Science.gov

Sample records for pretreatment cd4 cell

  1. Differential endocytosis of CD4 in lymphocytic and nonlymphocytic cells

    PubMed Central

    1991-01-01

    The endocytosis of the T cell differentiation antigen CD4 has been investigated in CD4-transfected HeLa cells, the promyelocytic HL-60 cell line, and in a number of leukemia- or lymphoma-derived T cell lines. CD4 internalization was followed using radioiodinated antibodies in an acid-elution endocytosis assay, or by covalently modifying cell surface proteins with biotin and analyzing CD4 distributions by immunoprecipitation; both approaches gave equivalent results. The assays demonstrated that in transfected HeLa cells and in HL-60 cells CD4 was constitutively internalized and recycled in the absence of ligand. Immunogold labeling and electron microscopy demonstrated that CD4 enters cells through coated pits. In contrast to the nonlymphocytic cells, T cell lines showed very little endocytosis of CD4. Measurements of fluid phase endocytosis and morphometric analysis of the endosome compartment indicated that the endocytic capacities of HeLa and lymphoid cells are equivalent and suggested that the low level of CD4 uptake in lymphocytic cells is due to exclusion of CD4 from coated pits. This conclusion was supported by experiments using truncated CD4 molecules, lacking the bulk of the cytoplasmic domain, which were internalized equally efficiently in both transfected lymphocytes and HeLa cells. Together, these results indicate that the cytoplasmic domain of CD4 mediates the different interactions with the endocytic apparatus in lymphoid and nonlymphoid cells. We suggest that the CD4- associated lymphocyte-specific protein tyrosine kinase p56lck may be involved in preventing CD4 endocytosis in T cells. PMID:1900077

  2. Pretreatment CD4 Cell Slope and Progression to AIDS or Death in HIV-Infected Patients Initiating Antiretroviral Therapy—The CASCADE Collaboration: A Collaboration of 23 Cohort Studies

    PubMed Central

    Wolbers, Marcel; Babiker, Abdel; Sabin, Caroline; Young, Jim; Dorrucci, Maria; Chêne, Geneviève; Mussini, Cristina; Porter, Kholoud; Bucher, Heiner C.

    2010-01-01

    Background CD4 cell count is a strong predictor of the subsequent risk of AIDS or death in HIV-infected patients initiating combination antiretroviral therapy (cART). It is not known whether the rate of CD4 cell decline prior to therapy is related to prognosis and should, therefore, influence the decision on when to initiate cART. Methods and Findings We carried out survival analyses of patients from the 23 cohorts of the CASCADE (Concerted Action on SeroConversion to AIDS and Death in Europe) collaboration with a known date of HIV seroconversion and with at least two CD4 measurements prior to initiating cART. For each patient, a pre-cART CD4 slope was estimated using a linear mixed effects model. Our primary outcome was time from initiating cART to a first new AIDS event or death. We included 2,820 treatment-naïve patients initiating cART with a median (interquartile range) pre-cART CD4 cell decline of 61 (46–81) cells/µl per year; 255 patients subsequently experienced a new AIDS event or death and 125 patients died. In an analysis adjusted for established risk factors, the hazard ratio for AIDS or death was 1.01 (95% confidence interval 0.97–1.04) for each 10 cells/µl per year reduction in pre-cART CD4 cell decline. There was also no association between pre-cART CD4 cell slope and survival. Alternative estimates of CD4 cell slope gave similar results. In 1,731 AIDS-free patients with >350 CD4 cells/µl from the pre-cART era, the rate of CD4 cell decline was also not significantly associated with progression to AIDS or death (hazard ratio 0.99, 95% confidence interval 0.94–1.03, for each 10 cells/µl per year reduction in CD4 cell decline). Conclusions The CD4 cell slope does not improve the prediction of clinical outcome in patients with a CD4 cell count above 350 cells/µl. Knowledge of the current CD4 cell count is sufficient when deciding whether to initiate cART in asymptomatic patients. Please see later in the article for the Editors' Summary PMID

  3. CD4 (T-Cell) Tests

    MedlinePlus

    ... 3 to 6 months when starting antiretroviral therapy (ART, see fact sheet 403 ). Once treatment has increased ... Fact Sheet 514 ) Monitoring treatment success: With successful ART, CD4 counts rise. Sometimes they rise quickly. Other ...

  4. Sialylation regulates peripheral tolerance in CD4+ T cells.

    PubMed

    Brennan, Patrick J; Saouaf, Sandra J; Van Dyken, Steve; Marth, Jamey D; Li, Bin; Bhandoola, Avinash; Greene, Mark I

    2006-05-01

    Decreased binding by the 6C10 auto-antibody serves as a unique marker for CD4+ T cell unresponsiveness after the induction of T cell tolerance in Vbeta8.1 TCR transgenic mice. We further define the nature of the epitope recognized by the 6C10 antibody to be a subset of Thy-1 bearing incompletely sialylated N-linked glycans, and furthermore, we demonstrate that tolerant CD4+ T cells have an increased degree of cell-surface sialylation. To test the significance of the altered glycosylation state identified by the 6C10 auto-antibody in the tolerant CD4+ T cell population, surface sialic acid was cleaved enzymatically. Treatment of purified peripheral CD4+ T cells with Vibrio cholerae sialidase (VCS) leads to increased 6C10 binding, significantly enhances proliferation in the tolerant CD4+ population and corrects defects in phosphotyrosine signaling observed in the tolerant CD4+ T cell. Furthermore, in vivo administration of VCS enhances proliferation in both tolerant and naive CD4+ T cell subsets. These studies suggest that sialylation of glycoproteins on the surface of the CD4+ T cell contributes to the regulation of T cell responsiveness in the tolerant state. PMID:16291658

  5. Impact of sepsis on CD4 T cell immunity

    PubMed Central

    Cabrera-Perez, Javier; Condotta, Stephanie A.; Badovinac, Vladimir P.; Griffith, Thomas S.

    2014-01-01

    Sepsis remains the primary cause of death from infection in hospital patients, despite improvements in antibiotics and intensive-care practices. Patients who survive severe sepsis can display suppressed immune function, often manifested as an increased susceptibility to (and mortality from) nosocomial infections. Not only is there a significant reduction in the number of various immune cell populations during sepsis, but there is also decreased function in the remaining lymphocytes. Within the immune system, CD4 T cells are important players in the proper development of numerous cellular and humoral immune responses. Despite sufficient clinical evidence of CD4 T cell loss in septic patients of all ages, the impact of sepsis on CD4 T cell responses is not well understood. Recent findings suggest that CD4 T cell impairment is a multipronged problem that results from initial sepsis-induced cell loss. However, the subsequent lymphopenia-induced numerical recovery of the CD4 T cell compartment leads to intrinsic alterations in phenotype and effector function, reduced repertoire diversity, changes in the composition of naive antigen-specific CD4 T cell pools, and changes in the representation of different CD4 T cell subpopulations (e.g., increases in Treg frequency). This review focuses on sepsis-induced alterations within the CD4 T cell compartment that influence the ability of the immune system to control secondary heterologous infections. The understanding of how sepsis affects CD4 T cells through their numerical loss and recovery, as well as function, is important in the development of future treatments designed to restore CD4 T cells to their presepsis state. PMID:24791959

  6. Isolation and Characterization of Salmonid CD4+ T Cells.

    PubMed

    Maisey, Kevin; Montero, Ruth; Corripio-Miyar, Yolanda; Toro-Ascuy, Daniela; Valenzuela, Beatriz; Reyes-Cerpa, Sebastián; Sandino, Ana María; Zou, Jun; Wang, Tiehui; Secombes, Christopher J; Imarai, Mónica

    2016-05-15

    This study reports the isolation and functional characterization of rainbow trout (Oncorhynchus mykiss) CD4-1(+) T cells and the establishment of an IL-15-dependent CD4-1(+) T cell line. By using Abs specific for CD4-1 and CD3ε it was possible to isolate the double-positive T cells in spleen and head kidney. The morphology and the presence of transcripts for T cell markers in the sorted CD4-1(+)CD3ε(+) cells were studied next. Cells were found to express TCRα, TCRβ, CD152 (CTLA-4), CD154 (CD40L), T-bet, GATA-3, and STAT-1. The sorted CD4-1(+) T cells also had a distinctive functional attribute of mammalian T lymphocytes, namely they could undergo Ag-specific proliferation, using OVA as a model Ag. The OVA-stimulated cells showed increased expression of several cytokines, including IFN-γ1, IL-4/13A, IL-15, IL-17D, IL-10, and TGF-β1, perhaps indicating that T cell proliferation led to differentiation into distinct effector phenotypes. Using IL-15 as a growth factor, we have selected a lymphoid cell line derived from rainbow trout head kidney cells. The morphology, cell surface expression of CD4-1, and the presence of transcripts of T cell cytokines and transcription factors indicated that this is a CD4-1(+) T cell line. To our knowledge, this is the first demonstration of the presence of CD4-1(+)CD3ε(+) T cells in salmonids. As in mammals, CD4-1(+) T cells may be the master regulators of immune responses in fish, and therefore these findings and the new model T cell line developed will contribute to a greater understanding of T cell function and immune responses in teleost fish. PMID:27053758

  7. CD4+ T cell activation in multiple sclerosis.

    PubMed

    Verselis, S J; Goust, J M

    1987-02-01

    Interleukin-2 (IL-2) production by CD4-enriched T cells from multiple sclerosis (MS) patients and normal individuals stimulated with concanavalin A (conA) and/or autologous and allogeneic B lymphoid cell lines (B-LCL) was evaluated 24, 48 and 96 h after stimulation. ConA-stimulated CD4+ cells from MS patients did not produce significantly more IL-2 than normal CD4+ cells. In contrast, autologous B-LCL-induced IL-2 production by MS CD4+ cells significantly (P = 0.026) exceeded that produced by normal CD4+ cells identically stimulated after 24 h in culture. Differences in IL-2 production by CD4+ cells from MS patients reached highest significance using allogeneic B-LCL, whose stimulatory capacity was similar, whether established from normal individuals or MS patients. This increased IL-2 production in response to B-LCL may represent a supranormal response of CD4+ cells from MS patients to class II major histocompatibility (MHC)-associated stimuli. It suggests that the deficiency of suppressor T cell functions postulated to play a role in MS does not arise from a lack of IL-2 induction and might indicate that bursts of IL-2 production could play a role in MS. PMID:3492511

  8. Exclusive Transduction of Human CD4+ T Cells upon Systemic Delivery of CD4-Targeted Lentiviral Vectors.

    PubMed

    Zhou, Qi; Uhlig, Katharina M; Muth, Anke; Kimpel, Janine; Lévy, Camille; Münch, Robert C; Seifried, Janna; Pfeiffer, Anett; Trkola, Alexandra; Coulibaly, Cheick; von Laer, Dorothee; Wels, Winfried S; Hartwig, Udo F; Verhoeyen, Els; Buchholz, Christian J

    2015-09-01

    Playing a central role in both innate and adaptive immunity, CD4(+) T cells are a key target for genetic modifications in basic research and immunotherapy. In this article, we describe novel lentiviral vectors (CD4-LV) that have been rendered selective for human or simian CD4(+) cells by surface engineering. When applied to PBMCs, CD4-LV transduced CD4(+) but not CD4(-) cells. Notably, also unstimulated T cells were stably genetically modified. Upon systemic or intrasplenic administration into mice reconstituted with human PBMCs or hematopoietic stem cells, reporter gene expression was predominantly detected in lymphoid organs. Evaluation of GFP expression in organ-derived cells and blood by flow cytometry demonstrated exclusive gene transfer into CD4(+) human lymphocytes. In bone marrow and spleen, memory T cells were preferentially hit. Toward therapeutic applications, we also show that CD4-LV can be used for HIV gene therapy, as well as for tumor therapy, by delivering chimeric Ag receptors. The potential for in vivo delivery of the FOXP3 gene was also demonstrated, making CD4-LV a powerful tool for inducible regulatory T cell generation. In summary, our work demonstrates the exclusive gene transfer into a T cell subset upon systemic vector administration opening an avenue toward novel strategies in immunotherapy.

  9. Dysregulation of CD4(+) T Cell Subsets in Intracranial Aneurysm.

    PubMed

    Zhang, Hai-Feng; Zhao, Ming-Guang; Liang, Guo-Biao; Yu, Chun-Yong; He, Wenxiu; Li, Zhi-Qing; Gao, Xu

    2016-02-01

    Intracranial aneurysms (IAs) and potential IA rupture are one of the direct causes of permanent brain damage and mortality. Interestingly, the major risk factors of IA development, including hemodynamic stress, hypertension, smoking, and genetic predispositions, are closely associated with a proinflammatory immune status. Therefore, we examined the roles of CD4(+) T cells in IA pathogenesis. IA patients exhibited peripheral CD4(+) T-cell imbalance, with overrepresented T helper 1 (Th1) and Th17 activities and underrepresented Th2 and regulatory T (Treg) activities, including increased IFN-γ, TNF-α, and IL-17 production and decreased IL-10 production from total CD4(+) T cells. Chemokine receptors CXCR3 and CCR6 were used to identify Th1, Th2, and Th17 cell subsets, and CD4(+)CD25(hi) was used to identify Treg cells. Based on these markers, the data then showed altered cytokine production by each cell type and shifted subpopulation frequency. Moreover, this shift in frequency was directly correlated with IA severity. To examine the underlying mechanism of CD4(+) T cell skewing, we cocultured CD4(+) T cells with autologous monocytes and found that coculture with monocytes could significantly increase IFN-γ and IL-17 production through contact-independent mechanisms, demonstrating that monocytes could potentially contribute to the altered CD4(+) T cell composition in IA. Analyzing mRNA transcripts revealed significantly upregulated IL-1β and TNF-α expression by monocytes from IA patients. We found a loss of CD4(+) T cell subset balance that was likely to promote a higher state of inflammation in IA, which may exacerbate the disease through a positive feedback loop.

  10. Stephanthraniline A suppressed CD4(+) T cell-mediated immunological hepatitis through impairing PKCθ function.

    PubMed

    Chen, Feng-Yang; Zhou, Li-Fei; Li, Xiao-Yu; Zhao, Jia-Wen; Xu, Shi-Fang; Huang, Wen-Hai; Gao, Li-Juan; Hao, Shu-Juan; Ye, Yi-Ping; Sun, Hong-Xiang

    2016-10-15

    Stephanthraniline A (STA), a C21 steroid isolated from Stephanotis mucronata (Blanco) Merr., was previously shown to inhibit T cells activation and proliferation in vitro and in vivo. The purpose of this study was to further evaluate the in vivo immunosuppressive activity of STA and to elucidate its potential mechanisms. The results showed that pretreatment with STA significantly attenuated concanavalin A (Con A)-induced hepatitis and reduced CD4(+) T cells activation and aggregation in hepatic tissue in mice. STA directly suppressed the activation and proliferation of Con A-induced CD4(+) T cells, and inhibited NFAT, NFκB and MAPK signaling cascades in activated CD4(+) T cells in vitro. Moreover, it was proved that STA inhibited T cells activation and proliferation through proximal T cell-receptor (TCR) signaling- and Ca(2+) signaling-independent way. The molecular docking studies predicted that STA could tight bind to PKCθ via five hydrogen. The further findings indicated STA directly inhibited PKCθ kinase activity, and its phosphorylation in activated CD4(+) T cells in vitro. Collectively, the present study indicated that STA could protect against CD4(+) T cell-mediated immunological hepatitis in mice through PKCθ and its downstream NFAT, NFκB and MAPK signaling cascades. These results highlight the potential of STA as an effective leading compound for use in the treatment of CD4(+) T cell-mediated inflammatory and autoimmune diseases.

  11. HIV exceptionalism, CD4+ cell testing, and conscientious subversion

    PubMed Central

    Jansen, L

    2005-01-01

    In recent years, many states in the United States have passed legislation requiring laboratories to report the names of patients with low CD4 cell counts to their state Departments of Health. This name reporting is an integral part of the growing number of "HIV Reporting and Partner Notification Laws" which have emerged in response to recently revised guidelines suggested by the National Centers for Disease Control (CDC). Name reporting for patients with low CD4 cell counts allows for a more accurate tracking of the natural history of HIV disease. However, given that this test is now considered to be an "indicator" of HIV, should it be subject to the same strict consent required for HIV testing? While the CDC has recommended that each state develop its own consent requirements for CD4 cell testing, most states have continued to rely on the presumed consent standards for CD4 cell testing that were in place before the passage of name reporting statutes. This allows physicians who treat patients who refuse HIV testing to order a CD4 cell blood analysis to gather information that is indicative of their patient's HIV status. This paper examines the ethical and legal issues associated with the practice of "conscientious subversion" as it arises when clinicians use CD4 cell counts as a surrogate for HIV testing. PMID:15923478

  12. Infection of brain microglial cells by human immunodeficiency virus type 1 is CD4 dependent.

    PubMed Central

    Jordan, C A; Watkins, B A; Kufta, C; Dubois-Dalcq, M

    1991-01-01

    In the central nervous system of AIDS patients, human immunodeficiency virus (HIV) infects primarily microglia, a cell type of bone marrow origin. Moreover, microglial cells isolated from adult human brain support the replication of macrophage-adapted strains of HIV type 1 (HIV-1) (B.A. Watkins, H.H. Dorn, W.B. Kelly, R.C. Armstrong, B. Potts, F. Michaels, C.V. Kufta, and M. Dubois-Dalcq, Science 249:549-553, 1990). To determine whether the CD4 receptor, which is expressed in brain, mediates the entry of HIV-1 in microglial cells, we analyzed CD4 transcript expression in cultured microglia using highly sensitive polymerase chain reaction detection of cDNAs synthesized from RNA. With this method, CD4 transcripts could be detected in cultured microglia--as well as in various human brain regions and cultured macrophages used as positive controls--along with transcripts for the LDL and Fc receptors which are characteristic of cells of the macrophage lineage. We then attempted to block viral entry into microglial cells using anti-CD4 antibodies or soluble CD4 (sCD4), which recognize binding sites on CD4 and HIV-1 glycoprotein gp120, respectively. Cultures were pretreated with blocking antibodies (Leu-3a, OKT4A) or virus was preincubated with sCD4 prior to infection with HIV-1 strain AD87(M) or BaL. With either viral strain, these treatments resulted in the prevention of infection or significant and dose-dependent reduction in the number of infected cells and in the levels of reverse transcriptase or p24 antigen released in the medium. Thus, brain-derived microglial cells, which are the primary target of HIV-1 infection in the brain, express the CD4 receptor and this receptor is effectively used for viral entry in vitro. Images PMID:1702842

  13. Long-term increase in CD4+ T-cell counts during combination antiretroviral therapy for HIV-1 infection

    PubMed Central

    Lok, Judith J; Bosch, Ronald J; Benson, Constance A; Collier, Ann C; Robbins, Gregory K; Shafer, Robert W; Hughes, Michael D

    2010-01-01

    Objective To inform guidelines concerning when to initiate combination antiretroviral therapy (ART), we investigated whether CD4+ T-cell counts (CD4 counts) continue to increase over long periods of time on ART. Losses-to-follow-up and some patients discontinuing ART at higher CD4 counts hamper such evaluation, but novel statistical methods can help address these issues. We estimated the long-term CD4 count trajectory accounting for losses-to-follow-up and treatment discontinuations. Design The study population included 898 U.S. patients first initiating ART in a randomized trial (ACTG 384); 575 were subsequently prospectively followed in an observational study (ALLRT). Methods Inverse probability of censoring weighting statistical methods were used to estimate the CD4 count trajectory accounting for losses-to-follow-up and ART-discontinuations, overall and for pre-treatment CD4 count categories ≤ 200, 201–350, 351–500, and >500 cells/mm3. Results Median CD4 count increased from 270 cells/mm3 pre-ART to an estimated 556 at three and 532 cells/mm3 at seven years after starting ART in analyses ignoring treatment discontinuations; and to 570 and 640 cells/mm3, respectively, had all patients continued ART. However, even had ART been continued, an estimated 25%, 9%, 3% and 2% of patients with pre-treatment CD4 counts of ≤ 200, 201–350, 351–500, and >500 cells/mm3 would have had CD4 counts ≤350 cells/mm3 after seven years. Conclusions If patients remain on ART, CD4 counts increase in most patients for at least seven years. However, the substantial percentage of patients starting therapy at low CD4 counts who still had low CD4 counts after seven years provides support for ART initiation at higher CD4 counts. PMID:20467286

  14. CD4 cell count and CD4/CD8 ratio increase during rituximab maintenance in granulomatosis with polyangiitis patients

    PubMed Central

    Nossent, Johannes C.

    2016-01-01

    Introduction Rituximab (RTX) is a B cell-depleting agent approved for the treatment of granulomatosis with polyangiitis (GPA). RTX reduces antibody producing precursor plasma cells and inhibits B and T cells interaction. Infections related to T cell immunodeficiency are not infrequent during RTX treatment. Our study investigated CD4 cell count and CD4/CD8 ratio in GPA patients during the first two years of long-term RTX treatment. Methods A single centre cohort study of 35 patients who received median total cumulative dose of cyclophosphamide (CYC) of 15 g and were treated with RTX 2 g followed by retreatment with either 2 g once annually or 1 g biannually. Serum levels of total immunoglobulin (Ig) and lymphocytes subsets were recorded at RTX initiation and at 3, 6, 12, 18 and 24 months. Low CD4 count and inverted CD4/CD8 ratio were defined as CD4 < 0.3 × 109/l and ratio < 1. Results The CD4 cell count and CD4/CD8 ratio decreased slightly following the initial RTX treatment and then increased gradually during maintenance treatment. While the proportion of patients with low CD4 cell count decreased from 43% at baseline to 18% at 24 months, the ratio remained inverted in 40%. Oral daily prednisolone dose at baseline, CYC exposure and the maintenance regimen did not influence the CD4 cell count and ratio. Being older (p = 0.012) and having a higher CRP (p = 0.044) and ESR (p = 0.024) at baseline significantly increased the risk of inverted CD4/CD8 ratio at 24 months. Inverted ratio at baseline associated with lower total Ig levels during the study. Conclusions Overall, the CD4 and CD4/CD8 ratio increased during maintenance RTX therapy in GPA with no discernible impact of other immunosuppressive therapy. However the increase in CD4 was not followed by an increase in the CD4/CD8 ratio, especially in older patients. Inverted CD4/CD8 ratio associated with lower Ig levels, suggesting a more profound B cell depleting effect of RTX with a relative increase in CD8

  15. CD4 cell count and CD4/CD8 ratio increase during rituximab maintenance in granulomatosis with polyangiitis patients

    PubMed Central

    Nossent, Johannes C.

    2016-01-01

    Introduction Rituximab (RTX) is a B cell-depleting agent approved for the treatment of granulomatosis with polyangiitis (GPA). RTX reduces antibody producing precursor plasma cells and inhibits B and T cells interaction. Infections related to T cell immunodeficiency are not infrequent during RTX treatment. Our study investigated CD4 cell count and CD4/CD8 ratio in GPA patients during the first two years of long-term RTX treatment. Methods A single centre cohort study of 35 patients who received median total cumulative dose of cyclophosphamide (CYC) of 15 g and were treated with RTX 2 g followed by retreatment with either 2 g once annually or 1 g biannually. Serum levels of total immunoglobulin (Ig) and lymphocytes subsets were recorded at RTX initiation and at 3, 6, 12, 18 and 24 months. Low CD4 count and inverted CD4/CD8 ratio were defined as CD4 < 0.3 × 109/l and ratio < 1. Results The CD4 cell count and CD4/CD8 ratio decreased slightly following the initial RTX treatment and then increased gradually during maintenance treatment. While the proportion of patients with low CD4 cell count decreased from 43% at baseline to 18% at 24 months, the ratio remained inverted in 40%. Oral daily prednisolone dose at baseline, CYC exposure and the maintenance regimen did not influence the CD4 cell count and ratio. Being older (p = 0.012) and having a higher CRP (p = 0.044) and ESR (p = 0.024) at baseline significantly increased the risk of inverted CD4/CD8 ratio at 24 months. Inverted ratio at baseline associated with lower total Ig levels during the study. Conclusions Overall, the CD4 and CD4/CD8 ratio increased during maintenance RTX therapy in GPA with no discernible impact of other immunosuppressive therapy. However the increase in CD4 was not followed by an increase in the CD4/CD8 ratio, especially in older patients. Inverted CD4/CD8 ratio associated with lower Ig levels, suggesting a more profound B cell depleting effect of RTX with a relative increase in CD8

  16. Regulated expression of human CD4 rescues helper T cell development in mice lacking expression of endogenous CD4.

    PubMed Central

    Killeen, N; Sawada, S; Littman, D R

    1993-01-01

    During T cell development, precursor thymocytes that co-express the CD4 and CD8 glycoproteins give rise to mature progeny expressing one of these molecules to the exclusion of the other. Continued expression of only CD4 is the hallmark of mature helper T cells, whereas cytotoxic T cells express CD8 and extinguish CD4. The differentiation program that generates the two T cell subsets is likely to be intimately tied to regulation of expression of these cell surface molecules. We now describe the use of a murine CD4 enhancer in the generation of transgenic mice expressing physiologic levels of human CD4. The transgene is appropriately regulated during T cell development and includes the necessary cis-acting sequences for extinguishing expression in the CD8 lineage. Furthermore, in mice whose endogenous CD4 gene is inactivated, the transgenic human CD4 mediates rescue of the CD4 lineage and restoration of normal helper cell functions. The generation of these mice exemplifies a general approach for developing reliable animal models for the human immune system. Images PMID:8467804

  17. Functional and Phenotypic Plasticity of CD4+ T Cell Subsets

    PubMed Central

    Caza, Tiffany; Landas, Steve

    2015-01-01

    The remarkable plasticity of CD4+ T cells allows individuals to respond to environmental stimuli in a context-dependent manner. A balance of CD4+ T cell subsets is critical to mount responses against pathogen challenges to prevent inappropriate activation, to maintain tolerance, and to participate in antitumor immune responses. Specification of subsets is a process beginning in intrathymic development and continuing within the circulation. It is highly flexible to adapt to differences in nutrient availability and the tissue microenvironment. CD4+ T cell subsets have significant cross talk, with the ability to “dedifferentiate” given appropriate environmental signals. This ability is dependent on the metabolic status of the cell, with mTOR acting as the rheostat. Autoimmune and antitumor immune responses are regulated by the balance between regulatory T cells and Th17 cells. When a homeostatic balance of subsets is not maintained, immunopathology can result. CD4+ T cells carry complex roles within tumor microenvironments, with context-dependent immune responses influenced by oncogenic drivers and the presence of inflammation. Here, we examine the signals involved in CD4+ T cell specification towards each subset, interconnectedness of cytokine networks, impact of mTOR signaling, and cellular metabolism in lineage specification and provide a supplement describing techniques to study these processes. PMID:26583116

  18. Analysis of CD4-positive T cell subpopulation in sarcoidosis.

    PubMed Central

    Gerli, R; Darwish, S; Broccucci, L; Minotti, V; Spinozzi, F; Cernetti, C; Bertotto, A; Rambotti, P

    1988-01-01

    Double-labelling immunofluorescence analysis within the CD4+ cell subset was carried out in 27 bronchoalveolar lavage fluids and 11 peripheral blood samples of sarcoidosis patients with anti-TQ1, anti-2H4 and anti-4B4 monoclonal antibodies. Helper/inducer CD4+TQ1-/4B4+ cells were strongly increased in the lung and slightly, but significantly, decreased in the blood of sarcoidosis patients with respect to normal controls. No differences were found in the number of both lung and blood CD4+2H4+ cells between sarcoidosis patients and controls. The findings are further evidence for a compartmentalization of T cell subsets in sarcoidosis. PMID:3263230

  19. A novel differentiation pathway from CD4+ T cells to CD4− T cells for maintaining immune system homeostasis

    PubMed Central

    Zhao, X; Sun, G; Sun, X; Tian, D; Liu, K; Liu, T; Cong, M; Xu, H; Li, X; Shi, W; Tian, Y; Yao, J; Guo, H; Zhang, D

    2016-01-01

    CD4+ T lymphocytes are key players in the adaptive immune system and can differentiate into a variety of effector and regulatory T cells. Here, we provide evidence that a novel differentiation pathway of CD4+ T cells shifts the balance from a destructive T-cell response to one that favors regulation in an immune-mediated liver injury model. Peripheral CD4−CD8−NK1.1− double-negative T cells (DNT) was increased following Concanavalin A administration in mice. Adoptive transfer of DNT led to significant protection from hepatocyte necrosis by direct inhibition on the activation of lymphocytes, a process that occurred primarily through the perforin-granzyme B route. These DNT converted from CD4+ rather than CD8+ T cells, a process primarily regulated by OX40. DNT migrated to the liver through the CXCR3-CXCL9/CXCL10 interaction. In conclusion, we elucidated a novel differentiation pathway from activated CD4+ T cells to regulatory DNT cells for maintaining homeostasis of the immune system in vivo, and provided key evidence that utilizing this novel differentiation pathway has potential application in the prevention and treatment of autoimmune diseases. PMID:27077809

  20. Requirement for CD4 T Cell Help in Generating Functional CD8 T Cell Memory

    NASA Astrophysics Data System (ADS)

    Shedlock, Devon J.; Shen, Hao

    2003-04-01

    Although primary CD8 responses to acute infections are independent of CD4 help, it is unknown whether a similar situation applies to secondary responses. We show that depletion of CD4 cells during the recall response has minimal effect, whereas depletion during the priming phase leads to reduced responses by memory CD8 cells to reinfection. Memory CD8 cells generated in CD4+/+ mice responded normally when transferred into CD4-/- hosts, whereas memory CD8 cells generated in CD4-/- mice mounted defective recall responses in CD4+/+ adoptive hosts. These results demonstrate a previously undescribed role for CD4 help in the development of functional CD8 memory.

  1. Plasticity of Human CD4 T Cell Subsets

    PubMed Central

    Geginat, Jens; Paroni, Moira; Maglie, Stefano; Alfen, Johanna Sophie; Kastirr, Ilko; Gruarin, Paola; De Simone, Marco; Pagani, Massimiliano; Abrignani, Sergio

    2014-01-01

    Human beings are exposed to a variety of different pathogens, which induce tailored immune responses and consequently generate highly diverse populations of pathogen-specific T cells. CD4+ T cells have a central role in adaptive immunity, since they provide essential help for both cytotoxic T cell- and antibody-mediated responses. In addition, CD4+ regulatory T cells are required to maintain self-tolerance and to inhibit immune responses that could damage the host. Initially, two subsets of CD4+ helper T cells were identified that secrete characteristic effector cytokines and mediate responses against different types of pathogens, i.e., IFN-γ secreting Th1 cells that fight intracellular pathogens, and IL-4 producing Th2 cells that target extracellular parasites. It is now well established that this dichotomy is insufficient to describe the complexity of CD4+ T cell differentiation, and in particular the human CD4 compartment contains a myriad of T cell subsets with characteristic capacities to produce cytokines and to home to involved tissues. Moreover, it has become increasingly clear that these T cell subsets are not all terminally differentiated cells, but that the majority is plastic and that in particular central memory T cells can acquire different properties and functions in secondary immune responses. In addition, there is compelling evidence that helper T cells can acquire regulatory functions upon chronic stimulation in inflamed tissues. The plasticity of antigen-experienced human T cell subsets is highly relevant for translational medicine, since it opens new perspectives for immune-modulatory therapies for chronic infections, autoimmune diseases, and cancer. PMID:25566245

  2. Biomarkers of CD4+ CTL cell Mediated Immunity to Tuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The immune responses mediated by interactions between T-lymphocyte subsets and mycobacteria-infected macrophages are critical for control of tuberculosis. In these studies, the bovine model was used to characterize the cytolytic and mycobactericidal CD4+ T cell response induced by BCG vaccination. ...

  3. CD4 T-cell memory generation and maintenance.

    PubMed

    Gasper, David J; Tejera, Melba Marie; Suresh, M

    2014-01-01

    Immunologic memory is the adaptive immune system's powerful ability to remember a previous antigen encounter and react with accelerated vigor upon antigen re-exposure. It provides durable protection against reinfection with pathogens and is the foundation for vaccine-induced immunity. Unlike the relatively restricted immunologic purview of memory B cells and CD8 T cells, the field of CD4 T-cell memory must account for multiple distinct lineages with diverse effector functions, the issue of lineage commitment and plasticity, and the variable distribution of memory cells within each lineage. Here, we discuss the evidence for lineage-specific CD4 T-cell memory and summarize the known factors contributing to memory-cell generation, plasticity, and long-term maintenance.

  4. Human Immunodeficiency Virus Type 1 Attachment to HeLa CD4 Cells Is CD4 Independent and gp120 Dependent and Requires Cell Surface Heparans

    PubMed Central

    Mondor, Isabelle; Ugolini, Sophie; Sattentau, Quentin J.

    1998-01-01

    The binding of human immunodeficiency virus type 1 (HIV-1) (Hx10) virions to two different cell lines was analyzed by using a novel assay based on the detection, by anti-HLA-DR-specific antibodies, of HLA-DR+ virus binding to HLA-DR− cells. Virion attachment to the CD4+-T-cell line A3.01 was highly CD4 dependent in that it was potently inhibited by CD4 monoclonal antibodies (MAbs), and little virus binding to the CD4− sister A2.01 line was observed. By contrast, virion binding to HeLa cells expressing moderate or high levels of CD4 was equivalent to, or lower than, binding to wild-type CD4− HeLa cells. Moreover, several CD4 MAbs did not reduce, but enhanced, HIV-1 attachment to HeLa-CD4 cells. CD4 was required for infection of HeLa cells, however, demonstrating a postattachment role for this receptor. MAbs specific for the V2 and V3 loops and the CD4i epitope of gp120 strongly inhibited virion binding to HeLa-CD4 cells, whereas MAbs specific for the CD4bs and the 2G12 epitopes enhanced attachment. Despite this, all gp120- and gp41-specific MAbs tested neutralized infectivity on HeLa-CD4 cells. HIV-1 attachment to HeLa cells was only partially inhibited by MAbs specific for adhesion molecules present on the virus or target cells but was completely blocked by polyanions such as heparin, dextran sulfate, and pentosan sulfate. Treatment of HeLa-CD4 cells with heparinases completely eliminated HIV attachment and infection, strongly implicating cell surface heparans in the attachment process. CD4 dependence for HIV-1 attachment to target cells is thus highly cell line specific and may be replaced by other ligand-receptor interactions. PMID:9557643

  5. Transporters for Antiretroviral Drugs in Colorectal CD4+ T Cells and Circulating α4β7 Integrin CD4+ T Cells: Implications for HIV Microbicides.

    PubMed

    Mukhopadhya, Indrani; Murray, Graeme I; Duncan, Linda; Yuecel, Raif; Shattock, Robin; Kelly, Charles; Iannelli, Francesco; Pozzi, Gianni; El-Omar, Emad M; Hold, Georgina L; Hijazi, Karolin

    2016-09-01

    CD4+ T lymphocytes in the colorectal mucosa are key in HIV-1 transmission and dissemination. As such they are also the primary target for antiretroviral (ARV)-based rectal microbicides for pre-exposure prophylaxis. Drug transporters expressed in mucosal CD4+ T cells determine ARV distribution across the cell membrane and, most likely, efficacy of microbicides. We describe transporters for antiretroviral drugs in colorectal mucosal CD4+ T lymphocytes and compare gene expression with circulating α4β7+CD4+ T cells, which traffic to the intestine and have been shown to be preferentially infected by HIV-1. Purified total CD4+ T cells were obtained from colorectal tissue and blood samples by magnetic separation. CD4+ T cells expressing α4β7 integrin were isolated by fluorescence-activated cell sorting from peripheral blood mononuclear cells of healthy volunteers. Expressions of 15 efflux and uptake drug transporter genes were quantified using Taqman qPCR assays. Expression of efflux transporters MRP3, MRP5, and BCRP and uptake transporter CNT2 were significantly higher in colorectal CD4+ T cells compared to circulating CD4+ T cells (p = 0.01-0.03). Conversely, circulating α4β7+CD4+ T cells demonstrated significantly higher expression of OATPD compared to colorectal CD4+ T cells (p = 0.001). To the best of our knowledge this is the first report of drug transporter gene expression in colorectal CD4+ and peripheral α4β7+CD4+ T cells. The qualitative and quantitative differences in drug transporter gene expression profiles between α4β7+CD4+ T cells and total mucosal CD4+ T cells may have significant implications for the efficacy of rectally delivered ARV-microbicides. Most notably, we have identified efflux drug transporters that could be targeted by selective inhibitors or beneficial drug-drug interactions to enhance intracellular accumulation of antiretroviral drugs.

  6. Macrophages overexpressing Aire induce CD4+Foxp3+ T cells.

    PubMed

    Sun, Jitong; Fu, Haiying; Wu, Jing; Zhu, Wufei; Li, Yi; Yang, Wei

    2013-01-01

    Aire plays an important role in central immune tolerance by regulating the transcription of thousands of genes. However, the role of Aire in the peripheral immune system is poorly understood. Regulatory T (Treg) cells are considered essential for the maintenance of peripheral tolerance, but the effect of Aire on Treg cells in the peripheral immune system is currently unknown. In this study, we investigated the effects of macrophages overexpressing Aire on CD4+Foxp3+ Treg cells by co-culturing Aire-overexpressing RAW264.7 cells or their supernatant with splenocytes. The results show that macrophages overexpressing Aire enhanced the expression of Foxp3 mRNA and induced different subsets of Treg cells in splenocytes through cell-cell contact or a co-culture supernatants. TGF-β is a key molecule in the increases of CD4+CD45RA+Foxp3hi T cell and activating Treg (aTreg) levels observed following cell‑supernatant co-culturing. Subsets of Treg cells were induced by Aire-overexpressing macrophages, and the manipulation of Treg cells by the targeting of Aire may provide a method for the treatment of inflammatory or autoimmune diseases.

  7. Induction of CD4 suppressor T cells with anti-Leu-8 antibody

    SciTech Connect

    Kanof, M.E.; Strober, W.; James, S.P.

    1987-07-01

    To characterize the conditions under which CD4 T cells suppress polyclonal immunoglobulin synthesis, we investigated the capacity of CD4 T cells that coexpress the surface antigen recognized by the monoclonal antibody anti-Leu-8 to mediate suppression. In an in vitro system devoid of CD8 T cells, CD4, Leu-8+ T cells suppressed pokeweed mitogen-induced immunoglobulin synthesis. Similarly, suppressor function was induced in unfractionated CD4 T cell populations after incubation with anti-Leu-8 antibody under cross-linking conditions. This induction of suppressor function by anti-Leu-8 antibody was not due to expansion of the CD4, Leu-8+ T cell population because CD4 T cells did not proliferate in response to anti-Leu-8 antibody. However, CD4, Leu-8+ T cell-mediated suppression was radiosensitive. Finally, CD4, Leu-8+ T cells do not inhibit immunoglobulin synthesis when T cell lymphokines were used in place of helper CD4 T cells (CD4, Leu-8- T cells), suggesting that CD4 T cell-mediated suppression occurs at the T cell level. We conclude that CD4 T cells can be induced to suppress immunoglobulin synthesis by modulation of the membrane antigen recognized by anti-Leu-8 antibody.

  8. HIVgp120 activates autoreactive CD4-specific T cell responses by unveiling of hidden CD4 peptides during processing

    PubMed Central

    1995-01-01

    T cells are made tolerant only to those self-peptides that are presented in sufficient amounts by antigen-presenting cells. They ignore cryptic self-determinants, such as either those not generated by processing machinery or generated in insufficient amounts. It is anticipated that mechanisms that either change antigen processing or increase the yield of previously "invisible" peptides may be capable of inducing T cell priming and, if they are self-maintained, may sustain autoimmune diseases. Herein, we demonstrate for the first time a mechanism by which the gp120 human immunodeficiency virus-I, by downregulating plasma membrane CD4 and increasing its processing, unveils hidden CD4 epitopes, inducing an autoimmune-specific T cell response. PMID:7760011

  9. Tyrosine kinase activity of CD4-associated p56lck may not be required for CD4-dependent T-cell activation.

    PubMed Central

    Collins, T L; Burakoff, S J

    1993-01-01

    The lymphoid-specific tyrosine kinase p56lck (Lck) is critical for the development and activation of T lymphocytes, and Lck kinase activity has been implicated in both T-cell antigen receptor/CD3- and CD4-mediated signaling. CD4-dependent T-cell activation has been demonstrated to be dependent upon the association of CD4 with Lck. To examine the role of the kinase activity of Lck in CD4-dependent T-cell activation, we have generated several kinase-deficient mutants of Lck. When transfected into CD4+ murine T-cell hybridoma cells, these mutants cause approximately 90% diminution in CD4-associated Lck kinase activity. Specifically, upon CD4 crosslinking there is decreased Lck autophosphorylation and decreased phosphorylation of an exogenous substrate. When CD4 is crosslinked to the T-cell antigen receptor-CD3 complex, decreased phosphorylation of associated substrates is also observed. In spite of this striking inhibition of Lck kinase function, cells expressing the kinase-deficient mutants demonstrate normal or enhanced CD4-dependent antigen responsiveness. These data demonstrate that the level of Lck kinase activity does not correlate with its CD4-associated function and suggest that the kinase activity of Lck may not be required for CD4-mediated signaling. Images Fig. 1 Fig. 2 Fig. 3 PMID:7505449

  10. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Zarling, Joyce M.; Moran, Patricia A.; Haffar, Omar; Sias, Joan; Richman, Douglas D.; Spina, Celsa A.; Myers, Dorothea E.; Kuebelbeck, Virginia; Ledbetter, Jeffrey A.; Uckun, Fatih M.

    1990-09-01

    FUNCTIONAL impairment and selective depletion of CD4+ T cells, the hallmark of AIDS, are at least partly caused by human immunodeficiency virus (HIV-1) type 1 binding to the CD4 molecule and infecting CD4+ cells1,2. It may, therefore, be of therapeutic value to target an antiviral agent to CD4+ cells to prevent infection and to inhibit HIV-1 production in patients' CD4+ cells which contain proviral DNA3,4. We report here that HIV-1 replication in normal primary CD4+ T cells can be inhibited by pokeweed antiviral protein, a plant protein of relative molecular mass 30,000 (ref. 5), which inhibits replication of certain plant RNA viruses6-8, and of herpes simplex virus, poliovirus and influenza virus9-11. Targeting pokeweed antiviral protein to CD4+ T cells by conjugating it to monoclonal antibodies reactive with CDS, CD7 or CD4 expressed on CD4+ cells, increased its anti-HIV potency up to 1,000-fold. HIV-1 replication is inhibited at picomolar concentrations of conjugates of pokeweed antiviral protein and monoclonal antibodies, which do not inhibit proliferation of normal CD4+ T cells or CD4-dependent responses. These conjugates inhibit HIV-1 protein synthesis and also strongly inhibit HIV-1 production in activated CD4+ T cells from infected patients.

  11. Beta-catenin signaling mediates CD4 expression on mature CD8+ T cells.

    PubMed

    Schenkel, Jason M; Zloza, Andrew; Li, Wei; Narasipura, Srinivas D; Al-Harthi, Lena

    2010-08-15

    Upon activation, a subset of mature human CD8(+) T cells re-expresses CD4 dimly. This CD4(dim)CD8(bright) T cell population is genuine and enriched in antiviral CD8(+) T cell responses. The signaling pathway that leads to CD4 re-expression on mature CD8(+) T cells is not clear. Given that Wnt/beta-catenin signaling plays a critical role in the transition of CD4(-)CD8(-) to CD4(+)CD8(+) thymocytes, we determined whether beta-catenin mediates CD4 expression on mature CD8(+) T cells. We demonstrate that active beta-catenin expression is 20-fold higher on CD4(dim)CD8(bright) than CD4(-)CD8(+) T cells. Activation of beta-catenin signaling, through LiCl or transfection with a constitutively active construct of beta-catenin, induced CD4 on CD8(+) T cells by approximately 10-fold. Conversely, inhibition of beta-catenin signaling through transfection with a dominant-negative construct for T cell factor-4, a downstream effector of beta-catenin signaling, diminished CD4 expression on CD8(+) T cells by 50% in response to T cell activation. Beta-catenin-mediated induction of CD4 on CD8(+) T cells is transcriptionally regulated, as it induced CD4 mRNA, and T cell factor/lymphoid enhancer factor sites were identified within the human CD4 promoter. Further, beta-catenin expression induced the antiapoptotic factor BcL-xL, suggesting that beta-catenin may mediate protection against activation-induced cell death. Collectively, these data demonstrate that beta-catenin is critical in inducing CD4 expression on mature CD8(+) T cells, suggesting that it is a common pathway for CD4 upregulation among thymocytes and mature CD8(+) T cells. PMID:20631314

  12. Progressive CD4+ central–memory T cell decline results in CD4+ effector–memory insufficiency and overt disease in chronic SIV infection

    PubMed Central

    Okoye, Afam; Meier-Schellersheim, Martin; Brenchley, Jason M.; Hagen, Shoko I.; Walker, Joshua M.; Rohankhedkar, Mukta; Lum, Richard; Edgar, John B.; Planer, Shannon L.; Legasse, Alfred; Sylwester, Andrew W.; Piatak, Michael; Lifson, Jeffrey D.; Maino, Vernon C.; Sodora, Donald L.; Douek, Daniel C.; Axthelm, Michael K.; Grossman, Zvi; Picker, Louis J.

    2007-01-01

    Primary simian immunodeficiency virus (SIV) infections of rhesus macaques result in the dramatic depletion of CD4+ CCR5+ effector–memory T (TEM) cells from extra-lymphoid effector sites, but in most infections, an increased rate of CD4+ memory T cell proliferation appears to prevent collapse of effector site CD4+ TEM cell populations and acute-phase AIDS. Eventually, persistent SIV replication results in chronic-phase AIDS, but the responsible mechanisms remain controversial. Here, we demonstrate that in the chronic phase of progressive SIV infection, effector site CD4+ TEM cell populations manifest a slow, continuous decline, and that the degree of this depletion remains a highly significant correlate of late-onset AIDS. We further show that due to persistent immune activation, effector site CD4+ TEM cells are predominantly short-lived, and that their homeostasis is strikingly dependent on the production of new CD4+ TEM cells from central–memory T (TCM) cell precursors. The instability of effector site CD4+ TEM cell populations over time was not explained by increasing destruction of these cells, but rather was attributable to progressive reduction in their production, secondary to decreasing numbers of CCR5− CD4+ TCM cells. These data suggest that although CD4+ TEM cell depletion is a proximate mechanism of immunodeficiency, the tempo of this depletion and the timing of disease onset are largely determined by destruction, failing production, and gradual decline of CD4+ TCM cells. PMID:17724130

  13. The role of CD4 on mechanical properties of live cell membrane.

    PubMed

    Bui, Van-Chien; Nguyen, Thi-Huong

    2016-01-01

    Although much progress has been made in the characterization and identification of CD4 functions, its role in mechanical properties of cell membrane remains largely unknown. Here an atomic force microscopy (AFM) was used to investigate the roles of CD4 in the elasticity of the leukemic human Jurkat (clone E6-1) cell membranes. Analysis of the approach force curves with Hertz model for a completely elastic soft sample measured on the selected CD4+ and CD4- cells showed that CD4+ cell membrane was softer than CD4- one. To confirm that CD4 plays a role in altering cell elasticity, human embryonic kidney 293T cells were transiently transfected with wild type (wt) CD4 plasmid before being used in AFM nanoindentation experiments. The results also demonstrated CD4- membrane was stiffer than CD4+ one suggesting that CD4 integrated into plasma membrane and altered its mechanical properties. The study gives insights into the role of CD4 on cell membrane mechanical characteristics and might be helpful for development of cell biology and medicine. PMID:26362701

  14. The role of CD4 on mechanical properties of live cell membrane.

    PubMed

    Bui, Van-Chien; Nguyen, Thi-Huong

    2016-01-01

    Although much progress has been made in the characterization and identification of CD4 functions, its role in mechanical properties of cell membrane remains largely unknown. Here an atomic force microscopy (AFM) was used to investigate the roles of CD4 in the elasticity of the leukemic human Jurkat (clone E6-1) cell membranes. Analysis of the approach force curves with Hertz model for a completely elastic soft sample measured on the selected CD4+ and CD4- cells showed that CD4+ cell membrane was softer than CD4- one. To confirm that CD4 plays a role in altering cell elasticity, human embryonic kidney 293T cells were transiently transfected with wild type (wt) CD4 plasmid before being used in AFM nanoindentation experiments. The results also demonstrated CD4- membrane was stiffer than CD4+ one suggesting that CD4 integrated into plasma membrane and altered its mechanical properties. The study gives insights into the role of CD4 on cell membrane mechanical characteristics and might be helpful for development of cell biology and medicine.

  15. CD4+ T-cell deficiency in HIV patients responding to antiretroviral therapy is associated with increased expression of interferon-stimulated genes in CD4+ T cells.

    PubMed

    Fernandez, Sonia; Tanaskovic, Sara; Helbig, Karla; Rajasuriar, Reena; Kramski, Marit; Murray, John M; Beard, Michael; Purcell, Damian; Lewin, Sharon R; Price, Patricia; French, Martyn A

    2011-12-15

    Most patients with human immunodeficiency virus (HIV) who remain CD4(+) T-cell deficient on antiretroviral therapy (ART) exhibit marked immune activation. As CD4(+) T-cell activation may be mediated by microbial translocation or interferon-alpha (IFN-α), we examined these factors in HIV patients with good or poor CD4(+) T-cell recovery on long-term ART. Messenger RNA levels for 3 interferon-stimulated genes were increased in CD4(+) T cells of patients with poor CD4(+) T-cell recovery, whereas levels in patients with good recovery did not differ from those in healthy controls. Poor CD4(+) T-cell recovery was also associated with CD4(+) T-cell expression of markers of activation, senescence, and apoptosis, and with increased serum levels of the lipopolysaccharide receptor and soluble CD14, but these were not significantly correlated with expression of the interferon-stimulated genes. Therefore, CD4(+) T-cell recovery may be adversely affected by the effects of IFN-α, which may be amenable to therapeutic intervention.

  16. CD4 Variability in Malawi: Implications for Use of a CD4 Threshold of 500 Cells/mm3 Versus Universal Eligibility for Antiretroviral Therapy

    PubMed Central

    Schooley, Alan L.; Kamudumuli, Pocha Samuel; Vangala, Sitaram; Tseng, Chi-hong; Soko, Chifundo; Parent, Julie; Phiri, Khumbo; Jahn, Andreas; Namarika, Dan; Hoffman, Risa M.

    2016-01-01

    Background. Given the uncertainty about the ability of a single CD4 count to accurately classify a patient as antiretroviral therapy (ART) eligible, we sought to understand the extent to which CD4 variability results in misclassification at a CD4 threshold of 500 cells/mm3. Methods. We performed a prospective study of CD4 variability in Malawian human immunodeficiency virus-infected, ART-naive, World Health Organization (WHO) stage 1 or 2, nonpregnant adults. CD4 counts were performed daily for 8 days. We fit a Bayesian linear mixed-effects model of log-transformed CD4 cell counts to the data. We used Monte Carlo approximations to estimate misclassification rates for different observed values of CD4. The misclassification rate was calculated based on the conditional probability of true CD4 given the geometric mean of observed CD4 measurements. Results. Fifty patients were enrolled from 2 sites. The median age was 33.5 years (interquartile range, 27.5–40.0) and 34 (68%) were female. Misclassification rates were <1% when the observed CD4 counts were ≤250 or ≥750 cells/mm3. Rates of misclassification were high at observed CD4 counts between 350 and 650 cells/mm3, particularly when a single measurement was used (up to 46.7%). Conclusions. Our data show that ART eligibility based on a single CD4 count results in highest risk of misclassification when observed CD4 counts are in the range of 350–650 cells/mm3. Given the benefits of early ART, countries should weigh the costs and complexity of CD4 testing using a 500 cell/mm3 threshold against the cost savings and public health benefits of universal eligibility. PMID:27704028

  17. Small CD4 Mimetics Prevent HIV-1 Uninfected Bystander CD4 + T Cell Killing Mediated by Antibody-dependent Cell-mediated Cytotoxicity

    PubMed Central

    Richard, Jonathan; Veillette, Maxime; Ding, Shilei; Zoubchenok, Daria; Alsahafi, Nirmin; Coutu, Mathieu; Brassard, Nathalie; Park, Jongwoo; Courter, Joel R.; Melillo, Bruno; Smith, Amos B.; Shaw, George M.; Hahn, Beatrice H.; Sodroski, Joseph; Kaufmann, Daniel E.; Finzi, Andrés

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection causes a progressive depletion of CD4 + T cells. Despite its importance for HIV-1 pathogenesis, the precise mechanisms underlying CD4 + T-cell depletion remain incompletely understood. Here we make the surprising observation that antibody-dependent cell-mediated cytotoxicity (ADCC) mediates the death of uninfected bystander CD4 + T cells in cultures of HIV-1-infected cells. While HIV-1-infected cells are protected from ADCC by the action of the viral Vpu and Nef proteins, uninfected bystander CD4 + T cells bind gp120 shed from productively infected cells and are efficiently recognized by ADCC-mediating antibodies. Thus, gp120 shedding represents a viral mechanism to divert ADCC responses towards uninfected bystander CD4 + T cells. Importantly, CD4-mimetic molecules redirect ADCC responses from uninfected bystander cells to HIV-1-infected cells; therefore, CD4-mimetic compounds might have therapeutic utility in new strategies aimed at specifically eliminating HIV-1-infected cells. PMID:26870823

  18. Small CD4 Mimetics Prevent HIV-1 Uninfected Bystander CD4 + T Cell Killing Mediated by Antibody-dependent Cell-mediated Cytotoxicity.

    PubMed

    Richard, Jonathan; Veillette, Maxime; Ding, Shilei; Zoubchenok, Daria; Alsahafi, Nirmin; Coutu, Mathieu; Brassard, Nathalie; Park, Jongwoo; Courter, Joel R; Melillo, Bruno; Smith, Amos B; Shaw, George M; Hahn, Beatrice H; Sodroski, Joseph; Kaufmann, Daniel E; Finzi, Andrés

    2016-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection causes a progressive depletion of CD4 + T cells. Despite its importance for HIV-1 pathogenesis, the precise mechanisms underlying CD4 + T-cell depletion remain incompletely understood. Here we make the surprising observation that antibody-dependent cell-mediated cytotoxicity (ADCC) mediates the death of uninfected bystander CD4 + T cells in cultures of HIV-1-infected cells. While HIV-1-infected cells are protected from ADCC by the action of the viral Vpu and Nef proteins, uninfected bystander CD4 + T cells bind gp120 shed from productively infected cells and are efficiently recognized by ADCC-mediating antibodies. Thus, gp120 shedding represents a viral mechanism to divert ADCC responses towards uninfected bystander CD4 + T cells. Importantly, CD4-mimetic molecules redirect ADCC responses from uninfected bystander cells to HIV-1-infected cells; therefore, CD4-mimetic compounds might have therapeutic utility in new strategies aimed at specifically eliminating HIV-1-infected cells.

  19. Neisseria gonorrhoeae enhances HIV-1 infection of primary resting CD4+ T cells through TLR2 activation.

    PubMed

    Ding, Jian; Rapista, Aprille; Teleshova, Natalia; Mosoyan, Goar; Jarvis, Gary A; Klotman, Mary E; Chang, Theresa L

    2010-03-15

    Sexually transmitted infections increase the likelihood of HIV-1 transmission. We investigated the effect of Neisseria gonorrheae (gonococcus [GC]) exposure on HIV replication in primary resting CD4(+) T cells, a major HIV target cell during the early stage of sexual transmission of HIV. GC and TLR2 agonists, such as peptidylglycan (PGN), Pam(3)CSK(4), and Pam(3)C-Lip, a GC-derived synthetic lipopeptide, but not TLR4 agonists including LPS or GC lipooligosaccharide enhanced HIV-1 infection of primary resting CD4(+) T cells after viral entry. Pretreatment of CD4(+) cells with PGN also promoted HIV infection. Anti-TLR2 Abs abolished the HIV enhancing effect of GC and Pam(3)C-Lip, indicating that GC-mediated enhancement of HIV infection of resting CD4(+) T cells was through TLR2. IL-2 was required for TLR2-mediated HIV enhancement. PGN and GC induced cell surface expression of T cell activation markers and HIV coreceptors, CCR5 and CXCR4. The maximal postentry HIV enhancing effect was achieved when PGN was added immediately after viral exposure. Kinetic studies and analysis of HIV DNA products indicated that GC exposure and TLR2 activation enhanced HIV infection at the step of nuclear import. We conclude that GC enhanced HIV infection of primary resting CD4(+) T cells through TLR2 activation, which both increased the susceptibility of primary CD4(+) T cells to HIV infection as well as enhanced HIV-infected CD4(+) T cells at the early stage of HIV life cycle after entry. This study provides a molecular mechanism by which nonulcerative sexually transmitted infections mediate enhancement of HIV infection and has implication for HIV prevention and therapeutics. PMID:20147631

  20. Depletion of the surface CD4 molecule by the envelope protein of human immunodeficiency virus expressed in a human CD4 sup + monocytoid cell line

    SciTech Connect

    Kawamura, Ikuo; Koga, Yasuhiro; Oh-Hori, Nobuhira; Kimura, Genki; Nomoto, Kikuo ); Onodera, Kazukiyo )

    1989-09-01

    A CD4{sup +} human monocytoid cell line, U937, was transfected with a constructed plasmid which has the envelope gene of human immunodeficiency virus under the transcriptional control of the human metallothionein IIA promoter and was cloned thereafter. These cloned cell lines (EH and EL cells) expressed the viral gp160 in the cytoplasm. The expression of surface CD4 antigen examined by Leu3a and OKT4 monoclonal antibodies, however, disappeared completely in EH cells, which produce a larger amount of gp160, while diminishing only partly in EL cells, which produce a smaller amount of gp160. These results indicate that the level of expression of surface CD4 antigen correlates inversely with the amount of intracellular gp160. Moreover, immunoprecipitation studies using lysate from EH cells showed that OKT4 monoclonal antibody precipitated a significant number of CD4 molecules even after surface CD4 disappeared. However, Leu3a monoclonal antibody, which recognizes the binding site for envelope protein, could not precipitate any CD4 molecules in the same cell lysate. Taken together, these results suggested that CD4 molecules are still synthesized normally after the augmented production of gp160 in the cells but form a complex with the envelope protein in the cytoplasm and become unable to be transported to the cell surface, resulting in the observed depletion of surface CD4 antigen. This mechanism may explain the decrease or absence of surface CD4 antigens in human lymphocytes infected with human immunodeficiency virus.

  1. CD4+ invariant natural killer T cells protect from murine GVHD lethality through expansion of donor CD4+CD25+FoxP3+ regulatory T cells.

    PubMed

    Schneidawind, Dominik; Pierini, Antonio; Alvarez, Maite; Pan, Yuqiong; Baker, Jeanette; Buechele, Corina; Luong, Richard H; Meyer, Everett H; Negrin, Robert S

    2014-11-20

    Dysregulated donor T cells lead to destruction of host tissues resulting in graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (HCT). We investigated the impact of highly purified (>95%) donor CD4(+) invariant natural killer T (iNKT) cells on GVHD in a murine model of allogeneic HCT. We found that low doses of adoptively transferred donor CD4(+) iNKT cells protect from GVHD morbidity and mortality through an expansion of donor CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs). These Tregs express high levels of the Ikaros transcription factor Helios and expand from the Treg pool of the donor graft. Furthermore, CD4(+) iNKT cells preserve T-cell-mediated graft-versus-tumor effects. Our studies reveal new aspects of the cellular interplay between iNKT cells and Tregs in the context of tolerance induction after allogeneic HCT and set the stage for clinical translation. PMID:25293774

  2. Successful immunotherapy induces previously unidentified allergen-specific CD4+ T-cell subsets

    PubMed Central

    Ryan, John F.; Hovde, Rachel; Glanville, Jacob; Lyu, Shu-Chen; Ji, Xuhuai; Gupta, Sheena; Tibshirani, Robert J.; Jay, David C.; Boyd, Scott D.; Chinthrajah, R. Sharon; Davis, Mark M.; Galli, Stephen J.; Maecker, Holden T.; Nadeau, Kari C.

    2016-01-01

    Allergen immunotherapy can desensitize even subjects with potentially lethal allergies, but the changes induced in T cells that underpin successful immunotherapy remain poorly understood. In a cohort of peanut-allergic participants, we used allergen-specific T-cell sorting and single-cell gene expression to trace the transcriptional “roadmap” of individual CD4+ T cells throughout immunotherapy. We found that successful immunotherapy induces allergen-specific CD4+ T cells to expand and shift toward an “anergic” Th2 T-cell phenotype largely absent in both pretreatment participants and healthy controls. These findings show that sustained success, even after immunotherapy is withdrawn, is associated with the induction, expansion, and maintenance of immunotherapy-specific memory and naive T-cell phenotypes as early as 3 mo into immunotherapy. These results suggest an approach for immune monitoring participants undergoing immunotherapy to predict the success of future treatment and could have implications for immunotherapy targets in other diseases like cancer, autoimmune disease, and transplantation. PMID:26811452

  3. Successful immunotherapy induces previously unidentified allergen-specific CD4+ T-cell subsets.

    PubMed

    Ryan, John F; Hovde, Rachel; Glanville, Jacob; Lyu, Shu-Chen; Ji, Xuhuai; Gupta, Sheena; Tibshirani, Robert J; Jay, David C; Boyd, Scott D; Chinthrajah, R Sharon; Davis, Mark M; Galli, Stephen J; Maecker, Holden T; Nadeau, Kari C

    2016-03-01

    Allergen immunotherapy can desensitize even subjects with potentially lethal allergies, but the changes induced in T cells that underpin successful immunotherapy remain poorly understood. In a cohort of peanut-allergic participants, we used allergen-specific T-cell sorting and single-cell gene expression to trace the transcriptional "roadmap" of individual CD4+ T cells throughout immunotherapy. We found that successful immunotherapy induces allergen-specific CD4+ T cells to expand and shift toward an "anergic" Th2 T-cell phenotype largely absent in both pretreatment participants and healthy controls. These findings show that sustained success, even after immunotherapy is withdrawn, is associated with the induction, expansion, and maintenance of immunotherapy-specific memory and naive T-cell phenotypes as early as 3 mo into immunotherapy. These results suggest an approach for immune monitoring participants undergoing immunotherapy to predict the success of future treatment and could have implications for immunotherapy targets in other diseases like cancer, autoimmune disease, and transplantation. PMID:26811452

  4. Successful immunotherapy induces previously unidentified allergen-specific CD4+ T-cell subsets.

    PubMed

    Ryan, John F; Hovde, Rachel; Glanville, Jacob; Lyu, Shu-Chen; Ji, Xuhuai; Gupta, Sheena; Tibshirani, Robert J; Jay, David C; Boyd, Scott D; Chinthrajah, R Sharon; Davis, Mark M; Galli, Stephen J; Maecker, Holden T; Nadeau, Kari C

    2016-03-01

    Allergen immunotherapy can desensitize even subjects with potentially lethal allergies, but the changes induced in T cells that underpin successful immunotherapy remain poorly understood. In a cohort of peanut-allergic participants, we used allergen-specific T-cell sorting and single-cell gene expression to trace the transcriptional "roadmap" of individual CD4+ T cells throughout immunotherapy. We found that successful immunotherapy induces allergen-specific CD4+ T cells to expand and shift toward an "anergic" Th2 T-cell phenotype largely absent in both pretreatment participants and healthy controls. These findings show that sustained success, even after immunotherapy is withdrawn, is associated with the induction, expansion, and maintenance of immunotherapy-specific memory and naive T-cell phenotypes as early as 3 mo into immunotherapy. These results suggest an approach for immune monitoring participants undergoing immunotherapy to predict the success of future treatment and could have implications for immunotherapy targets in other diseases like cancer, autoimmune disease, and transplantation.

  5. Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells.

    PubMed

    Evans, Vanessa A; Kumar, Nitasha; Filali, Ali; Procopio, Francesco A; Yegorov, Oleg; Goulet, Jean-Philippe; Saleh, Suha; Haddad, Elias K; da Fonseca Pereira, Candida; Ellenberg, Paula C; Sekaly, Rafick-Pierre; Cameron, Paul U; Lewin, Sharon R

    2013-01-01

    Latently infected resting CD4(+) T cells are a major barrier to HIV cure. Understanding how latency is established, maintained and reversed is critical to identifying novel strategies to eliminate latently infected cells. We demonstrate here that co-culture of resting CD4(+) T cells and syngeneic myeloid dendritic cells (mDC) can dramatically increase the frequency of HIV DNA integration and latent HIV infection in non-proliferating memory, but not naïve, CD4(+) T cells. Latency was eliminated when cell-to-cell contact was prevented in the mDC-T cell co-cultures and reduced when clustering was minimised in the mDC-T cell co-cultures. Supernatants from infected mDC-T cell co-cultures did not facilitate the establishment of latency, consistent with cell-cell contact and not a soluble factor being critical for mediating latent infection of resting CD4(+) T cells. Gene expression in non-proliferating CD4(+) T cells, enriched for latent infection, showed significant changes in the expression of genes involved in cellular activation and interferon regulated pathways, including the down-regulation of genes controlling both NF-κB and cell cycle. We conclude that mDC play a key role in the establishment of HIV latency in resting memory CD4(+) T cells, which is predominantly mediated through signalling during DC-T cell contact.

  6. Modulation of CD4 lateral mobility in intact cells by an intracellularly applied antibody.

    PubMed Central

    Grebenkämper, K; Tosi, P F; Lazarte, J E; Sneed, L; Brüggemann, U; Kubitscheck, U; Nicolau, C; Peters, R

    1995-01-01

    This study shows that the lateral mobility of CD4, an important plasma-membrane immune receptor, can be modulated by intracellular application of an anti-CD4 antibody. For this purpose, (i) full-length CD4 and a truncated CD4 mutant, lacking a 32-residue-long C-terminal intracellularly exposed domain, were expressed in Spodoptera frugiperda (Sf9) insect cells, (ii) a monoclonal antibody, C6, with specificity for the C-terminal domain was generated, and (iii) a versatile apparatus for fluorescence microphotolysis (FM) studies was constructed. By these means it was found that the commercial anti-CD4 antibody Leu3a-PE, in contrast with several other anti-CD4 antibodies, could be used as a fluorescent label of CD4 without interfering greatly with CD4 mobility. Labelled by Leu3a-PE, full-length CD4 had a lateral diffusion coefficient of D = (4.7 +/- 1.9) x 10(-10) cm2/s and a mobile fraction of fm = 80 +/- 16% (room temperature). Within experimental accuracy the truncated CD4 had the same mobility as full-length CD4. Introduction of the C6 antibody into Sf9 cells by microinjection or by fusion with C6-loaded liposomes decreased the mobility of full-length CD4 (fm = 40%) but not of truncated CD4 (fm = 80%). Treatment of Sf9 cells with phorbol ester also reduced the mobility of full-length CD4 (fm = 50%) but not truncated CD4 (fm = 90%). A calmodulin inhibitor but not a protein kinase C (PKC) inhibitor abolished the phorbol ester effect. Images Figure 1 Figure 2 Figure 4 PMID:7492321

  7. CD4 T cell activation by B cells in human Leishmania (Viannia) infection

    PubMed Central

    2014-01-01

    Background An effective adaptive immune response requires activation of specific CD4 T cells. The capacity of B cells to activate CD4 T cells in human cutaneous leishmaniasis caused by Leishmania (Viannia) has not been evaluated. Methods CD4 T cell activation by B cells of cutaneous leishmaniasis patients was evaluated by culture of PBMCs or purified B cells and CD4 T cells with Leishmania panamensis antigens. CD4 T cell and B cell activation markers were evaluated by flow cytometry and 13 cytokines were measured in supernatants with a bead-based capture assay. The effect of Leishmania antigens on BCR-mediated endocytosis of ovalbumin was evaluated in the Ramos human B cell line by targeting the antigen with anti-IgM-biotin and anti-biotin-ovalbumin-FITC. Results Culture of PBMCs from cutaneous leishmaniasis patients with Leishmania antigens resulted in upregulation of the activation markers CD25 and CD69 as well as increased frequency of CD25hiCD127- cells among CD4 T cells. Concomitantly, B cells upregulated the costimulatory molecule CD86. These changes were not observed in PBMCs from healthy subjects, indicating participation of Leishmania-specific lymphocytes expanded in vivo. Purified B cells from these patients, when interacting with purified CD4 T cells and Leishmania antigens, were capable of inducing significant increases in CD25 and CD69 expression and CD25hiCD127- frequency in CD4 T cells. These changes were associated with upregulation of CD86 in B cells. Comparison of changes in CD4 T cell activation parameters between PBMC and B cell/CD4 T cell cultures showed no statistically significant differences; further, significant secretion of IFN-γ, TNF-α, IL-6 and IL-13 was induced in both types of cultures. Additionally, culture with Leishmania antigens enhanced BCR-mediated endocytosis of ovalbumin in Ramos human B cells. Conclusions The capacity of B cells specific for Leishmania antigens in peripheral blood of cutaneous leishmaniasis patients to

  8. CD4+CD25hiFOXP3+ Cells in Cord Blood of Neonates Born from Filaria Infected Mother Are Negatively Associated with CD4+Tbet+ and CD4+RORγt+ T Cells

    PubMed Central

    Zettlmeissl, Eva; van der Vlugt, Luciën E. P. M.; de Jong, Sanne; Matsiegui, Pierre-Blaise; Ramharter, Michael; Kremsner, Peter G.; Yazdanbakhsh, Maria; Adegnika, Ayola Akim

    2014-01-01

    Background Children who have been exposed in utero to maternal filarial infection are immunologically less responsive to filarial antigens, have less pathology, and are more susceptible to acquire infection than offspring of uninfected mothers. Moreover children from filaria infected mothers have been shown to be less responsive to vaccination as a consequence of an impairment of their immune response. However, it is not well known how in utero exposure to parasite antigens affects cellular immune responses. Methodology Here, 30 pregnant women were examined for the presence of microfilaria of Loa loa and Mansonella perstans in peripheral blood. At delivery, cord blood mononuclear cells (CBMC) were obtained and the CD4+T cells were phenotyped by expression of the transcription factors Tbet, RORγt, and FOXP3. Results No significant difference was observed between newborns from infected versus uninfected mothers in the frequencies of total CD4+T cells and CD4+T cells subsets including CD4+Tbet+, CD4+RORγt+ T and CD4+CD25hiFOXP3+ T cells. However, there was a negative association between CD4+CD25hiFOXP3+T cells and CD4+Tbet+ as well as CD4+RORγt+ T cells in the infected group only (B = −0.242, P = 0.002; B = −0.178, P = 0.013 respectively). Conclusion Our results suggest that filarial infection during pregnancy leads to an expansion of functionally active regulatory T cells that keep TH1 and TH17 in check. PMID:25531674

  9. Increased competition for antigen during priming negatively impacts the generation of memory CD4 T cells

    PubMed Central

    Blair, David A.; Lefrançois, Leo

    2007-01-01

    The factors involved in the differentiation of memory CD4 T cells from naïve precursors are poorly understood. We developed a system to examine the effect of increased competition for antigen by CD4 T cells on the generation of memory in response to infection with a recombinant vesicular stomatitis virus. Competition was initially regulated by increasing the precursor frequency of adoptively transferred naïve T cell antigen receptor transgenic CD4 T cells. Despite robust proliferation at high precursor frequencies, memory CD4 T cells did not develop, whereas decreasing the input number of naïve CD4 T cells promoted memory development after infection. The lack of memory development was linked to reduced blastogenesis and poor effector cell induction, but not to initial recruitment or proliferation of antigen-specific CD4 T cells. To prove that availability of antigen alone could regulate memory CD4 T cell development, we used treatment with an mAb specific for the epitope recognized by the transferred CD4 T cells. At high doses, this mAb effectively inhibited the antigen-specific CD4 T cell response. However, at a very low dose of mAb, primary CD4 T cell expansion was unaffected, although memory development was dramatically reduced. Moreover, the induction of effector function was concomitantly inhibited. Thus, competition for antigen during CD4 T cell priming is a major contributing factor to the development of the memory CD4 T cell pool. PMID:17827281

  10. Peripheral canine CD4(+)CD8(+) double-positive T cells - unique amongst others.

    PubMed

    von Buttlar, Heiner; Bismarck, Doris; Alber, Gottfried

    2015-12-15

    T lymphocytes co-expressing CD4 and CD8 ("double-positive T cells") are commonly associated with a thymic developmental stage of T cells. Their first description in humans and pigs as extrathymic T cells with a memory phenotype almost 30 years ago came as a surprise. Meanwhile peripheral double-positive T cells have been described in a growing number of different species. In this review we highlight novel data from our very recent studies on canine peripheral double-positive T cells which point to unique features of double-positive T cells in the dog. In contrast to porcine CD4(+)CD8(+) T cells forming a homogenous cellular population based on their expression of CD4 and CD8α, canine CD4(+)CD8(+) T cells can be divided into three different cellular subsets with distinct expression levels of CD4 and CD8α. Double-positive T cells expressing CD8β are present in humans and dogs but absent in swine. Moreover, canine CD4(+)CD8(+) T cells can not only develop from CD4(+) single-positive T cells but also from CD8(+) single-positive T cells. Together, this places canine CD4(+)CD8(+) T cells closer to their human than porcine counterparts since human double-positive T cells also appear to be heterogeneous in their CD4 and CD8α expression and have both CD4(+) and CD8(+) T cells as progenitor cells. However, CD4(+) single-positive T cells are the more potent progenitors for canine double-positive T cells, whereas CD8(+) single-positive T cells are more potent progenitors for human double-positive T cells. Canine double-positive T cells have an activated phenotype and may have as yet unrecognized roles in vivo in immunity to infection or in inflammatory diseases such as chronic infection, autoimmunity, allergy, or cancer.

