disabilities of each subject in their daily lives were evaluated using a standard questionnaire. Multiple regression analysis between visual functions and visual disabilities index was assessed. The majority of subjects (42.1%) were of the age group 60-70 years. Best corrected visual acuity was found to be 0.73±0.2 in the better eye and 0.93±0.27 in the worse eye, which was significantly different at p=0.002. Visual disability scores were significantly higher for legibility of letters (1.2±0.3) and sentences (1.4±0.4), and least for clothing (0.7±0.3). Visual disability index for legibility of letters and sentences was significantly correlated with near visual acuity and peripheral visual field. Contrast sensitivity was also significantly correlated with the visual disability index, and total scores. Impairment of near visual acuity, contrast sensitivity, and peripheral visual field correlated significantly with different types of visual disability. Hence, these clinical tests should be an integral part of the visual assessment of diabetic eyes. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
Owsley, Cynthia
2013-09-20
Older adults commonly report difficulties in visual tasks of everyday living that involve visual clutter, secondary task demands, and time sensitive responses. These difficulties often cannot be attributed to visual sensory impairment. Techniques for measuring visual processing speed under divided attention conditions and among visual distractors have been developed and have established construct validity in that those older adults performing poorly in these tests are more likely to exhibit daily visual task performance problems. Research suggests that computer-based training exercises can increase visual processing speed in older adults and that these gains transfer to enhancement of health and functioning and a slowing in functional and health decline as people grow older. Copyright © 2012 Elsevier Ltd. All rights reserved.
Amicuzi, Ileana; Stortini, Massimo; Petrarca, Maurizio; Di Giulio, Paola; Di Rosa, Giuseppe; Fariello, Giuseppe; Longo, Daniela; Cannatà, Vittorio; Genovese, Elisabetta; Castelli, Enrico
2006-10-01
We report the case of a 4.6-year-old girl born pre-term with early bilateral occipital damage. It was revealed that the child had non-severely impaired basic visual abilities and ocular motility, a selective perceptual deficit of figure-ground segregation, impaired visual recognition and abnormal navigating through space. Even if the child's visual functioning was not optimal, this was the expression of adaptive anatomic and functional brain modifications that occurred following the early lesion. Anatomic brain structure was studied with anatomic MRI and Diffusor Tensor Imaging (DTI)-MRI. This behavioral study may provide an important contribution to understanding the impact of an early lesion of the visual system on the development of visual functions and on the immature brain's potential for reorganisation related to when the damage occurred.
Handa, T; Ishikawa, H; Shimizu, K; Kawamura, R; Nakayama, H; Sawada, K
2009-11-01
Virtual reality has recently been highlighted as a promising medium for visual presentation and entertainment. A novel apparatus for testing binocular visual function using a hemispherical visual display system, 'CyberDome', has been developed and tested. Subjects comprised 40 volunteers (mean age, 21.63 years) with corrected visual acuity of -0.08 (LogMAR) or better, and stereoacuity better than 100 s of arc on the Titmus stereo test. Subjects were able to experience visual perception like being surrounded by visual images, a feature of the 'CyberDome' hemispherical visual display system. Visual images to the right and left eyes were projected and superimposed on the dome screen, allowing test images to be seen independently by each eye using polarizing glasses. The hemispherical visual display was 1.4 m in diameter. Three test parameters were evaluated: simultaneous perception (subjective angle of strabismus), motor fusion amplitude (convergence and divergence), and stereopsis (binocular disparity at 1260, 840, and 420 s of arc). Testing was performed in volunteer subjects with normal binocular vision, and results were compared with those using a major amblyoscope. Subjective angle of strabismus and motor fusion amplitude showed a significant correlation between our test and the major amblyoscope. All subjects could perceive the stereoscopic target with a binocular disparity of 480 s of arc. Our novel apparatus using the CyberDome, a hemispherical visual display system, was able to quantitatively evaluate binocular function. This apparatus offers clinical promise in the evaluation of binocular function.
Mapping visual cortex in monkeys and humans using surface-based atlases
NASA Technical Reports Server (NTRS)
Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.
2001-01-01
We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.
Smelling directions: Olfaction modulates ambiguous visual motion perception
Kuang, Shenbing; Zhang, Tao
2014-01-01
Senses of smells are often accompanied by simultaneous visual sensations. Previous studies have documented enhanced olfactory performance with concurrent presence of congruent color- or shape- related visual cues, and facilitated visual object perception when congruent smells are simultaneously present. These visual object-olfaction interactions suggest the existences of couplings between the olfactory pathway and the visual ventral processing stream. However, it is not known if olfaction can modulate visual motion perception, a function that is related to the visual dorsal stream. We tested this possibility by examining the influence of olfactory cues on the perceptions of ambiguous visual motion signals. We showed that, after introducing an association between motion directions and olfactory cues, olfaction could indeed bias ambiguous visual motion perceptions. Our result that olfaction modulates visual motion processing adds to the current knowledge of cross-modal interactions and implies a possible functional linkage between the olfactory system and the visual dorsal pathway. PMID:25052162
Basu, Anamitra; Mandal, Manas K
2004-07-01
The present study examined visual-field advantage as a function of presentation mode (unilateral, bilateral), stimulus structure (facial, lexical), and stimulus content (emotional, neutral). The experiment was conducted in a split visual-field paradigm using a JAVA-based computer program with recognition accuracy as the dependent measure. Unilaterally, rather than bilaterally, presented stimuli were significantly better recognized. Words were significantly better recognized than faces in the right visual-field; the difference was nonsignificant in the left visual-field. Emotional content elicited left visual-field and neutral content elicited right visual-field advantages. Copyright Taylor and Francis Inc.
Visual function and color vision in adults with Attention-Deficit/Hyperactivity Disorder.
Kim, Soyeon; Chen, Samantha; Tannock, Rosemary
2014-01-01
Color vision and self-reported visual function in everyday life in young adults with Attention-Deficit/Hyperactivity Disorder (ADHD) were investigated. Participants were 30 young adults with ADHD and 30 controls matched for age and gender. They were tested individually and completed the Visual Activities Questionnaire (VAQ), Farnsworth-Munsell 100 Hue Test (FMT) and A Quick Test of Cognitive Speed (AQT). The ADHD group reported significantly more problems in 4 of 8 areas on the VAQ: depth perception, peripheral vision, visual search and visual processing speed. Further analyses of VAQ items revealed that the ADHD group endorsed more visual problems associated with driving than controls. Color perception difficulties on the FMT were restricted to the blue spectrum in the ADHD group. FMT and AQT results revealed slower processing of visual stimuli in the ADHD group. A comprehensive investigation of mechanisms underlying visual function and color vision in adults with ADHD is warranted, along with the potential impact of these visual problems on driving performance. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
Visual function and fitness to drive.
Kotecha, Aachal; Spratt, Alexander; Viswanathan, Ananth
2008-01-01
Driving is recognized to be a visually intensive task and accordingly there is a legal minimum standard of vision required for all motorists. The purpose of this paper is to review the current United Kingdom (UK) visual requirements for driving and discuss the evidence base behind these legal rules. The role of newer, alternative tests of visual function that may be better indicators of driving safety will also be considered. Finally, the implications of ageing on driving ability are discussed. A search of Medline and PubMed databases was performed using the following keywords: driving, vision, visual function, fitness to drive and ageing. In addition, papers from the Department of Transport website and UK Royal College of Ophthalmologists guidelines were studied. Current UK visual standards for driving are based upon historical concepts, but recent advances in technology have brought about more sophisticated methods for assessing the status of the binocular visual field and examining visual attention. These tests appear to be better predictors of driving performance. Further work is required to establish whether these newer tests should be incorporated in the current UK visual standards when examining an individual's fitness to drive.
Dormal, Giulia; Lepore, Franco; Harissi-Dagher, Mona; Albouy, Geneviève; Bertone, Armando; Rossion, Bruno
2014-01-01
Visual deprivation leads to massive reorganization in both the structure and function of the occipital cortex, raising crucial challenges for sight restoration. We tracked the behavioral, structural, and neurofunctional changes occurring in an early and severely visually impaired patient before and 1.5 and 7 mo after sight restoration with magnetic resonance imaging. Robust presurgical auditory responses were found in occipital cortex despite residual preoperative vision. In primary visual cortex, crossmodal auditory responses overlapped with visual responses and remained elevated even 7 mo after surgery. However, these crossmodal responses decreased in extrastriate occipital regions after surgery, together with improved behavioral vision and with increases in both gray matter density and neural activation in low-level visual regions. Selective responses in high-level visual regions involved in motion and face processing were observable even before surgery and did not evolve after surgery. Taken together, these findings demonstrate that structural and functional reorganization of occipital regions are present in an individual with a long-standing history of severe visual impairment and that such reorganizations can be partially reversed by visual restoration in adulthood. PMID:25520432
20 CFR 404.721 - Evidence to presume a person is dead.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Evidence to presume a person is dead. 404.721... person is dead. If you cannot prove the person is dead but evidence of death is needed, we will presume... person is presumed to be dead as set out in Federal law (5 U.S.C. 5565). Unless we have other evidence...
20 CFR 404.721 - Evidence to presume a person is dead.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Evidence to presume a person is dead. 404.721... person is dead. If you cannot prove the person is dead but evidence of death is needed, we will presume... person is presumed to be dead as set out in Federal law (5 U.S.C. 5565). Unless we have other evidence...
20 CFR 404.721 - Evidence to presume a person is dead.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Evidence to presume a person is dead. 404.721... person is dead. If you cannot prove the person is dead but evidence of death is needed, we will presume... person is presumed to be dead as set out in Federal law (5 U.S.C. 5565). Unless we have other evidence...
20 CFR 404.721 - Evidence to presume a person is dead.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Evidence to presume a person is dead. 404.721... person is dead. If you cannot prove the person is dead but evidence of death is needed, we will presume... person is presumed to be dead as set out in Federal law (5 U.S.C. 5565). Unless we have other evidence...
20 CFR 404.721 - Evidence to presume a person is dead.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Evidence to presume a person is dead. 404.721... person is dead. If you cannot prove the person is dead but evidence of death is needed, we will presume... person is presumed to be dead as set out in Federal law (5 U.S.C. 5565). Unless we have other evidence...
OpenGl Visualization Tool and Library Version: 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
2010-06-22
GLVis is an OpenGL tool for visualization of finite element meshes and functions. When started without any options, GLVis starts a server, which waits for a socket connections and visualizes any recieved data. This way the results of simulations on a remote (parallel) machine can be visualized on the lical user desktop. GLVis can also be used to visualize a mesh with or without a finite element function (solution). It can run a batch sequence of commands (GLVis scripts), or display previously saved socket streams.
76 FR 27898 - Registration and Recordation Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
... to reflect a reorganization that has moved the Recordation function from the Visual Arts and... function from the Visual Arts and Recordation Division of the Registration and Recordation Program to the... Visual Arts Division of the Registration and Recordation Program, has been renamed the Recordation...
RELEVANCE OF VISUAL EFFECTS OF VOLATILE ORGANIC COMPOUNDS TO HUMAN HEALTH RISK ASSESSMENT
Traditional measures of neurotoxicity have included assessment of sensory, cognitive, and motor function. Visual system function and the neurobiological substrates are well characterized across species. Dysfunction in the visual system may be specific or may be surrogate for mor...
NASA Astrophysics Data System (ADS)
Székely, Balázs; Kania, Adam; Varga, Katalin; Heilmeier, Hermann
2017-04-01
Lacunarity, a measure of the spatial distribution of the empty space is found to be a useful descriptive quantity of the forest structure. Its calculation, based on laser-scanned point clouds, results in a four-dimensional data set. The evaluation of results needs sophisticated tools and visualization techniques. To simplify the evaluation, it is straightforward to use approximation functions fitted to the results. The lacunarity function L(r), being a measure of scale-independent structural properties, has a power-law character. Previous studies showed that log(log(L(r))) transformation is suitable for analysis of spatial patterns. Accordingly, transformed lacunarity functions can be approximated by appropriate functions either in the original or in the transformed domain. As input data we have used a number of laser-scanned point clouds of various forests. The lacunarity distribution has been calculated along a regular horizontal grid at various (relative) elevations. The lacunarity data cube then has been logarithm-transformed and the resulting values became the input of parameter estimation at each point (point of interest, POI). This way at each POI a parameter set is generated that is suitable for spatial analysis. The expectation is that the horizontal variation and vertical layering of the vegetation can be characterized by this procedure. The results show that the transformed L(r) functions can be typically approximated by exponentials individually, and the residual values remain low in most cases. However, (1) in most cases the residuals may vary considerably, and (2) neighbouring POIs often give rather differing estimates both in horizontal and in vertical directions, of them the vertical variation seems to be more characteristic. In the vertical sense, the distribution of estimates shows abrupt changes at places, presumably related to the vertical structure of the forest. In low relief areas horizontal similarity is more typical, in higher relief areas horizontal similarity fades out in short distances. Some of the input data have been acquired in the framework of the ChangeHabitats2 project financed by the European Union. BS contributed as an Alexander von Humboldt Research Fellow.
Complex Functions with GeoGebra
ERIC Educational Resources Information Center
Breda, Ana Maria D'azevedo; Dos Santos, José Manuel Dos Santos
2016-01-01
Complex functions, generally feature some interesting peculiarities, seen as extensions of real functions. The visualization of complex functions properties usually requires the simultaneous visualization of two-dimensional spaces. The multiple Windows of GeoGebra, combined with its ability of algebraic computation with complex numbers, allow the…
Effects of visual attention on chromatic and achromatic detection sensitivities.
Uchikawa, Keiji; Sato, Masayuki; Kuwamura, Keiko
2014-05-01
Visual attention has a significant effect on various visual functions, such as response time, detection and discrimination sensitivity, and color appearance. It has been suggested that visual attention may affect visual functions in the early visual pathways. In this study we examined selective effects of visual attention on sensitivities of the chromatic and achromatic pathways to clarify whether visual attention modifies responses in the early visual system. We used a dual task paradigm in which the observer detected a peripheral test stimulus presented at 4 deg eccentricities while the observer concurrently carried out an attention task in the central visual field. In experiment 1, it was confirmed that peripheral spectral sensitivities were reduced more for short and long wavelengths than for middle wavelengths with the central attention task so that the spectral sensitivity function changed its shape by visual attention. This indicated that visual attention affected the chromatic response more strongly than the achromatic response. In experiment 2 it was obtained that the detection thresholds increased in greater degrees in the red-green and yellow-blue chromatic directions than in the white-black achromatic direction in the dual task condition. In experiment 3 we showed that the peripheral threshold elevations depended on the combination of color-directions of the central and peripheral stimuli. Since the chromatic and achromatic responses were separately processed in the early visual pathways, the present results provided additional evidence that visual attention affects responses in the early visual pathways.
Prefrontal contributions to visual selective attention.
Squire, Ryan F; Noudoost, Behrad; Schafer, Robert J; Moore, Tirin
2013-07-08
The faculty of attention endows us with the capacity to process important sensory information selectively while disregarding information that is potentially distracting. Much of our understanding of the neural circuitry underlying this fundamental cognitive function comes from neurophysiological studies within the visual modality. Past evidence suggests that a principal function of the prefrontal cortex (PFC) is selective attention and that this function involves the modulation of sensory signals within posterior cortices. In this review, we discuss recent progress in identifying the specific prefrontal circuits controlling visual attention and its neural correlates within the primate visual system. In addition, we examine the persisting challenge of precisely defining how behavior should be affected when attentional function is lost.
