Sample records for prevent highly pathogenic

  1. Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens

    PubMed Central

    Read, Andrew F.; Baigent, Susan J.; Powers, Claire; Kgosana, Lydia B.; Blackwell, Luke; Smith, Lorraine P.; Kennedy, David A.; Walkden-Brown, Stephen W.; Nair, Venugopal K.

    2015-01-01

    Could some vaccines drive the evolution of more virulent pathogens? Conventional wisdom is that natural selection will remove highly lethal pathogens if host death greatly reduces transmission. Vaccines that keep hosts alive but still allow transmission could thus allow very virulent strains to circulate in a population. Here we show experimentally that immunization of chickens against Marek's disease virus enhances the fitness of more virulent strains, making it possible for hyperpathogenic strains to transmit. Immunity elicited by direct vaccination or by maternal vaccination prolongs host survival but does not prevent infection, viral replication or transmission, thus extending the infectious periods of strains otherwise too lethal to persist. Our data show that anti-disease vaccines that do not prevent transmission can create conditions that promote the emergence of pathogen strains that cause more severe disease in unvaccinated hosts. PMID:26214839

  2. Immunization of Domestic Ducks with Live Nonpathogenic H5N3 Influenza Virus Prevents Shedding and Transmission of Highly Pathogenic H5N1 Virus to Chickens

    PubMed Central

    Gambaryan, Alexandra; Boravleva, Elizaveta; Lomakina, Natalia; Kropotkina, Ekaterina; Klenk, Hans-Dieter

    2018-01-01

    Wild ducks are known to be able to carry avian influenza viruses over long distances and infect domestic ducks, which in their turn infect domestic chickens. Therefore, prevention of virus transmission between ducks and chickens is important to control the spread of avian influenza. Here we used a low pathogenic wild aquatic bird virus A/duck/Moscow/4182/2010 (H5N3) for prevention of highly pathogenic avian influenza virus (HPAIV) transmission between ducks and chickens. We first confirmed that the ducks orally infected with H5N1 HPAIV A/chicken/Kurgan/3/2005 excreted the virus in feces. All chickens that were in contact with the infected ducks became sick, excreted the virus, and died. However, the ducks orally inoculated with 104 50% tissue culture infective doses of A/duck/Moscow/4182/2010 and challenged 14 to 90 days later with H5N1 HPAIV did not excrete the challenge virus. All contact chickens survived and did not excrete the virus. Our results suggest that low pathogenic virus of wild aquatic birds can be used for prevention of transmission of H5N1 viruses between ducks and chickens. PMID:29614716

  3. Phosphate-Containing Polyethylene Glycol Polymers Prevent Lethal Sepsis by Multidrug-Resistant Pathogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaborin, Alexander; Defazio, Jennifer; Kade, Matthew

    The gastrointestinal tract is the primary site of colonization for multi-drug resistant healthcare associated pathogens (HAPs) that are the principal source and cause of life-threatening infections in critically ill patients. We previously identified a high molecular weight co-polymer (PEG15-20) with mucoadhesive and cytoprotective actions on the intestinal epithelium. In this report we covalently bonded phosphate (Pi) to PEG15-20 ( termed Pi-PEG15-20) to enhance its cytoprotective activity against microbial virulence activation and invasion based on our previous work showing that Pi is a key environmental cue regulating microbial virulence across pathogens of clinical importance to hospitalized patients. We demonstrated that Pi-PEG15-20more » can suppress phosphate-, iron-, and quorum sensing signal- mediated activation of bacterial virulence as well as inhibit intestinal epithelial IL-8 release during lipopolysaccharide (LPS) exposure. Pi-PEG15-20 also prevented mortality in C. elegans and mice exposed to several highly virulent and antibiotic(?)-resistant health care acquired pathogens (HAPs) while preserving the normal microbiota. Intestinal application Pi-PEG 15-20 has the potential to be a useful agent to prevent the pathogenic activation of microbes during critical illness where exposure to HAPs is ubiquitous.« less

  4. The efficacy of recombinant turkey herpesvirus vaccines targeting the H5 of highly pathogenic avian influenza virus from the 2014/2015 North American outbreak

    USDA-ARS?s Scientific Manuscript database

    The outbreak of highly pathogenic avian influenza virus in North American poultry during 2014 and 2015 demonstrated the devastating effects of the disease and highlighted the need for effective emergency vaccine prevention and control strategies targeted at currently circulating strains. This study...

  5. Global expansion of high pathogenicity avian influenza: implications on prevention and control programs

    USDA-ARS?s Scientific Manuscript database

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreas...

  6. Global expansion of high pathogenicity avian influenza: implications on prevention and control programs

    USDA-ARS?s Scientific Manuscript database

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreasi...

  7. Waterborne Pathogens: Detection Methods and Challenges

    PubMed Central

    Ramírez-Castillo, Flor Yazmín; Loera-Muro, Abraham; Jacques, Mario; Garneau, Philippe; Avelar-González, Francisco Javier; Harel, Josée; Guerrero-Barrera, Alma Lilián

    2015-01-01

    Waterborne pathogens and related diseases are a major public health concern worldwide, not only by the morbidity and mortality that they cause, but by the high cost that represents their prevention and treatment. These diseases are directly related to environmental deterioration and pollution. Despite the continued efforts to maintain water safety, waterborne outbreaks are still reported globally. Proper assessment of pathogens on water and water quality monitoring are key factors for decision-making regarding water distribution systems’ infrastructure, the choice of best water treatment and prevention waterborne outbreaks. Powerful, sensitive and reproducible diagnostic tools are developed to monitor pathogen contamination in water and be able to detect not only cultivable pathogens but also to detect the occurrence of viable but non-culturable microorganisms as well as the presence of pathogens on biofilms. Quantitative microbial risk assessment (QMRA) is a helpful tool to evaluate the scenarios for pathogen contamination that involve surveillance, detection methods, analysis and decision-making. This review aims to present a research outlook on waterborne outbreaks that have occurred in recent years. This review also focuses in the main molecular techniques for detection of waterborne pathogens and the use of QMRA approach to protect public health. PMID:26011827

  8. Personal protective equipment and improving compliance among healthcare workers in high-risk settings.

    PubMed

    Honda, Hitoshi; Iwata, Kentaro

    2016-08-01

    Personal protective equipment (PPE) protects healthcare workers (HCWs) from infection by highly virulent pathogens via exposure to body fluids and respiratory droplets. Given the recent outbreaks of contagious infectious diseases worldwide, including Ebola virus and Middle Eastern respiratory syndrome, there is urgent need for further research to determine optimal PPE use in high-risk settings. This review intends to provide a general understanding of PPE and to provide guidelines for appropriate use based on current evidence. Although previous studies have focused on the efficacy of PPE in preventing transmission of pathogens, recent studies have examined the dangers to HCWs during removal of PPE when risk of contamination is highest. Access to adequate PPE supplies is crucial to preventing transmission of pathogens, especially in resource-limited settings. Adherence to appropriate PPE use is a challenge due to inadequate education on its usage, technical difficulties, and tolerability of PPE in the workplace. Future projects aim at ameliorating this situation, including redesigning PPE which is crucial to improving the safety of HCWs. PPE remains the most important strategy for protecting HCW from potentially fatal pathogens. Further research into optimal PPE design and use to improve the safety of HCWs is urgently needed.