  11. AP-2 Is the Crucial Clathrin Adaptor Protein for CD4 Downmodulation by HIV-1 Nef in Infected Primary CD4+ T Cells.

    PubMed

    Gondim, Marcos Vinicius; Wiltzer-Bach, Linda; Maurer, Brigitte; Banning, Carina; Arganaraz, Enrique; Schindler, Michael

    2015-12-01

    HIV-1 Nef-mediated CD4 downmodulation involves various host factors. We investigated the importance of AP-1, AP-2, AP-3, V1H-ATPase, β-COP, and ACOT8 for CD4 downmodulation in HIV-1-infected short hairpin RNA (shRNA)-expressing CD4(+) T cells and characterized direct interaction with Nef by Förster resonance energy transfer (FRET). Binding of lentiviral Nefs to CD4 and AP-2 was conserved, and only AP-2 knockdown impaired Nef-mediated CD4 downmodulation from primary T cells. Altogether, among the factors tested, AP-2 is the most important player for Nef-mediated CD4 downmodulation.

  12. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    NASA Astrophysics Data System (ADS)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-02-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is Treg-/Foxp3-independent, requires IL-10 and is overcome by IL-1β. TNFi-exposed IL-17+ CD4+ T cells are molecularly and functionally distinct, with a unique gene signature characterized by expression of IL10 and IKZF3 (encoding Aiolos). We show that Aiolos binds conserved regions in the IL10 locus in IL-17+ CD4+ T cells. Furthermore, IKZF3 and IL10 expression levels correlate in primary CD4+ T cells and Aiolos overexpression is sufficient to drive IL10 in these cells. Our data demonstrate that TNF-α blockade induces IL-10 in CD4+ T cells including Th17 cells and suggest a role for the transcription factor Aiolos in the regulation of IL-10 in CD4+ T cells.

  13. Defective CD8 T Cell Memory Following Acute Infection Without CD4 T Cell Help

    NASA Astrophysics Data System (ADS)

    Sun, Joseph C.; Bevan, Michael J.

    2003-04-01

    The CD8+ cytotoxic T cell response to pathogens is thought to be CD4+ helper T cell independent because infectious agents provide their own inflammatory signals. Mice that lack CD4+ T cells mount a primary CD8 response to Listeria monocytogenes equal to that of wild-type mice and rapidly clear the infection. However, protective memory to a challenge is gradually lost in the former animals. Memory CD8+ T cells from normal mice can respond rapidly, but memory CD8+ T cells that are generated without CD4 help are defective in their ability to respond to secondary encounters with antigen. The results highlight a previously undescribed role for CD4 help in promoting protective CD8 memory development.

  14. T lymphocytes in rat germinal centres belong to an ER3+ subpopulation of CD4+ cells.

    PubMed Central

    Vonderheide, R H; Hunt, S V

    1990-01-01

    Two-colour immunofluorescence histochemistry showed directly that greater than 90% of CD4+ germinal centre T cells in rat spleen or lymph node examined 7 days after immunization bear the antigen recognized by the monoclonal antibody (mAb) ER3. By contrast, only 30-40% of all thoracic duct or lymph node CD4+ cells were ER3+, as determined by two-colour flow cytometry. CD8+ cells were ER3+, but nearly all B cells were ER3-. Thus, germinal centre T cells belong to a subpopulation of CD4+ cells. Because only 25-30% of CD4+ cells that lack higher molecular weight forms of CD45 (i.e. mAb MRC OX32 cells, equivalent to MRC OX22 cells) express ER3, the CD4+ subpopulations defined by ER3 are neither identical nor complementary to the subsets defined by restricted expression of CD45 epitopes. Images Figure 1 PMID:1970805

  15. The Interplay Between Monocytes/Macrophages and CD4+ T Cell Subsets in Rheumatoid Arthritis

    PubMed Central

    Roberts, Ceri A.; Dickinson, Abigail K.; Taams, Leonie S.

    2015-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by inflammation of the synovial lining (synovitis). The inflammation in the RA joint is associated with and driven by immune cell infiltration, synovial hyperproliferation, and excessive production of proinflammatory mediators, such as tumor necrosis factor α (TNFα), interferon γ (IFNγ), interleukin (IL)-1β, IL-6, and IL-17, eventually resulting in damage to the cartilage and underlying bone. The RA joint harbors a wide range of immune cell types, including monocytes, macrophages, and CD4+ T cells (both proinflammatory and regulatory). The interplay between CD14+ myeloid cells and CD4+ T cells can significantly influence CD4+ T cell function, and conversely, effector vs. regulatory CD4+ T cell subsets can exert profound effects on monocyte/macrophage function. In this review, we will discuss how the interplay between CD4+ T cells and monocytes/macrophages may contribute to the immunopathology of RA. PMID:26635790

  16. Itk Signals Promote Neuroinflammation by Regulating CD4+ T-Cell Activation and Trafficking

    PubMed Central

    Kannan, Arun K.; Kim, Do-Geun

    2015-01-01

    Here we demonstrate that interleukin-2-inducible T-cell kinase (Itk) signaling in cluster of differentiation 4-positive (CD4+) T cells promotes experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). We show that Itk−/− mice exhibit reduced disease severity, and transfer of Itk−/− CD4+ T cells into T cell-deficient recipients results in lower disease severity. We observed a significant reduction of CD4+ T cells in the CNS of Itk−/− mice or recipients of Itk−/− CD4+ T cells during EAE, which is consistent with attenuated disease. Itk−/− CD4+ T cells exhibit defective response to myelin antigen stimulation attributable to displacement of filamentous actin from the CD4+ coreceptor. This results in inadequate transmigration of Itk−/− CD4+ T cells into the CNS and across brain endothelial barriers in vitro. Finally, Itk−/− CD4+ T cells show significant reduction in production of T-helper 1 (Th1) and Th17 cytokines and exhibit skewed T effector/T regulatory cell ratios. These results indicate that signaling by Itk promotes autoimmunity and CNS inflammation, suggesting that it may be a viable target for treatment of MS. PMID:25568116

  17. Use of MHC class II tetramers to investigate CD4+ T cell responses: problems and solutions.

    PubMed

    Cecconi, Virginia; Moro, Monica; Del Mare, Sara; Dellabona, Paolo; Casorati, Giulia

    2008-11-01

    MHC-class I tetramers technology enabled the characterization of peptide-specific T cells at the single cell level in a variety of studies. Several laboratories have also developed MHC-class II multimers to characterize Ag-specific CD4+ T cells. However, the generation and use of MHC-class II multimers seems more problematic than that of MHC-I multimers. We have generated HLA-DR*1101 tetramers in a versatile empty form, which can be loaded after purification with peptides of interest. We discuss the impact of critical biological and structural parameters for the optimal staining of Ag-specific CD4+ T cells using HLA-DR*1101 tetramers, such as: (i) activation state of CD4+ T cells; (ii) membrane trafficking in the target CD4+ T cells; (iii) binding characteristics of the loaded CD4 epitope. Our data indicate that reorganization of TCR on the plasma membrane upon CD4+ T cell activation, as well as an homogenous binding frame of the CD4 epitopes to the soluble HLA-DR monomer, are critical for a stable TCR/MHC-class II tetramer interaction. These factors, together with the low frequencies and affinities of specific CD4+ T cells, explain the need for in vitro expansion or ex vivo enrichment of specific T cells for the optimal visualization with MHC-class II tetramers. PMID:18612991

  18. CD4+CD25+ cells in multiple myeloma related renal impairment

    PubMed Central

    Huang, Hongdong; Luo, Yang; Liang, Yumei; Long, Xi-Dai; Peng, Youming; Liu, Zhihua; Wen, Xiaojun; Jia, Meng; Tian, Ru; Bai, Chengli; Li, Cui; Dong, Xiaoqun

    2015-01-01

    CD4+CD25+ cells are critical regulators in almost all of the animal models of human organ-specific autoimmune diseases, transplant rejection and allergic diseases. We aimed to explore the role of CD4+CD25+ cells in the pathogenesis of multiple myeloma (MM) related renal impairment (RI). Thirty patients with MM related RI and 30 healthy volunteers were studied. The number of CD4+CD25+ cells was examined by flow cytometry. Clinical and laboratory data were collected from each subject. Glomerular injury was assessed by histopathology. Serum IL-2, IL-4 and IL-6 were analyzed by ELISA. CD4+CD25+ cells significantly decreased in MM related RI patients compared to the controls (P<0.05). CD4+CD25+ cell number was negatively associated with blood urea nitrogen (BUN), supernatant IL-4, serum IL-6, monoclonal immunoglobulin and β2-microglobulin, as well as bone marrow plasma cell percentage and proteinuria; whereas positively associated with estimated glomerular filtration rate (eGFR) (all P < 0.05). CD4+CD25+ cells gradually decreased as the Clinic Stage increased. The number of CD4+CD25+ cells reduced in MM related RI patients, and was correlated with disease severity. CD4+CD25+ cells may play an important role in the pathogenesis of MM related RI. PMID:26564056

  19. Polyfunctional cytokine responses by central memory CD4+T cells in response to bovine tuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CD4 T cells are crucial in immunity to tuberculosis (TB). Polyfunctional CD4 T cells simultaneously produce interferon-gamma (IFN-gamma), interleukin-2 (IL-2) and tumor necrosis factor-alpha (TNF-alpha) and play relevant roles in several chronic infections, including human TB and HIV. Mycobacterium ...

  20. Polyfunctional cytokine responses by central memory CD4*T cells in response to bovine tuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CD4 T cells are crucial in immunity to tuberculosis (TB). Polyfunctional CD4 T cells simultaneously produce interferon-gamma (IFN-gamma), interleukin-2 (IL-2) and tumor necrosis factor-alpha (TNF-alpha) and play relevant roles in several chronic infections, including human TB. Mycobacterium bovis in...

  1. Polyfunctional CD4 T cells in the response to bovine tuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CD4 T cells are crucial in immunity to tuberculosis (TB). Polyfunctional CD4 T cells simultaneously produce interferon-gamma (IFN-gamma), Interleukin-2 (IL-2) and Tumor necrosis factor-alpha (TNF-alpha) and play relevant roles in several chronic infections, including human TB and HIV. However, the a...

  2. The differentiation and protective function of cytolytic CD4 T cells in influenza infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CD4 T cells that recognize peptide antigen in the context of Class II MHC can differentiate into various subsets that are characterized by their helper functions. However, increasing evidence indicates that CD4 cells with direct cytolytic activity play a role in chronic, as well as, acute infections...

  3. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors

    PubMed Central

    Kalekar, Lokesh A.; Schmiel, Shirdi E.; Nandiwada, Sarada L.; Lam, Wing Y.; Barsness, Laura O.; Zhang, Na; Stritesky, Gretta L.; Malhotra, Deepali; Pauken, Kristen E.; Linehan, Jonathan L.; O’Sullivan, M. Gerard; Fife, Brian T.; Hogquist, Kristin A.; Jenkins, Marc K.; Mueller, Daniel L.

    2015-01-01

    The role that anergy, an acquired state of T cell functional unresponsiveness, plays in natural peripheral tolerance remains unclear. In this study, we demonstrate that anergy is selectively induced in fetal antigen-specific maternal CD4+ T cells during pregnancy. A naturally occurring subpopulation of anergic polyclonal CD4+ T cells, enriched in self antigen-specific T cell receptors, is also observed in healthy hosts. Neuropilin-1 expression in anergic conventional CD4+ T cells is associated with thymic regulatory T cell (Treg cell)-related gene hypomethylation, and this correlates with their capacity to differentiate into Foxp3+ Treg cells that suppress immunopathology. Thus, our data suggest that not only is anergy induction important in preventing autoimmunity, but it also generates the precursors for peripheral Treg cell differentiation. PMID:26829766

  4. The effects of an anti-CD4 monoclonal antibody, keliximab, on peripheral blood CD4+ T-cells in asthma.

    PubMed

    Kon, O M; Sihra, B S; Loh, L C; Barkans, J; Compton, C H; Barnes, N C; Larché, M; Kay, A B

    2001-07-01

    CD4+ T-cells are likely to be involved as a source of pro-inflammatory cytokines in asthma. This study assessed the effects of an infusion of keliximab (IDEC CE9.1), an anti-CD4+ monoclonal antibody, on peripheral blood CD4+ T-cells in corticosteroid-dependent asthmatics. Three cohorts of patients (termed C0.5: n=6, C1.5: n=5, and C3.0: n=5) received a single infusion of 0.5, 1.5 or 3.0 mg x kg(-1), respectively, with a fourth receiving placebo (Cpl: n=6), and were followed-up for 4 weeks. By flow cytometry in peripheral blood, pre- and postinfusion assessment was made of: a) CD4 and CD8 counts and mean fluorescence; b) CD25, human leukocyte antigen-DR (HLA-DR), CD45RO and CD45RA expression on CD4+ T-cells; and c) interferon (IFN)-gamma, interleukin (IL)-4 and IL-5 expression in CD4+ T-cells. Keliximab's in vitro effects on allergen-specific peripheral blood mononuclear cells (PBMC) proliferation in atopic asthmatics were also evaluated. There was a significant increase in lung function (peak expiratory flow rate) in the C3.0 group. Following infusion in C0.5, C1.5 and C3.0 but not Cpl: 1) the CD4, but not CD8 count was significantly decreased; 2) there was total loss of Leu3a staining; 3) there were significant reductions in the mean fluorescence of OKT4 binding; and 4) there were significant reductions in the numbers of CD25, HLA-DR, CD45RO and CD45RA/CD4+ cells. There were no changes in CD4+ cell expression of IFN-gamma, IL-4 or IL-5. Keliximab caused a significant reduction in T-cell proliferation as compared to a control monoclonal antibody. Keliximab, as an anti-CD4 monoclonal antibody, leads to a transient reduction in the number of CD4+ T-cells and modulation of CD4+ receptor expression in severe asthmatics. The effects of keliximab may be mediated through a decrease in CD4+ surface expression and T-lymphocyte numbers, in addition to a reduction in allergen-induced proliferation.

  5. Quantification of Cells with Specific Phenotypes I: Determination of CD4+ Cell Count Per Microliter in Reconstituted Lyophilized Human PBMC Prelabeled with Anti-CD4 FITC Antibody

    PubMed Central

    Stebbings, Richard; Wang, Lili; Sutherland, Janet; Kammel, Martin; Gaigalas, Adolfas K; John, Manuela; Roemer, Bodo; Kuhne, Maren; Schneider, Rudolf J; Braun, Michael; Engel, Andrea; Dikshit, Dinesh K; Abbasi, Fatima; Marti, Gerald E; Paola Sassi, Maria; Revel, Laura; Kim, Sook-Kyung; Baradez, Marc-Olivier; Lekishvili, Tamara; Marshall, Damian; Whitby, Liam; Jing, Wang; Ost, Volker; Vonsky, Maxim; Neukammer, Jörg

    2015-01-01

    A surface-labeled lyophilized lymphocyte (sLL) preparation has been developed using human peripheral blood mononuclear cells prelabeled with a fluorescein isothiocyanate conjugated anti-CD4 monoclonal antibody. The sLL preparation is intended to be used as a reference material for CD4+ cell counting including the development of higher order reference measurement procedures and has been evaluated in the pilot study CCQM-P102. This study was conducted across 16 laboratories from eight countries to assess the ability of participants to quantify the CD4+ cell count of this reference material and to document cross-laboratory variability plus associated measurement uncertainties. Twelve different flow cytometer platforms were evaluated using a standard protocol that included calibration beads used to obtain quantitative measurements of CD4+ T cell counts. There was good overall cross-platform and counting method agreement with a grand mean of the laboratory calculated means of (301.7 ± 4.9) μL−1 CD4+ cells. Excluding outliers, greater than 90% of participant data agreed within ±15%. A major contribution to variation of sLL CD4+ cell counts was tube to tube variation of the calibration beads, amounting to an uncertainty of 3.6%. Variation due to preparative steps equated to an uncertainty of 2.6%. There was no reduction in variability when data files were centrally reanalyzed. Remaining variation was attributed to instrument specific differences. CD4+ cell counts obtained in CCQM-P102 are in excellent agreement and show the robustness of both the measurements and the data analysis and hence the suitability of sLL as a reference material for interlaboratory comparisons and external quality assessment. © 2015 The Authors. Published by Wiley Periodicals, Inc. PMID:25655255

  6. Quantification of cells with specific phenotypes I: determination of CD4+ cell count per microliter in reconstituted lyophilized human PBMC prelabeled with anti-CD4 FITC antibody.

    PubMed

    Stebbings, Richard; Wang, Lili; Sutherland, Janet; Kammel, Martin; Gaigalas, Adolfas K; John, Manuela; Roemer, Bodo; Kuhne, Maren; Schneider, Rudolf J; Braun, Michael; Engel, Andrea; Dikshit, Dinesh K; Abbasi, Fatima; Marti, Gerald E; Sassi, Maria Paola; Revel, Laura; Kim, Sook-Kyung; Baradez, Marc-Olivier; Lekishvili, Tamara; Marshall, Damian; Whitby, Liam; Jing, Wang; Ost, Volker; Vonsky, Maxim; Neukammer, Jörg

    2015-03-01

    A surface-labeled lyophilized lymphocyte (sLL) preparation has been developed using human peripheral blood mononuclear cells prelabeled with a fluorescein isothiocyanate conjugated anti-CD4 monoclonal antibody. The sLL preparation is intended to be used as a reference material for CD4+ cell counting including the development of higher order reference measurement procedures and has been evaluated in the pilot study CCQM-P102. This study was conducted across 16 laboratories from eight countries to assess the ability of participants to quantify the CD4+ cell count of this reference material and to document cross-laboratory variability plus associated measurement uncertainties. Twelve different flow cytometer platforms were evaluated using a standard protocol that included calibration beads used to obtain quantitative measurements of CD4+ T cell counts. There was good overall cross-platform and counting method agreement with a grand mean of the laboratory calculated means of (301.7 ± 4.9) μL(-1) CD4+ cells. Excluding outliers, greater than 90% of participant data agreed within ±15%. A major contribution to variation of sLL CD4+ cell counts was tube to tube variation of the calibration beads, amounting to an uncertainty of 3.6%. Variation due to preparative steps equated to an uncertainty of 2.6%. There was no reduction in variability when data files were centrally reanalyzed. Remaining variation was attributed to instrument specific differences. CD4+ cell counts obtained in CCQM-P102 are in excellent agreement and show the robustness of both the measurements and the data analysis and hence the suitability of sLL as a reference material for interlaboratory comparisons and external quality assessment. PMID:25655255

  7. Impaired CD4 T Cell Memory Response to Streptococcus pneumoniae Precedes CD4 T Cell Depletion in HIV-Infected Malawian Adults

    PubMed Central

    Mzinza, David; Harawa, Visopo; Miles, David J. C.; Jambo, Kondwani C.; Gordon, Stephen B.; Williams, Neil A.; Heyderman, Robert S.

    2011-01-01

    Objective Invasive pneumococcal disease (IPD) is a leading cause of morbidity and mortality in HIV-infected African adults. CD4 T cell depletion may partially explain this high disease burden but those with relatively preserved T cell numbers are still at increased risk of IPD. This study evaluated the extent of pneumococcal-specific T cell memory dysfunction in asymptomatic HIV infection early on in the evolution of the disease. Methods Peripheral blood mononuclear cells were isolated from asymptomatic HIV-infected and HIV-uninfected Malawian adults and stained to characterize the underlying degree of CD4 T cell immune activation, senescence and regulation. Pneumococcal-specific T cell proliferation, IFN-γ, IL-17 production and CD154 expression was assessed using flow cytometry and ELISpot. Results We find that in asymptomatic HIV-infected Malawian adults, there is considerable immune disruption with an increase in activated and senescent CD4+CD38+PD-1+ and CD4+CD25highFoxp3+ Treg cells. In the context of high pneumococcal exposure and therefore immune stimulation, show a failure in pneumococcal-specific memory T cell proliferation, skewing of T cell cytokine production with preservation of interleukin-17 but decreased interferon-gamma responses, and failure of activated T cells to express the co-stimulatory molecule CD154. Conclusion Asymptomatic HIV-infected Malawian adults show early signs of pneumococcal- specific immune dysregulation with a shift in the balance of CD4 memory, T helper 17 cells and Treg. Together these data offer a mechanistic understanding of how antigen-specific T cell dysfunction occurs prior to T cell depletion and may explain the early susceptibility to IPD in those with relatively preserved CD4 T cell numbers. PMID:21980502

  8. A novel differentiation pathway from CD4⁺ T cells to CD4⁻ T cells for maintaining immune system homeostasis.

    PubMed

    Zhao, X; Sun, G; Sun, X; Tian, D; Liu, K; Liu, T; Cong, M; Xu, H; Li, X; Shi, W; Tian, Y; Yao, J; Guo, H; Zhang, D

    2016-01-01

    CD4(+) T lymphocytes are key players in the adaptive immune system and can differentiate into a variety of effector and regulatory T cells. Here, we provide evidence that a novel differentiation pathway of CD4(+) T cells shifts the balance from a destructive T-cell response to one that favors regulation in an immune-mediated liver injury model. Peripheral CD4(-)CD8(-)NK1.1(-) double-negative T cells (DNT) was increased following Concanavalin A administration in mice. Adoptive transfer of DNT led to significant protection from hepatocyte necrosis by direct inhibition on the activation of lymphocytes, a process that occurred primarily through the perforin-granzyme B route. These DNT converted from CD4(+) rather than CD8(+) T cells, a process primarily regulated by OX40. DNT migrated to the liver through the CXCR3-CXCL9/CXCL10 interaction. In conclusion, we elucidated a novel differentiation pathway from activated CD4(+) T cells to regulatory DNT cells for maintaining homeostasis of the immune system in vivo, and provided key evidence that utilizing this novel differentiation pathway has potential application in the prevention and treatment of autoimmune diseases. PMID:27077809

  9. Targeting of liposomes to HIV-1-infected cells by peptides derived from the CD4 receptor.

    PubMed

    Slepushkin, V A; Salem, I I; Andreev, S M; Dazin, P; Düzgüneş, N

    1996-10-23

    Liposomes can be targeted to HIV-infected cells by either reconstituting transmembrane CD4 in the membrane or covalently coupling soluble CD4 to modified lipids. We investigated whether synthetic peptides could be used as ligands for targeting liposomes. A synthetic peptide from the complementarity determining region 2 (CDR-2)-like domain of CD4 could bind specifically to HIV-infected cells and mediate the binding of peptide-coupled liposomes to these cells. A peptide from the CDR-3-like domain of CD4 inhibited HIV-induced syncytia formation, but failed to target liposomes to infected cells. This apparent discrepancy may be due to the requirement for a conformational change in the CD4 receptor for the CDR-3 region to interact with the HIV envelope protein. Our results demonstrate the feasibility of using synthetic peptides to target liposomes containing antiviral drugs to HIV-infected cells.

  10. Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells.

    PubMed

    Pinz, K; Liu, H; Golightly, M; Jares, A; Lan, F; Zieve, G W; Hagag, N; Schuster, M; Firor, A E; Jiang, X; Ma, Y

    2016-03-01

    Peripheral T-cell lymphomas (PTCLs) are aggressive lymphomas with no effective upfront standard treatment and ineffective options in relapsed disease, resulting in poorer clinical outcomes as compared with B-cell lymphomas. The adoptive transfer of T cells engineered to express chimeric antigen receptors (CARs) is a promising new approach for treatment of hematological malignancies. However, preclinical reports of targeting T-cell lymphoma with CARs are almost non-existent. Here we have designed a CAR, CD4CAR, which redirects the antigen specificity of CD8+ cytotoxic T cells to CD4-expressing cells. CD4CAR T cells derived from human peripheral blood mononuclear cells and cord blood effectively redirected T-cell specificity against CD4+ cells in vitro. CD4CAR T cells efficiently eliminated a CD4+ leukemic cell line and primary CD4+ PTCL patient samples in co-culture assays. Notably, CD4CAR T cells maintained a central memory stem cell-like phenotype (CD8+CD45RO+CD62L+) under standard culture conditions. Furthermore, in aggressive orthotropic T-cell lymphoma models, CD4CAR T cells efficiently suppressed the growth of lymphoma cells while also significantly prolonging mouse survival. Combined, these studies demonstrate that CD4CAR-expressing CD8+ T cells are efficacious in ablating malignant CD4+ populations, with potential use as a bridge to transplant or stand-alone therapy for the treatment of PTCLs.

  11. Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells.

    PubMed

    Pinz, K; Liu, H; Golightly, M; Jares, A; Lan, F; Zieve, G W; Hagag, N; Schuster, M; Firor, A E; Jiang, X; Ma, Y

    2016-03-01

    Peripheral T-cell lymphomas (PTCLs) are aggressive lymphomas with no effective upfront standard treatment and ineffective options in relapsed disease, resulting in poorer clinical outcomes as compared with B-cell lymphomas. The adoptive transfer of T cells engineered to express chimeric antigen receptors (CARs) is a promising new approach for treatment of hematological malignancies. However, preclinical reports of targeting T-cell lymphoma with CARs are almost non-existent. Here we have designed a CAR, CD4CAR, which redirects the antigen specificity of CD8+ cytotoxic T cells to CD4-expressing cells. CD4CAR T cells derived from human peripheral blood mononuclear cells and cord blood effectively redirected T-cell specificity against CD4+ cells in vitro. CD4CAR T cells efficiently eliminated a CD4+ leukemic cell line and primary CD4+ PTCL patient samples in co-culture assays. Notably, CD4CAR T cells maintained a central memory stem cell-like phenotype (CD8+CD45RO+CD62L+) under standard culture conditions. Furthermore, in aggressive orthotropic T-cell lymphoma models, CD4CAR T cells efficiently suppressed the growth of lymphoma cells while also significantly prolonging mouse survival. Combined, these studies demonstrate that CD4CAR-expressing CD8+ T cells are efficacious in ablating malignant CD4+ populations, with potential use as a bridge to transplant or stand-alone therapy for the treatment of PTCLs. PMID:26526988

  12. The CD4+ T cell methylome contributes to a distinct CD4+ T cell transcriptional signature in Mycobacterium bovis-infected cattle

    PubMed Central

    Doherty, Rachael; Whiston, Ronan; Cormican, Paul; Finlay, Emma K.; Couldrey, Christine; Brady, Colm; O’Farrelly, Cliona; Meade, Kieran G.

    2016-01-01

    We hypothesised that epigenetic regulation of CD4+ T lymphocytes contributes to a shift toward a dysfunctional T cell phenotype which may impact on their ability to clear mycobacterial infection. Combined RNA-seq transcriptomic profiling and Reduced Representation Bisulfite Sequencing identified 193 significantly differentially expressed genes and 760 differentially methylated regions (DMRs), between CD4+ T cells from M. bovis infected and healthy cattle. 196 DMRs were located within 10 kb of annotated genes, including GATA3 and RORC, both of which encode transcription factors that promote TH2 and TH17 T helper cell subsets respectively. Gene-specific DNA methylation and gene expression levels for the TNFRSF4 and Interferon-γ genes were significantly negatively correlated suggesting a regulatory relationship. Pathway analysis of DMRs identified enrichment of genes involved in the anti-proliferative TGF-β signaling pathway and TGFB1 expression was significantly increased in peripheral blood leukocytes from TB-infected cattle. This first analysis of the bovine CD4+ T cell methylome suggests that DNA methylation directly contributes to a distinct gene expression signature in CD4+ T cells from cattle infected with M. bovis. Specific methylation changes proximal to key inflammatory gene loci may be critical to the emergence of a non-protective CD4+ T cell response during mycobacterial infection in cattle. PMID:27507428

  13. The CD4(+) T cell methylome contributes to a distinct CD4(+) T cell transcriptional signature in Mycobacterium bovis-infected cattle.

    PubMed

    Doherty, Rachael; Whiston, Ronan; Cormican, Paul; Finlay, Emma K; Couldrey, Christine; Brady, Colm; O'Farrelly, Cliona; Meade, Kieran G

    2016-01-01

    We hypothesised that epigenetic regulation of CD4(+) T lymphocytes contributes to a shift toward a dysfunctional T cell phenotype which may impact on their ability to clear mycobacterial infection. Combined RNA-seq transcriptomic profiling and Reduced Representation Bisulfite Sequencing identified 193 significantly differentially expressed genes and 760 differentially methylated regions (DMRs), between CD4(+) T cells from M. bovis infected and healthy cattle. 196 DMRs were located within 10 kb of annotated genes, including GATA3 and RORC, both of which encode transcription factors that promote TH2 and TH17 T helper cell subsets respectively. Gene-specific DNA methylation and gene expression levels for the TNFRSF4 and Interferon-γ genes were significantly negatively correlated suggesting a regulatory relationship. Pathway analysis of DMRs identified enrichment of genes involved in the anti-proliferative TGF-β signaling pathway and TGFB1 expression was significantly increased in peripheral blood leukocytes from TB-infected cattle. This first analysis of the bovine CD4(+) T cell methylome suggests that DNA methylation directly contributes to a distinct gene expression signature in CD4(+) T cells from cattle infected with M. bovis. Specific methylation changes proximal to key inflammatory gene loci may be critical to the emergence of a non-protective CD4(+) T cell response during mycobacterial infection in cattle. PMID:27507428

  14. Immunological predictors of CD4+ T cell decline in antiretroviral treatment interruptions

    PubMed Central

    Seoane, Elena; Resino, Salvador; Moreno, Santiago; de Quiros, Juan Carlos Lopez Bernaldo; Moreno, Ana; Rubio, Rafael; Gonzalez-García, Juan; Arribas, José Ramón; Pulido, Federico; Muñoz-Fernández, Ma Ángeles

    2008-01-01

    Background The common response to stopping anti-HIV treatment is an increase of HIV-RNA load and decrease in CD4+, but not all the patients have similar responses to this therapeutic strategy. The aim was to identify predictive markers of CD4+ cell count declines to < 350/μL in CD4-guided antiretroviral treatment interruptions. Methods 27 HIV-infected patients participated in a prospective multicenter study in with a 24 month follow-up. Patients on stable highly active antiretroviral therapy (HAART), with CD4+ count > 600/μL, and HIV-RNA < 50 copies/ml for at least 6 months were offered the option to discontinue antiretroviral therapy. The main outcome was a decline in CD4+ cell count to < 350/μL. Results After 24 months of follow-up, 16 of 27 (59%) patients (who discontinued therapy) experienced declines in CD4+ cell count to < 350/μL. Patients with a CD4+ nadir of < 200 cells/μL had a greater risk of restarting therapy during the follow-up (RR (CI95%): 3.37 (1.07; 10.36)). Interestingly, lymphoproliferative responses to Mycobacterium tuberculosis purified protein derivative (PPD) below 10000 c.p.m. at baseline (4.77 (1.07; 21.12)), IL-4 production above 100 pg/mL at baseline (5.95 (1.76; 20.07)) in PBMC cultured with PPD, and increased IL-4 production of PBMC with p24 antigen at baseline (1.25 (1.01; 1.55)) were associated to declines in CD4+ cell count to < 350/μL. Conclusion Both the number (CD4+ nadir) and the functional activity of CD4+ (lymphoproliferative response to PPD) predict the CD4+ decrease associated with discontinuation of ART in patients with controlled viremia. PMID:18302775

  15. Low-dose IL-2 selectively activates subsets of CD4+ Tregs and NK cells

    PubMed Central

    Hirakawa, Masahiro; Matos, Tiago; Liu, Hongye; Koreth, John; Kim, Haesook T.; Paul, Nicole E.; Murase, Kazuyuki; Whangbo, Jennifer; Alho, Ana C.; Nikiforow, Sarah; Cutler, Corey; Ho, Vincent T.; Armand, Philippe; Alyea, Edwin P.; Antin, Joseph H.; Blazar, Bruce R.; Lacerda, Joao F.; Soiffer, Robert J.

    2016-01-01

    CD4+ regulatory T cells (CD4Tregs) play a critical role in the maintenance of immune tolerance and prevention of chronic graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation. IL-2 supports the proliferation and survival of CD4Tregs and previous studies have demonstrated that IL-2 induces selective expansion of CD4Tregs and improves clinical manifestations of chronic GVHD. However, mechanisms for selective activation of CD4Tregs and the effects of low-dose IL-2 on other immune cells are not well understood. Using mass cytometry, we demonstrate that low concentrations of IL-2 selectively induce STAT5 phosphorylation in Helios+ CD4Tregs and CD56brightCD16– NK cells in vitro. Preferential activation and expansion of Helios+ CD4Tregs and CD56brightCD16– NK cells was also demonstrated in patients with chronic GVHD receiving low-dose IL-2. With prolonged IL-2 treatment for 48 weeks, phenotypic changes were also observed in Helios– CD4Tregs. The effects of low-dose IL-2 therapy on conventional CD4+ T cells and CD8+ T cells were limited to increased expression of PD-1 on effector memory T cells. These studies reveal the selective effects of low-dose IL-2 therapy on Helios+ CD4Tregs and CD56bright NK cells that constitutively express high-affinity IL-2 receptors as well as the indirect effects of prolonged exposure to low concentrations of IL-2 in vivo. PMID:27812545

  16. Transmission of survival signals through Delta-like 1 on activated CD4+ T cells

    PubMed Central

    Furukawa, Takahiro; Ishifune, Chieko; Tsukumo, Shin-ichi; Hozumi, Katsuto; Maekawa, Yoichi; Matsui, Naoko; Kaji, Ryuji; Yasutomo, Koji

    2016-01-01

    Notch expressed on CD4+ T cells transduces signals that mediate their effector functions and survival. Although Notch signaling is known to be cis-inhibited by Notch ligands expressed on the same cells, the role of Notch ligands on T cells remains unclear. In this report we demonstrate that the CD4+ T cell Notch ligand Dll1 transduces signals required for their survival. Co-transfer of CD4+ T cells from Dll1−/− and control mice into recipient mice followed by immunization revealed a rapid decline of CD4+ T cells from Dll1−/− mice compared with control cells. Dll1−/− mice exhibited lower clinical scores of experimental autoimmune encephalitis than control mice. The expression of Notch target genes in CD4+ T cells from Dll1−/− mice was not affected, suggesting that Dll1 deficiency in T cells does not affect cis Notch signaling. Overexpression of the intracellular domain of Dll1 in Dll1-deficient CD4+ T cells partially rescued impaired survival. Our data demonstrate that Dll1 is an independent regulator of Notch-signaling important for the survival of activated CD4+ T cells, and provide new insight into the physiological roles of Notch ligands as well as a regulatory mechanism important for maintaining adaptive immune responses. PMID:27659682

  17. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection

    NASA Astrophysics Data System (ADS)

    Doitsh, Gilad; Galloway, Nicole L. K.; Geng, Xin; Yang, Zhiyuan; Monroe, Kathryn M.; Zepeda, Orlando; Hunt, Peter W.; Hatano, Hiroyu; Sowinski, Stefanie; Muñoz-Arias, Isa; Greene, Warner C.

    2014-01-01

    The pathway causing CD4 T-cell death in HIV-infected hosts remains poorly understood although apoptosis has been proposed as a key mechanism. We now show that caspase-3-mediated apoptosis accounts for the death of only a small fraction of CD4 T cells corresponding to those that are both activated and productively infected. The remaining over 95% of quiescent lymphoid CD4 T cells die by caspase-1-mediated pyroptosis triggered by abortive viral infection. Pyroptosis corresponds to an intensely inflammatory form of programmed cell death in which cytoplasmic contents and pro-inflammatory cytokines, including IL-1β, are released. This death pathway thus links the two signature events in HIV infection--CD4 T-cell depletion and chronic inflammation--and creates a pathogenic vicious cycle in which dying CD4 T cells release inflammatory signals that attract more cells to die. This cycle can be broken by caspase 1 inhibitors shown to be safe in humans, raising the possibility of a new class of `anti-AIDS' therapeutics targeting the host rather than the virus.

  18. IL-7 signaling imparts polyfunctionality and stemness potential to CD4(+) T cells.

    PubMed

    Ding, Zhi-Chun; Liu, Chufeng; Cao, Yang; Habtetsion, Tsadik; Kuczma, Michal; Pi, Wenhu; Kong, Heng; Cacan, Ercan; Greer, Susanna F; Cui, Yan; Blazar, Bruce R; Munn, David H; Zhou, Gang

    2016-06-01

    The functional status of CD4(+) T cells is a critical determinant of antitumor immunity. Polyfunctional CD4(+) T cells possess the ability to concomitantly produce multiple Th1-type cytokines, exhibiting a functional attribute desirable for cancer immunotherapy. However, the mechanisms by which these cells are induced are neither defined nor it is clear if these cells can be used therapeutically to treat cancer. Here, we report that CD4(+) T cells exposed to exogenous IL-7 during antigenic stimulation can acquire a polyfunctional phenotype, characterized by their ability to simultaneously express IFNγ, IL-2, TNFα and granzyme B. This IL-7-driven polyfunctional phenotype was associated with increased histone acetylation in the promoters of the effector genes, indicative of increased chromatin accessibility. Moreover, forced expression of a constitutively active (CA) form of STAT5 recapitulated IL-7 in inducing CD4(+) T-cell polyfunctionality. Conversely, the expression of a dominant negative (DN) form of STAT5 abolished the ability of IL-7 to induce polyfunctional CD4(+) T cells. These in-vitro-generated polyfunctional CD4(+) T cells can traffic to tumor and expand intratumorally in response to immunization. Importantly, adoptive transfer of polyfunctional CD4(+) T cells following lymphodepletive chemotherapy was able to eradicate large established tumors. This beneficial outcome was associated with the occurrence of antigen epitope spreading, activation of the endogenous CD8(+) T cells and persistence of donor CD4(+) T cells exhibiting memory stem cell attributes. These findings indicate that IL-7 signaling can impart polyfunctionality and stemness potential to CD4(+) T cells, revealing a previously unknown property of IL-7 that can be exploited in adoptive T-cell immunotherapy.

  19. Aire-Overexpressing Dendritic Cells Induce Peripheral CD4⁺ T Cell Tolerance.

    PubMed

    Li, Dongbei; Li, Haijun; Fu, Haiying; Niu, Kunwei; Guo, Yantong; Guo, Chuan; Sun, Jitong; Li, Yi; Yang, Wei

    2015-12-29

    Autoimmune regulator (Aire) can promote the ectopic expression of peripheral tissue-restricted antigens (TRAs) in thymic medullary epithelial cells (mTECs), which leads to the deletion of autoreactive T cells and consequently prevents autoimmune diseases. However, the functions of Aire in the periphery, such as in dendritic cells (DCs), remain unclear. This study's aim was to investigate the effect of Aire-overexpressing DCs (Aire cells) on the functions of CD4⁺ T cells and the treatment of type 1 diabetes (T1D). We demonstrated that Aire cells upregulated the mRNA levels of the tolerance-related molecules CD73, Lag3, and FR4 and the apoptosis of CD4⁺ T cells in STZ-T1D mouse-derived splenocytes. Furthermore, following insulin stimulation, Aire cells decreased the number of CD4⁺ IFN-γ⁺ T cells in both STZ-T1D and WT mouse-derived splenocytes and reduced the expression levels of TCR signaling molecules (Ca(2+) and p-ERK) in CD4⁺ T cells. We observed that Aire cells-induced CD4⁺ T cells could delay the development of T1D. In summary, Aire-expressing DCs inhibited TCR signaling pathways and decreased the quantity of CD4⁺IFN-γ⁺ autoreactive T cells. These data suggest a mechanism for Aire in the maintenance of peripheral immune tolerance and provide a potential method to control autoimmunity by targeting Aire.

  20. The Differentiation and Protective Function of Cytolytic CD4 T Cells in Influenza Infection

    PubMed Central

    Brown, Deborah M.; Lampe, Anna T.; Workman, Aspen M.

    2016-01-01

    CD4 T cells that recognize peptide antigen in the context of class II MHC can differentiate into various subsets that are characterized by their helper functions. However, increasing evidence indicates that CD4 cells with direct cytolytic activity (CD4 CTL) play a role in chronic as well as acute infections, such as influenza A virus (IAV) infection. In the last couple of decades, techniques to measure the frequency and activity of these cytolytic cells has demonstrated their abundance in infections, such as human immunodeficiency virus, mouse pox, murine gamma herpes virus, cytomegalovirus, Epstein–Barr virus, and influenza among others. We now appreciate a greater role for CD4 CTL as direct effectors in viral infections and antitumor immunity through their ability to acquire perforin-mediated cytolytic activity and contribution to lysis of virally infected targets or tumors. As early as the 1980s, CD4 T cell clones with cytolytic potential were identified after influenza virus infection, yet much of this early work was dependent on in vitro culture and little was known about the physiological relevance of CD4 CTL. Here, we discuss the direct role CD4 CTL play in protection against lethal IAV infection and the factors that drive the generation of perforin-mediated lytic activity in CD4 cells in vivo during IAV infection. While focusing on CD4 CTL generated during IAV infection, we pull comparisons from the literature in other antiviral and antitumor systems. Further, we highlight what is currently known about CD4 CTL secondary and memory responses, as well as vaccination strategies to induce these potent killer cells that provide an extra layer of cell-mediated immune protection against heterosubtypic IAV infection. PMID:27014272

  1. The Differentiation and Protective Function of Cytolytic CD4 T Cells in Influenza Infection.

    PubMed

    Brown, Deborah M; Lampe, Anna T; Workman, Aspen M

    2016-01-01

    CD4 T cells that recognize peptide antigen in the context of class II MHC can differentiate into various subsets that are characterized by their helper functions. However, increasing evidence indicates that CD4 cells with direct cytolytic activity (CD4 CTL) play a role in chronic as well as acute infections, such as influenza A virus (IAV) infection. In the last couple of decades, techniques to measure the frequency and activity of these cytolytic cells has demonstrated their abundance in infections, such as human immunodeficiency virus, mouse pox, murine gamma herpes virus, cytomegalovirus, Epstein-Barr virus, and influenza among others. We now appreciate a greater role for CD4 CTL as direct effectors in viral infections and antitumor immunity through their ability to acquire perforin-mediated cytolytic activity and contribution to lysis of virally infected targets or tumors. As early as the 1980s, CD4 T cell clones with cytolytic potential were identified after influenza virus infection, yet much of this early work was dependent on in vitro culture and little was known about the physiological relevance of CD4 CTL. Here, we discuss the direct role CD4 CTL play in protection against lethal IAV infection and the factors that drive the generation of perforin-mediated lytic activity in CD4 cells in vivo during IAV infection. While focusing on CD4 CTL generated during IAV infection, we pull comparisons from the literature in other antiviral and antitumor systems. Further, we highlight what is currently known about CD4 CTL secondary and memory responses, as well as vaccination strategies to induce these potent killer cells that provide an extra layer of cell-mediated immune protection against heterosubtypic IAV infection. PMID:27014272

  2. The Differentiation and Protective Function of Cytolytic CD4 T Cells in Influenza Infection.

    PubMed

    Brown, Deborah M; Lampe, Anna T; Workman, Aspen M

    2016-01-01

    CD4 T cells that recognize peptide antigen in the context of class II MHC can differentiate into various subsets that are characterized by their helper functions. However, increasing evidence indicates that CD4 cells with direct cytolytic activity (CD4 CTL) play a role in chronic as well as acute infections, such as influenza A virus (IAV) infection. In the last couple of decades, techniques to measure the frequency and activity of these cytolytic cells has demonstrated their abundance in infections, such as human immunodeficiency virus, mouse pox, murine gamma herpes virus, cytomegalovirus, Epstein-Barr virus, and influenza among others. We now appreciate a greater role for CD4 CTL as direct effectors in viral infections and antitumor immunity through their ability to acquire perforin-mediated cytolytic activity and contribution to lysis of virally infected targets or tumors. As early as the 1980s, CD4 T cell clones with cytolytic potential were identified after influenza virus infection, yet much of this early work was dependent on in vitro culture and little was known about the physiological relevance of CD4 CTL. Here, we discuss the direct role CD4 CTL play in protection against lethal IAV infection and the factors that drive the generation of perforin-mediated lytic activity in CD4 cells in vivo during IAV infection. While focusing on CD4 CTL generated during IAV infection, we pull comparisons from the literature in other antiviral and antitumor systems. Further, we highlight what is currently known about CD4 CTL secondary and memory responses, as well as vaccination strategies to induce these potent killer cells that provide an extra layer of cell-mediated immune protection against heterosubtypic IAV infection.

  3. CD4 T-Cell Enumeration in a Field Setting: Evaluation of CyFlow Counter Using the CD4 Easy Count Kit-Dry and Pima CD4 Systems

    PubMed Central

    Wade, Djibril; Diaw, Papa Alassane; Daneau, Géraldine; Camara, Makhtar; Dieye, Tandakha Ndiaye; Mboup, Souleymane; Kestens, Luc

    2013-01-01

    Background Flow Cytometry (FCM) is still considered to be the method of choice for accurate CD4 enumeration. However, the use of FCM in developing countries is problematic due to their cost and complexity. Lower-cost technologies have been introduced. We evaluated CyFlow Counter together with its lyophilized reagents, and Pima CD4 in high-temperature area, using FACSCount as reference. Materials and Methods Whole blood samples were consecutively collected by venipuncture from 111 HIV+ patients and 17 HIV-negative donors. CD4 T-cell enumeration was performed on CyFlow Counter, Pima CD4 and FACSCount. Results CyFlow Counter and Pima CD4 systems showed good correlation with FACSCount (slope of 0.82 and 0.90, and concordance ρc of 0.94 and 0.98, respectively). CyFlow Counter showed absolute or relative biases (LOA) of −63 cells/mm3 (−245 to 120) or −9.8% (−38.1 to 18.4) respectively, and Pima CD4 showed biases (LOA) of −30 cells/mm3 (−160 to 101) or −3.5% (−41.0 to 33.9%). CyFlow Counter and Pima CD4 showed respectively 106.7% and 105.9% of similarity with FACSCount. According to WHO-2010 ART initiation threshold of 350 cells/mm3, CyFlow Counter and Pima CD4 showed respectively sensibility of 100% and 97%, and specificity of 91% and 93%. CyFlow Counter and Pima CD4 were strongly correlated (slope of 1.09 and ρc of 0.95). These alternative systems showed good agreement with bias of 33 cells/mm3 (−132 to 203) or 6.3% (−31.2 to 43.8), and similarity of 104.3%. Conclusion CyFlow Counter using CD4 easy count kit-dry and Pima CD4 systems can accurately provide CD4 T-cell counts with acceptable agreement to those of FACSCount. PMID:24066184

  4. CD4+CD25+ T Cells in primary malignant hypertension related kidney injury

    PubMed Central

    Huang, Hongdong; Luo, Yang; Liang, Yumei; Long, Xidai; Peng, Youming; Liu, Zhihua; Wen, Xiaojun; Jia, Meng; Tian, Ru; Bai, Chengli; Li, Cui; He, Fuliang; Lin, Qiushi; Wang, Xueyan; Dong, Xiaoqun

    2016-01-01

    CD4+CD25+ T cells are critical for maintenance of immunologic self-tolerance. We measured the number of CD4+CD25+ cells in the patients with primary malignant hypertension related kidney injury, to explore the molecular pathogenesis of this disease. We selected 30 patients with primary malignant hypertension related kidney injury and 30 healthy volunteers. Information on clinical characteristics and laboratory tests was obtained from each subject. The number of CD4+CD25+ cells and glomerular injury were assessed by flow cytometry and histopathology, respectively. Both serum IL-2, IL-4, and IL-6 and endothelial cell markers were analyzed by ELISA. ADAMTS13 antibody was detected by Western blotting. CD4+CD25+ cells were significantly reduced in patients with primary malignant hypertension related kidney injury compared to controls (P < 0.05). The number of CD4+CD25+ cells was negatively related to blood urea nitrogen, serum uric acid, proteinuria, and supernatant IL-4; whereas positively associated with estimated glomerular filtration rate in patients. Gradually decreasing CD4+CD25+ cells were also found as increasing renal injury. Additionally, patients exhibited increasing supernatant IL-4, serum IL-2 and IL-6, endothelial cell markers, and anti-ADAMTS13 antibody compared with controls (all P < 0.05). CD4+CD25+ cells may play a key role in the pathogenesis of primary malignant hypertension related kidney injury. PMID:27278520

  5. Granzyme B mediated function of Parvovirus B19-specific CD4+ T cells

    PubMed Central

    Kumar, Arun; Perdomo, Maria F; Kantele, Anu; Hedman, Lea; Hedman, Klaus; Franssila, Rauli

    2015-01-01

    A novel conception of CD4+ T cells with cytolytic potential (CD4+ CTL) is emerging. These cells appear to have a part in controlling malignancies and chronic infections. Human parvovirus B19 can cause a persistent infection, yet no data exist on the presence of B19-specific CD4+ CTLs. Such cells could have a role in the pathogenesis of some autoimmune disorders reported to be associated with B19. We explored the cytolytic potential of human parvovirus B19-specific T cells by stimulating peripheral blood mononuclear cell (PBMC) with recombinant B19-VP2 virus-like particles. The cytolytic potential was determined by enzyme immunoassay-based quantitation of granzyme B (GrB) and perforin from the tissue culture supernatants, by intracellular cytokine staining (ICS) and by detecting direct cytotoxicity. GrB and perforin responses with the B19 antigen were readily detectable in B19-seropositive individuals. T-cell depletion, HLA blocking and ICS experiments showed GrB and perforin to be secreted by CD4+ T cells. CD4+ T cells with strong GrB responses were found to exhibit direct cytotoxicity. As anticipated, ICS of B19-specific CD4+ T cells showed expected co-expression of GrB, perforin and interferon gamma (IFN-γ). Unexpectedly, also a strong co-expression of GrB and interleukin 17 (IL-17) was detected. These cells expressed natural killer (NK) cell surface marker CD56, together with the CD4 surface marker. To our knowledge, this is the first report on virus-specific CD4+ CTLs co-expressing CD56 antigen. Our results suggest a role for CD4+ CTL in B19 immunity. Such cells could function within both immune regulation and triggering of autoimmune phenomena such as systemic lupus erythematosus (SLE) or rheumatoid arthritis. PMID:26246896

  6. Activation requirements and responses to TLR ligands in human CD4+ T cells: comparison of two T cell isolation techniques.

    PubMed

    Lancioni, Christina L; Thomas, Jeremy J; Rojas, Roxana E

    2009-05-15

    Direct regulation of T cell function by microbial ligands through Toll-like receptors (TLR) is an emerging area of T cell biology. Currently either immunomagnetic cell sorting (IMACS) or fluorescence-activated cell sorting (FACS), are utilized to isolate T-cell subsets for such studies. However, it is unknown to what extent differences in T cell purity between these isolation techniques influence T cell functional assays. We compared the purity, response to mitogen, activation requirements, and response to TLR ligands between human CD4(+) T cells isolated either by IMACS (IMACS-CD4(+)) or by IMACS followed by FACS (IMACS/FACS-CD4(+)). As expected, IMACS-CD4(+) were less pure than IMACS/FACS-CD4(+) (92.5%+/-1.4% versus 99.7%+/-0.2%, respectively). Consequently, IMACS-CD4(+) proliferated and produced cytokines in response to mitogen alone and had lower activation requirements compared to IMACS/FACS-CD4(+). In addition IMACS-CD4(+) but not IMACS/FACS-CD4(+) responses were upregulated by the TLR-4 ligand lipopolysaccharide (LPS). On the other hand, TLR-2 and TLR-5 engagement induced costimulation in both IMACS-CD4(+) and highly purified IMACS-/FACS-CD4(+). Altogether these results indicate that small differences in cell purity can significantly alter T cell responses to TLR ligands. This study stresses the importance of a stringent purification method when investigating the role of microbial ligands in T cell function. PMID:19272393

  7. SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+ T-cells

    PubMed Central

    2012-01-01

    Background Quiescent CD4+ T lymphocytes are highly refractory to HIV-1 infection due to a block at reverse transcription. Results Examination of SAMHD1 expression in peripheral blood lymphocytes shows that SAMHD1 is expressed in both CD4+ and CD8+ T cells at levels comparable to those found in myeloid cells. Treatment of CD4+ T cells with Virus-Like Particles (VLP) containing Vpx results in the loss of SAMHD1 expression that correlates with an increased permissiveness to HIV-1 infection and accumulation of reverse transcribed viral DNA without promoting transcription from the viral LTR. Importantly, CD4+ T-cells from patients with Aicardi-Goutières Syndrome harboring mutation in the SAMHD1 gene display an increased susceptibility to HIV-1 infection that is not further enhanced by VLP-Vpx-treatment. Conclusion Here, we identified SAMHD1 as the restriction factor preventing efficient viral DNA synthesis in non-cycling resting CD4+ T-cells. These results highlight the crucial role of SAMHD1 in mediating restriction of HIV-1 infection in quiescent CD4+ T-cells and could impact our understanding of HIV-1 mediated CD4+ T-cell depletion and establishment of the viral reservoir, two of the HIV/AIDS hallmarks. PMID:23092122

  8. Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo.

    PubMed

    Simonetti, Francesco R; Sobolewski, Michele D; Fyne, Elizabeth; Shao, Wei; Spindler, Jonathan; Hattori, Junko; Anderson, Elizabeth M; Watters, Sarah A; Hill, Shawn; Wu, Xiaolin; Wells, David; Su, Li; Luke, Brian T; Halvas, Elias K; Besson, Guillaume; Penrose, Kerri J; Yang, Zhiming; Kwan, Richard W; Van Waes, Carter; Uldrick, Thomas; Citrin, Deborah E; Kovacs, Joseph; Polis, Michael A; Rehm, Catherine A; Gorelick, Robert; Piatak, Michael; Keele, Brandon F; Kearney, Mary F; Coffin, John M; Hughes, Stephen H; Mellors, John W; Maldarelli, Frank

    2016-02-16

    Reservoirs of infectious HIV-1 persist despite years of combination antiretroviral therapy and make curing HIV-1 infections a major challenge. Most of the proviral DNA resides in CD4(+)T cells. Some of these CD4(+)T cells are clonally expanded; most of the proviruses are defective. It is not known if any of the clonally expanded cells carry replication-competent proviruses. We report that a highly expanded CD4(+) T-cell clone contains an intact provirus. The highly expanded clone produced infectious virus that was detected as persistent plasma viremia during cART in an HIV-1-infected patient who had squamous cell cancer. Cells containing the intact provirus were widely distributed and significantly enriched in cancer metastases. These results show that clonally expanded CD4(+)T cells can be a reservoir of infectious HIV-1. PMID:26858442

  9. Pervanadate-induced adhesion of CD4+ T cell to fibronectin is associated with tyrosine phosphorylation of paxillin.

    PubMed

    Miron, S; Kachalsky, S G; Hershkoviz, R; Lider, O

    1997-09-01

    The initial stages of T cell activation involve tyrosine protein kinase-mediated intracellular signaling events. Integrin-mediated adhesion of CD4+ T lymphocytes to extracellular matrix glycoproteins, such as fibronectin, is an activation-dependent process. The involvement of tyrosine protein kinases in the adhesion of CD4+ T cells to fibronectin was examined using pervanadate, a protein-tyrosine phosphatase inhibitor. Pervanadate induced the adhesion of human CD4+ T cells to immobilized fibronectin in a beta1 integrin-mediated fashion, and adhesion was associated with an increase of protein tyrosine phosphorylation. Tyrosine protein kinase inhibitors abrogated both T cell adhesion and intracellular protein tyrosine phosphorylation. Participation of cytoskeletal proteins in the pervanadate-induced T cell adhesion was indicated because cytoskeleton disruption by cytochalasin B inhibited cell adhesion to fibronectin. We demonstrate that the cytoskeletal protein paxillin underwent time-dependent tyrosine phosphorylation simultaneously with pervanadate-induced T cell adhesion to fibronectin. Tyrosine phosphorylation of paxillin was related to cell adhesion, since pretreatment of T cells with cytochalasin B abrogated both adhesion and phosphorylation. This study demonstrates a correlation between activation of protein tyrosine kinases, tyrosine phosphorylation of paxillin, and integrin-mediated T cell adhesion to extracellular matrix glycoproteins. PMID:9307082

  10. Sequestration from Immune CD4^+ T Cells of Mycobacteria Growing in Human Macrophages

    NASA Astrophysics Data System (ADS)

    Pancholi, Preeti; Mirza, Asra; Bhardwaj, Nina; Steinman, Ralph M.

    1993-05-01

    CD4^+ helper T cells mediate resistance to tuberculosis, presumably by enhancing the antimicrobial activity of macrophages within which the Mycobacterium tuberculosis organism grows. A first step in resistance should be the presentation of mycobacterial antigens by macrophages to CD4^+ T cells. However, when the antigenic stimulus is limited to organisms growing in human monocytes, the organisms become sequestered from immune CD4^+ T cells. This block in presentation is selective for growing mycobacteria and not for other stimuli. Sequestration would allow replicating organisms to persist in infected individuals and may contribute to virulence.

  11. CD4+ T cells mediate mucosal and systemic immune responses to experimental hookworm infection

    PubMed Central

    DONDJI, B.; SUN, T.; BUNGIRO, R. D.; VERMEIRE, J. J.; HARRISON, L. M.; BIFULCO, C.; CAPPELLO, M.

    2011-01-01

    SUMMARY Hookworm infection is associated with anaemia and malnutrition in many resource-limited countries. Ancylostoma hookworms have previously been shown to modulate host cellular immune responses through multiple mechanisms, including reduced mitogen-mediated lymphocyte proliferation, impaired antigen presentation/processing, and relative reductions in CD4+ T cells in the spleen and mesenteric lymph nodes. Syrian hamsters were depleted of CD4+ for up to 9 days following intraperitoneal injection (200 μg) of a murine anti-mouse CD4 monoclonal IgG (clone GK1·5). CD4+ T-cell-depleted hamsters infected with the hookworm Ancylostoma ceylanicum exhibited a threefold higher mean intestinal worm burden and more severe anaemia than animals that received isotype control IgG. In addition, depletion of CD4+ T cells was associated with impaired cellular and humoral (serum and mucosal) immune responses to hookworm antigens. These data demonstrate an effector role for CD4+ T cells in hookworm immunity and disease pathogenesis. Ultimately, these studies may yield important insights into the relationship between intestinal nematode infections and diseases that are associated with CD4+ T-cell depletion, including HIV. PMID:20500671

  12. Methionine enkephalin is hydrolyzed by aminopeptidase N on CD4+ and CD8+ spleen T cells.

    PubMed

    Miller, B C; Thiele, D L; Hersh, L B; Cottam, G L

    1994-05-15

    Exogenous methionine enkephalin incubated with CD4+ or CD8+ T cells purified from murine spleen is metabolized primarily, if not exclusively, by aminopeptidase N (aminopeptidase M, EC 3.4.11.2), a membrane-anchored ectopeptidase. The enzyme activity is identified by its substrate specificity, sensitivity to inhibition by amastatin, and immunoreactivity with antibody to rat kidney aminopeptidase N. Activation of CD4+ T cells results in a small increase per cell in aminopeptidase N activity.

  13. CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut.

    PubMed

    Sonnenberg, Gregory F; Monticelli, Laurel A; Elloso, M Merle; Fouser, Lynette A; Artis, David

    2011-01-28

    Fetal CD4(+) lymphoid tissue inducer (LTi) cells play a critical role in the development of lymphoid tissues. Recent studies identified that LTi cells persist in adults and are related to a heterogeneous population of innate lymphoid cells that have been implicated in inflammatory responses. However, whether LTi cells contribute to protective immunity remains poorly defined. We demonstrate that after infection with Citrobacter rodentium, CD4(+) LTi cells were a dominant source of interleukin-22 (IL-22) early during infection. Infection-induced CD4(+) LTi cell responses were IL-23 dependent, and ablation of IL-23 impaired innate immunity. Further, depletion of CD4(+) LTi cells abrogated infection-induced expression of IL-22 and antimicrobial peptides, resulting in exacerbated host mortality. LTi cells were also found to be essential for host protective immunity in lymphocyte-replete hosts. Collectively these data demonstrate that adult CD4(+) LTi cells are a critical source of IL-22 and identify a previously unrecognized function for CD4(+) LTi cells in promoting innate immunity in the intestine.

  14. CD4+ follicular helper T cell infiltration predicts breast cancer survival

    PubMed Central

    Gu-Trantien, Chunyan; Loi, Sherene; Garaud, Soizic; Equeter, Carole; Libin, Myriam; de Wind, Alexandre; Ravoet, Marie; Le Buanec, Hélène; Sibille, Catherine; Manfouo-Foutsop, Germain; Veys, Isabelle; Haibe-Kains, Benjamin; Singhal, Sandeep K.; Michiels, Stefan; Rothé, Françoise; Salgado, Roberto; Duvillier, Hugues; Ignatiadis, Michail; Desmedt, Christine; Bron, Dominique; Larsimont, Denis; Piccart, Martine; Sotiriou, Christos; Willard-Gallo, Karen

    2013-01-01

    CD4+ T cells are critical regulators of immune responses, but their functional role in human breast cancer is relatively unknown. The goal of this study was to produce an image of CD4+ T cells infiltrating breast tumors using limited ex vivo manipulation to better understand the in vivo differences associated with patient prognosis. We performed comprehensive molecular profiling of infiltrating CD4+ T cells isolated from untreated invasive primary tumors and found that the infiltrating T cell subpopulations included follicular helper T (Tfh) cells, which have not previously been found in solid tumors, as well as Th1, Th2, and Th17 effector memory cells and Tregs. T cell signaling pathway alterations included a mixture of activation and suppression characterized by restricted cytokine/chemokine production, which inversely paralleled lymphoid infiltration levels and could be reproduced in activated donor CD4+ T cells treated with primary tumor supernatant. A comparison of extensively versus minimally infiltrated tumors showed that CXCL13-producing CD4+ Tfh cells distinguish extensive immune infiltrates, principally located in tertiary lymphoid structure germinal centers. An 8-gene Tfh signature, signifying organized antitumor immunity, robustly predicted survival or preoperative response to chemotherapy. Our identification of CD4+ Tfh cells in breast cancer suggests that they are an important immune element whose presence in the tumor is a prognostic factor. PMID:23778140

  15. Major histocompatibility complex class I-restricted alloreactive CD4+ T cells.

    PubMed

    Boyle, Louise H; Goodall, Jane C; Gaston, J S Hill

    2004-05-01

    Although it is well established that CD4+ T cells generally recognize major histocompatibility complex (MHC) class II molecules, MHC class I-reactive CD4+ T cells have occasionally been reported. Here we describe the isolation and characterization of six MHC class I-reactive CD4+ T-cell lines, obtained by co-culture of CD4+ peripheral blood T cells with the MHC class II-negative, transporter associated with antigen processing (TAP)-negative cell line, T2, transfected with human leucocyte antigen (HLA)-B27. Responses were inhibited by the MHC class I-specific monoclonal antibody (mAb), W6/32, demonstrating the direct recognition of MHC class I molecules. In four cases, the restriction element was positively identified as HLA-A2, as responses by these clones were completely inhibited by MA2.1, an HLA-A2-specific mAb. Interestingly, three of the CD4+ T-cell lines only responded to cells expressing HLA-B27, irrespective of their restricting allele, implicating HLA-B27 as a possible source of peptides presented by the stimulatory MHC class I alleles. In addition, these CD4+ MHC class I alloreactive T-cell lines could recognize TAP-deficient cells and therefore may have particular clinical relevance to situations where the expression of TAP molecules is decreased, such as viral infection and transformation of cells. PMID:15096184

  16. The story of CD4+ CD28- T cells revisited: solved or still ongoing?

    PubMed

    Maly, Kathrin; Schirmer, Michael

    2015-01-01

    CD4(+)CD28(-) T cells are a unique type of proinflammatory T cells characterised by blockade of costimulatory CD28 receptor expression at the transcriptional level, which is still reversible by IL-12. In healthy individuals older than 65 years, these cells may accumulate to up to 50% of total CD4(+) T lymphocytes as in many immune-mediated diseases, immunodeficiency, and specific infectious diseases. Here we focus on CD4(+)CD28(-) T cells in chronic immune-mediated diseases, summarizing various phenotypic and functional characteristics, which vary depending on the underlying disease, disease activity, and concurrent treatment. CD4(+)CD28(-) T cells present as effector/memory cells with increased replicative history and oligoclonality but reduced apoptosis. As an alternative costimulatory signal instead of CD28, not only natural killer cell receptors and Toll-like receptors, but also CD47, CTLA-4, OX40, and 4-1BB have to be considered. The proinflammatory and cytotoxic capacities of these cells indicate an involvement in progression and maintenance of chronic immune-mediated disease. So far it has been shown that treatment with TNF-α blockers, abatacept, statins, and polyclonal antilymphocyte globulins (ATG) mediates reduction of the CD4(+)CD28(-) T cell level. The clinical relevance of targeting CD4(+)CD28(-) T cells as a therapeutic option has not been examined so far. PMID:25834833

  17. Tapping CD4 T cells for cancer immunotherapy: the choice of personalized genomics.

    PubMed

    Zanetti, Maurizio

    2015-03-01

    Cellular immune responses that protect against tumors typically have been attributed to CD8 T cells. However, CD4 T cells also play a central role. It was shown recently that, in a patient with metastatic cholangiocarcinoma, CD4 T cells specific for a peptide from a mutated region of ERBB2IP could arrest tumor progression. This and other recent findings highlight new opportunities for CD4 T cells in cancer immunotherapy. In this article, I discuss the role and regulation of CD4 T cells in response to tumor Ags. Emphasis is placed on the types of Ags and mechanisms that elicit tumor-protective responses. I discuss the advantages and drawbacks of cancer immunotherapy through personalized genomics. These considerations should help to guide the design of next-generation therapeutic cancer vaccines.

  18. Evaluation of the FACSPresto, a New Point of Care Device for the Enumeration of CD4% and Absolute CD4+ T Cell Counts in HIV Infection

    PubMed Central

    Makadzange, Azure Tariro; Bogezi, Carola; Boyd, Kathryn; Gumbo, Anesu; Mukura, Dorinda; Matubu, Allen; Ndhlovu, Chiratidzo Ellen

    2016-01-01

    Introduction Enumeration of CD4+ T lymphocytes is important for pre-ART disease staging and screening for opportunistic infections, however access to CD4 testing in resource limited settings is poor. Point of care (POC) technologies can facilitate improved access to CD4 testing. We evaluated the analytical performance of a novel POC device the FACSPresto compared to the FACSCalibur as a reference standard and to the PIMA, a POC device in widespread use in sub-Saharan Africa. Method Specimens were obtained from 253 HIV infected adults. Venous blood samples were analyzed on the FACSPresto and the FACSCalibur, in a subset of 41 samples additional analysis was done on the PIMA. Results The absolute CD4 count results obtained on the FACSPresto were comparable to those on the FACSCalibur with low absolute (9.5cells/μl) and relative bias (3.2%). Bias in CD4% values was also low (1.06%) with a relative bias of 4.9%. The sensitivity was lower at a CD4 count threshold of ≤350cells/μl compared with ≤500cells/μl (84.9% vs. 92.8%) resulting in a high upward misclassification rate at low CD4 counts. Specificity at thresholds of ≤350cells/μl and ≤500cells/μl were 96.6% and 96.8% respectively. The PIMA had a high absolute (-68.6cells/μl) and relative bias (-10.5%) when compared with the FACSCalibur. At thresholds of ≤350cells/μl and ≤500cells/μl the sensitivity was 100% and 95.5% respectively; specificity was 85.7% and 84.2% respectively. The coefficients of repeatability were 4.13%, 5.29% and 9.8% respectively. Discussion The analytic performance of the FACSPresto against the reference standard was very good with better agreement and precision than the PIMA. The FACSPresto had comparable sensitivity at a threshold of 500 cells/μl and better specificity than the PIMA. However the FACSPresto showed reduced sensitivity at low CD4 count thresholds. Conclusion The FACSPresto can be reliably used as a POC device for enumerating absolute CD4 count and CD4% values

  19. Indoleamine 2,3-dioxygenase (IDO) downregulates the cell surface expression of the CD4 molecule.

    PubMed

    Huang, Guanyou; Zeng, Yaoying; Liang, Peiyan; Zhou, Congrong; Zhao, Shuyun; Huang, Xiuyan; Wu, Lingfei; He, Xianhui

    2012-01-01

    Indoleamine 2,3-dioxygenase (IDO) has been implicated in preventing the fetus from undergoing maternal T cell-mediated immune responses, yet the mechanism underlying these kinds of IDO-mediated immune responses has not been fully elucidated. Since the CD4 molecule plays a central role in the onset and regulation of antigen-specific immune responses, and T cell is sensitive in the absence of tryptophan, we hypothesize that IDO may reduce cell surface CD4 expression. To test this hypothesis, an adenoviral vector-based construct IDO-EGFP was generated and the effect of IDO-EGFP on CD4 expression was determined on recombinant adenoviral infected C8166 and MT-2 cells, by flow cytometry and/or Western blot analysis. The results revealed a significant downregulation of cell membrane CD4 in pAd-IDOEGFP infected cells when compared to that of mock-infected cells or infection with empty vector pAd-EGFP. Further experiments disclosed that either an addition of tryptophan or IDO inhibitor could partly restore CD4 expression in pAd-IDOEGFP infected C8166 cells. Our findings suggest that downregulation of CD4 by IDO might be one of the mechanisms through which IDO regulates T cell-mediated immune responses.

  20. Distribution of CD4 Lymphocyte Cells Among Apparently Healthy HIV Seropositive and Seronegative Populations

    PubMed Central

    Abubakar, Abdulazeez A

    2012-01-01

    Background: CD4 lymphocyte cells are often used as prognostic markers for monitoring the progression of immunosupression such as HIV infection. Aim: This study was conducted to assess the distribution of CD4 lymphocytes among apparently healthy human immunodeficiency virus (HIV) seronegative and seropositive populations in a Nigerian state. Materials and Methods: A total of 1520 apparently healthy subjects aged 18–64 years, composed of 800 males and 720 females attending some selected health institutions in the state, participated in the study. Ten milliliters of blood was collected from each subject; 5 ml of this was used for HIV antibodies sero-typing while the remaining 5 ml was anticoagulated and used for CD4 lymphocytes level determination. Only samples tested positive both with Capillus and Determine HIV test kits were further differentiated into sero-types with a standard diagnostic HIV test kit. The CD4 lymphocyte levels of all the sample were determined; mean CD4 levels of 205.1±0.09 and 287.4±0.3 cells/μl were recorded among females seropositives and seronagatives respectively. Statistical analysis by the Student t-test showed a significant difference in the mean CD4 lymphocyte count by gender. Results: Findings showed a mean CD4 level of 311.7±1.2 cells/μl among seropositive males while 399.3±0.6 cells/μl was recorded among seronegatives (t=5.86). The study also recorded a CD4 lymphocyte range of 232–464 cells/μl among apparently healthy seronegative population in this locality. Conclusion: The findings showed a significantly higher mean CD4 lymphocyte count among adult male HIV seronegatives (χ2=9.22) and seropositives (χ2=15.07) than their female counterparts. Further research work using the automation technique is suggested to confirm this new range for monitoring HIV subjects on antiretroviral therapy. PMID:22454823

  1. Nuclear Retention of Multiply Spliced HIV-1 RNA in Resting CD4+ T Cells

    PubMed Central

    Lassen, Kara G; Ramyar, Kasra X; Bailey, Justin R; Zhou, Yan; Siliciano, Robert F

    2006-01-01

    HIV-1 latency in resting CD4+ T cells represents a major barrier to virus eradication in patients on highly active antiretroviral therapy (HAART). We describe here a novel post-transcriptional block in HIV-1 gene expression in resting CD4+ T cells from patients on HAART. This block involves the aberrant localization of multiply spliced (MS) HIV-1 RNAs encoding the critical positive regulators Tat and Rev. Although these RNAs had no previously described export defect, we show that they exhibit strict nuclear localization in resting CD4+ T cells from patients on HAART. Overexpression of the transcriptional activator Tat from non-HIV vectors allowed virus production in these cells. Thus, the nuclear retention of MS HIV-1 RNA interrupts a positive feedback loop and contributes to the non-productive nature of infection of resting CD4+ T cells. To define the mechanism of nuclear retention, proteomic analysis was used to identify proteins that bind MS HIV-1 RNA. Polypyrimidine tract binding protein (PTB) was identified as an HIV-1 RNA-binding protein differentially expressed in resting and activated CD4+ T cells. Overexpression of PTB in resting CD4+ T cells from patients on HAART allowed cytoplasmic accumulation of HIV-1 RNAs. PTB overexpression also induced virus production by resting CD4+ T cells. Virus culture experiments showed that overexpression of PTB in resting CD4+ T cells from patients on HAART allowed release of replication-competent virus, while preserving a resting cellular phenotype. Whether through effects on RNA export or another mechanism, the ability of PTB to reverse latency without inducing cellular activation is a result with therapeutic implications. PMID:16839202

  2. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy.