Stock, Michael V; Vollman, David E; Baze, Elizabeth F; Chomsky, Amy S; Daly, Mary K; Lawrence, Mary G
2015-04-01
To determine if cataract surgery on eyes with AMD confers as much functional visual improvement as surgery on eyes without retinal pathology. This is a retrospective analysis of 4924 cataract surgeries from the Veterans Healthcare Administration Ophthalmic Surgical Outcomes Data Project (OSOD). We included cases of eyes with AMD that had both preoperative and postoperative NEI-VFQ-25 questionnaires submitted and compared their outcomes with controls without retinal pathology. We excluded patients with other retinal pathologies (740 patients). The analyses compared changes in visual acuity and overall functional visual improvement and its subscales using t-tests, multivariate logistic regressions, and linear regression modeling. Preoperative and postoperative questionnaires were submitted by 58.3% of AMD and 63.8% of no retinal pathology cases (controls). Analysis of overall score showed that cataract surgery on eyes with AMD led to increased visual function (13.8 ± 2.4 NEI-VFQ units, P < 0.0001); however, increases were significantly less when compared with controls (-6.4 ± 2.9 NEI-VFQ units, P < 0.0001). Preoperative best-corrected visual acuity (preBCVA) in AMD was predictive of postoperative visual function (r = -0.38, P < 0.0001). In controls, postoperative visual function was only weakly associated with preBCVA (r = -0.075, P = 0.0002). Patients with AMD with vision of 20/40 or better had overall outcomes similar to controls (-2.2 ± 4.7 NEI-VFQ units, P = 0.37). Cataract surgery on eyes with AMD offers an increase in functional visual improvement; however, the amount of benefit is associated with the eye's preBCVA. For eyes with preBCVA of 20/40 or greater, the improvement is similar to that of patients without retinal pathology. However, if preBCVA is less than 20/40, the amount of improvement was shown to be significantly less and decreased with decreasing preBCVA.
Deng, Yanjia; Shi, Lin; Lei, Yi; Liang, Peipeng; Li, Kuncheng; Chu, Winnie C. W.; Wang, Defeng
2016-01-01
The human cortical regions for processing high-level visual (HLV) functions of different categories remain ambiguous, especially in terms of their conjunctions and specifications. Moreover, the neurobiology of declined HLV functions in patients with Alzheimer's disease (AD) has not been fully investigated. This study provides a functionally sorted overview of HLV cortices for processing “what” and “where” visual perceptions and it investigates their atrophy in AD and MCI patients. Based upon activation likelihood estimation (ALE), brain regions responsible for processing five categories of visual perceptions included in “what” and “where” visions (i.e., object, face, word, motion, and spatial visions) were analyzed, and subsequent contrast analyses were performed to show regions with conjunctive and specific activations for processing these visual functions. Next, based on the resulting ALE maps, the atrophy of HLV cortices in AD and MCI patients was evaluated using voxel-based morphometry. Our ALE results showed brain regions for processing visual perception across the five categories, as well as areas of conjunction and specification. Our comparisons of gray matter (GM) volume demonstrated atrophy of three “where” visual cortices in late MCI group and extensive atrophy of HLV cortices (25 regions in both “what” and “where” visual cortices) in AD group. In addition, the GM volume of atrophied visual cortices in AD and MCI subjects was found to be correlated to the deterioration of overall cognitive status and to the cognitive performances related to memory, execution, and object recognition functions. In summary, these findings may add to our understanding of HLV network organization and of the evolution of visual perceptual dysfunction in AD as the disease progresses. PMID:27445770
Functional connectivity of visual cortex in the blind follows retinotopic organization principles
Ovadia-Caro, Smadar; Caramazza, Alfonso; Margulies, Daniel S.; Villringer, Arno
2015-01-01
Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind. PMID:25869851
Task relevance induces momentary changes in the functional visual field during reading.
Kaakinen, Johanna K; Hyönä, Jukka
2014-02-01
In the research reported here, we examined whether task demands can induce momentary tunnel vision during reading. More specifically, we examined whether the size of the functional visual field depends on task relevance. Forty participants read an expository text with a specific task in mind while their eye movements were recorded. A display-change paradigm with random-letter strings as preview masks was used to study the size of the functional visual field within sentences that contained task-relevant and task-irrelevant information. The results showed that orthographic parafoveal-on-foveal effects and preview benefits were observed for words within task-irrelevant but not task-relevant sentences. The results indicate that the size of the functional visual field is flexible and depends on the momentary processing demands of a reading task. The higher cognitive processing requirements experienced when reading task-relevant text rather than task-irrelevant text induce momentary tunnel vision, which narrows the functional visual field.
Evaluating visual function in cataract.
Elliott, D B
1993-11-01
This paper reviews recent research on the evaluation of visual function in cataract. Visual impairment in cataract is principally caused by increased intraocular forward light scatter. It is assumed that visual acuity (VA) measurements assess the impact of narrow angle light scatter. This also makes the measurement of high spatial frequency contrast sensitivity (CS) unnecessary. However, VA measurements alone are an inadequate assessment of visual impairment in some patients with cataract. In addition, it is suggested that a measurement of wide-angle light scatter is required. This can be evaluated directly using the van den Berg Straylightmeter, or indirectly using low spatial frequency CS or disability glare (DG) tests. The following are discussed: (1) the relative usefulness of these tests; (2) how they can be incorporated into the decision as to when to extract a cataract; and (3) the importance of considering binocular visual function.
Bountziouka, Vasiliki; Cumberland, Phillippa M; Rahi, Jugnoo S
2017-09-01
Despite the existing country-specific strategies tackling social inequalities in visual health in adults, little is known about trends in visual function in childhood and its association with social position. To investigate the distribution of childhood visual function in the United Kingdom and associations with early-life social position between 1961 and 1986, a period of significant social change. Longitudinal cohort study using harmonized data sets from the British 1946, 1958, and 1970 national birth cohorts. In total, 14 283 cohort members with complete data on visual acuity at age 15 or 16 years, measured in 1961, 1974, and 1986, respectively, for each cohort, and social position were assessed. Using habitual distance visual acuity (with correction if prescribed), participants were assigned to a visual function category ranging from bilateral normal to visual impairment/severe visual impairment/blindness (International Statistical Classification of Diseases, Tenth Revision, Clinical Modification). Distribution of visual function over time and associations with social position (risk ratios [RRs] and 95% confidence intervals) were analyzed. Complete data were available for 3152 participants (aged 15 years; 53% boys [n = 1660]) in the 1946 Medical Research Council National Survey of Health and Development, 6683 participants (aged 16 years; 51% boys [n = 3420]) in the 1958 National Child Development Study, and 4448 participants (aged 16 years; 48% boys [n = 2156]) in the 1970 British Birth Cohort Study. The proportion of children with bilateral normal vision decreased by 1.3% (95% CI, -5.1% to 2.7%) in 1974 and 1.7% (95% CI, -5.9% to 2.7%) in 1986. The risk of overall impaired vision increased by 1.20 times (95% CI, 1.01-1.43) and the risk of visual impairment/severe visual impairment/blindness by 1.75 times (95% CI, 1.03-2.98) during this period. Girls were consistently at increased risk of all vision impairment categories. Higher social position at birth and in childhood was associated with reduced risk of visual impairment/severe visual impairment/blindness (RR, 0.58; 95% CI, 0.20-1.68) and unilateral impairment (RR, 0.89; 95% CI, 0.72-1.11), respectively. Our study provides evidence of temporal decline in childhood visual function between 1961 and 1986. Despite the limited power of the analysis owing to the small sample size of those with impaired vision, we found an emergence of a contribution of sociodemographic status to the cohort effect that may be the antecedent of the current picture of childhood blindness. Equally, early-life social position may also have contributed to the current social patterning in visual function in older adults in the United Kingdom. These findings highlight the potential value of targeting children in national ophthalmic public policies tackling inequalities.
Visual Acuity does not Moderate Effect Sizes of Higher-Level Cognitive Tasks
Houston, James R.; Bennett, Ilana J.; Allen, Philip A.; Madden, David J.
2016-01-01
Background Declining visual capacities in older adults have been posited as a driving force behind adult age differences in higher-order cognitive functions (e.g., the “common cause” hypothesis of Lindenberger & Baltes, 1994). McGowan, Patterson and Jordan (2013) also found that a surprisingly large number of published cognitive aging studies failed to include adequate measures of visual acuity. However, a recent meta-analysis of three studies (LaFleur & Salthouse, 2014) failed to find evidence that visual acuity moderated or mediated age differences in higher-level cognitive processes. In order to provide a more extensive test of whether visual acuity moderates age differences in higher-level cognitive processes, we conducted a more extensive meta-analysis of topic. Methods Using results from 456 studies, we calculated effect sizes for the main effect of age across four cognitive domains (attention, executive function, memory, and perception/language) separately for five levels of visual acuity criteria (no criteria, undisclosed criteria, self-reported acuity, 20/80-20/31, and 20/30 or better). Results As expected, age had a significant effect on each cognitive domain. However, these age effects did not further differ as a function of visual acuity criteria. Conclusion The current meta-analytic, cross-sectional results suggest that visual acuity is not significantly related to age group differences in higher-level cognitive performance—thereby replicating LaFleur and Salthouse (2014). Further efforts are needed to determine whether other measures of visual functioning (e.g. contrast sensitivity, luminance) affect age differences in cognitive functioning. PMID:27070044
Parker, Jason G; Zalusky, Eric J; Kirbas, Cemil
2014-03-01
Accurate mapping of visual function and selective attention using fMRI is important in the study of human performance as well as in presurgical treatment planning of lesions in or near visual centers of the brain. Conjunctive visual search (CVS) is a useful tool for mapping visual function during fMRI because of its greater activation extent compared with high-capacity parallel search processes. The purpose of this work was to develop and evaluate a CVS that was capable of generating consistent activation in the basic and higher level visual areas of the brain by using a high number of distractors as well as an optimized contrast condition. Images from 10 healthy volunteers were analyzed and brain regions of greatest activation and deactivation were determined using a nonbiased decomposition of the results at the hemisphere, lobe, and gyrus levels. The results were quantified in terms of activation and deactivation extent and mean z-statistic. The proposed CVS was found to generate robust activation of the occipital lobe, as well as regions in the middle frontal gyrus associated with coordinating eye movements and in regions of the insula associated with task-level control and focal attention. As expected, the task demonstrated deactivation patterns commonly implicated in the default-mode network. Further deactivation was noted in the posterior region of the cerebellum, most likely associated with the formation of optimal search strategy. We believe the task will be useful in studies of visual and selective attention in the neuroscience community as well as in mapping visual function in clinical fMRI.
Structural and functional changes across the visual cortex of a patient with visual form agnosia.
Bridge, Holly; Thomas, Owen M; Minini, Loredana; Cavina-Pratesi, Cristiana; Milner, A David; Parker, Andrew J
2013-07-31
Loss of shape recognition in visual-form agnosia occurs without equivalent losses in the use of vision to guide actions, providing support for the hypothesis of two visual systems (for "perception" and "action"). The human individual DF received a toxic exposure to carbon monoxide some years ago, which resulted in a persisting visual-form agnosia that has been extensively characterized at the behavioral level. We conducted a detailed high-resolution MRI study of DF's cortex, combining structural and functional measurements. We present the first accurate quantification of the changes in thickness across DF's occipital cortex, finding the most substantial loss in the lateral occipital cortex (LOC). There are reduced white matter connections between LOC and other areas. Functional measures show pockets of activity that survive within structurally damaged areas. The topographic mapping of visual areas showed that ordered retinotopic maps were evident for DF in the ventral portions of visual cortical areas V1, V2, V3, and hV4. Although V1 shows evidence of topographic order in its dorsal portion, such maps could not be found in the dorsal parts of V2 and V3. We conclude that it is not possible to understand fully the deficits in object perception in visual-form agnosia without the exploitation of both structural and functional measurements. Our results also highlight for DF the cortical routes through which visual information is able to pass to support her well-documented abilities to use visual information to guide actions.
Visual Persuasion: A Comparison of Visuals in Academic Texts and the Popular Press.
ERIC Educational Resources Information Center
Miller, Thomas
1998-01-01
Visual elements in articles in "Science" and "Newsweek" magazines are analyzed and compared using linguistic concepts of interpersonal, ideational, and textual meta-functions. Relationships between text and visual, between gloss and visual, and among the visuals themselves are examined. Visuals in academic text are mainly…
Jacob, Joseph; Bartholmai, Brian J; Rajagopalan, Srinivasan; Kokosi, Maria; Nair, Arjun; Karwoski, Ronald; Raghunath, Sushravya M; Walsh, Simon L F; Wells, Athol U; Hansell, David M
2016-09-01
The aim of the study was to determine whether a novel computed tomography (CT) postprocessing software technique (CALIPER) is superior to visual CT scoring as judged by functional correlations in idiopathic pulmonary fibrosis (IPF). A total of 283 consecutive patients with IPF had CT parenchymal patterns evaluated quantitatively with CALIPER and by visual scoring. These 2 techniques were evaluated against: forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), diffusing capacity for carbon monoxide (DLco), carbon monoxide transfer coefficient (Kco), and a composite physiological index (CPI), with regard to extent of interstitial lung disease (ILD), extent of emphysema, and pulmonary vascular abnormalities. CALIPER-derived estimates of ILD extent demonstrated stronger univariate correlations than visual scores for most pulmonary function tests (PFTs): (FEV1: CALIPER R=0.29, visual R=0.18; FVC: CALIPER R=0.41, visual R=0.27; DLco: CALIPER R=0.31, visual R=0.35; CPI: CALIPER R=0.48, visual R=0.44). Correlations between CT measures of emphysema extent and PFTs were weak and did not differ significantly between CALIPER and visual scoring. Intriguingly, the pulmonary vessel volume provided similar correlations to total ILD extent scored by CALIPER for FVC, DLco, and CPI (FVC: R=0.45; DLco: R=0.34; CPI: R=0.53). CALIPER was superior to visual scoring as validated by functional correlations with PFTs. The pulmonary vessel volume, a novel CALIPER CT parameter with no visual scoring equivalent, has the potential to be a CT feature in the assessment of patients with IPF and requires further exploration.
Changes in Visual Function in the Elderly Population in the United States: 1995-2010.
Chen, Yiqun; Hahn, Paul; Sloan, Frank A
2016-06-01
To document recent trends in visual function among the United States population aged 70+ years and investigate how the trends can be explained by inter-temporal changes in: (1) population sociodemographic characteristics, and chronic disease prevalence, including eye diseases (compositional changes); and (2) effects of the above factors on visual function (structural changes). Data from the 1995 Asset and Health Dynamics among the Oldest Old (AHEAD) and the 2010 Health and Retirement Study (HRS) were merged with Medicare Part B claims in the interview years and the 2 previous years. Decomposition analysis was performed. Respondents from both studies were aged 70+ years. The outcome measure was respondent self-reported visual function on a 6-point scale (from 6 = blind to 1 = excellent). Overall, visual function improved from slightly worse than good (3.14) in 1995 to slightly better than good (2.98) in 2010. A decline in adverse effects of aging on vision was found. Among the compositional changes were higher educational attainment leading to improved vision, and higher prevalence of such diseases as diabetes mellitus, which tended to lower visual function. However, compared to compositional changes, structural changes were far more important, including decreased adverse effects of aging, diabetes mellitus (when not controlling for eye diseases), and diagnosed glaucoma. Although the US population has aged and is expected to age further, visual function improved among elderly persons, especially among persons 80+ years, likely reflecting a favorable role of structural changes identified in this study in mitigating the adverse effect of ongoing aging on vision.
Reading impairment in schizophrenia: dysconnectivity within the visual system.