  9. Listeria: A foodborne pathogen that knows how to survive.

    PubMed

    Gandhi, Megha; Chikindas, Michael L

    2007-01-01

    The foodborne pathogen Listeria is the causative agent of listeriosis, a severe disease with high hospitalization and case fatality rates. Listeria monocytogenes can survive and grow over a wide range of environmental conditions such as refrigeration temperatures, low pH and high salt concentration. This allows the pathogen to overcome food preservation and safety barriers, and pose a potential risk to human health. This review focuses on the key issues such as survival of the pathogen in adverse environments, and the important adaptation and survival mechanisms such as biofilm formation, quorum sensing and antimicrobial resistance. Studies on the development of technologies to prevent and control L. monocytogenes contamination in foods and food processing facilities are also discussed.

  10. Challenges and Strategies for Prevention of Multidrug-Resistant Organism Transmission in Nursing Homes.

    PubMed

    Dumyati, Ghinwa; Stone, Nimalie D; Nace, David A; Crnich, Christopher J; Jump, Robin L P

    2017-04-01

    Nursing home residents are at high risk for colonization and infection with bacterial pathogens that are multidrug-resistant organisms (MDROs). We discuss challenges and potential solutions to support implementing effective infection prevention and control practices in nursing homes. Challenges include a paucity of evidence that addresses MDRO transmission during the care of nursing home residents, limited staff resources in nursing homes, insufficient infection prevention education in nursing homes, and perceptions by nursing home staff that isolation and contact precautions negatively influence the well being of their residents. A small number of studies provide evidence that specifically address these challenges. Their outcomes support a paradigm shift that moves infection prevention and control practices away from a pathogen-specific approach and toward one that focuses on resident risk factors.

  11. Low-water activity foods: increased concern as vehicles of foodborne pathogens.

    PubMed

    Beuchat, Larry R; Komitopoulou, Evangelia; Beckers, Harry; Betts, Roy P; Bourdichon, François; Fanning, Séamus; Joosten, Han M; Ter Kuile, Benno H

    2013-01-01

    Foods and food ingredients with low water activity (a(w)) have been implicated with increased frequency in recent years as vehicles for pathogens that have caused outbreaks of illnesses. Some of these foodborne pathogens can survive for several months, even years, in low-a(w) foods and in dry food processing and preparation environments. Foodborne pathogens in low-a(w) foods often exhibit an increased tolerance to heat and other treatments that are lethal to cells in high-a(w) environments. It is virtually impossible to eliminate these pathogens in many dry foods or dry food ingredients without impairing organoleptic quality. Control measures should therefore focus on preventing contamination, which is often a much greater challenge than designing efficient control measures for high-a(w) foods. The most efficient approaches to prevent contamination are based on hygienic design, zoning, and implementation of efficient cleaning and sanitation procedures in the food processing environment. Methodologies to improve the sensitivity and speed of assays to resuscitate desiccated cells of foodborne pathogens and to detect them when present in dry foods in very low numbers should be developed. The goal should be to advance our knowledge of the behavior of foodborne pathogens in low-a(w) foods and food ingredients, with the ultimate aim of developing and implementing interventions that will reduce foodborne illness associated with this food category. Presented here are some observations on survival and persistence of foodborne pathogens in low-a(w) foods, selected outbreaks of illnesses associated with consumption of these foods, and approaches to minimize safety risks.

  12. Adhesive Pili in UTI Pathogenesis and Drug Development.

    PubMed

    Spaulding, Caitlin N; Hultgren, Scott J

    2016-03-15

    Urinary tract infections (UTIs) are one of the most common bacterial infections, affecting 150 million people each year worldwide. High recurrence rates and increasing antimicrobial resistance among uropathogens are making it imperative to develop alternative strategies for the treatment and prevention of this common infection. In this Review, we discuss how understanding the: (i) molecular and biophysical basis of host-pathogen interactions; (ii) consequences of the molecular cross-talk at the host pathogen interface in terms of disease progression; and (iii) pathophysiology of UTIs is leading to efforts to translate this knowledge into novel therapeutics to treat and prevent these infections.

  13. Adhesive Pili in UTI Pathogenesis and Drug Development

    PubMed Central

    Spaulding, Caitlin N.; Hultgren, Scott J.

    2016-01-01

    Urinary tract infections (UTIs) are one of the most common bacterial infections, affecting 150 million people each year worldwide. High recurrence rates and increasing antimicrobial resistance among uropathogens are making it imperative to develop alternative strategies for the treatment and prevention of this common infection. In this Review, we discuss how understanding the: (i) molecular and biophysical basis of host-pathogen interactions; (ii) consequences of the molecular cross-talk at the host pathogen interface in terms of disease progression; and (iii) pathophysiology of UTIs is leading to efforts to translate this knowledge into novel therapeutics to treat and prevent these infections. PMID:26999218

  14. Coating of silicone with mannoside-PAMAM dendrimers to enhance formation of non-pathogenic Escherichia coli biofilms against colonization of uropathogens.

    PubMed

    Zhu, Zhiling; Yu, Fei; Chen, Haoqing; Wang, Jun; Lopez, Analette I; Chen, Quan; Li, Siheng; Long, Yuyu; Darouiche, Rabih O; Hull, Richard A; Zhang, Lijuan; Cai, Chengzhi