    PubMed

    Matsuzawa, Yu; Oshima, Shigeru; Takahara, Masahiro; Maeyashiki, Chiaki; Nemoto, Yasuhiro; Kobayashi, Masanori; Nibe, Yoichi; Nozaki, Kengo; Nagaishi, Takashi; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Ma, Averil; Watanabe, Mamoru

    2015-01-01

    Autophagy plays important roles in metabolism, differentiation, and survival in T cells. TNFAIP3/A20 is a ubiquitin-editing enzyme that is thought to be a negative regulator of autophagy in cell lines. However, the role of TNFAIP3 in autophagy remains unclear. To determine whether TNFAIP3 regulates autophagy in CD4 T cells, we first analyzed Tnfaip3-deficient naïve CD4 T cells in vitro. We demonstrated that Tnfaip3-deficient CD4 T cells exhibited reduced MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) puncta formation, increased mitochondrial content, and exaggerated reactive oxygen species (ROS) production. These results indicate that TNFAIP3 promotes autophagy after T cell receptor (TCR) stimulation in CD4 T cells. We then investigated the mechanism by which TNFAIP3 promotes autophagy signaling. We found that TNFAIP3 bound to the MTOR (mechanistic target of rapamycin) complex and that Tnfaip3-deficient cells displayed enhanced ubiquitination of the MTOR complex and MTOR activity. To confirm the effects of enhanced MTOR activity in Tnfaip3-deficient cells, we analyzed cell survival following treatment with Torin1, an MTOR inhibitor. Tnfaip3-deficient CD4 T cells exhibited fewer cell numbers than the control cells in vitro and in vivo. In addition, the impaired survival of Tnfaip3-deficient cells was ameliorated with Torin1 treatment in vitro and in vivo. The effect of Torin1 was abolished by Atg5 deficiency. Thus, enhanced MTOR activity regulates the survival of Tnfaip3-deficient CD4 T cells. Taken together, our findings illustrate that TNFAIP3 restricts MTOR signaling and promotes autophagy, providing new insight into the manner in which MTOR and autophagy regulate survival in CD4 T cells.

  3. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy

    PubMed Central

    Matsuzawa, Yu; Oshima, Shigeru; Takahara, Masahiro; Maeyashiki, Chiaki; Nemoto, Yasuhiro; Kobayashi, Masanori; Nibe, Yoichi; Nozaki, Kengo; Nagaishi, Takashi; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Ma, Averil; Watanabe, Mamoru

    2015-01-01

    Autophagy plays important roles in metabolism, differentiation, and survival in T cells. TNFAIP3/A20 is a ubiquitin-editing enzyme that is thought to be a negative regulator of autophagy in cell lines. However, the role of TNFAIP3 in autophagy remains unclear. To determine whether TNFAIP3 regulates autophagy in CD4 T cells, we first analyzed Tnfaip3-deficient naïve CD4 T cells in vitro. We demonstrated that Tnfaip3-deficient CD4 T cells exhibited reduced MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) puncta formation, increased mitochondrial content, and exaggerated reactive oxygen species (ROS) production. These results indicate that TNFAIP3 promotes autophagy after T cell receptor (TCR) stimulation in CD4 T cells. We then investigated the mechanism by which TNFAIP3 promotes autophagy signaling. We found that TNFAIP3 bound to the MTOR (mechanistic target of rapamycin) complex and that Tnfaip3-deficient cells displayed enhanced ubiquitination of the MTOR complex and MTOR activity. To confirm the effects of enhanced MTOR activity in Tnfaip3-deficient cells, we analyzed cell survival following treatment with Torin1, an MTOR inhibitor. Tnfaip3-deficient CD4 T cells exhibited fewer cell numbers than the control cells in vitro and in vivo. In addition, the impaired survival of Tnfaip3-deficient cells was ameliorated with Torin1 treatment in vitro and in vivo. The effect of Torin1 was abolished by Atg5 deficiency. Thus, enhanced MTOR activity regulates the survival of Tnfaip3-deficient CD4 T cells. Taken together, our findings illustrate that TNFAIP3 restricts MTOR signaling and promotes autophagy, providing new insight into the manner in which MTOR and autophagy regulate survival in CD4 T cells. PMID:26043155

  4. Third-party CD4+ invariant natural killer T cells protect from murine GVHD lethality.

    PubMed

    Schneidawind, Dominik; Baker, Jeanette; Pierini, Antonio; Buechele, Corina; Luong, Richard H; Meyer, Everett H; Negrin, Robert S

    2015-05-28

    Graft-versus-host disease (GVHD) is driven by extensive activation and proliferation of alloreactive donor T cells causing significant morbidity and mortality following allogeneic hematopoietic cell transplantation (HCT). Invariant natural killer T (iNKT) cells are a potent immunoregulatory T-cell subset in both humans and mice. Here, we explored the role of adoptively transferred third-party CD4(+) iNKT cells for protection from lethal GVHD in a murine model of allogeneic HCT across major histocompatibility barriers. We found that low numbers of CD4(+) iNKT cells from third-party mice resulted in a significant survival benefit with retained graft-versus-tumor effects. In vivo expansion of alloreactive T cells was diminished while displaying a T helper cell 2-biased phenotype. Notably, CD4(+) iNKT cells from third-party mice were as protective as CD4(+) iNKT cells from donor mice although third-party CD4(+) iNKT cells were rejected early after allogeneic HCT. Adoptive transfer of third-party CD4(+) iNKT cells resulted in a robust expansion of donor CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) that were required for protection from lethal GVHD. However, in vivo depletion of myeloid-derived suppressor cells abrogated both Treg expansion and protection from lethal GVHD. Despite the fact that iNKT cells are a rare cell population, the almost unlimited third-party availability and feasibility of in vitro expansion provide the basis for clinical translation.

  5. Specificity of regulatory CD4+CD25+ T cells for self-T cell receptor determinants.

    PubMed

    Buenafe, Abigail C; Tsaknaridis, Laura; Spencer, Leslie; Hicks, Kevin S; McMahan, Rachel H; Watson, Lisa; Culbertson, Nicole E; Latocha, Dorian; Wegmann, Keith; Finn, Tom; Bartholomew, Richard; Burrows, Gregory G; Whitham, Ruth; Bourdette, Dennis N; Jones, Richard E; Offner, Halina; Chou, Yuan K; Vandenbark, Arthur A

    2004-04-01

    Although the phenotypic and regulatory properties of the CD4(+)CD25(+) T cell lineage (Treg cells) have been well described, the specificities remain largely unknown. We demonstrate here that the CD4(+)CD25(+) Treg population includes the recognition of a broad spectrum of human TCR CDR2 determinants found in the germline V gene repertoire as well as that of a clonotypic nongermline-encoded CDR3beta sequence present in a recombinant soluble T cell receptor (TCR) protein. Regulatory activity was demonstrated in T cell lines responsive to TCR but not in T cell lines responsive to control antigens. Inhibitory activity of TCR-reactive T cells required cell-cell contact and involved CTLA-4, GITR, IL-10, and IL-17. Thus, the T-T regulatory network includes Treg cells with specificity directed toward self-TCR determinants.

  6. CD4 T cells in murine acquired immunodeficiency syndrome: polyclonal progression to anergy

    PubMed Central

    1992-01-01

    We have examined the kinetics of changes that occur in the helper T cell subset during murine acquired immunodeficiency syndrome, which occurs after infection with the mix of viruses known as BM5. We find that there is expansion of the CD4 T cells by 2 wk, 50% of the CD4 T cells become large as the disease progresses, and the CD4 T cell population is increasingly comprised of cells with a memory/activated phenotype. These effects are apparent by 2 wk postinfection, and the change is nearly complete by 6-8 wk. The phenotypic shift is paralleled by the loss of the ability of the CD4 T cells to proliferate or to produce interleukin 2 (IL-2), IL-3, IL-4, and interferon gamma in response to stimulation with mitogens, superantigen, or anti-CD3. There is no obvious expansion or deletion of CD4 T cells expressing particular V beta genes, as might be expected if a conventional superantigen were driving the changes. The results suggest, however, that the total CD4 population has been driven to anergy by some potent polyclonal stimulus directly associated with viral infection. PMID:1588283

  7. Methodologies for the Analysis of HCV-Specific CD4+ T Cells

    PubMed Central

    Lokhande, Megha U.; Thimme, Robert; Klenerman, Paul; Semmo, Nasser

    2015-01-01

    Virus-specific CD4+ T cells play a major role in viral infections, such as hepatitis C virus (HCV). Viral clearance is associated with vigorous and multi-specific CD4+ T-cell responses, while chronic infection has been shown to be associated with weak or absent T-cell responses. Most of these studies have used functional assays to analyze virus-specific CD4+ T-cell responses; however, these and other detection methods have various limitations. Therefore, the important question of whether virus-specific CD4+ T cells are completely absent or primarily impaired in specific effector functions during chronic infection, has yet to be analyzed in detail. A novel assay, in which virus-specific CD4+ T-cell frequencies can be determined by de novo CD154 (CD40 ligand) expression in response to viral antigens, can help to overcome some of the limitations of functional assays and restrictions of multimer-based methods. This and other current established methods for the detection of HCV-specific CD4+ T cells will be discussed in this review. PMID:25767470

  8. Notch Signaling Regulates Antigen Sensitivity of Naive CD4+ T Cells by Tuning Co-stimulation

    PubMed Central

    Laky, Karen; Evans, Sharron; Perez-Diez, Ainhoa

    2015-01-01

    SUMMARY Adaptive immune responses begin when naive CD4+ T cells engage peptide+major histocompatibility complex class II and co-stimulatory molecules on antigen-presenting cells (APCs). Notch signaling can influence effector functions in differentiated CD4+ T helper and T regulatory cells. Whether and how ligand-induced Notch signaling influences the initial priming of CD4+ T cells has not been addressed. We have found that Delta Like Ligand 4 (DLL4)-induced Notch signaling potentiates phosphatidylinositol 3-OH kinase (PI3K)-dependent signaling downstream of the T cell receptor+CD28, allowing naive CD4+ T cells to respond to lower doses of antigen. In vitro, DLL4-deficient APCs were less efficient stimulators of CD4+ T cell activation, metabolism, proliferation, and cytokine secretion. With deletion of DLL4 from CD11c+ APCs in vivo, these deficits translated to an impaired ability to mount an effective CD4+-dependent anti-tumor response. These data implicate Notch signaling as an important regulator of adaptive immune responses. PMID:25607460

  9. Memory CD4+ T cells do not induce graft-versus-host disease.

    PubMed

    Anderson, Britt E; McNiff, Jennifer; Yan, Jun; Doyle, Hester; Mamula, Mark; Shlomchik, Mark J; Shlomchik, Warren D

    2003-07-01

    Graft-versus-host disease (GVHD) remains a major cause of morbidity and mortality in allogeneic stem cell transplantation (alloSCT). Donor T cells that accompany stem cell grafts cause GVHD by attacking recipient tissues; therefore, all patients receive GVHD prophylaxis by depletion of T cells from the allograft or through immunosuppressant drugs. In addition to providing a graft-versus-leukemia effect, donor T cells are critical for reconstituting T cell-mediated immunity. Ideally, immunity to infectious agents would be transferred from donor to host without GVHD. Most donors have been exposed to common pathogens and have an increased precursor frequency of memory T cells against pathogenic antigens. We therefore asked whether memory CD62L-CD44+ CD4+ T cells would induce less GVHD than unfractionated or naive CD4+ T cells. Strikingly, we found that memory CD4 cells induced neither clinical nor histologic GVHD. This effect was not due to the increased number of CD4+CD25+ regulatory T cells found in the CD62L-CD44+ fraction because memory T cells depletion of these cells did not cause GVHD. Memory CD4 cells engrafted and responded to antigen both in vivo and in vitro. If these murine results are applicable to human alloSCT, selective administration of memory T cells could greatly improve post-transplant immune reconstitution.

  10. Decline in CD4+ cell numbers in cats with naturally acquired feline immunodeficiency virus infection.

    PubMed

    Hoffmann-Fezer, G; Thum, J; Ackley, C; Herbold, M; Mysliwietz, J; Thefeld, S; Hartmann, K; Kraft, W

    1992-03-01

    T-cell subsets were studied by fluorescence-activated cell sorter analysis in 57 feline immunodeficiency virus (FIV)-seropositive cats with naturally acquired FIV infection to see whether CD4(+)-CD8+ alterations were comparable to those observed in human immunodeficiency virus-infected patients. CD4+ values were decreased and CD8+ values were increased. The CD4+/CD8+ ratio was reduced to 1.6, compared with 3.3 in 33 FIV-seronegative control cats. Variance analysis of data showed a significant influence of FIV seropositivity, sex, and spaying of female cats on CD4+ values. CD8+ values were significantly influenced by FIV seropositivity, age, and breed. These findings indicate a similarity between FIV and human immunodeficiency virus infections, as far as alterations of T-cell subsets are concerned. PMID:1310760

  11. Involvement of claudin-7 in HIV infection of CD4(-) cells

    PubMed Central

    Zheng, Junying; Xie, Yiming; Campbell, Richard; Song, Jun; Massachi, Samira; Razi, Miriam; Chiu, Robert; Berenson, James; Yang, Otto O; Chen, Irvin SY; Pang, Shen

    2005-01-01

    Background Human immunodeficiency virus (HIV) infection of CD4(-) cells has been demonstrated, and this may be an important mechanism for HIV transmission. Results We demonstrated that a membrane protein, claudin-7 (CLDN-7), is involved in HIV infection of CD4(-) cells. A significant increase in HIV susceptibility (2- to 100-fold) was demonstrated when CLDN-7 was transfected into a CD4(-) cell line, 293T. In addition, antibodies against CLDN-7 significantly decreased HIV infection of CD4(-) cells. Furthermore, HIV virions expressing CLDN-7 on their envelopes had a much higher infectivity for 293T CD4(-) cells than the parental HIV with no CLDN-7. RT-PCR results demonstrated that CLDN-7 is expressed in both macrophages and stimulated peripheral blood leukocytes, suggesting that most HIV virions generated in infected individuals have CLDN-7 on their envelopes. We also found that CLDN-7 is highly expressed in urogenital and gastrointestinal tissues. Conclusion Together these results suggest that CLDN-7 may play an important role in HIV infection of CD4(-) cells. PMID:16368003

  12. Inflammation Enhances IL-2 Driven Differentiation of Cytolytic CD4 T Cells

    PubMed Central

    Workman, Aspen M.; Jacobs, Ashley K.; Vogel, Alexander J.; Condon, Shirley; Brown, Deborah M.

    2014-01-01

    Cytolytic CD4 T cells (CD4 CTL) have been identified in vivo in response to viral infections; however, the factors necessary for driving the cytolytic phenotype have not been fully elucidated. Our previously published work suggests IL-2 may be the master regulator of perforin-mediated cytotoxicity in CD4 effectors. To further dissect the role of IL-2 in CD4 CTL generation, T cell receptor transgenic mice deficient in the ability to produce IL-2 or the high affinity IL-2 receptor (IL-2Rα, CD25) were used. Increasing concentrations of IL-2 were necessary to drive perforin (Prf) expression and maximal cytotoxicity. Granzyme B (GrB) expression and killing correlated with STAT5 activation and CD25 expression in vitro, suggesting that signaling through the high affinity IL-2R is critical for full cytotoxicity. IL-2 signaling was also necessary in vivo for inducing the Th1 phenotype and IFN-γ expression in CD4 T cells during influenza A (IAV) infection. In addition, GrB expression, as measured by mean fluorescent intensity, was decreased in CD25 deficient cells; however, the frequency of CD4 cells expressing GrB was unchanged. Similarly, analysis of cytolytic markers such as CD107a/b and Eomesodermin indicate high IL-2Rα expression is not necessary to drive the CD4 CTL phenotype during IAV infection. Thus, inflammatory signals induced by viral infection may overcome the need for strong IL-2 signals in driving cytotoxicity in CD4 cells. PMID:24586481

  13. HLA Class-II Associated HIV Polymorphisms Predict Escape from CD4+ T Cell Responses

    PubMed Central

    Erdmann, Nathan; Du, Victor Y.; Carlson, Jonathan; Schaefer, Malinda; Jureka, Alexander; Sterrett, Sarah; Yue, Ling; Dilernia, Dario; Lakhi, Shabir; Tang, Jianming; Sidney, John; Gilmour, Jill; Allen, Susan; Hunter, Eric; Heath, Sonya; Bansal, Anju; Goepfert, Paul A.

    2015-01-01

    Antiretroviral therapy, antibody and CD8+ T cell-mediated responses targeting human immunodeficiency virus-1 (HIV-1) exert selection pressure on the virus necessitating escape; however, the ability of CD4+ T cells to exert selective pressure remains unclear. Using a computational approach on HIV gag/pol/nef sequences and HLA-II allelic data, we identified 29 HLA-II associated HIV sequence polymorphisms or adaptations (HLA-AP) in an African cohort of chronically HIV-infected individuals. Epitopes encompassing the predicted adaptation (AE) or its non-adapted (NAE) version were evaluated for immunogenicity. Using a CD8-depleted IFN-γ ELISpot assay, we determined that the magnitude of CD4+ T cell responses to the predicted epitopes in controllers was higher compared to non-controllers (p<0.0001). However, regardless of the group, the magnitude of responses to AE was lower as compared to NAE (p<0.0001). CD4+ T cell responses in patients with acute HIV infection (AHI) demonstrated poor immunogenicity towards AE as compared to NAE encoded by their transmitted founder virus. Longitudinal data in AHI off antiretroviral therapy demonstrated sequence changes that were biologically confirmed to represent CD4+ escape mutations. These data demonstrate an innovative application of HLA-associated polymorphisms to identify biologically relevant CD4+ epitopes and suggests CD4+ T cells are active participants in driving HIV evolution. PMID:26302050

  14. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation.

    PubMed

    Gerriets, Valerie A; Kishton, Rigel J; Nichols, Amanda G; Macintyre, Andrew N; Inoue, Makoto; Ilkayeva, Olga; Winter, Peter S; Liu, Xiaojing; Priyadharshini, Bhavana; Slawinska, Marta E; Haeberli, Lea; Huck, Catherine; Turka, Laurence A; Wood, Kris C; Hale, Laura P; Smith, Paul A; Schneider, Martin A; MacIver, Nancie J; Locasale, Jason W; Newgard, Christopher B; Shinohara, Mari L; Rathmell, Jeffrey C

    2015-01-01

    Activation of CD4+ T cells results in rapid proliferation and differentiation into effector and regulatory subsets. CD4+ effector T cell (Teff) (Th1 and Th17) and Treg subsets are metabolically distinct, yet the specific metabolic differences that modify T cell populations are uncertain. Here, we evaluated CD4+ T cell populations in murine models and determined that inflammatory Teffs maintain high expression of glycolytic genes and rely on high glycolytic rates, while Tregs are oxidative and require mitochondrial electron transport to proliferate, differentiate, and survive. Metabolic profiling revealed that pyruvate dehydrogenase (PDH) is a key bifurcation point between T cell glycolytic and oxidative metabolism. PDH function is inhibited by PDH kinases (PDHKs). PDHK1 was expressed in Th17 cells, but not Th1 cells, and at low levels in Tregs, and inhibition or knockdown of PDHK1 selectively suppressed Th17 cells and increased Tregs. This alteration in the CD4+ T cell populations was mediated in part through ROS, as N-acetyl cysteine (NAC) treatment restored Th17 cell generation. Moreover, inhibition of PDHK1 modulated immunity and protected animals against experimental autoimmune encephalomyelitis, decreasing Th17 cells and increasing Tregs. Together, these data show that CD4+ subsets utilize and require distinct metabolic programs that can be targeted to control specific T cell populations in autoimmune and inflammatory diseases.

  15. Bronchoalveolar CD4+ T cell responses to respiratory antigens are impaired in HIV-infected adults

    PubMed Central

    Sepako, Enoch; Fullerton, Duncan G; Mzinza, David; Glennie, Sarah; Wright, Adam K; Heyderman, Robert S; Gordon, Stephen B

    2011-01-01

    Rationale HIV-infected adults are at an increased risk of lower respiratory tract infections. HIV infection impairs systemic acquired immunity, but there is limited information in humans on HIV-related cell-mediated immune defects in the lung. Objective To investigate antigen-specific CD4+ T cell responses to influenza virus, Streptococcus pneumoniae and Mycobacterium tuberculosis antigens in bronchoalveolar lavage (BAL) and peripheral blood between HIV-infected individuals and HIV-uninfected Malawian adults. Methods We obtained BAL fluid and blood from HIV-infected individuals (n=21) and HIV-uninfected adults (n=24). We determined the proportion of T cell subsets including naive, memory and regulatory T cells using flow cytometry, and used intracellular cytokine staining to identify CD4+ T cells recognising influenza virus-, S pneumoniae- and M tuberculosis-antigens. Main results CD4+ T cells in BAL were predominantly of effector memory phenotype compared to blood, irrespective of HIV status (p<0.001). There was immune compartmentalisation with a higher frequency of antigen-specific CD4+ T cells against influenza virus, S pneumoniae and M tuberculosis retained in BAL compared to blood in HIV-uninfected adults (p<0.001 in each case). Influenza virus- and M tuberculosis-specific CD4+ T cell responses in BAL were impaired in HIV-infected individuals: proportions of total antigen-specific CD4+ T cells and of polyfunctional IFN-γ and TNF-α-secreting cells were lower in HIV-infected individuals than in HIV-uninfected adults (p<0.05 in each case). Conclusions BAL antigen-specific CD4+ T cell responses against important viral and bacterial respiratory pathogens are impaired in HIV-infected adults. This might contribute to the susceptibility of HIV-infected adults to lower respiratory tract infections such as pneumonia and tuberculosis. PMID:21357587

  16. Multiple CD4+ T cell subsets produce immunomodulatory interleukin-10 during respiratory syncytial virus infection

    PubMed Central

    Weiss, Kayla A.; Christiaansen, Allison F.; Fulton, Ross B.; Meyerholz, David K.; Varga, Steven M.

    2011-01-01

    The host immune response is believed to contribute to the severity of pulmonary disease induced by acute respiratory syncytial virus (RSV) infection. Because RSV-induced pulmonary disease is associated with immunopathology, we evaluated the role of IL-10 in modulating the RSV-specific immune response. We found that IL-10 protein levels in the lung were increased following acute RSV infection with maximum production corresponding to the peak of the virus-specific T cell response. The majority of IL-10 producing cells in the lung during acute RSV infection were CD4+ T cells. The IL-10-producing CD4+ T cells included Foxp3+Tregs, Foxp3− CD4+ T cells that co-produce IFN-γ, and Foxp3− CD4+ T cells that do not co-produce IFN-γ. RSV infection of IL-10-deficient mice resulted in more severe disease, as measured by increased weight loss and airway resistance, as compared to control mice. We also observed an increase in the magnitude of the RSV-induced CD8+ and CD4+ T cell response that correlated with increased disease severity in the absence of IL-10 or following IL-10R blockade. Interestingly, IL-10R blockade during acute RSV infection altered CD4+ T cell subset distribution, resulting in a significant increase in IL-17A-producing CD4+ T cells and a concomitant decrease in Foxp3+ regulatory T cells. These results demonstrate that IL-10 plays a critical role in modulating the adaptive immune response to RSV by limiting T-cell-mediated pulmonary inflammation and injury. PMID:21844390

  17. CD4 ligands inhibit the formation of multifunctional transduction complexes involved in T cell activation.

    PubMed

    Jabado, N; Pallier, A; Le Deist, F; Bernard, F; Fischer, A; Hivroz, C

    1997-01-01

    Ligands binding to the CD4 molecule can inhibit TCR-mediated T cell activation. We have previously reported that transcription factors regulating the expression of the IL-2 gene, NF-AT, NF-kappaB, and AP-1, are targets of this inhibitory effect in an in vitro model using peripheral human CD4+ T cells activated by a CD3 mAb. Two T cell activation pathways involved in the regulation of these transcription factors, calcium flux and the p21ras pathway, were investigated as potential targets. Binding of HIV envelope glycoprotein gp160/gp120 or a CD4 mAb to the CD4+ T cells, prior to TCR/CD3 activation, inhibited the intracellular calcium elevation. This event strongly suggested an inhibition of PLCgamma1 activity. Tyrosine phosphorylation of PLCgamma1, induced by CD3 activation, was not affected, but its association with tyrosine-phosphorylated proteins, including a 62-kDa protein, was disrupted. This PLCgamma1-associated p62 was found to be immunoreactive to p62-Sam68 Abs. The activation-induced phosphorylation of two p21ras effectors, Raf-1 and Erk2, was inhibited by the CD4 ligands, indirectly pointing to inhibition of the p21ras activation pathway. In addition, we demonstrate that TCR activation of normal CD4+ T cells induced the formation of p120GAP and PLCgamma1-containing complexes. These complexes also contain other unidentified proteins. CD4 ligand binding induced a defective formation of these transduction complexes. This may result in inefficient signaling, partially accounting for the inhibitory effects of the CD4 ligands on both p21ras and calcium-activation pathways.

  18. Blockade of Human Immunodeficiency Virus Type 1 Production in CD4^+ T Cells by an Intracellular CD4 Expressed Under Control of the Viral Long Terminal Repeat

    NASA Astrophysics Data System (ADS)

    Buonocore, Linda; Rose, John K.

    1993-04-01

    A retroviral vector was constructed in which a gene encoding a mutated soluble CD4 protein that is retained in the endoplasmic reticulum (sCD4-KDEL) is expressed under control of human immunodeficiency virus type 1 (HIV-1) regulatory elements. HIV-1 infection of a human T-cell line transduced with this vector led to induction of sCD4-KDEL synthesis and a block in transport of the HIV envelope protein to the cell surface. There was a complete block to maturation of infectious HIV-1 in the transduced cells, no viral spread, and little or no syncytium formation. Infected cells gradually disappeared from the culture over a period of 2 months. This intracellular trap for HIV has potential application in gene therapy for AIDS.

  19. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4+ T cells

    PubMed Central

    Bertin, Samuel; Aoki-Nonaka, Yukari; de Jong, Petrus Rudolf; Stanwood, Shawna R.; Srikanth, Sonal; Lee, Jihyung; To, Keith; Abramson, Lior; Yu, Timothy; Han, Tiffany; Touma, Ranim; Li, Xiangli; González-Navajas, José M.; Herdman, Scott; Corr, Maripat; Fu, Guo; Dong, Hui; Gwack, Yousang; Franco, Alessandra; Jefferies, Wilfred A.; Raz, Eyal

    2016-01-01

    TRPV1 is a Ca2+-permeable channel mostly studied as a pain receptor in sensory neurons. However, its role in other cell types is poorly understood. Here, we demonstrate that TRPV1 is functionally expressed in CD4+ T cells where it acts as a non-store-operated Ca2+ channel and contributes to T cell receptor (TCR)-induced Ca2+ influx, TCR signaling and T cell activation. In models of T cell-mediated colitis, TRPV1 promotes colitogenic T cell responses and intestinal inflammation. Furthermore, genetic and pharmacological inhibition of TRPV1 in human CD4+ T cells recapitulates the phenotype of murine Trpv1−/− CD4+ T cells. These findings suggest that TRPV1 inhibition could represent a new therapeutic strategy to restrain proinflammatory T cell responses. PMID:25282159

  20. Interleukin-27-Producing CD4(+) T Cells Regulate Protective Immunity during Malaria Parasite Infection.

    PubMed

    Kimura, Daisuke; Miyakoda, Mana; Kimura, Kazumi; Honma, Kiri; Hara, Hiromitsu; Yoshida, Hiroki; Yui, Katsuyuki

    2016-03-15

    Interleukin-27 (IL-27) is a heterodimeric regulatory cytokine of the IL-12 family, which is produced by macrophages, dendritic cells, and B cells upon stimulation through innate immune receptors. Here, we described regulatory CD4(+) T cells that produce IL-27 in response to T cell receptor stimulation during malaria infection, inhibiting IL-2 production and clonal expansion of other T cells in an IL-27-dependent manner. IL-27-producing CD4(+) T cells were Foxp3(-)CD11a(+)CD49d(+) malaria antigen-specific CD4(+) T cells and were distinct from interferon-γ (IFN-γ) producing Th1 or IL-10 producing Tr1 cells. In mice lacking IL-27 in T cells, IL-2 production was restored and clonal expansion and IFN-γ production by specific CD4(+) T cells were improved, culminating in reduced parasite burden. This study highlights a unique population of IL-27 producing regulatory CD4(+) T cells and their critical role in the regulation of the protective immune response against malaria parasites.

  1. Antibody induced CD4 down-modulation of T cells is site-specifically mediated by CD64(+) cells.

    PubMed

    Vogel, Stephanie; Grabski, Elena; Buschjäger, Daniela; Klawonn, Frank; Döring, Marius; Wang, Junxi; Fletcher, Erika; Bechmann, Ingo; Witte, Torsten; Durisin, Martin; Schraven, Burkhart; Mangsbo, Sara M; Schönfeld, Kurt; Czeloth, Niklas; Kalinke, Ulrich

    2015-12-16

    Treatment of PBMC with the CD4-specific mAb BT-061 induces CD4 down-modulation of T cells. Here we report that addition of BT-061 to purified T cells did not confer this effect, whereas incubation of T cells in BT-061 coated wells restored CD4 down-modulation. These results implied that Fcγ receptor mediated cell-cell interactions played a role. In consistence with this hypothesis PBMC depleted of CD64(+) monocytes did not confer CD4 down-modulation of BT-061 decorated T cells. Strikingly, CD4 down-modulation was observed in BT-061 treated synovial fluid punctuated from patients' inflamed joints that comprised enhanced numbers of CD64(+) cells. In contrast, in a circulating whole blood system injection of BT-061 did not induce CD4 down-modulation, due to CD64 saturation by serum IgG. Similarly, tonsil derived mononuclear cells devoid of CD64(+) cells did not show CD4 down-modulation, whereas addition of blood derived monocytes restored the effect. Thus, the interaction of BT-061 decorated T cells with CD64(+) cells is needed for CD4 down-modulation, implying that in patients BT-061 would primarily induce CD4 down-modulation at inflammatory sites. These results highlight the need not only to examine the interaction of a given mAb with single FcγR, but also the immunological environment that is appropriate to support such interactions.

  2. Antibody induced CD4 down-modulation of T cells is site-specifically mediated by CD64(+) cells.

    PubMed

    Vogel, Stephanie; Grabski, Elena; Buschjäger, Daniela; Klawonn, Frank; Döring, Marius; Wang, Junxi; Fletcher, Erika; Bechmann, Ingo; Witte, Torsten; Durisin, Martin; Schraven, Burkhart; Mangsbo, Sara M; Schönfeld, Kurt; Czeloth, Niklas; Kalinke, Ulrich

    2015-01-01

    Treatment of PBMC with the CD4-specific mAb BT-061 induces CD4 down-modulation of T cells. Here we report that addition of BT-061 to purified T cells did not confer this effect, whereas incubation of T cells in BT-061 coated wells restored CD4 down-modulation. These results implied that Fcγ receptor mediated cell-cell interactions played a role. In consistence with this hypothesis PBMC depleted of CD64(+) monocytes did not confer CD4 down-modulation of BT-061 decorated T cells. Strikingly, CD4 down-modulation was observed in BT-061 treated synovial fluid punctuated from patients' inflamed joints that comprised enhanced numbers of CD64(+) cells. In contrast, in a circulating whole blood system injection of BT-061 did not induce CD4 down-modulation, due to CD64 saturation by serum IgG. Similarly, tonsil derived mononuclear cells devoid of CD64(+) cells did not show CD4 down-modulation, whereas addition of blood derived monocytes restored the effect. Thus, the interaction of BT-061 decorated T cells with CD64(+) cells is needed for CD4 down-modulation, implying that in patients BT-061 would primarily induce CD4 down-modulation at inflammatory sites. These results highlight the need not only to examine the interaction of a given mAb with single FcγR, but also the immunological environment that is appropriate to support such interactions. PMID:26670584

  3. Antibody induced CD4 down-modulation of T cells is site-specifically mediated by CD64+ cells

    PubMed Central

    Vogel, Stephanie; Grabski, Elena; Buschjäger, Daniela; Klawonn, Frank; Döring, Marius; Wang, Junxi; Fletcher, Erika; Bechmann, Ingo; Witte, Torsten; Durisin, Martin; Schraven, Burkhart; Mangsbo, Sara M.; Schönfeld, Kurt; Czeloth, Niklas; Kalinke, Ulrich

    2015-01-01

    Treatment of PBMC with the CD4-specific mAb BT-061 induces CD4 down-modulation of T cells. Here we report that addition of BT-061 to purified T cells did not confer this effect, whereas incubation of T cells in BT-061 coated wells restored CD4 down-modulation. These results implied that Fcγ receptor mediated cell-cell interactions played a role. In consistence with this hypothesis PBMC depleted of CD64+ monocytes did not confer CD4 down-modulation of BT-061 decorated T cells. Strikingly, CD4 down-modulation was observed in BT-061 treated synovial fluid punctuated from patients’ inflamed joints that comprised enhanced numbers of CD64+ cells. In contrast, in a circulating whole blood system injection of BT-061 did not induce CD4 down-modulation, due to CD64 saturation by serum IgG. Similarly, tonsil derived mononuclear cells devoid of CD64+ cells did not show CD4 down-modulation, whereas addition of blood derived monocytes restored the effect. Thus, the interaction of BT-061 decorated T cells with CD64+ cells is needed for CD4 down-modulation, implying that in patients BT-061 would primarily induce CD4 down-modulation at inflammatory sites. These results highlight the need not only to examine the interaction of a given mAb with single FcγR, but also the immunological environment that is appropriate to support such interactions. PMID:26670584

  4. Dendritic Cells Enhance HIV Infection of Memory CD4(+) T Cells in Human Lymphoid Tissues.

    PubMed

    Reyes-Rodriguez, Angel L; Reuter, Morgan A; McDonald, David

    2016-02-01

    Dendritic cells (DCs) play a key role in controlling infections by coordinating innate and adaptive immune responses to invading pathogens. Paradoxically, DCs can increase HIV-1 dissemination in vitro by binding and transferring infectious virions to CD4(+) T cells, a process called transinfection. Transinfection has been well characterized in cultured cell lines and circulating primary T cells, but it is unknown whether DCs enhance infection of CD4(+) T cells in vivo. In untreated HIV infection, massive CD4(+) T-cell infection and depletion occur in secondary lymphoid tissues long before decline is evident in the peripheral circulation. To study the role of DCs in HIV infection of lymphoid tissues, we utilized human tonsil tissues, cultured either as tissue blocks or as aggregate suspension cultures, in single-round infection experiments. In these experiments, addition of monocyte-derived DCs (MDDCs) to the cultures increased T-cell infection, particularly in CD4(+) T cells expressing lower levels of HLA-DR. Subset analysis demonstrated that MDDCs increased HIV-1 infection of central and effector memory T-cell populations. Depletion of endogenous myeloid DCs (myDCs) from the cultures decreased memory T-cell infection, and readdition of MDDCs restored infection to predepletion levels. Using an HIV-1 fusion assay, we found that MDDCs equally increased HIV delivery into naïve, central, and effector memory T cells in the cultures, whereas predepletion of myDCs reduced fusion into memory T cells. Together, these data suggest that resident myDCs facilitate memory T-cell infection in lymphoid tissues, implicating DC-mediated transinfection in driving HIV dissemination within these tissues in untreated HIV/AIDS.

  5. IL-15 induces CD4+ effector memory T cell production and tissue emigration in nonhuman primates

    PubMed Central

    Picker, Louis J.; Reed-Inderbitzin, Edward F.; Hagen, Shoko I.; Edgar, John B.; Hansen, Scott G.; Legasse, Alfred; Planer, Shannon; Piatak, Michael; Lifson, Jeffrey D.; Maino, Vernon C.; Axthelm, Michael K.; Villinger, Francois

    2006-01-01

    HIV infection selectively targets CD4+ effector memory T (TEM) cells, resulting in dramatic depletion of CD4+ T cells in mucosal effector sites in early infection. Regeneration of the TEM cell compartment is slow and incomplete, even when viral replication is controlled by antiretroviral therapy (ART). Here, we demonstrate that IL-15 dramatically increases in vivo proliferation of rhesus macaque (RM) CD4+ and CD8+ TEM cells with little effect on the naive or central memory T (TCM) cell subsets, a response pattern that is quite distinct from that of either IL-2 or IL-7. TEM cells produced in response to IL-15 did not accumulate in blood. Rather, 5-bromo-2′-deoxyuridine (BrdU) labeling studies suggest that many of these cells rapidly disperse to extralymphoid effector sites, where they manifest (slow) decay kinetics indistinguishable from that of untreated controls. In RMs with uncontrolled SIV infection and highly activated immune systems, IL-15 did not significantly increase CD4+ TEM cell proliferation, but with virologic control and concomitant reduction in immune activation by ART, IL-15 responsiveness was again observed. These data suggest that therapeutic use of IL-15 in the setting of ART might facilitate specific restoration of the CD4+ T cell compartment that is the primary target of HIV with less risk of exhausting precursor T cell compartments or generating potentially deleterious regulatory subsets. PMID:16691294

  6. Immune activation induces immortalization of HTLV-1 LTR-Tax transgenic CD4+ T cells.

    PubMed

    Swaims, Alison Y; Khani, Francesca; Zhang, Yingyu; Roberts, Arthur I; Devadas, Satish; Shi, Yufang; Rabson, Arnold B

    2010-10-21

    Infection with the human T-cell leukemia virus-1 (HTLV-1) results in a variety of diseases including adult T-cell leukemia/lymphoma (ATL). Although the pathogenesis of these disorders is poorly understood, it involves complex interactions with the host immune system. Activation of infected T cells may play an important role in disease pathogenesis through induction of the oncogenic HTLV-1 Tax transactivator protein. To test this hypothesis, we employed transgenic mice in which Tax is regulated by the HTLV-1 LTR. T-cell receptor stimulation of LTR-Tax CD4(+) T cells induced Tax expression, hyper-proliferation, and immortalization in culture. The transition to cellular immortalization was accompanied by markedly increased expression of the antiapoptotic gene, mcl-1, previously implicated as important in T-cell survival. Immortalized cells exhibited a CD4(+)CD25(+)CD3(-) phenotype commonly observed in ATL. Engraftment of activated LTR-Tax CD4(+) T cells into NOD/Shi-scid/IL-2Rγ null mice resulted in a leukemia-like phenotype with expansion and tissue infiltration of Tax(+), CD4(+) lymphocytes. We suggest that immune activation of infected CD4(+) T cells plays an important role in the induction of Tax expression, T-cell proliferation, and pathogenesis of ATL in HTLV-1-infected individuals. PMID:20634377

  7. Induction of CD4+ Regulatory and Polarized Effector/helper T Cells by Dendritic Cells

    PubMed Central

    2016-01-01

    Dendritic cells (DCs) are considered to play major roles during the induction of T cell immune responses as well as the maintenance of T cell tolerance. Naive CD4+ T cells have been shown to respond with high plasticity to signals inducing their polarization into effector/helper or regulatory T cells. Data obtained from in vitro generated bone-marrow (BM)-derived DCs as well as genetic mouse models revealed an important but not exclusive role of DCs in shaping CD4+ T cell responses. Besides the specialization of some conventional DC subsets for the induction of polarized immunity, also the maturation stage, activation of specialized transcription factors and the cytokine production of DCs have major impact on CD4+ T cells. Since in vitro generated BM-DCs show a high diversity to shape CD4+ T cells and their high similarity to monocyte-derived DCs in vivo, this review reports data mainly on BM-DCs in this process and only touches the roles of transcription factors or of DC subsets, which have been discussed elsewhere. Here, recent findings on 1) the conversion of naive into anergic and further into Foxp3− regulatory T cells (Treg) by immature DCs, 2) the role of RelB in steady state migratory DCs (ssmDCs) for conversion of naive T cells into Foxp3+ Treg, 3) the DC maturation signature for polarized Th2 cell induction and 4) the DC source of IL-12 for Th1 induction are discussed. PMID:26937228

  8. Selective Loss of Innate CD4+ Vα24 Natural Killer T Cells in Human Immunodeficiency Virus Infection

    PubMed Central

    Sandberg, Johan K.; Fast, Noam M.; Palacios, Emil H.; Fennelly, Glenn; Dobroszycki, Joanna; Palumbo, Paul; Wiznia, Andrew; Grant, Robert M.; Bhardwaj, Nina; Rosenberg, Michael G.; Nixon, Douglas F.

    2002-01-01

    Vα24 natural killer T (NKT) cells are innate immune cells involved in regulation of immune tolerance, autoimmunity, and tumor immunity. However, the effect of human immunodeficiency virus type 1 (HIV-1) infection on these cells is unknown. Here, we report that the Vα24 NKT cells can be subdivided into CD4+ or CD4− subsets that differ in their expression of the homing receptors CD62L and CD11a. Furthermore, both CD4+ and CD4− NKT cells frequently express both CXCR4 and CCR5 HIV coreceptors. We find that the numbers of NKT cells are reduced in HIV-infected subjects with uncontrolled viremia and marked CD4+ T-cell depletion. The number of CD4+ NKT cells is inversely correlated with HIV load, indicating depletion of this subset. In contrast, CD4− NKT-cell numbers are unaffected in subjects with high viral loads. HIV infection experiments in vitro show preferential depletion of CD4+ NKT cells relative to regular CD4+ T cells, in particular with virus that uses the CCR5 coreceptor. Thus, HIV infection causes a selective loss of CD4+ lymph node homing (CD62L+) NKT cells, with consequent skewing of the NKT-cell compartment to a predominantly CD4− CD62L− phenotype. These data indicate that the key immunoregulatory NKT-cell compartment is compromised in HIV-1-infected patients. PMID:12097565

  9. Characterization of CD4+ T cell subsets in allergy

    PubMed Central

    Wambre, Erik; James, Eddie A; Kwok, William W

    2013-01-01

    Allergen specific TH2 cells are a key component of allergic disease, but their characterization has been hindered by technical limitations and lack of epitope data. Knowledge about the factors that drive the differentiation of naïve T cells into allergy-promoting TH2 cells and the influence of allergen specific immunotherapy on the phenotype and function of allergen-specific T cells have also been limited. Recent advances indicate that innate and adaptive immune factors drive the development of diverse subsets of allergen-specific T cells. While allergen-specific T cells are present even in non-allergic subjects, highly differentiated TH2 cells are present only in allergic subjects and their disappearance correlates with successful immunotherapy. Therefore, elimination of pathogenic TH2 cells is an essential step in tolerance induction. PMID:22889592

  10. Role of miRNAs in CD4 T cell plasticity during inflammation and tolerance

    PubMed Central

    Sethi, Apoorva; Kulkarni, Neeraja; Sonar, Sandip; Lal, Girdhari

    2013-01-01

    Gene expression is tightly regulated in a tuneable, cell-specific and time-dependent manner. Recent advancement in epigenetics and non-coding RNA (ncRNA) revolutionized the concept of gene regulation. In order to regulate the transcription, ncRNA can promptly response to the extracellular signals as compared to transcription factors present in the cells. microRNAs (miRNAs) are ncRNA (~22 bp) encoded in the genome, and present as intergenic or oriented antisense to neighboring genes. The strategic location of miRNA in coding genes helps in the coupled regulation of its expression with host genes. miRNA together with complex machinery called RNA-induced silencing complex (RISC) interacts with target mRNA and degrade the mRNA or inhibits the translation. CD4 T cells play an important role in the generation and maintenance of inflammation and tolerance. Cytokines and chemokines present in the inflamed microenvironment controls the differentiation and function of various subsets of CD4 T cells [Th1, Th2, Th17, and regulatory CD4 T cells (Tregs)]. Recent studies suggest that miRNAs play an important role in the development and function of all subsets of CD4 T cells. In current review, we focused on how various miRNAs are regulated by cell's extrinsic and intrinsic signaling, and how miRNAs affect the transdifferentiation of subsets of CD4 T cell and controls their plasticity during inflammation and tolerance. PMID:23386861

  11. Role of miRNAs in CD4 T cell plasticity during inflammation and tolerance.

    PubMed

    Sethi, Apoorva; Kulkarni, Neeraja; Sonar, Sandip; Lal, Girdhari

    2013-01-01

    Gene expression is tightly regulated in a tuneable, cell-specific and time-dependent manner. Recent advancement in epigenetics and non-coding RNA (ncRNA) revolutionized the concept of gene regulation. In order to regulate the transcription, ncRNA can promptly response to the extracellular signals as compared to transcription factors present in the cells. microRNAs (miRNAs) are ncRNA (~22 bp) encoded in the genome, and present as intergenic or oriented antisense to neighboring genes. The strategic location of miRNA in coding genes helps in the coupled regulation of its expression with host genes. miRNA together with complex machinery called RNA-induced silencing complex (RISC) interacts with target mRNA and degrade the mRNA or inhibits the translation. CD4 T cells play an important role in the generation and maintenance of inflammation and tolerance. Cytokines and chemokines present in the inflamed microenvironment controls the differentiation and function of various subsets of CD4 T cells [Th1, Th2, Th17, and regulatory CD4 T cells (Tregs)]. Recent studies suggest that miRNAs play an important role in the development and function of all subsets of CD4 T cells. In current review, we focused on how various miRNAs are regulated by cell's extrinsic and intrinsic signaling, and how miRNAs affect the transdifferentiation of subsets of CD4 T cell and controls their plasticity during inflammation and tolerance.

  12. Computational modeling of heterogeneity and function of CD4+ T cells

    PubMed Central

    Carbo, Adria; Hontecillas, Raquel; Andrew, Tricity; Eden, Kristin; Mei, Yongguo; Hoops, Stefan; Bassaganya-Riera, Josep

    2014-01-01

    The immune system is composed of many different cell types and hundreds of intersecting molecular pathways and signals. This large biological complexity requires coordination between distinct pro-inflammatory and regulatory cell subsets to respond to infection while maintaining tissue homeostasis. CD4+ T cells play a central role in orchestrating immune responses and in maintaining a balance between pro- and anti- inflammatory responses. This tight balance between regulatory and effector reactions depends on the ability of CD4+ T cells to modulate distinct pathways within large molecular networks, since dysregulated CD4+ T cell responses may result in chronic inflammatory and autoimmune diseases. The CD4+ T cell differentiation process comprises an intricate interplay between cytokines, their receptors, adaptor molecules, signaling cascades and transcription factors that help delineate cell fate and function. Computational modeling can help to describe, simulate, analyze, and predict some of the behaviors in this complicated differentiation network. This review provides a comprehensive overview of existing computational immunology methods as well as novel strategies used to model immune responses with a particular focus on CD4+ T cell differentiation. PMID:25364738

  13. Human regulatory T cells control TCR signaling and susceptibility to suppression in CD4+ T cells.

    PubMed

    Chellappa, Stalin; Lieske, Nora V; Hagness, Morten; Line, Pål D; Taskén, Kjetil; Aandahl, Einar M

    2016-07-01

    Human CD4(+)CD25(hi)FOXP3(+) regulatory T cells maintain immunologic tolerance and prevent autoimmune and inflammatory immune responses. Regulatory T cells undergo a similar activation cycle as conventional CD4(+) T cells upon antigen stimulation. Here, we demonstrate that T cell receptors and costimulation are required to activate the regulatory T cell suppressive function. Regulatory T cells suppressed the T cell receptor signaling in effector T cells in a time-dependent manner that corresponded with inhibition of cytokine production and proliferation. Modulation of the activation level and thereby the suppressive capacity of regulatory T cells imposed distinct T cell receptor signaling signatures and hyporesponsiveness in suppressed and proliferating effector T cells and established a threshold for effector T cell proliferation. The immune suppression of effector T cells was completely reversible upon removal of regulatory T cells. However, the strength of prior immune suppression by regulatory T cells and corresponding T cell receptor signaling in effector T cells determined the susceptibility to suppression upon later reexposure to regulatory T cells. These findings demonstrate how the strength of the regulatory T cell suppressive function determines intracellular signaling, immune responsiveness, and the later susceptibility of effector T cells to immune suppression and contribute to unveiling the complex interactions between regulatory T cells and effector T cells. PMID:26715685

  14. Blimp-1-mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis.

    PubMed

    Hwang, SuJin; Cobb, Dustin A; Bhadra, Rajarshi; Youngblood, Ben; Khan, Imtiaz A

    2016-08-22

    CD8, but not CD4, T cells are considered critical for control of chronic toxoplasmosis. Although CD8 exhaustion has been previously reported in Toxoplasma encephalitis (TE)-susceptible model, our current work demonstrates that CD4 not only become exhausted during chronic toxoplasmosis but this dysfunction is more pronounced than CD8 T cells. Exhausted CD4 population expressed elevated levels of multiple inhibitory receptors concomitant with the reduced functionality and up-regulation of Blimp-1, a transcription factor. Our data demonstrates for the first time that Blimp-1 is a critical regulator for CD4 T cell exhaustion especially in the CD4 central memory cell subset. Using a tamoxifen-dependent conditional Blimp-1 knockout mixed bone marrow chimera as well as an adoptive transfer approach, we show that CD4 T cell-intrinsic deletion of Blimp-1 reversed CD8 T cell dysfunction and resulted in improved pathogen control. To the best of our knowledge, this is a novel finding, which demonstrates the role of Blimp-1 as a critical regulator of CD4 dysfunction and links it to the CD8 T cell dysfunctionality observed in infected mice. The critical role of CD4-intrinsic Blimp-1 expression in mediating CD4 and CD8 T cell exhaustion may provide a rational basis for designing novel therapeutic approaches. PMID:27481131

  15. Therapeutic Potential of Hyporesponsive CD4+ T Cells in Autoimmunity

    PubMed Central

    Maggi, Jaxaira; Schafer, Carolina; Ubilla-Olguín, Gabriela; Catalán, Diego; Schinnerling, Katina; Aguillón, Juan C.

    2015-01-01

    The interaction between dendritic cells (DCs) and T cells is crucial on immunity or tolerance induction. In an immature or semi-mature state, DCs induce tolerance through T-cell deletion, generation of regulatory T cells, and/or induction of T-cell anergy. Anergy is defined as an unresponsive state that retains T cells in an “off” mode under conditions in which immune activation is undesirable. This mechanism is crucial for the control of T-cell responses against self-antigens, thereby preventing autoimmunity. Tolerogenic DCs (tDCs), generated in vitro from peripheral blood monocytes of healthy donors or patients with autoimmune pathologies, were shown to modulate immune responses by inducing T-cell hyporesponsiveness. Animal models of autoimmune diseases confirmed the impact of T-cell anergy on disease development and progression in vivo. Thus, the induction of T-cell hyporesponsiveness by tDCs has become a promising immunotherapeutic strategy for the treatment of T-cell-mediated autoimmune disorders. Here, we review recent findings in the area and discuss the potential of anergy induction for clinical purposes. PMID:26441992

  16. Characterizing the dynamics of CD4+ T cell priming within a lymph node1

    PubMed Central

    Linderman, Jennifer J.; Riggs, Thomas; Pande, Manjusha; Miller, Mark; Marino, Simeone; Kirschner, Denise E.

    2011-01-01

    Generating adaptive immunity after infection or immunization requires physical interaction within a lymph node (LN) T-zone between antigen-bearing dendritic cells (DCs) and rare cognate T cells. Many fundamental questions remain regarding the dynamics of DC-CD4+ T cell interactions leading to priming. For example, it is not known how the production of primed CD4+ T cells relates to the numbers of cognate T cells, antigen-bearing DCs, or peptide-MHCII level on the DC. To address these questions, we developed an agent-based model of a LN to examine the relationships among cognate T cell frequency, DC density, parameters characterizing DC-T interactions and the output of primed T cells. We found that the output of primed CD4+ T cells is linearly related to cognate frequency, but non-linearly related to the number of antigen-bearing DCs present during infection. This addresses the applicability of two photon microscopy studies to understanding actual infection dynamics, as these types of experiments increase the cognate frequency by orders of magnitude as compared to physiologic levels. We found a trade-off between the quantity of peptide-MHCII on the surface of individual DCs and number of antigen-bearing DCs present in the LN in contributing to the production of primed CD4+ T cells. Interestingly, pMHCII half-life plays a minor, although still significant, role in determining CD4+ T cell priming, unlike the primary role that has been suggested for CD8+ T cell priming. Finally, we identify several pathogen-targeted mechanisms that, if altered in their efficiency, can significantly effect the generation of primed CD4+ T cells. PMID:20154206

  17. Blood-Derived CD4 T Cells Naturally Resist Pyroptosis During Abortive HIV-1 Infection

    PubMed Central

    Muñoz-Arias, Isa; Doitsh, Gilad; Yang, Zhiyuan; Sowinski, Stefanie; Ruelas, Debbie; Greene, Warner C.

    2015-01-01

    Summary Progression to AIDS is driven by CD4 T-cell depletion, mostly involving pyroptosis elicited by abortive HIV infection of CD4 T cells in lymphoid tissues. Inefficient reverse transcription in these cells leads to cytoplasmic accumulation of viral DNAs that are detected by the DNA sensor IFI16, resulting in inflammasome assembly, caspase-1 activation, and pyroptosis. Unexpectedly, we found that peripheral blood-derived CD4 T cells naturally resist pyroptosis. This resistance is partly due to their deeper resting state, resulting in fewer HIV-1 reverse transcripts and lower IFI16 expression. However, when co-cultured with lymphoid-derived cells, blood-derived CD4 T cells become sensitized to pyroptosis, likely recapitulating interactions occurring within lymphoid tissues. Sensitization correlates with higher levels of activated NF-κB, IFI16 expression, and reverse transcription. Blood-derived lymphocytes re-purified from co-cultures lose sensitivity to pyroptosis. These differences highlight how the lymphoid tissue microenvironment encountered by trafficking CD4 T lymphocytes dynamically shapes their biological response to HIV. PMID:26468749

  18. Green tea epigallocatechin-3-gallate modulates differentiation of naive CD4+ T cells into specific lineage effector cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CD4+ T helper (Th) subsets Th1, Th9, and Th17 cells are implicated in inducing autoimmunity whereas regulatory T cells (Treg) have a protective effect. We previously showed that epigallocatechin-3-gallate (EGCG) attenuated experimental autoimmune encephalomyelitis (EAE) and altered CD4+ T cell subpo...

  19. CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice

    PubMed Central

    1995-01-01

    Rather unexpectedly, major histocompatibility complex class II- deficient mice have a significant population of peripheral CD4+ T lymphocytes. We have investigated these cells at the population and clonal levels. CD4+ T lymphocytes from class II-deficient animals are thymically derived, appear early in ontogeny, exhibit the phenotype of resting memory cells, are potentially functional by several criteria, and have a diverse T cell receptor repertoire. They do not include substantially elevated numbers of NK1.1+ cells. Hybridomas derived after polyclonal stimulation of the CD4+ lymphocytes from class II- deficient animals include a subset with an unusual reactivity pattern, responding to splenocytes from many mouse strains including the strain of origin. Most members of this subset recognize the major histocompatibility complex class Ib molecule CD1; their heterogeneous reactivities and T cell receptor usage further suggest the involvement of peptides and/or highly variable posttranslational modifications. PMID:7561702

  20. Reconstitution of CD4 T Cells in Bronchoalveolar Lavage Fluid after Initiation of Highly Active Antiretroviral Therapy▿

    PubMed Central

    Knox, Kenneth S.; Vinton, Carol; Hage, Chadi A.; Kohli, Lisa M.; Twigg, Homer L.; Klatt, Nichole R.; Zwickl, Beth; Waltz, Jeffrey; Goldman, Mitchell; Douek, Daniel C.; Brenchley, Jason M.

    2010-01-01

    The massive depletion of gastrointestinal-tract CD4 T cells is a hallmark of the acute phase of HIV infection. In contrast, the depletion of the lower-respiratory-tract mucosal CD4 T cells as measured in bronchoalveolar lavage (BAL) fluid is more moderate and similar to the depletion of CD4 T cells observed in peripheral blood (PB). To understand better the dynamics of disease pathogenesis and the potential for the reconstitution of CD4 T cells in the lung and PB following the administration of effective antiretroviral therapy, we studied cell-associated viral loads, CD4 T-cell frequencies, and phenotypic and functional profiles of antigen-specific CD4 T cells from BAL fluid and blood before and after the initiation of highly active antiretroviral therapy (HAART). The major findings to emerge were the following: (i) BAL CD4 T cells are not massively depleted or preferentially infected by HIV compared to levels for PB; (ii) BAL CD4 T cells reconstitute after the initiation of HAART, and their infection frequencies decrease; (iii) BAL CD4 T-cell reconstitution appears to occur via the local proliferation of resident BAL CD4 T cells rather than redistribution; and (iv) BAL CD4 T cells are more polyfunctional than CD4 T cells in blood, and their functional profile is relatively unchanged after the initiation of HAART. Taken together, these data suggest mechanisms for mucosal CD4 T-cell depletion and interventions that might aid in the reconstitution of mucosal CD4 T cells. PMID:20610726

  1. The Influence of Costimulation and Regulatory Cd4+ T Cells on Intestinal Iga Immune Responses

    PubMed Central

    Kagrdic, Dubrav; Kjerrulf, Martin; Bromander, Annakari; Vajdy, Michael; Hörnquist, Elisabeth; Lycke, Nils

    1998-01-01

    It is thought that IgA B-cell differentiation is highly dependent on activated CD4+ T cells. In particular, cell-cell interactions in the Peyer's patches involving CD40 and/or CD80/CD86 have been implicated in germinal-center formation and IgA B-cell development. Also soluble factors, such as IL-4, IL-5, IL-6, and TGFβ may be critical for IgA B-cell differentiation in vivo. Here we report on some paradoxical findings with regard to IgA B-cell differentiation and specific mucosal immune responses that we have recently made using gene knockout mice. More specifically, we have investigated to what extent absence of CD4+ T cells, relevant cytokines, or T-cell-B-cell interactions would influence IgA B-cell differentiation in vivo. Using CD4– or IL- 4-gene knockout mice or mice made transgenic for CTLA4Ig, we found that, although specific responses were impaired, total IgA production and IgA B-cell differentiation appeared to proceed normally. However, a poor correlation was found between, on the one hand, GC formation and IgA differentiation and, on the other hand, the ability to respond to T-celldependent soluble protein antigens in these mice. Thus, despite the various deficiencies in CD4+ T-cell functions seemingly intact IgA B-cell development was observed. PMID:9716905

  2. Spontaneous Proliferation of H2M-/- CD4 T Cells Results in Unusual Acute Hepatocellular Necrosis

    PubMed Central

    Do, Jeong-su; Baldwin, William M.; Min, Booki

    2014-01-01

    Naïve CD4 T cells are triggered to undergo spontaneous proliferation, a proliferative response induced in response to homeostatic stimulation, when exposed to severe lymphopenic environments. They spontaneously acquire proinflammatory effector phenotypes, playing a major role in inducing chronic inflammation in the intestine that is believed to be induced by T cell recognition of commensal antigens. While the antigens inducing the T cell responses and inflammation are being extensively investigated, the role of clonality of T cells involved in this process remains poorly understood. In this study, we utilized naïve CD4 T cells isolated from B6 H2M−/− mice, in which MHCII molecules are complexed with a single CLIP molecule, and examined spontaneous proliferation and intestinal inflammation of CD4 T cells expressing limited T cell receptor repertoire diversity. We found that H2M−/− CD4 T cells undergo robust spontaneous proliferation, differentiate into IFNγ-producing Th1 type effector cells, and, most unexpectedly, induce severe acute hepatocellular necrosis. T cell interaction with MHCII molecule on cells of hematopoietic origin was essential to induce the pathology. Interestingly, B cells are fully capable of preventing necrotic inflammation via IL-10-independent and B7-H1-dependent mechanism. This could be a useful animal model to examine T cell-mediated liver inflammation and B cell-mediated immune regulation. PMID:25313460

  3. Expression of fas protein on CD4+T cells irradiated by low level He-Ne

    NASA Astrophysics Data System (ADS)

    Nie, Fan; Zhu, Jing; Zhang, Hui-Guo

    2005-07-01

    Objective: To investigate the influence on the Expression of Fas protein on CD4+ T cells irradiated by low level He-Ne laser in the cases of psoriasis. Methods:the expression of CD4+ T Fas protein was determined in the casee of psoriasis(n=5) pre and post-low level laser irradiation(30 min、60min and 120min)by flow cytometry as compared withthe control(n=5). Results:In the cases of psoriasis,the expression of CD4+T FAS protein 21.4+/-3.1% was increased significantly than that of control group 16.8+/-2.1% pre-irradiation, p<0.05in the control,there is no difference between pre and post- irradiation,p>0.05in the cases , the expression of CD4+T Fas protein wae positively corelated to the irradiation times, when the energy density arrived to 22.92J/cm2(60 minutes)and 45.84J/cm2(120minutes), the expression of CD4+ T Fas protein was increased significantly as compared with pre-irradiation,p<0.05.Conclusion: The expression of CD4+T Fas protein may be increased by low level He-Ne laser irradiation ,the uncontrolled status of apoptosis could be corrected.

  4. CD4-positive diffuse large B-cell lymphoma: A variant with aggressive clinical potential

    PubMed Central

    Hussaini, Mohammad O; Kreisel, Friederike H; Hassan, Anjum; Nguyen, TuDung T; Frater, John L

    2016-01-01

    CD4 expression is rare in diffuse large B-cell lymphoma (DLBCL), with 4 previously reported cases. Its significance is uncertain. We report five patients with CD4+ DLBCL and one CD4+ primary mediastinal large B-cell lymphoma. Cases were identified by searching the electronic database of the department; each was reviewed. Average age was 56 years. Neoplastic cells expressed CD20 (5/6 tested cases). BCL2/BCL6 expression were seen in 3/3 tested cases, suggesting a germinal center origin. Additionally, expression of T-cell antigens CD2 and CD5 was noted in 2/2 and CD7 in 1/1 tested case. CD3 was negative in all. Lymph nodes were commonly involved (67%). Patients received chemotherapy +/- radiation (6/6) and bone marrow transplant (2/6). Average survival was 44.2 mo. CD4 expression in DLBCL raises questions of lineage commitment. CD4+ DLBCL is rare; care should be exercised not to diagnose these as T-cell lymphomas. A subset behaves aggressively. PMID:27679780

  5. CD4-positive diffuse large B-cell lymphoma: A variant with aggressive clinical potential.

    PubMed

    Hussaini, Mohammad O; Kreisel, Friederike H; Hassan, Anjum; Nguyen, TuDung T; Frater, John L

    2016-09-26

    CD4 expression is rare in diffuse large B-cell lymphoma (DLBCL), with 4 previously reported cases. Its significance is uncertain. We report five patients with CD4(+) DLBCL and one CD4(+) primary mediastinal large B-cell lymphoma. Cases were identified by searching the electronic database of the department; each was reviewed. Average age was 56 years. Neoplastic cells expressed CD20 (5/6 tested cases). BCL2/BCL6 expression were seen in 3/3 tested cases, suggesting a germinal center origin. Additionally, expression of T-cell antigens CD2 and CD5 was noted in 2/2 and CD7 in 1/1 tested case. CD3 was negative in all. Lymph nodes were commonly involved (67%). Patients received chemotherapy +/- radiation (6/6) and bone marrow transplant (2/6). Average survival was 44.2 mo. CD4 expression in DLBCL raises questions of lineage commitment. CD4(+) DLBCL is rare; care should be exercised not to diagnose these as T-cell lymphomas. A subset behaves aggressively. PMID:27679780

  6. CD4-positive diffuse large B-cell lymphoma: A variant with aggressive clinical potential

    PubMed Central

    Hussaini, Mohammad O; Kreisel, Friederike H; Hassan, Anjum; Nguyen, TuDung T; Frater, John L

    2016-01-01

    CD4 expression is rare in diffuse large B-cell lymphoma (DLBCL), with 4 previously reported cases. Its significance is uncertain. We report five patients with CD4+ DLBCL and one CD4+ primary mediastinal large B-cell lymphoma. Cases were identified by searching the electronic database of the department; each was reviewed. Average age was 56 years. Neoplastic cells expressed CD20 (5/6 tested cases). BCL2/BCL6 expression were seen in 3/3 tested cases, suggesting a germinal center origin. Additionally, expression of T-cell antigens CD2 and CD5 was noted in 2/2 and CD7 in 1/1 tested case. CD3 was negative in all. Lymph nodes were commonly involved (67%). Patients received chemotherapy +/- radiation (6/6) and bone marrow transplant (2/6). Average survival was 44.2 mo. CD4 expression in DLBCL raises questions of lineage commitment. CD4+ DLBCL is rare; care should be exercised not to diagnose these as T-cell lymphomas. A subset behaves aggressively.

  7. Access of protective antiviral antibody to neuronal tissues requires CD4 T-cell help.

    PubMed

    Iijima, Norifumi; Iwasaki, Akiko

    2016-05-26

    Circulating antibodies can access most tissues to mediate surveillance and elimination of invading pathogens. Immunoprivileged tissues such as the brain and the peripheral nervous system are shielded from plasma proteins by the blood-brain barrier and blood-nerve barrier, respectively. Yet, circulating antibodies must somehow gain access to these tissues to mediate their antimicrobial functions. Here we examine the mechanism by which antibodies gain access to neuronal tissues to control infection. Using a mouse model of genital herpes infection, we demonstrate that both antibodies and CD4 T cells are required to protect the host after immunization at a distal site. We show that memory CD4 T cells migrate to the dorsal root ganglia and spinal cord in response to infection with herpes simplex virus type 2. Once inside these neuronal tissues, CD4 T cells secrete interferon-γ and mediate local increase in vascular permeability, enabling antibody access for viral control. A similar requirement for CD4 T cells for antibody access to the brain is observed after intranasal challenge with vesicular stomatitis virus. Our results reveal a previously unappreciated role of CD4 T cells in mobilizing antibodies to the peripheral sites of infection where they help to limit viral spread. PMID:27225131

  8. Access of protective antiviral antibody to neuronal tissues requires CD4 T-cell help.

    PubMed

    Iijima, Norifumi; Iwasaki, Akiko

    2016-05-26

    Circulating antibodies can access most tissues to mediate surveillance and elimination of invading pathogens. Immunoprivileged tissues such as the brain and the peripheral nervous system are shielded from plasma proteins by the blood-brain barrier and blood-nerve barrier, respectively. Yet, circulating antibodies must somehow gain access to these tissues to mediate their antimicrobial functions. Here we examine the mechanism by which antibodies gain access to neuronal tissues to control infection. Using a mouse model of genital herpes infection, we demonstrate that both antibodies and CD4 T cells are required to protect the host after immunization at a distal site. We show that memory CD4 T cells migrate to the dorsal root ganglia and spinal cord in response to infection with herpes simplex virus type 2. Once inside these neuronal tissues, CD4 T cells secrete interferon-γ and mediate local increase in vascular permeability, enabling antibody access for viral control. A similar requirement for CD4 T cells for antibody access to the brain is observed after intranasal challenge with vesicular stomatitis virus. Our results reveal a previously unappreciated role of CD4 T cells in mobilizing antibodies to the peripheral sites of infection where they help to limit viral spread.

  9. In vivo evidence for CD4+ and CD8+ suppressor T cells in vaccination-induced suppression of murine experimental autoimmune thyroiditis

    SciTech Connect

    Flynn, J.C.; Kong, Y.C. )

    1991-09-01

    In several experimental autoimmune diseases, including experimental autoimmune thyroiditis (EAT), vaccination with attenuated autoantigen-specific T cells has provided protection against subsequent induction of disease. However, the mechanism(s) of vaccination-induced suppression remains to be clarified. Since the authors have previously shown that suppression generated by pretreatment with mouse thyroglobulin (MTg) or thyroid-stimulating hormone in EAT is mediated by CD4+, not CD8+, suppressor T cells, they examined the role of T cell subsets in vaccination-induced suppression of EAT. Mice were vaccinated with irradiated, MTg-primed, and MTg-activated spleen cells and then challenged. Pretreatment with these cells suppressed EAT induced by immunization with MTg and adjuvant, but not by adoptive transfer of thyroiditogenic cells, suggesting a mechanism of afferent suppression. The activation of suppressor mechanisms did not require CD8+ cells, since mice depleted of CD8+ cells before vaccination showed reduced EAT comparable to control vaccinated mice. Furthermore, depletion of either the CD4+ or the CD8+ subset after vaccination did not significantly abrogate suppression. However, suppression was eliminated by the depletion of both CD4+ and CD8+ cells in vaccinated mice. These results provide evidence for the cooperative effects of CD4+ and CD8+ T cells in vaccination-induced suppression of EAT.

  10. Tumor-infiltrating HLA-matched CD4(+) T cells retargeted against Hodgkin and Reed-Sternberg cells.

    PubMed

    Rengstl, Benjamin; Schmid, Frederike; Weiser, Christian; Döring, Claudia; Heinrich, Tim; Warner, Kathrin; Becker, Petra S A; Wistinghausen, Robin; Kameh-Var, Sima; Werling, Eva; Billmeier, Arne; Seidl, Christian; Hartmann, Sylvia; Abken, Hinrich; Küppers, Ralf; Hansmann, Martin-Leo; Newrzela, Sebastian

    2016-06-01

    Hodgkin lymphoma (HL) presents with a unique histologic pattern. Pathognomonic Hodgkin and Reed-Sternberg (HRS) cells usually account for less than 1% of the tumor and are embedded in a reactive infiltrate mainly comprised of CD4(+) T cells. HRS cells induce an immunosuppressive microenvironment and thereby escape antitumor immunity. To investigate the impact of interactions between HRS cells and T cells, we performed long-term co-culture studies that were further translated into a xenograft model. Surprisingly, we revealed a strong antitumor potential of allogeneic CD4(+) T cells against HL cell lines. HRS and CD4(+) T cells interact by adhesion complexes similar to immunological synapses. Tumor-cell killing was likely based on the recognition of allogeneic major histocompatibility complex class II (MHC-II) receptor, while CD4(+) T cells from MHC-II compatible donors did not develop any antitumor potential in case of HL cell line L428. However, gene expression profiling (GEP) of co-cultured HRS cells as well as tumor infiltration of matched CD4(+) T cells indicated cellular interactions. Moreover, matched CD4(+) T cells could be activated to kill CD30(+) HRS cells when redirected with a CD30-specific chimeric antigen receptor. Our work gives novel insights into the crosstalk between HRS and CD4(+) T cells, suggesting the latter as potent effector cells in the adoptive cell therapy of HL.