Vinckier, Fabien; Cohen, Laurent; Oppenheim, Catherine; Salvador, Alexandre; Picard, Hernan; Amado, Isabelle; Krebs, Marie-Odile; Gaillard, Raphaël
2014-01-01
Patients with schizophrenia suffer from perceptual visual deficits. It remains unclear whether those deficits result from an isolated impairment of a localized brain process or from a more diffuse long-range dysconnectivity within the visual system. We aimed to explore, with a reading paradigm, the functioning of both ventral and dorsal visual pathways and their interaction in schizophrenia. Patients with schizophrenia and control subjects were studied using event-related functional MRI (fMRI) while reading words that were progressively degraded through word rotation or letter spacing. Reading intact or minimally degraded single words involves mainly the ventral visual pathway. Conversely, reading in non-optimal conditions involves both the ventral and the dorsal pathway. The reading paradigm thus allowed us to study the functioning of both pathways and their interaction. Behaviourally, patients with schizophrenia were selectively impaired at reading highly degraded words. While fMRI activation level was not different between patients and controls, functional connectivity between the ventral and dorsal visual pathways increased with word degradation in control subjects, but not in patients. Moreover, there was a negative correlation between the patients' behavioural sensitivity to stimulus degradation and dorso-ventral connectivity. This study suggests that perceptual visual deficits in schizophrenia could be related to dysconnectivity between dorsal and ventral visual pathways. © 2013 Published by Elsevier Ltd.
Zhang, Xinzhi; Bullard, Kai McKeever; Cotch, Mary Frances; Wilson, M. Roy; Rovner, Barry W.; McGwin, Gerald; Owsley, Cynthia; Barker, Lawrence; Crews, John E.; Saaddine, Jinan B.
2013-01-01
Importance This study provides further evidence from a national sample to generalize the relationship between depression and vision loss to adults across the age spectrum. Better recognition of depression among people reporting reduced ability to perform routine activities of daily living due to vision loss is warranted. Objectives To estimate, in a national survey of US adults 20 years of age or older, the prevalence of depression among adults reporting visual function loss and among those with visual acuity impairment. The relationship between depression and vision loss has not been reported in a nationally representative sample of US adults. Previous studies have been limited to specific cohorts and predominantly focused on the older population. Design The National Health and Nutrition Examination Survey (NHANES) 2005–2008. Setting A cross-sectional, nationally representative sample of adults, with prevalence estimates weighted to represent the civilian, noninstitutionalized US population. Participants A total of 10 480 US adults 20 years of age or older. Main Outcome Measures Depression, as measured by the 9-item Patient Health Questionnaire depression scale, and vision loss, as measured by visual function using a questionnaire and by visual acuity at examination. Results In 2005–2008, the estimated crude prevalence of depression (9-item Patient Health Questionnaire score of ≥10) was 11.3% (95% CI, 9.7%–13.2%) among adults with self-reported visual function loss and 4.8% (95% CI, 4.0%–5.7%) among adults without. The estimated prevalence of depression was 10.7% (95% CI, 8.0%–14.3%) among adults with presenting visual acuity impairment (visual acuity worse than 20/40 in the better-seeing eye) compared with 6.8% (95% CI, 5.8%–7.8%) among adults with normal visual acuity. After controlling for age, sex, race/ethnicity, marital status, living alone or not, education, income, employment status, health insurance, body mass index, smoking, binge drinking, general health status, eyesight worry, and major chronic conditions, self-reported visual function loss remained significantly associated with depression (overall odds ratio, 1.9 [95% CI, 1.6–2.3]), whereas the association between presenting visual acuity impairment and depression was no longer statistically significant. Conclusions and Relevance Self-reported visual function loss, rather than loss of visual acuity, is significantly associated with depression. Health professionals should be aware of the risk of depression among persons reporting visual function loss. PMID:23471505
Selivanova, Alexandra; Shin, Hyun Joon; Miller, Joan W.; Jackson, Mary Lou
2018-01-01
Purpose Vision loss from age-related macular degeneration (AMD) has a profound effect on vision-related quality of life (VRQoL). The pupose of this study is to identify clinical factors associated with VRQoL using the Rasch- calibrated NEI VFQ-25 scales in bilateral advanced AMD patients. Methods We retrospectively reviewed 47 patients (mean age 83.2 years) with bilateral advanced AMD. Clinical assessment included age, gender, type of AMD, high contrast visual acuity (VA), history of medical conditions, contrast sensitivity (CS), central visual field loss, report of Charles Bonnet Syndrome, current treatment for AMD and Rasch-calibrated NEI VFQ-25 visual function and socioemotional function scales. The NEI VFQ visual function scale includes items of general vision, peripheral vision, distance vision and near vision-related activity while the socioemotional function scale includes items of vision related-social functioning, role difficulties, dependency, and mental health. Multiple regression analysis (structural regression model) was performed using fixed item parameters obtained from the one-parameter item response theory model. Results Multivariate analysis showed that high contrast VA and CS were two factors influencing VRQoL visual function scale (β = -0.25, 95% CI-0.37 to -0.12, p<0.001 and β = 0.35, 95% CI 0.25 to 0.46, p<0.001) and socioemontional functioning scale (β = -0.2, 95% CI -0.37 to -0.03, p = 0.023, and β = 0.3, 95% CI 0.18 to 0.43, p = 0.001). Central visual field loss was not assoicated with either VRQoL visual or socioemontional functioning scale (β = -0.08, 95% CI-0.28 to 0.12,p = 0.44 and β = -0.09, 95% CI -0.03 to 0.16, p = 0.50, respectively). Conclusion In patients with vision impairment secondary to bilateral advanced AMD, high contrast VA and CS are two important factors affecting VRQoL. PMID:29746512
Roh, Miin; Selivanova, Alexandra; Shin, Hyun Joon; Miller, Joan W; Jackson, Mary Lou
2018-01-01
Vision loss from age-related macular degeneration (AMD) has a profound effect on vision-related quality of life (VRQoL). The pupose of this study is to identify clinical factors associated with VRQoL using the Rasch- calibrated NEI VFQ-25 scales in bilateral advanced AMD patients. We retrospectively reviewed 47 patients (mean age 83.2 years) with bilateral advanced AMD. Clinical assessment included age, gender, type of AMD, high contrast visual acuity (VA), history of medical conditions, contrast sensitivity (CS), central visual field loss, report of Charles Bonnet Syndrome, current treatment for AMD and Rasch-calibrated NEI VFQ-25 visual function and socioemotional function scales. The NEI VFQ visual function scale includes items of general vision, peripheral vision, distance vision and near vision-related activity while the socioemotional function scale includes items of vision related-social functioning, role difficulties, dependency, and mental health. Multiple regression analysis (structural regression model) was performed using fixed item parameters obtained from the one-parameter item response theory model. Multivariate analysis showed that high contrast VA and CS were two factors influencing VRQoL visual function scale (β = -0.25, 95% CI-0.37 to -0.12, p<0.001 and β = 0.35, 95% CI 0.25 to 0.46, p<0.001) and socioemontional functioning scale (β = -0.2, 95% CI -0.37 to -0.03, p = 0.023, and β = 0.3, 95% CI 0.18 to 0.43, p = 0.001). Central visual field loss was not assoicated with either VRQoL visual or socioemontional functioning scale (β = -0.08, 95% CI-0.28 to 0.12,p = 0.44 and β = -0.09, 95% CI -0.03 to 0.16, p = 0.50, respectively). In patients with vision impairment secondary to bilateral advanced AMD, high contrast VA and CS are two important factors affecting VRQoL.
Chakraborty, Arijit; Anstice, Nicola S.; Jacobs, Robert J.; Paudel, Nabin; LaGasse, Linda L.; Lester, Barry M.; McKinlay, Christopher J. D.; Harding, Jane E.; Wouldes, Trecia A.; Thompson, Benjamin
2017-01-01
Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of gross motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. PMID:28435122
Functional correlates of musical and visual ability in frontotemporal dementia.
Miller, B L; Boone, K; Cummings, J L; Read, S L; Mishkin, F
2000-05-01
The emergence of new skills in the setting of dementia suggests that loss of function in one brain area can release new functions elsewhere. To characterise 12 patients with frontotemporal dementia (FTD) who acquired, or sustained, new musical or visual abilities despite progression of their dementia. Twelve patients with FTD who acquired or maintained musical or artistic ability were compared with 46 patients with FTD in whom new or sustained ability was absent. The group with musical or visual ability performed better on visual, but worse on verbal tasks than did the other patients with FTD. Nine had asymmetrical left anterior dysfunction. Nine showed the temporal lobe variant of FTD. Loss of function in the left anterior temporal lobe may lead to facilitation of artistic or musical skills. Patients with the left-sided temporal lobe variant of FTD offer an unexpected window into the neurological mediation of visual and musical talents.
Walker, J G; Anstey, K J; Lord, S R
2006-05-01
To determine whether demographic, health status and psychological functioning measures, in addition to impaired visual acuity, are related to vision-related disability. Participants were 105 individuals (mean age=73.7 years) with cataracts requiring surgery and corrected visual acuity in the better eye of 6/24 to 6/36 were recruited from waiting lists at three public out-patient ophthalmology clinics. Visual disability was measured with the Visual Functioning-14 survey. Visual acuity was assessed using better and worse eye logMAR scores and the Melbourne Edge Test (MET) for edge contrast sensitivity. Data relating to demographic information, depression, anxiety and stress, health care and medication use and numbers of co-morbid conditions were obtained. Principal component analysis revealed four meaningful factors that accounted for 75% of the variance in visual disability: recreational activities, reading and fine work, activities of daily living and driving behaviour. Multiple regression analyses determined that visual acuity variables were the only significant predictors of overall vision-related functioning and difficulties with reading and fine work. For the remaining visual disability domains, non-visual factors were also significant predictors. Difficulties with recreational activities were predicted by stress, as well as worse eye visual acuity, and difficulties with activities of daily living were associated with self-reported health status, age and depression as well as MET contrast scores. Driving behaviour was associated with sex (with fewer women driving), depression, anxiety and stress scores, and MET contrast scores. Vision-related disability is common in older individuals with cataracts. In addition to visual acuity, demographic, psychological and health status factors influence the severity of vision-related disability, affecting recreational activities, activities of daily living and driving.
Quality of Vision in Eyes With Epiphora Undergoing Lacrimal Passage Intubation.
Koh, Shizuka; Inoue, Yasushi; Ochi, Shintaro; Takai, Yoshihiro; Maeda, Naoyuki; Nishida, Kohji
2017-09-01
To investigate visual function and optical quality in eyes with epiphora undergoing lacrimal passage intubation. Prospective case series. Thirty-four eyes of 30 patients with lacrimal passage obstruction were enrolled. Before and 1 month after lacrimal passage intubation, functional visual acuity (FVA), higher-order aberrations (HOAs), lower tear meniscus, and tear clearance were assessed. An FVA measurement system was used to examine changes in continuous visual acuity (VA) over time, and visual function parameters such as FVA, visual maintenance ratio, and blink frequency were obtained. Sequential ocular HOAs were measured for 10 seconds after the blink using a wavefront sensor. Aberration data were analyzed in the central 4 mm for coma-like, spherical-like, and total HOAs. Fluctuation and stability indices of the total HOAs over time were calculated. Lower tear meniscus was assessed by anterior segment optical coherence tomography. After lacrimal passage intubation, visual function significantly improved, as indicated by improved FVA (P = .003) and visual maintenance ratio (P < .001). Blink frequency decreased significantly after treatment (P = .01). Optical quality significantly improved, as indicated by a decrease in coma-like aberrations (P = .003), spherical-like aberrations (P = .018), and total HOAs (P = .001). Stability index increased (P < .001) and fluctuation index decreased (P = .019), and tear meniscus dimension decreased (P < .001). Lacrimal passage intubation for eyes with epiphora significantly improved visual function and optical quality via patency of the lacrimal passage. Copyright © 2017 Elsevier Inc. All rights reserved.
Walker, Janine G; Anstey, Kaarin J; Hennessy, Michael P; Lord, Stephen R; von Sanden, Chwee
2006-11-01
Determine whether there are changes in visual functioning, vision-related disability, health status and mood after cataract surgery. 45 adults (mean age = 73.7 years) with bilateral cataract needing surgery for the first eye were recruited from public ophthalmology clinics. The Visual Functioning-14 survey assessed visual disability. Minimal angle of resolution tested visual acuity, and the Melbourne Edge Test examined contrast sensitivity. Demographic, psychological, health and medication use variables were examined. Participants were randomized to either an intervention or control arm. Controls were assessed on two occasions at a 3-month interval before having surgery. The intervention group was assessed 1-2 weeks before surgery and then reassessed 3 months after surgery. Visual functioning improved for those who had cataract surgery with better visual acuity in the better (P = 0.010) and worse (P = 0.028) eye compared with controls. The intervention group reported fewer difficulties with overall vision-related disability (P = 0.0001), reading (P = 0.004) and instrumental activities of daily living (P = 0.010) post-surgery compared with controls. People with improved depression scores (P = 0.048) after surgery had less difficulty with reading compared with those with unchanged or worsened depression scores. Cataract surgery did not improve health status. First eye cataract surgery is effective in improving outcomes in visual functioning and disability. Improved mood after surgery was related to less vision-related disability compared with unchanged or worse depression.
Two different streams form the dorsal visual system: anatomy and functions.
Rizzolatti, Giacomo; Matelli, Massimo
2003-11-01
There are two radically different views on the functional role of the dorsal visual stream. One considers it as a system involved in space perception. The other is of a system that codes visual information for action organization. On the basis of new anatomical data and a reconsideration of previous functional and clinical data, we propose that the dorsal stream and its recipient parietal areas form two distinct functional systems: the dorso-dorsal stream (d-d stream) and the ventro-dorsal stream (v-d stream). The d-d stream is formed by area V6 (main d-d extrastriate visual node) and areas V6A and MIP of the superior parietal lobule. Its major functional role is the control of actions "on line". Its damage leads to optic ataxia. The v-d stream is formed by area MT (main v-d extrastriate visual node) and by the visual areas of the inferior parietal lobule. As the d-d stream, v-d stream is responsible for action organization. It, however, also plays a crucial role in space perception and action understanding. The putative mechanisms linking action and perception in the v-d stream is discussed.
The dual function of barred plumage in birds: camouflage and communication.
Gluckman, T L; Cardoso, G C
2010-11-01
A commonly held principle in visual ecology is that communication compromises camouflage: while visual signals are often conspicuous, camouflage provides concealment. However, some traits may have evolved for communication and camouflage simultaneously, thereby overcoming this functional compromise. Visual patterns generally provide camouflage, but it was suggested that a particular type of visual pattern – avian barred plumage – could also be a signal of individual quality. Here, we test if the evolution of sexual dimorphism in barred plumage, as well as differences between juvenile and adult plumage, indicate camouflage and/or signalling functions across the class Aves. We found a higher frequency of female- rather than male-biased sexual dimorphism in barred plumage, indicating that camouflage is its most common function. But we also found that, compared to other pigmentation patterns, barred plumage is more frequently biased towards males and its expression more frequently restricted to adulthood, suggesting that barred plumage often evolves or is maintained as a sexual communication signal. This illustrates how visual traits can accommodate the apparently incompatible functions of camouflage and communication, which has implications for our understanding of avian visual ecology and sexual ornamentation.