    2017-12-01

    Bacterial interference using non-pathogenic Escherichia coli 83972 is a novel strategy for preventing catheter-associated urinary tract infection (CAUTI). Crucial to the success of this strategy is to establish a high coverage and stable biofilm of the non-pathogenic bacteria on the catheter surface. However, this non-pathogenic strain is sluggish to form biofilms on silicone as the most widely used material for urinary catheters. We have addressed this issue by modifying the silicone catheter surfaces with mannosides that promote the biofilm formation, but the stability of the non-pathogenic biofilms challenged by uropathogens over long-term remains a concern. Herein, we report our study on the stability of the non-pathogenic biofilms grown on propynylphenyl mannoside-modified silicone. The result shows that 94% non-pathogenic bacteria were retained on the modified silicone under >0.5 Pa shear stress. After being challenged by three multidrug-resistant uropathogenic isolates in artificial urine for 11 days, large amounts (>4 × 10 6  CFU cm -2 ) of the non-pathogenic bacteria remained on the surfaces. These non-pathogenic biofilms reduced the colonization of the uropathogens by >3.2-log. In bacterial interference, the non-pathogenic Escherichia coli strains are sluggish to form biofilms on the catheter surfaces, due to rapid removal by urine flow. We have demonstrated a solution to this bottleneck by pre-functionalization of mannosides on the silicone surfaces to promote E. coli biofilm formation. A pre-conjugated high affinity propynylphenyl mannoside ligand tethered to the nanometric amino-terminated poly(amido amine) (PAMAM) dendrimer is used for binding to a major E. coli adhesin FimH. It greatly improves the efficiency for the catheter modification, the non-pathogenic biofilm coverage, as well as the (long-term) stability for prevention of uropathogen infections. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Inactivation of Salmonella, Escherichia coli O157:H7 and non-O157 STEC by hypochlorite solutions with high organic loads

    USDA-ARS?s Scientific Manuscript database

    Introduction: Salmonella, E. coli O157:H7 and Non-O157 STEC have been recognized as foodborne pathogen concerns for fresh produce. Although chlorinated water (CW) is widely used in fresh produce processing to reduce pathogens and prevent cross-contamination, limited information is available on effic...

  16. Spatial variation in risk and consequence of Batrachochytrium salamandrivorans introduction in the USA

    USGS Publications Warehouse

    Richgels, Katherine L. D.; Russell, Robin E.; Adams, Michael J.; White, C. LeAnn; Campbell Grant, Evan H.

    2016-01-01

    A newly identified fungal pathogen, Batrachochytrium salamandrivorans (Bsal), is responsible for mass mortality events and severe population declines in European salamanders. The eastern USA has the highest diversity of salamanders in the world and the introduction of this pathogen is likely to be devastating. Although data are inevitably limited for new pathogens, disease-risk assessments use best available data to inform management decisions. Using characteristics of Bsal ecology, spatial data on imports and pet trade establishments, and salamander species diversity, we identify high-risk areas with both a high likelihood of introduction and severe consequences for local salamanders. We predict that the Pacific coast, southern Appalachian Mountains and mid-Atlantic regions will have the highest relative risk from Bsal. Management of invasive pathogens becomes difficult once they are established in wildlife populations; therefore, import restrictions to limit pathogen introduction and early detection through surveillance of high-risk areas are priorities for preventing the next crisis for North American salamanders.

  17. The cell surface environment for pathogen recognition and entry.

    PubMed

    Stow, Jennifer L; Condon, Nicholas D

    2016-04-01

    The surface of mammalian cells offers an interface between the cell interior and its surrounding milieu. As part of the innate immune system, macrophages have cell surface features optimised for probing and sampling as they patrol our tissues for pathogens, debris or dead cells. Their highly dynamic and constantly moving cell surface has extensions such as lamellipodia, filopodia and dorsal ruffles that help detect pathogens. Dorsal ruffles give rise to macropinosomes for rapid, high volume non-selective fluid sampling, receptor internalisation and plasma membrane turnover. Ruffles can also generate phagocytic cups for the receptor-mediated uptake of pathogens or particles. The membrane lipids, actin cytoskeleton, receptors and signalling proteins that constitute these cell surface domains are discussed. Although the cell surface is designed to counteract pathogens, many bacteria, viruses and other pathogens have evolved to circumvent or hijack these cell structures and their underlying machinery for entry and survival. Nevertheless, these features offer important potential for developing vaccines, drugs and preventative measures to help fight infection.

  18. A proactive approach to prevent invasive plant pathogens

    Treesearch

    Amy Rossman

    2009-01-01

    This paper describes proactive work by federal agencies to prevent new introductions of forest pathogens. Executive Order 13112 requires federal agencies to work together to enhance our abilities to prevent, eradicate, and control...

  19. Insight into Alternative Approaches for Control of Avian Influenza in Poultry, with Emphasis on Highly Pathogenic H5N1

    PubMed Central

    Abdelwhab, E. M.; Hafez, Hafez M.

    2012-01-01

    Highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 causes a devastating disease in poultry but when it accidentally infects humans it can cause death. Therefore, decrease the incidence of H5N1 in humans needs to focus on prevention and control of poultry infections. Conventional control strategies in poultry based on surveillance, stamping out, movement restriction and enforcement of biosecurity measures did not prevent the virus spreading, particularly in developing countries. Several challenges limit efficiency of the vaccines to prevent outbreaks of HPAIV H5N1 in endemic countries. Alternative and complementary approaches to reduce the current burden of H5N1 epidemics in poultry should be encouraged. The use of antiviral chemotherapy and natural compounds, avian-cytokines, RNA interference, genetic breeding and/or development of transgenic poultry warrant further evaluation as integrated intervention strategies for control of HPAIV H5N1 in poultry. PMID:23202521

  20. Highly pathogenic avian influenza.

    PubMed

    Swayne, D E; Suarez, D L

    2000-08-01

    Highly pathogenic (HP) avian influenza (AI) (HPAI) is an extremely contagious, multi-organ systemic disease of poultry leading to high mortality, and caused by some H5 and H7 subtypes of type A influenza virus, family Orthomyxoviridae. However, most AI virus strains are mildly pathogenic (MP) and produce either subclinical infections or respiratory and/or reproductive diseases in a variety of domestic and wild bird species. Highly pathogenic avian influenza is a List A disease of the Office International des Epizooties, while MPAI is neither a List A nor List B disease. Eighteen outbreaks of HPAI have been documented since the identification of AI virus as the cause of fowl plague in 1955. Mildly pathogenic avian influenza viruses are maintained in wild aquatic bird reservoirs, occasionally crossing over to domestic poultry and causing outbreaks of mild disease. Highly pathogenic avian influenza viruses do not have a recognised wild bird reservoir, but can occasionally be isolated from wild birds during outbreaks in domestic poultry. Highly pathogenic avian influenza viruses have been documented to arise from MPAI viruses through mutations in the haemagglutinin surface protein. Prevention of exposure to the virus and eradication are the accepted methods for dealing with HPAI. Control programmes, which imply allowing a low incidence of infection, are not an acceptable method for managing HPAI, but have been used during some outbreaks of MPAI. The components of a strategy to deal with MPAI or HPAI include surveillance and diagnosis, biosecurity, education, quarantine and depopulation. Vaccination has been used in some control and eradication programmes for AI.

  1. Future research needs involving pathogens in groundwater

    NASA Astrophysics Data System (ADS)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-06-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  2. Future research needs involving pathogens in groundwater

    USGS Publications Warehouse

    Bradford, Scott A.; Harvey, Ronald W.