  11. Tumor-infiltrating HLA-matched CD4(+) T cells retargeted against Hodgkin and Reed-Sternberg cells.

    PubMed

    Rengstl, Benjamin; Schmid, Frederike; Weiser, Christian; Döring, Claudia; Heinrich, Tim; Warner, Kathrin; Becker, Petra S A; Wistinghausen, Robin; Kameh-Var, Sima; Werling, Eva; Billmeier, Arne; Seidl, Christian; Hartmann, Sylvia; Abken, Hinrich; Küppers, Ralf; Hansmann, Martin-Leo; Newrzela, Sebastian

    2016-06-01

    Hodgkin lymphoma (HL) presents with a unique histologic pattern. Pathognomonic Hodgkin and Reed-Sternberg (HRS) cells usually account for less than 1% of the tumor and are embedded in a reactive infiltrate mainly comprised of CD4(+) T cells. HRS cells induce an immunosuppressive microenvironment and thereby escape antitumor immunity. To investigate the impact of interactions between HRS cells and T cells, we performed long-term co-culture studies that were further translated into a xenograft model. Surprisingly, we revealed a strong antitumor potential of allogeneic CD4(+) T cells against HL cell lines. HRS and CD4(+) T cells interact by adhesion complexes similar to immunological synapses. Tumor-cell killing was likely based on the recognition of allogeneic major histocompatibility complex class II (MHC-II) receptor, while CD4(+) T cells from MHC-II compatible donors did not develop any antitumor potential in case of HL cell line L428. However, gene expression profiling (GEP) of co-cultured HRS cells as well as tumor infiltration of matched CD4(+) T cells indicated cellular interactions. Moreover, matched CD4(+) T cells could be activated to kill CD30(+) HRS cells when redirected with a CD30-specific chimeric antigen receptor. Our work gives novel insights into the crosstalk between HRS and CD4(+) T cells, suggesting the latter as potent effector cells in the adoptive cell therapy of HL. PMID:27471632

  12. CCL2 Increases X4-tropic HIV-1 Entry into Resting CD4+ T Cells*

    PubMed Central

    Campbell, Grant R.; Spector, Stephen A.

    2008-01-01

    During human immunodeficiency virus type 1 (HIV-1) infection, there is a strong positive correlation between CCL2 levels and HIV viral load. To determine whether CCL2 alters HIV-1 infection of resting CD4+ T cells, we infected purified resting CD4+ T cells after incubation with CCL2. We show that CCL2 up-regulates CXCR4 on resting CD4+ T cells in a CCR2-dependent mechanism, and that this augmentation of CXCR4 expression by CCL2 increases the ability of these cells to be chemoattracted to CXCR4 using gp120 and renders them more permissive to X4-tropic HIV-1 infection. Thus, CCL2 has the capacity to render a large population of lymphocytes more susceptible to HIV-1 late in the course of infection. PMID:18784079

  13. Antigens for CD4 and CD8 T Cells in Tuberculosis

    PubMed Central

    Lindestam Arlehamn, Cecilia S.; Lewinsohn, David; Sette, Alessandro; Lewinsohn, Deborah

    2014-01-01

    Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (MTB), represents an important cause of morbidity and mortality worldwide for which an improved vaccine and immunodiagnostics are urgently needed. CD4+ and CD8+ T cells play an important role in host defense to TB. Definition of the antigens recognized by these T cells is critical for improved understanding of the immunobiology of TB and for development of vaccines and diagnostics. Herein, the antigens and epitopes recognized by classically HLA class I– and II–restricted CD4+ and CD8+ T cells in humans infected with MTB are reviewed. Immunodominant antigens and epitopes have been defined using approaches targeting particular TB proteins or classes of proteins and by genome-wide discovery approaches. Antigens and epitopes recognized by classically restricted CD4+ and CD8+ T cells show extensive breadth and diversity in MTB-infected humans. PMID:24852051

  14. The BMP Pathway Participates in Human Naive CD4+ T Cell Activation and Homeostasis

    PubMed Central

    Martínez, Víctor G.; Sacedón, Rosa; Hidalgo, Laura; Valencia, Jaris; Fernández-Sevilla, Lidia M.; Hernández-López, Carmen

    2015-01-01

    Bone Morphogenetic Proteins (BMPs) form a group of secreted factors that belongs to the TGF-β superfamily. Among different roles in a number of immune cell types, BMPs are known to regulate T cell development within the thymus, although the role of BMP signaling in human mature T cells remains elusive. In this study, we demonstrate that canonical BMP signaling is necessary during two critical events that regulate the size and function of human naive CD4+ T cell population: activation and homeostasis. Upon stimulation via TCR, naive CD4+ T cells upregulate the expression of BMP ligands triggering canonical BMP signaling in CD25+ cells. Blockade of BMP signaling severely impairs CD4+ T cell proliferation after activation mainly through regulation of IL-2, since the addition of this cytokine recuperates normal T cell expansion after inhibition of BMP signaling. Similarly, activation of canonical BMP pathway is required for both the maintenance of cell survival and the homeostatic proliferation induced by IL-7, a key factor for T cell homeostasis. Moreover, upregulation of two critical receptors for T cell homeostasis, CXCR4 and CCR9, triggered by IL-7 is also abrogated in the absence of BMP signaling. Collectively, we describe important roles of the canonical BMP signaling in human naive CD4+ T cell activation and homeostasis that could be valuable for clinical application. PMID:26110906

  15. Specific interaction of aurintricarboxylic acid with the human immunodeficiency virus/CD4 cell receptor

    SciTech Connect

    Schols, D.; Baba, M.; Pauwels, R.; Desmyter, J.; De Clercq, E. )

    1989-05-01

    The triphenylmethane derivative aurintricarboxylic acid (ATA), but not aurin, selectively prevented the binding of OKT4A/Leu-3a monoclonal antibody (mAb) and, to a lesser extent, OKT4 mAb to the CD4 cell receptor for human immunodeficiency virus type 1 (HIV-1). The effect was seen within 1 min at an ATA concentration of 10 {mu}M in various T4{sup +} cells (MT-4, U-937, peripheral blood lymphocytes, and monocytes). It was dose-dependent and reversible. ATA prevented the attachment of radiolabeled HIV-1 particles to MT-4 cells, which could be expected as the result of its specific binding to the HIV/CD4 receptor. Other HIV inhibitors such as suramin, fuchsin acid, azidothymidine, dextran sulfate, heparin, and pentosan polysulfate did not affect OKT4A/Leu-3a mAb binding to the CD4 receptor, although the sulfated polysaccharides suppressed HIV-1 adsorption to the cells at concentrations required for complete protection against HIV-1 cytopathogenicity. Thus, ATA is a selective marker molecule for the CD4 receptor. ATA also interfered with the staining of membrane-associated HIV-1 glycoprotein gp120 by a mAb against it. These unusual properties of a small molecule of nonimmunological origin may have important implications for the study of CD4/HIV/AIDS pathogenesis and possibly treatment.

  16. CD4+ T Cells Promote Antibody Production but Not Sustained Affinity Maturation during Borrelia burgdorferi Infection

    PubMed Central

    Elsner, Rebecca A.; Hastey, Christine J.

    2014-01-01

    CD4 T cells are crucial for enhancing B cell-mediated immunity, supporting the induction of high-affinity, class-switched antibody responses, long-lived plasma cells, and memory B cells. Previous studies showed that the immune response to Borrelia burgdorferi appears to lack robust T-dependent B cell responses, as neither long-lived plasma cells nor memory B cells form for months after infection, and nonswitched IgM antibodies are produced continuously during this chronic disease. These data prompted us to evaluate the induction and functionality of B. burgdorferi infection-induced CD4 TFH cells. We report that CD4 T cells were effectively primed and TFH cells induced after B. burgdorferi infection. These CD4 T cells contributed to the control of B. burgdorferi burden and supported the induction of B. burgdorferi-specific IgG responses. However, while affinity maturation of antibodies against a prototypic T-dependent B. burgdorferi protein, Arthritis-related protein (Arp), were initiated, these increases were reversed later, coinciding with the previously observed involution of germinal centers. The cessation of affinity maturation was not due to the appearance of inhibitory or exhausted CD4 T cells or a strong induction of regulatory T cells. In vitro T-B cocultures demonstrated that T cells isolated from B. burgdorferi-infected but not B. burgdorferi-immunized mice supported the rapid differentiation of B cells into antibody-secreting plasma cells rather than continued proliferation, mirroring the induction of rapid short-lived instead of long-lived T-dependent antibody responses in vivo. The data further suggest that B. burgdorferi infection drives the humoral response away from protective, high-affinity, and long-lived antibody responses and toward the rapid induction of strongly induced, short-lived antibodies of limited efficacy. PMID:25312948

  17. Suppression of CD4+ Effector Responses by Naturally Occurring CD4+ CD25+ Foxp3+ Regulatory T Cells Contributes to Experimental Cerebral Malaria

    PubMed Central

    Blanc, Anne-Laurence; Keswani, Tarun; Gorgette, Olivier; Bandeira, Antonio; Malissen, Bernard; Cazenave, Pierre-André

    2015-01-01

    The role of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells (nTreg) in the pathogenesis of cerebral malaria (CM), which involves both pathogenic T cell responses and parasite sequestration in the brain, is still unclear. To assess the contribution and dynamics of nTreg during the neuropathogenesis, we unbalanced the ratio between nTreg and naive CD4+ T cells in an attenuated model of Plasmodium berghei ANKA-induced experimental CM (ECM) by using a selective cell enrichment strategy. We found that nTreg adoptive transfer accelerated the onset and increased the severity of CM in syngeneic C57BL/6 (B6) P. berghei ANKA-infected mice without affecting the level of parasitemia. In contrast, naive CD4+ T cell enrichment prevented CM and promoted parasite clearance. Furthermore, early during the infection nTreg expanded in the spleen but did not efficiently migrate to the site of neuroinflammation, suggesting that nTreg exert their pathogenic action early in the spleen by suppressing the protective naive CD4+ T cell response to P. berghei ANKA infection in vivo in both CM-susceptible (B6) and CM-resistant (B6-CD4−/−) mice. However, their sole transfer was not sufficient to restore CM susceptibility in two CM-resistant congenic strains tested. Altogether, these results demonstrate that nTreg are activated and functional during P. berghei ANKA infection and that they contribute to the pathogenesis of CM. They further suggest that nTreg may represent an early target for the modulation of the immune response to malaria. PMID:26553468

  18. HIV-1 gp120 induces NFAT nuclear translocation in resting CD4+ T-cells

    SciTech Connect

    Cicala, Claudia . E-mail: ccicala@nih.gov; Arthos, James; Censoplano, Nina; Cruz, Catherine; Chung, Eva; Martinelli, Elena; Lempicki, Richard A.; Natarajan, Ven; VanRyk, Donald; Daucher, Marybeth; Fauci, Anthony S.

    2006-02-05

    The replication of human immunodeficiency virus (HIV) in CD4+ T-cells is strongly dependent upon the state of activation of infected cells. Infection of sub-optimally activated cells is believed to play a critical role in both the transmission of virus and the persistence of CD4+ T-cell reservoirs. There is accumulating evidence that HIV can modulate signal-transduction pathways in a manner that may facilitate replication in such cells. We previously demonstrated that HIV gp120 induces virus replication in resting CD4+ T cells isolated from HIV-infected individuals. Here, we show that in resting CD4+ T-cells, gp120 activates NFATs and induces their translocation into the nucleus. The HIV LTR encodes NFAT recognition sites, and NFATs may play a critical role in promoting viral replication in sub-optimally activated cells. These observations provide insight into a potential mechanism by which HIV is able to establish infection in resting cells, which may have implications for both transmission of HIV and the persistence of viral reservoirs.

  19. Communication between Human Dendritic Cell Subsets in Tuberculosis: Requirements for Naive CD4+ T Cell Stimulation

    PubMed Central

    Lozza, Laura; Farinacci, Maura; Bechtle, Marina; Stäber, Manuela; Zedler, Ulrike; Baiocchini, Andrea; del Nonno, Franca; Kaufmann, Stefan H. E.

    2014-01-01

    Human primary dendritic cells (DCs) are heterogeneous by phenotype, function, and tissue localization and distinct from inflammatory monocyte-derived DCs. Current information regarding the susceptibility and functional role of primary human DC subsets to Mycobacterium tuberculosis (Mtb) infection is limited. Here, we dissect the response of different primary DC subsets to Mtb infection. Myeloid CD11c+ cells and pDCs (C-type lectin 4C+ cells) were located in human lymph nodes (LNs) of tuberculosis (TB) patients by histochemistry. Rare CD141hi DCs (C-type lectin 9A+ cells) were also identified. Infection with live Mtb revealed a higher responsiveness of myeloid CD1c+ DCs compared to CD141hi DCs and pDCs. CD1c+ DCs produced interleukin (IL)-6, tumor necrosis factor α, and IL-1β but not IL-12p70, a cytokine important for Th1 activation and host defenses against Mtb. Yet, CD1c+ DCs were able to activate autologous naïve CD4+ T cells. By combining cell purification with fluorescence-activated cell sorting and gene expression profiling on rare cell populations, we detected in responding CD4+ T cells, genes related to effector-cytolytic functions and transcription factors associated with Th1, Th17, and Treg polarization, suggesting multifunctional properties in our experimental conditions. Finally, immunohistologic analyses revealed contact between CD11c+ cells and pDCs in LNs of TB patients and in vitro data suggest that cooperation between Mtb-infected CD1c+ DCs and pDCs favors stimulation of CD4+ T cells. PMID:25071784

  20. Differential role of CD4+ cells in the sensitization and effector phases of accelerated graft rejection.

    PubMed

    Sablinski, T; Sayegh, M H; Hancock, W W; Kut, J P; Kwok, C A; Milford, E L; Tilney, N L; Kupiec-Weglinski, J W

    1991-01-01

    Although CD4-targeted therapy markedly prolongs survival of organ allografts in naive rodents, its effects in primed hosts have not been studied. In our model of accelerated rejection (ACCR) of cardiac Tx in rats, treatment with BWH-4, a CD4 mAb (IgG2a), in the sensitization (between skin and heart Tx) but not in the effector (after cardiac Tx) phase, abrogated fulminant less than 36 hr rejection response and prolonged Tx survival to ca. 11 days. This effect correlated with decreased frequency of circulating CD4+ cells, but it did not depend upon their total depletion. It was also related to BWH-4 mAb-mediated elimination/depression of strong anti-donor humoral responses and cellular responses as determined by lymphocyte-mediated cytotoxicity and mixed lymphocyte reaction and mounted otherwise at the time of engraftment by untreated sensitized hosts. Immunoperoxidase studies of cardiac Tx from BWH-4-conditioned recipients revealed reduced T and B cell activities, reflected in abolition/reduction in deposition of humoral mediators, infiltrating cells, intra-Tx elaboration of interleukin-2 and interferon-gamma, and cell activation. This first report of the successful use of CD4 mAb in sensitized recipients of vascularized organ Tx, stresses the role of CD4+ cells as potential targets for immunosuppression in the sensitization phase of accelerated Tx injury. The beneficial therapeutic effect, probably due to both depletion and functional inhibition of CD4+ T cells, has been achieved by using relatively low doses of BWH-4 mAb. PMID:1824805

  1. Antiretroviral therapy suppressed participants with low CD4+ T-cell counts segregate according to opposite immunological phenotypes

    PubMed Central

    Pérez-Santiago, Josué; Ouchi, Dan; Urrea, Victor; Carrillo, Jorge; Cabrera, Cecilia; Villà-Freixa, Jordi; Puig, Jordi; Paredes, Roger; Negredo, Eugènia; Clotet, Bonaventura; Massanella, Marta; Blanco, Julià

    2016-01-01

    Background: The failure to increase CD4+ T-cell counts in some antiretroviral therapy suppressed participants (immunodiscordance) has been related to perturbed CD4+ T-cell homeostasis and impacts clinical evolution. Methods: We evaluated different definitions of immunodiscordance based on CD4+ T-cell counts (cutoff) or CD4+ T-cell increases from nadir value (ΔCD4) using supervised random forest classification of 74 immunological and clinical variables from 196 antiretroviral therapy suppressed individuals. Unsupervised clustering was performed using relevant variables identified in the supervised approach from 191 individuals. Results: Cutoff definition of CD4+ cell count 400 cells/μl performed better than any other definition in segregating immunoconcordant and immunodiscordant individuals (85% accuracy), using markers of activation, nadir and death of CD4+ T cells. Unsupervised clustering of relevant variables using this definition revealed large heterogeneity between immunodiscordant individuals and segregated participants into three distinct subgroups with distinct production, programmed cell-death protein-1 (PD-1) expression, activation and death of T cells. Surprisingly, a nonnegligible number of immunodiscordant participants (22%) showed high frequency of recent thymic emigrants and low CD4+ T-cell activation and death, very similar to immunoconcordant participants. Notably, human leukocyte antigen - antigen D related (HLA-DR) PD-1 and CD45RA expression in CD4+ T cells allowed reproducing subgroup segregation (81.4% accuracy). Despite sharp immunological differences, similar and persistently low CD4+ values were maintained in these participants over time. Conclusion: A cutoff value of CD4+ T-cell count 400 cells/μl classified better immunodiscordant and immunoconcordant individuals than any ΔCD4 classification. Immunodiscordance may present several, even opposite, immunological patterns that are identified by a simple immunological follow-up. Subgroup

  2. Phenotypic differences of CD4(+) T cells in response to red blood cell immunization in transfused sickle cell disease patients.

    PubMed

    Vingert, Benoît; Tamagne, Marie; Habibi, Anoosha; Pakdaman, Sadaf; Ripa, Julie; Elayeb, Rahma; Galacteros, Frédéric; Bierling, Philippe; Ansart-Pirenne, Hélène; Bartolucci, Pablo; Noizat-Pirenne, France

    2015-06-01

    Alloimmunization against red blood cells (RBCs) is the main immunological risk associated with transfusion in patients with sickle cell disease (SCD). However, about 50-70% of SCD patients never get immunized despite frequent transfusion. In murine models, CD4(+) T cells play a key role in RBC alloimmunization. We therefore explored and compared the CD4(+) T-cell phenotypes and functions between a group of SCD patients (n = 11) who never became immunized despite a high transfusion regimen and a group of SCD patients (n = 10) who had become immunized (at least against Kidd antigen b) after a low transfusion regimen. We studied markers of CD4(+) T-cell function, including TLR, that directly control lymphocyte function, and their spontaneous cytokine production. We also tested responders for the cytokine profile in response to Kidd antigen b peptides. Low TLR2/TLR3 expression and, unexpectedly, strong expression of CD40 on CD4(+) T cells were associated with the nonresponder status, whereas spontaneous expression of IL-10 by CD4(+) T cells and weak Tbet expression were associated with the responder status. A Th17 profile was predominant in responders when stimulated by Jb(k) . These findings implicate CD4(+) T cells in alloimmunization in humans and suggest that they may be exploited to differentiate responders from nonresponders.

  3. Impaired CD4+CD25+ regulatory T cell activity in the peripheral blood of patients with autoimmune sensorineural hearing loss.

    PubMed

    Xia, Ming; Zhang, Han Bing; Liu, Fang; Yin, Hai Ying; Xu, An Ting

    2008-09-01

    CD4+CD25+ regulatory T cells exert an immune regulatory function and thus play an important role in the control of self-reactivity in the pathogenesis of autoimmune inflammatory conditions. The aim of the study presented here is to perform a quantitative and functional analyses of these cells in patients with autoimmune sensorineural hearing loss (ASNHL). T cell subsets (CD4+CD25+, CD4+CD25(high), CD4+, and CD8+) from the peripheral blood of 17 patients with ASNHL, 16 patients with noise induced hearing loss (NHL), and 100 normal controls were analyzed by flow cytometry. The CD4/CD8 ratio was also analyzed. In addition, the suppressive capability of CD4+CD25+ T cells was tested in vitro by measuring their ability to suppress the proliferation and IFN-gamma secretion of CD4+CD25- T cells. No significant difference was found in the T cell subsets of ASNHL patients compared to normal controls or NHL patients, except that the proportion of CD4+ T cells was elevated in ASNHL patients. However, we did observe defective regulatory function of CD4+CD25+ T cells in patients with ASNHL. Our data supported the idea that CD4+CD25+ regulatory T cells played an immunosuppressive function in the periphery. The impaired suppressive activity of these cells may be an important factor in the pathogenesis of ASNHL.

  4. IL-35, an anti-inflammatory cytokine which expands CD4+CD25+ Treg Cells.

    PubMed

    Castellani, Maria Luisa; Anogeianaki, A; Felaco, P; Toniato, E; De Lutiis, M A; Shaik, B; Fulcheri, M; Vecchiet, J; Tetè, S; Salini, V; Theoharides, T C; Caraffa, A; Antinolfi, P; Frydas, I; Conti, P; Cuccurullo, C; Ciampoli, C; Cerulli, G; Kempuraj, D

    2010-01-01

    Interleukin 12 (IL 12) p35/p40 is a heterodimeric cytokine which plays a critical role in inflammation, immunity and tissue proliferation, and also plays a relevant function in T helper (Th) cell polarization and Th1 T-cell differentiation. IL-12 family members, IL-12p70, IL-23, IL-27 and IL-35, play an important role in influencing helper T-cell differentiation. EBV-induced gene 3 can be associated with the p35 subunit of IL-12 to form the EBI3/p35 heterodimer, also called IL-35. It has been shown that IL-35 has biological activity and able to expand CD4+CD25+ Treg cells, suppress the proliferation of CD4+CD25- effector cells and inhibit Th17 cell polarization. IL-35 has been shown to be constitutively expressed by regulatory T (Treg) cells CD4(+)CD25(+)Foxp3(+) and suggested to contribute to their suppressive activity. IL-35 is a crucial mediator which provokes CD4+CD25+ T cell proliferation and IL-10 generation, another well-known anti-inflammatory cytokine, along with TGFbeta cytokine. These studies suggest that IL-35, together with other successfully discovered cytokine inhibitors, represents a new potential therapeutic cytokine for chronic inflammation, autoimmunity and other immunological disorders.

  5. Leishmania-infected macrophages sequester endogenously synthesized parasite antigens from presentation to CD4+ T cells.

    PubMed

    Kima, P E; Soong, L; Chicharro, C; Ruddle, N H; McMahon-Pratt, D

    1996-12-01

    CD4+ T cell lines raised against the protective leishmanial antigens GP46 and P8 were used to study the presentation of endogenously synthesized Leishmania antigens by infected cells. Using two different sources of macrophages, the I4.07 macrophage cell line (H-2k) which constitutively expresses major histocompatibility complex (MHC) class II molecules, and elicited peritoneal exudate cells, we found that cells infected with Leishmania amastigotes presented little, if any endogenously synthesized parasite antigens to CD4+ T cells. In contrast, promastigote-infected macrophages did present endogenous parasite molecules to CD4+ T cells, although only for a limited time, with maximal presentation occurring within 24 h of infection and decreasing to minimal antigen presentation at 72 h post-infection. These observations suggest that once within the macrophage, Leishmania amastigote antigens are sequestered from the MHC class II pathway of antigen presentation. This allows live parasites to persist in infected hosts by evading the activation of CD4+ T cells, a major and critical anti-leishmanial component of the host immune system. Studies with drugs that modify fusion patterns of phagosomes suggest that the mechanism of this antigen sequestration includes targeted fusion of the parasitophorous vacuole with certain endocytic compartments.

  6. Measurement of CD8 and CD4 T Cell Responses in Mouse Lungs

    PubMed Central

    Fett, Craig; Zhao, Jincun; Perlman, Stanley

    2016-01-01

    Study of the adaptive immune response to a viral challenge in an animal model often includes analysis of the T cell response. Here we discuss in detail the methods that are used to characterize the CD8 and CD4 T cell response following viral challenge in the lung. PMID:27390762

  7. High avidity autoreactive CD4+ T cells induce host CTL, overcome Tregs and mediate tumor destruction

    PubMed Central

    Brandmaier, Andrew G.; Leitner, Wolfgang W.; Ha, Sung P.; Sidney, John; Restifo, Nicholas P.; Touloukian, Christopher E.

    2009-01-01

    Despite progress made over the past 25 years, existing immunotherapies have limited clinical effectiveness in patients with cancer. Immune tolerance consistently blunts the generated immune response, and the largely solitary focus on CD8+ T cell immunity has proven ineffective in the absence of CD4+ T cell help. To address these twin-tier deficiencies, we developed a translational model of melanoma immunotherapy focused on the exploitation of high avidity CD4+ T cells that become generated in germline antigen deficient mice. We had previously identified a TRP-1 specific HLA-DRB1*0401-restricted epitope. Using this epitope in conjunction with a newly described TRP-1 germline-knockout, we demonstrate that endogenous TRP-1 expression alters the functionality of the auto-reactive T cell repertoire. More importantly, we show, by using MHC-mismatched combinations, that CD4+ T cells derived from the self-antigen deficient host indirectly triggers the eradication of established B16 lung metastases. We demonstrate that the treatment effect is mediated entirely by endogenous CD8+ T cells and is not affected by the depletion of host Tregs. These findings suggest that high avidity CD4+ T cells can overcome endogenous conditions and mediate their anti-tumor effects exclusively through the elicitation of CD8+ T cell immunity. PMID:19561540

  8. Restoring homeostasis of CD4+ T cells in hepatitis-B-virus-related liver fibrosis

    PubMed Central

    Cheng, Li-Sha; Liu, Yun; Jiang, Wei

    2015-01-01

    Immune-mediated liver injury is widely seen during hepatitis B virus (HBV) infection. Unsuccessful immune clearance of HBV results in chronic hepatitis and increases the risk of liver cirrhosis and hepatocellular carcinoma. HBV-related liver fibrosis (HBVLF), occurring as a result of HBV-induced chronic hepatitis, is a reversible, intermediate stage of chronic hepatitis B (CHB) and liver cirrhosis. Therefore, defining the pathogenesis of HBVLF is of practical significance for achieving better clinical outcomes. Recently, the homeostasis of CD4+ T cells was considered to be pivotal in the process of HBVLF. To better uncover the underlying mechanisms, in this review, we systematically retrospect the impacts of different CD4+ T-cell subsets on CHB and HBVLF. We emphasize CD4+ T-cell homeostasis and the important balance between regulatory T (Treg) and T helper 17 (Th17) cells. We discuss some cytokines associated with Treg and Th17 cells such as interleukin (IL)-17, IL-22, IL-21, IL-23, IL-10, IL-35 and IL-33, as well as surface molecules such as programmed cell death protein 1, cytotoxic T lymphocyte-associated antigen 4, T cell immunoglobulin domain and mucin domain-containing molecule 3 and cannabinoid receptor 2 that have potential therapeutic implications for the homeostasis of CD4+ T cells in CHB and HBVLF. PMID:26478664

  9. Quantification of cells with specific phenotypes II: determination of CD4 expression level on reconstituted lyophilized human PBMC labelled with anti-CD4 FITC antibody.

    PubMed

    Wang, L; Stebbings, R; Gaigalas, A K; Sutherland, J; Kammel, M; John, M; Roemer, B; Kuhne, M; Schneider, R J; Braun, M; Engel, A; Dikshit, D; Abbasi, F; Marti, G E; Sassi, M; Revel, L; Kim, S K; Baradez, M; Lekishvili, T; Marshall, D; Whitby, L; Jing, W; Ost, V; Vonsky, M; Neukammer, J

    2015-03-01

    This report focuses on the characterization of CD4 expression level in terms of equivalent number of reference fluorophores (ERF). Twelve different flow cytometer platforms across sixteen laboratories were utilized in this study. As a first step the participants were asked to calibrate the fluorescein isothiocyanate (FITC) channel of each flow cytometer using commercially available calibration standard consisting of five populations of microspheres. Each population had an assigned value of equivalent fluorescein fluorophores (EFF denotes a special case of the generic term ERF with FITC as the reference fluorophore). The EFF values were assigned at the National Institute of Standards and Technology (NIST). A surface-labelled lyophilized cell preparation was provided by the National Institute of Biological Standards and Control (NIBSC), using human peripheral blood mononuclear cells (PBMC) pre-labeled with a FITC conjugated anti-CD4 monoclonal antibody. Three PBMC sample vials, provided to each participant, were used for the CD4 expression analysis. The PBMC are purported to have a fixed number of surface CD4 receptors. On the basis of the microsphere calibration, the EFF value of the PBMC samples was measured to characterize the population average CD4 expression level of the PBMC preparations. Both the results of data analysis performed by each participant and the results of centralized analysis of all participants' raw data are reported. Centralized analysis gave a mean EFF value of 22,300 and an uncertainty of 750, corresponding to 3.3% (level of confidence 68%) of the mean EFF value. The next step will entail the measurement of the ERF values of the lyophilized PBMC stained with labels for other fluorescence channels. The ultimate goal is to show that lyophilized PBMC is a suitable biological reference cell material for multicolor flow cytometry and that it can be used to present multicolor flow cytometry measurements in terms of ABC (antibodies bound per cell

  10. Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro.

    PubMed

    Secor, Eric R; Singh, Anurag; Guernsey, Linda A; McNamara, Jeff T; Zhan, Lijun; Maulik, Nilanjana; Thrall, Roger S

    2009-03-01

    Bromelain (Br), an extract from pineapple stem with cysteine protease activity, exerts anti-inflammatory effects in a number of inflammatory models. We have previously shown that Br treatment decreased activated CD4(+) T cells and has a therapeutic role in an ovalbumin-induced murine model of allergic airway disease. The current study was designed to determine the effect of Br on CD4(+) T cell activation, specifically the expression of CD25 in vitro. CD25 is up regulated upon T cell activation, found as a soluble fraction (sCD25) and is a therapeutic target in inflammation, autoimmunity and allergy. Br treatment of anti-CD3 stimulated CD4(+) T cells reduced CD25 expression in a dose and time dependent manner. This reduction of CD25 was dependent on the proteolytic action of Br as the addition of E64 (a cysteine protease inhibitor) abrogated this response. The concentration of sCD25 was increased in supernatants of Br treated activated CD4(+) T cells as compared to control cells, suggesting that Br proteolytically cleaved cell-surface CD25. This novel mechanism of action identifies how Br may exert its therapeutic benefits in inflammatory conditions.

  11. Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease.

    PubMed

    Falta, Michael T; Pinilla, Clemencia; Mack, Douglas G; Tinega, Alex N; Crawford, Frances; Giulianotti, Marc; Santos, Radleigh; Clayton, Gina M; Wang, Yuxiao; Zhang, Xuewu; Maier, Lisa A; Marrack, Philippa; Kappler, John W; Fontenot, Andrew P

    2013-07-01

    Chronic beryllium disease (CBD) is a granulomatous disorder characterized by an influx of beryllium (Be)-specific CD4⁺ T cells into the lung. The vast majority of these T cells recognize Be in an HLA-DP–restricted manner, and peptide is required for T cell recognition. However, the peptides that stimulate Be-specific T cells are unknown. Using positional scanning libraries and fibroblasts expressing HLA-DP2, the most prevalent HLA-DP molecule linked to disease, we identified mimotopes and endogenous self-peptides that bind to MHCII and Be, forming a complex recognized by pathogenic CD4⁺ T cells in CBD. These peptides possess aspartic and glutamic acid residues at p4 and p7, respectively, that surround the putative Be-binding site and cooperate with HLA-DP2 in Be coordination. Endogenous plexin A peptides and proteins, which share the core motif and are expressed in lung, also stimulate these TCRs. Be-loaded HLA-DP2–mimotope and HLA-DP2–plexin A4 tetramers detected high frequencies of CD4⁺ T cells specific for these ligands in all HLADP2+ CBD patients tested. Thus, our findings identify the first ligand for a CD4⁺ T cell involved in metal-induced hypersensitivity and suggest a unique role of these peptides in metal ion coordination and the generation of a common antigen specificity in CBD.

  12. The life (and death) of CD4+CD28null T cells in inflammatory diseases

    PubMed Central

    Dumitriu, Ingrid E

    2015-01-01

    Inflammation contributes to the development and perpetuation of several disorders and T lymphocytes orchestrate the inflammatory immune response. Although the role of T cells in inflammation is widely recognized, specific therapies that tackle inflammatory networks in disease are yet to be developed. CD4+CD28null T cells are a unique subset of helper T lymphocytes that recently shot back into the limelight as potential catalysts of inflammation in several inflammatory disorders such as autoimmunity, atherosclerosis and chronic viral infections. In contrast to conventional helper T cells, CD4+CD28null T cells have an inbuilt ability to release inflammatory cytokines and cytotoxic molecules that can damage tissues and amplify inflammatory pathways. It comes as no surprise that patients who have high numbers of these cells have more severe disease and poor prognosis. In this review, I provide an overview on the latest advances in the biology of CD4+CD28null T cells. Understanding the complex functions and dynamics of CD4+CD28null T cells may open new avenues for therapeutic intervention to prevent progression of inflammatory diseases. PMID:26190355

  13. Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4

    SciTech Connect

    Yin, Yiyuan; Wang, Xin Xiang; Mariuzza, Roy A

    2012-07-11

    Adaptive immunity depends on specific recognition by a T-cell receptor (TCR) of an antigenic peptide bound to a major histocompatibility complex (pMHC) molecule on an antigen-presenting cell (APC). In addition, T-cell activation generally requires binding of this same pMHC to a CD4 or CD8 coreceptor. Here, we report the structure of a complete TCR-pMHC-CD4 ternary complex involving a human autoimmune TCR, a myelin-derived self-peptide bound to HLA-DR4, and CD4. The complex resembles a pointed arch in which TCR and CD4 are each tilted ~65° relative to the T-cell membrane. By precluding direct contacts between TCR and CD4, the structure explains how TCR and CD4 on the T cell can simultaneously, yet independently, engage the same pMHC on the APC. The structure, in conjunction with previous mutagenesis data, places TCR-associated CD3εγ and CD3εδ subunits, which transmit activation signals to the T cell, inside the TCR-pMHC-CD4 arch, facing CD4. By establishing anchor points for TCR and CD4 on the T-cell membrane, the complex provides a basis for understanding how the CD4 coreceptor focuses TCR on MHC to guide TCR docking on pMHC during thymic T-cell selection.

  14. Exposure of Human CD4 T Cells to IL-12 Results in Enhanced TCR-Induced Cytokine Production, Altered TCR Signaling, and Increased Oxidative Metabolism

    PubMed Central

    2016-01-01

    Human CD4 T cells are constantly exposed to IL-12 during infections and certain autoimmune disorders. The current paradigm is that IL-12 promotes the differentiation of naïve CD4 T cells into Th1 cells, but recent studies suggest IL-12 may play a more complex role in T cell biology. We examined if exposure to IL-12 alters human CD4 T cell responses to subsequent TCR stimulation. We found that IL-12 pretreatment increased TCR-induced IFN-γ, TNF-α, IL-13, IL-4 and IL-10 production. This suggests that prior exposure to IL-12 potentiates the TCR-induced release of a range of cytokines. We observed that IL-12 mediated its effects through both transcriptional and post-transcriptional mechanisms. IL-12 pretreatment increased the phosphorylation of AKT, p38 and LCK following TCR stimulation without altering other TCR signaling molecules, potentially mediating the increase in transcription of cytokines. In addition, the IL-12-mediated enhancement of cytokines that are not transcriptionally regulated was partially driven by increased oxidative metabolism. Our data uncover a novel function of IL-12 in human CD4 T cells; specifically, it enhances the release of a range of cytokines potentially by altering TCR signaling pathways and by enhancing oxidative metabolism. PMID:27280403

  15. Overrepresentation of IL-10-Expressing B Cells Suppresses Cytotoxic CD4+ T Cell Activity in HBV-Induced Hepatocellular Carcinoma

    PubMed Central

    Tan, Hongwu; Zhu, Zun-Qiang; Zhang, Zhang-Yun; Zhao, Ludong

    2016-01-01

    Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis and low five-year survival rate. A strong and effective CD4+ T cell-mediated cytotoxicity was associated with better survival and low recurrence rate in HCC, but the regulatory mechanism that controls CD4+ T cell cytotoxicity in HCC patients is not fully examined. Given that IL-10-expressing B cells could suppress the inflammation of cytotoxic CD8+ T cells, T helper 1 (Th1) cells and Th17 cells, while promoting regulatory T (Treg) cell differentiation, we examined the role of IL-10-expressing B cells in HBV-related HCC patients. We found that compared to healthy controls, HCC patients exhibited significantly higher frequencies of IL-10-expressing B cells, which were negatively correlated with the frequencies of granzyme A, granzyme B, and perforin expressing CD4+ T cells. Surface molecule Tim-1 was preferentially expressed on IL-10-expressing B cells. Therefore, we separated total B cells into Tim-1+ and Tim-1- B cells. CD4+ T cells incubated with Tim-1+ B cells exhibited significantly reduced levels of granzyme A, granzyme B and perforin expression, compared to the CD4+ T cells incubated with Tim-1- B cells. Antagonizing IL-10 in culture rescued CD4+ T cell cytotoxicity. Compared to that in peripheral blood, the level of IL-10-expressing B cells were further upregulated in resected tumor, while the level of CD4+ cytotoxic T cells was downregulated. The negative correlations between IL-10-expressing B cells and CD4+ cytotoxic T cells were also observed in tumor-infiltrating cells. Together, our data revealed an additional antitumor mechanism mediated by IL-10-expressing B cells. PMID:27136203

  16. Characterisation of CD4 T cells in healthy and diseased koalas (Phascolarctos cinereus) using cell-type-specific monoclonal antibodies.

    PubMed

    Mangar, Chandan; Armitage, Charles W; Timms, Peter; Corcoran, Lynn M; Beagley, Kenneth W

    2016-07-01

    The koala (Phascolarctos cinereus) is an arboreal herbivorous marsupial that is an Australian icon. Koalas in many parts of Australia are under multiple threats including habitat destruction, dog attacks, vehicular accidents, and infectious diseases such as Chlamydia spp. and the koala retrovirus (KoRV), which may contribute to the incidence of lymphoma and leukaemia in this species. Due to a lack of koala-specific immune reagents and assays there is currently no way to adequately analyse the immune response in healthy, diseased or vaccinated animals. This paper reports the production and characterisation of the first anti-koala CD4 monoclonal antibody (mAb). The koala CD4 gene was identified and used to develop recombinant proteins for mAb production. Fluorochrome-conjugated anti-CD4 mAb was used to measure the levels of CD4(+) lymphocytes collected from koala spleens (41.1%, range 20-45.1%) lymph nodes (36.3%, range 19-55.9%) and peripheral blood (23.8%, range 17.3-35%) by flow cytometry. Biotin-conjugated anti-CD4 mAb was used for western blot to determine an approximate size of 52 kDa for the koala CD4 molecule and used in immunohistochemistry to identify CD4(+) cells in the paracortical region and germinal centres of spleen and lymph nodes. Using the anti-CD4 mab we showed that CD4 cells from vaccinated, but not control, koalas proliferated following in vitro stimulation with UV-inactivated Chlamydia pecorum and recombinant chlamydial antigens. Since CD4(+) T cells have been shown to play a pivotal role in clearing chlamydial infection in both human and mouse infections, using this novel antibody will help determine the role CD4(+) T cells play in protection against chlamydial infection in koalas and also enhance our knowledge of how KoRV affects the koala immune system. PMID:26905635

  17. Characterisation of CD4 T cells in healthy and diseased koalas (Phascolarctos cinereus) using cell-type-specific monoclonal antibodies.

    PubMed

    Mangar, Chandan; Armitage, Charles W; Timms, Peter; Corcoran, Lynn M; Beagley, Kenneth W

    2016-07-01

    The koala (Phascolarctos cinereus) is an arboreal herbivorous marsupial that is an Australian icon. Koalas in many parts of Australia are under multiple threats including habitat destruction, dog attacks, vehicular accidents, and infectious diseases such as Chlamydia spp. and the koala retrovirus (KoRV), which may contribute to the incidence of lymphoma and leukaemia in this species. Due to a lack of koala-specific immune reagents and assays there is currently no way to adequately analyse the immune response in healthy, diseased or vaccinated animals. This paper reports the production and characterisation of the first anti-koala CD4 monoclonal antibody (mAb). The koala CD4 gene was identified and used to develop recombinant proteins for mAb production. Fluorochrome-conjugated anti-CD4 mAb was used to measure the levels of CD4(+) lymphocytes collected from koala spleens (41.1%, range 20-45.1%) lymph nodes (36.3%, range 19-55.9%) and peripheral blood (23.8%, range 17.3-35%) by flow cytometry. Biotin-conjugated anti-CD4 mAb was used for western blot to determine an approximate size of 52 kDa for the koala CD4 molecule and used in immunohistochemistry to identify CD4(+) cells in the paracortical region and germinal centres of spleen and lymph nodes. Using the anti-CD4 mab we showed that CD4 cells from vaccinated, but not control, koalas proliferated following in vitro stimulation with UV-inactivated Chlamydia pecorum and recombinant chlamydial antigens. Since CD4(+) T cells have been shown to play a pivotal role in clearing chlamydial infection in both human and mouse infections, using this novel antibody will help determine the role CD4(+) T cells play in protection against chlamydial infection in koalas and also enhance our knowledge of how KoRV affects the koala immune system.

  18. Conventional and Regulatory CD4+ T Cells That Share Identical TCRs Are Derived from Common Clones.

    PubMed

    Wolf, Kyle J; Emerson, Ryan O; Pingel, Jeanette; Buller, R Mark; DiPaolo, Richard J

    2016-01-01

    Results from studies comparing the diversity and specificity of the TCR repertoires expressed by conventional (Tconv) and regulatory (Treg) CD4+ T cell have varied depending on the experimental system employed. We developed a new model in which T cells express a single fixed TCRα chain, randomly rearranged endogenous TCRβ chains, and a Foxp3-GFP reporter. We purified CD4+Foxp3- and CD4+Foxp3+ cells, then performed biased controlled multiplex PCR and high throughput sequencing of endogenous TCRβ chains. We identified >7,000 different TCRβ sequences in the periphery of 5 individual mice. On average, ~12% of TCR sequences were expressed by both conventional and regulatory populations within individual mice. The CD4+ T cells that expressed shared TCR sequences were present at higher frequencies compared to T cells expressing non-shared TCRs. Furthermore, nearly all (>90%) of the TCR sequences that were shared within mice were identical at the DNA sequence level, indicating that conventional and regulatory T cells that express shared TCRs are derived from common clones. Analysis of TCR repertoire overlap in the thymus reveals that a large proportion of Tconv and Treg sharing observed in the periphery is due to clonal expansion in the thymus. Together these data show that there are a limited number of TCR sequences shared between Tconv and Tregs. Also, Tconv and Tregs sharing identical TCRs are found at relatively high frequencies and are derived from common progenitors, of which a large portion are generated in the thymus. PMID:27100298

  19. Conventional and Regulatory CD4+ T Cells That Share Identical TCRs Are Derived from Common Clones

    PubMed Central

    Emerson, Ryan O.; Pingel, Jeanette; Buller, R. Mark; DiPaolo, Richard J.

    2016-01-01

    Results from studies comparing the diversity and specificity of the TCR repertoires expressed by conventional (Tconv) and regulatory (Treg) CD4+ T cell have varied depending on the experimental system employed. We developed a new model in which T cells express a single fixed TCRα chain, randomly rearranged endogenous TCRβ chains, and a Foxp3-GFP reporter. We purified CD4+Foxp3- and CD4+Foxp3+ cells, then performed biased controlled multiplex PCR and high throughput sequencing of endogenous TCRβ chains. We identified >7,000 different TCRβ sequences in the periphery of 5 individual mice. On average, ~12% of TCR sequences were expressed by both conventional and regulatory populations within individual mice. The CD4+ T cells that expressed shared TCR sequences were present at higher frequencies compared to T cells expressing non-shared TCRs. Furthermore, nearly all (>90%) of the TCR sequences that were shared within mice were identical at the DNA sequence level, indicating that conventional and regulatory T cells that express shared TCRs are derived from common clones. Analysis of TCR repertoire overlap in the thymus reveals that a large proportion of Tconv and Treg sharing observed in the periphery is due to clonal expansion in the thymus. Together these data show that there are a limited number of TCR sequences shared between Tconv and Tregs. Also, Tconv and Tregs sharing identical TCRs are found at relatively high frequencies and are derived from common progenitors, of which a large portion are generated in the thymus. PMID:27100298

  20. Out-of-Sequence Signal 3 Paralyzes Primary CD4(+) T-Cell-Dependent Immunity.

    PubMed

    Sckisel, Gail D; Bouchlaka, Myriam N; Monjazeb, Arta M; Crittenden, Marka; Curti, Brendan D; Wilkins, Danice E C; Alderson, Kory A; Sungur, Can M; Ames, Erik; Mirsoian, Annie; Reddy, Abhinav; Alexander, Warren; Soulika, Athena; Blazar, Bruce R; Longo, Dan L; Wiltrout, Robert H; Murphy, William J

    2015-08-18

    Primary T cell activation involves the integration of three distinct signals delivered in sequence: (1) antigen recognition, (2) costimulation, and (3) cytokine-mediated differentiation and expansion. Strong immunostimulatory events such as immunotherapy or infection induce profound cytokine release causing "bystander" T cell activation, thereby increasing the potential for autoreactivity and need for control. We show that during strong stimulation, a profound suppression of primary CD4(+) T-cell-mediated immune responses ensued and was observed across preclinical models and patients undergoing high-dose interleukin-2 (IL-2) therapy. This suppression targeted naive CD4(+) but not CD8(+) T cells and was mediated through transient suppressor of cytokine signaling-3 (SOCS3) inhibition of the STAT5b transcription factor signaling pathway. These events resulted in complete paralysis of primary CD4(+) T cell activation, affecting memory generation and induction of autoimmunity as well as impaired viral clearance. These data highlight the critical regulation of naive CD4(+) T cells during inflammatory conditions.

  1. Out-of-Sequence Signal 3 Paralyzes Primary CD4(+) T-Cell-Dependent Immunity.

    PubMed

    Sckisel, Gail D; Bouchlaka, Myriam N; Monjazeb, Arta M; Crittenden, Marka; Curti, Brendan D; Wilkins, Danice E C; Alderson, Kory A; Sungur, Can M; Ames, Erik; Mirsoian, Annie; Reddy, Abhinav; Alexander, Warren; Soulika, Athena; Blazar, Bruce R; Longo, Dan L; Wiltrout, Robert H; Murphy, William J

    2015-08-18

    Primary T cell activation involves the integration of three distinct signals delivered in sequence: (1) antigen recognition, (2) costimulation, and (3) cytokine-mediated differentiation and expansion. Strong immunostimulatory events such as immunotherapy or infection induce profound cytokine release causing "bystander" T cell activation, thereby increasing the potential for autoreactivity and need for control. We show that during strong stimulation, a profound suppression of primary CD4(+) T-cell-mediated immune responses ensued and was observed across preclinical models and patients undergoing high-dose interleukin-2 (IL-2) therapy. This suppression targeted naive CD4(+) but not CD8(+) T cells and was mediated through transient suppressor of cytokine signaling-3 (SOCS3) inhibition of the STAT5b transcription factor signaling pathway. These events resulted in complete paralysis of primary CD4(+) T cell activation, affecting memory generation and induction of autoimmunity as well as impaired viral clearance. These data highlight the critical regulation of naive CD4(+) T cells during inflammatory conditions. PMID:26231116

  2. CD4⁺ effector and memory cell populations protect against Cryptosporidium parvum infection.

    PubMed

    McNair, Nina N; Mead, Jan R

    2013-01-01

    Cryptosporidium parvum is a protozoan parasite that infects the epithelial cells of the small intestine causing diarrheal illness in humans. While T cells are known to be important in resistance and recovery from infection, little has been characterized as to the phenotypic expression of surface effector and memory markers after infection. We used an acute model of infection (C57BL/6 interleukin-12p40), which develops long-standing resistance to re-infection, to characterize expression of different effector and memory cells. Using flow cytometry, we found that heterogeneous populations were generated after infection, consisting of both CD62L(high) central memory T cells (T(CM)) and CD62L(low) effector memory T cells (T(EM)) that were competent to produce the Th type 1 effector cytokine, IFN-γ. Both CD4⁺ and CD8⁺ T(CM) and T(EM) populations persisted in the absence of infection (up to 60 days post-infection). Additionally, transfer of either CD62L(low)CD4⁺ T(EM) or CD62L(high)CD4⁺ T(CM) into naive recipients resulted in a protective response. Taken together, these studies show that distinct subsets of effector and memory CD4⁺ T cells develop after infection with C. parvum, and mediate protective immunity to re-challenge.

  3. Regulation of T cell receptor expression in immature CD4+CD8+ thymocytes by p56lck tyrosine kinase: basis for differential signaling by CD4 and CD8 in immature thymocytes expressing both coreceptor molecules

    PubMed Central

    1993-01-01

    Signals transduced through the T cell antigen receptor (TCR) are modulated by the src family tyrosine kinase p56lck (lck), which associates in mature T cells with the coreceptor molecules CD4 and CD8. Here we describe a novel function of lck in immature CD4+CD8+ thymocytes, that of regulating TCR expression. Activation of lck in immature CD4+CD8+ thymocytes by intrathymic engagement of CD4 maintains low TCR expression by causing most TCR components to be retained and degraded within the endoplasmic reticulum. Importantly, activation of lck in immature CD4+CD8+ thymocytes results from engagement of surface CD4 molecules, but not surface CD8 molecules, despite the nearly fourfold greater surface expression of CD8 than CD4. The competence of CD4 to activate lck in CD4+CD8+ thymocytes relates to the fact that a relatively large fraction of surface CD4 molecules (25-50%) are associated with intracellular lck molecules, whereas only 2% of surface CD8 molecules are associated with lck. The amount of lck associated with CD4 in CD4+CD8+ thymocytes is diminished by chronic CD4 engagement in the thymus, as activated lck molecules subsequently dissociate from CD4. Indeed, the amount of lck associated with CD4 in CD4+CD8+ thymocytes is markedly increased in major histocompatibility complex (MHC) class II- mice that lack the intrathymic ligand for CD4 and in which surface CD4 molecules are consequently not engaged. Thus, the present study demonstrates that (a) activation of lck in CD4+CD8+ thymocytes regulates distribution and expression of TCR components; (b) unlike CD4 molecules, CD8 molecules on CD4+CD8+ thymocytes cannot efficiently activate lck despite their significantly greater surface expression; and (c) the amount of lck associated with CD4 in the CD4+CD8+ thymocytes is inversely related to the extent of CD4 engagement by MHC class II molecules in the thymus. PMID:8228817

  4. The Fc and not CD4 Receptor Mediates Antibody Enhancement of HIV Infection in Human Cells

    NASA Astrophysics Data System (ADS)

    Homsy, Jacques; Meyer, Mia; Tateno, Masatoshi; Clarkson, Sarah; Levy, Jay A.

    1989-06-01

    Antibodies that enhance human immunodeficiency virus (HIV) infectivity have been found in the blood of infected individuals and in infected or immunized animals. These findings raise serious concern for the development of a safe vaccine against acquired immunodeficiency syndrome. To address the in vivo relevance and mechanism of this phenomenon, antibody-dependent enhancement of HIV infectivity in peripheral blood macrophages, lymphocytes, and human fibroblastoid cells was studied. Neither Leu3a, a monoclonal antibody directed against the CD4 receptor, nor soluble recombinant CD4 even at high concentrations prevented this enhancement. The addition of monoclonal antibody to the Fc receptor III (anti-FcRIII), but not of antibodies that react with FcRI or FcRII, inhibited HIV type 1 and HIV type 2 enhancement in peripheral blood macrophages. Although enhancement of HIV infection in CD4+ lymphocytes could not be blocked by anti-FcRIII, it was inhibited by the addition of human immunoglobulin G aggregates. The results indicate that the FcRIII receptor on human macrophages and possibly another Fc receptor on human CD4+ lymphocytes mediate antibody-dependent enhancement of HIV infectivity and that this phenomenon proceeds through a mechanism independent of the CD4 protein.

  5. Peripheral and site-specific CD4(+) CD28(null) T cells from rheumatoid arthritis patients show distinct characteristics.

    PubMed

    Pieper, J; Johansson, S; Snir, O; Linton, L; Rieck, M; Buckner, J H; Winqvist, O; van Vollenhoven, R; Malmström, V

    2014-02-01

    Proinflammatory CD4(+) CD28(null) T cells are frequently found in the circulation of patients with rheumatoid arthritis (RA), but are less common in the rheumatic joint. In the present study, we sought to identify functional differences between CD4(+) CD28(null) T cells from blood and synovial fluid in comparison with conventional CD28-expressing CD4(+) T cells. Forty-four patients with RA, displaying a distinct CD4(+) CD28(null) T cell population in blood, were recruited for this study; the methylation status of the IFNG locus was examined in isolated T cell subsets, and intracellular cytokine production (IFN-γ, TNF, IL-17) and chemokine receptor expression (CXCR3, CCR6 and CCR7) were assessed by flow cytometry on T cells from the two compartments. Circulating CD4(+) CD28(null) T cells were significantly more hypomethylated in the CNS-1 region of the IFNG locus than conventional CD4(+) CD28(+) T cells and produced higher levels of both IFN-γ and TNF after TCR cross-linking. CD4(+) CD28(null) T cells from the site of inflammation expressed significantly more CXCR3 and CCR6 compared to their counterparts in blood. While IL-17A production could hardly be detected in CD4(+) CD28(null) cells from the blood, a significant production was observed in CD4(+) CD28(null) T cells from synovial fluid. CD4(+) CD28(null) T cells were not only found to differ from conventional CD4(+) CD28(+) T cells in the circulation, but we could also demonstrate that synovial CD4(+) CD28(null) T cells showed additional effector functions (IL-17 coproduction) as compared to the same subset in peripheral blood, suggesting an active role for these cells in the perpetuation of inflammation in the subset of patients having a CD28(null) population.

  6. Novel insights into the regulatory architecture of CD4+ T cells in rheumatoid arthritis.

    PubMed

    Aterido, Adrià; Palacio, Carlos; Marsal, Sara; Avila, Gabriela; Julià, Antonio

    2014-01-01

    Rheumatoid arthritis (RA) is the most frequent autoimmune chronic inflammatory disease of the joints and it is characterized by the inflammation of the synovial membrane and the subsequent destruction of the joints. In RA, CD4+ T cells are the main drivers of disease initiation and the perpetuation of the damaging inflammatory process. To date, however, the genetic regulatory mechanisms of CD4+ T cells associated with RA etiology are poorly understood. The genome-wide analysis of expression quantitative trait loci (eQTL) in disease-relevant cell types is a recent genomic integration approach that is providing significant insights into the genetic regulatory mechanisms of many human pathologies. The objective of the present study was to analyze, for the first time, the genome-wide genetic regulatory mechanisms associated with the gene expression of CD4+ T cells in RA. Whole genome gene expression profiling of CD4+ T cells and the genome-wide genotyping (598,258 SNPs) of 29 RA patients with an active disease were performed. In order to avoid the excessive burden of multiple testing associated with genome-wide trans-eQTL analysis, we developed and implemented a novel systems genetics approach. Finally, we compared the genomic regulation pattern of CD4+ T cells in RA with the genomic regulation observed in reference lymphoblastoid cell lines (LCLs). We identified a genome-wide significant cis-eQTL associated with the expression of FAM66C gene (P = 6.51e-9). Using our new systems genetics approach we identified six statistically significant trans-eQTLs associated with the expression of KIAA0101 (P<7.4e-8) and BIRC5 (P = 5.35e-8) genes. Finally, comparing the genomic regulation profiles between RA CD4+ T cells and control LCLs we found 20 genes showing differential regulatory patterns between both cell types. The present genome-wide eQTL analysis has identified new genetic regulatory elements that are key to the activity of CD4+ T cells in RA.

  7. Novel Insights into the Regulatory Architecture of CD4+ T Cells in Rheumatoid Arthritis

    PubMed Central

    Aterido, Adrià; Palacio, Carlos; Marsal, Sara; Ávila, Gabriela; Julià, Antonio

    2014-01-01

    Rheumatoid arthritis (RA) is the most frequent autoimmune chronic inflammatory disease of the joints and it is characterized by the inflammation of the synovial membrane and the subsequent destruction of the joints. In RA, CD4+ T cells are the main drivers of disease initiation and the perpetuation of the damaging inflammatory process. To date, however, the genetic regulatory mechanisms of CD4+ T cells associated with RA etiology are poorly understood. The genome-wide analysis of expression quantitative trait loci (eQTL) in disease-relevant cell types is a recent genomic integration approach that is providing significant insights into the genetic regulatory mechanisms of many human pathologies. The objective of the present study was to analyze, for the first time, the genome-wide genetic regulatory mechanisms associated with the gene expression of CD4+ T cells in RA. Whole genome gene expression profiling of CD4+ T cells and the genome-wide genotyping (598,258 SNPs) of 29 RA patients with an active disease were performed. In order to avoid the excessive burden of multiple testing associated with genome-wide trans-eQTL analysis, we developed and implemented a novel systems genetics approach. Finally, we compared the genomic regulation pattern of CD4+ T cells in RA with the genomic regulation observed in reference lymphoblastoid cell lines (LCLs). We identified a genome-wide significant cis-eQTL associated with the expression of FAM66C gene (P = 6.51e−9). Using our new systems genetics approach we identified six statistically significant trans-eQTLs associated with the expression of KIAA0101 (P<7.4e−8) and BIRC5 (P = 5.35e−8) genes. Finally, comparing the genomic regulation profiles between RA CD4+ T cells and control LCLs we found 20 genes showing differential regulatory patterns between both cell types. The present genome-wide eQTL analysis has identified new genetic regulatory elements that are key to the activity of CD4+ T cells in RA. PMID:24959711

  8. HIV-specific regulatory T cells are associated with higher CD4 cell counts in primary infection

    PubMed Central

    Kared, Hassen; Lelièvre, Jean-Daniel; Donkova-Petrini, Vladimira; Aouba, Albertine; Melica, Giovanna; Balbo, Michèle; Weiss, Laurence; Lévy, Yves

    2008-01-01

    Objective Expansion of Regulatory T (Treg) cells has been described in chronically HIV-infected subjects. We investigated whether HIV-suppressive Treg could be detected during primary HIV infection (PHI). Methods Seventeen patients diagnosed early after PHI (median: 13 days; 1–55) were studied. Median CD4 cell count was 480 cells/μl (33–1306) and plasma HIV RNA levels ranged between 3.3 to 5.7 log10 cp/mL. Suppressive capacity of blood purified CD4+CD25+ was evaluated in a co-culture assay. Fox-p3, IL-2 and IL-10 were quantified by RT-PCR and intra-cellular staining of ex vivo and activated CD4+CD25high T cells. Results The frequency of CD4+CD127lowCD25high T cells among CD4 T cells was lower in PHI compared to chronic patients (n=19). They exhibited a phenotype of memory T cells and expressed constitutively FoxP3. Similarly to chronic patients, Treg from PHI patients inhibited the proliferation of PPD and HIV p24 activated CD4+CD25− T cells. CD4+CD25high T cells from PHI patients responded specifically to p24 stimulation by expressing IL-10. In untreated PHI patients, the frequency, as well as HIV-specific activity of Treg decreased during a 24-month follow up. A positive correlation between percentages of Treg and both CD4 cell counts and the magnitude of p24-specific suppressive activity at diagnosis of PHI was found. Conclusions Our data showed that HIV drives Treg since PHI and that these cells persist throughout the course of the infection. A correlation between the frequency of Treg and CD4 T cell counts suggest that these cells may impact on the immune activation set point at PHI diagnosis. PMID:19005268

  9. PD-1/PD-Ls pathways between CD4(+) T cells and pleural mesothelial cells in human tuberculous pleurisy.

    PubMed

    Yin, Wen; Tong, Zhao-Hui; Cui, Ai; Zhang, Jian-Chu; Ye, Zhi-Jian; Yuan, Ming-Li; Zhou, Qiong; Shi, Huan-Zhong

    2014-03-01

    Programmed death 1 (PD-1), PD-ligand 1 (PD-L1), and PD-L2 have been demonstrated to be involved in tuberculosis immunity, however, the expression and regulation of PD-1/PD-Ls pathways in pleural mesothelial cells (PMCs) and CD4(+) T cells in tuberculous pleural effusion (TPE) have not been investigated. Expression of PD-1 on CD4(+) T cells and expressions of PD-L1 and PD-L2 on PMCs in TPE were determined. The impacts of PD-1/PD-Ls pathways on proliferation, apoptosis, adhesion, and migration of CD4(+) T cells were explored. Concentrations of soluble PD-l, but not of soluble PD-Ls, were much higher in TPE than in serum. Expressions of PD-1 on CD4(+) T cells in TPE were significantly higher than those in blood. Expressions of PD-Ls were much higher on PMCs from TPE when compared with those from transudative effusion. Interferon-γ not only upregulated the expression of PD-1 on CD4(+) T cells, but also upregulated the expressions of PD-Ls on PMCs. Blockage PD-1/PD-Ls pathways abolished the inhibitory effects on proliferation and adhesion activity of CD4(+) T cells induced by PMCs. PD-1/PD-Ls pathways on PMCs inhibited proliferation and adhesion activity of CD4(+) T cells, suggesting that Mycobacterium tuberculosis might exploit PD-1/PD-Ls pathways to evade host cell immune response in human.

  10. Critical role of CD4 T cells in maintaining lymphoid tissue structure for immune cell homeostasis and reconstitution.

    PubMed

    Zeng, Ming; Paiardini, Mirko; Engram, Jessica C; Beilman, Greg J; Chipman, Jeffrey G; Schacker, Timothy W; Silvestri, Guido; Haase, Ashley T

    2012-08-30

    Loss of the fibroblastic reticular cell (FRC) network in lymphoid tissues during HIV-1 infection has been shown to impair the survival of naive T cells and limit immune reconstitution after antiretroviral therapy. What causes this FRC loss is unknown. Because FRC loss correlates with loss of both naive CD4 and CD8 T-cell subsets and decreased lymphotoxin-β, a key factor for maintenance of FRC network, we hypothesized that loss of naive T cells is responsible for loss of the FRC network. To test this hypothesis, we assessed the consequences of antibody-mediated depletion of CD4 and CD8 T cells in rhesus macaques and sooty mangabeys. We found that only CD4 T-cell depletion resulted in FRC loss in both species and that this loss was caused by decreased lymphotoxin-β mainly produced by the CD4 T cells. We further found the same dependence of the FRC network on CD4 T cells in HIV-1-infected patients before and after antiretroviral therapy and in other immunodeficiency conditions, such as CD4 depletion in cancer patients induced by chemotherapy and irradiation. CD4 T cells thus play a central role in the maintenance of lymphoid tissue structure necessary for their own homeostasis and reconstitution.

  11. Critical role of CD4 T cells in maintaining lymphoid tissue structure for immune cell homeostasis and reconstitution

    PubMed Central

    Zeng, Ming; Paiardini, Mirko; Engram, Jessica C.; Beilman, Greg J.; Chipman, Jeffrey G.; Schacker, Timothy W.; Silvestri, Guido

    2012-01-01

    Loss of the fibroblastic reticular cell (FRC) network in lymphoid tissues during HIV-1 infection has been shown to impair the survival of naive T cells and limit immune reconstitution after antiretroviral therapy. What causes this FRC loss is unknown. Because FRC loss correlates with loss of both naive CD4 and CD8 T-cell subsets and decreased lymphotoxin-β, a key factor for maintenance of FRC network, we hypothesized that loss of naive T cells is responsible for loss of the FRC network. To test this hypothesis, we assessed the consequences of antibody-mediated depletion of CD4 and CD8 T cells in rhesus macaques and sooty mangabeys. We found that only CD4 T-cell depletion resulted in FRC loss in both species and that this loss was caused by decreased lymphotoxin-β mainly produced by the CD4 T cells. We further found the same dependence of the FRC network on CD4 T cells in HIV-1–infected patients before and after antiretroviral therapy and in other immunodeficiency conditions, such as CD4 depletion in cancer patients induced by chemotherapy and irradiation. CD4 T cells thus play a central role in the maintenance of lymphoid tissue structure necessary for their own homeostasis and reconstitution. PMID:22613799

  12. ADAR1 Facilitates HIV-1 Replication in Primary CD4+ T Cells

    PubMed Central

    van Hamme, John L.; Jansen, Machiel H.; van Dort, Karel A.; Vanderver, Adeline; Rice, Gillian I.; Crow, Yanick J.; Kootstra, Neeltje A.; Kuijpers, Taco W.

    2015-01-01

    Unlike resting CD4+ T cells, activated CD4+T cells are highly susceptible to infection of human immunodeficiency virus 1 (HIV-1). HIV-1 infects T cells and macrophages without activating the nucleic acid sensors and the anti-viral type I interferon response. Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA editing enzyme that displays antiviral activity against several RNA viruses. Mutations in ADAR1 cause the autoimmune disorder Aicardi-Goutieères syndrome (AGS). This disease is characterized by an inappropriate activation of the interferon-stimulated gene response. Here we show that HIV-1 replication, in ADAR1-deficient CD4+T lymphocytes from AGS patients, is blocked at the level of protein translation. Furthermore, viral protein synthesis block is accompanied by an activation of interferon-stimulated genes. RNA silencing of ADAR1 in Jurkat cells also inhibited HIV-1 protein synthesis. Our data support that HIV-1 requires ADAR1 for efficient replication in human CD4+T cells. PMID:26629815

  13. Salmonella enterica Serovar Typhi Impairs CD4 T Cell Responses by Reducing Antigen Availability

    PubMed Central

    Atif, Shaikh M.; Winter, Sebastian E.; Winter, Maria G.; McSorley, Stephen J.

    2014-01-01

    Salmonella enterica serovar Typhi is associated with a disseminated febrile illness in humans, termed typhoid fever, while Salmonella enterica serovar Typhimurium causes localized gastroenteritis in immunocompetent individuals. One of the genetic differences between both pathogens is the presence in S. Typhi of TviA, a regulatory protein that shuts down flagellin (FliC) expression when bacteria transit from the intestinal lumen into the intestinal mucosa. Here we investigated the consequences of TviA-mediated flagellum gene regulation on flagellin-specific CD4 T cell responses in a mouse model of S. Typhimurium infection. Introduction of the S. Typhi tviA gene into S. Typhimurium suppressed antigen presentation of dendritic cells to flagellin-specific CD4 T cells in vitro. Furthermore, TviA-mediated repression of flagellin expression impaired the activation and proliferation of naive flagellin-specific CD4 T cells in Peyer's patches and mesenteric lymph nodes, which was accompanied by increased bacterial dissemination to the spleen. We conclude that TviA-mediated repression of flagellin expression reduces antigen availability, thereby weakening flagellin-specific CD4 T cell responses. PMID:24643532

  14. Vitamin D Actions on CD4(+) T Cells in Autoimmune Disease.

    PubMed

    Hayes, Colleen Elizabeth; Hubler, Shane L; Moore, Jerott R; Barta, Lauren E; Praska, Corinne E; Nashold, Faye E

    2015-01-01

    This review summarizes and integrates research on vitamin D and CD4(+) T-lymphocyte biology to develop new mechanistic insights into the molecular etiology of autoimmune disease. A deep understanding of molecular mechanisms relevant to gene-environment interactions is needed to deliver etiology-based autoimmune disease prevention and treatment strategies. Evidence linking sunlight, vitamin D, and the risk of multiple sclerosis and type 1 diabetes is summarized to develop the thesis that vitamin D is the environmental factor that most strongly influences autoimmune disease development. Evidence for CD4(+) T-cell involvement in autoimmune disease pathogenesis and for paracrine calcitriol signaling to CD4(+) T lymphocytes is summarized to support the thesis that calcitriol is sunlight's main protective signal transducer in autoimmune disease risk. Animal modeling and human mechanistic data are summarized to support the view that vitamin D probably influences thymic negative selection, effector Th1 and Th17 pathogenesis and responsiveness to extrinsic cell death signals, FoxP3(+)CD4(+) T-regulatory cell and CD4(+) T-regulatory cell type 1 (Tr1) cell functions, and a Th1-Tr1 switch. The proposed Th1-Tr1 switch appears to bridge two stable, self-reinforcing immune states, pro- and anti-inflammatory, each with a characteristic gene regulatory network. The bi-stable switch would enable T cells to integrate signals from pathogens, hormones, cell-cell interactions, and soluble mediators and respond in a biologically appropriate manner. Finally, unanswered questions and potentially informative future research directions are highlighted to speed delivery of etiology-based strategies to reduce autoimmune disease.

  15. Extensive CD4 and CD8 T Cell Cross-Reactivity between Alphaherpesviruses.

    PubMed

    Jing, Lichen; Laing, Kerry J; Dong, Lichun; Russell, Ronnie M; Barlow, Russell S; Haas, Juergen G; Ramchandani, Meena S; Johnston, Christine; Buus, Soren; Redwood, Alec J; White, Katie D; Mallal, Simon A; Phillips, Elizabeth J; Posavad, Christine M; Wald, Anna; Koelle, David M

    2016-03-01

    The Alphaherpesvirinae subfamily includes HSV types 1 and 2 and the sequence-divergent pathogen varicella zoster virus (VZV). T cells, controlled by TCR and HLA molecules that tolerate limited epitope amino acid variation, might cross-react between these microbes. We show that memory PBMC expansion with either HSV or VZV enriches for CD4 T cell lines that recognize the other agent at the whole-virus, protein, and peptide levels, consistent with bidirectional cross-reactivity. HSV-specific CD4 T cells recovered from HSV-seronegative persons can be explained, in part, by such VZV cross-reactivity. HSV-1-reactive CD8 T cells also cross-react with VZV-infected cells, full-length VZV proteins, and VZV peptides, as well as kill VZV-infected dermal fibroblasts. Mono- and cross-reactive CD8 T cells use distinct TCRB CDR3 sequences. Cross-reactivity to VZV is reconstituted by cloning and expressing TCRA/TCRB receptors from T cells that are initially isolated using HSV reagents. Overall, we define 13 novel CD4 and CD8 HSV-VZV cross-reactive epitopes and strongly imply additional cross-reactive peptide sets. Viral proteins can harbor both CD4 and CD8 HSV/VZV cross-reactive epitopes. Quantitative estimates of HSV/VZV cross-reactivity for both CD4 and CD8 T cells vary from 10 to 50%. Based on these findings, we hypothesize that host herpesvirus immune history may influence the pathogenesis and clinical outcome of subsequent infections or vaccinations for related pathogens and that cross-reactive epitopes and TCRs may be useful for multi-alphaherpesvirus vaccine design and adoptive cellular therapy. PMID:26810224

  16. Human Memory CD4+ T Cell Immune Responses against Giardia lamblia

    PubMed Central

    Sørnes, Steinar; Peirasmaki, Dimitra; Svärd, Staffan; Langeland, Nina

    2015-01-01

    The intestinal protozoan parasite Giardia lamblia may cause severe prolonged diarrheal disease or pass unnoticed as an asymptomatic infection. T cells seem to play an important role in the immune response to Giardia infection, and memory responses may last years. Recently, TH17 responses have been found in three animal studies of Giardia infection. The aim of this study was to characterize the human CD4+ T cell responses to Giardia. Peripheral blood mononuclear cells (PBMCs) were obtained from 21 returning travelers with recent or ongoing giardiasis and 12 low-risk healthy controls and stimulated in vitro with Giardia lamblia proteins. Production of tumor necrosis factor alpha (TNF-α), gamma interferon, interleukin-17A (IL-17A), IL-10, and IL-4 was measured in CD4+ effector memory (EM) T cells after 24 h by flow cytometry. After 6 days of culture, activation and proliferation were measured by flow cytometry, while an array of inflammatory cytokine levels in supernatants were measured with multiplex assays. We found the number of IL-17A-producing CD4+ EM T cells, as well as that of cells simultaneously producing both IL-17A and TNF-α, to be significantly elevated in the Giardia-exposed individuals after 24 h of antigen stimulation. In supernatants of PBMCs stimulated with Giardia antigens for 6 days, we found inflammation-associated cytokines, including 1L-17A, as well as CD4+ T cell activation and proliferation, to be significantly elevated in the Giardia-exposed individuals. We conclude that symptomatic Giardia infection in humans induces a CD4+ EM T cell response of which IL-17A production seems to be an important component. PMID:26376930

  17. Human Memory CD4+ T Cell Immune Responses against Giardia lamblia.

    PubMed

    Saghaug, Christina Skår; Sørnes, Steinar; Peirasmaki, Dimitra; Svärd, Staffan; Langeland, Nina; Hanevik, Kurt

    2016-01-01

    The intestinal protozoan parasite Giardia lamblia may cause severe prolonged diarrheal disease or pass unnoticed as an asymptomatic infection. T cells seem to play an important role in the immune response to Giardia infection, and memory responses may last years. Recently, TH17 responses have been found in three animal studies of Giardia infection. The aim of this study was to characterize the human CD4(+) T cell responses to Giardia. Peripheral blood mononuclear cells (PBMCs) were obtained from 21 returning travelers with recent or ongoing giardiasis and 12 low-risk healthy controls and stimulated in vitro with Giardia lamblia proteins. Production of tumor necrosis factor alpha (TNF-α), gamma interferon, interleukin-17A (IL-17A), IL-10, and IL-4 was measured in CD4(+) effector memory (EM) T cells after 24 h by flow cytometry. After 6 days of culture, activation and proliferation were measured by flow cytometry, while an array of inflammatory cytokine levels in supernatants were measured with multiplex assays. We found the number of IL-17A-producing CD4(+) EM T cells, as well as that of cells simultaneously producing both IL-17A and TNF-α, to be significantly elevated in the Giardia-exposed individuals after 24 h of antigen stimulation. In supernatants of PBMCs stimulated with Giardia antigens for 6 days, we found inflammation-associated cytokines, including 1L-17A, as well as CD4(+) T cell activation and proliferation, to be significantly elevated in the Giardia-exposed individuals. We conclude that symptomatic Giardia infection in humans induces a CD4(+) EM T cell response of which IL-17A production seems to be an important component. PMID:26376930

  18. Long-Lived CD4+IFN-γ+ T Cells rather than Short-Lived CD4+IFN-γ+IL-10+ T Cells Initiate Rapid IL-10 Production To Suppress Anamnestic T Cell Responses during Secondary Malaria Infection

    PubMed Central

    Villegas-Mendez, Ana; Inkson, Colette A.; Shaw, Tovah N.; Strangward, Patrick

    2016-01-01

    CD4+ T cells that produce IFN-γ are the source of host-protective IL-10 during primary infection with a number of different pathogens, including Plasmodium spp. The fate of these CD4+IFN-γ+IL-10+ T cells following clearance of primary infection and their subsequent influence on the course of repeated infections is, however, presently unknown. In this study, utilizing IFN-γ–yellow fluorescent protein (YFP) and IL-10–GFP dual reporter mice, we show that primary malaria infection–induced CD4+YFP+GFP+ T cells have limited memory potential, do not stably express IL-10, and are disproportionately lost from the Ag-experienced CD4+ T cell memory population during the maintenance phase postinfection. CD4+YFP+GFP+ T cells generally exhibited a short-lived effector rather than effector memory T cell phenotype postinfection and expressed high levels of PD-1, Lag-3, and TIGIT, indicative of cellular exhaustion. Consistently, the surviving CD4+YFP+GFP+ T cell–derived cells were unresponsive and failed to proliferate during the early phase of secondary infection. In contrast, CD4+YFP+GFP− T cell–derived cells expanded rapidly and upregulated IL-10 expression during secondary infection. Correspondingly, CD4+ T cells were the major producers within an accelerated and amplified IL-10 response during the early stage of secondary malaria infection. Notably, IL-10 exerted quantitatively stronger regulatory effects on innate and CD4+ T cell responses during primary and secondary infections, respectively. The results in this study significantly improve our understanding of the durability of IL-10–producing CD4+ T cells postinfection and provide information on how IL-10 may contribute to optimized parasite control and prevention of immune-mediated pathology during repeated malaria infections. PMID:27630165

  19. Ubiquitin Ligases and Deubiquitinating Enzymes in CD4+ T Cell Effector Fate Choice and Function.

    PubMed

    Layman, Awo A K; Oliver, Paula M

    2016-05-15

    The human body is exposed to potentially pathogenic microorganisms at barrier sites such as the skin, lungs, and gastrointestinal tract. To mount an effective response against these pathogens, the immune system must recruit the right cells with effector responses that are appropriate for the task at hand. Several types of CD4(+) T cells can be recruited, including Th cells (Th1, Th2, and Th17), T follicular helper cells, and regulatory T cells. These cells help to maintain normal immune homeostasis in the face of constantly changing microbes in the environment. Because these cells differentiate from a common progenitor, the composition of their intracellular milieu of proteins changes to appropriately guide their effector function. One underappreciated process that impacts the levels and functions of effector fate-determining factors is ubiquitylation. This review details our current understanding of how ubiquitylation regulates CD4(+) T cell effector identity and function.