Accommodation and pupil responses to random-dot stereograms
Suryakumar, Rajaraman; Allison, Robert
2015-01-01
We investigated the dynamics of accommodative and pupillary responses to random-dot stereograms presented in crossed and uncrossed disparity in six visually normal young adult subjects (mean age = 25.8 ± 3.1 years). Accommodation and pupil measures were monitored monocularly with a custom built photorefraction system while subjects fixated at the center of a random-dot stereogram. On each trial, the stereogram initially depicted a flat plane and then changed to depict a sinusoidal corrugation in depth while fixation remained constant. Increase in disparity specified depth resulted in pupil constriction during both crossed and uncrossed disparity presentations. The change in pupil size between crossed and uncrossed disparity conditions was not significantly different (p > 0.05). The change in pupil size was also accompanied by a small concomitant increase in accommodation. In addition, the dynamic properties of pupil responses varied as a function of their initial (starting) diameter. The finding that accommodation and pupil responses increased with disparity regardless of the sign of retinal disparity suggests that these responses were driven by apparent depth rather than shifts in mean simulated distance of the stimulus. Presumably the need for the increased depth of focus when viewing stimuli extended in depth results in pupil constriction which also results in a concomitant change in accommodation. Starting position effects in pupil response confirm the non-linearity in the operating range of the pupil. PMID:25891121
Nance, Erin; Ayalon, Omri; Yang, Steven
2016-06-01
We present a series of eight patients who underwent wrist arthroscopy for presumed solitary tears of the triangular fibrocartilage (TFC) and were, instead, found to have combined 1A (central tear) and 1B (ulnar avulsion) tears. The Palmer Classification does not currently categorize this combined pattern. All but one patient had a traumatic injury. Each subject had preoperative radiographs and MRI scans. TFC tears were evident on all MRI scans, though only one was suggestive of a combined tear pat - tern. Surgical management included arthroscopic central tear debridement and ulnar peripheral repair. Average follow-up was 22 months. Grip strength in the affected hand improved from 16% deficit as compared to the unaffected side, to 3.5% deficit postoperatively (p = 0.003), and visual analog scores (VAS) decreased from an average of 7.1/10 preoperatively to 2.3/10 postoperatively (p < 0.001). There was no statistically significant change in wrist range of motion (ROM), however. Arthroscopic debridement of the central perforation (1A lesion) with concomitant repair of the ulnar detachment (1B lesion) resulted in functional and symptomatic improvement. This combined 1A/1B TFC injury is not reliably diagnosed preoperatively and should be considered a new subset in the Palmer classification, as this will raise awareness of its presence and assist in preoperative planning of such lesions.
Bat flight: aerodynamics, kinematics and flight morphology.
Hedenström, Anders; Johansson, L Christoffer
2015-03-01
Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Roggemann, M.; Soehnel, G.; Archer, G.
Atmospheric turbulence degrades the resolution of images of space objects far beyond that predicted by diffraction alone. Adaptive optics telescopes have been widely used for compensating these effects, but as users seek to extend the envelopes of operation of adaptive optics telescopes to more demanding conditions, such as daylight operation, and operation at low elevation angles, the level of compensation provided will degrade. We have been investigating the use of advanced wave front reconstructors and post detection image reconstruction to overcome the effects of turbulence on imaging systems in these more demanding scenarios. In this paper we show results comparing the optical performance of the exponential reconstructor, the least squares reconstructor, and two versions of a reconstructor based on the stochastic parallel gradient descent algorithm in a closed loop adaptive optics system using a conventional continuous facesheet deformable mirror and a Hartmann sensor. The performance of these reconstructors has been evaluated under a range of source visual magnitudes and zenith angles ranging up to 70 degrees. We have also simulated satellite images, and applied speckle imaging, multi-frame blind deconvolution algorithms, and deconvolution algorithms that presume the average point spread function is known to compute object estimates. Our work thus far indicates that the combination of adaptive optics and post detection image processing will extend the useful envelope of the current generation of adaptive optics telescopes.
Lim, Dae Gon; Rajasekaran, Nirmal; Lee, Dukhee; Kim, Nam Ah; Jung, Hun Soon; Hong, Sungyoul; Shin, Young Kee; Kang, Eunah; Jeong, Seong Hoon
2017-09-20
Nanodiamonds have been discovered as a new exogenous material source in biomedical applications. As a new potent form of nanodiamond (ND), polyamidoamine-decorated nanodiamonds (PAMAM-NDs) were prepared for E7 or E6 oncoprotein-suppressing siRNA gene delivery for high risk human papillomavirus-induced cervical cancer, such as types 16 and 18. It is critical to understand the physicochemical properties of siRNA complexes immobilized on cationic solid ND surfaces in the aspect of biomolecular structural and conformational changes, as the new inert carbon material can be extended into the application of a gene delivery vector. A spectral study of siRNA/PAMAM-ND complexes using differential scanning calorimetry and circular dichroism spectroscopy proved that the hydrogen bonding and electrostatic interactions between siRNA and PAMAM-NDs decreased endothermic heat capacity. Moreover, siRNA/PAMAM-ND complexes showed low cell cytotoxicity and significant suppressing effects for forward target E6 and E7 oncogenic genes, proving functional and therapeutic efficacy. The cellular uptake of siRNA/PAMAM-ND complexes at 8 h was visualized by macropinocytes and direct endosomal escape of the siRNA/PAMAM-ND complexes. It is presumed that PAMAM-NDs provided a buffering cushion to adjust the pH and hard mechanical stress to escape endosomes. siRNA/PAMAM-ND complexes provide a potential organic/inorganic hybrid material source for gene delivery carriers.
Caspers, Julian; Zilles, Karl; Amunts, Katrin; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.
2016-01-01
The ventral stream of the human extrastriate visual cortex shows a considerable functional heterogeneity from early visual processing (posterior) to higher, domain-specific processing (anterior). The fusiform gyrus hosts several of those “high-level” functional areas. We recently found a subdivision of the posterior fusiform gyrus on the microstructural level, that is, two distinct cytoarchitectonic areas, FG1 and FG2 (Caspers et al., Brain Structure & Function, 2013). To gain a first insight in the function of these two areas, here we studied their behavioral involvement and coactivation patterns by means of meta-analytic connectivity modeling based on the BrainMap database (www.brainmap.org), using probabilistic maps of these areas as seed regions. The coactivation patterns of the areas support the concept of a common involvement in a core network subserving different cognitive tasks, that is, object recognition, visual language perception, or visual attention. In addition, the analysis supports the previous cytoarchitectonic parcellation, indicating that FG1 appears as a transitional area between early and higher visual cortex and FG2 as a higher-order one. The latter area is furthermore lateralized, as it shows strong relations to the visual language processing system in the left hemisphere, while its right side is stronger associated with face selective regions. These findings indicate that functional lateralization of area FG2 relies on a different pattern of connectivity rather than side-specific cytoarchitectonic features. PMID:24038902
Kéri, Szabolcs; Kiss, Imre; Kelemen, Oguz; Benedek, György; Janka, Zoltán
2005-10-01
Schizophrenia is associated with impaired visual information processing. The aim of this study was to investigate the relationship between anomalous perceptual experiences, positive and negative symptoms, perceptual organization, rapid categorization of natural images and magnocellular (M) and parvocellular (P) visual pathway functioning. Thirty-five unmedicated patients with schizophrenia and 20 matched healthy control volunteers participated. Anomalous perceptual experiences were assessed with the Bonn Scale for the Assessment Basic Symptoms (BSABS). General intellectual functions were evaluated with the revised version of the Wechsler Adult Intelligence Scale. The 1-9 version of the Continuous Performance Test (CPT) was used to investigate sustained attention. The following psychophysical tests were used: detection of Gabor patches with collinear and orthogonal flankers (perceptual organization), categorization of briefly presented natural scenes (rapid visual processing), low-contrast and frequency-doubling vernier threshold (M pathway functioning), isoluminant colour vernier threshold and high spatial frequency discrimination (P pathway functioning). The patients with schizophrenia were impaired on test of perceptual organization, rapid visual processing and M pathway functioning. There was a significant correlation between BSABS scores, negative symptoms, perceptual organization, rapid visual processing and M pathway functioning. Positive symptoms, IQ, CPT and P pathway measures did not correlate with these parameters. The best predictor of the BSABS score was the perceptual organization deficit. These results raise the possibility that multiple facets of visual information processing deficits can be explained by M pathway dysfunctions in schizophrenia, resulting in impaired attentional modulation of perceptual organization and of natural image categorization.
Three Information Functions of Headings: A Test of the SARA Theory of Signaling
ERIC Educational Resources Information Center
Lorch, Robert F., Jr.; Lemarie, Julie; Grant, Russell A.
2011-01-01
Text signals include a wide variety of writing devices that emphasize specific content within a text, the organization of a text, or both (Lorch, 1989; Meyer, 1975). Signals presumably evolved as a means for an author to guide readers' processing of a text by making the text structure and important content more salient to the reader. Although…
Beyond the therapeutic: A Habermasian view of self-help groups' place in the public sphere
Chaudhary, Sarah; Avis, Mark; Munn-Giddings, Carol
2013-01-01
Self-help groups in the United Kingdom continue to grow in number and address virtually every conceivable health condition, but they remain the subject of very little theoretical analysis. The literature to date has predominantly focused on their therapeutic effects on individual members. And yet they are widely presumed to fulfil a broader civic role and to encourage democratic citizenship. The article uses Habermas' model of the public sphere as an analytical tool with which to reconsider the literature on self-help groups in order to increase our knowledge of their civic functions. In doing this it also aims to illustrate the continuing relevance of Habermas' work to our understanding of issues in health and social care. We consider, within the context of current health policies and practices, the extent to which self-help groups with a range of different forms and functions operate according to the principles of communicative rationality that Habermas deemed key to democratic legitimacy. We conclude that self-help groups' civic role is more complex than is usually presumed and that various factors including groups' leadership, organisational structure and links with public agencies can affect their efficacy within the public sphere. PMID:23326207
Pirih, Primož; Wilts, Bodo D; Stavenga, Doekele G
2011-10-01
The males of many pierid butterflies have iridescent wings, which presumably function in intraspecific communication. The iridescence is due to nanostructured ridges of the cover scales. We have studied the iridescence in the males of a few members of Coliadinae, Gonepteryx aspasia, G. cleopatra, G. rhamni, and Colias croceus, and in two members of the Colotis group, Hebomoia glaucippe and Colotis regina. Imaging scatterometry demonstrated that the pigmentary colouration is diffuse whereas the structural colouration creates a directional, line-shaped far-field radiation pattern. Angle-dependent reflectance measurements demonstrated that the directional iridescence distinctly varies among closely related species. The species-dependent scale curvature determines the spatial properties of the wing iridescence. Narrow beam illumination of flat scales results in a narrow far-field iridescence pattern, but curved scales produce broadened patterns. The restricted spatial visibility of iridescence presumably plays a role in intraspecific signalling.
Change in vision, visual disability, and health after cataract surgery.
Helbostad, Jorunn L; Oedegaard, Maria; Lamb, Sarah E; Delbaere, Kim; Lord, Stephen R; Sletvold, Olav
2013-04-01
Cataract surgery improves vision and visual functioning; the effect on general health is not established. We investigated if vision, visual functioning, and general health follow the same trajectory of change the year after cataract surgery and if changes in vision explain changes in visual disability and general health. One-hundred forty-eight persons, with a mean (SD) age of 78.9 (5.0) years (70% bilateral surgery), were assessed before and 6 weeks and 12 months after surgery. Visual disability and general health were assessed by the CatQuest-9SF and the Short Formular-36. Corrected binocular visual acuity, visual field, stereo acuity, and contrast vision improved (P < 0.001) from before to 6 weeks after surgery, with further improvements of visual acuity evident up to 12 months (P = 0.034). Cataract surgery had an effect on visual disability 1 year later (P < 0.001). Physical and mental health improved after surgery (P < 0.01) but had returned to presurgery level after 12 months. Vision changes did not explain visual disability and general health 6 weeks after surgery. Vision improved and visual disability decreased in the year after surgery, whereas changes in general health and visual functioning were short-term effects. Lack of associations between changes in vision and self-reported disability and general health suggests that the degree of vision changes and self-reported health do not have a linear relationship.
Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George
2013-01-01
How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes—with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later. PMID:24155697
Changes of Visual Pathway and Brain Connectivity in Glaucoma: A Systematic Review
Nuzzi, Raffaele; Dallorto, Laura; Rolle, Teresa
2018-01-01
Background: Glaucoma is a leading cause of irreversible blindness worldwide. The increasing interest in the involvement of the cortical visual pathway in glaucomatous patients is due to the implications in recent therapies, such as neuroprotection and neuroregeneration. Objective: In this review, we outline the current understanding of brain structural, functional, and metabolic changes detected with the modern techniques of neuroimaging in glaucomatous subjects. Methods: We screened MEDLINE, EMBASE, CINAHL, CENTRAL, LILACS, Trip Database, and NICE for original contributions published until 31 October 2017. Studies with at least six patients affected by any type of glaucoma were considered. We included studies using the following neuroimaging techniques: functional Magnetic Resonance Imaging (fMRI), resting-state fMRI (rs-fMRI), magnetic resonance spectroscopy (MRS), voxel- based Morphometry (VBM), surface-based Morphometry (SBM), diffusion tensor MRI (DTI). Results: Over a total of 1,901 studies, 56 case series with a total of 2,381 patients were included. Evidence of neurodegenerative process in glaucomatous patients was found both within and beyond the visual system. Structural alterations in visual cortex (mainly reduced cortex thickness and volume) have been demonstrated with SBM and VBM; these changes were not limited to primary visual cortex but also involved association visual areas. Other brain regions, associated with visual function, demonstrated a certain grade of increased or decreased gray matter volume. Functional and metabolic abnormalities resulted within primary visual cortex in all studies with fMRI and MRS. Studies with rs-fMRI found disrupted connectivity between the primary and higher visual cortex and between visual cortex and associative visual areas in the task-free state of glaucomatous patients. Conclusions: This review contributes to the better understanding of brain abnormalities in glaucoma. It may stimulate further speculation about brain plasticity at a later age and therapeutic strategies, such as the prevention of cortical degeneration in patients with glaucoma. Structural, functional, and metabolic neuroimaging methods provided evidence of changes throughout the visual pathway in glaucomatous patients. Other brain areas, not directly involved in the processing of visual information, also showed alterations. PMID:29896087
Visual Field Map Clusters in Macaque Extrastriate Visual Cortex
Kolster, Hauke; Mandeville, Joseph B.; Arsenault, John T.; Ekstrom, Leeland B.; Wald, Lawrence L.; Vanduffel, Wim
2009-01-01
The macaque visual cortex contains more than 30 different functional visual areas, yet surprisingly little is known about the underlying organizational principles that structure its components into a complete ‘visual’ unit. A recent model of visual cortical organization in humans suggests that visual field maps are organized as clusters. Clusters minimize axonal connections between individual field maps that represent common visual percepts, with different clusters thought to carry out different functions. Experimental support for this hypothesis, however, is lacking in macaques, leaving open the question of whether it is unique to humans or a more general model for primate vision. Here we show, using high-resolution BOLD fMRI data in the awake monkey at 7 Tesla, that area MT/V5 and its neighbors are organized as a cluster with a common foveal representation and a circular eccentricity map. This novel view on the functional topography of area MT/V5 and satellites indicates that field map clusters are evolutionarily preserved and may be a fundamental organizational principle of the old world primate visual cortex. PMID:19474330
Development of f2/f1 ratio functions in humans
NASA Astrophysics Data System (ADS)
Vento, Barbara A.; Durrant, John D.; Sabo, Diane L.; Boston, J. Robert
2004-05-01
Otoacoustic emissions (OAEs) presumably represent active processes within the cochlea fundamental to frequency-selectivity in peripheral auditory function. Maturation of the cochlear amplifier, vis-a-vis frequency encoding or selectivity, has yet to be fully characterized in humans. The purpose of this study was to further investigate the maturation of features of the f2/f1 frequency ratio (Distortion Product OAE amplitude X f2/f1 ratio) presumed to reflect cochlear frequency selectivity. A cross-sectional, multivariate study was completed comparing three age groups: pre-term infants, term infants and young adult subjects. Frequency ratio functions were analyzed at three f2 frequencies-2000, 4000 and 6000 Hz. An analysis included an estimation of the optimal ratio (OR) and a bandwidth-like measure (Q3). Analysis revealed significant interactions of age x frequency x gender for optimal ratio and a significant interaction of age x frequency for Q3. Consistent and statistically significant differences for both OR and Q3 were found in female subjects and when f2=2 or 6 kHz. This supports research by others [Abdala, J. Acoust. Soc. Am. 114, 3239-3250 (2003)] suggesting that the development of cochlear active mechanisms may still be somewhat in flux at least through term birth Furthermore, OAEs appear to demonstrate gender differences in the course of such maturational changes.