    2017-01-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  3. Vaccines for the future: learning from human immunology

    PubMed Central

    De Gregorio, Ennio; Rappuoli, Rino

    2012-01-01

    Summary Conventional vaccines have been extremely successful in preventing infections by pathogens expressing relatively conserved antigens through antibody‐mediated effector mechanisms. Thanks to vaccination some diseases have been eradicated and mortality due to infectious diseases has been significantly reduced. However, there are still many infections that are not preventable with vaccination, which represent a major cause of mortality worldwide. Some of these infections are caused by pathogens with a high degree of antigen variability that cannot be controlled only by antibodies, but require a mix of humoral and cellular immune responses. Novel technologies for antigen discovery, expression and formulation allow now for the development of vaccines that can better cope with pathogen diversity and trigger multifunctional immune responses. In addition, the application of new genomic assays and systems biology approaches in human immunology can help to better identify vaccine correlates of protection. The availability of novel vaccine technologies, together with the knowledge of the distinct human immune responses that are required to prevent different types of infection, should help to rationally design effective vaccines where conventional approaches have failed. PMID:21880117

  4. Materials and methods for preventing and treating anastomotic leaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alverdy, John C.

    Materials and methods for preventing and treating anastomotic leaks are disclosed. Data establishes that pathogenic microbes interfere with establishing epithelial cell barriers in anastomoses and, more generally, with the reconnection of any two portions of like or different tissues comprising epithelia. Suitable prophylactic and therapeutic composition comprise, e.g., a phosphorylated high molecular weight polyethylene glycol compound.

  5. Plant pathogen nanodiagnostic techniques: forthcoming changes?

    PubMed Central

    Khiyami, Mohammad A.; Almoammar, Hassan; Awad, Yasser M.; Alghuthaymi, Mousa A.; Abd-Elsalam, Kamel A.

    2014-01-01

    Plant diseases are among the major factors limiting crop productivity. A first step towards managing a plant disease under greenhouse and field conditions is to correctly identify the pathogen. Current technologies, such as quantitative polymerase chain reaction (Q-PCR), require a relatively large amount of target tissue and rely on multiple assays to accurately identify distinct plant pathogens. The common disadvantage of the traditional diagnostic methods is that they are time consuming and lack high sensitivity. Consequently, developing low-cost methods to improve the accuracy and rapidity of plant pathogens diagnosis is needed. Nanotechnology, nano particles and quantum dots (QDs) have emerged as essential tools for fast detection of a particular biological marker with extreme accuracy. Biosensor, QDs, nanostructured platforms, nanoimaging and nanopore DNA sequencing tools have the potential to raise sensitivity, specificity and speed of the pathogen detection, facilitate high-throughput analysis, and to be used for high-quality monitoring and crop protection. Furthermore, nanodiagnostic kit equipment can easily and quickly detect potential serious plant pathogens, allowing experts to help farmers in the prevention of epidemic diseases. The current review deals with the application of nanotechnology for quicker, more cost-effective and precise diagnostic procedures of plant diseases. Such an accurate technology may help to design a proper integrated disease management system which may modify crop environments to adversely affect crop pathogens. PMID:26740775

  6. [Strategies to prevent the transmission of multidrug-resistant pathogens and their practical implementation in oupatient care].

    PubMed

    Adler, A C; Spegel, H; Wilke, J; Höller, C; Herr, C

    2012-10-01

    Multidrugresistant pathogens which are highly relevant for infection control in hospitals and other health-care facilities are a serious public health problem and a big challenge for all players in the health sector. In order to prevent the spread of multi-resistant pathogens the Commission for Hospital Hygiene of the Robert Koch-Institute (RKI) has published guidelines. These recommendations refer to the consequent implementation of an infection control management in all health care settings, including outpatient care. In Germany there are only few data available concerning infection control management and the implementation of preventive strategies in outpatient care. To what extent are national guidelines concerning infection control of multidrugresistant pathogens (i.e. methicillin-resistant Staphylococcus aureus, MRSA) feasible and practicable in outpatient care? And what are the reasons not to practice these strategies. In outpatient care the status of the infection control management and the implementation of prevention strategies was surveyed and assessed. Data were collected by structured interviews - a face to face method. Guidelines concerning infection control management are not always sufficiently implemented in outpatient care. There are multiple reasons for this, such as, e.g., lack of compliance with the recommendations as well as structural problems in the health-care system, and special challenges of outpatient care. Implementation of an infection control management concerning multidrug-resistant pathogens in outpatient care is problematic. Prevention strategies are commonly not known or not adequately implemented into daily practice. Actions to improve the situation should focus at the individual level (e.g., trainings in the context of the initiative "clean hands" ), the institutional level (improving networking, bonus schemes) and the social level (financial and legal support for outpatient care centres to bear the expenses of infection control management, "search and destroy"). © Georg Thieme Verlag KG Stuttgart · New York.

  7. Ticks and Tick-Borne Pathogens of the Caribbean: Current Understanding and Future Directions for More Comprehensive Surveillance.

    PubMed

    Gondard, Mathilde; Cabezas-Cruz, Alejandro; Charles, Roxanne A; Vayssier-Taussat, Muriel; Albina, Emmanuel; Moutailler, Sara

    2017-01-01

    Ticks are obligate hematophagous arthropods of significant importance to human and veterinary medicine. They transmit a vast array of pathogens, including bacteria, viruses, protozoa, and helminths. Most epidemiological data on ticks and tick-borne pathogens (TBPs) in the West Indies are limited to common livestock pathogens such as Ehrlichia ruminantium, Babesia spp. (i.e., B. bovis and B. bigemina ), and Anaplasma marginale , and less information is available on companion animal pathogens. Of note, human tick-borne diseases (TBDs) remain almost completely uncharacterized in the West Indies. Information on TBP presence in wildlife is also missing. Herein, we provide a comprehensive review of the ticks and TBPs affecting human and animal health in the Caribbean, and introduce the challenges associated with understanding TBD epidemiology and implementing successful TBD management in this region. In particular, we stress the need for innovative and versatile surveillance tools using high-throughput pathogen detection (e.g., high-throughput real-time microfluidic PCR). The use of such tools in large epidemiological surveys will likely improve TBD prevention and control programs in the Caribbean.