  20. CD4+ T Cells Drive Goblet Cell Depletion during Citrobacter rodentium Infection

    PubMed Central

    Chan, Justin M.; Bhinder, Ganive; Sham, Ho Pan; Ryz, Natasha; Huang, Tina; Bergstrom, Kirk S.

    2013-01-01

    Both idiopathic and infectious forms of colitis disrupt normal intestinal epithelial cell (IEC) proliferation and differentiation, although the mechanisms involved remain unclear. Recently, we demonstrated that infection by the attaching and effacing murine pathogen Citrobacter rodentium leads to a significant reduction in colonic goblet cell numbers (goblet cell depletion). This pathology depends on T and/or B cells, as Rag1−/− mice do not suffer this depletion during infection, instead suffering high mortality rates. To address the immune mechanisms involved, we reconstituted Rag−/− mice with either CD4+ or CD8+ T cells. Both T cell subsets increased Rag1−/− mouse survival during infection, with mice that received CD8+ T cells developing colonic ulcers but not goblet cell depletion. In contrast, mice that received CD4+ T cells showed goblet cell depletion in concert with exaggerated IEC proliferation. To define the possible involvement of T cell-derived cytokines, we infected gamma interferon receptor gene knockout (IFN-γR−/−) mice and wild-type mice given interleukin 17A (IL-17A) neutralizing antibodies and found that IFN-γ signaling was required for both goblet cell depletion and increased IEC proliferation. Immunostaining revealed that C. rodentium cells preferentially localized to nonhyperplastic crypts containing numerous goblet cells, whereas hyperplastic, goblet cell-depleted crypts appeared protected from infection. To address whether goblet cell depletion benefits the C. rodentium-infected host, we increased goblet cell numbers using the γ-secretase inhibitor dibenzazepine (DBZ), which resulted in greatly increased pathogen burdens and mortality rates. These results demonstrate that goblet cell depletion reflects host immunomodulation of IEC homeostasis and reflects a novel host defense mechanism against mucosal-adherent pathogens. PMID:24101690

  1. Contact of human immunodeficiency virus type 1-infected and uninfected CD4+ T lymphocytes is highly cytolytic for both cells.

    PubMed Central

    Heinkelein, M; Sopper, S; Jassoy, C

    1995-01-01

    Individuals infected with the human immunodeficiency virus (HIV) experience a marked loss of CD4+ T lymphocytes, leading to fatal immunodeficiency. The mechanisms causing the depletion of these cells are not yet understood. In this study, we observed that CD4+ T lymphocytes from HIV type 1 (HIV-1)-infected and uninfected individuals rapidly lysed B lymphoblasts expressing the HIV-1 envelope glycoprotein on the cell surface and Jurkat cells expressing the complete virus. Contact of uninfected CD4+ T cells with envelope glycoprotein-expressing cells also resulted in the lysis of the uninfected CD4+ T cells. Cytolysis did not require priming or in vitro stimulation of the CD4+ T cells and was not restricted by major histocompatibility complex molecules. Cytotoxicity was inhibited by soluble CD4 and anti-CD4 monoclonal antibodies that block binding of CD4 to gp120. In addition, neutralizing anti-CD4 and anti-gp120 monoclonal antibodies which block postbinding membrane fusion events and syncytium formation also inhibited cell lysis, suggesting that identical mechanisms in HIV-infected cultures underlie cell-cell fusion and the cytolysis observed. However, cytotoxicity was not always accompanied by the formation of visible syncytia. Rapid cell lysis after contact of uninfected and HIV-1-infected CD4+ T cells may explain CD4+ T-cell depletion in the absence of detectable syncytia in infected individuals. Moreover, because of its vigor, lysis of envelope-expressing targets by contact with unprimed CD4+ T lymphocytes may at first glance resemble antigen-specific immune responses and should be excluded when cytotoxic T-lymphocyte responses in infected individuals and vaccinees are evaluated. PMID:7474110

  2. CD8α+ Dendritic cells prime TCR-peptide-reactive regulatory CD4+FOXP3− T cells

    PubMed Central

    Smith, Trevor R. F.; Maricic, Igor; Ria, Francesco; Schneider, Susan; Kumar, Vipin

    2011-01-01

    Summary CD4+ T cells with immune regulatory function can be either FOXP3+ or FOXP3−. We have previously shown that priming of naturally occurring TCR-peptide-reactive regulatory CD4+FOXP3− T cells (Treg) specifically controls Vβ8.2+CD4+ T cells mediating experimental autoimmune encephalomyelitis (EAE). However, the mechanism by which these Treg are primed to recognize their cognate antigenic determinant, which is derived from the TCRVβ8.2-chain, is not known. In this study we show that antigen presenting cells (APC) derived from splenocytes of naïve mice are able to stimulate cloned CD4+ Treg in the absence of exogenous antigen, and their stimulation capacity is augmented during EAE. Among the APC populations DC were the most efficient in stimulating the Treg. Stimulation of CD4+ Treg was dependent upon processing and presentation of TCR peptides from ingested Vβ8.2TCR+ CD4+ T cells. Additionally, dendritic cells pulsed with TCR peptide or apoptotic Vβ8.2+ T cells are able to prime Treg in vivo and mediate protection from disease in a CD8-dependent fashion. These data highlight a novel mechanism for the priming of CD4+ Treg by CD8α+ DC, and suggest a pathway that can be exploited to prime antigen-specific regulation of T cell-mediated inflammatory disease. PMID:20394075

  3. Vitamin D Actions on CD4+ T Cells in Autoimmune Disease

    PubMed Central

    Hayes, Colleen Elizabeth; Hubler, Shane L.; Moore, Jerott R.; Barta, Lauren E.; Praska, Corinne E.; Nashold, Faye E.

    2015-01-01

    This review summarizes and integrates research on vitamin D and CD4+ T-lymphocyte biology to develop new mechanistic insights into the molecular etiology of autoimmune disease. A deep understanding of molecular mechanisms relevant to gene–environment interactions is needed to deliver etiology-based autoimmune disease prevention and treatment strategies. Evidence linking sunlight, vitamin D, and the risk of multiple sclerosis and type 1 diabetes is summarized to develop the thesis that vitamin D is the environmental factor that most strongly influences autoimmune disease development. Evidence for CD4+ T-cell involvement in autoimmune disease pathogenesis and for paracrine calcitriol signaling to CD4+ T lymphocytes is summarized to support the thesis that calcitriol is sunlight’s main protective signal transducer in autoimmune disease risk. Animal modeling and human mechanistic data are summarized to support the view that vitamin D probably influences thymic negative selection, effector Th1 and Th17 pathogenesis and responsiveness to extrinsic cell death signals, FoxP3+CD4+ T-regulatory cell and CD4+ T-regulatory cell type 1 (Tr1) cell functions, and a Th1–Tr1 switch. The proposed Th1–Tr1 switch appears to bridge two stable, self-reinforcing immune states, pro- and anti-inflammatory, each with a characteristic gene regulatory network. The bi-stable switch would enable T cells to integrate signals from pathogens, hormones, cell–cell interactions, and soluble mediators and respond in a biologically appropriate manner. Finally, unanswered questions and potentially informative future research directions are highlighted to speed delivery of etiology-based strategies to reduce autoimmune disease. PMID:25852682

  4. Increased 5-hydroxymethylcytosine in CD4(+) T cells in systemic lupus erythematosus.

    PubMed

    Zhao, Ming; Wang, Jing; Liao, Wei; Li, Duo; Li, Mengying; Wu, Haijing; Zhang, Yiqun; Gershwin, M Eric; Lu, Qianjin

    2016-05-01

    One of the major disappointments in autoimmunity has been the relative lack of informative data when genomewide associations (GWAS) have been applied to patients with systemic lupus erythematosus (SLE). Indeed, there is increasing evidence that SLE is characterized by widespread epigenetic changes. 5-Hydroxymethylcytosine (5-hmC) is a newly discovered modified form of cytosine suspected to be an important epigenetic modification in embryonic development, cell differentiation and cancer. DNA methylation dynamics have already been implicated in the pathogenesis of SLE, while little is known about hydroxymethylation in this process. Here, we show an increased 5-hmC level in genomic DNA in CD4(+) T cells of patients with SLE compared with healthy controls, accompanied by the up-regulated expression of the Ten-eleven translocation TET2 and TET3, which can enzymatically convert 5-methylcytosine (5-mC) to 5-hmC. Moreover, we present the differential patterns of DNA hydroxymethylation in genome-wide promoter regions in SLE CD4(+) T cells compared with healthy controls. We identified 2748 genes with increased 5-hmC levels in promoter regions in SLE CD4(+) T cells, which were enriched in critical pathways, including neurotrophin signaling, WNT signaling, MAPK signaling, calcium signaling and the mTOR signaling pathway. Through a combined analysis of differential DNA hydroxymethylation profile and gene expression profile in SLE CD4(+) T cells, we found 131 genes with the increased 5-hmC in promoter regions and up-regulated expression in SLE CD4(+) T cells compared with healthy controls, including selected immune-related genes, i.e. SOCS1, NR2F6 and IL15RA, which were also confirmed by ChIP-qPCR. Furthermore, we demonstrate that CTCF, as a transcription factor, can mediate DNA hydroxymethylation and contribute to overexpression of SOCS1 in CD4(+) T cells through binding to the promoter region of SOCS1. Taken together, our study reveals a critical differential 5-hmC in the

  5. HIV-1 Antibody Neutralization Breadth Is Associated with Enhanced HIV-Specific CD4+ T Cell Responses

    PubMed Central

    Soghoian, Damien Z.; Lindqvist, Madelene; Ghebremichael, Musie; Donaghey, Faith; Carrington, Mary; Seaman, Michael S.; Kaufmann, Daniel E.; Walker, Bruce D.

    2015-01-01

    ABSTRACT Antigen-specific CD4+ T helper cell responses have long been recognized to be a critical component of effective vaccine immunity. CD4+ T cells are necessary to generate and maintain humoral immune responses by providing help to antigen-specific B cells for the production of antibodies. In HIV infection, CD4+ T cells are thought to be necessary for the induction of Env-specific broadly neutralizing antibodies. However, few studies have investigated the role of HIV-specific CD4+ T cells in association with HIV neutralizing antibody activity in vaccination or natural infection settings. Here, we conducted a comprehensive analysis of HIV-specific CD4+ T cell responses in a cohort of 34 untreated HIV-infected controllers matched for viral load, with and without neutralizing antibody breadth to a panel of viral strains. Our results show that the breadth and magnitude of Gag-specific CD4+ T cell responses were significantly higher in individuals with neutralizing antibodies than in those without neutralizing antibodies. The breadth of Gag-specific CD4+ T cell responses was positively correlated with the breadth of neutralizing antibody activity. Furthermore, the breadth and magnitude of gp41-specific, but not gp120-specific, CD4+ T cell responses were significantly elevated in individuals with neutralizing antibodies. Together, these data suggest that robust Gag-specific CD4+ T cells and, to a lesser extent, gp41-specific CD4+ T cells may provide important intermolecular help to Env-specific B cells that promote the generation or maintenance of Env-specific neutralizing antibodies. IMPORTANCE One of the earliest discoveries related to CD4+ T cell function was their provision of help to B cells in the development of antibody responses. Yet little is known about the role of CD4+ T helper responses in the setting of HIV infection, and no studies to date have evaluated the impact of HIV-specific CD4+ T cells on the generation of antibodies that can neutralize

  6. Getting the Skinny on CD4(+) T Cell Survival in Fatty Livers.

    PubMed

    Walker, Christopher M; Lemon, Stanley M

    2016-04-19

    Non-alcoholic fatty liver disease is associated with hepatocellular carcinoma. In the March 10 issue of Nature, Greten and colleagues report that this metabolic disruption affects tumor surveillance by depleting CD4+ T helper cells through lipotoxic mechanisms associated with NAFLD.

  7. GITR ligand-costimulation activates effector and regulatory functions of CD4{sup +} T cells

    SciTech Connect

    Igarashi, Hanna; Cao, Yujia; Iwai, Hideyuki; Piao, Jinhua; Kamimura, Yosuke; Hashiguchi, Masaaki; Amagasa, Teruo; Azuma, Miyuki

    2008-05-16

    Engagement of glucocorticoid-induced TNFR-related protein (GITR) enables the costimulation of both CD25{sup -}CD4{sup +} effector (Teff) and CD25{sup +}CD4{sup +} regulatory (Treg) cells; however, the effects of GITR-costimulation on Treg function remain controversial. In this study, we examined the effects of GITR ligand (GITRL) binding on the respective functions of CD4{sup +} T cells. GITRL-P815 transfectants efficiently augmented anti-CD3-induced proliferation and cytokine production by Teff cells. Proliferation and IL-10 production in Treg were also enhanced by GITRL transfectants when exogenous IL-2 and stronger CD3 stimulation was provided. Concomitant GITRL-costimulation of Teff and Treg converted the anergic state of Treg into a proliferating state, maintaining and augmenting their function. Thus, GITRL-costimulation augments both effector and regulatory functions of CD4{sup +} T cells. Our results suggest that highly activated and increased ratios of Treg reverse the immune-enhancing effects of GITRL-costimulation in Teff, which may be problematic for therapeutic applications using strong GITR agonists.

  8. Polyfunctional CD4 T cells in the response to bovine tuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyfunctional CD4 T cells simultaneously produce interferon-gamma (IFN-gamma), interleukin-2 (IL-2) and tumor necrosis factor-alpha (TNF-alpha) and play relevant roles in several chronic infections, including human TB and HIV. However, the assessment of this response in bovine infections was not fe...

  9. CD8+ T cell migration to the skin requires CD4+ help in a murine model of contact hypersensitivity.

    PubMed

    Fyhrquist, Nanna; Wolff, Henrik; Lauerma, Antti; Alenius, Harri

    2012-01-01

    The relative roles of CD4+ and CD8+ T cells in contact hypersensitivity responses have not been fully solved, and remain an important question. Using an adoptive transfer model, we investigated the role of the respective T cell subset. Magnetic bead separated CD4+ and CD8+ T cells from oxazolone sensitized C57BL/6 mice were transferred into RAG-/- mice, followed by hapten challenge and analysis of inflammatory parameters at 24 hours post exposure. The CD4+ T cell recipient mice developed partial contact hypersensitivity responses to oxazolone. CD8+ T cells caused significant amplification of the response in recipients of both CD4+ and CD8+ T cells including ear swelling, type 1 inflammatory mediators, and cell killing. Unexpectedly, CD8+ T cells were not sufficient to mediate contact hypersensitivity, although abundantly present in the lymph nodes in the CD8+ T cell reconstituted mice. There were no signs of inflammation at the site of hapten exposure, indicating impaired recruitment of CD8+ T cells in the absence of CD4+ T cells. These data show that CD4+ T cells mediate contact hypersensitivity to oxazolone, but CD8+ T cells contribute with the most potent effector mechanisms. Moreover, our results suggest that CD4+ T cell function is required for the mobilization of CD8+ effector T cells to the site of hapten exposure. The results shed new light on the relative importance of CD4+ and CD8+ T cells during the effector phase of contact hypersensitivity. PMID:22916101

  10. CD4+ T Cell Priming as Biomarker to Study Immune Response to Preventive Vaccines

    PubMed Central

    Ciabattini, Annalisa; Pettini, Elena; Medaglini, Donata

    2013-01-01

    T cell priming is a critical event in the initiation of the immune response to vaccination since it deeply influences both the magnitude and the quality of the immune response induced. CD4+ T cell priming, required for the induction of high-affinity antibodies and immune memory, represents a key target for improving and modulating vaccine immunogenicity. A major challenge in the study of in vivo T cell priming is due to the low frequency of antigen-specific T cells. This review discusses the current knowledge on antigen-specific CD4+ T cell priming in the context of vaccination, as well as the most advanced tools for the characterization of the in vivo T cell priming and the opportunities offered by the application of systems biology. PMID:24363656

  11. Acute Cardiac Rejection Requires Directly Cytotoxic CD4 T cells: A Parallel Pathway between Fas and Perforin1

    PubMed Central

    Grazia, Todd J.; Plenter, Robert J.; Weber, Sarah M.; Lepper, Helen M.; Victorino, Francisco; Zamora, Martin R.; Pietra, Biagio A.; Gill, Ronald G.

    2009-01-01

    Background CD4 T cells can suffice as effector cells to mediate primary acute cardiac allograft rejection. While CD4 T cells can readily kill appropriate target cells in vitro, the corresponding role of such cytolytic activity for mediating allograft rejection in vivo is unknown. Therefore, we determined whether the cytolytic effector molecules perforin and/or FasL (CD95L) were necessary for CD4 T cell-mediated rejection in vivo. Methods Wild type C3H(H-2k) or Fas (CD95)-deficient C3Hlpr (H-2k) hearts were transplanted into immune-deficient C57B6rag−/− (H-2b) mice. Recipients then were reconstituted with naïve purified CD4 T cells from either wild-type, perforin (pfp)-deficient, or FasL (gld)-deficient T cell donors. Results In vitro, alloreactive CD4 T cells were competent to lyse donor MHC class II+ target cells, largely by a Fas-dependent mechanism. In vivo, the individual disruption of either donor Fas expression (lpr) or CD4 T cell-derived perforin had no signifcant impact on acute rejection. However, FasL-deficient (gld) CD4 T cells demonstrated delayed allograft rejection. Importantly, the simultaneous removal of both donor Fas expression and CD4 T cell perforin completely abrograted acute rejection, despite the persistence of CD4 T cells within the graft. Conclusions Results demonstrate that the direct rejection of cardiac allografts by CD4 effector T cells requires the alternative contribution of graft Fas expression and T cell perforin expression. To our knowledge, this is the first demonstration that cytolytic activity by CD4 T cells can play an obligate role for primary acute allograft rejection in vivo. PMID:20061916

  12. Adenoviral transduction of naive CD4 T cells to study Treg differentiation.

    PubMed

    Warth, Sebastian C; Heissmeyer, Vigo

    2013-08-13

    Regulatory T cells (Tregs) are essential to provide immune tolerance to self as well as to certain foreign antigens. Tregs can be generated from naive CD4 T cells in vitro with TCR- and co-stimulation in the presence of TGFβ and IL-2. This bears enormous potential for future therapies, however, the molecules and signaling pathways that control differentiation are largely unknown. Primary T cells can be manipulated through ectopic gene expression, but common methods fail to target the most important naive state of the T cell prior to primary antigen recognition. Here, we provide a protocol to express ectopic genes in naive CD4 T cells in vitro before inducing Treg differentiation. It applies transduction with the replication-deficient adenovirus and explains its generation and production. The adenovirus can take up large inserts (up to 7 kb) and can be equipped with promoters to achieve high and transient overexpression in T cells. It effectively transduces naive mouse T cells if they express a transgenic Coxsackie adenovirus receptor (CAR). Importantly, after infection the T cells remain naive (CD44(low), CD62L(high)) and resting (CD25(-), CD69(-)) and can be activated and differentiated into Tregs similar to non-infected cells. Thus, this method enables manipulation of CD4 T cell differentiation from its very beginning. It ensures that ectopic gene expression is already in place when early signaling events of the initial TCR stimulation induces cellular changes that eventually lead into Treg differentiation.

  13. A novel SIV gag-specific CD4(+)T-cell clone suppresses SIVmac239 replication in CD4(+)T cells revealing the interplay between antiviral effector cells and their infected targets.

    PubMed

    Ayala, Victor I; Trivett, Matthew T; Coren, Lori V; Jain, Sumiti; Bohn, Patrick S; Wiseman, Roger W; O'Connor, David H; Ohlen, Claes; Ott, David E

    2016-06-01

    To study CD4(+)T-cell suppression of AIDS virus replication, we isolated nine rhesus macaque SIVGag-specific CD4(+)T-cell clones. One responding clone, Gag68, produced a typical cytotoxic CD8(+)T-cell response: induction of intracellular IFN-γ, MIP-1α, MIP-1β, and CD107a degranulation. Gag68 effectively suppressed the spread of SIVmac239 in CD4(+)T cells with a corresponding reduction of infected Gag68 effector cells, suggesting that CD4(+)effectors need to suppress their own infection in addition to their targets to be effective. Gag68 TCR cloning and gene transfer into CD4(+)T cells enabled additional experiments with this unique specificity after the original clone senesced. Our data supports the idea that CD4(+)T cells can directly limit AIDS virus spread in T cells. Furthermore, Gag68 TCR transfer into CD4(+)T-cell clones with differing properties holds promise to better understand the suppressive effector mechanisms used by this important component of the antiviral response using the rhesus macaque model.

  14. Duel of the fates: the role of transcriptional circuits and noise in CD4+ cells.

    PubMed

    Hebenstreit, Daniel; Deonarine, Andrew; Babu, M Madan; Teichmann, Sarah A

    2012-06-01

    CD4+ T cells play key roles in orchestrating adaptive immune responses, and are a popular model for mammalian cell differentiation. While immune regulation would seem to require exactly adjusted mRNA and protein expression levels of key factors, there is little evidence that this is strictly the case. Stochastic gene expression and plasticity of cell types contrast the apparent need for precision. Recent work has provided insight into the magnitude of molecular noise, as well as the relationship between noise, transcriptional circuits and epigenetic modifications in a variety of cell types. These processes and their interplay will also govern gene expression patterns in the different CD4+ cell types, and the determination of their cellular fates. PMID:22498241

  15. A chimeric measles virus with a lentiviral envelope replicates exclusively in CD4+/CCR5+ cells

    SciTech Connect

    Mourez, Thomas; Mesel-Lemoine, Mariana; Combredet, Chantal; Najburg, Valerie; Cayet, Nadege; Tangy, Frederic

    2011-10-25

    We generated a replicating chimeric measles virus in which the hemagglutinin and fusion surface glycoproteins were replaced with the gp160 envelope glycoprotein of simian immunodeficiency virus (SIVmac239). Based on a previously cloned live-attenuated Schwarz vaccine strain of measles virus (MV), this chimera was rescued at high titers using reverse genetics in CD4+ target cells. Cytopathic effect consisted in the presence of large cell aggregates evolving to form syncytia, as observed during SIV infection. The morphology of the chimeric virus was identical to that of the parent MV particles. The presence of SIV gp160 as the only envelope protein on chimeric particles surface altered the cell tropism of the new virus from CD46+ to CD4+ cells. Used as an HIV candidate vaccine, this MV/SIVenv chimeric virus would mimic transient HIV-like infection, benefiting both from HIV-like tropism and the capacity of MV to replicate in dendritic cells, macrophages and lymphocytes.

  16. Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease.

    PubMed

    DuPage, Michel; Bluestone, Jeffrey A

    2016-03-01

    CD4(+) T cells differentiate and acquire distinct functions to combat specific pathogens but can also adapt their functions in response to changing circumstances. Although this phenotypic plasticity can be potentially deleterious, driving immune pathology, it also provides important benefits that have led to its evolutionary preservation. Here, we review CD4(+) T cell plasticity by examining the molecular mechanisms that regulate it - from the extracellular cues that initiate and drive cells towards varying phenotypes, to the cytosolic signalling cascades that decipher these cues and transmit them into the cell and to the nucleus, where these signals imprint specific gene expression programmes. By understanding how this functional flexibility is achieved, we may open doors to new therapeutic approaches that harness this property of T cells. PMID:26875830

  17. 5-Hydroxymethylcytosine Remodeling Precedes Lineage Specification during Differentiation of Human CD4(+) T Cells.

    PubMed

    Nestor, Colm E; Lentini, Antonio; Hägg Nilsson, Cathrine; Gawel, Danuta R; Gustafsson, Mika; Mattson, Lina; Wang, Hui; Rundquist, Olof; Meehan, Richard R; Klocke, Bernward; Seifert, Martin; Hauck, Stefanie M; Laumen, Helmut; Zhang, Huan; Benson, Mikael

    2016-07-12

    5-methylcytosine (5mC) is converted to 5-hydroxymethylcytosine (5hmC) by the TET family of enzymes as part of a recently discovered active DNA de-methylation pathway. 5hmC plays important roles in regulation of gene expression and differentiation and has been implicated in T cell malignancies and autoimmunity. Here, we report early and widespread 5mC/5hmC remodeling during human CD4(+) T cell differentiation ex vivo at genes and cell-specific enhancers with known T cell function. We observe similar DNA de-methylation in CD4(+) memory T cells in vivo, indicating that early remodeling events persist long term in differentiated cells. Underscoring their important function, 5hmC loci were highly enriched for genetic variants associated with T cell diseases and T-cell-specific chromosomal interactions. Extensive functional validation of 22 risk variants revealed potentially pathogenic mechanisms in diabetes and multiple sclerosis. Our results support 5hmC-mediated DNA de-methylation as a key component of CD4(+) T cell biology in humans, with important implications for gene regulation and lineage commitment.

  18. 5-Hydroxymethylcytosine Remodeling Precedes Lineage Specification during Differentiation of Human CD4(+) T Cells.

    PubMed

    Nestor, Colm E; Lentini, Antonio; Hägg Nilsson, Cathrine; Gawel, Danuta R; Gustafsson, Mika; Mattson, Lina; Wang, Hui; Rundquist, Olof; Meehan, Richard R; Klocke, Bernward; Seifert, Martin; Hauck, Stefanie M; Laumen, Helmut; Zhang, Huan; Benson, Mikael

    2016-07-12

    5-methylcytosine (5mC) is converted to 5-hydroxymethylcytosine (5hmC) by the TET family of enzymes as part of a recently discovered active DNA de-methylation pathway. 5hmC plays important roles in regulation of gene expression and differentiation and has been implicated in T cell malignancies and autoimmunity. Here, we report early and widespread 5mC/5hmC remodeling during human CD4(+) T cell differentiation ex vivo at genes and cell-specific enhancers with known T cell function. We observe similar DNA de-methylation in CD4(+) memory T cells in vivo, indicating that early remodeling events persist long term in differentiated cells. Underscoring their important function, 5hmC loci were highly enriched for genetic variants associated with T cell diseases and T-cell-specific chromosomal interactions. Extensive functional validation of 22 risk variants revealed potentially pathogenic mechanisms in diabetes and multiple sclerosis. Our results support 5hmC-mediated DNA de-methylation as a key component of CD4(+) T cell biology in humans, with important implications for gene regulation and lineage commitment. PMID:27346350

  19. Down-regulating cyclin-dependent kinase 9 of alloreactive CD4+ T cells prolongs allograft survival

    PubMed Central

    Zhan, Yang; Han, Yeming; Sun, Hukui; Liang, Ting; Zhang, Chao; Song, Jing; Hou, Guihua

    2016-01-01

    CDK9 (Cyclin-dependent kinase 9)/Cyclin T1/RNA polymerase II pathway has been demonstrated to promote the development of several inflammatory diseases, such as arthritis or atherosclerosis, however, its roles in allotransplantation rejection have not been addressed. Here, we found that CDK9/Cyclin T1 were apparently up-regulated in the allogeneic group, which was positively correlated with allograft damage. CDK9 was inhibited obviously in naive splenic CD4+ T cells treated 6 h with 3 μM PHA767491 (a CDK9 inhibitor), and adoptive transfer of these CD4+ T cells into allografted SCID mice resulted in prolonged survival compared with the group without PHA767491 pretreated. Decelerated rejection was correlated with enhanced IL-4 and IL-10 production and with decreased IFN-γ production by alloreactive T cells. More interestingly, we found that CDK942, not CDK955, was high expressed in allorejection group, which could be prominently dampened with PHA767491 treatment. The expression of CDK942 was consistent with its downstream molecule RNA polymerase II. Altogether, our findings revealed the crucial role of CDK9/Cyclin T1/Pol II pathway in promoting allorejection at multiple levels and may provide a new approach for transplantation tolerance induction through targeting CDK9. PMID:27102157

  20. Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells.

    PubMed

    Hoffmann, Petra; Eder, Ruediger; Kunz-Schughart, Leoni A; Andreesen, Reinhard; Edinger, Matthias

    2004-08-01

    CD4(+)CD25+ regulatory T (Treg) cells are pivotal for the maintenance of self-tolerance, and their adoptive transfer gives protection from autoimmune diseases and pathogenic alloresponses after solid organ or bone marrow transplantation in murine model systems. In vitro, human CD4(+)CD25+ Treg cells display phenotypic and functional characteristics similar to those of murine CD4(+)CD25+ Treg cells: namely, hyporesponsiveness to T-cell receptor (TCR) stimulation and suppression of CD25- T cells. Thus far, the detailed characterization and potential clinical application of human CD4(+)CD25+ Treg cells have been hampered by their paucity in peripheral blood and the lack of appropriate expansion protocols. Here we describe the up to 40 000-fold expansion of highly purified human CD4(+)CD25high T cells in vitro through the use of artificial antigen-presenting cells for repeated stimulation via CD3 and CD28 in the presence of high-dose interleukin 2 (IL-2). Expanded CD4(+)CD25high T cells were polyclonal, maintained their phenotype, exceeded the suppressive activity of freshly isolated CD4(+)CD25high T cells, and maintained expression of the lymph node homing receptors L-selectin (CD62L) and CCR7. The ability to rapidly expand human CD4(+)CD25high Treg cells on a large scale will not only facilitate their further exploration but also accelerate their potential clinical application in T cell-mediated diseases and transplantation medicine. PMID:15090447

  1. Azithromycin suppresses CD4+ T-cell activation by direct modulation of mTOR activity

    PubMed Central

    Ratzinger, F.; Haslacher, H.; Poeppl, W.; Hoermann, G.; Kovarik, J. J.; Jutz, S.; Steinberger, P.; Burgmann, H.; Pickl, W. F.; Schmetterer, K. G.

    2014-01-01

    Advanced macrolides, such as azithromycin (AZM) or clarithromycin (CLM), are antibiotics with immunomodulatory properties. Here we have sought to evaluate their in vitro influence on the activation of CD4+ T-cells. Isolated CD4+ T-cells were stimulated with agonistic anti-CD3/anti-CD28 monoclonal antibodies in the presence of 0.6 mg/L, 2.5 mg/L, 10 mg/L or 40 mg/L AZM or CLM. Cell proliferation, cytokine level in supernatants and cell viability was assessed. Intracellular signaling pathways were evaluated using reporter cell lines, FACS analysis, immunoblotting and in vitro kinase assays. AZM inhibited cell proliferation rate and cytokine secretion of CD4+ T-cells in a dose-dependent manner. Similarly, high concentrations of CLM (40 mg/L) also suppressed these T-cell functions. Analysis of molecular signaling pathways revealed that exposure to AZM reduced the phosphorylation of the S6 ribosomal protein, a downstream target of mTOR. This effect was also observed at 40 mg/L CLM. In vitro kinase studies using recombinant mTOR showed that AZM inhibited mTOR activity. In contrast to rapamycin, this inhibition was independent of FKBP12. We show for the first time that AZM and to a lesser extent CLM act as immunosuppressive agents on CD4+ T-cells by inhibiting mTOR activity. Our results might have implications for the clinical use of macrolides. PMID:25500904

  2. Identification of Mycobacterium tuberculosis vaccine candidates using human CD4+ T-cells expression cloning

    PubMed Central

    Coler, Rhea N.; Dillon, Davin C.; Skeiky, Yasir A. W.; Kahn, Maria; Orme, Ian M.; Lobet, Yves; Reed, Steven G.; Alderson, Mark R.

    2009-01-01

    To identify Mycobacterium tuberculosis (Mtb) antigens as candidates for a subunit vaccine against tuberculosis (TB), we have employed a CD4+ T-cell expression screening method. Mtb-specific CD4+ T-cell lines from nine healthy PPD positive donors were stimulated with different antigenic substrates including autologous dendritic cells (DC) infected with Mtb, culture filtrate proteins (CFP), and purified protein derivative of Mtb (PPD). These lines were used to screen a genomic Mtb library expressed in Escherichia coli and processed and presented by autologous DC. This screening led to the recovery of numerous T-cell antigens, including both novel and previously described antigens. One of these novel antigens, referred to as Mtb9.8 (Rv0287), was recognized by multiple T-cell lines, stimulated with either Mtb-infected DC or CFP. Using the mouse and guinea pig models of TB, high levels of IFN-γ were produced, and solid protection from Mtb challenge was observed following immunization with Mtb9.8 formulated in either AS02A or AS01B Adjuvant Systems. These results demonstrate that T-cell screening of the Mtb genome can be used to identify CD4+ T-cell antigens that are candidates for vaccine development. PMID:19000730

  3. Identification of novel Mycobacterium tuberculosis CD4 T-cell antigens via high throughput proteome screening

    PubMed Central

    Nayak, Kaustuv; Jing, Lichen; Russell, Ronnie M.; Davies, D. Huw; Hermanson, Gary; Molina, Douglas M.; Liang, Xiaowu; Sherman, David R.; Kwok, William W.; Yang, Junbao; Kenneth, John; Ahamed, Syed F.; Chandele, Anmol; Kaja, Murali-Krishna; Koelle, David M.

    2015-01-01

    Elicitation of CD4 IFN-gamma T cell responses to Mycobacterium tuberculosis (MTB) is a rational vaccine strategy to prevent clinical tuberculosis. Diagnosis of MTB infection is based on T-cell immune memory to MTB antigens. The MTB proteome contains over four thousand open reading frames (ORFs). We conducted a pilot antigen identification study using 164 MTB proteins and MTB-specific T-cells expanded in vitro from 12 persons with latent MTB infection. Enrichment of MTB-reactive T-cells from PBMC used cell sorting or an alternate system compatible with limited resources. MTB proteins were used as single antigens or combinatorial matrices in proliferation and cytokine secretion readouts. Overall, our study found that 44 MTB proteins were antigenic, including 27 not previously characterized as CD4 T-cell antigens. Antigen truncation, peptide, NTM homology, and HLA class II tetramer studies confirmed malate synthase G (encoded by gene Rv1837) as a CD4 T-cell antigen. This simple, scalable system has potential utility for the identification of candidate MTB vaccine and biomarker antigens. PMID:25857935

  4. KI and WU polyomaviruses and CD4+ cell counts in HIV-1-infected patients, Italy.

    PubMed

    Babakir-Mina, Muhammed; Ciccozzi, Massimo; Farchi, Francesca; Bergallo, Massimiliano; Cavallo, Rossana; Adorno, Gaspare; Perno, Carlo Federico; Ciotti, Marco

    2010-09-01

    To investigate an association between KI and WU polyomavirus (KIPyV and WUPyV) infections and CD4+ cell counts, we tested HIV-1-positive patients and blood donors. No association was found between cell counts and virus infections in HIV-1-positive patients. Frequency of KIPyV infection was similar for both groups. WUPyV was more frequent in HIV-1-positive patients.

  5. CD4+ T Cell Help Selectively Enhances High-Avidity Tumor Antigen-Specific CD8+ T Cells.

    PubMed

    Zhu, Ziqiang; Cuss, Steven M; Singh, Vinod; Gurusamy, Devikala; Shoe, Jennifer L; Leighty, Robert; Bronte, Vincenzo; Hurwitz, Arthur A

    2015-10-01

    Maintaining antitumor immunity remains a persistent impediment to cancer immunotherapy. We and others have previously reported that high-avidity CD8(+) T cells are more susceptible to tolerance induction in the tumor microenvironment. In the present study, we used a novel model where T cells derived from two independent TCR transgenic mouse lines recognize the same melanoma antigenic epitope but differ in their avidity. We tested whether providing CD4(+) T cell help would improve T cell responsiveness as a function of effector T cell avidity. Interestingly, delivery of CD4(+) T cell help during in vitro priming of CD8(+) T cells improved cytokine secretion and lytic capacity of high-avidity T cells, but not low-avidity T cells. Consistent with this observation, copriming with CD4(+) T cells improved antitumor immunity mediated by higher avidity, melanoma-specific CD8(+) T cells, but not T cells with similar specificity but lower avidity. Enhanced tumor immunity was associated with improved CD8(+) T cell expansion and reduced tolerization, and it was dependent on presentation of both CD4(+) and CD8(+) T cell epitopes by the same dendritic cell population. Our findings demonstrate that CD4(+) T cell help preferentially augments high-avidity CD8(+) T cells and provide important insight for understanding the requirements to elicit and maintain durable tumor immunity.

  6. CD4+ T cells are important mediators of oxidative stress that cause hypertension in response to placental ischemia.

    PubMed

    Wallace, Kedra; Cornelius, Denise C; Scott, Jeremy; Heath, Judith; Moseley, Janae; Chatman, Krystal; LaMarca, Babbette

    2014-11-01

    Preeclampsia is associated with oxidative stress, which is suspected to play a role in hypertension, placental ischemia, and fetal demise associated with the disease. Various cellular sources of oxidative stress, such as neutrophils, monocytes, and CD4(+) T cells have been suggested as culprits in the pathophysiology of preeclampsia. The objective of this study was to examine a role of circulating and placental CD4(+) T cells in oxidative stress in response to placental ischemia during pregnancy. CD4(+) T cells and oxidative stress were measured in preeclamptic and normal pregnant women, placental ischemic and normal pregnant rats, and normal pregnant recipient rats of placental ischemic CD4(+) T cells. Women with preeclampsia had significantly increased circulating (P=0.02) and placental CD4(+) T cells (P=0.0001); lymphocyte secretion of myeloperoxidase (P=0.004); and placental reactive oxygen species (P=0.0004) when compared with normal pregnant women. CD4(+) T cells from placental ischemic rats cause many facets of preeclampsia when injected into normal pregnant recipient rats on gestational day 13. On gestational day 19, blood pressure increased in normal pregnant recipients of placental ischemic CD4(+) T cells (P=0.002) compared with that in normal pregnant rats. Similar to preeclamptic patients, CD4(+) T cells from placental ischemic rats secreted significantly more myeloperoxidase (P=0.003) and induced oxidative stress in cultured vascular cells (P=0.003) than normal pregnant rat CD4(+)Tcells. Apocynin, a nicotinamide adenine dinucleotide phosphate inhibitor, attenuated hypertension and all oxidative stress markers in placental ischemic and normal pregnant recipient rats of placental ischemic CD4(+)Tcells (P=0.05). These data demonstrate an important role for CD4(+) T cells in mediating another factor, oxidative stress, to cause hypertension during preeclampsia.

  7. CD4+T cells are important mediators of oxidative stress that cause hypertension in response to placental ischemia

    PubMed Central

    Wallace, Kedra; Cornelius, Denise C.; Scott, Jeremy; Heath, Judith; Moseley, Janae; Chatman, Krystal; LaMarca, Babbette

    2014-01-01

    Preeclampsia is associated with oxidative stress which is suspected to play a role in hypertension, placental ischemia and fetal demise associated with the disease. Various cellular sources of oxidative stress such as neutrophils, monocytes and CD4+T cells have been suggested as culprits in the pathophysiology of preeclampsia. The objective of this study was to examine a role for circulating and placental CD4+T cells in oxidative stress in response to placental ischemia during pregnancy. CD4+T cells and oxidative stress was measured in preeclamptic and normal pregnant women, placental ischemic and normal pregnant rats and normal pregnant recipient rats of placental ischemic CD4+ T cells. Preeclamptic women had significantly increased circulating (p=0.02) and placental CD4+T cells (p=0.0001); lymphocyte secretion of myeloperoxidase (p=0.004); and placental reactive oxygen species (p=0.0004) compared to normal pregnant women. CD4+T cells from placental ischemic rats cause many facets of preeclampsia when injected into normal pregnant recipient rats on gestational day 13. On gestational day 19 blood pressure increased in normal pregnant recipients of placental ischemic CD4+T cells (p=0.002) compared to normal pregnant rats. Similar to preeclamptic patients, CD4+ T cells from placental ischemic rats secreted significantly more myeloperoxidase (p=0.003) and induced oxidative stress in cultured vascular cells (p=0.003) than normal pregnant rat CD4+Tcells. Apocynin, an NADPH inhibitor, attenuated hypertension, and all oxidative stress markers in placental ischemic and normal pregnant recipient rats of placental ischemic CD4+Tcells (p=0.05). These data demonstrate an important role for CD4+T cells in mediating another factor, oxidative stress, to cause hypertension during preeclampsia. PMID:25259742

  8. Conditions for the generation of cytotoxic CD4+ Th cells that enhance CD8+ CTL-mediated tumor regression

    PubMed Central

    Li, Kunyu; Baird, Margaret; Yang, Jianping; Jackson, Chris; Ronchese, Franca; Young, Sarah

    2016-01-01

    Adoptive cell therapies (ACTs) using tumor-reactive T cells have shown clinical benefit and potential for cancer treatment. While the majority of the current ACT are focused on using CD8+ cytotoxic T lymphocytes (CTL), others have shown that the presence of tumor-reactive CD4+ T helper (Th) cells can greatly enhance the anti-tumor activity of CD8+ CTL. However, difficulties in obtaining adequate numbers of CD4+ Th cells through in vitro expansion can limit the application of CD4 Th cells in ACT. This study aims to optimize the culture conditions for mouse CD4 T cells to provide basic information for animal studies of ACT using CD4 T cells. Taking advantage of the antigen-specificity of CD4+ Th cells from OT-II transgenic mice, we examined different methodologies for generating antigen-specific CD4+ Th1 cells in vitro. We found that cells grown in complete advanced-DMEM/F12 medium supplemented with low-dose IL-2 and IL-7 induced substantial cell expansion. These Th cells were Th1-like, as they expressed multiple Th1-cytokines and exhibited antigen-specific cytotoxicity. In addition co-transfer of these CD4+ Th1-like cells with CD8+ CTL significantly enhanced tumor regression, leading to complete cure in 80% of mice bearing established B16-OVA. These observations indicate that the CD4+ Th1-like cells generated using the method we optimized are functionally active to eliminate their target cells, and can also assist CD8+ CTL to enhance tumor regression. The findings of this study provide valuable data for further research into in vitro expansion of CD4+ Th1-like cells, with potential applications to cancer treatment involving ACT. PMID:27588200

  9. Conditions for the generation of cytotoxic CD4(+) Th cells that enhance CD8(+) CTL-mediated tumor regression.

    PubMed

    Li, Kunyu; Baird, Margaret; Yang, Jianping; Jackson, Chris; Ronchese, Franca; Young, Sarah

    2016-08-01

    Adoptive cell therapies (ACTs) using tumor-reactive T cells have shown clinical benefit and potential for cancer treatment. While the majority of the current ACT are focused on using CD8(+) cytotoxic T lymphocytes (CTL), others have shown that the presence of tumor-reactive CD4(+) T helper (Th) cells can greatly enhance the anti-tumor activity of CD8(+) CTL. However, difficulties in obtaining adequate numbers of CD4(+) Th cells through in vitro expansion can limit the application of CD4 Th cells in ACT. This study aims to optimize the culture conditions for mouse CD4 T cells to provide basic information for animal studies of ACT using CD4 T cells. Taking advantage of the antigen-specificity of CD4(+) Th cells from OT-II transgenic mice, we examined different methodologies for generating antigen-specific CD4(+) Th1 cells in vitro. We found that cells grown in complete advanced-DMEM/F12 medium supplemented with low-dose IL-2 and IL-7 induced substantial cell expansion. These Th cells were Th1-like, as they expressed multiple Th1-cytokines and exhibited antigen-specific cytotoxicity. In addition co-transfer of these CD4(+) Th1-like cells with CD8(+) CTL significantly enhanced tumor regression, leading to complete cure in 80% of mice bearing established B16-OVA. These observations indicate that the CD4(+) Th1-like cells generated using the method we optimized are functionally active to eliminate their target cells, and can also assist CD8(+) CTL to enhance tumor regression. The findings of this study provide valuable data for further research into in vitro expansion of CD4(+) Th1-like cells, with potential applications to cancer treatment involving ACT. PMID:27588200

  10. Human CD4 T cell epitopes selective for Vaccinia versus Variola virus.

    PubMed

    Probst, Alicia; Besse, Aurore; Favry, Emmanuel; Imbert, Gilles; Tanchou, Valérie; Castelli, Florence Anne; Maillere, Bernard

    2013-04-01

    Due to the high degree of sequence identity between Orthopoxvirus species, the specific B and T cell responses raised against these viruses are largely cross-reactive and poorly selective. We therefore searched for CD4 T cell epitopes present in the conserved parts of the Vaccinia genome (VACV) but absent from Variola viruses (VARV), with a view to identifying immunogenic sequences selective for VACV. We identified three long peptide fragments from the B7R, B10R and E7R proteins by in silico comparisons of the poxvirus genomes, and evaluated the recognition of these fragments by VACV-specific T cell lines derived from healthy donors. For the 12 CD4 T cell epitopes identified, we assessed their binding to common HLA-DR allotypes and their capacity to induce peptide-specific CD4 T-cell lines. Four peptides from B7R and B10R displayed a broad binding specificity for HLA-DR molecules and induced multiple T cell lines from healthy donors. Besides their absence from VARV, the two B10R peptide sequences were mutated in the Cowpox virus and completely absent from the Monkeypox genome. This work contributes to the development of differential diagnosis of poxvirus infections.

  11. CD4(+) T cells epigenetically modified by oxidative stress cause lupus-like autoimmunity in mice.

    PubMed

    Strickland, Faith M; Li, YePeng; Johnson, Kent; Sun, Zhichao; Richardson, Bruce C

    2015-08-01

    Lupus develops when genetically predisposed people encounter environmental agents such as UV light, silica, infections and cigarette smoke that cause oxidative stress, but how oxidative damage modifies the immune system to cause lupus flares is unknown. We previously showed that oxidizing agents decreased ERK pathway signaling in human T cells, decreased DNA methyltransferase 1 and caused demethylation and overexpression of genes similar to those from patients with active lupus. The current study tested whether oxidant-treated T cells can induce lupus in mice. We adoptively transferred CD4(+) T cells treated in vitro with oxidants hydrogen peroxide or nitric oxide or the demethylating agent 5-azacytidine into syngeneic mice and studied the development and severity of lupus in the recipients. Disease severity was assessed by measuring anti-dsDNA antibodies, proteinuria, hematuria and by histopathology of kidney tissues. The effect of the oxidants on expression of CD40L, CD70, KirL1 and DNMT1 genes and CD40L protein in the treated CD4(+) T cells was assessed by Q-RT-PCR and flow cytometry. H2O2 and ONOO(-) decreased Dnmt1 expression in CD4(+) T cells and caused the upregulation of genes known to be suppressed by DNA methylation in patients with lupus and animal models of SLE. Adoptive transfer of oxidant-treated CD4(+) T cells into syngeneic recipients resulted in the induction of anti-dsDNA antibody and glomerulonephritis. The results show that oxidative stress may contribute to lupus disease by inhibiting ERK pathway signaling in T cells leading to DNA demethylation, upregulation of immune genes and autoreactivity.

  12. Rheumatoid arthritis-associated RBPJ polymorphism alters memory CD4+ T cells.

    PubMed

    Orent, William; Mchenry, Allison R; Rao, Deepak A; White, Charles; Klein, Hans-Ulrich; Bassil, Ribal; Srivastava, Gyan; Replogle, Joseph M; Raj, Towfique; Frangieh, Michael; Cimpean, Maria; Cuerdon, Nicole; Chibnik, Lori; Khoury, Samia J; Karlson, Elizabeth W; Brenner, Michael B; De Jager, Philip; Bradshaw, Elizabeth M; Elyaman, Wassim

    2016-01-15

    Notch signaling has recently emerged as an important regulator of immune responses in autoimmune diseases. The recombination signal-binding protein for immunoglobulin kappa J region (RBPJ) is a transcriptional repressor, but converts into a transcriptional activator upon activation of the canonical Notch pathway. Genome-wide association studies of rheumatoid arthritis (RA) identified a susceptibility locus, rs874040(CC), which implicated the RBPJ gene. Here, chromatin state mapping generated using the chromHMM algorithm reveals strong enhancer regions containing DNase I hypersensitive sites overlapping the rs874040 linkage disequilibrium block in human memory, but not in naïve CD4(+) T cells. The rs874040 overlapping this chromatin state was associated with increased RBPJ expression in stimulated memory CD4(+) T cells from healthy subjects homozygous for the risk allele (CC) compared with memory CD4(+) T cells bearing the protective allele (GG). Transcriptomic analysis of rs874040(CC) memory T cells showed a repression of canonical Notch target genes IL (interleukin)-9, IL-17 and interferon (IFN)γ in the basal state. Interestingly, activation of the Notch pathway using soluble Notch ligand, Jagged2-Fc, induced IL-9 and IL-17A while delta-like 4Fc, another Notch ligand, induced higher IFNγ expression in the rs874040(CC) memory CD4(+) T cells compared with their rs874040(GG) counterparts. In RA, RBPJ expression is elevated in memory T cells from RA patients compared with control subjects, and this was associated with induced inflammatory cytokines IL-9, IL-17A and IFNγ in response to Notch ligation in vitro. These findings demonstrate that the rs874040(CC) allele skews memory T cells toward a pro-inflammatory phenotype involving Notch signaling, thus increasing the susceptibility to develop RA. PMID:26604133

  13. Memory CD4+ T cells are required for optimal NK cell effector functions against the opportunistic fungal pathogen Pneumocystis murina.

    PubMed

    Kelly, Michelle N; Zheng, Mingquan; Ruan, Sanbao; Kolls, Jay; D'Souza, Alain; Shellito, Judd E

    2013-01-01

    Little is known about the role of NK cells or their interplay with other immune cells during opportunistic infections. Using our murine model of Pneumocystis pneumonia, we found that loss of NK cells during immunosuppression results in substantial Pneumocystis lung burden. During early infection of C57B/6 CD4(+) T cell-depleted mice, there were significantly fewer NK cells in the lung tissue compared with CD4(+) T cell-intact animals, and the NK cells present demonstrated decreased upregulation of the activation marker NKp46 and production of the effector cytokine, IFN-γ. Furthermore, coincubation studies revealed a significant increase in fungal killing when NK cells were combined with CD4(+) T cells compared with either cell alone, which was coincident with a significant increase in perforin production by NK cells. Finally, however, we found through adoptive transfer that memory CD4(+) T cells are required for significant NK cell upregulation of the activation marker NK group 2D and production of IFN-γ, granzyme B, and perforin during Pneumocystis infection. To the best of our knowledge, this study is the first to demonstrate a role for NK cells in immunity to Pneumocystis pneumonia, as well as to establish a functional relationship between CD4(+) T cells and NK cells in the host response to an opportunistic fungal pathogen.

  14. The Role of CD4 and CD8 T Cells in Human Cutaneous Leishmaniasis.

    PubMed

    da Silva Santos, Claire; Brodskyn, Cláudia Ida

    2014-01-01

    Leishmaniasis, caused by infection with parasites of the Leishmania genus, affects millions of individuals worldwide. This disease displays distinct clinical manifestations ranging from self-healing skin lesions to severe tissue damage. The control of Leishmania infection is dependent on cellular immune mechanisms, and evidence has shown that CD4 and CD8 T lymphocytes play different roles in the outcome of leishmaniasis. Although the presence of CD4 T cells is important for controlling parasite growth, the results in the literature suggest that the inflammatory response elicited by these cells could contribute to the pathogenesis of lesions. However, recent studies on CD8 T lymphocytes show that these cells are mainly involved in tissue damage through cytotoxic mechanisms. In this review, we focus on the recent advances in the study of the human adaptive immunological response in the pathogenesis of tegumentary leishmaniasis.

  15. Inflammation-induced effector CD4+ T cell interstitial migration is alpha-v integrin dependent

    PubMed Central

    Overstreet, Michael G.; Gaylo, Alison; Angermann, Bastian; Hughson, Angela; Hyun, Young-min; Lambert, Kris; Acharya, Mridu; Billroth-Maclurg, Alison C.; Rosenberg, Alexander F.; Topham, David J.; Yagita, Hideo; Kim, Minsoo; Lacy-Hulbert, Adam; Meier-Schellersheim, Martin; Fowell, Deborah J.

    2014-01-01

    Leukocytes must traverse inflamed tissues to effectively control local infection. Although motility in dense tissues appears to be integrin-independent actin-myosin based, during inflammation changes to the extracellular matrix (ECM) may necessitate distinct motility requirements. Indeed, we found that T cell interstitial motility was critically dependent on RGD-binding integrins in the inflamed dermis. Inflammation-induced deposition of fibronectin was functionally linked to increased αv integrin expression on effector CD4+ T cells. Using intravital multi-photon imaging, we found that CD4+ T cell motility was dependent on αv expression. Selective αv blockade or knockdown arrested TH1 motility in the inflamed tissue and attenuated local effector function. These data show a context-dependent specificity of lymphocyte movement in inflamed tissues that is essential for protective immunity. PMID:23933892

  16. Maraviroc intensification in patients with suppressed HIV viremia has limited effects on CD4+ T cell recovery and gene expression

    PubMed Central

    Beliakova-Bethell, Nadejda; Jain, Sonia; Woelk, Christopher H.; Witt, Mallory D.; Sun, Xiaoying; Lada, Steven M.; Spina, Celsa A.; Goicoechea, Miguel; Rought, Steffney E.; Haubrich, Richard; Dubé, Michael P.

    2014-01-01

    Addition of the CCR5 inhibitor Maraviroc (MVC) to ongoing antiretroviral therapy increases CD4+ T cell counts in some virologically suppressed patients with suboptimal CD4+ T cell recovery. To understand the mechanisms by which MVC elicits increases in CD4+ T cell counts, the present study was undertaken to identify host factors (i.e. genes) that are modulated and are correlated with CD4+ T cell recovery during the 24 weeks of MVC intensification in 32 subjects. Median changes of CD4+ T cell counts over 24 weeks of MVC compared to baseline were 38 cells/mm3 (p < 0.001). The median slope of CD4+ T cell recovery was 39 cells/mm3 per year before initiation of MVC and 76 cells/mm3 per year during MVC intensification, however, this increase was not statistically significant (p = 0.33). Microarray analysis (N = 31,426 genes) identified a single differentially expressed gene, tumor necrosis factor alpha (TNF), which was modestly (1.44-fold, p < 0.001) downregulated by MVC at week 24 compared to baseline. TNF differential expression was evaluated using an independent method of droplet digital PCR, but the difference was not significant (p = 0.6). Changes in gene expression did not correlate with CD4+ T cell recovery or any changes in the CD4+ T cell maturation, proliferation and activation phenotypes. In summary, our data suggest that modest improvements of CD4+ T cell counts during MVC intensification cannot be explained by changes in gene expression elicited by MVC. However, the modest changes in T cell composition, including reduction of the percentages of Tregs, proliferating CD4+ T cells and senescent CD8+ T cells, suggest immunologically favorable effects of MVC. PMID:24769244

  17. TGF‐β induces the differentiation of human CXCL13‐producing CD4+ T cells

    PubMed Central

    Kobayashi, Shio; Watanabe, Takeshi; Suzuki, Ryo; Furu, Moritoshi; Ito, Hiromu; Ito, Juichi; Matsuda, Shuichi

    2015-01-01

    In the ectopic lymphoid‐like structures present in chronic inflammatory conditions such as rheumatoid arthritis, a subset of human effector memory CD4+ T cells that lacks features of follicular helper T (Tfh) cells produces CXCL13. Here, we report that TGF‐β induces the differentiation of human CXCL13‐producing CD4+ T cells from naïve CD4+ T cells. The TGF‐β‐induced CXCL13‐producing CD4+ T cells do not express CXCR5, B‐cell lymphoma 6 (BCL6), and other Tfh‐cell markers. Furthermore, expression levels of CD25 (IL‐2Rα) in CXCL13‐producing CD4+ T cells are significantly lower than those in FoxP3+ in vitro induced Treg cells. Consistent with this, neutralization of IL‐2 and knockdown of STAT5 clearly upregulate CXCL13 production by CD4+ T cells, while downregulating the expression of FoxP3. Furthermore, overexpression of FoxP3 in naïve CD4+ T cells downregulates CXCL13 production, and knockdown of FoxP3 fails to inhibit the differentiation of CXCL13‐producing CD4+ T cells. As reported in rheumatoid arthritis, proinflammatory cytokines enhance secondary CXCL13 production from reactivated CXCL13‐producing CD4+ T cells. Our findings demonstrate that CXCL13‐producing CD4+ T cells lacking Tfh‐cell features differentiate via TGF‐β signaling but not via FoxP3, and exert their function in IL‐2‐limited but TGF‐β‐rich and proinflammatory cytokine‐rich inflammatory conditions. PMID:26541894

  18. Human CD4+ CD25+ Foxp3+ regulatory T cells do not constitutively express IL-35.

    PubMed

    Bardel, Emilie; Larousserie, Frédérique; Charlot-Rabiega, Pascaline; Coulomb-L'Herminé, Aurore; Devergne, Odile

    2008-11-15

    EBV-induced gene 3 (EBI3) can associate with p28 to form the heterodimeric cytokine IL-27, or with the p35 subunit of IL-12 to form the EBI3/p35 heterodimer, recently named IL-35. In mice, IL-35 has been shown to be constitutively expressed by CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg cells) and suggested to contribute to their suppressive activity. In this study, we investigated whether human Treg cells express IL-35. Double-staining analysis of human thymuses showed that neither Foxp3(+) nor CD25(+) cells coexpressed EBI3. Similarly, Foxp3(+) cells present in human lymph nodes, tonsils, spleens, and intestines did not express EBI3. Consistent with these in situ observations, Treg cells purified from blood or tonsils were negative for EBI3 by immunoblotting. Other human T cell subsets, including effector T cells, naive and memory CD4(+) T cells, CD8(+) and gammadelta T cells also did not constitutively express EBI3, which contrasts with IL-35 expression observed in murine CD8(+) and gammadelta T cells. Furthermore, although CD3/CD28 stimulation consistently induced low levels of EBI3 in various CD4(+) T cell subsets, no EBI3 could be detected in CD3/CD28-stimulated Treg cells. RT-PCR analysis showed that, whereas p35 transcripts were detected in both Teff and Treg cells, EBI3 transcripts were detected only in activated Teff cells, but not in resting or activated Treg cells. Thus, in contrast to their murine counterpart, human Treg cells do not express detectable amounts of IL-35.

  19. CD4 Depletion in SIV-Infected Macaques Results in Macrophage and Microglia Infection with Rapid Turnover of Infected Cells

    PubMed Central

    Ortiz, Alexandra M.; Ryan, Emily S.; McGary, Colleen S.; Deleage, Claire; McAtee, Brigitte B.; He, Tianyu; Apetrei, Cristian; Easley, Kirk; Pahwa, Savita; Collman, Ronald G.; Derdeyn, Cynthia A.; Davenport, Miles P.; Estes, Jacob D.; Silvestri, Guido; Lackner, Andrew A.; Paiardini, Mirko

    2014-01-01

    In rhesus macaques (RMs), experimental depletion of CD4+ T-cells prior to SIV infection results in higher viremia and emergence of CD4-independent SIV-envelopes. In this study we used the rhesus recombinant anti-CD4 antibody CD4R1 to deplete RM CD4+ T-cells prior to SIVmac251 infection and investigate the sources of the increased viral burden and the lifespan of productively infected cells. CD4-depleted animals showed (i) set-point viral load two-logs higher than controls; (ii) macrophages constituting 80% of all SIV vRNA+ cells in lymph node and mucosal tissues; (iii) substantial expansion of pro-inflammatory monocytes; (iv) aberrant activation and infection of microglial cells; and (v) lifespan of productively infected cells significantly longer in comparison to controls, but markedly shorter than previously estimated for macrophages. The net effect of CD4+ T-cell depletion is an inability to control SIV replication and a shift in the tropism of infected cells to macrophages, microglia, and, potentially, other CD4-low cells which all appear to have a shortened in vivo lifespan. We believe these findings have important implications for HIV eradication studies. PMID:25356757

  20. Analysis of HIV-1- and CMV-specific memory CD4 T-cell responses during primary and chronic infection.

    PubMed

    Harari, Alexandre; Rizzardi, G Paolo; Ellefsen, Kim; Ciuffreda, Donatella; Champagne, Patrick; Bart, Pierre-Alexandre; Kaufmann, Daniel; Telenti, Amalio; Sahli, Roland; Tambussi, Giuseppe; Kaiser, Laurent; Lazzarin, Adriano; Perrin, Luc; Pantaleo, Giuseppe

    2002-08-15

    CD4 T-cell-specific memory antiviral responses to human immunodeficiency virus type 1 (HIV-1) and cytomegalovirus (CMV) were investigated in 16 patients with documented primary HIV-1 infection (4 of the 16 subjects also had primary CMV infection) and compared with those observed in patients with chronic HIV-1 and CMV coinfection. Virus-specific memory CD4 T cells were characterized on the basis of the expression of the chemokine receptor CCR7. HIV-1- and CMV-specific interferon-gamma-secreting CD4 T cells were detected in patients with primary and chronic HIV-1 and CMV coinfection and were mostly contained in the cell population lacking expression of CCR7. The magnitude of the primary CMV-specific CD4 T-cell response was significantly greater than that of chronic CMV infection, whereas there were no differences between primary and chronic HIV-1-specific CD4 T-cell responses. A substantial proportion of CD4(+)CCR7(-) T cells were infected with HIV-1. These results advance the characterization of antiviral memory CD4 T-cell response and the delineation of the potential mechanisms that likely prevent the generation of a robust CD4 T-cell immune response during primary infection.

  1. Regulatory T cells prevent CD8 T cell maturation by inhibiting CD4 Th cells at tumor sites.

    PubMed

    Chaput, Nathalie; Darrasse-Jèze, Guillaume; Bergot, Anne-Sophie; Cordier, Corinne; Ngo-Abdalla, Stacie; Klatzmann, David; Azogui, Orly

    2007-10-15

    Natural regulatory T cells (Tregs) are present in high frequencies among tumor-infiltrating lymphocytes and in draining lymph nodes, supposedly facilitating tumor development. To investigate their role in controlling local immune responses, we analyzed intratumoral T cell accumulation and function in the presence or absence of Tregs. Tumors that grew in normal BALB/c mice injected with the 4T1 tumor cell line were highly infiltrated by Tregs, CD4 and CD8 cells, all having unique characteristics. Most infiltrating Tregs expressed low levels of CD25Rs and Foxp3. They did not proliferate even in the presence of IL-2 but maintained a strong suppressor activity. CD4 T cells were profoundly anergic and CD8 T cell proliferation and cytotoxicity were severely impaired. Depletion of Tregs modified the characteristics of tumor infiltrates. Tumors were initially invaded by activated CD4(+)CD25(-) T cells, which produced IL-2 and IFN-gamma. This was followed by the recruitment of highly cytotoxic CD8(+) T cells at tumor sites leading to tumor rejection. The beneficial effect of Treg depletion in tumor regression was abrogated when CD4 helper cells were also depleted. These findings indicate that the massive infiltration of tumors by Tregs prevents the development of a successful helper response. The Tregs in our model prevent Th cell activation and subsequent development of efficient CD8 T cell activity required for the control of tumor growth. PMID:17911581

  2. CD4 T Cell Help via B Cells Is Required for Lymphopenia-Induced CD8 T Cell Proliferation.

    PubMed

    Ayasoufi, Katayoun; Fan, Ran; Fairchild, Robert L; Valujskikh, Anna

    2016-04-01

    Ab-mediated lymphoablation is commonly used in solid organ and hematopoietic cell transplantation. However, these strategies fail to control pathogenic memory T cells efficiently and to improve long-term transplant outcomes significantly. Understanding the mechanisms of T cell reconstitution is critical for enhancing the efficacy of Ab-mediated depletion in sensitized recipients. Using a murine analog of anti-thymocyte globulin (mATG) in a mouse model of cardiac transplantation, we previously showed that peritransplant lymphocyte depletion induces rapid memory T cell proliferation and only modestly prolongs allograft survival. We now report that T cell repertoire following depletion is dominated by memory CD4 T cells. Additional depletion of these residual CD4 T cells severely impairs the recovery of memory CD8 T cells after mATG treatment. The CD4 T cell help during CD8 T cell recovery depends on the presence of B cells expressing CD40 and intact CD40/CD154 interactions. The requirement for CD4 T cell help is not limited to the use of mATG in heart allograft recipients, and it is observed in nontransplanted mice and after CD8 T cell depletion with mAb instead of mATG. Most importantly, limiting helper signals increases the efficacy of mATG in controlling memory T cell expansion and significantly extends heart allograft survival in sensitized recipients. Our findings uncover the novel role for helper memory CD4 T cells during homeostatic CD8 T cell proliferation and open new avenues for optimizing lymphoablative therapies in allosensitized patients.

  3. Excess Lymphangiogenesis Cooperatively Induced by Macrophages and CD4(+) T Cells Drives the Pathogenesis of Lymphedema.

    PubMed

    Ogata, Fusa; Fujiu, Katsuhito; Matsumoto, Sahohime; Nakayama, Yukiteru; Shibata, Munehiko; Oike, Yuichi; Koshima, Isao; Watabe, Tetsuro; Nagai, Ryozo; Manabe, Ichiro

    2016-03-01

    Lymphedema is a debilitating progressive condition that severely restricts quality of life and is frequently observed after cancer surgery. The mechanism underlying lymphedema development remains poorly understood, and no effective pharmacological means to prevent or alleviate the ailment is currently available. Using a mouse model of lymphedema, we show here that excessive generation of immature lymphatic vessels is essential for initial edema development and that this early process is also important for later development of lymphedema pathology. We found that CD4(+) T cells interact with macrophages to promote lymphangiogenesis, and that both lymphangiogenesis and edema were greatly reduced in macrophage-depleted mice, lymphocyte-deficient Rag2(?/?) mice or CD4(+) T-cell-deficient mice. Mechanistically, T helper type 1 and T helper type 17 cells activate lesional macrophages to produce vascular endothelial growth factor-C, which promotes lymphangiogenesis, and inhibition of this mechanism suppressed not only early lymphangiogenesis, but also later development of lymphedema. Finally, we show that atorvastatin suppresses excessive lymphangiogenesis and lymphedema by inhibiting T helper type 1 and T helper type 17 cell activation. These results demonstrate that the interaction between CD4(+) T cells and macrophages is a potential therapeutic target for prevention of lymphedema after surgery.

  4. Excess Lymphangiogenesis Cooperatively Induced by Macrophages and CD4(+) T Cells Drives the Pathogenesis of Lymphedema.

    PubMed

    Ogata, Fusa; Fujiu, Katsuhito; Matsumoto, Sahohime; Nakayama, Yukiteru; Shibata, Munehiko; Oike, Yuichi; Koshima, Isao; Watabe, Tetsuro; Nagai, Ryozo; Manabe, Ichiro

    2016-03-01

    Lymphedema is a debilitating progressive condition that severely restricts quality of life and is frequently observed after cancer surgery. The mechanism underlying lymphedema development remains poorly understood, and no effective pharmacological means to prevent or alleviate the ailment is currently available. Using a mouse model of lymphedema, we show here that excessive generation of immature lymphatic vessels is essential for initial edema development and that this early process is also important for later development of lymphedema pathology. We found that CD4(+) T cells interact with macrophages to promote lymphangiogenesis, and that both lymphangiogenesis and edema were greatly reduced in macrophage-depleted mice, lymphocyte-deficient Rag2(?/?) mice or CD4(+) T-cell-deficient mice. Mechanistically, T helper type 1 and T helper type 17 cells activate lesional macrophages to produce vascular endothelial growth factor-C, which promotes lymphangiogenesis, and inhibition of this mechanism suppressed not only early lymphangiogenesis, but also later development of lymphedema. Finally, we show that atorvastatin suppresses excessive lymphangiogenesis and lymphedema by inhibiting T helper type 1 and T helper type 17 cell activation. These results demonstrate that the interaction between CD4(+) T cells and macrophages is a potential therapeutic target for prevention of lymphedema after surgery. PMID:27015456

  5. Quantitative and qualitative characterization of expanded CD4+ T cell clones in rheumatoid arthritis patients

    PubMed Central

    Ishigaki, Kazuyoshi; Shoda, Hirofumi; Kochi, Yuta; Yasui, Tetsuro; Kadono, Yuho; Tanaka, Sakae; Fujio, Keishi; Yamamoto, Kazuhiko

    2015-01-01

    Rheumatoid arthritis (RA) is an autoimmune destructive arthritis associated with CD4+ T cell-mediated immunity. Although expanded CD4+ T cell clones (ECs) has already been confirmed, the detailed characteristics of ECs have not been elucidated in RA. Using combination of a single-cell analysis and next-generation sequencing (NGS) in TCR repertoire analysis, we here revealed the detailed nature of ECs by examining peripheral blood (PB) from 5 RA patients and synovium from 1 RA patient. When we intensively investigated the single-cell transcriptome of the most expanded clones in memory CD4+ T cells (memory-mECs) in RA-PB, senescence-related transcripts were up-regulated, indicating circulating ECs were constantly stimulated. Tracking of the transcriptome shift within the same memory-mECs between PB and the synovium revealed the augmentations in senescence-related gene expression and the up-regulation of synovium-homing chemokine receptors in the synovium. Our in-depth characterization of ECs in RA successfully demonstrated the presence of the specific immunological selection pressure, which determines the phenotype of ECs. Moreover, transcriptome tracking added novel aspects to the underlying sequential immune processes. Our approach may provide new insights into the pathophysiology of RA. PMID:26245356

  6. CD4 on CD8+ T cells directly enhances effector function and is a target for HIV infection

    NASA Astrophysics Data System (ADS)

    Kitchen, Scott G.; Jones, Nicole R.; Laforge, Stuart; Whitmire, Jason K.; Vu, Bien-Aimee; Galic, Zoran; Brooks, David G.; Brown, Stephen J.; Kitchen, Christina M. R.; Zack, Jerome A.