Acoustic telemetry reveals cryptic residency of whale sharks.
Cagua, E Fernando; Cochran, Jesse E M; Rohner, Christoph A; Prebble, Clare E M; Sinclair-Taylor, Tane H; Pierce, Simon J; Berumen, Michael L
2015-04-01
Although whale sharks (Rhincodon typus) have been documented to move thousands of kilometres, they are most frequently observed at a few predictable seasonal aggregation sites. The absence of sharks at the surface during visual surveys has led to the assumption that sharks disperse to places unknown during the long 'off-seasons' at most of these locations. Here we compare 2 years of R. typus visual sighting records from Mafia Island in Tanzania to concurrent acoustic telemetry of tagged individuals. Sightings revealed a clear seasonal pattern with a peak between October and February and no sharks observed at other times. By contrast, acoustic telemetry demonstrated year-round residency of R. typus. The sharks use a different habitat in the off-season, swimming deeper and further away from shore, presumably in response to prey distributions. This behavioural change reduces the sharks' visibility, giving the false impression that they have left the area. We demonstrate, for the first time to our knowledge, year-round residency of unprovisioned, individual R. typus at an aggregation site, and highlight the importance of using multiple techniques to study the movement ecology of marine megafauna. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Proteases in doping control analysis.
Thevis, M; Maurer, J; Kohler, M; Geyer, H; Schänzer, W
2007-07-01
Urine manipulation in sports drug testing has become a serious problem for doping control laboratories, and recent scandals in elite endurance sports have revealed the problem of urine manipulation presumably using proteases, which will impede the detection of drugs such as erythropoietin (EPO) or other peptide hormones. Using commonly accepted analytical strategies, a protocol was developed enabling the determination of elevated protease activities in doping control specimens followed by the visualization of protein degradation and identification of proteases such as chymotrypsin, trypsin and papain. Therefore, protease detection kits based on fluorescein isothiocyanate-labeled casein were employed, and protease concentrations greater than 15 microg/mL of urine entailed subsequent 1-dimensional gel electrophoretic visualization of urinary proteins. The presence of 20 microg of proteases per mL of urine caused a complete degradation of proteins usually observed in urinary matrices ("trace of burning"), while respective proteases were still detected in spiked urine samples after 10 days of storage at + 4 and - 20 degrees C. Identification of target proteases at respective molecular weights was accomplished using bottom-up sequencing approaches based on in-gel digestion of separated enzymes followed by capillary liquid chromatography--Orbitrap tandem mass spectrometry.
Traces of an ancient immune system - how an injured arthropod survived 465 million years ago
NASA Astrophysics Data System (ADS)
Schoenemann, Brigitte; Clarkson, Euan N. K.; Høyberget, Magne
2017-01-01
This report of a severely injured trilobite from the Middle Ordovician (~465 Ma) accords with a number of similar observations of healed lesions observed in trilobites. The uniqueness of the specimen described here is that the character of the repair-mechanisms is reflected by the secondarily built structures, which form the new surface of the ruptured compound eye. Smooth, repaired areas inside the visual surface advert to a clotting principle, rather similar to those of today, and the way in which broken parts of the exoskeleton fused during restoration seem to simulate modern samples. The irregularity and variance of newly inserted visual units indicate the severity of the injury, which, most probably, was caused by a predatory attack, presumably by a cephalopod; these were most likely, the top predators of the Ordovician. Furthermore, the state of the moulted cephalon tells the dramatic struggle of an organism that lived in the Palaeozoic, to survive. In sum the specimen analysed here is evidence of an ancient clotting mechanism not dissimilar to those of today, rapidly preventing any exsanguination and the breakdown of osmoregulation of this marine arthropod.
The Effects of Scattered Light from Optical Components on Visual Function
2016-02-01
zones (e.g., 0-5° vs 5-10°) occurs, then the general distribution of scatter, uniform or not, or that some ratio of scatter between different angular...affect the sensitivity of the eye and none reported having refractive surgery within the past year (photorefractive keratectomy ( PRK ) or laser...assisted in situ keratomileusis ( LASIK )). They performed all the visual function tasks monocularly, using the right eye. 2.3 Visual Function Assessment
Inferential functioning in visually impaired children.
Puche-Navarro, Rebeca; Millán, Rafael
2007-01-01
The current study explores the inferential abilities of visually impaired children in a task presented in two formats, manipulative and verbal. The results showed that in the group of visually impaired children, just as with children with normal sight, there was a wide range of inference types. It was found that the visually impaired children perform slightly better in the use of inductive and relational inferences in the verbal format, while in the manipulative format children with normal sight perform better. These results suggest that in inferential functioning of young children, and especially visually impaired children, the format of the task influences performance more than the child's visual ability.
Mechanisms of recovery of visual function in adult amblyopia through a tailored action video game.
Vedamurthy, Indu; Nahum, Mor; Bavelier, Daphne; Levi, Dennis M
2015-02-26
Amblyopia is a deficit in vision that arises from abnormal visual experience early in life. It was long thought to develop into a permanent deficit, unless properly treated before the end of the sensitive period for visual recovery. However, a number of studies now suggest that adults with long-standing amblyopia may at least partially recover visual acuity and stereopsis following perceptual training. Eliminating or reducing interocular suppression has been hypothesized to be at the root of these changes. Here we show that playing a novel dichoptic video game indeed results in reduced suppression, improved visual acuity and, in some cases, improved stereopsis. Our relatively large cohort of adults with amblyopia, allowed us, for the first time, to assess the link between visual function recovery and reduction in suppression. Surprisingly, no significant correlation was found between decreased suppression and improved visual function. This finding challenges the prevailing view and suggests that while dichoptic training improves visual acuity and stereopsis in adult amblyopia, reduced suppression is unlikely to be at the root of visual recovery. These results are discussed in the context of their implication on recovery of amblyopia in adults.
Mechanisms of recovery of visual function in adult amblyopia through a tailored action video game
Vedamurthy, Indu; Nahum, Mor; Bavelier, Daphne; Levi, Dennis M.
2015-01-01
Amblyopia is a deficit in vision that arises from abnormal visual experience early in life. It was long thought to develop into a permanent deficit, unless properly treated before the end of the sensitive period for visual recovery. However, a number of studies now suggest that adults with long-standing amblyopia may at least partially recover visual acuity and stereopsis following perceptual training. Eliminating or reducing interocular suppression has been hypothesized to be at the root of these changes. Here we show that playing a novel dichoptic video game indeed results in reduced suppression, improved visual acuity and, in some cases, improved stereopsis. Our relatively large cohort of adults with amblyopia, allowed us, for the first time, to assess the link between visual function recovery and reduction in suppression. Surprisingly, no significant correlation was found between decreased suppression and improved visual function. This finding challenges the prevailing view and suggests that while dichoptic training improves visual acuity and stereopsis in adult amblyopia, reduced suppression is unlikely to be at the root of visual recovery. These results are discussed in the context of their implication on recovery of amblyopia in adults. PMID:25719537
The effects of huperzine A and IDRA 21 on visual recognition memory in young macaques
Malkova, Ludise; Kozikowski, Alan P.; Gale, Karen
2011-01-01
Nootropic agents or cognitive enhancers are purported to improve mental functions such as cognition, memory, or attention. The aim of our study was to determine the effects of two possible cognitive enhancers, huperzine A and IDRA 21, in normal young adult monkeys performing a visual memory task of varying degrees of difficulty. Huperzine A is a reversible acetylcholinesterase (AChE) inhibitor, its administration results in regionally specific increases in acetylcholine levels in the brain. In human clinical trials, Huperzine A resulted in cognitive improvement in patients with mild to moderate form of Alzheimer's disease (AD) showing its potential as a palliative agent in the treatment of AD. IDRA 21 is a positive allosteric modulator of glutamate AMPA receptors. It increases excitatory synaptic strength by attenuating rapid desensitization of AMPA receptors and may thus have beneficial therapeutic effects to ameliorate memory deficits in patients with cognitive impairments, including AD. The present study evaluated the effects of the two drugs in normal, intact, young adult monkeys to determine whether they can result in cognitive enhancement in a system that is presumably functioning optimally. Six young pigtail macaques (Macaca nemestrina) were trained on delayed non-matching-to-sample task, a measure of visual recognition memory, up to criterion of 90% correct responses on each of the four delays (10s, 30s, 60s, and 90s). They were then tested on two versions of the task: Task 1 included the four delays intermixed within a session and the monkeys performed it with the accuracy of 90%. Task 2 included, in each of 24 trials, a list of six objects presented in succession. Two objects from the list were then presented for choice paired with novel objects and following two of the four delays intermixed within a session. This task with a higher mnemonic demand yielded an average performance of 64% correct. Oral administration of huperzine A did not significantly affect the monkeys' performance on either task. However, a significant negative correlation was found between the baseline performance on each delay and the change in performance under huperzine A, suggesting that under conditions in which the subjects were performing poorly (55 – 69%), the drug resulted in improved performance, whereas no improvement was obtained when the baseline was close to 90%. In fact, when the subjects were performing very well, huperzine A tended to reduce the performance accuracy, indicating that in a system that functions optimally, the increased availability of acetylcholine does not improve performance or memory, especially when the animals are close to the maximum performance. In contrast, oral administration of IDRA 21 significantly improved performance on Task 2, especially on the longest delay. This finding supports the potential use of this drug in treatment of cognitive and memory disorders. PMID:21185313
Huseyinoglu, Nergiz; Ekinci, Metin; Ozben, Serkan; Buyukuysal, Cagatay
2014-01-01
Abstract Studies that explored the anterior visual pathway in the patients with multiple sclerosis (MS) have demonstrated contradictory results about the correlation between structural and functional status of optic nerve and retina. We aimed to investigate the functional and structural findings in our cohort of mildly disabled relapsing-remitting MS patients. A total of 134 eyes (80 eyes of the patients with MS and 54 eyes of the control group) were investigated. Eyes of MS patients were divided into two groups—as eyes with history of optic neuritis (ON group) and without history of optic neuritis (NON group). Ophthalmological investigation including visual evoked potentials, standard automated perimetry, and optical coherence tomography were performed for all participants. Retinal and macular thicknesses were significantly decreased in ON and NON groups compared with controls. Also, visual evoked potential latencies and visual field loss were worse in the both MS groups compared with control group. We did not find any correlation between visual evoked potentials and retinal or macular thickness values but visual field parameters were correlated between retinal and macular layer loss in the NON group. According to our results and some previous studies, although both functional and structural changes were detected in patients with MS, functional status markers do not always show parallelism (or synchrony) with structural changes, especially in eyes with history of optic neuritis. PMID:27928266
A Content Analysis of Visuals Used in Print Media Advertising.
ERIC Educational Resources Information Center
Moriarty, Sandra E.
1987-01-01
Provides a content analysis of advertising visuals--illustrations and photographs--to determine the frequency with which the basic visual communication functions are used. Finds that photographs are the most frequently used type of visual and that symbolic visuals are more prevalent than literal visuals. (MM)
Achille, Marino; Ilaria, Pagnini; Teresa, Giani; Roberto, Caputo; Ilir, Arapi; Piergiorgio, Neri; Rolando, Cimaz; Gabriele, Simonini
2016-02-01
Early-onset sarcoidosis (EOS) and Blau syndrome are rare auto-inflammatory diseases characterized by a triad of skin rash, granulomatous uveitis, and symmetrical polyarthritis occurring in early childhood. In this paper, we describe a case report very interesting for the multidisciplinary management (pediatric rheumatologist and ophthalmologist), the challenging diagnosis and the difficult choice of the best treatment. We describe a case report of an 8-year old with recurrent episodes of acute uveitis that developed bilateral granulomatous panuveitis initially treated with topical and systemic steroids. Genetic testing for NOD2/CARD15 revealed a heterozygous mutation on exon 4 in the NBD domain (P268S/SNP5). Therefore, an incomplete EOS was suspected. Because uveitis worsening with multifocal chorioretinitis aggravation, intravenous boluses of methylprednisolone were administered. During the steroids tapering, she flared again, and methotrexate was started along with corticosteroids pulse therapy. However, new ocular granuloma appeared, macular oedema with poor visual outcome occurred, and therefore, adalimumab was added to MTX and steroids. After 6 months since the new therapy started, she had a complete visual recovery, and she was able to stop steroid treatment. At 2 years of follow-up, she is still in remission on treatment, and her visual acuity is normal. No side effects were observed. In our patient, we found a heterozygous mutation on exon 4 in the NBD domain (P268S/SNP5) of NOD2/CARD15 gene and an incomplete EOS was hypothesized. The role of this variant is currently under study. Adalimumab use dramatically changed the course of eye disease, prompting to stop steroid treatment and preserving visual acuity.
Functions of a new photoreceptor membrane. [energy conversion via halobacteria rhodopsin changes
NASA Technical Reports Server (NTRS)
Oesterhelt, D.; Stoeckenius, W.
1973-01-01
In the investigation of light responses on halobacteria phototaxis; ATP synthesis; and changes in O2 consumption, purple membrane biosynthesis, and proton translocation were found. The last three effects are discussed, which suggest that the purple membrane may function as an energy-coupling membrane for light. It is also suggested that purple membrane, through cyclic light-induced conformational changes of its bacteriorhodopsin, directly converts absorbed light energy into a proton gradient and presumably also an electric potential difference across the membrane analogous to observations in other prokaryotic cells, mitochondria, and chloroplasts.
STS-44 Pilot Henricks uses Visual Function Tester (VFT) on OV-104's middeck
1991-12-01
STS044-14-013 (24 Nov-1 Dec 1991) --- Terence T. (Tom) Henricks, STS-44 pilot, tests his visual acuity with the Visual Function Test (VFT) apparatus. This photograph was among the first released by NASA following the eight day mission, dedicated to the Department of Defense.
The Function of Consciousness in Multisensory Integration
ERIC Educational Resources Information Center
Palmer, Terry D.; Ramsey, Ashley K.
2012-01-01
The function of consciousness was explored in two contexts of audio-visual speech, cross-modal visual attention guidance and McGurk cross-modal integration. Experiments 1, 2, and 3 utilized a novel cueing paradigm in which two different flash suppressed lip-streams cooccured with speech sounds matching one of these streams. A visual target was…
Brooks, Joseph L.; Gilaie-Dotan, Sharon; Rees, Geraint; Bentin, Shlomo; Driver, Jon
2012-01-01
Visual perception depends not only on local stimulus features but also on their relationship to the surrounding stimulus context, as evident in both local and contextual influences on figure-ground segmentation. Intermediate visual areas may play a role in such contextual influences, as we tested here by examining LG, a rare case of developmental visual agnosia. LG has no evident abnormality of brain structure and functional neuroimaging showed relatively normal V1 function, but his intermediate visual areas (V2/V3) function abnormally. We found that contextual influences on figure-ground organization were selectively disrupted in LG, while local sources of figure-ground influences were preserved. Effects of object knowledge and familiarity on figure-ground organization were also significantly diminished. Our results suggest that the mechanisms mediating contextual and familiarity influences on figure-ground organization are dissociable from those mediating local influences on figure-ground assignment. The disruption of contextual processing in intermediate visual areas may play a role in the substantial object recognition difficulties experienced by LG. PMID:22947116
Semantic layers for illustrative volume rendering.