  8. Exploitation of microbial forensics and nanotechnology for the monitoring of emerging pathogens.

    PubMed

    Bokhari, Habib

    2018-03-07

    Emerging infectious diseases remain among the leading causes of global mortality. Traditional laboratory diagnostic approaches designed to detect and track infectious disease agents provide a framework for surveillance of bio threats. However, surveillance and outbreak investigations using such time-consuming approaches for early detection of pathogens remain the major pitfall. Hence, reasonable real-time surveillance systems to anticipate threats to public health and environment are critical for identifying specific aetiologies and preventing the global spread of infectious disease. The current review discusses the growing need for monitoring and surveillance of pathogens with the same zeal and approach as adopted by microbial forensics laboratories, and further strengthening it by integrating with the innovative nanotechnology for rapid detection of microbial pathogens. Such innovative diagnostics platforms will help to track pathogens from high risk areas and environment by pre-emptive approach that will minimize damages. The various scenarios with the examples are discussed where the high risk associated human pathogens in particular were successfully detected using various nanotechnology approaches with potential future prospects in the field of microbial forensics.

  9. Infectious Causes of Cholesteatoma and Treatment of Infected Ossicles prior to Reimplantation by Hydrostatic High-Pressure Inactivation

    PubMed Central

    Hinz, Rebecca

    2015-01-01

    Chronic inflammation, which is caused by recurrent infections, is one of the factors contributing to the pathogenesis of cholesteatoma. If reimplantation of autologous ossicles after a surgical intervention is intended, inactivation of planktonic bacteria and biofilms is desirable. High hydrostatic pressure treatment is a procedure, which has been used to inactivate cholesteatoma cells on ossicles. Here we discuss the potential inactivating effect of high hydrostatic pressure on microbial pathogens including biofilms. Recent experimental data suggest an incomplete inactivation at a pressure level, which is tolerable for the bone substance of ossicles and results at least in a considerable reduction of pathogen load. Further studies are necessary to access how far this quantitative reduction of pathogens is sufficient to prevent ongoing chronic infections, for example, due to forming of biofilms. PMID:25705686

  10. Quantitative Microbial Risk Assessment and Infectious Disease Transmission Modeling of Waterborne Enteric Pathogens.

    PubMed

    Brouwer, Andrew F; Masters, Nina B; Eisenberg, Joseph N S

    2018-04-20

    Waterborne enteric pathogens remain a global health threat. Increasingly, quantitative microbial risk assessment (QMRA) and infectious disease transmission modeling (IDTM) are used to assess waterborne pathogen risks and evaluate mitigation. These modeling efforts, however, have largely been conducted independently for different purposes and in different settings. In this review, we examine the settings where each modeling strategy is employed. QMRA research has focused on food contamination and recreational water in high-income countries (HICs) and drinking water and wastewater in low- and middle-income countries (LMICs). IDTM research has focused on large outbreaks (predominately LMICs) and vaccine-preventable diseases (LMICs and HICs). Human ecology determines the niches that pathogens exploit, leading researchers to focus on different risk assessment research strategies in different settings. To enhance risk modeling, QMRA and IDTM approaches should be integrated to include dynamics of pathogens in the environment and pathogen transmission through populations.

  11. Iron-Induced Virulence of Salmonella enterica Serovar Typhimurium at the Intestinal Epithelial Interface Can Be Suppressed by Carvacrol

    PubMed Central

    Kortman, Guus A. M.; Roelofs, Rian W. H. M.; Swinkels, Dorine W.; de Jonge, Marien I.; Burt, Sara A.

    2014-01-01

    Oral iron therapy can increase the abundance of bacterial pathogens, e.g., Salmonella spp., in the large intestine of African children. Carvacrol is a natural compound with antimicrobial activity against various intestinal bacterial pathogens, among which is the highly prevalent Salmonella enterica serovar Typhimurium. This study aimed to explore a presumed interaction between carvacrol and bacterial iron handling and to assess the potential of carvacrol in preventing the increase of bacterial pathogenicity during high iron availability. S. Typhimurium was cultured with increasing concentrations of iron and carvacrol to study the effects of these combined interventions on growth, adhesion to intestinal epithelial cells, and iron uptake/influx in both bacterial and epithelial cells. In addition, the ability of carvacrol to remove iron from the high-affinity ligand transferrin and an Fe-dye complex was examined. Carvacrol retarded growth of S. Typhimurium at all iron conditions. Furthermore, iron-induced epithelial adhesion was effectively reduced by carvacrol at high iron concentrations. The reduction of growth and virulence by carvacrol was not paralleled by a change in iron uptake or influx into S. Typhimurium. In contrast, bioavailability of iron for epithelial cells was moderately decreased under these conditions. Further, carvacrol was shown to lack the properties of an iron binding molecule; however, it was able to weaken iron-ligand interactions by which it may possibly interfere with bacterial virulence. In conclusion, our in vitro data suggest that carvacrol has the potential to serve as a novel dietary supplement to prevent pathogenic overgrowth and colonization in the large intestine during oral iron therapy. PMID:24379194

  12. Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor

    DOE PAGES

    Zhang, Li; Yao, Jian; Withers, John; ...

    2015-11-02

    In the past decade, characterization of the host targets of pathogen virulence factors took a center stage in the study of pathogenesis and disease susceptibility in plants and humans. However, the impressive knowledge of host targets has not been broadly exploited to inhibit pathogen infection. In this paper, we show that host target modification could be a promising new approach to “protect” the disease-vulnerable components of plants. In particular, recent studies have identified the plant hormone jasmonate (JA) receptor as one of the common targets of virulence factors from highly evolved biotrophic/hemibiotrophic pathogens. Strains of the bacterial pathogen Pseudomonas syringae,more » for example, produce proteinaceous effectors, as well as a JA-mimicking toxin, coronatine (COR), to activate JA signaling as a mechanism to promote disease susceptibility. Guided by the crystal structure of the JA receptor and evolutionary clues, we succeeded in modifying the JA receptor to allow for sufficient endogenous JA signaling but greatly reduced sensitivity to COR. Transgenic Arabidopsis expressing this modified receptor not only are fertile and maintain a high level of insect defense, but also gain the ability to resist COR-producing pathogens Pseudomonas syringae pv. tomato and P. syringae pv. maculicola. Finally, our results provide a proof-of-concept demonstration that host target modification can be a promising new approach to prevent the virulence action of highly evolved pathogens.« less

  13. Novel management of urinary tract infections.

    PubMed

    Storm, Douglas W; Patel, Ashay S; Koff, Stephen A; Justice, Sheryl S

    2011-07-01

    To highlight observations that have suggested the need for changing the conventional approach to the evaluation and management of urinary tract infections (UTIs) and vesicoureteral reflux in children and examine new alternative approaches to prevention of UTI and renal scarring based on research into host-pathogen interaction. Recent studies have questioned the traditional approach of using prophylactic antibiotics to prevent recurrence of UTI and development of renal scarring in children with vesicoureteral reflux. Ongoing research on host-pathogen interactions reveals a promising capability to analyze virulence factors in bacteria causing UTIs in children, identify highly virulent bacteria capable of causing pyelonephritis and renal injury, and to selectively target the gastrointestinal reservoirs of these bacteria for elimination using probiotics. Promising experimental studies correlating bacterial virulence with pattern of UTI and identification and characterization of a newly available probiotic capable of eradicating uropathogenic bacteria make targeted probiotic prevention of renal injury-inducing UTIs a potential therapeutic reality.