    2004-06-01

    Costimulation of purified CD8+ T lymphocytes induces de novo expression of CD4, suggesting a previously unrecognized function for this molecule in the immune response. Here, we report that the CD4 molecule plays a direct role in CD8+ T cell function by modulating expression of IFN- and Fas ligand, two important CD8+ T cell effector molecules. CD4 expression also allows infection of CD8 cells by HIV, which results in down-regulation of the CD4 molecule and impairs the induction of IFN-, Fas ligand, and the cytotoxic responses of activated CD8+ T cells. Thus, the CD4 molecule plays a direct role in CD8 T cell function, and infection of these cells by HIV provides an additional reservoir for the virus and also may contribute to the immunodeficiency seen in HIV disease.

  7. Regulation of DNA methylation dictates Cd4 expression during the development of helper and cytotoxic T cell lineages.

    PubMed

    Sellars, MacLean; Huh, Jun R; Day, Kenneth; Issuree, Priya D; Galan, Carolina; Gobeil, Stephane; Absher, Devin; Green, Michael R; Littman, Dan R

    2015-07-01

    During development, progenitor cells with binary potential give rise to daughter cells that have distinct functions. Heritable epigenetic mechanisms then lock in gene-expression programs that define lineage identity. Regulation of the gene encoding the T cell-specific coreceptor CD4 in helper and cytotoxic T cells exemplifies this process, with enhancer- and silencer-regulated establishment of epigenetic memory for stable gene expression and repression, respectively. Using a genetic screen, we identified the DNA-methylation machinery as essential for maintaining silencing of Cd4 in the cytotoxic lineage. Furthermore, we found a requirement for the proximal enhancer in mediating the removal of DNA-methylation marks from Cd4, which allowed stable expression of Cd4 in helper T cells. Our findings suggest that stage-specific methylation and demethylation events in Cd4 regulate its heritable expression in response to the distinct signals that dictate lineage 'choice' during T cell development. PMID:26030024

  8. Chemokine Transfer by Liver Sinusoidal Endothelial Cells Contributes to the Recruitment of CD4+ T Cells into the Murine Liver.

    PubMed

    Neumann, Katrin; Erben, Ulrike; Kruse, Nils; Wechsung, Katja; Schumann, Michael; Klugewitz, Katja; Scheffold, Alexander; Kühl, Anja A

    2015-01-01

    Leukocyte adhesion and transmigration are central features governing immune surveillance and inflammatory reactions in body tissues. Within the liver sinusoids, chemokines initiate the first crucial step of T-cell migration into the hepatic tissue. We studied molecular mechanisms involved in endothelial chemokine supply during hepatic immune surveillance and liver inflammation and their impact on the recruitment of CD4(+) T cells into the liver. In the murine model of Concanavalin A-induced T cell-mediated hepatitis, we showed that hepatic expression of the inflammatory CXC chemokine ligands (CXCL)9 and CXCL10 strongly increased whereas homeostatic CXCL12 significantly decreased. Consistently, CD4(+) T cells expressing the CXC chemokine receptor (CXCR)3 accumulated within the inflamed liver tissue. In histology, CXCL9 was associated with liver sinusoidal endothelial cells (LSEC) which represent the first contact site for T-cell immigration into the liver. LSEC actively transferred basolaterally internalized CXCL12, CXCL9 and CXCL10 via clathrin-coated vesicles to CD4(+) T cells leading to enhanced transmigration of CXCR4(+) total CD4(+) T cells and CXCR3(+) effector/memory CD4(+) T cells, respectively in vitro. LSEC-expressed CXCR4 mediated CXCL12 transport and blockage of endothelial CXCR4 inhibited CXCL12-dependent CD4(+) T-cell transmigration. In contrast, CXCR3 was not involved in the endothelial transport of its ligands CXCL9 and CXCL10. The clathrin-specific inhibitor chlorpromazine blocked endothelial chemokine internalization and CD4(+) T-cell transmigration in vitro as well as migration of CD4(+) T cells into the inflamed liver in vivo. Moreover, hepatic accumulation of CXCR3(+) CD4(+) T cells during T cell-mediated hepatitis was strongly reduced after administration of chlorpromazine. These data demonstrate that LSEC actively provide perivascularly expressed homeostatic and inflammatory chemokines by CXCR4- and clathrin-dependent intracellular transport

  9. Implementation and Operational Research: CD4 Count Monitoring Frequency and Risk of CD4 Count Dropping Below 200 Cells Per Cubic Millimeter Among Stable HIV-Infected Patients in New York City, 2007–2013

    PubMed Central

    Xia, Qiang; Torian, Lucia V.; Irvine, Mary; Harriman, Graham; Sepkowitz, Kent A.; Shepard, Colin W.

    2016-01-01

    Introduction: The evidence has begun to mount for diminishing the frequency of CD4 count testing. To determine whether these observations were applicable to an urban US population, we used New York City (NYC) surveillance data to explore CD4 testing among stable patients in NYC, 2007–2013. Methods: We constructed a population-based retrospective open cohort analysis of NYC HIV surveillance data. HIV+ patients aged ≥13 years with stable viral suppression (≥1 viral load the previous year; all <400 copies per milliliter) and immune status (≥1 CD4 the previous year; all ≥200 cells per cubic millimeter) entered the cohort the following year beginning January 1, 2007. Each subsequent year, eligible patients not previously included entered the cohort on January 1. Outcomes were annual frequency of CD4 monitoring and probability of maintaining CD4 ≥200 cells per cubic millimeter. A multivariable Cox model identified factors associated with maintaining CD4 ≥200 cells per cubic millimeter. Results: During 1.9 years of observation (median), 62,039 patients entered the cohort. The mean annual number of CD4 measurements among stable patients was 2.8 and varied little by year or characteristic. Two years after entering, 93.4% and 97.8% of those with initial CD4 350–499 and CD4 ≥500 cells per cubic millimeter, respectively, maintained CD4 ≥200 cells per cubic millimeter. Compared to those with initial CD4 ≥500 cells per cubic millimeter, those with CD4 200–349 cells per cubic millimeter and CD4 350–499 cells per cubic millimeter were more likely to have a CD4 <200 cells per cubic millimeter, controlling for sex, race, age, HIV risk group, and diagnosis year. Conclusions: In a population-based US cohort with well-controlled HIV, the probability of maintaining CD4 ≥200 cells per cubic millimeter for ≥2 years was >90% among those with initial CD4 ≥350 cells per cubic millimeter, suggesting that limited CD4 monitoring in these patients is appropriate

  10. Prognostic value of CD4+ lymphocytes in pleural cavity of patients with non-small cell lung cancer

    PubMed Central

    Takahashi, K; Saito, S; Kamamura, Y; Katakawa, M; Monden, Y

    2001-01-01

    BACKGROUND—For patients with non-small cell lung cancer the TNM staging system and other conventional prognostic factors fail to predict accurately the outcome of treatment and survival. This study attempts to determine the prognostic value for survival of the proportions of CD4+ lymphocytes in the pleural cavity (PLY) of patients with resectable non-small cell lung cancer.
METHODS—Lymphocytes in the pleural cavity separated from 51 patients with non-small cell lung cancer were examined by flow cytometry to measure the proportions of CD4+ PLY. Univariate and multivariate analyses were performed to assess the association between the proportion of CD4+ PLY and survival.
RESULTS—The 5 year survival rate of patients with percentage CD4+ PLY of ⩽30% was 84% whereas that of patients with %CD4+ PLY >30% was 26.9%. The difference in survival between the %CD4+ PLY ⩽30% and %CD4+ PLY >30% groups was significant (p<0.0001). The %CD4+ PLY in those who survived for 5 years was significantly lower than that in the patients who died within 5 years (p<0.0001). The difference in survival between patients with stage IA and IB lung cancer with %CD4+ PLY ⩽30% and those with %CD4+ PLY >30% was also significant (p =0.015). Multivariate analysis showed that the proportion of CD4+ PLY (hazard ratio=6.9, 95% CI 0.045to 0.47) and nodal status (hazard ratio=22.7, 95% CI 0.006 to 1.806) are significant and independent prognostic factors for the survival of patients with lung cancer.
CONCLUSIONS—The proportion of CD4+ PLY may help to select patients who are likely to have a poorer prognosis after surgery and therefore may be suitable for consideration of adjuvant treatments. These results need confirmation in a larger prospective study.

 PMID:11462067

  11. Importance of B cell co-stimulation in CD4+ T cell differentiation: X-linked agammaglobulinaemia, a human model

    PubMed Central

    Martini, H; Enright, V; Perro, M; Workman, S; Birmelin, J; Giorda, E; Quinti, I; Lougaris, V; Baronio, M; Warnatz, K; Grimbacher, B

    2011-01-01

    We were interested in the question of whether the congenital lack of B cells actually had any influence on the development of the T cell compartment in patients with agammaglobulinaemia. Sixteen patients with X-linked agammaglobulinaemia (XLA) due to mutations in Btk, nine patients affected by common variable immune deficiency (CVID) with <2% of peripheral B cells and 20 healthy volunteers were enrolled. The T cell phenotype was determined with FACSCalibur and CellQuest Pro software. Mann–Whitney two-tailed analysis was used for statistical analysis. The CD4 T cell memory compartment was reduced in patients with XLA of all ages. This T cell subset encompasses both CD4+CD45RO+ and CD4+CD45RO+CXCR5+ cells and both subsets were decreased significantly when compared to healthy controls: P = 0·001 and P < 0·0001, respectively. This observation was confirmed in patients with CVID who had <2% B cells, suggesting that not the lack of Bruton's tyrosine kinase but the lack of B cells is most probably the cause of the impaired CD4 T cell maturation. We postulate that this defect is a correlate of the observed paucity of germinal centres in XLA. Our results support the importance of the interplay between B and T cells in the germinal centre for the activation of CD4 T cells in humans. PMID:21488866

  12. Importance of B cell co-stimulation in CD4(+) T cell differentiation: X-linked agammaglobulinaemia, a human model.

    PubMed

    Martini, H; Enright, V; Perro, M; Workman, S; Birmelin, J; Giorda, E; Quinti, I; Lougaris, V; Baronio, M; Warnatz, K; Grimbacher, B

    2011-06-01

    We were interested in the question of whether the congenital lack of B cells actually had any influence on the development of the T cell compartment in patients with agammaglobulinaemia. Sixteen patients with X-linked agammaglobulinaemia (XLA) due to mutations in Btk, nine patients affected by common variable immune deficiency (CVID) with <2% of peripheral B cells and 20 healthy volunteers were enrolled. The T cell phenotype was determined with FACSCalibur and CellQuest Pro software. Mann-Whitney two-tailed analysis was used for statistical analysis. The CD4 T cell memory compartment was reduced in patients with XLA of all ages. This T cell subset encompasses both CD4(+)CD45RO(+) and CD4(+)CD45RO(+)CXCR5(+) cells and both subsets were decreased significantly when compared to healthy controls: P = 0·001 and P < 0·0001, respectively. This observation was confirmed in patients with CVID who had <2% B cells, suggesting that not the lack of Bruton's tyrosine kinase but the lack of B cells is most probably the cause of the impaired CD4 T cell maturation. We postulate that this defect is a correlate of the observed paucity of germinal centres in XLA. Our results support the importance of the interplay between B and T cells in the germinal centre for the activation of CD4 T cells in humans.

  13. Importance of B cell co-stimulation in CD4(+) T cell differentiation: X-linked agammaglobulinaemia, a human model.

    PubMed

    Martini, H; Enright, V; Perro, M; Workman, S; Birmelin, J; Giorda, E; Quinti, I; Lougaris, V; Baronio, M; Warnatz, K; Grimbacher, B

    2011-06-01

    We were interested in the question of whether the congenital lack of B cells actually had any influence on the development of the T cell compartment in patients with agammaglobulinaemia. Sixteen patients with X-linked agammaglobulinaemia (XLA) due to mutations in Btk, nine patients affected by common variable immune deficiency (CVID) with <2% of peripheral B cells and 20 healthy volunteers were enrolled. The T cell phenotype was determined with FACSCalibur and CellQuest Pro software. Mann-Whitney two-tailed analysis was used for statistical analysis. The CD4 T cell memory compartment was reduced in patients with XLA of all ages. This T cell subset encompasses both CD4(+)CD45RO(+) and CD4(+)CD45RO(+)CXCR5(+) cells and both subsets were decreased significantly when compared to healthy controls: P = 0·001 and P < 0·0001, respectively. This observation was confirmed in patients with CVID who had <2% B cells, suggesting that not the lack of Bruton's tyrosine kinase but the lack of B cells is most probably the cause of the impaired CD4 T cell maturation. We postulate that this defect is a correlate of the observed paucity of germinal centres in XLA. Our results support the importance of the interplay between B and T cells in the germinal centre for the activation of CD4 T cells in humans. PMID:21488866

  14. Oct1 and OCA-B are selectively required for CD4 memory T cell function.

    PubMed

    Shakya, Arvind; Goren, Alon; Shalek, Alex; German, Cody N; Snook, Jeremy; Kuchroo, Vijay K; Yosef, Nir; Chan, Raymond C; Regev, Aviv; Williams, Matthew A; Tantin, Dean

    2015-11-16

    Epigenetic changes are crucial for the generation of immunological memory. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing memory. Yet the transcription factors that regulate these processes are poorly defined. We find that the transcription factor Oct1 and its cofactor OCA-B are selectively required for the in vivo generation of CD4(+) memory T cells. More importantly, the memory cells that are formed do not respond properly to antigen reencounter. In vitro, both proteins are required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4(+) T cells. OCA-B is also required for the robust reexpression of multiple other genes including Ifng. ChIPseq identifies ∼50 differentially expressed direct Oct1 and OCA-B targets. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a to targets such as Il2, Ifng, and Zbtb32. The findings pinpoint Oct1 and OCA-B as central mediators of CD4(+) T cell memory.

  15. Oct1 and OCA-B are selectively required for CD4 memory T cell function

    PubMed Central

    Shakya, Arvind; Goren, Alon; Shalek, Alex; German, Cody N.; Snook, Jeremy; Kuchroo, Vijay K.; Yosef, Nir; Chan, Raymond C.; Regev, Aviv

    2015-01-01

    Epigenetic changes are crucial for the generation of immunological memory. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing memory. Yet the transcription factors that regulate these processes are poorly defined. We find that the transcription factor Oct1 and its cofactor OCA-B are selectively required for the in vivo generation of CD4+ memory T cells. More importantly, the memory cells that are formed do not respond properly to antigen reencounter. In vitro, both proteins are required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4+ T cells. OCA-B is also required for the robust reexpression of multiple other genes including Ifng. ChIPseq identifies ∼50 differentially expressed direct Oct1 and OCA-B targets. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a to targets such as Il2, Ifng, and Zbtb32. The findings pinpoint Oct1 and OCA-B as central mediators of CD4+ T cell memory. PMID:26481684

  16. Mycobacterium tuberculosis-Specific IL-21+IFN-γ+CD4+ T Cells Are Regulated by IL-12.

    PubMed

    Li, Li; Jiang, Yuxia; Lao, Suihua; Yang, Binyan; Yu, Sifei; Zhang, Yannan; Wu, Changyou

    2016-01-01

    In the current study of Mycobacterium tuberculosis (MTB)-specific T and B cells, we found that MTB-specific peptides from early secreted antigenic target-6 (ESAT-6) and culture filtrate protein-10 (CFP-10) induced the expression of IL-21 predominantly in CD4(+) T cells. A fraction of IL-21-expressing CD4(+) T cells simultaneously expressed Th1 cytokines but did not secrete Th2 or Th17 cytokines, suggesting that MTB-specific IL-21-expressing CD4(+) T cells were different from Th1, Th2 and Th17 subpopulations. The majority of MTB-specific IL-21-expressing CD4(+) T cells co-expressed IFN-γ and IL-21+IFN-γ(+)CD4(+) T cells exhibited obviously polyfunctionality. In addition, MTB-specific IL-21-expressing CD4(+) T cells displayed a CD45RO+CD62Ll(ow)CCR7(low)CD40L(high)ICOS(high) phenotype. Bcl-6-expression was significantly higher in IL-21-expressing CD4(+) T cells than IL-21-CD4(+) T cells. Moreover, IL-12 could up-regulate MTB-specific IL-21 expression, especially the frequency of IL-21(+)IFN-γ+CD4(+) T cells. Taken together, our results demonstrated that MTB-specific IL-21(+)IFN-γ(+)CD4(+) T cells from local sites of tuberculosis (TB) infection could be enhanced by IL-12, which have the features of both Tfh and Th1 cells and may have an important role in local immune responses against TB infection.

  17. Tumour-specific CD4 T cells eradicate melanoma via indirect recognition of tumour-derived antigen.

    PubMed

    Shklovskaya, Elena; Terry, Alexandra M; Guy, Thomas V; Buckley, Adrian; Bolton, Holly A; Zhu, Erhua; Holst, Jeff; Fazekas de St. Groth, Barbara

    2016-07-01

    The importance of CD4 T cells in tumour immunity has been increasingly recognised, with recent reports describing robust CD4 T cell-dependent tumour control in mice whose immune-regulatory mechanisms have been disturbed by irradiation, chemotherapy, immunomodulatory therapy and/or constitutive immunodeficiency. Tumour control in such models has been attributed in large part to direct Major Histocompatibility Complex (MHC) class II-dependent CD4 T cell killing of tumour cells. To test whether CD4 T cells can eradicate tumours without directly killing tumour cells, we developed an animal model in which tumour-derived antigen could be presented to T-cell receptor (TCR)-transgenic CD4 T cells by host but not tumour MHC class II molecules. In I-E(+) mice bearing I-E(null) tumours, naive I-E-restricted CD4 T cells proliferated locally in tumour-draining lymph nodes after recognising tumour-derived antigen on migratory dendritic cells. In lymphopaenic but not immunosufficient hosts, CD4 T cells differentiated into polarised T helper type 1 (Th1) cells expressing interferon gamma (IFNγ), tumor necrosis factor alpha (TNFα) and interleukin (IL)-2 but little IL-17, and cleared established tumours. Tumour clearance was enhanced by higher TCR affinity for tumour antigen-MHC class II and was critically dependent on IFNγ, as demonstrated by early tumour escape in animals treated with an IFNγ blocking antibody. Thus, CD4 T cells and IFNγ can control tumour growth without direct T-cell killing of tumour cells, and without requiring additional adaptive immune cells such as CD8 T cells and B cells. Our results support a role for effective CD4 T cell-dependent tumour immunity against MHC class II-negative tumours. PMID:26837456

  18. Role of B70/B7-2 in CD4+ T-cell immune responses induced by dendritic cells.

    PubMed

    Fagnoni, F F; Takamizawa, M; Godfrey, W R; Rivas, A; Azuma, M; Okumura, K; Engleman, E G

    1995-07-01

    Dendritic cells (DC) are potent antigen-presenting cells (APC). However, the molecular basis underlying this activity remains incompletely understood. To address this question, we generated murine monoclonal antibodies (mAb) against human peripheral blood-derived DC. One such antibody, designated IT209, stained differentiated DC and adherent monocytes, but failed to stain freshly isolated peripheral blood mononuclear cells (PBMC). The antigen recognized by IT209 was identified as B70 (B7-2; also recently identified as CD86). Using this mAb we studied the role of B70 in CD4+ T-cell activation by DC in vitro. IT209 partly inhibited the proliferative response of CD4+ T cells to allogeneic DC and to recall antigens, such as tetanus toxoid (TT) and purified protein derivative (PPD) of tuberculin, presented by autologous DC. More importantly, the mAb had a potent inhibitory effect on the primary response of CD4+ T cells to autologous DC pulsed with human immunodeficiency virus (HIV) gp160 or keyhole limpet haemocyanin (KLH). Adherent monocytes, despite their expression of B70, failed to induce T-cell responses to these antigens. IT209-mediated inhibition of CD4+ T-cell responses was equivalent to that produced by anti-CD25 mAb, whereas an anti-CD80 mAb was only marginally inhibitory and did not augment the effect of IT209. These findings indicate that the B70 antigen plays an important role in DC-dependent CD4+ T-cell activation, particularly in the induction of primary CD4+ T-cell responses to soluble antigens. However, since activated monocytes, despite their expression of B70, failed to prime naive T cells to these antigens, our results suggest that additional molecules contribute to the functions of DC in CD4+ T-cell activation.

  19. Role of B70/B7-2 in CD4+ T-cell immune responses induced by dendritic cells.

    PubMed Central

    Fagnoni, F F; Takamizawa, M; Godfrey, W R; Rivas, A; Azuma, M; Okumura, K; Engleman, E G

    1995-01-01

    Dendritic cells (DC) are potent antigen-presenting cells (APC). However, the molecular basis underlying this activity remains incompletely understood. To address this question, we generated murine monoclonal antibodies (mAb) against human peripheral blood-derived DC. One such antibody, designated IT209, stained differentiated DC and adherent monocytes, but failed to stain freshly isolated peripheral blood mononuclear cells (PBMC). The antigen recognized by IT209 was identified as B70 (B7-2; also recently identified as CD86). Using this mAb we studied the role of B70 in CD4+ T-cell activation by DC in vitro. IT209 partly inhibited the proliferative response of CD4+ T cells to allogeneic DC and to recall antigens, such as tetanus toxoid (TT) and purified protein derivative (PPD) of tuberculin, presented by autologous DC. More importantly, the mAb had a potent inhibitory effect on the primary response of CD4+ T cells to autologous DC pulsed with human immunodeficiency virus (HIV) gp160 or keyhole limpet haemocyanin (KLH). Adherent monocytes, despite their expression of B70, failed to induce T-cell responses to these antigens. IT209-mediated inhibition of CD4+ T-cell responses was equivalent to that produced by anti-CD25 mAb, whereas an anti-CD80 mAb was only marginally inhibitory and did not augment the effect of IT209. These findings indicate that the B70 antigen plays an important role in DC-dependent CD4+ T-cell activation, particularly in the induction of primary CD4+ T-cell responses to soluble antigens. However, since activated monocytes, despite their expression of B70, failed to prime naive T cells to these antigens, our results suggest that additional molecules contribute to the functions of DC in CD4+ T-cell activation. PMID:7558137

  20. CD4+ T-cell epitope prediction using antigen processing constraints.

    PubMed

    Mettu, Ramgopal R; Charles, Tysheena; Landry, Samuel J

    2016-05-01

    T-cell CD4+ epitopes are important targets of immunity against infectious diseases and cancer. State-of-the-art methods for MHC class II epitope prediction rely on supervised learning methods in which an implicit or explicit model of sequence specificity is constructed using a training set of peptides with experimentally tested MHC class II binding affinity. In this paper we present a novel method for CD4+ T-cell eptitope prediction based on modeling antigen-processing constraints. Previous work indicates that dominant CD4+ T-cell epitopes tend to occur adjacent to sites of initial proteolytic cleavage. Given an antigen with known three-dimensional structure, our algorithm first aggregates four types of conformational stability data in order to construct a profile of stability that allows us to identify regions of the protein that are most accessible to proteolysis. Using this profile, we then construct a profile of epitope likelihood based on the pattern of transitions from unstable to stable regions. We validate our method using 35 datasets of experimentally measured CD4+ T cell responses of mice bearing I-Ab or HLA-DR4 alleles as well as of human subjects. Overall, our results show that antigen processing constraints provide a significant source of predictive power. For epitope prediction in single-allele systems, our approach can be combined with sequence-based methods, or used in instances where little or no training data is available. In multiple-allele systems, sequence-based methods can only be used if the allele distribution of a population is known. In contrast, our approach does not make use of MHC binding prediction, and is thus agnostic to MHC class II genotypes. PMID:26891811

  1. CD4(+) T-Cell-Independent Secondary Immune Responses to Pneumocystis Pneumonia.

    PubMed

    de la Rua, Nicholas M; Samuelson, Derrick R; Charles, Tysheena P; Welsh, David A; Shellito, Judd E

    2016-01-01

    Pneumocystis pneumonia is a major cause of morbidity and mortality among immunocompromised patients, especially in the context of HIV/AIDS. In the murine model of Pneumocystis pneumonia, CD4(+) T-cells are required for clearance of a primary infection of Pneumocystis, but not the memory recall response. We hypothesized that the memory recall response in the absence of CD4(+) T-cells is mediated by a robust memory humoral response, CD8(+) T-cells, and IgG-mediated phagocytosis by alveolar macrophages. To investigate the role of CD8(+) T-cells and alveolar macrophages in the immune memory response to Pneumocystis, mice previously challenged with Pneumocystis were depleted of CD8(+) T-cells or alveolar macrophages prior to re-infection. Mice depleted of CD4(+) T-cells prior to secondary challenge cleared Pneumocystis infection within 48 h identical to immunocompetent mice during a secondary memory recall response. However, loss of CD8(+) T-cells or macrophages prior to the memory recall response significantly impaired Pneumocystis clearance. Specifically, mice depleted of CD8(+) T-cells or alveolar macrophages had significantly higher fungal burden in the lungs. Furthermore, loss of alveolar macrophages significantly skewed the lung CD8(+) T-cell response toward a terminally differentiated effector memory population and increased the percentage of IFN-γ(+) CD8(+) T-cells. Finally, Pneumocystis-infected animals produced significantly more bone marrow plasma cells and Pneumocystis-specific IgG significantly increased macrophage-mediated killing of Pneumocystis in vitro. These data suggest that secondary immune memory responses to Pneumocystis are mediated, in part, by CD8(+) T-cells, alveolar macrophages, and the production of Pneumocystis-specific IgG. PMID:27242785

  2. CD4+ T-Cell-Independent Secondary Immune Responses to Pneumocystis Pneumonia

    PubMed Central

    de la Rua, Nicholas M.; Samuelson, Derrick R.; Charles, Tysheena P.; Welsh, David A.; Shellito, Judd E.

    2016-01-01

    Pneumocystis pneumonia is a major cause of morbidity and mortality among immunocompromised patients, especially in the context of HIV/AIDS. In the murine model of Pneumocystis pneumonia, CD4+ T-cells are required for clearance of a primary infection of Pneumocystis, but not the memory recall response. We hypothesized that the memory recall response in the absence of CD4+ T-cells is mediated by a robust memory humoral response, CD8+ T-cells, and IgG-mediated phagocytosis by alveolar macrophages. To investigate the role of CD8+ T-cells and alveolar macrophages in the immune memory response to Pneumocystis, mice previously challenged with Pneumocystis were depleted of CD8+ T-cells or alveolar macrophages prior to re-infection. Mice depleted of CD4+ T-cells prior to secondary challenge cleared Pneumocystis infection within 48 h identical to immunocompetent mice during a secondary memory recall response. However, loss of CD8+ T-cells or macrophages prior to the memory recall response significantly impaired Pneumocystis clearance. Specifically, mice depleted of CD8+ T-cells or alveolar macrophages had significantly higher fungal burden in the lungs. Furthermore, loss of alveolar macrophages significantly skewed the lung CD8+ T-cell response toward a terminally differentiated effector memory population and increased the percentage of IFN-γ+ CD8+ T-cells. Finally, Pneumocystis-infected animals produced significantly more bone marrow plasma cells and Pneumocystis-specific IgG significantly increased macrophage-mediated killing of Pneumocystis in vitro. These data suggest that secondary immune memory responses to Pneumocystis are mediated, in part, by CD8+ T-cells, alveolar macrophages, and the production of Pneumocystis-specific IgG. PMID:27242785

  3. CD4(+)CD25(hi)Foxp3(+) Cells Exacerbate Bleomycin-Induced Pulmonary Fibrosis.

    PubMed

    Birjandi, Shirin Z; Palchevskiy, Vyacheslav; Xue, Ying Ying; Nunez, Stefanie; Kern, Rita; Weigt, S Sam; Lynch, Joseph P; Chatila, Talal A; Belperio, John A

    2016-08-01

    Idiopathic pulmonary fibrosis is a fatal lung disease with a median survival of 2 to 5 years. A decade of studies has downplayed inflammation contributing to its pathogenesis. However, these studies preceded the discovery of regulatory T cells (Tregs) and all of their functions. On the basis of human studies demonstrating Tregs can decrease graft-versus-host disease and vasculitides, there is consideration of their use to treat idiopathic pulmonary fibrosis. We hypothesized that Treg therapy would attenuate the fibroplasia involved in a preclinical murine model of pulmonary fibrosis. IL-2 complex was used in vivo to expand CD4(+)CD25(hi)Foxp3(+) cells in the lung during intratracheal bleomycin challenge; however, this unexpectedly led to an increase in lung fibrosis. More important, this increase in fibrosis was a lymphocyte-dependent process. We corroborated these results using a CD4(+)CD25(hi)Foxp3(+) cellular-based therapy. Mechanistically, we demonstrated that CD4(+)CD25(hi)Foxp3(+) cells undergo alterations during bleomycin challenge and the IL-2 complex had no effect on profibrotic (eg, transforming growth factor-β) or type 17 immune response cytokines; however, there was a marked down-regulation of the type 1 and augmentation of the type 2 immune response cytokines from the lungs. Collectively, our animal studies show that a specific lung injury can induce Treg alterations, which can augment pulmonary fibrosis.

  4. Public T cell receptors confer high-avidity CD4 responses to HIV controllers

    PubMed Central

    Galperin, Moran; Lambotte, Olivier; Gras, Stéphanie; Lim, Annick; Mukhopadhyay, Madhura; Campbell, Kristy-Anne; Lemercier, Brigitte; Claireaux, Mathieu; Hendou, Samia; Lechat, Pierre; de Truchis, Pierre; Boufassa, Faroudy; Rossjohn, Jamie; Delfraissy, Jean-François; Arenzana-Seisdedos, Fernando; Chakrabarti, Lisa A.

    2016-01-01

    The rare patients who are able to spontaneously control HIV replication in the absence of therapy show signs of a particularly efficient cellular immune response. To identify the molecular determinants that underlie this response, we characterized the T cell receptor (TCR) repertoire directed at Gag293, the most immunoprevalent CD4 epitope in the HIV-1 capsid. HIV controllers from the ANRS CODEX cohort showed a highly skewed TCR repertoire that was characterized by a predominance of TRAV24 and TRBV2 variable genes, shared CDR3 motifs, and a high frequency of public clonotypes. The most prevalent public clonotypes generated TCRs with affinities at the higher end of values reported for naturally occurring TCRs. The high-affinity Gag293-specific TCRs were cross-restricted by up to 5 distinct HLA-DR alleles, accounting for the expression of these TCRs in HIV controllers of diverse genetic backgrounds. Transfer of these TCRs to healthy donor CD4+ T cells conferred high antigen sensitivity and polyfunctionality, thus recapitulating key features of the controller CD4 response. Transfer of a high-affinity Gag293-specific TCR also redirected CD8+ T cells to target HIV-1 capsid via nonconventional MHC II restriction. Together, these findings indicate that TCR clonotypes with superior functions are associated with HIV control. Amplification or transfer of such clonotypes may contribute to immunotherapeutic approaches aiming at a functional HIV cure. PMID:27111229

  5. Public T cell receptors confer high-avidity CD4 responses to HIV controllers.

    PubMed

    Benati, Daniela; Galperin, Moran; Lambotte, Olivier; Gras, Stéphanie; Lim, Annick; Mukhopadhyay, Madhura; Nouël, Alexandre; Campbell, Kristy-Anne; Lemercier, Brigitte; Claireaux, Mathieu; Hendou, Samia; Lechat, Pierre; de Truchis, Pierre; Boufassa, Faroudy; Rossjohn, Jamie; Delfraissy, Jean-François; Arenzana-Seisdedos, Fernando; Chakrabarti, Lisa A

    2016-06-01

    The rare patients who are able to spontaneously control HIV replication in the absence of therapy show signs of a particularly efficient cellular immune response. To identify the molecular determinants that underlie this response, we characterized the T cell receptor (TCR) repertoire directed at Gag293, the most immunoprevalent CD4 epitope in the HIV-1 capsid. HIV controllers from the ANRS CODEX cohort showed a highly skewed TCR repertoire that was characterized by a predominance of TRAV24 and TRBV2 variable genes, shared CDR3 motifs, and a high frequency of public clonotypes. The most prevalent public clonotypes generated TCRs with affinities at the higher end of values reported for naturally occurring TCRs. The high-affinity Gag293-specific TCRs were cross-restricted by up to 5 distinct HLA-DR alleles, accounting for the expression of these TCRs in HIV controllers of diverse genetic backgrounds. Transfer of these TCRs to healthy donor CD4+ T cells conferred high antigen sensitivity and polyfunctionality, thus recapitulating key features of the controller CD4 response. Transfer of a high-affinity Gag293-specific TCR also redirected CD8+ T cells to target HIV-1 capsid via nonconventional MHC II restriction. Together, these findings indicate that TCR clonotypes with superior functions are associated with HIV control. Amplification or transfer of such clonotypes may contribute to immunotherapeutic approaches aiming at a functional HIV cure. PMID:27111229

  6. Role of regulatory CD4+CD25+ Foxp3 T cells in bronchial asthma in Egyptian children.

    PubMed

    Bakr, Salwa I; Mahran, Manal Z; Soliman, Dina A

    2013-01-01

    CD4+CD25+high Foxp3 regulatory T (Treg) cells are known to play a key role in balancing immune response to maintain peripheral tolerance against harmless antigens or allergens. Defective immunological suppression by CD4+CD25+high Foxp3 Treg cells can be a cause of the inflammation that leads to an allergic condition such as asthma. The aims of the study are to (1) determine CD4+CD25+high Foxp3 Treg cells frequency in the peripheral blood of children with and without asthma; and (2) investigate the association between CD4+CD25+high Foxp3 Treg cells frequency with disease severity and corticosteroid therapy. Sixty asthmatic children with varying disease severity (20 mild, 20 moderate and 20 severe) were enrolled in the study. Severe asthmatic children were further subdivided into two groups, one on corticosteroid therapy and the other was not on corticosteroid. Twenty age and sex matched healthy children were enrolled as controls. Number of circulating CD4+CD25+high Foxp3 Tregs were measured using flow cytometry. Our finding demonstrates that children with asthma had a significant decrease of CD4+CD25high Foxp3 Treg cells and Tregs/T effectors ratio in peripheral blood compared to children without asthma. Patients with moderate asthma demonstrated lower frequency of CD4+CD25+high Foxp3 Treg cells compared to mild and severe asthmatic patients. Those on corticosteroid therapy revealed significant increase in CD4+CD25+high Foxp3 Treg cells and decrease in T effectors. It is concluded that asthmatic children have decreased number of CD4+CD25+high Foxp3 Treg cells leading to increase in effectors cells which mediate inflammation in the airways. Corticosteroid therapy plays a role in elevating number of CD4+CD25+high Foxp3 Treg cells and maintaining its suppressor function.

  7. Collaboration between tumor-specific CD4+ T cells and B cells in anti-cancer immunity.

    PubMed

    Guy, Thomas V; Terry, Alexandra M; Bolton, Holly A; Hancock, David G; Zhu, Erhua; Brink, Robert; McGuire, Helen M; Shklovskaya, Elena; Fazekas de St. Groth, Barbara

    2016-05-24

    The role of B cells and antibodies in anti-tumor immunity is controversial, with both positive and negative effects reported in animal models and clinical studies. We developed a murine B16.F10 melanoma model to study the effects of collaboration between tumor-specific CD4+ T cells and B cells on tumor control. By incorporating T cell receptor transgenic T cells and B cell receptor isotype switching B cells, we were able to track the responses of tumor-reactive T and B cells and the development of anti-tumor antibodies in vivo. In the presence of tumor-specific B cells, the number of tumor-reactive CD4+ T cells was reduced in lymphoid tissues and the tumor itself, and this correlated with poor tumor control. B cells had little effect on the Th1 bias of the CD4+ T cell response, and the number of induced FoxP3+ regulatory cells (iTregs) generated from within the original naive CD4+ T cell inoculum was unrelated to the degree of B cell expansion. In response to CD4+ T cell help, B cells produced a range of isotype-switched anti-tumor antibodies, principally IgG1, IgG2a/c and IgG2b. In the absence of CD4+ T cells, B cells responded to agonistic anti-CD40 administration by switching to production of IgG2a/c and, to a lesser extent, IgG1, IgG3, IgA and IgE, which reduced the number of lung metastases after i.v. tumor inoculation but had no effect on the growth of subcutaneous tumors.

  8. Collaboration between tumor-specific CD4+ T cells and B cells in anti-cancer immunity

    PubMed Central

    Guy, Thomas V.; Terry, Alexandra M.; Bolton, Holly A.; Hancock, David G.; Zhu, Erhua; Brink, Robert; McGuire, Helen M.

    2016-01-01

    The role of B cells and antibodies in anti-tumor immunity is controversial, with both positive and negative effects reported in animal models and clinical studies. We developed a murine B16.F10 melanoma model to study the effects of collaboration between tumor-specific CD4+ T cells and B cells on tumor control. By incorporating T cell receptor transgenic T cells and B cell receptor isotype switching B cells, we were able to track the responses of tumor-reactive T and B cells and the development of anti-tumor antibodies in vivo. In the presence of tumor-specific B cells, the number of tumor-reactive CD4+ T cells was reduced in lymphoid tissues and the tumor itself, and this correlated with poor tumor control. B cells had little effect on the Th1 bias of the CD4+ T cell response, and the number of induced FoxP3+ regulatory cells (iTregs) generated from within the original naive CD4+ T cell inoculum was unrelated to the degree of B cell expansion. In response to CD4+ T cell help, B cells produced a range of isotype-switched anti-tumor antibodies, principally IgG1, IgG2a/c and IgG2b. In the absence of CD4+ T cells, B cells responded to agonistic anti-CD40 administration by switching to production of IgG2a/c and, to a lesser extent, IgG1, IgG3, IgA and IgE, which reduced the number of lung metastases after i.v. tumor inoculation but had no effect on the growth of subcutaneous tumors. PMID:27121060

  9. Tumor-Unrelated CD4 T Cell Help Augments CD134 plus CD137 Dual Costimulation Tumor Therapy.

    PubMed

    Mittal, Payal; St Rose, Marie-Clare; Wang, Xi; Ryan, Joseph M; Wasser, Jeffrey S; Vella, Anthony T; Adler, Adam J

    2015-12-15

    The ability of immune-based cancer therapies to elicit beneficial CD8(+) CTLs is limited by tolerance pathways that inactivate tumor-specific CD4 Th cells. A strategy to bypass this problem is to engage tumor-unrelated CD4 Th cells. Thus, CD4 T cells, regardless of their specificity per se, can boost CD8(+) CTL priming as long as the cognate epitopes are linked via presentation on the same dendritic cell. In this study, we assessed the therapeutic impact of engaging tumor-unrelated CD4 T cells during dual costimulation with CD134 plus CD137 that provide help via the above-mentioned classical linked pathway, as well as provide nonlinked help that facilitates CTL function in T cells not directly responding to cognate Ag. We found that engagement of tumor-unrelated CD4 Th cells dramatically boosted the ability of dual costimulation to control the growth of established B16 melanomas. Surprisingly, this effect depended upon a CD134-dependent component that was extrinsic to the tumor-unrelated CD4 T cells, suggesting that the dual costimulated helper cells are themselves helped by a CD134(+) cell(s). Nevertheless, the delivery of therapeutic help tracked with an increased frequency of tumor-infiltrating granzyme B(+) effector CD8 T cells and a reciprocal decrease in Foxp3(+)CD4(+) cell frequency. Notably, the tumor-unrelated CD4 Th cells also infiltrated the tumors, and their deletion several days following initial T cell priming negated their therapeutic impact. Taken together, dual costimulation programs tumor-unrelated CD4 T cells to deliver therapeutic help during both the priming and effector stages of the antitumor response.

  10. Functional analysis of highly defined, FACS-isolated populations of human regulatory CD4+ CD25+ T cells.

    PubMed

    Baecher-Allan, Clare; Wolf, Elizabeth; Hafler, David A

    2005-04-01

    The importance of CD4+ CD25+ regulatory T cells (Treg) in maintaining immune homeostasis has been directly demonstrated in vivo by their manipulation in a number of autoimmune disease models in the mouse. In the study of human regulatory cells, we have found that the cells that consistently demonstrate the in vitro regulatory activity most similar to that described for murine cells in vitro are best identified by restricting the isolation of CD25+ CD4 T cells to those cells expressing only the highest levels of CD25, representing approximately 2-3% of total CD4 T cells. Thus, it is the CD4+ CD25high subset that exhibits the in vitro characteristics that are identical to the CD4+ CD25+ regulatory cells initially characterized in mice. Furthermore, the cells expressing medium to low levels of CD25 not only do not exhibit suppressive activity directly ex vivo, but also actually contain a significant proportion of CD62L- CD4 T cells which are believed to be in vivo activated T cells. Due to the inherent difficulties in using CD25 as a marker for the purification of Treg cells, the finding that selection of the CD25high subset of CD4+ CD25+ T cells minimizes the co-isolation of contaminating activated CD4 T cells is important for future studies of these Treg cells in human disease. In order to perform these studies, we first had to establish a highly reproducible 'micro in vitro co-culture' assay system to enable the functional analysis of high-purity, but low-yield regulatory populations derived from FACS sorting. With this system in place, we are poised to dissect the potential heterogeneity of mechanisms employed by highly specific subpopulations of CD4+ CD25+ cells.

  11. Tumor-Unrelated CD4 T Cell Help Augments CD134 plus CD137 Dual Costimulation Tumor Therapy.

    PubMed

    Mittal, Payal; St Rose, Marie-Clare; Wang, Xi; Ryan, Joseph M; Wasser, Jeffrey S; Vella, Anthony T; Adler, Adam J

    2015-12-15

    The ability of immune-based cancer therapies to elicit beneficial CD8(+) CTLs is limited by tolerance pathways that inactivate tumor-specific CD4 Th cells. A strategy to bypass this problem is to engage tumor-unrelated CD4 Th cells. Thus, CD4 T cells, regardless of their specificity per se, can boost CD8(+) CTL priming as long as the cognate epitopes are linked via presentation on the same dendritic cell. In this study, we assessed the therapeutic impact of engaging tumor-unrelated CD4 T cells during dual costimulation with CD134 plus CD137 that provide help via the above-mentioned classical linked pathway, as well as provide nonlinked help that facilitates CTL function in T cells not directly responding to cognate Ag. We found that engagement of tumor-unrelated CD4 Th cells dramatically boosted the ability of dual costimulation to control the growth of established B16 melanomas. Surprisingly, this effect depended upon a CD134-dependent component that was extrinsic to the tumor-unrelated CD4 T cells, suggesting that the dual costimulated helper cells are themselves helped by a CD134(+) cell(s). Nevertheless, the delivery of therapeutic help tracked with an increased frequency of tumor-infiltrating granzyme B(+) effector CD8 T cells and a reciprocal decrease in Foxp3(+)CD4(+) cell frequency. Notably, the tumor-unrelated CD4 Th cells also infiltrated the tumors, and their deletion several days following initial T cell priming negated their therapeutic impact. Taken together, dual costimulation programs tumor-unrelated CD4 T cells to deliver therapeutic help during both the priming and effector stages of the antitumor response. PMID:26561553

  12. Interleukin-21-Producing CD4(+) T Cells Promote Type 2 Immunity to House Dust Mites.

    PubMed

    Coquet, Jonathan M; Schuijs, Martijn J; Smyth, Mark J; Deswarte, Kim; Beyaert, Rudi; Braun, Harald; Boon, Louis; Karlsson Hedestam, Gunilla B; Nutt, Steven L; Hammad, Hamida; Lambrecht, Bart N

    2015-08-18

    Asthma is a T helper 2 (Th2)-cell-mediated disease; however, recent findings implicate Th17 and innate lymphoid cells also in regulating airway inflammation. Herein, we have demonstrated profound interleukin-21 (IL-21) production after house dust mite (HDM)-driven asthma by using T cell receptor (TCR) transgenic mice reactive to Dermatophagoides pteronyssinus 1 and an IL-21GFP reporter mouse. IL-21-producing cells in the mediastinal lymph node (mLN) bore characteristics of T follicular helper (Tfh) cells, whereas IL-21(+) cells in the lung did not express CXCR5 (a chemokine receptor expressed by Tfh cells) and were distinct from effector Th2 or Th17 cells. Il21r(-/-) mice developed reduced type 2 responses and the IL-21 receptor (IL-21R) enhanced Th2 cell function in a cell-intrinsic manner. Finally, administration of recombinant IL-21 and IL-25 synergistically promoted airway eosinophilia primarily via effects on CD4(+) lymphocytes. This highlights an important Th2-cell-amplifying function of IL-21-producing CD4(+) T cells in allergic airway inflammation.

  13. Immediate Dysfunction of Vaccine-Elicited CD8+ T Cells Primed in the Absence of CD4+ T Cells

    PubMed Central

    Provine, Nicholas M.; Larocca, Rafael A.; Aid, Malika; Penaloza-MacMaster, Pablo; Badamchi-Zadeh, Alexander; Borducchi, Erica N.; Yates, Kathleen B.; Abbink, Peter; Kirilova, Marinela; Ng’ang’a, David; Bramson, Jonathan; Haining, W. Nicholas

    2016-01-01

    CD4+ T cell help is critical for optimal CD8+ T cell memory differentiation and maintenance in many experimental systems. In addition, many reports have identified reduced primary CD8+ T cell responses in the absence of CD4+ T cell help, which often coincides with reduced Ag or pathogen clearance. In this study, we demonstrate that absence of CD4+ T cells at the time of adenovirus vector immunization of mice led to immediate impairments in early CD8+ T cell functionality and differentiation. Unhelped CD8+ T cells exhibited a reduced effector phenotype, decreased ex vivo cytotoxicity, and decreased capacity to produce cytokines. This dysfunctional state was imprinted within 3 d of immunization. Unhelped CD8+ T cells expressed elevated levels of inhibitory receptors and exhibited transcriptomic exhaustion and anergy profiles by gene set enrichment analysis. Dysfunctional, impaired effector differentiation also occurred following immunization of CD4+ T cell–deficient mice with a poxvirus vector. This study demonstrates that following priming with viral vectors, CD4+ T cell help is required to promote both the expansion and acquisition of effector functions by CD8+ T cells, which is accomplished by preventing immediate dysfunction. PMID:27448585

  14. A specific CD4 epitope bound by tregalizumab mediates activation of regulatory T cells by a unique signaling pathway.

    PubMed

    Helling, Bianca; König, Martin; Dälken, Benjamin; Engling, Andre; Krömer, Wolfgang; Heim, Katharina; Wallmeier, Holger; Haas, Jürgen; Wildemann, Brigitte; Fritz, Brigitte; Jonuleit, Helmut; Kubach, Jan; Dingermann, Theodor; Radeke, Heinfried H; Osterroth, Frank; Uherek, Christoph; Czeloth, Niklas; Schüttrumpf, Jörg

    2015-04-01

    CD4(+)CD25(+) regulatory T cells (Tregs) represent a specialized subpopulation of T cells, which are essential for maintaining peripheral tolerance and preventing autoimmunity. The immunomodulatory effects of Tregs depend on their activation status. Here we show that, in contrast to conventional anti-CD4 monoclonal antibodies (mAbs), the humanized CD4-specific monoclonal antibody tregalizumab (BT-061) is able to selectively activate the suppressive properties of Tregs in vitro. BT-061 activates Tregs by binding to CD4 and activation of signaling downstream pathways. The specific functionality of BT-061 may be explained by the recognition of a unique, conformational epitope on domain 2 of the CD4 molecule that is not recognized by other anti-CD4 mAbs. We found that, due to this special epitope binding, BT-061 induces a unique phosphorylation of T-cell receptor complex-associated signaling molecules. This is sufficient to activate the function of Tregs without activating effector T cells. Furthermore, BT-061 does not induce the release of pro-inflammatory cytokines. These results demonstrate that BT-061 stimulation via the CD4 receptor is able to induce T-cell receptor-independent activation of Tregs. Selective activation of Tregs via CD4 is a promising approach for the treatment of autoimmune diseases where insufficient Treg activity has been described. Clinical investigation of this new approach is currently ongoing. PMID:25512343

  15. Transient CD4+ T Cell Depletion Results in Delayed Development of Functional Vaccine-Elicited Antibody Responses

    PubMed Central

    Provine, Nicholas M.; Badamchi-Zadeh, Alexander; Bricault, Christine A.; Penaloza-MacMaster, Pablo; Larocca, Rafael A.; Borducchi, Erica N.; Seaman, Michael S.

    2016-01-01

    ABSTRACT We have recently demonstrated that CD4+ T cell help is required at the time of adenovirus (Ad) vector immunization for the development of functional CD8+ T cell responses, but the temporal requirement for CD4+ T cell help for the induction of antibody responses remains unclear. Here we demonstrate that induction of antibody responses in C57BL/6 mice can occur at a time displaced from the time of Ad vector immunization by depletion of CD4+ T cells. Transient depletion of CD4+ T cells at the time of immunization delays the development of antigen-specific antibody responses but does not permanently impair their development or induce tolerance against the transgene. Upon CD4+ T cell recovery, transgene-specific serum IgG antibody titers develop and reach a concentration equivalent to that in undepleted control animals. These delayed antibody responses exhibit no functional defects with regard to isotype, functional avidity, expansion after boosting immunization, or the capacity to neutralize a simian immunodeficiency virus (SIV) Env-expressing pseudovirus. The development of this delayed transgene-specific antibody response is temporally linked to the expansion of de novo antigen-specific CD4+ T cell responses, which develop after transient depletion of CD4+ T cells. These data demonstrate that functional vaccine-elicited antibody responses can be induced even if CD4+ T cell help is provided at a time markedly separated from the time of vaccination. IMPORTANCE CD4+ T cells have a critical role in providing positive help signals to B cells, which promote robust antibody responses. The paradigm is that helper signals must be provided immediately upon antigen exposure, and their absence results in tolerance against the antigen. Here we demonstrate that, in contrast to the current model that the absence of CD4+ T cell help at priming results in long-term antibody nonresponsiveness, antibody responses can be induced by adenovirus vector immunization or alum

  16. Neisseria gonorrhoeae suppresses dendritic cell-induced, antigen-dependent CD4 T cell proliferation.

    PubMed

    Zhu, Weiyan; Ventevogel, Melissa S; Knilans, Kayla J; Anderson, James E; Oldach, Laurel M; McKinnon, Karen P; Hobbs, Marcia M; Sempowski, Gregory D; Duncan, Joseph A

    2012-01-01

    Neisseria gonorrhoeae is the second most common sexually transmitted bacterial pathogen worldwide. Diseases associated with N. gonorrhoeae cause localized inflammation of the urethra and cervix. Despite this inflammatory response, infected individuals do not develop protective adaptive immune responses to N. gonorrhoeae. N. gonorrhoeae is a highly adapted pathogen that has acquired multiple mechanisms to evade its host's immune system, including the ability to manipulate multiple immune signaling pathways. N. gonorrhoeae has previously been shown to engage immunosuppressive signaling pathways in B and T lymphocytes. We have now found that N. gonorrhoeae also suppresses adaptive immune responses through effects on antigen presenting cells. Using primary, murine bone marrow-derived dendritic cells and lymphocytes, we show that N. gonorrhoeae-exposed dendritic cells fail to elicit antigen-induced CD4+ T lymphocyte proliferation. N. gonorrhoeae exposure leads to upregulation of a number of secreted and dendritic cell surface proteins with immunosuppressive properties, particularly Interleukin 10 (IL-10) and Programmed Death Ligand 1 (PD-L1). We also show that N. gonorrhoeae is able to inhibit dendritic cell- induced proliferation of human T-cells and that human dendritic cells upregulate similar immunosuppressive molecules. Our data suggest that, in addition to being able to directly influence host lymphocytes, N. gonorrhoeae also suppresses development of adaptive immune responses through interactions with host antigen presenting cells. These findings suggest that gonococcal factors involved in host immune suppression may be useful targets in developing vaccines that induce protective adaptive immune responses to this pathogen.

  17. CD4(+)B220(+)TCRγδ(+) T cells produce IL-17 in lupus-prone MRL/lpr mice.

    PubMed

    Qiu, Feng; Li, Tingting; Zhang, Kui; Wan, Jun; Qi, Xiaokun

    2016-09-01

    Systemic lupus erythematosus is an autoimmune disease with comprehensive immune cell disorders. Recent studies suggested that pro-inflammatory cytokine IL-17 plays important role in lupus, leaving the cellular sources and their pathogenic and physiologic characters largely unknown. In the current study, by using lupus-prone MRL/lpr mice, we demonstrated that Th17 response prevails in lupus disease regarding significantly accumulated serum IL-17, increased IL-17-producing splenocytes, and elevated phospho-STAT3 in CD4(+) T cells. Intracellular staining revealed that unusual CD4(+)B220(+) T cells are major IL-17-producing cells, whereas conventional CD4(+)B220(-) T cells are major IFN-γ-producing cells. Subsequent studies showed that CD4(+)B220(+) cells contains both αβ and γδ T cells in the spleen and thymus of MRL/lpr mice. Further study showed that around 60% of γδ T cells in MRL/lpr mice co-express both B220 and CD4 on their surface, and are the major RORγt(+) cells in MRL/lpr mice. Finally, CD4(+)B220(+) T cells alone do not proliferate, but could enhance the proliferation and IFN-γ-production of conventional CD4(+)B220(-) T cells. Our findings suggest the pathogenic role of unusual CD4(+)B220(+) T cells in lupus disease in MRL/lpr mice according to their IL-17-producing ability and stimulatory function for conventional CD4(+)B220(-) T cells. PMID:27235595

  18. Enhancement of activation-induced cell death by fibronectin in murine CD4+ CD8+ thymocytes.

    PubMed Central

    Takayama, E; Kina, T; Katsura, Y; Tadakuma, T

    1998-01-01

    Development of T cells in the thymus is achieved through the interactions of thymocytes with their microenvironments. This study focused on the function of fibronectin (FN), a major extracellular matrix molecule in the thymus, in the cell death induced by activation via the T-cell antigen receptor. FN alone did not increase cell death in murine thymocytes above the baseline level, but it significantly enhanced the cell death induced by fixed anti-CD3 monoclonal antibody (mAb), especially when a high concentration of anti-CD3 mAb was used. DNA fragmentation increased in parallel with cell death, indicating that cell death was a result of the apoptosis. Fluorescence-activated cell sorter (FACS) analysis revealed that the activation-induced cell death (AICD) caused by anti-CD3 mAb alone, or by a combination of anti-CD3 mAb and FN, occurred selectively in CD4+ CD8+ thymocytes. Very late activation antigen (VLA)-4 and VLA-5 are two major ligands to FN on thymocytes. The expression of both ligands was investigated at different stages of thymocyte development. VLA-4 was predominantly expressed at the CD4- CD8- stage, and thereafter the expression was reduced, whereas VLA-5 was constantly expressed during maturation. Furthermore, the enhancing effect by FN was inhibited in the presence of the Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) peptide but not in the presence of the connecting segment-1 (CS-1) peptide, suggesting that enhancement of AICD observed in CD4+ CD8+ thymocytes is mediated through VLA-5. Images Figure 1 Figure 5 PMID:9893044

  19. Innate PLZF+ CD4+ αβ T cells develop and expand in the absence of Itk1

    PubMed Central

    Prince, Amanda L.; Watkin, Levi B.; Yin, Catherine C.; Selin, Liisa K.; Kang, Joonsoo; Schwartzberg, Pamela L.; Berg, Leslie J.

    2014-01-01

    T cell development in the thymus produces multiple lineages of cells, including innate T cells. Studies in mice harboring alterations in TCR signaling proteins or transcriptional regulators have revealed an expanded population of CD4+ innate T cells in the thymus that produce IL-4 and express the transcription factor PLZF. In these mice, IL-4 produced by the CD4+ PLZF+ T cell population leads to the conversion of conventional CD8+ thymocytes into innate CD8+ T cells resembling memory T cells expressing Eomesodermin. The expression of PLZF, the signature iNKT cell transcription factor, in these innate CD4+ T cells suggests that they might be a subset of αβ or γδ TCR+ NKT cells or MAIT cells. To address these possibilities, we characterized the CD4+ PLZF+ innate T cells in itk-/- mice. We show that itk-/- innate PLZF+ CD4+ T cells are not CD1d-dependent NKT cells, MR1-dependent MAIT cells, nor γδ T cells. Further, although the itk-/- innate PLZF+ CD4+ T cells express αβ TCRs, neither β2m-dependent MHC class I nor any MHC class II molecules are required for their development. In contrast to iNKT cells and MAIT cells, this population has a highly diverse TCRα chain repertoire. Analysis of peripheral tissues indicates that itk-/- innate PLZF+ CD4+ T cells preferentially home to spleen and mesenteric lymph nodes due to increased expression of gut-homing receptors, and that their expansion is regulated by commensal gut flora. These data support the conclusion that itk-/- innate PLZF+ CD4+ T cells are a novel subset of innate T cells. PMID:24928994

  20. Defining CD4 T cell memory by the epigenetic landscape of CpG DNA methylation.

    PubMed

    Komori, H Kiyomi; Hart, Traver; LaMere, Sarah A; Chew, Pamela V; Salomon, Daniel R

    2015-02-15

    Memory T cells are primed for rapid responses to Ag; however, the molecular mechanisms responsible for priming remain incompletely defined. CpG methylation in promoters is an epigenetic modification, which regulates gene transcription. Using targeted bisulfite sequencing, we examined methylation of 2100 genes (56,000 CpGs) mapped by deep sequencing of T cell activation in human naive and memory CD4 T cells. Four hundred sixty-six CpGs (132 genes) displayed differential methylation between naive and memory cells. Twenty-one genes exhibited both differential methylation and gene expression before activation, linking promoter DNA methylation states to gene regulation; 6 of 21 genes encode proteins closely studied in T cells, whereas 15 genes represent novel targets for further study. Eighty-four genes demonstrated differential methylation between memory and naive cells that correlated to differential gene expression following activation, of which 39 exhibited reduced methylation in memory cells coupled with increased gene expression upon activation compared with naive cells. These reveal a class of primed genes more rapidly expressed in memory compared with naive cells and putatively regulated by DNA methylation. These findings define a DNA methylation signature unique to memory CD4 T cells that correlates with activation-induced gene expression.

  1. Docosahexaenoic acid reduces suppressive and migratory functions of CD4CD25 regulatory T-cells

    PubMed Central

    Yessoufou, Akadiri; Plé, Aude; Moutairou, Kabirou; Hichami, Aziz; Khan, Naim Akhtar

    2009-01-01

    Immunological tolerance is one of the fundamental aspects of the immune system. The CD4+CD25+ regulatory T (Treg) cells have emerged as key players in the development of tolerance to self and foreign antigens. However, little is known about the endogenous factors and mechanisms controlling their suppressive capacity on immune response. In this study, we observed that docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, diminished, in a dose-dependent manner, the capacity of Treg cells to inhibit the CD4+CD25− effector T-cell proliferation. DHA not only reduced the migration of Treg cells toward chemokines but also downregulated the mRNA expression of CCR-4 and CXCR-4 in Treg cells. DHA also curtailed ERK1/2 and Akt phosphorylation and downregulated the Smad7 levels in these cells. Contradictorily, DHA upregulated the mRNA expression of Foxp3, CTLA-4, TGF-β, and IL-10; nonetheless, this fatty acid increased the expression of p27KIP1 mRNA, known to be involved in Treg cell unresponsiveness. In Foxp3-immunoprepitated nuclear proteins, DHA upregulated histone desacetylase 7 levels that would again participate in the unresposnsiveness of these cells. Finally, a DHA-enriched diet also diminished, ex vivo, the suppressive capacity of Treg cells. Altogether, these results suggest that DHA, by diminishing Treg cell functions, may play a key role in health and disease. PMID:19561360

  2. Defining CD4 T cell memory by the epigenetic landscape of CpG DNA methylation.

    PubMed

    Komori, H Kiyomi; Hart, Traver; LaMere, Sarah A; Chew, Pamela V; Salomon, Daniel R

    2015-02-15

    Memory T cells are primed for rapid responses to Ag; however, the molecular mechanisms responsible for priming remain incompletely defined. CpG methylation in promoters is an epigenetic modification, which regulates gene transcription. Using targeted bisulfite sequencing, we examined methylation of 2100 genes (56,000 CpGs) mapped by deep sequencing of T cell activation in human naive and memory CD4 T cells. Four hundred sixty-six CpGs (132 genes) displayed differential methylation between naive and memory cells. Twenty-one genes exhibited both differential methylation and gene expression before activation, linking promoter DNA methylation states to gene regulation; 6 of 21 genes encode proteins closely studied in T cells, whereas 15 genes represent novel targets for further study. Eighty-four genes demonstrated differential methylation between memory and naive cells that correlated to differential gene expression following activation, of which 39 exhibited reduced methylation in memory cells coupled with increased gene expression upon activation compared with naive cells. These reveal a class of primed genes more rapidly expressed in memory compared with naive cells and putatively regulated by DNA methylation. These findings define a DNA methylation signature unique to memory CD4 T cells that correlates with activation-induced gene expression. PMID:25576597

  3. Docosahexaenoic acid reduces suppressive and migratory functions of CD4+CD25+ regulatory T-cells.

    PubMed

    Yessoufou, Akadiri; Plé, Aude; Moutairou, Kabirou; Hichami, Aziz; Khan, Naim Akhtar

    2009-12-01

    Immunological tolerance is one of the fundamental aspects of the immune system. The CD4(+)CD25(+) regulatory T (Treg) cells have emerged as key players in the development of tolerance to self and foreign antigens. However, little is known about the endogenous factors and mechanisms controlling their suppressive capacity on immune response. In this study, we observed that docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, diminished, in a dose-dependent manner, the capacity of Treg cells to inhibit the CD4(+)CD25(-) effector T-cell proliferation. DHA not only reduced the migration of Treg cells toward chemokines but also downregulated the mRNA expression of CCR-4 and CXCR-4 in Treg cells. DHA also curtailed ERK1/2 and Akt phosphorylation and downregulated the Smad7 levels in these cells. Contradictorily, DHA upregulated the mRNA expression of Foxp3, CTLA-4, TGF-beta, and IL-10; nonetheless, this fatty acid increased the expression of p27(KIP1) mRNA, known to be involved in Treg cell unresponsiveness. In Foxp3-immunoprepitated nuclear proteins, DHA upregulated histone desacetylase 7 levels that would again participate in the unresposnsiveness of these cells. Finally, a DHA-enriched diet also diminished, ex vivo, the suppressive capacity of Treg cells. Altogether, these results suggest that DHA, by diminishing Treg cell functions, may play a key role in health and disease.

  4. Self-tolerance eliminates CD4+ T, but not CD8+ T or B, cells corrupting cancer immunotherapy

    PubMed Central

    Snook, Adam E.; Magee, Michael S.; Schulz, Stephanie; Waldman, Scott A.

    2014-01-01

    Self-tolerance, presumably through elimination of all lineages of self antigen-specific lymphocytes (CD4+ T, CD8+ T and B cells), creates a formidable barrier to cancer immunotherapy. In contrast to this prevailing paradigm, we demonstrate that for some antigens self-tolerance reflects selective elimination of antigen-specific CD4+ T, but preservation of CD8+ T and B, cell populations. Antigen-specific CD4+ T cell tolerance is the primary mechanism restricting immunotherapeutic responses to the endogenous self antigen guanylyl cyclase c (GUCY2C) in colorectal cancer. Although CD4+ T cell tolerance blocks antitumor immunity, it offers a unique solution to the inefficacy of cancer vaccines through recruitment of self antigen-independent CD4+ T cell help. Incorporating foreign antigen-specific MHC class II epitopes into self antigen-targeted vaccines against GUCY2C, as well as vaccines targeting endogenous self antigens in melanoma and breast cancer, reconstituted CD4+ T cell help, revealing the latent functional capacity of self antigen-specific CD8+ T and B cell pools, producing durable antitumor immunity without autoimmunity. Identification of self antigens characterized by selective CD4+ T cell tolerance and abrogation of such tolerance through self antigen-independent T cell help is essential for future immunotherapeutic strategies. PMID:24771148

  5. Preexisting Levels of CD4 T Cells Expressing PD-1 Are Related to Overall Survival in Prostate Cancer Patients Treated with Ipilimumab.

    PubMed

    Kwek, Serena S; Lewis, Jera; Zhang, Li; Weinberg, Vivian; Greaney, Samantha K; Harzstark, Andrea L; Lin, Amy M; Ryan, Charles J; Small, Eric J; Fong, Lawrence

    2015-09-01

    Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) blockade can induce tumor regression and improved survival in cancer patients. This treatment can enhance adaptive immune responses without an exogenous vaccine, but the immunologic biomarkers associated with improved clinical outcome in cancer patients are not fully established. A phase Ib trial in patients with metastatic, castration-resistant prostate cancer was performed combining ipilimumab with sargramostim (GM-CSF). In addition to evaluating ipilimumab dose, patients were followed clinically for response and overall survival, and for immunomodulation of circulating T cells. PSA declines of ≥50% and radiographic responses were observed at doses of ≥3 mg/kg/dose. Timing of clinical responses could be either immediate or delayed. Durable responses were also observed off treatment. A subset of patients experienced long-term survival with or without objective clinical responses. The relationship between T-cell phenotype in peripheral blood and overall survival was examined retrospectively. We found that the treatment induced an increase in the levels of CD4(+) effector T (Teff) cells, regulatory T cells, PD-1(+) CD4 Teff cells, and PD-1(+) CD8 T cells. However, these increased levels were not associated with overall survival. Instead, low pretreatment baseline levels of PD-1(+) CD4 Teff cells were found to correlate with longer overall survival. Furthermore, baseline levels of PD-1(+) CD4 Teff cells from patients with shorter overall survival were higher than from cancer-free male control subjects. These results suggest that preexisting expression of immunologic checkpoint marker PD-1 on CD4 Teff cells may help identify patients that may benefit from ipilimumab treatment. PMID:25968455

  6. Circulating subsets and CD4(+)CD25(+) regulatory T cell function in chronic inflammatory demyelinating polyradiculoneuropathy.

    PubMed

    Sanvito, Lara; Makowska, Anna; Gregson, Norman; Nemni, Raffaello; Hughes, Richard A C

    2009-01-01

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an inflammatory disease of the peripheral nervous system that is probably autoimmune in origin. Different components of the adaptive and innate immunity may be responsible for the aberrant response towards nerve antigens. To investigate this, we examined lymphocyte subsets and regulatory T cell (Treg) function in the blood of CIDP patients, healthy controls (HC) and subjects with non-immune mediated neuropathies (other neuropathies, ON). We used flow cytometry to determine the frequency of monocytes, B cells, natural killer (NK) and NK-T cells, total and activated CD4(+) and CD8(+) T cells, effector memory and central memory CD4(+) and CD8(+) T cells, and CD4(+)CD25(high)Foxp3(+) Tregs. Treg function was studied after polyclonal stimulation and antigen specific stimulation with myelin protein peptides in CIDP and HC. There was an increased frequency of monocytes (p = 0.02) and decreased frequency of NK cells (p = 0.02) in CIDP compared with HC but not ON. There were no significant differences in other populations. Treg function was impaired in CIDP compared to HC (p = 0.02), whilst T cell proliferation to myelin protein peptides before and after depletion of Tregs was not different between patients and controls. This study shows increased circulating monocytes and reduced NK cells in CIDP. Although Treg frequency was not altered, we confirm that Tregs display a defect of suppressive function. Myelin protein peptides were not the target of the altered peripheral regulation of the immune response. The mechanisms of peripheral immune tolerance in CIDP and their relevance to the pathogenesis deserve further exploration.

  7. Allergic Sensitization Underlies Hyperreactive Antigen-Specific CD4+ T Cell Responses in Coincident Filarial Infection.

    PubMed

    Gazzinelli-Guimarães, Pedro H; Bonne-Année, Sandra; Fujiwara, Ricardo T; Santiago, Helton C; Nutman, Thomas B

    2016-10-01

    Among the various hypotheses put forward to explain the modulatory influence of helminth infection on allergic effector responses in humans, the IL-10-induced suppression of Th2-associated responses has been the leading candidate. To explore this helminth/allergy interaction more fully, parasite- and allergen-specific CD4(+) T cell responses in 12 subjects with filarial infections, and coincident allergic sensitization (filarial [Fil](+)allergy [A](+)) were compared with the responses to three appropriate control groups (Fil(-)A(-) [n = 13], Fil(-)A(+) [n = 12], Fil(+)A(-) [n = 11]). The most important findings revealed that Fil(+)A(+) had marked (p < 0.0001 for all cytokines) increases in parasite Ag-driven Th2 (IL-4, IL-5, IL-13), Th9 (IL-9), and the regulatory (IL-10) cytokines when compared with Fil(+)A(-) Moreover, using multiparameter flow cytometry, filarial parasite Ag induced a marked increase in not only the frequency of CD4(+) T cells producing IL-4, IL-5, IL-2, and TNF-α in Fil(+)A(+) when compared with Fil(+)A(-) patients, but also in the frequencies of polyfunctional Th2-like (CD4(+)IL-4(+)IL-5(+) and CD4(+)IL-2(+)IL-4(+)IL-5(+)TNF-α(+)) cells. The Th2-associated responses seen in the Fil(+)A(+) group were correlated with serum IgE levels (p < 0.01, r = 0.5165 for IL-4; p < 0.001, r = 0.5544 for IL-5; and p < 0.001, r = 0.4901 for IL-13) and levels of circulating eosinophils (p < 0.0116, r = 0.5656) and their degranulation/activation products (major basic protein [p < 0.001, r = 0.7353] and eosinophil-derived neurotoxin [p < 0.01, r = 0.7059]). CD4(+) responses to allergen were not different (to a large extent) among the groups. Taken together, our data suggest that allergic sensitization coincident with filarial infection drives parasite Ag-specific T cell hyperresponsiveness, which is characterized largely by an augmented Th2-dominated immune response. PMID:27566825

  8. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections

    PubMed Central

    Paiardini, Mirko; Knox, Kenneth S.; Asher, Ava I.; Cervasi, Barbara; Asher, Tedi E.; Scheinberg, Phillip; Price, David A.; Hage, Chadi A.; Kholi, Lisa M.; Khoruts, Alexander; Frank, Ian; Else, James; Schacker, Timothy; Silvestri, Guido

    2008-01-01

    Acute HIV infection is characterized by massive loss of CD4 T cells from the gastrointestinal (GI) tract. Th17 cells are critical in the defense against microbes, particularly at mucosal surfaces. Here we analyzed Th17 cells in the blood, GI tract, and broncheoalveolar lavage of HIV-infected and uninfected humans, and SIV-infected and uninfected sooty mangabeys. We found that (1) human Th17 cells are specific for extracellular bacterial and fungal antigens, but not common viral antigens; (2) Th17 cells are infected by HIV in vivo, but not preferentially so; (3) CD4 T cells in blood of HIV-infected patients are skewed away from a Th17 phenotype toward a Th1 phenotype with cellular maturation; (4) there is significant loss of Th17 cells in the GI tract of HIV-infected patients; (5) Th17 cells are not preferentially lost from the broncheoalveolar lavage of HIV-infected patients; and (6) SIV-infected sooty mangabeys maintain healthy frequencies of Th17 cells in the blood and GI tract. These observations further elucidate the immunodeficiency of HIV disease and may provide a mechanistic basis for the mucosal barrier breakdown that characterizes HIV infection. Finally, these data may help account for the nonprogressive nature of nonpathogenic SIV infection in sooty mangabeys. PMID:18664624

  9. In Vivo Identification and Characterization of CD4+ Cytotoxic T Cells Induced by Virulent Brucella abortus Infection

    PubMed Central

    Martirosyan, Anna; Von Bargen, Kristine; Arce Gorvel, Vilma; Zhao, Weidong; Hanniffy, Sean; Bonnardel, Johnny; Méresse, Stéphane; Gorvel, Jean-Pierre

    2013-01-01

    CD4+ T cells display a variety of helper functions necessary for an efficient adaptive immune response against bacterial invaders. This work reports the in vivo identification and characterization of murine cytotoxic CD4+ T cells (CD4+ CTL) during Brucella abortus infection. These CD4+ CTLs express granzyme B and exhibit immunophenotypic features consistent with fully differentiated T cells. They express CD25, CD44, CD62L ,CD43 molecules at their surface and produce IFN-γ. Moreover, these cells express neither the co-stimulatory molecule CD27 nor the memory T cell marker CD127. We show here that CD4+ CTLs are capable of cytolytic action against Brucella-infected antigen presenting cells (APC) but not against Mycobacterium-infected APC. Cytotoxic CD4+ T cell population appears at early stages of the infection concomitantly with high levels of IFN-γ and granzyme B expression. CD4+ CTLs represent a so far uncharacterized immune cell sub-type triggered by early immune responses upon Brucella abortus infection. PMID:24367519

  10. Granzyme B Contributes to the Optimal Graft-Versus-Tumor Effect Mediated by Conventional CD4+ T Cells

    PubMed Central

    Du, Wei; Leigh, Nicholas D.; Bian, Guanglin; Alqassim, Emad; O'Neill, Rachel E.; Mei, Lin; Qiu, Jingxin; Liu, Hong; McCarthy, Philip L.; Cao, Xuefang

    2016-01-01

    Granzyme B (GzmB) is a key cytotoxic molecule utilized by T cells to kill pathogen-infected cells or transformed tumor cells. Previous studies using allogeneic hematopoietic cell transplantation (allo-HCT) murine models showed that GzmB is required for CD8+ T cells to cause graft-versus-host disease (GVHD). However, our recent study demonstrated that GzmB-mediated damage of CD8+ T cells diminished their graft-versus-tumor (GVT) activity. In this study, we examined the role of GzmB in GVT effect mediated by conventional CD4+CD25− T cells (CD4+ Tcon). GzmB−/−CD4+ Tcon cells exhibited decreased GVT activity compared to wild-type (WT) CD4+ Tcon cells, suggesting that GzmB is required for the optimal GVT activity of CD4+ Tcon cells. On the other hand, GzmB−/− CD4+CD25+ regulatory T cells were as suppressive as WT regulatory T cells in suppressing GVT activity, which is consistent with our previous report showing that GzmB is not required for regulatory T cell-mediated suppression of GVHD. These results demonstrate that GzmB causes opposite impacts on GVT effect mediated by CD4+CD25− versus CD8+ T cells. Interestingly, GzmB−/− total T cells exhibited GVT activity equivalent to that of WT total T cells, suggesting that the opposite impacts of GzmB on the GVT effect of CD4+CD25− versus CD8+ T cells may neutralize each other, which can only be observed when an individual T cell subset is examined. Importantly, these differential roles suggest that targeting GzmB in selective T cell subsets may have the potential to enhance the beneficial GVT effect.