Rautek, Peter; Bruckner, Stefan; Gröller, Eduard
2007-01-01
Direct volume rendering techniques map volumetric attributes (e.g., density, gradient magnitude, etc.) to visual styles. Commonly this mapping is specified by a transfer function. The specification of transfer functions is a complex task and requires expert knowledge about the underlying rendering technique. In the case of multiple volumetric attributes and multiple visual styles the specification of the multi-dimensional transfer function becomes more challenging and non-intuitive. We present a novel methodology for the specification of a mapping from several volumetric attributes to multiple illustrative visual styles. We introduce semantic layers that allow a domain expert to specify the mapping in the natural language of the domain. A semantic layer defines the mapping of volumetric attributes to one visual style. Volumetric attributes and visual styles are represented as fuzzy sets. The mapping is specified by rules that are evaluated with fuzzy logic arithmetics. The user specifies the fuzzy sets and the rules without special knowledge about the underlying rendering technique. Semantic layers allow for a linguistic specification of the mapping from attributes to visual styles replacing the traditional transfer function specification.
Hirai, Masahiro; Muramatsu, Yukako; Mizuno, Seiji; Kurahashi, Naoko; Kurahashi, Hirokazu; Nakamura, Miho
2017-01-01
Individuals with Williams syndrome (WS) exhibit an atypical social phenotype termed hypersociability. One theory accounting for hypersociability presumes an atypical function of the amygdala, which processes fear-related information. However, evidence is lacking regarding the detection mechanisms of fearful faces for individuals with WS. Here, we introduce a visual search paradigm to elucidate the mechanisms for detecting fearful faces by evaluating the search asymmetry; the reaction time when both the target and distractors were swapped was asymmetrical. Eye movements reflect subtle atypical attentional properties, whereas, manual responses are unable to capture atypical attentional profiles toward faces in individuals with WS. Therefore, we measured both eye movements and manual responses of individuals with WS and typically developed children and adults in visual searching for a fearful face among neutral faces or a neutral face among fearful faces. Two task measures, namely reaction time and performance accuracy, were analyzed for each stimulus as well as gaze behavior and the initial fixation onset latency. Overall, reaction times in the WS group and the mentally age-matched control group were significantly longer than those in the chronologically age-matched group. We observed a search asymmetry effect in all groups: when a neutral target facial expression was presented among fearful faces, the reaction times were significantly prolonged in comparison with when a fearful target facial expression was displayed among neutral distractor faces. Furthermore, the first fixation onset latency of eye movement toward a target facial expression showed a similar tendency for manual responses. Although overall responses in detecting fearful faces for individuals with WS are slower than those for control groups, search asymmetry was observed. Therefore, cognitive mechanisms underlying the detection of fearful faces seem to be typical in individuals with WS. This finding is discussed with reference to the amygdala account explaining hypersociability in individuals with WS.
NASA Technical Reports Server (NTRS)
Bouvette, C. M.; McPhee, B. R.; Opfer-Gehrking, T. L.; Low, P. A.
1996-01-01
OBJECTIVE: To evaluate the efficacy of various physical countermaneuvers in reducing orthostatic hypotension and its associated symptoms and to assess the efficacy of biofeedback training in enhancing the effectiveness of physical countermaneuvers. MATERIAL AND METHODS: In nine study subjects with neurogenic orthostatic hypotension, four training sessions on physical countermaneuvers were performed after tilt-up, three with visual feedback on the effect of physical countermaneuvers on blood pressure and other cardiovascular variables. Blood pressure change and orthostatic symptoms during tilt-up were determined, as were the changes in total peripheral resistance, stroke index, and heart rate. RESULTS: The five female and four male patients had a mean age of 53 years and a mean duration of symptoms of 4.2 years. On an orthostatic symptom scale of 0 to 10, these patients had a mean symptom score of 7.3. The increment in systolic blood pressure was better for some maneuvers (such as leg crossing and a combination) than others (such as neck flexion and abdominal contraction). Three patterns of responses to biofeedback were found. Simple maneuvers such as squatting did not improve with training; visual feedback was needed for maneuvers such as thigh contraction, and performance declined without biofeedback; the third pattern, seen in maneuvers such as leg crossing, showed continued improvement with training, even without biofeedback. A survey at 3 to 4 months after training revealed continued use of physical maneuvers (3.8 +/- 3.1 per day), increased standing time with each episode of presyncopal symptoms (8.3 +/- 5.8 minutes), and continued global symptomatic improvement. Total peripheral resistance, but not heart rate or stroke index, showed significant regression with blood pressure improvement. CONCLUSION: Physical countermaneuvers are efficacious in reducing orthostatic hypotension, can be augmented by use of biofeedback, and may significantly improve the functional outcome. The major mechanism of improvement is an increase in total peripheral resistance, presumably by reducing the vascular capacitance.
Electropysiologic evaluation of the visual pathway in patients with multiple sclerosis.
Rodriguez-Mena, Diego; Almarcegui, Carmen; Dolz, Isabel; Herrero, Raquel; Bambo, Maria P; Fernandez, Javier; Pablo, Luis E; Garcia-Martin, Elena
2013-08-01
To evaluate the ability of visual evoked potentials and pattern electroretinograms (PERG) to detect subclinical axonal damage in patients during the early diagnostic stage of multiple sclerosis (MS). The authors also compared the ability of optical coherence tomography (OCT), PERG, and visual evoked potentials to detect axonal loss in MS patients and correlated the functional and structural properties of the retinal nerve fiber layer. Two hundred twenty-eight eyes of 114 subjects (57 MS patients and 57 age- and sex-matched healthy controls) were included. The visual pathway was evaluated based on functional and structural assessments. All patients underwent a complete ophthalmic examination that included assessment of visual acuity, ocular motility, intraocular pressure, visual field, papillary morphology, OCT, visual evoked potentials, and PERG. Visual evoked potentials (P100 latency and amplitude), PERG (N95 amplitude and N95/P50 ratio), and OCT parameters differed significantly between MS patients and healthy subjects. Moderate significant correlations were found between visual evoked potentials or PERG parameters and OCT measurements. Axonal damage in ganglion cells of the visual pathway can be detected based on structural measures provided by OCT in MS patients and by the N95 component and N95/P50 index of PERG, thus providing good correlation between function and structure.
Siatkowski, R Michael; Good, William V; Summers, C Gail; Quinn, Graham E; Tung, Betty
2013-04-01
To describe visual function and associated characteristics at the 6-year examination in children enrolled in the Early Treatment for Retinopathy of Prematurity Study who had unfavorable visual outcomes despite favorable structural outcomes in one or both eyes. The clinical examination records of children completing the 6-year follow-up examination were retrospectively reviewed. Eligible subjects were those with visual acuity of ≤20/200 in each eye (where recordable) and a normal fundus or straightening of the temporal retinal vessels with or without macular ectopia in at least one eye. Data regarding visual function, retinal structure, presence of nystagmus, optic atrophy, optic disk cupping, seizures/shunts, and Functional Independence Measure for Children (ie, WeeFIM: pediatric functional independence measure) developmental test scores were reviewed. Of 342 participants who completed the 6-year examination, 39 (11%) met inclusion criteria. Of these, 29 (74%) had normal retinal structure, 18 (46%) had optic atrophy, and 3 (8%) had increased cupping of the optic disk in at least one eye. Latent and/or manifest nystagmus occurred in 30 children (77%). The presence of nystagmus was not related to the presence of optic atrophy. Of the 39 children, 28 (72%) had a below-normal WeeFIM score. In 25 participants (7%) completing the 6-year examination, cortical visual impairment was considered the primary cause of visual loss. The remainder likely had components of both anterior and posterior visual pathway disease. Clinical synthesis of ocular anatomy and visual and neurologic function is required to determine the etiology of poor vision in these children. Copyright © 2013 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.
Parker, Jason G; Zalusky, Eric J; Kirbas, Cemil
2014-01-01
Background Accurate mapping of visual function and selective attention using fMRI is important in the study of human performance as well as in presurgical treatment planning of lesions in or near visual centers of the brain. Conjunctive visual search (CVS) is a useful tool for mapping visual function during fMRI because of its greater activation extent compared with high-capacity parallel search processes. Aims The purpose of this work was to develop and evaluate a CVS that was capable of generating consistent activation in the basic and higher level visual areas of the brain by using a high number of distractors as well as an optimized contrast condition. Materials and methods Images from 10 healthy volunteers were analyzed and brain regions of greatest activation and deactivation were determined using a nonbiased decomposition of the results at the hemisphere, lobe, and gyrus levels. The results were quantified in terms of activation and deactivation extent and mean z-statistic. Results The proposed CVS was found to generate robust activation of the occipital lobe, as well as regions in the middle frontal gyrus associated with coordinating eye movements and in regions of the insula associated with task-level control and focal attention. As expected, the task demonstrated deactivation patterns commonly implicated in the default-mode network. Further deactivation was noted in the posterior region of the cerebellum, most likely associated with the formation of optimal search strategy. Conclusion We believe the task will be useful in studies of visual and selective attention in the neuroscience community as well as in mapping visual function in clinical fMRI. PMID:24683515
Jung, Cecilia S; Bruce, Beau; Newman, Nancy J; Biousse, Valérie
2008-05-15
To evaluate the effects of Vision Restoration Therapy (VRT) on the visual function of patients with anterior ischemic optic neuropathy. Randomized controlled double-blind pilot trial. 10 patients with stable anterior ischemic optic neuropathy (AION). All patients were evaluated before VRT and after 3 and 6 months of treatment by Early Treatment Diabetic Retinopathy Study (ETDRS) visual acuity, contrast sensitivity, reading speed, 24-2 SITA-standard Humphrey visual field (HVF), High Resolution Perimetry (HRP) (perimetry obtained during VRT), and vision-based quality of life questionnaire. Patients were randomized between two VRT strategies (5 in each group): I) VRT in which stimulation was performed in the seeing VF of the affected eye ("seeing field-VRT"); II) VRT in which stimulation was performed along the area of central fixation and in the ARV (areas of residual vision) of the affected eye ("ARV-VRT"). The results of the HRP, HVF, and clinical assessment of visual function were compared for each patient and between the two groups at each evaluation. Visual acuity qualitatively improved in the ARV-VRT group, however the change was not statistically significant (p=0.28). Binocular reading speed significantly improved in the ARV-VRT group (p=0.03). HVF foveal sensitivity increased mildly in both groups (p=0.059). HRP analysis showed a similar increase in stimulus accuracy in both groups (mean improvement of about 15%). All patients reported functional improvement after VRT. Despite a small sample, the study showed a trend toward improvement of visual function in the ARV-VRT group. Improvement of HRP in both groups may reflect diffusely increased visual attention (neuronal activation), or improvement of an underlying sub-clinical abnormality in the "seeing" visual field of patients with optic neuropathies.
Griffis, Joseph C.; Elkhetali, Abdurahman S.; Burge, Wesley K.; Chen, Richard H.; Bowman, Anthony D.; Szaflarski, Jerzy P.; Visscher, Kristina M.
2016-01-01
Psychophysical and neurobiological evidence suggests that central and peripheral vision are specialized for different functions. This specialization of function might be expected to lead to differences in the large-scale functional interactions of early cortical areas that represent central and peripheral visual space. Here, we characterize differences in whole-brain functional connectivity among sectors in primary visual cortex (V1) corresponding to central, near-peripheral, and far-peripheral vision during resting fixation. Importantly, our analyses reveal that eccentricity sectors in V1 have different functional connectivity with non-visual areas associated with large-scale brain networks. Regions associated with the fronto-parietal control network are most strongly connected with central sectors of V1, regions associated with the cingulo-opercular control network are most strongly connected with near-peripheral sectors of V1, and regions associated with the default mode and auditory networks are most strongly connected with far-peripheral sectors of V1. Additional analyses suggest that similar patterns are present during eyes-closed rest. These results suggest that different types of visual information may be prioritized by large-scale brain networks with distinct functional profiles, and provide insights into how the small-scale functional specialization within early visual regions such as V1 relates to the large-scale organization of functionally distinct whole-brain networks. PMID:27554527
Searching for biomarkers of CDKL5 disorder: early-onset visual impairment in CDKL5 mutant mice
Mazziotti, Raffaele; Lupori, Leonardo; Sagona, Giulia; Gennaro, Mariangela; Della Sala, Grazia; Putignano, Elena
2017-01-01
Abstract CDKL5 disorder is a neurodevelopmental disorder still without a cure. Murine models of CDKL5 disorder have been recently generated raising the possibility of preclinical testing of treatments. However, unbiased, quantitative biomarkers of high translational value to monitor brain function are still missing. Moreover, the analysis of treatment is hindered by the challenge of repeatedly and non-invasively testing neuronal function. We analyzed the development of visual responses in a mouse model of CDKL5 disorder to introduce visually evoked responses as a quantitative method to assess cortical circuit function. Cortical visual responses were assessed in CDKL5 null male mice, heterozygous females, and their respective control wild-type littermates by repeated transcranial optical imaging from P27 until P32. No difference between wild-type and mutant mice was present at P25-P26 whereas defective responses appeared from P27-P28 both in heterozygous and homozygous CDKL5 mutant mice. These results were confirmed by visually evoked potentials (VEPs) recorded from the visual cortex of a different cohort. The previously imaged mice were also analyzed at P60–80 using VEPs, revealing a persistent reduction of response amplitude, reduced visual acuity and defective contrast function. The level of adult impairment was significantly correlated with the reduction in visual responses observed during development. Support vector machine showed that multi-dimensional visual assessment can be used to automatically classify mutant and wt mice with high reliability. Thus, monitoring visual responses represents a promising biomarker for preclinical and clinical studies on CDKL5 disorder. PMID:28369421
Visual Function in Geriatric Eye Disease
ERIC Educational Resources Information Center
Faye, Eleanor E.
1971-01-01
Visual functioning, treatment, and helpful low vision aids are discussed in relation to four major eye diseases of the elderly: cataract, macular degeneration, glaucoma, and diabetic retinopathy. (KW)
Reading ability and retinal sensitivity after surgery for macular hole and macular pucker.
Cappello, Ezio; Virgili, Gianni; Tollot, Luigina; Del Borrello, Michele; Menchini, Ugo; Zemella, Marco
2009-09-01
To assess whether reading ability and microperimetry improve as demonstrated for visual acuity after surgery for macular hole and macular pucker. Fifty-nine consecutive patients underwent pars plana vitrectomy for macular pucker (n = 41) or full-thickness macular holes (n = 18). Functional assessment was made at 3, 6, and 12 months after surgery and included far visual acuity (Early Treatment Diabetic Retinopathy Study charts), retinal sensitivity using the microperimeter (MP1, Nidek Technologies, Padova, Italy), and reading ability (MNRead charts). An improvement was recorded both for macular holes and puckers not only for visual acuity, but also for reading acuity and mean central retinal sensitivity (P < 0.01 for the overall comparisons between baseline and follow-up values). Maximum reading speed was already good at baseline both for puckers and holes overall, and a significant mean improvement was recorded only in patients with macular hole at 6 and 12 months (P < 0.01). Although eyes with macular holes had worse baseline visual function compared with puckers (P < 0.01 for all measures of visual function except for reading speed), they recovered to similar levels thanks to greater improvement (P < 0.05 for the difference in improvement during follow-up between puckers and holes for all measures of visual function). No differences were found among indocyanine green or trypan blue staining compared with no staining for internal limiting membrane removal based on all outcome measures (P > 0.05 for the overall difference of visual function improvement during follow-up). The improvement found for visual acuity after vitrectomy for macular hole and pucker also regards retinal sensitivity and reading ability for up to 12 months. This is reassuring concerning the benefits for the patients, and this shows that visual acuity is a valid functional measure for investigating the efficacy of macular surgery.
Functional vision loss: a diagnosis of exclusion.