  14. Human quarantine: Toward reducing infectious pressure on chimpanzees at the Taï Chimpanzee Project, Côte d'Ivoire.

    PubMed

    Grützmacher, Kim; Keil, Verena; Leinert, Vera; Leguillon, Floraine; Henlin, Arthur; Couacy-Hymann, Emmanuel; Köndgen, Sophie; Lang, Alexander; Deschner, Tobias; Wittig, Roman M; Leendertz, Fabian H

    2018-01-01

    Due to their genetic relatedness, great apes are highly susceptible to common human respiratory pathogens. Although most respiratory pathogens, such as human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV), rarely cause severe disease in healthy human adults, they are associated with considerable morbidity and mortality in wild great apes habituated to humans for research or tourism. To prevent pathogen transmission, most great ape projects have established a set of hygiene measures ranging from keeping a specific distance, to the use of surgical masks and establishment of quarantines. This study investigates the incidence of respiratory symptoms and human respiratory viruses in humans at a human-great ape interface, the Taï Chimpanzee Project (TCP) in Côte d'Ivoire, and consequently, the effectiveness of a 5-day quarantine designed to reduce the risk of potential exposure to human respiratory pathogens. To assess the impact of quarantine as a preventative measure, we monitored the quarantine process and tested 262 throat swabs for respiratory viruses, collected during quarantine over a period of 1 year. Although only 1 subject tested positive for a respiratory virus (HRSV), 17 subjects developed symptoms of infection while in quarantine and were subsequently kept from approaching the chimpanzees, preventing potential exposure in 18 cases. Our results suggest that quarantine-in combination with monitoring for symptoms-is effective in reducing the risk of potential pathogen exposure. This research contributes to our understanding of how endangered great apes can be protected from human-borne infectious disease. © 2017 Wiley Periodicals, Inc.

  15. Avian flu school: a training approach to prepare for H5N1 highly pathogenic avian influenza.

    PubMed

    Beltran-Alcrudo, Daniel; Bunn, David A; Sandrock, Christian E; Cardona, Carol J

    2008-01-01

    Since the reemergence of highly pathogenic avian influenza (H5N1 HPAI) in 2003, a panzootic that is historically unprecedented in the number of infected flocks, geographic spread, and economic consequences for agriculture has developed. The epidemic has affected a wide range of birds and mammals, including humans. The ineffective management of outbreaks, mainly due to a lack of knowledge among those involved in detection, prevention, and response, points to the need for training on H5N1 HPAI. The main challenges are the multidisciplinary approach required, the lack of experts, the need to train at all levels, and the diversity of outbreak scenarios. Avian Flu School addresses these challenges through a three-level train-the-trainer program intended to minimize the health and economic impacts of H5N1 HPAI by improving a community's ability to prevent and respond, while protecting themselves and others. The course teaches need-to-know facts using highly flexible, interactive, and relevant materials.

  16. Highly pathogenic avian influenza A(H5N8) outbreaks: protection and management of exposed people in Europe, 2014/15 and 2016

    PubMed Central

    Adlhoch, Cornelia; Brown, Ian H.; Angelova, Svetla G.; Bálint, Ádám; Bouwstra, Ruth; Buda, Silke; Castrucci, Maria R.; Dabrera, Gavin; Dán, Ádám; Grund, Christian; Harder, Timm; van der Hoek, Wim; Krisztalovics, Katalin; Parry-Ford, Frances; Popescu, Rodica; Wallensten, Anders; Zdravkova, Anna; Zohari, Siamak; Tsolova, Svetla; Penttinen, Pasi

    2016-01-01

    Introduction of highly pathogenic avian influenza (HPAI) virus A(H5N8) into Europe prompted animal and human health experts to implement protective measures to prevent transmission to humans. We describe the situation in 2016 and list public health measures and recommendations in place. We summarise critical interfaces identified during the A(H5N1) and A(H5N8) outbreaks in 2014/15. Rapid exchange of information between the animal and human health sectors is critical for a timely, effective and efficient response. PMID:27983512

  17. Effect of Disinfectants on Preventing the Cross-Contamination of Pathogens in Fresh Produce Washing Water

    PubMed Central

    Banach, Jennifer L.; Sampers, Imca; Van Haute, Sam; van der Fels-Klerx, H.J. (Ine)

    2015-01-01

    The potential cross-contamination of pathogens between clean and contaminated produce in the washing tank is highly dependent on the water quality. Process wash water disinfectants are applied to maintain the water quality during processing. The review examines the efficacy of process wash water disinfectants during produce processing with the aim to prevent cross-contamination of pathogens. Process wash water disinfection requires short contact times so microorganisms are rapidly inactivated. Free chlorine, chlorine dioxide, ozone, and peracetic acid were considered suitable disinfectants. A disinfectant’s reactivity with the organic matter will determine the disinfectant residual, which is of paramount importance for microbial inactivation and should be monitored in situ. Furthermore, the chemical and worker safety, and the legislative framework will determine the suitability of a disinfection technique. Current research often focuses on produce decontamination and to a lesser extent on preventing cross-contamination. Further research on a sanitizer’s efficacy in the washing water is recommended at the laboratory scale, in particular with experimental designs reflecting industrial conditions. Validation on the industrial scale is warranted to better understand the overall effects of a sanitizer. PMID:26213953

  18. Blocking transmission of vector-borne diseases.

    PubMed

    Schorderet-Weber, Sandra; Noack, Sandra; Selzer, Paul M; Kaminsky, Ronald

    2017-04-01

    Vector-borne diseases are responsible for significant health problems in humans, as well as in companion and farm animals. Killing the vectors with ectoparasitic drugs before they have the opportunity to pass on their pathogens could be the ideal way to prevent vector borne diseases. Blocking of transmission might work when transmission is delayed during blood meal, as often happens in ticks. The recently described systemic isoxazolines have been shown to successfully prevent disease transmission under conditions of delayed pathogen transfer. However, if the pathogen is transmitted immediately at bite as it is the case with most insects, blocking transmission becomes only possible if ectoparasiticides prevent the vector from landing on or, at least, from biting the host. Chemical entities exhibiting repellent activity in addition to fast killing, like pyrethroids, could prevent pathogen transmission even in cases of immediate transfer. Successful blocking depends on effective action in the context of the extremely diverse life-cycles of vectors and vector-borne pathogens of medical and veterinary importance which are summarized in this review. This complexity leads to important parameters to consider for ectoparasiticide research and when considering the ideal drug profile for preventing disease transmission. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Highly Pathogenic Avian Influenza Viruses Do Not Inhibit Interferon Synthesis in Infected Chickens but Can Override the Interferon-Induced Antiviral State ▿†