  11. Attenuation of graft-versus-host-disease in NOD scid IL-2Rγ(-/-) (NSG) mice by ex vivo modulation of human CD4(+) T cells.

    PubMed

    Hilger, Nadja; Glaser, Jakob; Müller, Claudia; Halbich, Christoph; Müller, Anne; Schwertassek, Ulla; Lehmann, Jörg; Ruschpler, Peter; Lange, Franziska; Boldt, Andreas; Stahl, Lilly; Sack, Ulrich; Oelkrug, Christopher; Emmrich, Frank; Fricke, Stephan

    2016-09-01

    NOD.Cg-Prkdc(scid) IL-2rg(tm1Wjl) /SzJ (NSG) mice are a valuable tool for studying Graft-versus-Host-Disease (GvHD) induced by human immune cells. We used a model of acute GvHD by transfer of human peripheral blood mononuclear cells (PBMCs) into NSG mice. The severity of GvHD was reflected by weight loss and was associated with engraftment of human cells and the expansion of leukocytes, particularly granulocytes and monocytes. Pre-treatment of PBMCs with the anti-human CD4 antibody MAX.16H5 IgG1 or IgG4 attenuated GvHD. The transplantation of 2 × 10(7) PBMCs without anti-human CD4 pre-treatment induced a severe GvHD (0% survival). In animals receiving 2 × 10(7) PBMCs pre-incubated with MAX.16H5 IgG1 or IgG4, GvHD development was reduced and survival was increased. Immune reconstitution was measured by flow cytometry and confirmed for human leukocytes (CD45), CD3(+) /CD8(+) cytotoxic T cells and CD3(+) /CD4(+) T helper cells. Human B cells (CD19) and monocytes (CD14) could not be detected. Histopathological analysis (TUNEL assay) of the gut of recipient animals showed significantly less apoptotic crypt cells in animals receiving a MAX.16H5 IgG1 pre-incubated graft. These findings indicate that pre-incubation of an allogeneic graft with an anti-human CD4 antibody may decrease the frequency and severity of GvHD after hematopoietic stem cell transplantation (HSCT) and the need of conventional immunosuppressive drugs. Moreover, this approach most probably provides a safer HSCT that must be confirmed in appropriate clinical trials in the future. © 2016 International Society for Advancement of Cytometry. PMID:27560708

  12. Inflammatory monocytes are potent antitumor effectors controlled by regulatory CD4+ T cells

    PubMed Central

    Pommier, Arnaud; Audemard, Alexandra; Durand, Aurélie; Lengagne, Renée; Delpoux, Arnaud; Martin, Bruno; Douguet, Laetitia; Le Campion, Armelle; Kato, Masashi; Avril, Marie-Françoise; Auffray, Cédric; Lucas, Bruno; Prévost-Blondel, Armelle

    2013-01-01

    The present study evaluates the impact of immune cell populations on metastatic development in a model of spontaneous melanoma [mice expressing the human RET oncogene under the control of the metallothionein promoter (MT/ret mice)]. In this model, cancer cells disseminate early but remain dormant for several weeks. Then, MT/ret mice develop cutaneous metastases and, finally, distant metastases. A total of 35% of MT/ret mice develop a vitiligo, a skin depigmentation attributable to the lysis of normal melanocytes, associated with a delay in tumor progression. Here, we find that regulatory CD4+ T cells accumulate in the skin, the spleen, and tumor-draining lymph nodes of MT/ret mice not developing vitiligo. Regulatory T-cell depletion and IL-10 neutralization led to increased occurrence of vitiligo that correlated with a decreased incidence of melanoma metastases. In contrast, inflammatory monocytes/dendritic cells accumulate in the skin of MT/ret mice with active vitiligo. Moreover, they inhibit tumor cell proliferation in vitro through a reactive oxygen species-dependent mechanism, and both their depletion and reactive oxygen species neutralization in vivo increased tumor cell dissemination. Altogether, our data suggest that regulatory CD4+ T cells favor tumor progression, in part, by inhibiting recruitment and/or differentiation of inflammatory monocytes in the skin. PMID:23878221

  13. Friend of GATA-1 Represses GATA-3–dependent Activity in CD4+ T Cells

    PubMed Central

    Zhou, Meixia; Ouyang, Wenjun; Gong, Qian; Katz, Samuel G.; White, J. Michael; Orkin, Stuart H.; Murphy, Kenneth M.

    2001-01-01

    The development of naive CD4+ T cells into a T helper (Th) 2 subset capable of producing interleukin (IL)-4, IL-5, and IL-13 involves a signal transducer and activator of transcription (Stat)6-dependent induction of GATA-3 expression, followed by Stat6-independent GATA-3 autoactivation. The friend of GATA (FOG)-1 protein regulates GATA transcription factor activity in several stages of hematopoietic development including erythrocyte and megakaryocyte differentiation, but whether FOG-1 regulates GATA-3 in T cells is uncertain. We show that FOG-1 can repress GATA-3–dependent activation of the IL-5 promoter in T cells. Also, FOG-1 overexpression during primary activation of naive T cells inhibited Th2 development in CD4+ T cells. FOG-1 fully repressed GATA-3–dependent Th2 development and GATA-3 autoactivation, but not Stat6-dependent induction of GATA-3. FOG-1 overexpression repressed development of Th2 cells from naive T cells, but did not reverse the phenotype of fully committed Th2 cells. Thus, FOG-1 may be one factor capable of regulating the Th2 development. PMID:11714753

  14. A Subset of CD4/CD8 Double-Negative T Cells Expresses HIV Proteins in Patients on Antiretroviral Therapy

    PubMed Central

    DeMaster, Laura K.; Liu, Xiaohe; VanBelzen, D. Jake; Trinité, Benjamin; Zheng, Lingjie; Agosto, Luis M.; Migueles, Stephen A.; Connors, Mark; Sambucetti, Lidia; Levy, David N.; Pasternak, Alexander O.

    2015-01-01

    ABSTRACT A major goal in HIV eradication research is characterizing the reservoir cells that harbor HIV in the presence of antiretroviral therapy (ART), which reseed viremia after treatment is stopped. In general, it is assumed that the reservoir consists of CD4+ T cells that express no viral proteins. However, recent findings suggest that this may be an overly simplistic view and that the cells that contribute to the reservoir may be a diverse population that includes both CD4+ and CD4cells. In this study, we directly infected resting CD4+ T cells and used fluorescence-activated cell sorting (FACS) and fiber-optic array scanning technology (FAST) to identify and image cells expressing HIV Gag. We found that Gag expression from integrated proviruses occurred in resting cells that lacked surface CD4, likely resulting from Nef- and Env-mediated receptor internalization. We also extended our approach to detect cells expressing HIV proteins in patients suppressed on ART. We found evidence that rare Gag+ cells persist during ART and that these cells are often negative for CD4. We propose that these double-negative α/β T cells that express HIV protein may be a component of the long-lived reservoir. IMPORTANCE A reservoir of infected cells persists in HIV-infected patients during antiretroviral therapy (ART) that leads to rebound of virus if treatment is stopped. In this study, we used flow cytometry and cell imaging to characterize protein expression in HIV-infected resting cells. HIV Gag protein can be directly detected in infected resting cells and occurs with simultaneous loss of CD4, consistent with the expression of additional viral proteins, such as Env and Nef. Gag+ CD4cells can also be detected in suppressed patients, suggesting that a subset of infected cells express proteins during ART. Understanding the regulation of viral protein expression during ART will be key to designing effective strategies to eradicate HIV reservoirs. PMID:26537682

  15. Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies.

    PubMed

    Abela, Irene A; Berlinger, Livia; Schanz, Merle; Reynell, Lucy; Günthard, Huldrych F; Rusert, Peter; Trkola, Alexandra

    2012-01-01

    HIV is known to spread efficiently both in a cell-free state and from cell to cell, however the relative importance of the cell-cell transmission mode in natural infection has not yet been resolved. Likewise to what extent cell-cell transmission is vulnerable to inhibition by neutralizing antibodies and entry inhibitors remains to be determined. Here we report on neutralizing antibody activity during cell-cell transmission using specifically tailored experimental strategies which enable unambiguous discrimination between the two transmission routes. We demonstrate that the activity of neutralizing monoclonal antibodies (mAbs) and entry inhibitors during cell-cell transmission varies depending on their mode of action. While gp41 directed agents remain active, CD4 binding site (CD4bs) directed inhibitors, including the potent neutralizing mAb VRC01, dramatically lose potency during cell-cell transmission. This implies that CD4bs mAbs act preferentially through blocking free virus transmission, while still allowing HIV to spread through cell-cell contacts. Thus providing a plausible explanation for how HIV maintains infectivity and rapidly escapes potent and broadly active CD4bs directed antibody responses in vivo. PMID:22496655

  16. The Regulation of CD4(+) T Cell Responses during Protozoan Infections.

    PubMed

    Engwerda, Christian R; Ng, Susanna S; Bunn, Patrick T

    2014-01-01

    CD4(+) T cells are critical for defense against protozoan parasites. Intracellular protozoan parasite infections generally require the development of a Th1 cell response, characterized by the production of IFNγ and TNF that are critical for the generation of microbicidal molecules by phagocytes, as well as the expression of cytokines and cell surface molecules needed to generate cytolytic CD8(+) T cells that can recognize and kill infected host cells. Over the past 25 years, much has been learnt about the molecular and cellular components necessary for the generation of Th1 cell responses, and it has become clear that these responses need to be tightly controlled to prevent disease. However, our understanding of the immunoregulatory mechanisms activated during infection is still not complete. Furthermore, it is apparent that although these mechanisms are critical to prevent inflammation, they can also promote parasite persistence and development of disease. Here, we review how CD4(+) T cells are controlled during protozoan infections and how these regulatory mechanisms can influence parasite growth and disease outcome.

  17. Ectonucleotidase activity and immunosuppression in astrocyte-CD4 T cell bidirectional signaling

    PubMed Central

    Filipello, Fabia; Romagnani, Andrea; Mazzitelli, Sonia; Matteoli, Michela; Verderio, Claudia; Grassi, Fabio

    2016-01-01

    Astrocytes play a crucial role in neuroinflammation as part of the glia limitans, which regulates infiltration of the brain parenchyma by leukocytes. The signaling pathways and molecular events, which result from the interaction of activated T cells with astrocytes are poorly defined. Here we show that astrocytes promote the expression and enzymatic activity of CD39 and CD73 ectonucleotidases in recently activated CD4 cells by a contact dependent mechanism that is independent of T cell receptor interaction with class II major histocompatibility complex (MHC). Transforming growth factor-β (TGF-β) is robustly upregulated and sufficient to promote ectonucleotidases expression. T cell adhesion to astrocyte results in differentiation to an immunosuppressive phenotype defined by expression of the transcription factor Rorγt, which characterizes the CD4 T helper 17 subset. CD39 activity in T cells in turn inhibits spontaneous calcium oscillations in astrocytes that correlated with enhanced and reduced transcription of CCL2 chemokine and Sonic hedgehog (Shh), respectively. We hypothesize this TCR-independent interaction promote an immunosuppressive program in T cells to control possible brain injury by deregulated T cell activation during neuroinflammation. On the other hand, the increased secretion of CCL2 with concomitant reduction of Shh might promote leukocytes extravasation into the brain parenchyma. PMID:26784253

  18. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection

    PubMed Central

    Glennie, Nelson D.; Yeramilli, Venkata A.; Beiting, Daniel P.; Volk, Susan W.; Weaver, Casey T.

    2015-01-01

    Leishmaniasis causes a significant disease burden worldwide. Although Leishmania-infected patients become refractory to reinfection after disease resolution, effective immune protection has not yet been achieved by human vaccines. Although circulating Leishmania-specific T cells are known to play a critical role in immunity, the role of memory T cells present in peripheral tissues has not been explored. Here, we identify a population of skin-resident Leishmania-specific memory CD4+ T cells. These cells produce IFN-γ and remain resident in the skin when transplanted by skin graft onto naive mice. They function to recruit circulating T cells to the skin in a CXCR3-dependent manner, resulting in better control of the parasites. Our findings are the first to demonstrate that CD4+ TRM cells form in response to a parasitic infection, and indicate that optimal protective immunity to Leishmania, and thus the success of a vaccine, may depend on generating both circulating and skin-resident memory T cells. PMID:26216123

  19. Functional Heterogeneity in CD4(+) T Cell Responses Against a Bacterial Pathogen.

    PubMed

    Milam, Ashley Viehmann; Allen, Paul M

    2015-01-01

    To investigate how CD4(+) T cells function against a bacterial pathogen, we generated a Listeria monocytogenes-specific CD4(+) T cell model. In this system, two TCRtg mouse lines, LLO56 and LLO118, recognize the same immunodominant epitope (LLO190-205) of L. monocytogenes and have identical in vitro responses. However, in vivo LLO56 and LLO118 display vastly different responses during both primary and secondary infection. LLO118 dominates in the primary response and in providing CD8 T cell help. LLO56 predominates in the secondary response. We have also shown that both specific [T cell receptor (TCR)-mediated] and non-specific stimuli (bypassing the TCR) elicit distinct responses from the two transgenics, leading us to conclude that the strength of self-pMHC signaling during development tightly dictates the cell's future response in the periphery. Herein, we review our findings in this transfer system, focusing on the contribution of the immunomodulatory molecule CD5 and the importance of self-interaction in peripheral maintenance of the cell. We also discuss the manner in which individual TCR affinities to foreign and self-pMHC contribute to the outcome of an immune response; our assertion is that there exists a spectrum of possible T cell responses to recognition of cognate antigen during infection, adding immense diversity to the immune system's response to pathogens. PMID:26697015

  20. Increased expression of CCL4/MIP-1β in CD8+ cells and CD4+ cells in sarcoidosis.

    PubMed

    Barczyk, A; Pierzchała, E; Caramori, G; Sozańska, E

    2014-01-01

    Sarcoidosis is a granulomatous disease with an increased accumulation of T cells in lungs as a result of on-site proliferation and chemotaxis induced by chemokines. It has already been demonstrated that CCL3-5 levels were increased in BAL fluid of sarcoidosis patients. To analyze the expression of CCL3-5 chemokines by T-cell subtypes (CD4+, CD8+, Th1, Th2, Tc1 or Tc2) in the lungs of sarcoidosis patients, fifteen untreated sarcoidosis patients and eighteen control subjects were enrolled in this study. CD4+ and CD8+ cells were isolated from BAL fluid by positive magnetic selection. The expression of CCL3-5 and other cytokines in CD4+ and CD8+ cells were measured by flow cytometry. The percentage of CD4+ or CD8+ cells expressing CCL4 were significantly higher in sarcoidosis patients (22.3% and 58.1%) compared to those seen in healthy subjects (11.1% and 16.5%, P = 0.04 and P = 0.02, respectively). In addition, the expression of CCL3, CCL4 and CCL5 was significantly elevated in CD8+ cells (8.9%, 58.1% and 2.1%) compared to CD4+ cells (2.1%, 22.3% and 0.7%; P = 0.04, P = 0.009 and P = 0.04, respectively), whereas CCL4 was expressed by significantly more Tc1 than Th1 cells in sarcoidosis patients (P = 0.006). Our study shows the possible role of CD8+ cells and CD4+ cells in recruiting T cells to the site of inflammation in sarcoidosis through the release of CCL4, either alone or together with Th1/Tc1-associated cytokines.

  1. A differential equation model of HIV infection of CD4+ T-cells with cure rate

    NASA Astrophysics Data System (ADS)

    Zhou, Xueyong; Song, Xinyu; Shi, Xiangyun

    2008-06-01

    A differential equation model of HIV infection of CD4+ T-cells with cure rate is studied. We prove that if the basic reproduction number R0<1, the HIV infection is cleared from the T-cell population and the disease dies out; if R0>1, the HIV infection persists in the host. We find that the chronic disease steady state is globally asymptotically stable if R0>1. Furthermore, we also obtain the conditions for which the system exists an orbitally asymptotically stable periodic solution. Numerical simulations are presented to illustrate the results.

  2. A microfluidic device for practical label-free CD4(+) T cell counting of HIV-infected subjects.

    PubMed

    Cheng, Xuanhong; Irimia, Daniel; Dixon, Meredith; Sekine, Kazuhiko; Demirci, Utkan; Zamir, Lee; Tompkins, Ronald G; Rodriguez, William; Toner, Mehmet

    2007-02-01

    Practical HIV diagnostics are urgently needed in resource-limited settings. While HIV infection can be diagnosed using simple, rapid, lateral flow immunoassays, HIV disease staging and treatment monitoring require accurate counting of a particular white blood cell subset, the CD4(+) T lymphocyte. To address the limitations of current expensive, technically demanding and/or time-consuming approaches, we have developed a simple CD4 counting microfluidic device. This device uses cell affinity chromatography operated under differential shear flow to specifically isolate CD4(+) T lymphocytes with high efficiency directly from 10 microliters of unprocessed, unlabeled whole blood. CD4 counts are obtained under an optical microscope in a rapid, simple and label-free fashion. CD4 counts determined in our device matched measurements by conventional flow cytometry among HIV-positive subjects over a wide range of absolute CD4 counts (R(2) = 0.93). This CD4 counting microdevice can be used for simple, rapid and affordable CD4 counting in point-of-care and resource-limited settings. PMID:17268618

  3. CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120IIIB binding to the cell surface

    PubMed Central

    Martínez-Muñoz, Laura; Barroso, Rubén; Dyrhaug, Sunniva Y.; Navarro, Gemma; Lucas, Pilar; Soriano, Silvia F.; Vega, Beatriz; Costas, Coloma; Muñoz-Fernández, M. Ángeles; Santiago, César; Frade, José Miguel Rodríguez; Franco, Rafael; Mellado, Mario

    2014-01-01

    CCR5 and CXCR4, the respective cell surface coreceptors of R5 and X4 HIV-1 strains, both form heterodimers with CD4, the principal HIV-1 receptor. Using several resonance energy transfer techniques, we determined that CD4, CXCR4, and CCR5 formed heterotrimers, and that CCR5 coexpression altered the conformation of both CXCR4/CXCR4 homodimers and CD4/CXCR4 heterodimers. As a result, binding of the HIV-1 envelope protein gp120IIIB to the CD4/CXCR4/CCR5 heterooligomer was negligible, and the gp120-induced cytoskeletal rearrangements necessary for HIV-1 entry were prevented. CCR5 reduced HIV-1 envelope-induced CD4/CXCR4-mediated cell-cell fusion. In nucleofected Jurkat CD4 cells and primary human CD4+ T cells, CCR5 expression led to a reduction in X4 HIV-1 infectivity. These findings can help to understand why X4 HIV-1 strains infection affect T-cell types differently during AIDS development and indicate that receptor oligomerization might be a target for previously unidentified therapeutic approaches for AIDS intervention. PMID:24778234

  4. An increased frequency of autoantibody-inducing CD4+ T cells in pre-diseased lupus-prone mice.

    PubMed

    Busser, Brian W; Cancro, Michael P; Laufer, Terri M

    2004-07-01

    Pathogenic autoantibody production in murine models of lupus is dependent on autoreactive CD4+ helper T cells. However, the mechanisms which permit the selection and maintenance of this autoantibody-inducing CD4+ T-cell repertoire are currently unknown. We hypothesized that the peripheral CD4+ T-cell repertoire of lupus-prone mice was enriched with autoantibody-inducing specificities. To test this, we utilized the splenic focus assay to determine if pre-diseased lupus-prone (NZB x NZW)F(1) mice have an elevated frequency of autoreactive CD4+ T lymphocytes capable of supporting autoantibody production. The splenic focus limiting dilution assay permits anti-nuclear antibodies to be generated from contact-dependent T-B interactions in vitro. We show that young, pre-diseased lupus-prone mice have an elevated frequency of autoantibody-inducing CD4+ T cells. Interestingly, these autoantibody-inducing CD4+ T-cell responses are also present in the thymus. Therefore, an elevated frequency of autoantibody-inducing CD4+ T cells predisposes lupus-prone mice to the development of autoantibodies.

  5. Influence of phthiocerol dimycocerosate on CD4(+) T cell priming and persistence during Mycobacterium tuberculosis infection.

    PubMed

    Pinto, Rachel; Nambiar, Jonathan K; Leotta, Lisa; Counoupas, Claudio; Britton, Warwick J; Triccas, James A

    2016-07-01

    The characterisation of mycobacterial factors that influence or modulate the host immune response may aid the development of more efficacious TB vaccines. We have previously reported that Mycobacterium tuberculosis deficient in export of Phthiocerol Dimycocerosates (DIM) (MT103(ΔdrrC)) is more attenuated than wild type M. tuberculosis and provides sustained protective immunity compared to the existing BCG vaccine. Here we sought to define the correlates of immunity associated with DIM deficiency by assessing the impact of MT103(ΔdrrC) delivery on antigen presenting cell (APC) function and the generation of CD4(+) T cell antigen-specific immunity. MT103(ΔdrrC) was a potent activator of bone marrow derived dendritic cells, inducing significantly greater expression of CD86 and IL-12p40 compared to BCG or the MT103 parental strain. This translated to an increased ability to initiate early in vivo priming of antigen-specific CD4(+) T cells compared to BCG with enhanced release of IFN-γ and TNF upon antigen-restimulation. The heightened immunity induced by MT103(ΔdrrC) correlated with greater persistence within the spleen compared to BCG, however both MT103(ΔdrrC) and BCG were undetectable in the lung at 70 days post-vaccination. In immunodeficient RAG (-/-) mice, MT103(ΔdrrC) was less virulent than the parental MT103 strain, yet MT103(ΔdrrC) infected mice succumbed more rapidly compared to BCG-infected animals. These results suggest that DIM translocation plays a role in APC stimulation and CD4(+) T cell activation during M. tuberculosis infection and highlights the potential of DIM-deficient strains as novel TB vaccine candidates. PMID:27450001

  6. Dose-Responsive Gene Expression in Suberoylanilide Hydroxamic Acid (SAHA) Treated Resting CD4+ T Cells

    PubMed Central

    Reardon, Brian; Beliakova-Bethell, Nadejda; Spina, Celsa A.; Singhania, Akul; Margolis, David M.; Richman, Douglas R.; Woelk, Christopher H.

    2015-01-01

    Design Persistent latently infected CD4+ T cells represent a major obstacle to HIV eradication. Histone deacetylase inhibitors (HDACis) are a proposed activation therapy. However, off-target effects on expression in host immune cells are poorly understood. We hypothesized that HDACi-modulated genes would be best identified with dose-response analysis. Methods Resting primary CD4+ T cells were treated with 0.34, 1, 3, or 10 μM of the HDACi, SAHA, for 24 hours and subjected to microarray gene expression analysis. Genes with dose-correlated expression were filtered to identify a subset with consistent up or downregulation at each SAHA dose. Histone modifications were characterized in 6 SAHA dose-responsive genes by chromatin immunoprecipitation (ChIP-RT-qPCR). Results A large number of genes were shown to be up (N=657) or downregulated (N=725) by SAHA in a dose-responsive manner (FDR p-value < 0.05, fold change ≥ |2|). Several genes (CTNNAL1, DPEP2, H1F0, IRGM, PHF15, and SELL) are potential in vivo biomarkers of SAHA activity. SAHA dose-responsive genes included transcription factors, HIV restriction factors, histone methyltransferases, and host proteins that interact with HIV. Pathway analysis suggested net downregulation of T cell activation with increasing SAHA dose. Histone acetylation was not correlated with host gene expression, but plausible alternative mechanisms for SAHA-modulated gene expression were identified. Conclusions Numerous genes in CD4+ T cells are modulated by SAHA in a dose-responsive manner, including genes that may negatively influence HIV activation from latency. Our study suggests that SAHA influences gene expression through a confluence of several mechanisms, including histone modification, and altered expression and activity of transcription factors. PMID:26258524

  7. Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders.

    PubMed

    Kwon, Ho-Keun; Lee, Choong-Gu; So, Jae-Seon; Chae, Chang-Suk; Hwang, Ji-Sun; Sahoo, Anupama; Nam, Jong Hee; Rhee, Joon Haeng; Hwang, Ki-Chul; Im, Sin-Hyeog

    2010-02-01

    The beneficial effects of probiotics have been described in many diseases, but the mechanism by which they modulate the immune system is poorly understood. In this study, we identified a mixture of probiotics that up-regulates CD4(+)Foxp3(+) regulatory T cells (Tregs). Administration of the probiotics mixture induced both T-cell and B-cell hyporesponsiveness and down-regulated T helper (Th) 1, Th2, and Th17 cytokines without apoptosis induction. It also induced generation of CD4(+)Foxp3(+) Tregs from the CD4(+)CD25(-) population and increased the suppressor activity of naturally occurring CD4(+)CD25(+) Tregs. Conversion of T cells into Foxp3(+) Tregs is directly mediated by regulatory dendritic cells (rDCs) that express high levels of IL-10, TGF-beta, COX-2, and indoleamine 2,3-dioxygenase. Administration of probiotics had therapeutical effects in experimental inflammatory bowel disease, atopic dermatitis, and rheumatoid arthritis. The therapeutical effect of the probiotics is associated with enrichment of CD4(+)Foxp3(+) Tregs in the inflamed regions. Collectively, the administration of probiotics that enhance the generation of rDCs and Tregs represents an applicable treatment of inflammatory immune disorders.

  8. Cord Blood Derived CD4+CD25high T Cells Become Functional Regulatory T Cells upon Antigen Encounter

    PubMed Central

    Mayer, Elisabeth; Bannert, Christina; Gruber, Saskia; Klunker, Sven; Spittler, Andreas; Akdis, Cezmi A.

    2012-01-01

    Background: Upon antigen exposure, cord blood derived T cells respond to ubiquitous environmental antigens by high proliferation. To date it remains unclear whether these “excessive” responses relate to different regulatory properties of the putative T regulatory cell (Treg) compartment or even expansion of the Treg compartment itself. Methods: Cord blood (>37 week of gestation) and peripheral blood (healthy controls) were obtained and different Treg cell subsets were isolated. The suppressive potential of Treg populations after antigen exposure was evaluated via functional inhibition assays ([3H]thymidine incorporation assay and CFSE staining) with or without allergen stimulation. The frequency and markers of CD4+CD25highFoxP3+ T cells were characterized by mRNA analysis and flow cytometry. Results: Cord blood derived CD4+CD25high cells did not show substantial suppressor capacity upon TCR activation, in contrast to CD4+CD25high cells freshly purified from adult blood. This could not be explained by a lower frequency of FoxP3+CD4+CD25highcells or FOXP3 mRNA expression. However, after antigen-specific stimulation in vitro, these cells showed strong proliferation and expansion and gained potent suppressive properties. The efficiency of their suppressive capacity can be enhanced in the presence of endotoxins. If T-cells were sorted according to their CD127 expression, a tiny subset of Treg cells (CD4+CD25+CD127low) is highly suppressive even without prior antigen exposure. Conclusion: Cord blood harbors a very small subset of CD4+CD25high Treg cells that requires antigen-stimulation to show expansion and become functional suppressive Tregs. PMID:22272233

  9. Sequential Dysfunction and Progressive Depletion of Candida albicans-Specific CD4 T Cell Response in HIV-1 Infection.

    PubMed

    Liu, Fengliang; Fan, Xiuzhen; Auclair, Sarah; Ferguson, Monique; Sun, Jiaren; Soong, Lynn; Hou, Wei; Redfield, Robert R; Birx, Deborah L; Ratto-Kim, Silvia; Robb, Merlin L; Kim, Jerome H; Michael, Nelson L; Hu, Haitao

    2016-06-01

    Loss of immune control over opportunistic infections can occur at different stages of HIV-1 (HIV) disease, among which mucosal candidiasis caused by the fungal pathogen Candida albicans (C. albicans) is one of the early and common manifestations in HIV-infected human subjects. The underlying immunological basis is not well defined. We have previously shown that compared to cytomegalovirus (CMV)-specific CD4 cells, C. albicans-specific CD4 T cells are highly permissive to HIV in vitro. Here, based on an antiretroviral treatment (ART) naïve HIV infection cohort (RV21), we investigated longitudinally the impact of HIV on C. albicans- and CMV-specific CD4 T-cell immunity in vivo. We found a sequential dysfunction and preferential depletion for C. albicans-specific CD4 T cell response during progressive HIV infection. Compared to Th1 (IFN-γ, MIP-1β) functional subsets, the Th17 functional subsets (IL-17, IL-22) of C. albicans-specific CD4 T cells were more permissive to HIV in vitro and impaired earlier in HIV-infected subjects. Infection history analysis showed that C. albicans-specific CD4 T cells were more susceptible to HIV in vivo, harboring modestly but significantly higher levels of HIV DNA, than CMV-specific CD4 T cells. Longitudinal analysis of HIV-infected individuals with ongoing CD4 depletion demonstrated that C. albicans-specific CD4 T-cell response was preferentially and progressively depleted. Taken together, these data suggest a potential mechanism for earlier loss of immune control over mucosal candidiasis in HIV-infected patients and provide new insights into pathogen-specific immune failure in AIDS pathogenesis. PMID:27280548

  10. Oestradiol potentiates the suppressive function of human CD4+ CD25+ regulatory T cells by promoting their proliferation

    PubMed Central

    Prieto, G Aleph; Rosenstein, Yvonne

    2006-01-01

    CD4+ CD25+ regulatory T (Treg) cells play an important role in the control of the immune system by suppressing the proliferation of effector cells, thereby preventing autoreactive, unnecessary or inconvenient responses. Recently, it has been shown that the number of Treg cells increases during pregnancy, a period with high serum levels of female sex hormones. Oestrogen replacement therapy has been reported to alleviate the symptoms of autoimmune diseases, yet the cellular and molecular mechanisms involved are not fully understood. Here, we show that physiological doses of oestradiol (E2) found during pregnancy, combined with activation through CD3/CD28 engagement, promoted the proliferation of Treg cells without altering their suppressive phenotype. Enhanced suppression was detected when Treg cells were pretreated with the hormone as well as when both cell subpopulations (Treg and T effector) were exposed to E2 throughout the experiment. Together, these data suggest that when combined with an activating stimulus, E2 can modulate the function of human Treg cells by regulating their numbers, and highlight a potential use of E2, or its analogs, to manipulate Treg function. PMID:16630023

  11. Protective cellular retroviral immunity requires both CD4+ and CD8+ immune T cells.

    PubMed Central

    Hom, R C; Finberg, R W; Mullaney, S; Ruprecht, R M

    1991-01-01

    We have found previously that postexposure chemoprophylaxis with 3'-azido-3'-deoxythymidine (also known as zidovudine or AZT) in combination with recombinant human alpha A/D interferon fully protected mice exposed to a lethal dose of Rauscher murine leukemia virus (RLV) against viremia and disease. After cessation of therapy, over 90% of these mice were able to resist rechallenge with live RLV, thus demonstrating an acquired immunity. Adoptive cell transfer of 4 x 10(7) cells from immunized mice fully protected naive recipients from viremia and splenomegaly after RLV challenge. However, when these immune T cells were fractionated into CD4+ and CD8+ subpopulations, only partial protection was found when 4 x 10(7) T cells of either subset were given. Full protection against RLV challenge was seen again when the T-cell subsets from immunized mice were recombined and transferred at the same number into naive mice. We conclude that cellular immunity alone is protective and that both CD4+ and CD8+ cell types are required for conferring full protection against live virus challenge. Images PMID:1898666

  12. Triple infection with HIV-1, HTLV-1 and Strongyloides stercoralis, rendering CD4+ T-cell counts a misleading entity.

    PubMed

    Janssen, Saskia; Rossatanga, Elie G; Jurriaans, Suzanne; ten Berge, Ineke J M; Grobusch, Martin P

    2013-01-01

    We report the case of a Gabonese HIV-patient who presented with haemoptysis, weight loss, fulminant diarrhoea and subsequent ileus and elevated CD4+ T-cell counts. He was diagnosed with Strongyloides stercoralis and human T-lymphotrophic virus type-1 infection. After treatment of the strongyloides hyperinfection syndrome, his CD4+ T-cell counts dropped greatly. The initially elevated CD4+ T-cell counts were misleading to the clinicians with regard to decision-making on antiretroviral therapy initiation. PMID:24152969

  13. TLR2 engagement on CD4(+) T cells enhances effector functions and protective responses to Mycobacterium tuberculosis.

    PubMed

    Reba, Scott M; Li, Qing; Onwuzulike, Sophia; Ding, Xuedong; Karim, Ahmad F; Hernandez, Yeritza; Fulton, Scott A; Harding, Clifford V; Lancioni, Christina L; Nagy, Nancy; Rodriguez, Myriam E; Wearsch, Pamela A; Rojas, Roxana E

    2014-05-01

    We have previously demonstrated that mycobacterial lipoproteins engage TLR2 on human CD4(+) T cells and upregulate TCR-triggered IFN-γ secretion and cell proliferation in vitro. Here we examined the role of CD4(+) T-cell-expressed TLR2 in Mycobacterium tuberculosis (MTB) Ag-specific T-cell priming and in protection against MTB infection in vivo. Like their human counterparts, mouse CD4(+) T cells express TLR2 and respond to TLR2 costimulation in vitro. This Th1-like response was observed in the context of both polyclonal and Ag-specific TCR stimulation. To evaluate the role of T-cell TLR2 in priming of CD4(+) T cells in vivo, naive MTB Ag85B-specific TCR transgenic CD4(+) T cells (P25 TCR-Tg) were adoptively transferred into Tlr2(-/-) recipient C57BL/6 mice that were then immunized with Ag85B and with or without TLR2 ligand Pam3 Cys-SKKKK. TLR2 engagement during priming resulted in increased numbers of IFN-γ-secreting P25 TCR-Tg T cells 1 week after immunization. P25 TCR-Tg T cells stimulated in vitro via TCR and TLR2 conferred more protection than T cells stimulated via TCR alone when adoptively transferred before MTB infection. Our findings indicate that TLR2 engagement on CD4(+) T cells increases MTB Ag-specific responses and may contribute to protection against MTB infection.

  14. OX40 controls effector CD4+ T-cell expansion, not follicular T helper cell generation in acute Listeria infection

    PubMed Central

    Marriott, Clare L; Mackley, Emma C; Ferreira, Cristina; Veldhoen, Marc; Yagita, Hideo; Withers, David R

    2014-01-01

    To investigate the importance of OX40 signals for physiological CD4+ T-cell responses, an endogenous antigen-specific population of CD4+ T cells that recognise the 2W1S peptide was assessed and temporal control of OX40 signals was achieved using blocking or agonistic antibodies (Abs) in vivo. Following infection with Listeria monocytogenes expressing 2W1S peptide, OX40 was briefly expressed by the responding 2W1S-specific CD4+ T cells, but only on a subset that co-expressed effector cell markers. This population was specifically expanded by Ab-ligation of OX40 during priming, which also caused skewing of the memory response towards effector memory cells. Strikingly, this greatly enhanced effector response was accompanied by the loss of T follicular helper (TFH) cells and germinal centres. Mice deficient in OX40 and CD30 showed normal generation of TFH cells but impaired numbers of 2W1S-specific effector cells. OX40 was not expressed by 2W1S-specific memory cells, although it was rapidly up-regulated upon challenge whereupon Ab-ligation of OX40 specifically affected the effector subset. In summary, these data indicate that for CD4+ T cells, OX40 signals are important for generation of effector T cells rather than TFH cells in this response to acute bacterial infection. PMID:24771127

  15. Donor CD4 T Cell Diversity Determines Virus Reactivation in Patients After HLA-Matched Allogeneic Stem Cell Transplantation

    PubMed Central

    Ritter, J; Seitz, V; Balzer, H; Gary, R; Lenze, D; Moi, S; Pasemann, S; Seegebarth, A; Wurdack, M; Hennig, S; Gerbitz, A; Hummel, M

    2015-01-01

    Delayed reconstitution of the T cell compartment in recipients of allogeneic stem cell grafts is associated with an increase of reactivation of latent viruses. Thereby, the transplanted T cell repertoire appears to be one of the factors that affect T cell reconstitution. Therefore, we studied the T cell receptor beta (TCRβ) gene rearrangements of flow cytometry–sorted CD4+ and CD8+ T cells from the peripheral blood of 23 allogeneic donors before G-CSF administration and on the day of apheresis. For this purpose, TCRβ rearrangements were amplified by multiplex PCR followed by high-throughput amplicon sequencing. Overall, CD4+ T cells displayed a significantly higher TCRβ diversity compared to CD8+ T cells irrespective of G-CSF administration. In line, no significant impact of G-CSF treatment on the TCR Vβ repertoire usage was found. However, correlation of the donor T cell repertoire with clinical outcomes of the recipient revealed that a higher CD4+ TCRβ diversity after G-CSF treatment is associated with lower reactivation of cytomegalovirus and Epstein–Barr virus. By contrast, no protecting correlation was observed for CD8+ T cells. In essence, our deep TCRβ analysis identifies the importance of the CD4+ T cell compartment for the control of latent viruses after allogeneic stem cell transplantation. PMID:25873100

  16. Analysis of the In Vivo Turnover of CD4+ T-Cell Subsets in Chronically SIV-Infected Sooty Mangabeys

    PubMed Central

    Ortiz, Alexandra M.; Carnathan, Diane G.; Yu, Joana; Sheehan, Katherine M.; Kim, Peter; Reynaldi, Arnold; Vanderford, Thomas H.; Klatt, Nichole R.; Brenchley, Jason M.; Davenport, Miles P.; Silvestri, Guido

    2016-01-01

    Aberrant turnover of memory CD4+ T-cells is central to Acquired Immunodeficiency Syndrome (AIDS) progression. Understanding the relationship between the turnover of CD4+ subsets and immunological homeostasis during simian immunodeficiency virus (SIV) infection in natural hosts may provide insight into mechanisms of immune regulation that may serve as models for therapeutic intervention in Human Immunodeficiency Virus (HIV)-infected persons. Sooty mangabeys (SMs) have naturally evolved with SIV to avoid AIDS progression while maintaining healthy peripheral CD4+ T-cell counts and thus represent a model by which therapeutic interventions for AIDS progression might be elucidated. To assess the relationship between the turnover of CD4+ subsets and immunological homeostasis during SIV infection in non-progressive hosts, we treated 6 SIV-uninfected and 9 SIV-infected SMs with 2’-bromo-5’-deoxyuridine (BrdU) for 14 days and longitudinally assessed CD4+ T-cell subset turnover by polychromatic flow cytometry. We observed that, in SIV-infected SMs, turnover of CD4+ T-cell naïve and central, transitional, and effector memory subsets is comparable to that in uninfected animals. Comparable turnover of CD4+ T-cell subsets irrespective of SIV-infection status likely contributes to the lack of aberrant immune activation and disease progression observed after infection in non-progressive hosts. PMID:27227993

  17. In situ detection of autoreactive CD4 T cells in brain and heart using major histocompatibility complex class II dextramers.

    PubMed

    Massilamany, Chandirasegaran; Gangaplara, Arunakumar; Jia, Ting; Elowsky, Christian; Li, Qingsheng; Zhou, You; Reddy, Jay

    2014-01-01

    This report demonstrates the use of major histocompatibility complex (MHC) class II dextramers for detection of autoreactive CD4 T cells in situ in myelin proteolipid protein (PLP) 139-151-induced experimental autoimmune encephalomyelitis (EAE) in SJL mice and cardiac myosin heavy chain-α (Myhc) 334-352-induced experimental autoimmune myocarditis (EAM) in A/J mice. Two sets of cocktails of dextramer reagents were used, where dextramers(+) cells were analyzed by laser scanning confocal microscope (LSCM): EAE, IA(s)/PLP 139-151 dextramers (specific)/anti-CD4 and IA(s)/Theiler's murine encephalomyelitis virus (TMEV) 70-86 dextramers (control)/anti-CD4; and EAM, IA(k)/Myhc 334-352 dextramers/anti-CD4 and IA(k)/bovine ribonuclease (RNase) 43-56 dextramers (control)/anti-CD4. LSCM analysis of brain sections obtained from EAE mice showed the presence of cells positive for CD4 and PLP 139-151 dextramers, but not TMEV 70-86 dextramers suggesting that the staining obtained with PLP 139-151 dextramers was specific. Likewise, heart sections prepared from EAM mice also revealed the presence of Myhc 334-352, but not RNase 43-56-dextramer(+) cells as expected. Further, a comprehensive method has also been devised to quantitatively analyze the frequencies of antigen-specific CD4 T cells in the 'Z' serial images. PMID:25145797

  18. Analysis of the In Vivo Turnover of CD4+ T-Cell Subsets in Chronically SIV-Infected Sooty Mangabeys.

    PubMed

    Ortiz, Alexandra M; Carnathan, Diane G; Yu, Joana; Sheehan, Katherine M; Kim, Peter; Reynaldi, Arnold; Vanderford, Thomas H; Klatt, Nichole R; Brenchley, Jason M; Davenport, Miles P; Silvestri, Guido

    2016-01-01

    Aberrant turnover of memory CD4+ T-cells is central to Acquired Immunodeficiency Syndrome (AIDS) progression. Understanding the relationship between the turnover of CD4+ subsets and immunological homeostasis during simian immunodeficiency virus (SIV) infection in natural hosts may provide insight into mechanisms of immune regulation that may serve as models for therapeutic intervention in Human Immunodeficiency Virus (HIV)-infected persons. Sooty mangabeys (SMs) have naturally evolved with SIV to avoid AIDS progression while maintaining healthy peripheral CD4+ T-cell counts and thus represent a model by which therapeutic interventions for AIDS progression might be elucidated. To assess the relationship between the turnover of CD4+ subsets and immunological homeostasis during SIV infection in non-progressive hosts, we treated 6 SIV-uninfected and 9 SIV-infected SMs with 2'-bromo-5'-deoxyuridine (BrdU) for 14 days and longitudinally assessed CD4+ T-cell subset turnover by polychromatic flow cytometry. We observed that, in SIV-infected SMs, turnover of CD4+ T-cell naïve and central, transitional, and effector memory subsets is comparable to that in uninfected animals. Comparable turnover of CD4+ T-cell subsets irrespective of SIV-infection status likely contributes to the lack of aberrant immune activation and disease progression observed after infection in non-progressive hosts. PMID:27227993

  19. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4{sup +} intestinal intraepithelial lymphocytes

    SciTech Connect

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku; Maeda, Nana; Emoto, Tetsuro; Shimizu, Makoto; Totsuka, Mamoru

    2013-06-14

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4{sup +} IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.

  20. Specific CD4+ T-Cell Reactivity and Cytokine Release in Different Clinical Presentations of Leptospirosis

    PubMed Central

    Moos, Verena; Allers, Kristina; Luge, Enno; Mayer-Scholl, Anne; Nöckler, Karsten; Loddenkemper, Christoph; Jansen, Andreas; Schneider, Thomas

    2015-01-01

    Clinical manifestations of leptospirosis are highly variable: from asymptomatic to severe and potentially fatal. The outcome of the disease is usually determined in the immunological phase, beginning in the second week of symptoms. The underlying mechanisms, predictive factors, and individual immune responses that contribute to clinical variations are not well understood. The aim of this study was to determine the specifics of CD4+ T-cell reactivity and cytokine release after stimulation with leptospiral antigens in patients with leptospirosis of different disease severities (patients with mild and severe symptoms) and in control subjects (with and without proven exposure to Leptospira). Whole-blood specimens were stimulated with Leptospira antigens in vitro. Subsequently, intracellular staining of cytokines was performed, and flow cytometry was used to assess the expression of CD40 ligand (CD40L) and the production of gamma interferon (IFN-γ), interleukin-10 (IL-10), IL-2, and tumor necrosis factor alpha (TNF-α) by CD4+ T cells. The production of inflammatory cytokines such as TNF-α by CD4+ T cells after stimulation with leptospiral antigens was highest in patients with severe disease. In contrast, the ratio of IL-10 production to TNF-α production was higher in exposed subjects than in patients with mild and severe disease. Levels of proinflammatory cytokines such as TNF-α may be useful markers of the severity of the immunological phase of leptospirosis. IL-10 production by T cells after antigen-specific stimulation may indicate a more successful downregulation of the inflammatory response and may contribute to an asymptomatic course of the disease. PMID:26491036

  1. TNFR2 expression by CD4 effector T cells is required to induce full-fledged experimental colitis

    PubMed Central

    Chen, Xin; Nie, Yingjie; Xiao, Haitao; Bian, Zhaoxiang; Scarzello, Anthony J.; Song, Na-Young; Anna, Trivett L.; Yang, De; Oppenheim, Joost J.

    2016-01-01

    There is now compelling evidence that TNFR2 is constitutively expressed on CD4+ Foxp3+ regulatory T cells (Tregs) and TNF-TNFR2 interaction is critical for the activation, expansion and functional stability of Tregs. However, we showed that the expression of TNFR2 was also up-regulated on CD4+ Foxp3− effector T cells (Teffs) upon TCR stimulation. In order to define the role of TNFR2 in the pathogenic CD4 T cells, we compared the effect of transferred naïve CD4 cells from WT mice and TNFR2−/− mice into Rag 1−/− recipients. Transfer of TNFR2-deficient Teff cells failed to induce full-fledged colitis, unlike WT Teffs. This was due to defective proliferative expansion of TNFR2-deficient Teff cells in the lymphopenic mice, as well as their reduced capacity to express proinflammatory Th1 cytokine on a per cell basis. In vitro, the proliferative response of TNFR2 deficient naïve CD4 cells to anti-CD3 stimulation was markedly decreased as compared with that of WT naïve CD4 cells. The hypoproliferative response of TNFR2-deficient Teff cells to TCR stimulation was associated with an increased ratio of p100/p52, providing a mechanistic basis for our findings. Therefore, this study clearly indicates that TNFR2 is important for the proliferative expansion of pathogenic Teff cells. PMID:27601345

  2. TNFR2 expression by CD4 effector T cells is required to induce full-fledged experimental colitis.

    PubMed

    Chen, Xin; Nie, Yingjie; Xiao, Haitao; Bian, Zhaoxiang; Scarzello, Anthony J; Song, Na-Young; Anna, Trivett L; Yang, De; Oppenheim, Joost J

    2016-01-01

    There is now compelling evidence that TNFR2 is constitutively expressed on CD4(+) Foxp3(+) regulatory T cells (Tregs) and TNF-TNFR2 interaction is critical for the activation, expansion and functional stability of Tregs. However, we showed that the expression of TNFR2 was also up-regulated on CD4(+) Foxp3(-) effector T cells (Teffs) upon TCR stimulation. In order to define the role of TNFR2 in the pathogenic CD4 T cells, we compared the effect of transferred naïve CD4 cells from WT mice and TNFR2(-/-) mice into Rag 1(-/-) recipients. Transfer of TNFR2-deficient Teff cells failed to induce full-fledged colitis, unlike WT Teffs. This was due to defective proliferative expansion of TNFR2-deficient Teff cells in the lymphopenic mice, as well as their reduced capacity to express proinflammatory Th1 cytokine on a per cell basis. In vitro, the proliferative response of TNFR2 deficient naïve CD4 cells to anti-CD3 stimulation was markedly decreased as compared with that of WT naïve CD4 cells. The hypoproliferative response of TNFR2-deficient Teff cells to TCR stimulation was associated with an increased ratio of p100/p52, providing a mechanistic basis for our findings. Therefore, this study clearly indicates that TNFR2 is important for the proliferative expansion of pathogenic Teff cells. PMID:27601345

  3. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity.

    PubMed

    Martins, Karen A O; Cooper, Christopher L; Stronsky, Sabrina M; Norris, Sarah L W; Kwilas, Steven A; Steffens, Jesse T; Benko, Jacqueline G; van Tongeren, Sean A; Bavari, Sina

    2016-01-01

    Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP) as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol), MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh) cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development. PMID:26870818

  4. Depletion of CD4+ CD25+ Regulatory T Cells Promotes CCL21-Mediated Antitumor Immunity

    PubMed Central

    Zhou, Shuang; Tao, Huihong; Zhen, Zhiwei; Chen, Haixia; Chen, Guolin; Yang, Yaoqin

    2013-01-01

    CCL21 is known to attract dendritic cells (DCs) and T cells that may reverse tumor-mediated immune suppression. The massive infiltration of tumors by regulatory T cells (Tregs) prevents the development of a successful helper immune response. In this study, we investigated whether elimination of CD4+ CD25+ Tregs in the tumor microenvironment using anti-CD25 monoclonal antibodies (mAbs) was capable of enhancing CCL21-mediated antitumor immunity in a mouse hepatocellular carcinoma (HCC) model. We found that CCL21 in combination with anti-CD25 mAbs (PC61) resulted in improved antitumor efficacy and prolonged survival, not only inhibited tumor angiogenesis and cell proliferation, but also led to significant increases in the frequency of CD4+, CD8+ T cells and CD11c+ DCs within the tumor, coincident with marked induction of tumor-specific CD8+ cytotoxic T lymphocytes (CTLs) at the local tumor site. The intratumoral immune responses were accompanied by the enhanced elaboration of IL-12 and IFN-γ, but reduced release of the immunosuppressive mediators IL-10 and TGF-β1. The results indicated that depletion of Tregs in the tumor microenvironment could enhance CCL21-mediated antitumor immunity, and CCL21 combined with anti-CD25 mAbs may be a more effective immunotherapy to promote tumor rejection. PMID:24023916

  5. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity

    PubMed Central

    Martins, Karen A.O.; Cooper, Christopher L.; Stronsky, Sabrina M.; Norris, Sarah L.W.; Kwilas, Steven A.; Steffens, Jesse T.; Benko, Jacqueline G.; van Tongeren, Sean A.; Bavari, Sina

    2015-01-01

    Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP) as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol), MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh) cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development. PMID:26870818

  6. Most microbe-specific naïve CD4⁺ T cells produce memory cells during infection.

    PubMed

    Tubo, Noah J; Fife, Brian T; Pagan, Antonio J; Kotov, Dmitri I; Goldberg, Michael F; Jenkins, Marc K

    2016-01-29

    Infection elicits CD4(+) memory T lymphocytes that participate in protective immunity. Although memory cells are the progeny of naïve T cells, it is unclear that all naïve cells from a polyclonal repertoire have memory cell potential. Using a single-cell adoptive transfer and spleen biopsy method, we found that in mice, essentially all microbe-specific naïve cells produced memory cells during infection. Different clonal memory cell populations had different B cell or macrophage helper compositions that matched effector cell populations generated much earlier in the response. Thus, each microbe-specific naïve CD4(+) T cell produces a distinctive ratio of effector cell types early in the immune response that is maintained as some cells in the clonal population become memory cells.

  7. Evaluation of CD4+ T cells proliferating to grass pollen in seasonal allergic subjects by flow cytometry

    PubMed Central

    RIMANIOL, A C; GARCIA, G; TILL, S J; CAPEL, F; GRAS, G; BALABANIAN, K; EMILIE, D; HUMBERT, M

    2003-01-01

    Our objective was to characterize T-cell responses to Phleum pratense in grass pollen allergic individuals and healthy controls using the fluorescent dye PKH26. Peripheral blood mononuclear cells were stimulated with P. pratense, or with recall antigens, and CD3+/CD4+ and CD3+/CD8+ T-cells that had proliferated were analysed by flow cytometry. In the presence of P. pratense CD4+/CD3+ T-cells proliferated more in grass pollen sensitive atopic patients than in nonallergic controls or in nongrass pollen sensitive atopic subjects. PPD and TT recall antigens elicited uniformly high proliferation in all T-cell subsets. Only half of pollen sensitive patients also had an increased proliferation of CD3+/CD8+ T-cells in response to P. pratense. We determined precursor frequency of CD4+ T cells in the original population that responded to P. pratense and found values ranging from 1 × 10−3 to 0·6 × 10−1, in the same range as those measured for PPD and TT. In conclusion, grass pollen sensitive atopic patients show enhanced CD4+ T-cell reactivity to P. pratense, and this could be related to the presence of elevated numbers of circulating allergen-specific CD4+ T cells. This flow cytometric method should allow the identification of other phenotypic markers such as intracellular cytokines in allergen specific responding CD4+ T cells. PMID:12653839

  8. Coxsackievirus-induced disease. CD4+ cells initiate both myocarditis and pancreatitis in DBA/2 mice.

    PubMed Central

    Blay, R.; Simpson, K.; Leslie, K.; Huber, S.

    1989-01-01

    DBA/2 male mice inoculated intraperitoneally with 1.8 X 10(5) plaque-forming units (PFU) coxsackievirus B-3 (CVB3) showed extensive inflammatory cell infiltration of the myocardium and acinar tissue of the pancreas in 7 days. Selective depletion of T lymphocyte subpopulations indicated that CD4 cells were either completely or partially responsible for cell damage in both organs. Other organs such as the liver were infected and contained virus titers equivalent to those seen in the heart and pancreas but showed no apparent tissue injury. The role of the CD4 cell was confirmed by positive selection of either T cell subpopulation from CVB3-immune lymphocytes in vitro and adoptive transfer of these cells into T cell-deficient (thymectomized, irradiated, bone marrow reconstituted, TXBM) DBA/2 recipients. Lymphocytes from CVB3-infected donor mice were adsorbed to myocyte, skin fibroblast, or liver vascular endothelial cell (VEC) monolayers. The adherent population was retrieved and adoptively transferred into uninfected syngeneic recipients. When killed 7 days later, the animals receiving unfractionated immune lymphocytes or cells eluted from heart monolayers developed both myocarditis and pancreatitis. Anti-Thy 1.2 and C' treatment of the unfractionated cells completely abrogated transfer of disease. Cells eluted from either fibroblast or liver VEC monolayers showed no pathogenicity. Adsorption of immune cells to heart monolayers in the presence of anti-IAd (class II major histocompatibility complex antigen, MHC) inhibited attachment of the pathogenic T cell, whereas anti KdDd (a class I MHC antigen) had no effect. Images Figure 1 PMID:2573284

  9. HIV-1 Expression Within Resting CD4+ T Cells After Multiple Doses of Vorinostat

    PubMed Central

    Archin, Nancy M.; Bateson, Rosalie; Tripathy, Manoj K.; Crooks, Amanda M.; Yang, Kuo-Hsiung; Dahl, Noelle P.; Kearney, Mary F.; Anderson, Elizabeth M.; Coffin, John M.; Strain, Matthew C.; Richman, Douglas D.; Robertson, Kevin R.; Kashuba, Angela D.; Bosch, Ronald J.; Hazuda, Daria J.; Kuruc, Joann D.; Eron, Joseph J.; Margolis, David M.

    2014-01-01

    Background. A single dose of the histone deacetylase inhibitor vorinostat (VOR) up-regulates HIV RNA expression within resting CD4+ T cells of treated, aviremic human immunodeficiency virus (HIV)–positive participants. The ability of multiple exposures to VOR to repeatedly disrupt latency has not been directly measured, to our knowledge. Methods. Five participants in whom resting CD4+ T-cell–associated HIV RNA (rc-RNA) increased after a single dose of VOR agreed to receive daily VOR Monday through Wednesday for 8 weekly cycles. VOR serum levels, peripheral blood mononuclear cell histone acetylation, plasma HIV RNA single-copy assays, rc-RNA, total cellular HIV DNA, and quantitative viral outgrowth assays from resting CD4+ T cells were assayed. Results. VOR was well tolerated, with exposures within expected parameters. However, rc-RNA measured after dose 11 (second dose of cycle 4) or dose 22 (second dose of cycle 8) increased significantly in only 3 of the 5 participants, and the magnitude of the rc-RNA increase was much reduced compared with that after a single dose. Changes in histone acetylation were blunted. Results of quantitative viral outgrowth and other assays were unchanged. Conclusions. Although HIV latency is disrupted by an initial VOR dose, the effect of subsequent doses in this protocol was much reduced. We hypothesize that the global effect of VOR results in a refractory period of ≥24 hours. The optimal schedule for VOR administration is still to be defined. PMID:24620025

  10. Alternative splicing of MALT1 controls signalling and activation of CD4+ T cells

    PubMed Central

    Meininger, Isabel; Griesbach, Richard A.; Hu, Desheng; Gehring, Torben; Seeholzer, Thomas; Bertossi, Arianna; Kranich, Jan; Oeckinghaus, Andrea; Eitelhuber, Andrea C.; Greczmiel, Ute; Gewies, Andreas; Schmidt-Supprian, Marc; Ruland, Jürgen; Brocker, Thomas; Heissmeyer, Vigo; Heyd, Florian; Krappmann, Daniel

    2016-01-01

    MALT1 channels proximal T-cell receptor (TCR) signalling to downstream signalling pathways. With MALT1A and MALT1B two conserved splice variants exist and we demonstrate here that MALT1 alternative splicing supports optimal T-cell activation. Inclusion of exon7 in MALT1A facilitates the recruitment of TRAF6, which augments MALT1 scaffolding function, but not protease activity. Naive CD4+ T cells express almost exclusively MALT1B and MALT1A expression is induced by TCR stimulation. We identify hnRNP U as a suppressor of exon7 inclusion. Whereas selective depletion of MALT1A impairs T-cell signalling and activation, downregulation of hnRNP U enhances MALT1A expression and T-cell activation. Thus, TCR-induced alternative splicing augments MALT1 scaffolding to enhance downstream signalling and to promote optimal T-cell activation. PMID:27068814

  11. Myd88 Initiates Early Innate Immune Responses and Promotes CD4 T Cells during Coronavirus Encephalomyelitis

    PubMed Central

    Butchi, Niranjan; Kapil, Parul; Puntambekar, Shweta; Stohlman, Stephen A.; Hinton, David R.

    2015-01-01

    ABSTRACT Myd88 signaling is critical to the control of numerous central nervous system (CNS) infections by promoting both innate and adaptive immune responses. Nevertheless, the extent to which Myd88 regulates type I interferon (IFN) versus proinflammatory factors and T cell function, as well as the anatomical site of action, varies extensively with the pathogen. CNS infection by neurotropic coronavirus with replication confined to the brain and spinal cord induces protective IFN-α/β via Myd88-independent activation of melanoma differentiation-associated gene 5 (MDA5). However, a contribution of Myd88-dependent signals to CNS pathogenesis has not been assessed. Infected Myd88−/− mice failed to control virus, exhibited enhanced clinical disease coincident with increased demyelination, and succumbed to infection within 3 weeks. The induction of IFN-α/β, as well as of proinflammatory cytokines and chemokines, was impaired early during infection. However, defects in both IFN-α/β and select proinflammatory factors were rapidly overcome prior to T cell recruitment. Myd88 deficiency also specifically blunted myeloid and CD4 T cell recruitment into the CNS without affecting CD8 T cells. Moreover, CD4 T cells but not CD8 T cells were impaired in IFN-γ production. Ineffective virus control indeed correlated most prominently with reduced antiviral IFN-γ in the CNS of Myd88−/− mice. The results demonstrate a crucial role for Myd88 both in early induction of innate immune responses during coronavirus-induced encephalomyelitis and in specifically promoting protective CD4 T cell activation. In the absence of these responses, functional CD8 T cells are insufficient to control viral spread within the CNS, resulting in severe demyelination. IMPORTANCE During central nervous system (CNS) infections, signaling through the adaptor protein Myd88 promotes both innate and adaptive immune responses. The extent to which Myd88 regulates antiviral type I IFN, proinflammatory

  12. Computational Analysis of the Model Describing HIV Infection of CD4+T Cells

    PubMed Central

    Atangana, Abdon

    2014-01-01

    An analysis of the model underpinning the description of the spread of HIV infection of CD4+T cells is examined in detail in this work. Investigations of the disease free and endemic equilibrium are done using the method of Jacobian matrix. An iteration technique, namely, the homotopy decomposition method (HDM), is implemented to give an approximate solution of nonlinear ordinary differential equation systems. The technique is described and illustrated with numerical examples. The approximated solution obtained via HDM is compared with those obtained via other methods to prove the trustworthiness of HDM. Moreover, the lessening and simplicity in calculations furnish HDM with a broader applicability. PMID:25136605

  13. CD4 Receptor is a Key Determinant of Divergent HIV-1 Sensing by Plasmacytoid Dendritic Cells

    PubMed Central

    Wilen, Craig; Gopal, Ramya; Huq, Rumana; Wu, Vernon; Sunseri, Nicole; Bhardwaj, Nina

    2016-01-01

    Plasmacytoid dendritic cells (pDC) are innate immune cells that sense viral nucleic acids through endosomal Toll-like receptor (TLR) 7/9 to produce type I interferon (IFN) and to differentiate into potent antigen presenting cells (APC). Engagement of TLR7/9 in early endosomes appears to trigger the IRF7 pathway for IFN production whereas engagement in lysosomes seems to trigger the NF-κB pathway for maturation into APC. We showed previously that HIV-1 (HIV) localizes predominantly to early endosomes, not lysosomes, and mainly stimulate IRF7 rather than NF-κB signaling pathways in pDC. This divergent signaling may contribute to disease progression through production of pro-apoptotic and pro-inflammatory IFN and inadequate maturation of pDCs. We now demonstrate that HIV virions may be re-directed to lysosomes for NF-κB signaling by either pseudotyping HIV with influenza hemagglutinin envelope or modification of CD4 mediated-intracellular trafficking. These data suggest that HIV envelope-CD4 receptor interactions drive pDC activation toward an immature IFN producing phenotype rather than differentiation into a mature dendritic cell phenotype. PMID:27082754

  14. New candidates for CD4 T cell pathogenicity in experimental neuroinflammation and multiple sclerosis.

    PubMed

    Hoppmann, Nicola; Graetz, Christiane; Paterka, Magdalena; Poisa-Beiro, Laura; Larochelle, Catherine; Hasan, Maruf; Lill, Christina M; Zipp, Frauke; Siffrin, Volker

    2015-04-01

    Multiple sclerosis is a chronic autoimmune demyelinating disease of the central nervous system, which is thought to be triggered by environmental factors in genetically susceptible individuals leading to activation of autoreactive T lymphocytes. Large multi-centre genome-wide association studies have identified multiple genetic risk loci in multiple sclerosis. In this study, we investigated T cell transcriptomic changes in experimental autoimmune encephalomyelitis, an animal model for multiple sclerosis. We correlated these findings with the multiple sclerosis risk genes postulated by the most recent Immunochip analysis and found that multiple sclerosis susceptibility genes were significantly regulated in experimental autoimmune encephalomyelitis. Our data indicate that nine distinct genes associated with multiple sclerosis risk, Bach2, Il2ra, Irf8, Mertk, Odf3b, Plek, Rgs1, Slc30a7 and Thada, can be confirmed to be differentially regulated in pathogenic CD4(+) T cells. During the effector phase within the inflamed CNS, CD4(+) T cells undergo comprehensive transformation and we identified key transcription factors and signalling networks involved in this process. The transformation was linked to metabolic changes with the involvement of liver X receptor/retinoid X receptor signalling and cholesterol biosynthesis, which might control the T cell effector function in the central nervous system. Thus, our study confirms the involvement of multiple sclerosis risk genes in the pathophysiology of the animal model and sheds light on additional disease-relevant inflammatory networks.

  15. CD4 Receptor is a Key Determinant of Divergent HIV-1 Sensing by Plasmacytoid Dendritic Cells.

    PubMed

    O'Brien, Meagan; Manches, Olivier; Wilen, Craig; Gopal, Ramya; Huq, Rumana; Wu, Vernon; Sunseri, Nicole; Bhardwaj, Nina

    2016-04-01

    Plasmacytoid dendritic cells (pDC) are innate immune cells that sense viral nucleic acids through endosomal Toll-like receptor (TLR) 7/9 to produce type I interferon (IFN) and to differentiate into potent antigen presenting cells (APC). Engagement of TLR7/9 in early endosomes appears to trigger the IRF7 pathway for IFN production whereas engagement in lysosomes seems to trigger the NF-κB pathway for maturation into APC. We showed previously that HIV-1 (HIV) localizes predominantly to early endosomes, not lysosomes, and mainly stimulate IRF7 rather than NF-κB signaling pathways in pDC. This divergent signaling may contribute to disease progression through production of pro-apoptotic and pro-inflammatory IFN and inadequate maturation of pDCs. We now demonstrate that HIV virions may be re-directed to lysosomes for NF-κB signaling by either pseudotyping HIV with influenza hemagglutinin envelope or modification of CD4 mediated-intracellular trafficking. These data suggest that HIV envelope-CD4 receptor interactions drive pDC activation toward an immature IFN producing phenotype rather than differentiation into a mature dendritic cell phenotype. PMID:27082754

  16. Murine autoimmune hearing loss mediated by CD4+ T cells specific for inner ear peptides.

    PubMed

    Solares, C Arturo; Edling, Andrea E; Johnson, Justin M; Baek, Moo-Jin; Hirose, Keiko; Hughes, Gordon B; Tuohy, Vincent K

    2004-04-01

    Autoimmune sensorineural hearing loss (ASNHL) is characterized typically by bilateral, rapidly progressive hearing loss that responds therapeutically to corticosteroid treatment. Despite its name, data implicating autoimmunity in the etiopathogenesis of ASNHL have been limited, and targeted self-antigens have not been identified. In the current study we show that the inner ear-specific proteins cochlin and beta-tectorin are capable of targeting experimental autoimmune hearing loss (EAHL) in mice. Five weeks after immunization of SWXJ mice with either Coch 131-150 or beta-tectorin 71-90, auditory brainstem responses (ABR) showed significant hearing loss at all frequencies tested. Flow cytometry analysis showed that each peptide selectively activated CD4(+) T cells with a proinflammatory Th1-like phenotype. T cell mediation of EAHL was determined by showing significantly increased ABR thresholds 6 weeks after adoptive transfer of peptide-activated CD4(+) T cells into naive SWXJ recipients. Immunocytochemical analysis showed that leukocytic infiltration of inner ear tissues coincided with onset of hearing loss. Our study provides a contemporary mouse model for clarifying our understanding of ASNHL and facilitating the development of novel effective treatments for this clinical entity. Moreover, our data provide experimental confirmation that ASNHL may be a T cell-mediated organ-specific autoimmune disorder of the inner ear.

  17. Indirubin Increases CD4+CD25+Foxp3+ Regulatory T Cells to Prevent Immune Thrombocytopenia in Mice

    PubMed Central

    Zhang, Aijun; Ning, Bin; Sun, Nianzheng; Wei, Jianlu; Ju, Xiuli

    2015-01-01

    Indirubin, a traditional Chinese medicine, is used to treat autoimmune diseases in clinics. However, the effects of indirubin on the immunosuppressive CD4+CD25+Foxp3+ regulatory T cells (Treg) have not been addressed. Thus, we aimed to investigate the effects of indirubin on CD4+CD25+Treg cells in immune thrombocytopenia (ITP) CBA mice, which were established by immunization with Wistar rat platelets. 50 mg/kg indirubin treatment daily for 4 weeks significantly decreased anti-platelet antibody production and prevented the decrease of platelets caused by immunization in ITP mice. Consistently, indirubin significantly enhanced the percentage and cell number of CD4+CD25+Foxp3+Treg cells in the peripheral blood, spleen and lymph nodes. We also observed a significant increase of the frequency and cell number of CD4+CD25+Foxp3+Treg cells in the thymus upon indirubin treatment. Furthermore, CD4+CD25+Treg cells from indirubin-treated mice showed similar immunosuppression on T effector cells as compared to those from control mice. Altogether, indirubin ameliorates ITP by enhancing CD4+CD25+Foxp3+Treg cell level with preserving immunosuppressive function. PMID:26571298

  18. The role of TRPV1 in the CD4+ T cell-mediated inflammatory response of allergic rhinitis.

    PubMed

    Samivel, Ramachandran; Kim, Dae Woo; Son, Hye Ran; Rhee, Yun-Hee; Kim, Eun Hee; Kim, Ji Hye; Bae, Jun-Sang; Chung, Young-Jun; Chung, Phil-Sang; Raz, Eyal; Mo, Ji-Hun

    2016-01-01

    Transient receptor potential vanilloid 1 (TRPV1), which has been identified as a molecular target for the activation of sensory neurons by various painful stimuli, was reported to regulate the signaling and activation of CD4+ T cells. However, the role of TRPV1 in CD4+ T cell in allergic rhinitis remains poorly understood. In this study, TRPV1 expression was localized in CD4+ T cells. Both knockout and chemical inhibition of TRPV1 suppressed Th2/Th17 cytokine production in CD4 T cells and Jurkat T cells, respectively, and can suppress T cell receptor signaling pathways including NF-κB, MAP kinase, and NFAT. In TRPV1 knockout allergic rhinitis (AR) mice, eosinophil infiltration, Th2/Th17 cytokines in the nasal mucosa, and total and ova-specific IgE levels in serum decreased, compared with wild-type AR mice. The TRPV1 antagonists, BCTC or theobromine, showed similar inhibitory immunologic effects on AR mice models. In addition, the number of TRPV1+/CD4+ inflammatory cells increased in the nasal mucosa of patients with AR, compared with that of control subjects. Thus, TRPV1 activation on CD4+ T cells is involved in T cell receptor signaling, and it could be a novel therapeutic target in AR.