Villegas, Rex B; Ilsen, Pauline F
2007-10-01
Most cases of visual acuity or visual field loss can be attributed to ocular pathology or ocular manifestations of systemic pathology. They can also occasionally be attributed to nonpathologic processes or malingering. Functional vision loss is any decrease in vision the origin of which cannot be attributed to a pathologic or structural abnormality. Two cases of functional vision loss are described. In the first, a 58-year-old man presented for a baseline eye examination for enrollment in a vision rehabilitation program. He reported bilateral blindness since a motor vehicle accident with head trauma 4 years prior. Entering visual acuity was "no light perception" in each eye. Ocular health examination was normal and the patient made frequent eye contact with the examiners. He was referred for neuroimaging and electrophysiologic testing. The second case was a 49-year-old man who presented with a long history of intermittent monocular diplopia. His medical history was significant for psycho-medical evaluations and a diagnosis of factitious disorder. Entering uncorrected visual acuities were 20/20 in each eye, but visual field testing found constriction. No abnormalities were found that could account for the monocular diplopia or visual field deficit. A diagnosis of functional vision loss secondary to factitious disorder was made. Functional vision loss is a diagnosis of exclusion. In the event of reduced vision in the context of a normal ocular health examination, all other pathology must be ruled out before making the diagnosis of functional vision loss. Evaluation must include auxiliary ophthalmologic testing, neuroimaging of the visual pathway, review of the medical history and lifestyle, and psychiatric evaluation. Comanagement with a psychiatrist is essential for patients with functional vision loss.
Assessing visual function in children with complex disabilities: the Bradford visual function box.
Pilling, Rachel F; Outhwaite, Louise; Bruce, Alison
2016-08-01
Assessment of children with complex and severe learning disabilities is challenging and the children may not respond to the monochrome stimuli of traditional tests. The International Association of Scientific Studies on Intellectual Disability recommends that visual function assessment in poorly or non-cooperative children should be undertaken in an objective manner. We have developed a functional visual assessment tool to assess vision in children with complex and multiple disabilities. The Bradford visual function box (BVFB) comprises a selection of items (small toys) of different size and colour, which are presented to the child and the response observed. The aim of this study is to establish its intertester validity in children with severe learning disability. The visual function of 22 children with severe learning disability was assessed using the BVFB. The children were assessed by experienced practitioners on two separate occasions. The assessors were unaware of each other's findings. In 15/22 of the children, no difference was found in the results of the two assessors. The test was shown to have a good intertester agreement, weighted κ=0.768. The results of this clinical study show that the BVFB is a reliable tool for assessing the visual function in children with severe learning disability in whom other tests fail to elicit a response. The need for a tool which is quick to administer and portable has previously been highlighted. The BVFB offers an option for children for whom other formal tests are unsuccessful in eliciting a response. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Aging effects on functional auditory and visual processing using fMRI with variable sensory loading.
Cliff, Michael; Joyce, Dan W; Lamar, Melissa; Dannhauser, Thomas; Tracy, Derek K; Shergill, Sukhwinder S
2013-05-01
Traditionally, studies investigating the functional implications of age-related structural brain alterations have focused on higher cognitive processes; by increasing stimulus load, these studies assess behavioral and neurophysiological performance. In order to understand age-related changes in these higher cognitive processes, it is crucial to examine changes in visual and auditory processes that are the gateways to higher cognitive functions. This study provides evidence for age-related functional decline in visual and auditory processing, and regional alterations in functional brain processing, using non-invasive neuroimaging. Using functional magnetic resonance imaging (fMRI), younger (n=11; mean age=31) and older (n=10; mean age=68) adults were imaged while observing flashing checkerboard images (passive visual stimuli) and hearing word lists (passive auditory stimuli) across varying stimuli presentation rates. Younger adults showed greater overall levels of temporal and occipital cortical activation than older adults for both auditory and visual stimuli. The relative change in activity as a function of stimulus presentation rate showed differences between young and older participants. In visual cortex, the older group showed a decrease in fMRI blood oxygen level dependent (BOLD) signal magnitude as stimulus frequency increased, whereas the younger group showed a linear increase. In auditory cortex, the younger group showed a relative increase as a function of word presentation rate, while older participants showed a relatively stable magnitude of fMRI BOLD response across all rates. When analyzing participants across all ages, only the auditory cortical activation showed a continuous, monotonically decreasing BOLD signal magnitude as a function of age. Our preliminary findings show an age-related decline in demand-related, passive early sensory processing. As stimulus demand increases, visual and auditory cortex do not show increases in activity in older compared to younger people. This may negatively impact on the fidelity of information available to higher cognitive processing. Such evidence may inform future studies focused on cognitive decline in aging. Copyright © 2012 Elsevier Ltd. All rights reserved.
Visual acuity and quality of life in dry eye disease: Proceedings of the OCEAN group meeting.
Benítez-Del-Castillo, José; Labetoulle, Marc; Baudouin, Christophe; Rolando, Maurizio; Akova, Yonca A; Aragona, Pasquale; Geerling, Gerd; Merayo-Lloves, Jesús; Messmer, Elisabeth M; Boboridis, Kostas
2017-04-01
Dry eye disease (DED) results in tear film instability and hyperosmolarity, inflammation of the ocular surface and, ultimately, visual disturbance that can significantly impact a patient's quality of life. The effects on visual acuity result in difficulties with driving, reading and computer use and negatively impact psychological health. These effects also extend to the workplace, with a loss of productivity and quality of work causing substantial economic losses. The effects of DED and the impact on vision experienced by patients may not be given sufficient importance by ophthalmologists. Functional visual acuity (FVA) is a measure of visual acuity after sustained eye opening without blinking for at least 10 s and mimics the sustained visual acuity of daily life. Measuring dynamic FVA allows the detection of impaired visual function in patients with DED who may display normal conventional visual acuity. There are currently several tests and methods that can be used to measure dynamic visual function: the SSC-350 FVA measurement system, assessment of best-corrected visual acuity decay using the interblink visual acuity decay test, serial measurements of ocular and corneal higher order aberrations, and measurement of dynamic vision quality using the Optical Quality Analysis System. Although the equipment for these methods may be too large or unaffordable for use in clinical practice, FVA testing is an important assessment for DED. Copyright © 2016 Elsevier Inc. All rights reserved.
Cytoskeleton and Cytoskeleton-Bound RNA Visualization in Frog and Insect Oocytes.
Kloc, Malgorzata; Bilinski, Szczepan; Kubiak, Jacek Z
2016-01-01
The majority of oocyte functions involves and depends on the cytoskeletal elements, which include microtubules and actin and cytokeratin filaments. Various structures and molecules are temporarily or permanently bound to the cytoskeletal elements and their functions rely on cytoskeleton integrity and its timely assembly. Thus the accurate visualization of cytoskeleton is often crucial for studies and analyses of oocyte structure and functions. Here we describe several reliable methods for microtubule and/or microfilaments preservation and visualization in Xenopus oocyte extracts, and in situ in live and fixed insect and frog (Xenopus) oocytes. In addition, we describe visualization of cytoskeleton-bound RNAs using molecular beacons in live Xenopus oocytes.
NASA Technical Reports Server (NTRS)
Zacharias, G. L.; Young, L. R.
1981-01-01
Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation is modeled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A dual-input describing function analysis supports the complementary model; vestibular cues dominate sensation at higher frequencies. The describing function model is extended by the proposal of a nonlinear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.
Global-local visual biases correspond with visual-spatial orientation.
Basso, Michael R; Lowery, Natasha
2004-02-01
Within the past decade, numerous investigations have demonstrated reliable associations of global-local visual processing biases with right and left hemisphere function, respectively (cf. Van Kleeck, 1989). Yet the relevance of these biases to other cognitive functions is not well understood. Towards this end, the present research examined the relationship between global-local visual biases and perception of visual-spatial orientation. Twenty-six women and 23 men completed a global-local judgment task (Kimchi and Palmer, 1982) and the Judgment of Line Orientation Test (JLO; Benton, Sivan, Hamsher, Varney, and Spreen, 1994), a measure of visual-spatial orientation. As expected, men had better performance on JLO. Extending previous findings, global biases were related to better visual-spatial acuity on JLO. The findings suggest that global-local biases and visual-spatial orientation may share underlying cerebral mechanisms. Implications of these findings for other visually mediated cognitive outcomes are discussed.
Arcaro, Michael J; Honey, Christopher J; Mruczek, Ryan E B; Kastner, Sabine; Hasson, Uri
2015-02-19
The human visual system can be divided into over two-dozen distinct areas, each of which contains a topographic map of the visual field. A fundamental question in vision neuroscience is how the visual system integrates information from the environment across different areas. Using neuroimaging, we investigated the spatial pattern of correlated BOLD signal across eight visual areas on data collected during rest conditions and during naturalistic movie viewing. The correlation pattern between areas reflected the underlying receptive field organization with higher correlations between cortical sites containing overlapping representations of visual space. In addition, the correlation pattern reflected the underlying widespread eccentricity organization of visual cortex, in which the highest correlations were observed for cortical sites with iso-eccentricity representations including regions with non-overlapping representations of visual space. This eccentricity-based correlation pattern appears to be part of an intrinsic functional architecture that supports the integration of information across functionally specialized visual areas.
Jacobs, Richard H A H; Haak, Koen V; Thumfart, Stefan; Renken, Remco; Henson, Brian; Cornelissen, Frans W
2016-01-01
Our world is filled with texture. For the human visual system, this is an important source of information for assessing environmental and material properties. Indeed-and presumably for this reason-the human visual system has regions dedicated to processing textures. Despite their abundance and apparent relevance, only recently the relationships between texture features and high-level judgments have captured the interest of mainstream science, despite long-standing indications for such relationships. In this study, we explore such relationships, as these might be used to predict perceived texture qualities. This is relevant, not only from a psychological/neuroscience perspective, but also for more applied fields such as design, architecture, and the visual arts. In two separate experiments, observers judged various qualities of visual textures such as beauty, roughness, naturalness, elegance, and complexity. Based on factor analysis, we find that in both experiments, ~75% of the variability in the judgments could be explained by a two-dimensional space, with axes that are closely aligned to the beauty and roughness judgments. That a two-dimensional judgment space suffices to capture most of the variability in the perceived texture qualities suggests that observers use a relatively limited set of internal scales on which to base various judgments, including aesthetic ones. Finally, for both of these judgments, we determined the relationship with a large number of texture features computed for each of the texture stimuli. We find that the presence of lower spatial frequencies, oblique orientations, higher intensity variation, higher saturation, and redness correlates with higher beauty ratings. Features that captured image intensity and uniformity correlated with roughness ratings. Therefore, a number of computational texture features are predictive of these judgments. This suggests that perceived texture qualities-including the aesthetic appreciation-are sufficiently universal to be predicted-with reasonable accuracy-based on the computed feature content of the textures.
Jacobs, Richard H. A. H.; Haak, Koen V.; Thumfart, Stefan; Renken, Remco; Henson, Brian; Cornelissen, Frans W.
2016-01-01
Our world is filled with texture. For the human visual system, this is an important source of information for assessing environmental and material properties. Indeed—and presumably for this reason—the human visual system has regions dedicated to processing textures. Despite their abundance and apparent relevance, only recently the relationships between texture features and high-level judgments have captured the interest of mainstream science, despite long-standing indications for such relationships. In this study, we explore such relationships, as these might be used to predict perceived texture qualities. This is relevant, not only from a psychological/neuroscience perspective, but also for more applied fields such as design, architecture, and the visual arts. In two separate experiments, observers judged various qualities of visual textures such as beauty, roughness, naturalness, elegance, and complexity. Based on factor analysis, we find that in both experiments, ~75% of the variability in the judgments could be explained by a two-dimensional space, with axes that are closely aligned to the beauty and roughness judgments. That a two-dimensional judgment space suffices to capture most of the variability in the perceived texture qualities suggests that observers use a relatively limited set of internal scales on which to base various judgments, including aesthetic ones. Finally, for both of these judgments, we determined the relationship with a large number of texture features computed for each of the texture stimuli. We find that the presence of lower spatial frequencies, oblique orientations, higher intensity variation, higher saturation, and redness correlates with higher beauty ratings. Features that captured image intensity and uniformity correlated with roughness ratings. Therefore, a number of computational texture features are predictive of these judgments. This suggests that perceived texture qualities—including the aesthetic appreciation—are sufficiently universal to be predicted—with reasonable accuracy—based on the computed feature content of the textures. PMID:27493628
Comparative effect of lens care solutions on blink rate, ocular discomfort and visual performance.
Yang, Shun-nan; Tai, Yu-chi; Sheedy, James E; Kinoshita, Beth; Lampa, Matthew; Kern, Jami R
2012-09-01
To help maintain clear vision and ocular surface health, eye blinks occur to distribute natural tears over the ocular surface, especially the corneal surface. Contact lens wearers may suffer from poor vision and dry eye symptoms due to difficulty in lens surface wetting and reduced tear production. Sustained viewing of a computer screen reduces eye blinks and exacerbates such difficulties. The present study evaluated the wetting effect of lens care solutions (LCSs) on blink rate, dry eye symptoms, and vision performance. Sixty-five adult habitual soft contact lens wearers were recruited to adapt to different LCSs (Opti-free, ReNu, and ClearCare) in a cross-over design. Blink rate in pictorial viewing and reading (measured with an eyetracker), dry eye symptoms (measured with the Ocular Surface Disease Index questionnaire), and visual discrimination (identifying tumbling E) immediately before and after eye blinks were measured after 2 weeks of adaption to LCS. Repeated measures anova and mixed model ancova were conducted to evaluate effects of LCS on blink rate, symptom score, and discrimination accuracy. Opti-Free resulted in lower dry eye symptoms (p = 0.018) than ClearCare, and lower spontaneous blink rate (measured in picture viewing) than ClearCare (p = 0.014) and ReNu (p = 0.041). In reading, blink rate was higher for ClearCare compared to ReNu (p = 0.026) and control (p = 0.024). Visual discrimination time was longer for the control (daily disposable lens) than for Opti-Free (p = 0.007), ReNu (p = 0.009), and ClearCare (0.013) immediately before the blink. LCSs differently affected blink rate, subjective dry eye symptoms, and visual discrimination speed. Those with wetting agents led to significantly fewer eye blinks while affording better ocular comfort for contact lens wearers, compared to that without. LCSs with wetting agents also resulted in better visual performance compared to wearing daily disposable contact lenses. These presumably are because of improved tear film quality. © 2012 The College of Optometrists.
The Multisensory Attentional Consequences of Tool Use: A Functional Magnetic Resonance Imaging Study
Holmes, Nicholas P.; Spence, Charles; Hansen, Peter C.; Mackay, Clare E.; Calvert, Gemma A.