    PubMed Central

    Penski, Nicola; Härtle, Sonja; Rubbenstroth, Dennis; Krohmann, Carsten; Ruggli, Nicolas; Schusser, Benjamin; Pfann, Michael; Reuter, Antje; Gohrbandt, Sandra; Hundt, Jana; Veits, Jutta; Breithaupt, Angele; Kochs, Georg; Stech, Jürgen; Summerfield, Artur; Vahlenkamp, Thomas; Kaspers, Bernd; Staeheli, Peter

    2011-01-01

    From infection studies with cultured chicken cells and experimental mammalian hosts, it is well known that influenza viruses use the nonstructural protein 1 (NS1) to suppress the synthesis of interferon (IFN). However, our current knowledge regarding the in vivo role of virus-encoded NS1 in chickens is much more limited. Here, we report that highly pathogenic avian influenza viruses of subtypes H5N1 and H7N7 lacking fully functional NS1 genes were attenuated in 5-week-old chickens. Surprisingly, in diseased birds infected with NS1 mutants, the IFN levels were not higher than in diseased birds infected with wild-type virus, suggesting that NS1 cannot suppress IFN gene expression in at least one cell population of infected chickens that produces large amounts of the cytokine in vivo. To address the question of why influenza viruses are highly pathogenic in chickens although they strongly activate the innate immune system, we determined whether recombinant chicken alpha interferon (IFN-α) can inhibit the growth of highly pathogenic avian influenza viruses in cultured chicken cells and whether it can ameliorate virus-induced disease in 5-week-old birds. We found that IFN treatment failed to confer substantial protection against challenge with highly pathogenic viruses, although it was effective against viruses with low pathogenic potential. Taken together, our data demonstrate that preventing the synthesis of IFN is not the primary role of the viral NS1 protein during infection of chickens. Our results further suggest that virus-induced IFN does not contribute substantially to resistance of chickens against highly pathogenic influenza viruses. PMID:21613402

  20. Nanobioimaging and sensing of infectious diseases.

    PubMed

    Tallury, Padmavathy; Malhotra, Astha; Byrne, Logan M; Santra, Swadeshmukul

    2010-03-18

    New methods to identify trace amount of infectious pathogens rapidly, accurately and with high sensitivity are in constant demand to prevent epidemics and loss of lives. Early detection of these pathogens to prevent, treat and contain the spread of infections is crucial. Therefore, there is a need and urgency for sensitive, specific, accurate, easy-to-use diagnostic tests. Versatile biofunctionalized engineered nanomaterials are proving to be promising in meeting these needs in diagnosing the pathogens in food, blood and clinical samples. The unique optical and magnetic properties of the nanoscale materials have been put to use for the diagnostics. In this review, we focus on the developments of the fluorescent nanoparticles, metallic nanostructures and superparamagnetic nanoparticles for bioimaging and detection of infectious microorganisms. The various nanodiagnostic assays developed to image, detect and capture infectious virus and bacteria in solutions, food or biological samples in vitro and in vivo are presented and their relevance to developing countries is discussed. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives

    NASA Astrophysics Data System (ADS)

    Tran, Quang Huy; Quy Nguyen, Van; Le, Anh-Tuan

    2013-09-01

    In recent years the outbreak of re-emerging and emerging infectious diseases has been a significant burden on global economies and public health. The growth of population and urbanization along with poor water supply and environmental hygiene are the main reasons for the increase in outbreak of infectious pathogens. Transmission of infectious pathogens to the community has caused outbreaks of diseases such as influenza (A/H5N1), diarrhea (Escherichia coli), cholera (Vibrio cholera), etc throughout the world. The comprehensive treatments of environments containing infectious pathogens using advanced disinfectant nanomaterials have been proposed for prevention of the outbreaks. Among these nanomaterials, silver nanoparticles (Ag-NPs) with unique properties of high antimicrobial activity have attracted much interest from scientists and technologists to develop nanosilver-based disinfectant products. This article aims to review the synthesis routes and antimicrobial effects of Ag-NPs against various pathogens including bacteria, fungi and virus. Toxicology considerations of Ag-NPs to humans and ecology are discussed in detail. Some current applications of Ag-NPs in water-, air- and surface- disinfection are described. Finally, future prospects of Ag-NPs for treatment and prevention of currently emerging infections are discussed.

  2. Vaccines against human diarrheal pathogens

    PubMed Central

    Böhles, Nathalie; Böhles, Nathalie; Busch, Kim; Busch, Kim; Hensel, Michael; Hensel, Michael

    2014-01-01

    Worldwide, nearly 1.7 billion people per year contract diarrheal infectious diseases (DID) and almost 760 000 of infections are fatal. DID are a major problem in developing countries where poor sanitation prevails and food and water may become contaminated by fecal shedding. Diarrhea is caused by pathogens such as bacteria, protozoans and viruses. Important diarrheal pathogens are Vibrio cholerae, Shigella spp. and rotavirus, which can be prevented with vaccines for several years. The focus of this review is on currently available vaccines against these three pathogens, and on development of new vaccines. Currently, various types of vaccines based on traditional (killed, live attenuated, toxoid or conjugate vaccines) and reverse vaccinology (DNA/mRNA, vector, recombinant subunit, plant vaccines) are in development or already available. Development of new vaccines demands high levels of knowledge, experience, budget, and time, yet promising new vaccines often fail in preclinical and clinical studies. Efficacy of vaccination also depends on the route of delivery, and mucosal immunization in particular is of special interest for preventing DID. Furthermore, adjuvants, delivery systems and other vaccine components are essential for an adequate immune response. These aspects will be discussed in relation to the improvement of existing and development of new vaccines against DID. PMID:24861668

  3. [Important vector-borne infectious diseases among humans in Germany. Epidemiological aspects].

    PubMed

    Frank, C; Faber, M; Hellenbrand, W; Wilking, H; Stark, K

    2014-05-01

    Vector-borne infections pathogenic to humans play an important role in Germany. The relevant zoonotic pathogens are either endemic throughout Germany (e.g. Borrelia burgdorferi sensu latu) or only in specific regions, e.g. tick-borne encephalitis (TBE) virus and hantavirus. They cause a substantial burden of disease. Prevention and control largely rely on public advice and the application of personal protective measures (e.g. TBE virus vaccination and protection against vectors). High quality surveillance and targeted epidemiological studies are fundamental for the evaluation of temporal and spatial risks of infection and the effectiveness of preventive measures. Aside from endemic pathogens, vector-borne infections acquired abroad, mostly transmitted by mosquitoes, have to be systematically and intensively monitored as well, to assess the risk of infection for German residents traveling abroad and to adequately evaluate the risk of autochthonous transmission. Related issues, such as invasive species of mosquitoes in Germany and climate change, have to be taken into consideration. Such pathogens include West Nile, dengue and chikungunya viruses, as well as malaria parasites (Plasmodium species). The article presents an overview of the epidemiological situation of selected relevant vector-borne infections in Germany.