  19. The role of TRPV1 in the CD4+ T cell-mediated inflammatory response of allergic rhinitis

    PubMed Central

    Son, Hye Ran; Rhee, Yun-Hee; Kim, Eun Hee; Kim, Ji Hye; Bae, Jun-Sang; Chung, Young-Jun; Chung, Phil-Sang; Raz, Eyal; Mo, Ji-Hun

    2016-01-01

    Transient receptor potential vanilloid 1 (TRPV1), which has been identified as a molecular target for the activation of sensory neurons by various painful stimuli, was reported to regulate the signaling and activation of CD4+ T cells. However, the role of TRPV1 in CD4+ T cell in allergic rhinitis remains poorly understood. In this study, TRPV1 expression was localized in CD4+ T cells. Both knockout and chemical inhibition of TRPV1 suppressed Th2/Th17 cytokine production in CD4 T cells and Jurkat T cells, respectively, and can suppress T cell receptor signaling pathways including NF-κB, MAP kinase, and NFAT. In TRPV1 knockout allergic rhinitis (AR) mice, eosinophil infiltration, Th2/Th17 cytokines in the nasal mucosa, and total and ova-specific IgE levels in serum decreased, compared with wild-type AR mice. The TRPV1 antagonists, BCTC or theobromine, showed similar inhibitory immunologic effects on AR mice models. In addition, the number of TRPV1+/CD4+ inflammatory cells increased in the nasal mucosa of patients with AR, compared with that of control subjects. Thus, TRPV1 activation on CD4+ T cells is involved in T cell receptor signaling, and it could be a novel therapeutic target in AR. PMID:26700618

  20. Regulatory function of cytomegalovirus-specific CD4{sup +}CD27{sup -}CD28{sup -} T cells

    SciTech Connect

    Tovar-Salazar, Adriana; Patterson-Bartlett, Julie; Jesser, Renee; Weinberg, Adriana

    2010-03-15

    CMV infection is characterized by high of frequencies of CD27{sup -}CD28{sup -} T cells. Here we demonstrate that CMV-specific CD4{sup +}CD27{sup -}CD28{sup -} cells are regulatory T cells (T{sub R}). CD4{sup +}CD27{sup -}CD28{sup -} cells sorted from CMV-stimulated PBMC of CMV-seropositive donors inhibited de novo CMV-specific proliferation of autologous PBMC in a dose-dependent fashion. Compared with the entire CMV-stimulated CD4{sup +} T-cell population, higher proportions of CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} expressed FoxP3, TGFbeta, granzyme B, perforin, GITR and PD-1, lower proportions expressed CD127 and PD1-L and similar proportions expressed CD25, CTLA4, Fas-L and GITR-L. CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} expanded in response to IL-2, but not to CMV antigenic restimulation. The anti-proliferative effect of CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} significantly decreased after granzyme B or TGFbeta inhibition. The CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} of HIV-infected and uninfected donors had similar phenotypes and anti-proliferative potency, but HIV-infected individuals had higher proportions of CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R}. The CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} may contribute to the downregulation of CMV-specific and nonspecific immune responses of CMV-infected individuals.

  1. CD4 T-Cell Responses in Primary HIV Infection: Interrelationship with Immune Activation and Virus Burden

    PubMed Central

    Chevalier, Mathieu F.; Didier, Céline; Girard, Pierre-Marie; Manea, Maria E.; Campa, Pauline; Barré-Sinoussi, Françoise; Scott-Algara, Daniel; Weiss, Laurence

    2016-01-01

    Early events during primary HIV infection (PHI) are thought to influence disease outcome. Although a growing body of evidence suggests a beneficial role of HIV-specific CD4 help in HIV infection, it is unclear how early viral replication, systemic immune activation, and antiretroviral therapy (ART) may shape CD4 T-cell responses during PHI, and whether HIV-specific CD4 responses contribute to the high immune activation observed in PHI. Twenty-seven patients with early PHI were included in a prospective longitudinal study and 12 of them received ART after enrollment. Fresh peripheral blood mononuclear cells were used for measurement of ex vivo T-cell activation and of cytokine-producing CD4 T-cells following stimulation with PMA/ionomycin or HIV-1-gag-p24 antigen. Patients were segregated based on CD8 T-cell activation level (i.e., % HLA-DR+CD38+ CD8 T-cells) at baseline (BL). Patients with lower immune activation exhibited higher frequency of bulk CD4 T-cells producing IFN-γ or IL-17 and higher effector-to-regulatory cell ratios. No differences were found in HIV-specific CD4 T-cell frequencies. In contrast, segregation of patients based on plasma viral load (pVL) revealed that patients with higher pVL showed higher cytokine-producing HIV-specific CD4 responses. Of note, the frequency of IFN-γ+ HIV-specific CD4 T cells significantly diminished between BL and month 6 only in ART-treated patients. However, early treatment initiation was associated with better maintenance of HIV-specific IFN-γ+ CD4 T-cells. These data suggest that HIV-specific CD4 responses do not fuel systemic T-cell activation and are driven by viral replication but not able to contribute to its control in the early phase of infection. Moreover, our data also suggest a benefit of early treatment for the maintenance of HIV-specific CD4 T-cell help. PMID:27746782

  2. Selective Loss of Early Differentiated, Highly Functional PD1high CD4 T Cells with HIV Progression

    PubMed Central

    Paris, Robert M.; Petrovas, Constantinos; Ferrando-Martinez, Sara; Moysi, Eirini; Boswell, Kristin L.; Archer, Eva; Yamamoto, Takuya; Ambrozak, David; Casazza, Joseph P.; Haubrich, Richard; Connors, Mark; Ake, Julie; Kim, Jerome H.; Koup, Richard A.

    2015-01-01

    The role of PD-1 expression on CD4 T cells during HIV infection is not well understood. Here, we describe the differential expression of PD-1 in CD127high CD4 T cells within the early/intermediate differentiated (EI) (CD27highCD45RAlow) T cell population among uninfected and HIV-infected subjects, with higher expression associated with decreased viral replication (HIV-1 viral load). A significant loss of circulating PD-1highCTLA-4low CD4 T cells was found specifically in the CD127highCD27highCD45RAlow compartment, while initiation of antiretroviral treatment, particularly in subjects with advanced disease, reversed these dynamics. Increased HIV-1 Gag DNA was also found in PD-1high compared to PD-1low ED CD4 T cells. In line with an increased susceptibility to HIV infection, PD-1 expression in this CD4 T cell subset was associated with increased activation and expression of the HIV co-receptor, CCR5. Rather than exhaustion, this population produced more IFN-g, MIP1-a, IL-4, IL-10, and IL-17a compared to PD-1low EI CD4 T cells. In line with our previous findings, PD-1high EI CD4 T cells were also characterized by a high expression of CCR7, CXCR5 and CCR6, a phenotype associated with increased in vitro B cell help. Our data show that expression of PD-1 on early-differentiated CD4 T cells may represent a population that is highly functional, more susceptible to HIV infection and selectively lost in chronic HIV infection. PMID:26678998

  3. CD4 T-helper cell cytokine phenotypes and antibody response following tetanus toxoid booster immunization.

    PubMed

    Livingston, Kimberly A; Jiang, Xiaowen; Stephensen, Charles B

    2013-04-30

    Routine methods for enumerating antigen-specific T-helper cells may not identify low-frequency phenotypes such as Th2 cells. We compared methods of evaluating such responses to identify tetanus toxoid- (TT) specific Th1, Th2, Th17 and IL10(+) cells. Eight healthy subjects were given a TT booster vaccination. Blood was drawn before, 3, 7, 14, and 28days after vaccination and peripheral blood mononuclear cells (PBMC) were cultured for 7days with TT, negative control (diluent), and a positive control (Staphylococcus enterotoxin B [SEB]). Activation markers (CD25 and CD69) were measured after 44h (n=8), cytokines in supernatant after 3 and 7days, and intracellular cytokine staining (ICS) of proliferated cells (identified by dye dilution) after 7days (n=6). Vaccination increased TT-specific expression of CD25 and CD69 on CD3(+)CD4(+) lymphocytes, and TT-specific proliferation at 7, 14 and 28days post vaccination. Vaccination induced TT-specific Th1 (IFN-γ, TNF-α, and IL-2) Th2 (IL-13, IL-5, and IL-4), Th17 (IL-17A) and IL-10(+) cells as measured by ICS. TT-specific Th1 cells were the most abundant (12-15% of all TT-specific CD4(+) T-cells) while IL10(+) (1.8%) Th17 (1.1%) and Th2 cells (0.2-0.6%) were less abundant. TT-specific cytokine concentrations in PBMC supernatants followed the same pattern where a TT-specific IL-9 response was also seen. In conclusion, TT booster vaccination induced a broad T-helper cell response. This method of evaluating cytokine phenotypes may be useful in examining the impact of nutrition and environmental conditions on the plasticity of T-helper cell memory responses.

  4. CD4+ T Cells Expressing PD-1, TIGIT and LAG-3 Contribute to HIV Persistence during ART

    PubMed Central

    Fromentin, Rémi; Bakeman, Wendy; Lawani, Mariam B.; Khoury, Gabriela; Hartogensis, Wendy; DaFonseca, Sandrina; Killian, Marisela; Epling, Lorrie; Hoh, Rebecca; Sinclair, Elizabeth; Hecht, Frederick M.; Bacchetti, Peter; Deeks, Steven G.; Lewin, Sharon R.; Sékaly, Rafick-Pierre; Chomont, Nicolas

    2016-01-01

    HIV persists in a small pool of latently infected cells despite antiretroviral therapy (ART). Identifying cellular markers expressed at the surface of these cells may lead to novel therapeutic strategies to reduce the size of the HIV reservoir. We hypothesized that CD4+ T cells expressing immune checkpoint molecules would be enriched in HIV-infected cells in individuals receiving suppressive ART. Expression levels of 7 immune checkpoint molecules (PD-1, CTLA-4, LAG-3, TIGIT, TIM-3, CD160 and 2B4) as well as 4 markers of HIV persistence (integrated and total HIV DNA, 2-LTR circles and cell-associated unspliced HIV RNA) were measured in PBMCs from 48 virally suppressed individuals. Using negative binomial regression models, we identified PD-1, TIGIT and LAG-3 as immune checkpoint molecules positively associated with the frequency of CD4+ T cells harboring integrated HIV DNA. The frequency of CD4+ T cells co-expressing PD-1, TIGIT and LAG-3 independently predicted the frequency of cells harboring integrated HIV DNA. Quantification of HIV genomes in highly purified cell subsets from blood further revealed that expressions of PD-1, TIGIT and LAG-3 were associated with HIV-infected cells in distinct memory CD4+ T cell subsets. CD4+ T cells co-expressing the three markers were highly enriched for integrated viral genomes (median of 8.2 fold compared to total CD4+ T cells). Importantly, most cells carrying inducible HIV genomes expressed at least one of these markers (median contribution of cells expressing LAG-3, PD-1 or TIGIT to the inducible reservoir = 76%). Our data provide evidence that CD4+ T cells expressing PD-1, TIGIT and LAG-3 alone or in combination are enriched for persistent HIV during ART and suggest that immune checkpoint blockers directed against these receptors may represent valuable tools to target latently infected cells in virally suppressed individuals. PMID:27415008

  5. Targeted and highly efficient gene transfer into CD4+ cells by a recombinant human immunodeficiency virus retroviral vector.

    PubMed Central

    Shimada, T; Fujii, H; Mitsuya, H; Nienhuis, A W

    1991-01-01

    We have established a recombinant HIV gene transfer system based on transient expression of the HIV packaging functions and a recombinant vector genome in monkey kidney Cos cells. The recombinant HIV retroviral vector introduced the neoR gene into CD4+ cells with high efficiency, comparable to that achieved with the highest titer amphotropic murine recombinant retrovirus. Vector preparations were devoid of replication competent, infectious HIV. Gene transfer was dependent on CD4 expression, as shown by expression of the CD4 gene in HeLa cells, and could be inhibited by soluble CD4. This specific and efficient gene transfer system may be useful for development of gene therapy for which T cells are the desired targets. Images PMID:1885765

  6. HIV Skews the Lineage-Defining Transcriptional Profile of Mycobacterium tuberculosis-Specific CD4+ T Cells.

    PubMed

    Riou, Catherine; Strickland, Natalie; Soares, Andreia P; Corleis, Björn; Kwon, Douglas S; Wherry, E John; Wilkinson, Robert J; Burgers, Wendy A

    2016-04-01

    HIV-infected persons are at greater risk of developing tuberculosis (TB) even before profound CD4 loss occurs, suggesting that HIV alters CD4(+) T cell functions capable of containing bacterial replication. An effective immune response to Mycobacterium tuberculosis most likely relies on the development of a balanced CD4 response, in which distinct CD4(+) Th subsets act in synergy to control the infection. To define the diversity of M. tuberculosis-specific CD4(+) Th subsets and determine whether HIV infection impacts such responses, the expression of lineage-defining transcription factors T-bet, Gata3, RORγt, and Foxp3 was measured in M. tuberculosis-specific CD4(+) T cells in HIV-uninfected (n = 20) and HIV-infected individuals (n = 20) with latent TB infection. Our results show that, upon 5-d restimulation in vitro, M. tuberculosis-specific CD4(+) T cells from healthy individuals have the ability to exhibit a broad spectrum of Th subsets, defined by specific patterns of transcription factor coexpression. These transcription factor profiles were skewed in HIV-infected individuals where the proportion of T-bet(high)Foxp3(+) M. tuberculosis-specific CD4(+) T cells was significantly decreased (p = 0.002) compared with HIV-uninfected individuals, a change that correlated inversely with HIV viral load (p = 0.0007) and plasma TNF-α (p = 0.027). Our data demonstrate an important balance in Th subset diversity defined by lineage-defining transcription factor coexpression profiles that is disrupted by HIV infection and suggest a role for HIV in impairing TB immunity by altering the equilibrium of M. tuberculosis-specific CD4(+) Th subsets.

  7. CD4+ T cells with an activated and exhausted phenotype distinguish immunodeficiency during aviremic HIV-2 infection

    PubMed Central

    Buggert, Marcus; Frederiksen, Juliet; Lund, Ole; Betts, Michael R.; Biague, Antonio; Nielsen, Morten; Tauriainen, Johanna; Norrgren, Hans; Medstrand, Patrik; Karlsson, Annika C.; Jansson, Marianne

    2016-01-01

    Objective: HIV type 2 (HIV-2) represents an attenuated form of HIV, in which many infected individuals remain ‘aviremic’ without antiretroviral therapy. However, aviremic HIV-2 disease progression exists, and in the current study, we therefore aimed to examine if specific pathological characteristics of CD4+ T cells are linked to such outcome. Design: HIV-seronegative (n = 25), HIV type 1 (HIV-1) (n = 33), HIV-2 (n = 39, of whom 26 were aviremic), and HIV-1/2 dually (HIV-D) (n = 13)-infected study participants were enrolled from an occupational cohort in Guinea-Bissau. Methods: CD4+ T-cell differentiation, activation, exhaustion, senescence, and transcription factors were assessed by polychromatic flow cytometry. Multidimensional clustering bioinformatic tools were used to identify CD4+ T-cell subpopulations linked to infection type and disease stage. Results: HIV-2-infected individuals had early and late-differentiated CD4+ T-cell clusters with lower activation (CD38+HLA-DR+) and exhaustion programmed death-1 (PD-1) than HIV-1 and HIV-D-infected individuals. We also noted that aviremic HIV-2-infected individuals possessed fewer individuals. CD4+ T cells with pathological signs compared to other HIV-infected groups. Still, compared to HIV-seronegative individuals, aviremic HIV-2-infected individuals had T-bet+ CD4+ T cells that showed elevated immune activation/exhaustion, and particularly the frequencies of PD-1+ cells were associated with a suboptimal percentage of CD4+ T cells. Conclusion: Increased frequencies of CD4+ T cells with an activated/exhausted phenotype correlate with exacerbated immunodeficiency in aviremic HIV-2-infected individuals. Thus, these findings encourage studies on the introduction of antiretroviral therapy also to individuals with aviremic HIV-2 infection. PMID:27525551

  8. CD4- and dynamin-dependent endocytosis of HIV-1 into plasmacytoid dendritic cells

    SciTech Connect

    Pritschet, Kathrin; Donhauser, Norbert; Schuster, Philipp; Ries, Moritz; Haupt, Sabrina; Kittan, Nicolai A.; Korn, Klaus; Poehlmann, Stefan; Holland, Gudrun; Bannert, Norbert; Bogner, Elke; Schmidt, Barbara

    2012-02-20

    Chronic immune activation, triggered by plasmacytoid dendritic cell (PDC) interferon (IFN)-alpha production, plays an important role in HIV-1 pathogenesis. As the entry of HIV-1 seems to be important for the activation of PDC, we directly characterized the viral entry into these cells using immuno-electron microscopy, cellular fractionation, confocal imaging, and functional experiments. After attachment to PDC, viruses were taken up in an energy-dependent manner. The virions were located in compartments positive for caveolin; early endosomal antigen 1; Rab GTPases 5, 7 and 9; lysosomal-associated membrane protein 1. PDC harbored more virus in endocytic vesicles than CD4+ T cells (p < 0.05). Blocking CD4 inhibited the uptake of virions into cytosolic and endosomal compartments. Dynasore, an inhibitor of dynamin-dependent endocytosis, not the fusion inhibitor T-20, reduced the HIV-1 induced IFN-alpha production. Altogether, our morphological and functional data support the role of endocytosis for the entry and IFN-alpha induction of HIV-1 in PDC.

  9. CD4+ cell-derived interleukin-17 in a model of dysregulated, Borrelia-induced arthritis.

    PubMed

    Hansen, Emily S; Johnson, Megan E; Schell, Ronald F; Nardelli, Dean T

    2016-10-01

    Lyme borreliosis, which is caused in the United States by the spirochete Borrelia burgdorferi, may manifest as different arrays of signs, symptoms and severities between infected individuals. Recent studies have indicated that particularly severe forms of Lyme borreliosis in humans are associated with an increased Th17 response. Here, we hypothesized that a murine model combining the dysregulated immune response of an environment lacking interleukin-10 (IL-10) with a robust T-cell-driven inflammatory response would reflect arthritis associated with the production of IL-17 by CD4+ cells. We demonstrate that IL-10 regulates the production of IL-17 by Borrelia-primed CD4+ cells early after interaction with Lyme spirochetes in vitro and that infection of Borrelia-primed mice with B. burgdorferi leads to significant production of IL-17 that contributes to the development of severe arthritis. These results extend our previous findings by demonstrating that a dysregulated adaptive immune response to Lyme spirochetes can contribute to severe, Th17-associated arthritis. These findings may lead to therapeutic measures for individuals with particularly severe symptoms of Lyme borreliosis. PMID:27549424

  10. Statins Increase the Frequency of Circulating CD4+FOXP3+ Regulatory T Cells in Healthy Individuals

    PubMed Central

    Rodríguez-Perea, Ana Lucía; Montoya, Carlos J.; Olek, Sven; Chougnet, Claire A.; Velilla, Paula A.

    2015-01-01

    Statins have been shown to modulate the number and the suppressive function of CD4+FOXP3+ T cells (Treg) in inflammatory conditions. However, it is not well established whether statin could also affect Treg in absence of inflammation. To address this question, eighteen normocholesterolemic male subjects were treated with lovastatin or atorvastatin daily for 45 days. The frequency and phenotype of circulating Treg were evaluated at days 0, 7, 30, and 45. mRNA levels of FOXP3, IDO, TGF-β, and IL-10 were measured in CD4+ T cells. We found that both statins significantly increased Treg frequency and FOXP3 mRNA levels at day 30. At day 45, Treg numbers returned to baseline values; however, TGF-β and FOXP3 mRNA levels remained high, accompanied by increased percentages of CTLA-4- and GITR-expressing Treg. Treg Ki-67 expression was decreased upon statin treatment. Treg frequency positively correlated with plasma levels of high-density lipoprotein cholesterol (HDL-c), suggesting a role for HDL-c in Treg homeostasis. Therefore, statins appear to have inflammation-independent immune-modulatory effects. Thus, the increase in Treg cells frequency likely contributes to immunomodulatory effect of statins, even in healthy individuals. PMID:25759848

  11. Skin CD4+ T cells produce interferon-gamma in vitro in response to streptococcal antigens in chronic plaque psoriasis.

    PubMed

    Brown, D W; Baker, B S; Ovigne, J M; Hardman, C; Powles, A V; Fry, L

    2000-03-01

    Recently, we have demonstrated that group A streptococcal antigen reactive T cells are present in the skin lesions of chronic plaque psoriasis. To determine the cytokine profile (interferon-gamma, interleukin-4 and interleukin-10) of these T cells in response to streptococcal antigens, T cell lines were cultured from untreated lesional skin of 13 patients with chronic plaque psoriasis and 12 patients with other inflammatory skin diseases. T cell lines were incubated with or without a sonicated heat-killed mixture of group A streptococcal isolates for 18 h in the presence of a transport inhibitor, stained for surface CD4 or CD8 and intracellular cytokine expression, and analyzed by flow cytometry. Psoriatic T cell lines were grown from 10 of 13 patients and were predominately CD4+ (64%-85%) with 10%-32% CD8+ T cells. Variable numbers of CD4+ T cells produced interferon-gamma (0.8%-35%, median 13.9) in eight of 10 T cell lines (p < 0.02). In contrast, CD4+ T cells in five of 12 T cell lines obtained from disease controls did not produce or produced minimal interferon-gamma in response to group A streptococcal isolates; this was significantly different from the psoriatic T cell lines (p < 0.05). Small numbers of interleukin-10 positive (0.8%-1.3%) and interleukin-4 positive (2.1%-2.5%) CD4+ T cells induced by group A streptococcal isolates were also present in two out of five and three out of five psoriatic T cell lines, respectively. This was significantly less in each case than the numbers of CD4+/interferon-gamma+ T cells (p < 0.05). Cytokine-positive CD8+ T cells were rarely observed. These findings demonstrate that a subpopulation of CD4+ T cells in chronic plaque psoriasis skin lesions produces interferon-gamma in response to streptococcal antigens and may be relevant to the pathogenesis of psoriasis.

  12. Mitochondrial Ca2+ and membrane potential, an alternative pathway for Interleukin 6 to regulate CD4 cell effector function

    PubMed Central

    Yang, Rui; Lirussi, Dario; Thornton, Tina M; Jelley-Gibbs, Dawn M; Diehl, Sean A; Case, Laure K; Madesh, Muniswamy; Taatjes, Douglas J; Teuscher, Cory; Haynes, Laura; Rincón, Mercedes

    2015-01-01

    IL-6 plays an important role in determining the fate of effector CD4 cells and the cytokines that these cells produce. Here we identify a novel molecular mechanism by which IL-6 regulates CD4 cell effector function. We show that IL-6-dependent signal facilitates the formation of mitochondrial respiratory chain supercomplexes to sustain high mitochondrial membrane potential late during activation of CD4 cells. Mitochondrial hyperpolarization caused by IL-6 is uncoupled from the production of ATP by oxidative phosphorylation. However, it is a mechanism to raise the levels of mitochondrial Ca2+ late during activation of CD4 cells. Increased levels of mitochondrial Ca2+ in the presence of IL-6 are used to prolong Il4 and Il21 expression in effector CD4 cells. Thus, the effect of IL-6 on mitochondrial membrane potential and mitochondrial Ca2+ is an alternative pathway by which IL-6 regulates effector function of CD4 cells and it could contribute to the pathogenesis of inflammatory diseases. DOI: http://dx.doi.org/10.7554/eLife.06376.001 PMID:25974216

  13. Quantifying and Predicting the Effect of Exogenous Interleukin-7 on CD4+T Cells in HIV-1 Infection

    PubMed Central

    Prague, Mélanie; Lacabaratz, Christine; Beq, Stéphanie; Jarne, Ana; Croughs, Thérèse; Sekaly, Rafick-Pierre; Lederman, Michael M.; Sereti, Irini; Commenges, Daniel; Lévy, Yves

    2014-01-01

    Exogenous Interleukin-7 (IL-7), in supplement to antiretroviral therapy, leads to a substantial increase of all CD4+ T cell subsets in HIV-1 infected patients. However, the quantitative contribution of the several potential mechanisms of action of IL-7 is unknown. We have performed a mathematical analysis of repeated measurements of total and naive CD4+ T cells and their Ki67 expression from HIV-1 infected patients involved in three phase I/II studies (N = 53 patients). We show that, besides a transient increase of peripheral proliferation, IL-7 exerts additional effects that play a significant role in CD4+ T cell dynamics up to 52 weeks. A decrease of the loss rate of the total CD4+ T cell is the most probable explanation. If this effect could be maintained during repeated administration of IL-7, our simulation study shows that such a strategy may allow maintaining CD4+ T cell counts above 500 cells/µL with 4 cycles or fewer over a period of two years. This in-depth analysis of clinical data revealed the potential for IL-7 to achieve sustained CD4+ T cell restoration with limited IL-7 exposure in HIV-1 infected patients with immune failure despite antiretroviral therapy. PMID:24853554

  14. Antigen-specific and non-specific CD4{sup +} T cell recruitment and proliferation during influenza infection

    SciTech Connect

    Chapman, Timothy J.; Castrucci, Maria R.; Padrick, Ryan C.; Bradley, Linda M.; Topham, David J. . E-mail: david_topham@urmc.rochester.edu

    2005-09-30

    To track epitope-specific CD4{sup +} T cells at a single-cell level during influenza infection, the MHC class II-restricted OVA{sub 323-339} epitope was engineered into the neuraminidase stalk of influenza/A/WSN, creating a surrogate viral antigen. The recombinant virus, influenza A/WSN/OVA{sub II}, replicated well, was cleared normally, and stimulated both wild-type and DO11.10 or OT-II TCR transgenic OVA-specific CD4{sup +} T cells. OVA-specific CD4 T cells proliferated during infection only when the OVA epitope was present. However, previously primed (but not naive) transgenic CD4{sup +} T cells were recruited to the infected lung both in the presence and absence of the OVA{sub 323-339} epitope. These data show that, when primed, CD4{sup +} T cells may traffic to the lung in the absence of antigen, but do not proliferate. These results also document a useful tool for the study of CD4 T cells in influenza infection.

  15. Characterization of CD4 and CD8 T cells producing IFN-γ in human latent and active tuberculosis.

    PubMed

    Rueda, Cesar M; Marín, Nancy D; García, Luis F; Rojas, Mauricio

    2010-11-01

    Patients with pulmonary tuberculosis (PTB) frequently have reduced IFN-γ production in response to mycobacterial antigens, compared to individuals with latent Mycobacterium tuberculosis infection (LTBi). However, it is not clear whether this reduced responsiveness is restricted to a particular T cell subset. Herein, PBMCs from 26 PTB patients, 30 household contacts (HHCs) of PTB, and 30 tuberculin positive (TST+) healthy subjects not recently exposed to PTB, were stained with CFSE and stimulated non-specific (PPD) for 120 h, and specific (CFP-10/ESAT-6) and latency (HSpX) mycobacterial antigens for 144 h and the percentage of CD4(+) and CD8(+)IFN-γ(+) T cells responding determined by flow cytometry, in addition to their memory phenotype by the CD45RO and CD27 expression. PTB had decreased frequency of both CD4(+) and CD8(+) precursor cells, as well as decreased number of CD4(+)IFN-γ(+) cells in response to all antigens, whereas CD8(+)IFN-γ(+) cells were decreased in response to PPD and ESAT-6, but not to CFP-10 and HSpX. HHCs exhibited the highest precursor frequencies and IFN-γ responses, irrespective of the antigen employed. The CD4(+)/CD8(+) cell ratios showed that in response to PPD CD4(+) precursor and IFN-γ-producer cells are more frequent than their CD8(+) counterparts, and that PTB have a decreased CD4(+)IFN-γ(+)/CD8(+)IFN-γ(+) ratio in response to PPD, CFP-10, and ESAT-6. CD4(+)IFN-γ(+) and CD8(+)IFN-γ(+) cells exhibited a central memory phenotype (CD45RO(+)CD27(+)), irrespective of the group of subjects and the antigen used for stimulation. In conclusion, PTB patients had a decreased percentage of CD4(+) and CD8(+) precursor cells and CD4(+)IFN-γ(+). HHCs exhibited the highest frequency of CD4(+) and CD8(+) precursors and CD4(+)IFN-γ(+)-producing cells.

  16. Retroviral vector expression in TCR transgenic CD4⁺ T cells.

    PubMed

    Choi, Youn Soo; Crotty, Shane

    2015-01-01

    The regulation of gene expression is key to understand the function of genes of interest. To explore the biological functions of genes, transgenic knock-in or knockout technologies have served as invaluable tools. While recent advances in molecular biology have introduced new techniques (i.e., CRISPR mediated gene editing) (Cong et al., Science 339(6121):819-823, 2013; Wang et al., Cell 153(4):910-918, 2013) for the generation of transgenic mice in a relatively short period of time, it can still take a long time to test biological hypotheses from scratch to design how to generate knock-in or knockout mice. Here, we describe methods to manipulate gene expression in T cell receptor (TCR) transgenic CD4 T cells, which allow us to investigate gene functions in the study of differentiation pathways of follicular helper T (Tfh) cells.

  17. Cell-cell interactions regulate dendritic cell-dependent HIV-1 production in CD4+ T lymphocytes.

    PubMed

    Pinchuk, L M; Polacino, P S; Agy, M B; Klaus, S J; Clark, E A

    1995-01-01

    We investigated the role of blood dendritic cells (DC) in transmission of HIV-1 from infected to uninfected CD4+ T cells, and the accessory molecules involved. DC promoted transmission from infected to uninfected CD4+ cells, but blood DC themselves were not infectable. DC-mediated transmission was blocked by mAb to CD4 and MHC class II, but strongly increased by mAb to CD40 on DC or CD28 on T cells. The DC-dependent infection was inhibitable by anti-CD80 and a soluble fusion protein of the CD80 ligand, CTLA4; soluble CTLA4Ig also blocked infection augmented by crosslinking CD40. We also demonstrated that mAb to CD40 up-regulate the expression of CTLA4 ligands CD80 and B70/B7-2 (CD86) on DC. These data suggest that the dialog between CD40-CD40 ligand (CD40L) and CD28-CD80 counter-receptors on DC and T cells may be linked to HIV infection in vivo.

  18. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases

    PubMed Central

    Perez, Elena E; Wang, Jianbin; Miller, Jeffrey C; Jouvenot, Yann; Kim, Kenneth A; Liu, Olga; Wang, Nathaniel; Lee, Gary; Bartsevich, Victor V; Lee, Ya-Li; Guschin, Dmitry Y; Rupniewski, Igor; Waite, Adam J; Carpenito, Carmine; Carroll, Richard G; Orange, Jordan S; Urnov, Fyodor D; Rebar, Edward J; Ando, Dale; Gregory, Philip D; Riley, James L; Holmes, Michael C; June, Carl H

    2012-01-01

    Homozygosity for the naturally occurring Δ32 deletion in the HIV co-receptor CCR5 confers resistance to HIV-1 infection. We generated an HIV-resistant genotype de novo using engineered zinc-finger nucleases (ZFNs) to disrupt endogenous CCR5. Transient expression of CCR5 ZFNs permanently and specifically disrupted ~50% of CCR5 alleles in a pool of primary human CD4+ T cells. Genetic disruption of CCR5 provided robust, stable and heritable protection against HIV-1 infection in vitro and in vivo in a NOG model of HIV infection. HIV-1-infected mice engrafted with ZFN-modified CD4+ T cells had lower viral loads and higher CD4+ T-cell counts than mice engrafted with wild-type CD4+ T cells, consistent with the potential to reconstitute immune function in individuals with HIV/AIDS by maintenance of an HIV-resistant CD4+ T-cell population. Thus adoptive transfer of ex vivo expanded CCR5 ZFN–modified autologous CD4+ T cells in HIV patients is an attractive approach for the treatment of HIV-1 infection. PMID:18587387

  19. Oral vaccination with lipid-formulated BCG induces a long-lived, multifunctional CD4(+) T cell memory immune response.

    PubMed

    Ancelet, Lindsay R; Aldwell, Frank E; Rich, Fenella J; Kirman, Joanna R

    2012-01-01

    Oral delivery of BCG in a lipid formulation (Liporale™-BCG) targets delivery of viable bacilli to the mesenteric lymph nodes and confers protection against an aerosol Mycobacterium tuberculosis challenge. The magnitude, quality and duration of the effector and memory immune response induced by Liporale™-BCG vaccination is unknown. Therefore, we compared the effector and memory CD4(+) T cell response in the spleen and lungs of mice vaccinated with Liporale™-BCG to the response induced by subcutaneous BCG vaccination. Liporale™-BCG vaccination induced a long-lived CD4(+) T cell response, evident by the detection of effector CD4(+) T cells in the lungs and a significant increase in the number of Ag85B tetramer-specific CD4(+) T cells in the spleen up to 30 weeks post vaccination. Moreover, following polyclonal stimulation, Liporale™-BCG vaccination, but not s.c. BCG vaccination, induced a significant increase in both the percentage of CD4(+) T cells in the lungs capable of producing IFNγ and the number of multifunctional CD4(+) T cells in the lungs at 30 weeks post vaccination. These results demonstrate that orally delivered Liporale™-BCG vaccine induces a long-lived multifunctional immune response, and could therefore represent a practical and effective means of delivering novel BCG-based TB vaccines. PMID:23049885

  20. Immunodominant CD4+ T-Cell Responses to Influenza A Virus in Healthy Individuals Focus on Matrix 1 and Nucleoprotein

    PubMed Central

    Chen, Li; Zanker, Damien; Xiao, Kun; Wu, Chao; Zou, Quanming

    2014-01-01

    ABSTRACT Antigen-specific CD4+ T cells are essential for effective virus-specific host responses, with recent human challenge studies (in volunteers) establishing their importance for influenza A virus (IAV)-specific immunity. However, while many IAV CD4+ T cell epitopes have been identified, few are known to stimulate immunodominant CD4+ T cell responses. Moreover, much remains unclear concerning the major antigen(s) responded to by the human CD4+ T cells and the extents and magnitudes of these responses. We initiated a systematic screen of immunodominant CD4+ T cell responses to IAV in healthy individuals. Using in vitro expanded-multispecificity IAV-specific T cell lines and individual IAV protein antigens produced by recombinant vaccinia viruses, we found that the internal matrix protein 1 (M1) and nucleoprotein (NP) were the immunodominant targets of CD4+ T cell responses. Ten epitopes derived from M1 and NP were definitively characterized. Furthermore, epitope sequence conservation analysis established that immunodominance correlated with an increased frequency of mutations, reflecting the fact that these prominent epitopes are under greater selective pressure. Such evidence that particular CD4+ T cells are important for protection/recovery is of value for the development of novel IAV vaccines and for our understanding of different profiles of susceptibility to these major pathogens. IMPORTANCE Influenza virus causes half a million deaths annually. CD4+ T cell responses have been shown to be important for protection against influenza and for recovery. CD4+ T cell responses are also critical for efficient CD8+ T cell response and antibody response. As immunodominant T cells generally play a more important role, characterizing these immunodominant responses is critical for influenza vaccine development. We show here that the internal matrix protein 1 (M1) and nucleoprotein (NP), rather than the surface proteins reported previously, are the immunodominant

  1. Both necrosis and apoptosis contribute to HIV-1-induced killing of CD4 cells

    NASA Technical Reports Server (NTRS)

    Plymale, D. R.; Tang, D. S.; Comardelle, A. M.; Fermin, C. D.; Lewis, D. E.; Garry, R. F.

    1999-01-01

    BACKGROUND: Data currently available on HIV-1-induced cytopathology is unclear regarding the mechanism of cell killing. OBJECTIVE: To clarify the extent to which apoptosis or necrosis is involved in HIV-1-induced cell death in view of conflicting existing data. METHODS: T lymphoblastoid cells or peripheral blood mononuclear cells were infected by various strains of HIV-1 and the numbers of apoptotic or necrotic cells were quantified at various times after infection using video-image analysis techniques; the results were compared with the amount of fragmented DNA using a quantitative method. Measurement of mitochondrial transmembrane potential (deltapsi(m)) and intracellular calcium concentrations [Ca2+]i was performed with fluorescent probes and fluorescence concentration analysis (FCA). RESULTS: Although lymphoblastoid and monocytoid cells acutely infected by HIV-1 had increased levels of fragmented DNA, a marker of apoptotic cell death, few (<12%) had condensed chromatin and fragmented nuclei, the morphological features of apoptosis. The predominant alterations in acutely infected cells were distended endoplasmic reticulum and abnormal mitochondria; these ultrastructural changes are consistent with necrosis, although some infected cells simultaneously displayed features of both necrosis and apoptosis. Viability of cells persistently infected by HIV-1 was only minimally reduced from that of uninfected cells. This reduction was accounted for by an increased propensity of the persistently infected cells to die by apoptosis. Alterations in [Ca2+]i and deltapsi(m) occurred in both acutely and persistently infected cells. CONCLUSION: Both necrosis and apoptosis contribute to HIV-1-induced killing of CD4 cells.

  2. Non-Canonical Notch Signaling Drives Activation and Differentiation of Peripheral CD4+ T Cells

    PubMed Central

    Dongre, Anushka; Surampudi, Lalitha; Lawlor, Rebecca G.; Fauq, Abdul H.; Miele, Lucio; Golde, Todd E.; Minter, Lisa M.; Osborne, Barbara A.

    2014-01-01

    Cleavage of the Notch receptor via a γ-secretase, results in the release of the active intra-cellular domain of Notch that migrates to the nucleus and interacts with RBP-Jκ, resulting in the activation of downstream target genes. This canonical Notch signaling pathway has been documented to influence T cell development and function. However, the mechanistic details underlying this process remain obscure. In addition to RBP-Jκ, the intra-cellular domain of Notch also interacts with other proteins in the cytoplasm and nucleus, giving rise to the possibility of an alternate, RBP-Jκ independent Notch pathway. However, the contribution of such RBP-Jκ independent, “non-canonical” Notch signaling in regulating peripheral T cell responses is unknown. In this report, we specifically demonstrate the requirement of Notch1 for regulating signal strength and signaling events distal to the T cell receptor in peripheral CD4+ T cells. By using mice with a conditional deletion in Notch1 or RBP-Jκ, we show that Notch1 regulates activation and proliferation of CD4+ T cells independently of RBP-Jκ. Furthermore, differentiation to TH1 and iTreg lineages although Notch dependent, is RBP-Jκ independent. Our striking observations demonstrate that many of the cell-intrinsic functions of Notch occur independently of RBP-Jκ. Such non-canonical regulation of these processes likely occurs through NF-κ B. This reveals a previously unknown, novel role of non-canonical Notch signaling in regulating peripheral T cell responses. PMID:24611064

  3. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4

    PubMed Central

    Walsh, James T.; Hendrix, Sven; Boato, Francesco; Smirnov, Igor; Zheng, Jingjing; Lukens, John R.; Gadani, Sachin; Hechler, Daniel; Gölz, Greta; Rosenberger, Karen; Kammertöns, Thomas; Vogt, Johannes; Vogelaar, Christina; Siffrin, Volker; Radjavi, Ali; Fernandez-Castaneda, Anthony; Gaultier, Alban; Gold, Ralf; Kanneganti, Thirumala-Devi; Nitsch, Robert; Zipp, Frauke; Kipnis, Jonathan

    2015-01-01

    A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell–mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4–producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4–deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4–deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell–derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4–producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration. PMID:25607842

  4. [Parameters of the CD4-Cell count and viral load in human immunodeficiency virus type 1 (HIV-1) infected patients].

    PubMed

    Selimova, L M; Serebrovskaya, L V; Ivanova, L A; Kravchenko, A V; Buravtsova, E V

    2015-01-01

    In this work the specific features of parameters of plasma CD4 T-lymphocytes count and level virus RNA in the HIV-infected patients were studied. 22% correlation between reduction of CD4 cell count and an increase in virus RNA level was observed in persons that did not receive antiretroviral treatment during the third HIV-infection phase. During this phase of infection patients exhibited a growth of the median value of virus load in cases of both rise as decline in CD4 cell count during long observation period. In addition, towards the end of the observation period, the percentage of patients with virus load > 3.3 Ig copies/ml considerably expanded. 43% correlation between CD4 cell count and duration of the HIV-infection was detected during the fourth infection phase in persons that did not receive antiretroviral treatment. Most of the patients in the third and the fourth infection phases had essential CD4 cell count growth during antiretroviral treatment. Best values were observed in patients with the initial value of CD4 > 400 cells/μl belonging to the third HIV-infection phase.

  5. Determination of CD4+ and CD8+ T cells in the peripheral blood of dogs with demodicosis.

    PubMed

    Singh, S K; Dimri, U; Sharma, M C; Sharma, B; Saxena, M

    2010-11-01

    The aim of this study was to evaluate the CD4+/CD8+ ratio in peripheral blood of dogs with localized and generalized demodicosis. Sixteen dogs were examined, 8 with localized and 8 with generalized demodicosis, while 8 healthy dogs were used as controls. Peripheral blood was obtained and CD4+ and CD8+ T cells were determined by flow cytometry. Significantly higher numbers of CD8+ T cells and lower numbers of CD4+ T cells were found in dogs with generalized demodicosis compared to dogs with localized demodicosis and healthy controls. Significantly higher numbers of CD8+ T cells and lower numbers of CD4+ T cells were also found in dogs with localized demodicosis compared to healthy controls. The CD4+/CD8+ ratio was also found to be significantly lower in dogs with generalized demodicosis in comparison with dogs with localized demodicosis and healthy controls. It is concluded that significant alteration in the CD4+/CD8+ ratio may be implicated in the pathogenesis of generalized canine demodicosis.

  6. Regular tai chi chuan exercise enhances functional mobility and CD4CD25 regulatory T cells

    PubMed Central

    Yeh, S‐H; Chuang, H; Lin, L‐W; Hsiao, C‐Y; Eng, H L

    2006-01-01

    Background The duration and vigour of physical exercise are widely considered to be critical elements that may positively or negatively affect physical health and immune response. Objectives To investigate the effect of a 12 week programme of regular tai chi chuan exercise (TCC) on functional mobility, beliefs about benefits of exercise on physical and psychological health, and immune regulation in middle aged volunteers. Methods This quasi‐experimental research design involving one group with testing before and after the programme was conducted to measure the effect of 12 weeks of TCC exercise in 14 men and 23 women from the normal community. Results Regular TCC exercise had a highly significant positive effect on functional mobility (p  =  0.001) and beliefs about the health benefits of exercise (p  =  0.013) in the 37 participants. Total white blood cell and red blood cell count did not change significantly, but a highly significant (p<0.001) decrease in monocyte count occurred. A significant (p  =  0.05) increase in the ratio of T helper to suppressor cells (CD4:CD8) was found, along with a significant (p  =  0.015) increase in CD4CD25 regulatory T cells. Production of the regulatory T cell mediators transforming growth factor β and interleukin 10 under specific antigen stimulation (varicella zoster virus) was also significantly increased after this exercise programme. Conclusions A 12 week programme of regular TCC exercise enhances functional mobility, personal health expectations, and regulatory T cell function. PMID:16505081

  7. Increased frequencies of CD4+CD25high regulatory T cells in acute dengue infection

    PubMed Central

    Lühn, Kerstin; Simmons, Cameron P.; Moran, Edward; Dung, Nguyen Thi Phuong; Chau, Tran Nguyen Bich; Quyen, Nguyen Than Ha; Thao, Le Thi Thu; Van Ngoc, Tran; Dung, Nguyen Minh; Wills, Bridget; Farrar, Jeremy; McMichael, Andrew J.; Dong, Tao; Rowland-Jones, Sarah

    2007-01-01

    Dengue virus infection is an increasingly important tropical disease, causing 100 million cases each year. Symptoms range from mild febrile illness to severe hemorrhagic fever. The pathogenesis is incompletely understood, but immunopathology is thought to play a part, with antibody-dependent enhancement and massive immune activation of T cells and monocytes/macrophages leading to a disproportionate production of proinflammatory cytokines. We sought to investigate whether a defective population of regulatory T cells (T reg cells) could be contributing to immunopathology in severe dengue disease. CD4+CD25highFoxP3+ T reg cells of patients with acute dengue infection of different severities showed a conventional phenotype. Unexpectedly, their capacity to suppress T cell proliferation and to secrete interleukin-10 was not altered. Moreover, T reg cells suppressed the production of vasoactive cytokines after dengue-specific stimulation. Furthermore, T reg cell frequencies and also T reg cell/effector T cell ratios were increased in patients with acute infection. A strong indication that a relative rise of T reg cell/effector T cell ratios is beneficial for disease outcome comes from patients with mild disease in which this ratio is significantly increased (P < 0.0001) in contrast to severe cases (P = 0.2145). We conclude that although T reg cells expand and function normally in acute dengue infection, their relative frequencies are insufficient to control the immunopathology of severe disease. PMID:17452519

  8. Quantifying susceptibility of CD4+ stem memory T-cells to infection by laboratory adapted and clinical HIV-1 strains.

    PubMed

    Flynn, Jacqueline K; Paukovics, Geza; Cashin, Kieran; Borm, Katharina; Ellett, Anne; Roche, Michael; Jakobsen, Martin R; Churchill, Melissa J; Gorry, Paul R

    2014-02-10

    CD4+ T cells are principal targets for human immunodeficiency virus type 1 (HIV-1) infection. CD4+ T cell subsets are heterogeneous cell populations, divided by functional and phenotypic differences into naïve and memory T cells. The memory CD4+ T cells are further segregated into central, effector and transitional memory cell subsets by functional, phenotypic and homeostatic characteristics. Defining the distribution of HIV-1 infection in different T cell subsets is important, as this can play a role in determining the size and composition of the viral reservoir. Both central memory and transitional memory CD4+ T cells have been described as long-lived viral reservoirs for HIV. Recently, the newly described stem memory T cell subset has also been implicated as a long-lived HIV reservoir. Using green fluorescent protein (GFP) reporter strains of HIV-1 and multi parameter flow cytometry, we developed an assay to simultaneously quantify the susceptibility of stem memory (TSCM), central memory, effector memory, transitional memory and naïve CD4+ T cell subsets, to HIV-1 infection in vitro. We show that TSCM are susceptible to infection with laboratory adapted and clinical HIV-1 strains. Our system facilitates the quantitation of HIV-1 infection in alternative T cell subsets by CCR5- and CXCR4-using viruses across different HIV-1 subtypes, and will be useful for studies of HIV-1 pathogenesis and viral reservoirs.

  9. Quantifying Susceptibility of CD4+ Stem Memory T-Cells to Infection by Laboratory Adapted and Clinical HIV-1 Strains

    PubMed Central

    Flynn, Jacqueline K.; Paukovics, Geza; Cashin, Kieran; Borm, Katharina; Ellett, Anne; Roche, Michael; Jakobsen, Martin R.; Churchill, Melissa J.; Gorry, Paul R.

    2014-01-01

    CD4+ T cells are principal targets for human immunodeficiency virus type 1 (HIV-1) infection. CD4+ T cell subsets are heterogeneous cell populations, divided by functional and phenotypic differences into naïve and memory T cells. The memory CD4+ T cells are further segregated into central, effector and transitional memory cell subsets by functional, phenotypic and homeostatic characteristics. Defining the distribution of HIV-1 infection in different T cell subsets is important, as this can play a role in determining the size and composition of the viral reservoir. Both central memory and transitional memory CD4+ T cells have been described as long-lived viral reservoirs for HIV. Recently, the newly described stem memory T cell subset has also been implicated as a long-lived HIV reservoir. Using green fluorescent protein (GFP) reporter strains of HIV-1 and multi parameter flow cytometry, we developed an assay to simultaneously quantify the susceptibility of stem memory (TSCM), central memory, effector memory, transitional memory and naïve CD4+ T cell subsets, to HIV-1 infection in vitro. We show that TSCM are susceptible to infection with laboratory adapted and clinical HIV-1 strains. Our system facilitates the quantitation of HIV-1 infection in alternative T cell subsets by CCR5- and CXCR4-using viruses across different HIV-1 subtypes, and will be useful for studies of HIV-1 pathogenesis and viral reservoirs. PMID:24517971

  10. Bystander stimulation of activated CD4+ T cells of unrelated specificity following a booster vaccination with tetanus toxoid.

    PubMed

    Di Genova, Gianfranco; Savelyeva, Natalia; Suchacki, Amy; Thirdborough, Stephen M; Stevenson, Freda K

    2010-04-01

    Antigen-specific CD4(+) T cells are central to natural and vaccine-induced immunity. An ongoing antigen-specific T-cell response can, however, influence surrounding T cells with unrelated antigen specificities. We previously observed this bystander effect in healthy human subjects following recall vaccination with tetanus toxoid (TT). Since this interplay could be important for maintenance of memory, we have moved to a mouse model for further analysis. We investigated whether boosting memory CD4(+) T cells against TT in vivo would influence injected CD4(+) TCR transgenic T cells (OT-II) specific for an unrelated OVA peptide. If OT-II cells were pre-activated with OVA peptide in vitro, these cells showed a bystander proliferative response during the ongoing parallel TT-specific response. Bystander proliferation was dependent on boosting of the TT-specific memory response in the recipients, with no effect in naive mice. Bystander stimulation was also proportional to the strength of the TT-specific memory T-cell response. T cells activated in vitro displayed functional receptors for IL-2 and IL-7, suggesting these as potential mediators. This crosstalk between a stimulated CD4(+) memory T-cell response and CD4(+) T cells activated by an unrelated antigen could be important in human subjects continually buffeted by environmental antigens.

  11. CD4 cell surface downregulation in HIV-1 Nef transgenic mice is a consequence of intracellular sequestration.

    PubMed Central

    Brady, H J; Pennington, D J; Miles, C G; Dzierzak, E A

    1993-01-01

    The Nef gene product is a regulatory protein of HIV whose biological function is poorly understood. Nef has been thought to have a negative effect on viral replication in vitro but has been shown in studies with SIV to be necessary in the establishment of viraemia in vivo. In vitro studies in various human cell lines have shown that Nef downregulates the expression of cell surface CD4 and thus could have effects on the immune response. We have generated four transgenic mouse lines, with constructs containing two different Nef alleles under the control of CD2 regulatory elements to examine the interaction of Nef with the host immune system in vivo. In adult transgenic mice we have found marked downregulation in the level of CD4 on the surface of double positive thymocytes and a decrease in the number of CD4+ T cells in the thymus. Functional analyses have revealed a decrease in the total activation of transgenic thymocytes by anti-CD3 epsilon antibody. By specific intracellular staining of T cells in such mice we have found CD4 colocalizing with a Golgi-specific marker. These results strongly suggest a Nef mediated effect on developing CD4 thymocytes resulting from interference of Nef in the intracellular trafficking or post-translational modification of CD4. Images PMID:8262036

  12. Advanced glycation end products promote differentiation of CD4(+) T helper cells toward pro-inflammatory response.

    PubMed

    Han, Xiao-qun; Gong, Zuo-jiong; Xu, San-qing; Li, Xun; Wang, Li-kun; Wu, Shi-min; Wu, Jian-hong; Yang, Hua-fen

    2014-02-01

    This study investigated the effect of advanced glycation end products (AGEs) on differentiation of naïve CD4(+) T cells and the role of the receptor of AGEs (RAGE) and peroxisome proliferator-activated receptors (PPARs) activity in the process in order to gain insight into the mechanism of immunological disorders in diabetes. AGEs were prepared by the reaction of bovine serum albumin (BSA) with glucose. Human naïve CD4(+) T cells, enriched from blood of healthy adult volunteers with negative selection assay, were cultured in vitro and treated with various agents including AGEs, BSA, high glucose, PGJ2 and PD68235 for indicated time. In short hairpin (sh) RNA knock-down experiment, naïve CD4(+) T cells were transduced with media containing shRNA-lentivirus generated from lentiviral packaging cell line, Lent-X(TM) 293 T cells. Surface and intracellular cytokine stainings were used for examination of CD4(+) T cell phenotypes, and real-time PCR and Western blotting for detection of transcription factor mRNA and protein expression, respectively. The suppressive function of regulatory T (Treg) cells was determined by a [(3)H]-thymidine incorporation assay. The results showed that AGEs induced higher pro-inflammatory Th1/Th17 cells differentiated from naïve CD4(+) T cells than the controls, whereas did not affect anti-inflammatory Treg cells. However, AGEs eliminated suppressive function of Treg cells. In addition, AGEs increased RAGE mRNA expression in naïve CD4(+) T cells, and RAGE knock-down by shRNA eliminated the effect of AGEs on the differentiation of CD4(+) T cells and the reduction of suppressive function of Treg cells. Furthermore, AGEs inhibited the mRNA expression of PPARγ, not PPARα PPARγ agonist, PGJ2, inhibited the effect of AGEs on naïve CD4(+) T cell differentiation and reversed the AGE-reduced suppressive function of Treg cells; on the other hand, PPARγ antagonist, PD68235, attenuated the blocking effect of RAGE shRNA on the role of AGEs. It

  13. Transient depletion of CD4(+) T cells augments IL-21-based immunotherapy of disseminated neuroblastoma in syngeneic mice.

    PubMed

    Croce, Michela; Corrias, Maria Valeria; Orengo, Anna Maria; Brizzolara, Antonella; Carlini, Barbara; Borghi, Martina; Rigo, Valentina; Pistoia, Vito; Ferrini, Silvano

    2010-09-01

    IL-21 is a member of the IL-2 cytokine family, produced by CD4+ T cells. We previously showed that immunotherapy (IT) with IL-21-transduced neuroblastoma cells (Neuro2a/IL-21) cured 33% of syngeneic mice bearing systemic NB. Here, we studied whether the removal of Treg cells could potentiate the therapeutic efficacy of Neuro2a/IL-21 vaccine. The administration of anti-CD25 mAb, which targets Treg cells, slightly potentiated the effect of vaccine IT (50% cure rate), but anti-CD4 mAb had a more potent effect leading to 80% cure rate. Anti-CD25 mAb, indeed, only partially depleted CD4+CD25+FoxP3+ Treg cells, whereas anti-CD4 mAb was more effective in this respect, leading to 90% depletion of Treg cells. In mice receiving vaccine+anti-CD4 mAb, which developed systemic immunity to NB, CD4+ T cells counts completely recovered in 90 days. Depletion of CD8+ T cells abrogated the effect of the combined IT, indicating a predominant role of these cells in driving the immune response. In addition, CD8+ T cells from cured mice coinjected with Neuro2a/parental cells (pc) in NOD-SCID mice completely inhibited tumor growth. Spleen cells from mice receiving Neuro2a/IL-21 vaccination showed increased expression of IFN-alpha2, -beta1 and -gamma mRNA. Moreover, mice receiving vaccine therapy alone or vaccine+anti-CD4 mAb showed increased IFN-gamma serum levels and IFN-gamma-producing CD8+ T cells were found in spleen cells. In conclusion, anti-CD4 mAb potentiated IL-21-based IT by removing Treg cells and/or their precursors and other potentially immune-suppressive CD4+ cell subsets, thus allowing the development of an IL-21-driven CD8+ T cell response, which mediates NB rejection.

  14. Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation

    PubMed Central

    Collins, Nicholas; Jiang, Xiaodong; Zaid, Ali; Macleod, Bethany L.; Li, Jane; Park, Chang Ook; Haque, Ashraful; Bedoui, Sammy; Heath, William R.; Mueller, Scott N.; Kupper, Thomas S.; Gebhardt, Thomas; Carbone, Francis R.

    2016-01-01

    Although memory T cells within barrier tissues can persist as permanent residents, at least some exchange with blood. The extent to which this occurs is unclear. Here we show that memory CD4+ T cells in mouse skin are in equilibrium with the circulation at steady state. These cells are dispersed throughout the inter-follicular regions of the dermis and form clusters with antigen presenting cells around hair follicles. After infection or administration of a contact sensitizing agent, there is a sustained increase in skin CD4+ T-cell content, which is confined to the clusters, with a concomitant CCL5-dependent increase in CD4+ T-cell recruitment. Skin CCL5 is derived from CD11b+ cells and CD8+ T cells, with the elimination of the latter decreasing CD4+ T-cell numbers. These results reveal a complex pattern of tissue-retention and equilibration for CD4+ memory T cells in skin, which is altered by infection and inflammation history. PMID:27160938

  15. Tolerance is established in polyclonal CD4(+) T cells by distinct mechanisms, according to self-peptide expression patterns.

    PubMed

    Malhotra, Deepali; Linehan, Jonathan L; Dileepan, Thamotharampillai; Lee, You Jeong; Purtha, Whitney E; Lu, Jennifer V; Nelson, Ryan W; Fife, Brian T; Orr, Harry T; Anderson, Mark S; Hogquist, Kristin A; Jenkins, Marc K

    2016-02-01

    Studies of repertoires of mouse monoclonal CD4(+) T cells have revealed several mechanisms of self-tolerance; however, which mechanisms operate in normal repertoires is unclear. Here we studied polyclonal CD4(+) T cells specific for green fluorescent protein expressed in various organs, which allowed us to determine the effects of specific expression patterns on the same epitope-specific T cells. Peptides presented uniformly by thymic antigen-presenting cells were tolerated by clonal deletion, whereas peptides excluded from the thymus were ignored. Peptides with limited thymic expression induced partial clonal deletion and impaired effector T cell potential but enhanced regulatory T cell potential. These mechanisms were also active for T cell populations specific for endogenously expressed self antigens. Thus, the immunotolerance of polyclonal CD4(+) T cells was maintained by distinct mechanisms, according to self-peptide expression patterns. PMID:26726812

  16. Continuous Activation of Autoreactive CD4+ CD25+ Regulatory T Cells in the Steady State

    PubMed Central

    Fisson, Sylvain; Darrasse-Jèze, Guillaume; Litvinova, Elena; Septier, Franck; Klatzmann, David; Liblau, Roland; Salomon, Benoît L.

    2003-01-01

    Despite a growing interest in CD4+ CD25+ regulatory T cells (Treg) that play a major role in self-tolerance and immunoregulation, fundamental parameters of the biology and homeostasis of these cells are poorly known. Here, we show that this population is composed of two Treg subsets that have distinct phenotypes and homeostasis in normal unmanipulated mice. In the steady state, some Treg remain quiescent and have a long lifespan, in the order of months, whereas the other Treg are dividing extensively and express multiple activation markers. After adoptive transfer, tissue-specific Treg rapidly divide and expand preferentially in lymph nodes draining their target self-antigens. These results reveal the existence of a cycling Treg subset composed of autoreactive Treg that are continuously activated by tissue self-antigens. PMID:12939344

  17. The frequency of α4β7high memory CD4+ T cells correlates with susceptibility to rectal SIV infection

    PubMed Central

    Martinelli, Elena; Veglia, Filippo; Goode, Diana; Guerra-Perez, Natalia; Aravantinou, Meropi; Arthos, James; Piatak, Michael; Lifson, Jeffrey D.; Blanchard, James; Gettie, Agegnehu; Robbiani, Melissa

    2013-01-01

    Background Integrin α4β7 (α4β7) mediates the homing of CD4+ T cells to gut-associated lymphoid tissues (GALT), which constitute a highly favorable environment for HIV expansion and dissemination. HIV and SIV envelope proteins bind to and signal through α4β7 and during acute infection SIV preferentially infects α4β7high CD4+ T cells. We postulated that the availability of these cells at the time of challenge could influence mucosal SIV transmission and acute viral load (VL). Methods We challenged 17 rhesus macaques with 3000 TCID50 of SIVmac239 rectally and followed the subsets of α4β7+ T and dendritic cells (DCs) by flow cytometry in blood and tissues, before and after challenge. Results We found that the frequency of memory CD4+ T cells that expressed high levels of α4β7 (α4β7high memory CD4+ T cells) in blood before challenge correlated strongly with susceptibility to infection and acute VL. Notably, not only at the time of challenge, but also their frequency 3 weeks before challenge correlated with infection. This association extended to the rectal tissue as we observed a strong direct correlation between the frequency of α4β7high memory CD4+ T cells in blood and rectum before and after challenge. The frequency of α4β7+ myeloid DCs and α4β7high CD80+ DCs also correlated with infection and acute VL, while blood CCR5+ and CD69+ CD4+ T cells could not be associated with infection. Conclusions Our results suggest that animals with higher frequency of α4β7high CD4+ T cells in circulation and in rectal tissue could be more susceptible to SIV rectal transmission. PMID:23797688

  18. Identification of CD4+ T-cell epitopes on iron-regulated surface determinant B of Staphylococcus aureus.

    PubMed

    Yu, Simiao; Zhang, Hua; Yao, Di; Liu, Wei; Wang, Xintong; Chen, Xiaoting; Wei, Yuhua; Zhang, Zhenghai; Wang, Jiannan; Yu, Liquan; Sun, Hunan; Wu, Zhijun; Yu, Yongzhong; Song, Baifen; Ma, Jinzhu; Tong, Chunyu; Cui, Yudong

    2015-12-01

    Iron-regulated surface determinant B (IsdB) of Staphylococcus aureus (S. aureus) is a highly conserved surface protein that can induce protective CD4(+) T-cell immune response. A pivotal role of CD4(+) T-cells in effective immunity against S. aureus infection has been proved, but CD4(+) T-cell epitopes on the S. aureus IsdB have not been well identified. In this study, MHC binding assay was firstly used to predict CD4(+) T-cell epitopes on S. aureus IsdB protein, and six peptides were synthesized to validate the probable epitopes. Two novel IsdB CD4(+) T-cell epitopes, P1 (residues 159-178) and P4 (residues 287-306), were for the first time identified using CD4(+) T-cells obtained from IsdB-immunized C57BL/6 (H-2(b)) and BALB/c (H-2(d)) mice spleen based on cell proliferation and cytokines response. The results showed that P1 and P4 emulsified in Freund's adjuvant (FA) induced much higher cell proliferation compared with PBS emulsified in FA. CD4(+) T-cells stimulated with peptides P1 and P4 secreted significantly higher levels of IFN-γ and IL-17A. However, the level of the cytokine IL-4 almost remained unchanged, suggesting that P1 and P4 preferentially elicited polarized Th1-type responses. In addition, BALB/c mice just respond to P4 not P1, while C57BL/6 mice respond to P1 not P4, implying that epitope P1 and P4 were determined as H-2(b) and H-2(d) restricted epitope, respectively. Taken together, our data may provide an explanation of the IsdB-induced protection against S. aureus and highlight the possibility of developing the epitope-based vaccine against the S. aureus.

  19. Expression of PD-1/LAG-3 and cytokine production by CD4(+) T cells during infection with Plasmodium parasites.

    PubMed

    Doe, Henrietta T; Kimura, Daisuke; Miyakoda, Mana; Kimura, Kazumi; Akbari, Masoud; Yui, Katsuyuki

    2016-02-01

    CD4(+) T cells play critical roles in protection against the blood stage of malarial infection; however, their uncontrolled activation can be harmful to the host. In this study, in which rodent models of Plasmodium parasites were used, the expression of inhibitory receptors on activated CD4(+) T cells and their cytokine production was compared with their expression in a bacterial and another protozoan infection. CD4(+) T cells from mice infected with P. yoelii 17XL, P yoelii 17XNL, P. chabaudi, P. vinckei and P. berghei expressed the inhibitory receptors, PD-1 and LAG-3, as early as 6 days after infection, whereas those from either Listeria monocytogenes- or Leishmania major-infected mice did not. In response to T-cell receptor stimulation, CD4(+) T cells from mice infected with all the pathogens under study produced high concentrations of IFN-γ. IL-2 production was reduced in mice infected with Plasmodium species, but not in those infected with Listeria or Leishmania. In vitro blockade of the interaction between PD-1 and its ligands resulted in increased IFN-γ production in response to Plasmodium antigens, implying that PD-1 expressed on activated CD4(+) T cells actively inhibits T cell immune responses. Studies using Myd88(-/-), Trif(-/-) and Irf3(-/-) mice showed that induction of these CD4(+) T cells and their ability to produce cytokines is largely independent of TLR signaling. These studies suggest that expression of the inhibitory receptors PD-1 and LAG-3 on CD4(+) T cells and their reduced IL-2 production are common characteristic features of Plasmodium infection.

  20. Synergistic Communication between CD4+ T Cells and Monocytes Impacts the Cytokine Environment

    PubMed Central

    Schrier, Sarah B.; Hill, Abby S.; Plana, Deborah; Lauffenburger, Douglas A.

    2016-01-01

    Physiological cytokine environments arise from factors produced by diverse cell types in coordinated concert. Understanding the contributions of each cell type in the context of cell-cell communication is important for effectively designing disease modifying interventions. Here, we present multi-plexed measurement of 48 cytokines from a coculture system of primary human CD4+ T cells and monocytes across a spectrum of stimuli and for a range of relative T cell/monocyte compositions, coupled with corresponding measurements from PBMCs and plasma from the same donors. Computational analysis of the resulting data-sets elucidated communication-independent and communication-dependent contributions, including both positive and negative synergies. We find that cytokines in cell supernatants were uncorrelated to those found in plasma. Additionally, as an example of positive synergy, production levels of CXCR3 cytokines IP-10 and MIG, depend non-linearly on both IFNγ and TNFα levels in cross-talk between T cells and monocytes. Overall, this work demonstrates that communication between cell types can significantly impact the consequent cytokine environment, emphasizing the value of mixed cell population studies. PMID:27721433

  1. Peripheral tolerance through clonal deletion of mature CD4-CD8+ T cells.

    PubMed

    Carlow, D A; Teh, S J; van Oers, N S; Miller, R G; Teh, H S

    1992-05-01

    Transgenic mice bearing the alpha beta transgenes encoding a defined T cell receptor specific for the male (H-Y) antigen presented by the H-2Db class I MHC molecule were used to study mechanisms of peripheral tolerance. Female transgenic mice produce large numbers of functionally homogeneous CD8+ male antigen-reactive T cells in the thymus that subsequently accumulate in the peripheral lymphoid organs. We have used three experimental approaches to show that male reactive CD8+ T cells can be eliminated from peripheral lymphoid organs after exposure to male antigen. (i) In female transgenic mice that were neonatally tolerized with male spleen cells, male reactive CD8+ T cells continued to be produced in large numbers in the thymus but were virtually absent in the lymph nodes. (ii) Injection of thymocytes from female transgenic mice into female mice neonatally tolerized with the male antigen, or into normal male mice, led to the specific elimination of male-reactive CD8+ T cells in the lymph nodes. (iii) Four days after male lymphoid cells were injected intravenously into female transgenic mice, male antigen-reactive CD8+ T cells recovered from the lymph nodes of recipient mice were highly apoptotic when compared to CD4+ (non-male reactive) T cells. These data indicate that tolerance to extrathymic antigen can be achieved through elimination of mature T cells in the peripheral lymphoid organs.

  2. Loss of NOX-Derived Superoxide Exacerbates Diabetogenic CD4 T-Cell Effector Responses in Type 1 Diabetes.

    PubMed

    Padgett, Lindsey E; Anderson, Brian; Liu, Chao; Ganini, Douglas; Mason, Ronald P; Piganelli, Jon D; Mathews, Clayton E; Tse, Hubert M

    2015-12-01

    Reactive oxygen species (ROS) play prominent roles in numerous biological systems. While classically expressed by neutrophils and macrophages, CD4 T cells also express NADPH oxidase (NOX), the superoxide-generating multisubunit enzyme. Our laboratory recently demonstrated that superoxide-deficient nonobese diabetic (NOD.Ncf1(m1J)) mice exhibited a delay in type 1 diabetes (T1D) partially due to blunted IFN-γ synthesis by CD4 T cells. For further investigation of the roles of superoxide on CD4 T-cell diabetogenicity, the NOD.BDC-2.5.Ncf1(m1J) (BDC-2.5.Ncf1(m1J)) mouse strain was generated, possessing autoreactive CD4 T cells deficient in NOX-derived superoxide. Unlike NOD.Ncf1(m1J), stimulated BDC-2.5.Ncf1(m1J) CD4 T cells and splenocytes displayed elevated synthesis of Th1 cytokines and chemokines. Superoxide-deficient BDC-2.5 mice developed spontaneous T1D, and CD4 T cells were more diabetogenic upon adoptive transfer into NOD.Rag recipients due to a skewing toward impaired Treg suppression. Exogenous superoxide blunted exacerbated Th1 cytokines and proinflammatory chemokines to approximately wild-type levels, concomitant with reduced IL-12Rβ2 signaling and P-STAT4 (Y693) activation. These results highlight the importance of NOX-derived superoxide in curbing autoreactivity due, in part, to control of Treg function and as a redox-dependent checkpoint of effector T-cell responses. Ultimately, our studies reveal the complexities of free radicals in CD4 T-cell responses.

  3. CD4+ CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis.

    PubMed

    Möttönen, M; Heikkinen, J; Mustonen, L; Isomäki, P; Luukkainen, R; Lassila, O

    2005-05-01

    CD4(+) CD25(+) regulatory T (T(reg)) cells play a critical role in the maintenance of peripheral tolerance and the prevention of autoimmunity. In the present study, we have explored the characteristics of CD4(+) CD25(+) T(reg) cells in patients with rheumatoid arthritis (RA). The frequency and phenotype of CD4(+) CD25(+) T cells in paired samples of synovial fluid (SF) and peripheral blood (PB) from patients with RA and PB from normal controls were analysed. An increased frequency of CD4+ cells T cells expressing CD25 was detected in SF compared to PB from patients with RA. No significant difference was observed in the numbers of CD4(+) CD25(+) T cells in PB from patients and controls. SF CD4(+) CD25(+) T cells expressed high levels of CTLA-4 (both surface and intracellular), GITR and OX40, as well as Foxp3 transcripts. Functionally, SF CD4(+) CD25(+) T cells were impaired in their proliferative responses and could suppress the proliferation of their CD4(+) CD25(-) counterparts. In conclusion, these data demonstrate that CD4(+) CD25(+) T(reg) cells, with the potential to regulate the function of effector T cells and antigen-presenting cells, accumulate in the synovium of patients with RA.

  4. Protective CD4 T cells targeting cryptic epitopes of Mycobacterium tuberculosis resist infection-driven terminal differentiation.

    PubMed

    Woodworth, Joshua S; Aagaard, Claus Sindbjerg; Hansen, Paul R; Cassidy, Joseph P; Agger, Else Marie; Andersen, Peter

    2014-04-01

    CD4 T cells are crucial to the control of Mycobacterium tuberculosis infection and are a key component of current vaccine strategies. Conversely, immune-mediated pathology drives disease, and recent evidence suggests that adaptive and innate responses are evolutionarily beneficial to M. tuberculosis. We compare the functionality of CD4 T cell responses mounted against dominant and cryptic epitopes of the M. tuberculosis 6-kDa early secreted Ag (ESAT-6) before and postinfection. Protective T cells against cryptic epitopes not targeted during natural infection were induced by vaccinating mice with a truncated ESAT-6 protein, lacking the dominant epitope. The ability to generate T cells that recognize multiple cryptic epitopes was MHC-haplotype dependent, including increased potential via heterologous MHC class II dimers. Before infection, cryptic epitope-specific T cells displayed enhanced proliferative capacity and delayed cytokine kinetics. After aerosol M. tuberculosis challenge, vaccine-elicited CD4 T cells expanded and recruited to the lung. In chronic infection, dominant epitope-specific T cells developed a terminal differentiated KLRG1(+)/PD-1(lo) surface phenotype that was significantly reduced in the cryptic epitope-specific T cell populations. Dominant epitope-specific T cells in vaccinated animals developed into IFN-γ- and IFN-γ,TNF-α-coproducing effector cells, characteristic of the endogenous response. In contrast, cryptic epitope-specific CD4 T cells maintained significantly greater IFN-γ(+)TNF-α(+)IL-2(+) and TNF-α(+)IL-2(+) memory-associated polyfunctionality and enhanced proliferative capacity. Vaccine-associated IL-17A production by cryptic CD4 T cells was also enhanced, but without increased neutrophilia/pathology. Direct comparison of dominant/cryptic epitope-specific CD4 T cells within covaccinated mice confirmed the superior ability of protective cryptic epitope-specific T cells to resist M. tuberculosis infection-driven T cell

  5. West Nile virus-specific CD4 T cells exhibit direct anti-viral cytokine secretion and cytotoxicity and are sufficient for antiviral protection

    PubMed Central

    Brien, James D.; Uhrlaub, Jennifer L.; Nikolich-Zugich, Janko

    2012-01-01

    CD4 T cells have been shown to be necessary for the prevention of encephalitis during West Nile virus infection. However, the mechanisms used by antigen-specific CD4 T cells to protect mice from West Nile virus encephalitis remain incompletely understood. Contrary to the belief that CD4 T cells are protective because they merely maintain the CD8 T cell response and improve antibody production, we here provide evidence for the direct anti-viral activity of CD4 T cells which functions to protect the host from WNV encephalitis. In adoptive transfers, naïve CD4 T cells protected a significant number of lethally infected RAG−/− mice, demonstrating the protective effect of CD4 T cells independent of B cells and CD8 T cells. To shed light on the mechanism of this protection, we defined the peptide specificities of the CD4 T cells responding to West Nile virus infection in C57BL/6 (H-2b) mice, and used these peptides to characterize the in vivo function of antiviral CD4 T cells. WNV-specific CD4 T cells produced IFN-γ and IL-2, but also showed potential for in vivo and ex vivo cytotoxicity. Furthermore, peptide vaccination using CD4 epitopes conferred protection against lethal West Nile virus infection in immunocompetent mice. These results demonstrate the role of direct effector function of antigen-specific CD4 T cell in preventing severe West Nile virus disease. PMID:19050276

  6. Direct tumor recognition by a human CD4+ T-cell subset potently mediates tumor growth inhibition and orchestrates anti-tumor immune responses

    PubMed Central

    Matsuzaki, Junko; Tsuji, Takemasa; Luescher, Immanuel F.; Shiku, Hiroshi; Mineno, Junichi; Okamoto, Sachiko; Old, Lloyd J.; Shrikant, Protul; Gnjatic, Sacha; Odunsi, Kunle

    2015-01-01

    Tumor antigen-specific CD4+ T cells generally orchestrate and regulate immune cells