2008-01-01
Background Tool use in humans requires that multisensory information is integrated across different locations, from objects seen to be distant from the hand, but felt indirectly at the hand via the tool. We tested the hypothesis that using a simple tool to perceive vibrotactile stimuli results in the enhanced processing of visual stimuli presented at the distal, functional part of the tool. Such a finding would be consistent with a shift of spatial attention to the location where the tool is used. Methodology/Principal Findings We tested this hypothesis by scanning healthy human participants' brains using functional magnetic resonance imaging, while they used a simple tool to discriminate between target vibrations, accompanied by congruent or incongruent visual distractors, on the same or opposite side to the tool. The attentional hypothesis was supported: BOLD response in occipital cortex, particularly in the right hemisphere lingual gyrus, varied significantly as a function of tool position, increasing contralaterally, and decreasing ipsilaterally to the tool. Furthermore, these modulations occurred despite the fact that participants were repeatedly instructed to ignore the visual stimuli, to respond only to the vibrotactile stimuli, and to maintain visual fixation centrally. In addition, the magnitude of multisensory (visual-vibrotactile) interactions in participants' behavioural responses significantly predicted the BOLD response in occipital cortical areas that were also modulated as a function of both visual stimulus position and tool position. Conclusions/Significance These results show that using a simple tool to locate and to perceive vibrotactile stimuli is accompanied by a shift of spatial attention to the location where the functional part of the tool is used, resulting in enhanced processing of visual stimuli at that location, and decreased processing at other locations. This was most clearly observed in the right hemisphere lingual gyrus. Such modulations of visual processing may reflect the functional importance of visuospatial information during human tool use. PMID:18958150
Zaidi, Hasan A; De Los Reyes, Kenneth; Barkhoudarian, Garni; Litvack, Zachary N; Bi, Wenya Linda; Rincon-Torroella, Jordina; Mukundan, Srinivasan; Dunn, Ian F; Laws, Edward R
2016-03-01
Endoscopic skull base surgery has become increasingly popular among the skull base surgery community, with improved illumination and angled visualization potentially improving tumor resection rates. Intraoperative MRI (iMRI) is used to detect residual disease during the course of the resection. This study is an investigation of the utility of 3-T iMRI in combination with transnasal endoscopy with regard to gross-total resection (GTR) of pituitary macroadenomas. The authors retrospectively reviewed all endoscopic transsphenoidal operations performed in the Advanced Multimodality Image Guided Operating (AMIGO) suite from November 2011 to December 2014. Inclusion criteria were patients harboring presumed pituitary macroadenomas with optic nerve or chiasmal compression and visual loss, operated on by a single surgeon. Of the 27 patients who underwent transsphenoidal resection in the AMIGO suite, 20 patients met the inclusion criteria. The endoscope alone, without the use of iMRI, would have correctly predicted extent of resection in 13 (65%) of 20 cases. Gross-total resection was achieved in 12 patients (60%) prior to MRI. Intraoperative MRI helped convert 1 STR and 4 NTRs to GTRs, increasing the number of GTRs from 12 (60%) to 16 (80%). Despite advances in visualization provided by the endoscope, the incidence of residual disease can potentially place the patient at risk for additional surgery. The authors found that iMRI can be useful in detecting unexpected residual tumor. The cost-effectiveness of this tool is yet to be determined.
Eye movement instructions modulate motion illusion and body sway with Op Art.
Kapoula, Zoï; Lang, Alexandre; Vernet, Marine; Locher, Paul
2015-01-01
Op Art generates illusory visual motion. It has been proposed that eye movements participate in such illusion. This study examined the effect of eye movement instructions (fixation vs. free exploration) on the sensation of motion as well as the body sway of subjects viewing Op Art paintings. Twenty-eight healthy adults in orthostatic stance were successively exposed to three visual stimuli consisting of one figure representing a cross (baseline condition) and two Op Art paintings providing sense of motion in depth-Bridget Riley's Movements in Squares and Akiyoshi Kitaoka's Rollers. Before their exposure to the Op Art images, participants were instructed either to fixate at the center of the image (fixation condition) or to explore the artwork (free viewing condition). Posture was measured for 30 s per condition using a body fixed sensor (accelerometer). The major finding of this study is that the two Op Art paintings induced a larger antero-posterior body sway both in terms of speed and displacement and an increased motion illusion in the free viewing condition as compared to the fixation condition. For body sway, this effect was significant for the Riley painting, while for motion illusion this effect was significant for Kitaoka's image. These results are attributed to macro-saccades presumably occurring under free viewing instructions, and most likely to the small vergence drifts during fixations following the saccades; such movements in interaction with visual properties of each image would increase either the illusory motion sensation or the antero-posterior body sway.
Ueyama, Hisao; Li, Yao-Hua; Fu, Gui-Lian; Lertrit, Patcharee; Atchaneeyasakul, La-ongsri; Oda, Sanae; Tanabe, Shoko; Nishida, Yasuhiro; Yamade, Shinichi; Ohkubo, Iwao
2003-01-01
We studied 247 Japanese males with congenital deutan color-vision deficiency and found that 37 subjects (15.0%) had a normal genotype of a single red gene followed by a green gene(s). Two of them had missense mutations in the green gene(s), but the other 35 subjects had no mutations in either the exons or their flanking introns. However, 32 of the 35 subjects, including all 8 subjects with pigment-color defect, a special category of deuteranomaly, had a nucleotide substitution, A−71C, in the promoter of a green gene at the second position in the red/green visual-pigment gene array. Although the −71C substitution was also present in color-normal Japanese males at a frequency of 24.3%, it was never at the second position but always found further downstream. The substitution was found in 19.4% of Chinese males and 7.7% of Thai males but rarely in Caucasians or African Americans. These results suggest that the A−71C substitution in the green gene at the second position is closely associated with deutan color-vision deficiency. In Japanese and presumably other Asian populations further downstream genes with −71C comprise a reservoir of the visual-pigment genes that cause deutan color-vision deficiency by unequal crossing over between the intergenic regions. PMID:12626747
The "social" and "interpersonal" body in spatial cognition. The role of agency and interagency.
Crivelli, Davide; Balconi, Michela
2015-09-01
In order to interact effectively, we need to represent our action as produced by human beings. According to direct access theories, the first steps of visual information processing offer us an informed direct grasp of the situation, especially when social and interpersonal components are implicated. Biological system detection may be the gateway of such smart processes and then may influence initial stages of perception fostering adaptive social behaviour. To investigate early neural correlates of human agency detection in ecological situations with more high or low social impact, we compared scenes showing a human versus artificial agent interacting with a human agent. Twenty volunteers participated in the study. They were asked to observe dynamic visual stimuli showing realistic interactions. ERP (event-related potentials) were recorded. Each stimulus depicted an arm executing a gesture addressed to a human agent. Visual features of the arm were manipulated: in half of trials, it was real; in other trials, it was deprived of some details and transformed in a statue-like arm. EEG morphological analysis revealed an early negative deflection peaking at about 155 ms. Peak amplitude data have been statistically analysed by repeated-measures ANOVAs. It was found that the peak was ampler in the left inferior posterior region when the gesturing arm was human. The early negative deflection, N150, which we found to be different between the human and artificial conditions, is presumably associated with human agency detection in high interpersonal context.
Chandrasekaran, Navasuja; Harlow, Sioban; Moroi, Sayoko; Musch, David; Peng, Qing; Karvonen-Gutierrez, Carrie
2017-02-01
Emerging evidence suggests that the prevalence rates of poor functioning and of disability are increasing among middle-aged individuals. Visual impairment is associated with poor functioning among older adults but little is known about the impact of vision on functioning during midlife. The objective of this study was to assess the impact of visual impairment on future physical functioning among middle-aged women. In this longitudinal study, the sample consisted of 483 women aged 42 to 56 years, from the Michigan site of the Study of Women's Health Across the Nation. At baseline, distance and near vision were measured using a Titmus vision screener. Visual impairment was defined as visual acuity worse than 20/40. Physical functioning was measured up to 10 years later using performance-based measures, including a 40-foot timed walk, timed stair climb and forward reach. Women with impaired distance vision at baseline had 2.81 centimeters less forward reach distance (95% confidence interval (CI): -4.19, -1.42) and 4.26s longer stair climb time (95% CI: 2.73, 5.79) at follow-up than women without impaired distance vision. Women with impaired near vision also had less forward reach distance (2.26 centimeters, 95% CI: -3.30, -1.21) than those without impaired near vision. Among middle-aged women, visual impairment is a marker of poor physical functioning. Routine eye testing and vision correction may help improve physical functioning among midlife individuals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Chandrasekaran, Navasuja; Harlow, Sioban; Moroi, Sayoko; Musch, David; Peng, Qing; Karvonen-Gutierrez, Carrie
2016-01-01
Objectives Emerging evidence suggests that the prevalence rates of poor functioning and of disability are increasing among middle-aged individuals. Visual impairment is associated with poor functioning among older adults but little is known about the impact of vision on functioning during midlife. The objective of this study was to assess the impact of visual impairment on future physical functioning among middle-aged women. Study design In this longitudinal study, the sample consisted of 483 women aged 42 to 56 years, from the Michigan site of the Study of Women's Health Across the Nation. Main Outcome Measures At baseline, distance and near vision were measured using a Titmus vision screener. Visual impairment was defined as visual acuity worse than 20/40. Physical functioning was measured up to 10 years later using performance-based measures, including a 40-foot timed walk, timed stair climb and forward reach. Results Women with impaired distance vision at baseline had 2.81 centimeters less forward reach distance (95% confidence interval (CI): −4.19,−1.42) and 4.26 seconds longer stair climb time (95% CI: 2.73, 5.79) at follow-up than women without impaired distance vision. Women with impaired near vision also had less forward reach distance (2.26 centimeters, 95% CI: −3.30,−1.21) than those without impaired near vision. Conclusion Among middle-aged women, visual impairment is a marker of poor physical functioning. Routine eye testing and vision correction may help improve physical functioning among midlife individuals. PMID:28041592
... living. Functions affected include memory, language skills, visual perception, problem solving, self-management, and the ability to ... living. Functions affected include memory, language skills, visual perception, problem solving, self-management, and the ability to ...
Russo, Giancarlo; Remonato, Alessandro; Remonato, Roberto; Zanier, Emiliano
2017-01-01
Context • Pregnancy causes physiological alterations to the visual system, particularly in relation to retinal vascularization, with a consequent increase of intraocular pressure, and to the lacrimal fluid, with a consequent ocular dryness, which both can lead to a reduction in visual acuity. Numerous case reports refer to the employment of hypnotic treatment in cases of myopia, but the literature does not report any case of decreased visual acuity postpartum that was treated with hypnosis. Objective • For women with visual disorders that had appeared during pregnancy or were preexisting, the study intended to evaluate the benefits of treatment of the diaphragm by hypnotherapy and osteopathy to modify intracorporeal pressure and restore the women's visual function. Design • The research team performed a case study. Setting • The setting was a private osteopathic clinic. Participant • The participant was a 35-y-old woman lacking visual acuity postpartum. Intervention • The study took place during a period of 1 d. The participant first took part in a hypnotherapy session, the first intervention, and then participated in an osteopathic session, the second intervention. Outcome Measures • For the first evaluation of visual function at baseline, 3 tests were performed: (1) a visual acuity test; (2) a cover test for near and distance vision; and (3) a test for near point convergence. The visual function evaluation (all 3 tests) occurred after the 2 types of treatment (T1, T2). Finally, a visual function evaluation (all 3 tests) occurred at a follow-up session 1 mo after the end of treatment (T3). Results • The intervention produced a significant improvement in visual acuity, due to the multidisciplinary approach of treatment with hypnotherapy and osteopathy, and achieved a result that was maintained in the medium term. Conclusions • Hypnosis and osteopathy produced a significant improvement in visual acuity and the result was maintained in the medium term. Further studies are needed to verify the efficacy of the 2 treatments.
Horowitz-Kraus, Tzipi; DiFrancesco, Mark; Kay, Benjamin; Wang, Yingying; Holland, Scott K.
2015-01-01
The Reading Acceleration Program, a computerized reading-training program, increases activation in neural circuits related to reading. We examined the effect of the training on the functional connectivity between independent components related to visual processing, executive functions, attention, memory, and language during rest after the training. Children 8–12 years old with reading difficulties and typical readers participated in the study. Behavioral testing and functional magnetic resonance imaging were performed before and after the training. Imaging data were analyzed using an independent component analysis approach. After training, both reading groups showed increased single-word contextual reading and reading comprehension scores. Greater positive correlations between the visual-processing component and the executive functions, attention, memory, or language components were found after training in children with reading difficulties. Training-related increases in connectivity between the visual and attention components and between the visual and executive function components were positively correlated with increased word reading and reading comprehension, respectively. Our findings suggest that the effect of the Reading Acceleration Program on basic cognitive domains can be detected even in the absence of an ongoing reading task. PMID:26199874
Horowitz-Kraus, Tzipi; DiFrancesco, Mark; Kay, Benjamin; Wang, Yingying; Holland, Scott K
2015-01-01
The Reading Acceleration Program, a computerized reading-training program, increases activation in neural circuits related to reading. We examined the effect of the training on the functional connectivity between independent components related to visual processing, executive functions, attention, memory, and language during rest after the training. Children 8-12 years old with reading difficulties and typical readers participated in the study. Behavioral testing and functional magnetic resonance imaging were performed before and after the training. Imaging data were analyzed using an independent component analysis approach. After training, both reading groups showed increased single-word contextual reading and reading comprehension scores. Greater positive correlations between the visual-processing component and the executive functions, attention, memory, or language components were found after training in children with reading difficulties. Training-related increases in connectivity between the visual and attention components and between the visual and executive function components were positively correlated with increased word reading and reading comprehension, respectively. Our findings suggest that the effect of the Reading Acceleration Program on basic cognitive domains can be detected even in the absence of an ongoing reading task.
Dusek, Wolfgang; Pierscionek, Barbara K; McClelland, Julie F
2010-05-25
To describe and compare visual function measures of two groups of school age children (6-14 years of age) attending a specialist eyecare practice in Austria; one group referred to the practice from educational assessment centres diagnosed with reading and writing difficulties and the other, a clinical age-matched control group. Retrospective clinical data from one group of subjects with reading difficulties (n = 825) and a clinical control group of subjects (n = 328) were examined.Statistical analysis was performed to determine whether any differences existed between visual function measures from each group (refractive error, visual acuity, binocular status, accommodative function and reading speed and accuracy). Statistical analysis using one way ANOVA demonstrated no differences between the two groups in terms of refractive error and the size or direction of heterophoria at distance (p > 0.05). Using predominately one way ANOVA and chi-square analyses, those subjects in the referred group were statistically more likely to have poorer distance visual acuity, an exophoric deviation at near, a lower amplitude of accommodation, reduced accommodative facility, reduced vergence facility, a reduced near point of convergence, a lower AC/A ratio and a slower reading speed than those in the clinical control group (p < 0.05). This study highlights the high proportions of visual function anomalies in a group of children with reading difficulties in an Austrian population. It confirms the importance of a full assessment of binocular visual status in order to detect and remedy these deficits in order to prevent the visual problems continuing to impact upon educational development.
Visual Cortical Function in Very Low Birth Weight Infants without Retinal or Cerebral Pathology
Hou, Chuan; Norcia, Anthony M.; Madan, Ashima; Tith, Solina; Agarwal, Rashi
2011-01-01
Purpose. Preterm infants are at high risk of visual and neural developmental deficits. However, the development of visual cortical function in preterm infants with no retinal or neurologic morbidity has not been well defined. To determine whether premature birth itself alters visual cortical function, swept parameter visual evoked potential (sVEP) responses of healthy preterm infants were compared with those of term infants. Methods. Fifty-two term infants and 58 very low birth weight (VLBW) infants without significant retinopathy of prematurity or neurologic morbidities were enrolled. Recruited VLBW infants were between 26 and 33 weeks of gestational age, with birth weights of less than 1500 g. Spatial frequency, contrast, and vernier offset sweep VEP tuning functions were measured at 5 to 7 months' corrected age. Acuity and contrast thresholds were derived by extrapolating the tuning functions to 0 amplitude. These thresholds and suprathreshold response amplitudes were compared between groups. Results. Preterm infants showed increased thresholds (indicating decreased sensitivity to visual stimuli) and reductions in amplitudes for all three measures. These changes in cortical responsiveness were larger in the <30 weeks ' gestational age subgroup than in the ≥30 weeks' gestational age subgroup. Conclusions. Preterm infants with VLBW had measurable and significant changes in cortical responsiveness that were correlated with gestational age. These results suggest that premature birth in the absence of identifiable retinal or neurologic abnormalities has a significant effect on visual cortical sensitivity at 5 to 7 months' of corrected age and that gestational age is an important factor in visual development. PMID:22025567