  4. Playing on a pathogen's weakness: using evolution to guide sustainable plant disease control strategies.

    PubMed

    Zhan, Jiasui; Thrall, Peter H; Papaïx, Julien; Xie, Lianhui; Burdon, Jeremy J

    2015-01-01

    Wild plants and their associated pathogens are involved in ongoing interactions over millennia that have been modified by coevolutionary processes to limit the spatial extent and temporal duration of disease epidemics. These interactions are disrupted by modern agricultural practices and social activities, such as intensified monoculture using superior varieties and international trading of agricultural commodities. These activities, when supplemented with high resource inputs and the broad application of agrochemicals, create conditions uniquely conducive to widespread plant disease epidemics and rapid pathogen evolution. To be effective and durable, sustainable disease management requires a significant shift in emphasis to overtly include ecoevolutionary principles in the design of adaptive management programs aimed at minimizing the evolutionary potential of plant pathogens by reducing their genetic variation, stabilizing their evolutionary dynamics, and preventing dissemination of pathogen variants carrying new infectivity or resistance to agrochemicals.

  5. Field Demonstration of a Multiplexed Point-of-Care Diagnostic Platform for Plant Pathogens.

    PubMed

    Lau, Han Yih; Wang, Yuling; Wee, Eugene J H; Botella, Jose R; Trau, Matt

    2016-08-16

    Effective disease management strategies to prevent catastrophic crop losses require rapid, sensitive, and multiplexed detection methods for timely decision making. To address this need, a rapid, highly specific and sensitive point-of-care method for multiplex detection of plant pathogens was developed by taking advantage of surface-enhanced Raman scattering (SERS) labeled nanotags and recombinase polymerase amplification (RPA), which is a rapid isothermal amplification method with high specificity. In this study, three agriculturally important plant pathogens (Botrytis cinerea, Pseudomonas syringae, and Fusarium oxysporum) were used to demonstrate potential translation into the field. The RPA-SERS method was faster, more sensitive than polymerase chain reaction, and could detect as little as 2 copies of B. cinerea DNA. Furthermore, multiplex detection of the three pathogens was demonstrated for complex systems such as the Arabidopsis thaliana plant and commercial tomato crops. To demonstrate the potential for on-site field applications, a rapid single-tube RPA/SERS assay was further developed and successfully performed for a specific target outside of a laboratory setting.

  6. Evaluation of the Seeplex® Meningitis ACE Detection kit for the detection of 12 common bacterial and viral pathogens of acute meningitis.

    PubMed

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young; Koo, Sun Hoe

    2012-01-01

    Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. The lower detection limits ranged from 10(1) copies/µL to 5×10(1) copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens.

  7. Evaluation of the Seeplex® Meningitis ACE Detection Kit for the Detection of 12 Common Bacterial and Viral Pathogens of Acute Meningitis

    PubMed Central

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young

    2012-01-01

    Background Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Methods Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. Results The lower detection limits ranged from 101 copies/µL to 5×101 copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. Conclusions The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens. PMID:22259778

  8. Highly pathogenic avian influenza A(H5N8) outbreaks: protection and management of exposed people in Europe, 2014/15 and 2016.

    PubMed

    Adlhoch, Cornelia; Brown, Ian H; Angelova, Svetla G; Bálint, Ádám; Bouwstra, Ruth; Buda, Silke; Castrucci, Maria R; Dabrera, Gavin; Dán, Ádám; Grund, Christian; Harder, Timm; van der Hoek, Wim; Krisztalovics, Katalin; Parry-Ford, Frances; Popescu, Rodica; Wallensten, Anders; Zdravkova, Anna; Zohari, Siamak; Tsolova, Svetla; Penttinen, Pasi

    2016-12-08

    Introduction of highly pathogenic avian influenza (HPAI) virus A(H5N8) into Europe prompted animal and human health experts to implement protective measures to prevent transmission to humans. We describe the situation in 2016 and list public health measures and recommendations in place. We summarise critical interfaces identified during the A(H5N1) and A(H5N8) outbreaks in 2014/15. Rapid exchange of information between the animal and human health sectors is critical for a timely, effective and efficient response. This article is copyright of ECDC, 2016.

  9. Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005.

    PubMed

    Adlhoch, C; Gossner, C; Koch, G; Brown, I; Bouwstra, R; Verdonck, F; Penttinen, P; Harder, T

    2014-12-18

    Since the beginning of November 2014, nine outbreaks of highly pathogenic avian influenza virus (HPAIV) A(H5N8) in poultry have been detected in four European countries. In this report, similarities and differences between the modes of introduction of HPAIV A(H5N1) and A(H5N8) into Europe are described. Experiences from outbreaks of A(H5N1) in Europe demonstrated that early detection to control HPAIV in poultry has proven pivotal to minimise the risk of zoonotic transmission and prevention of human cases.

  10. Best Practices for Preventing Vector-Borne Diseases in Dogs and Humans.

    PubMed

    Dantas-Torres, Filipe; Otranto, Domenico

    2016-01-01

    Vector-borne diseases constitute a diversified group of illnesses, which are caused by a multitude of pathogens transmitted by arthropod vectors, such as mosquitoes, fleas, ticks, and sand flies. Proper management of these diseases is important from both human and veterinary medicine standpoints, given that many of these pathogens are transmissible to humans and dogs, which often live in close contact. In this review, we summarize the most important vector-borne diseases of dogs and humans and the best practices for their prevention. The control of these diseases would ultimately improve animal and human health and wellbeing, particularly in developing countries in the tropics, where the risk of these diseases is high and access to health care is poor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Sexually transmissible infections among female sex workers: an international review with an emphasis on hard-to-access populations.

    PubMed

    Cwikel, Julie G; Lazer, Tal; Press, Fernanda; Lazer, Simcha

    2008-03-01

    Women who work commercially in sex work (female sex workers [FSW]) are considered a high-risk group for sexually transmissible infections (STI), yet the level of reported pathogens varies in studies around the world. This study reviewed STI rates reported in 42 studies of FSW around the world published between 1995 and 2006 and analysed the trends and types of populations surveyed, emphasising difficult to access FSW populations. Studies were retrieved by PUBMED and other search engines and were included if two or more pathogens were studied and valid laboratory methods were reported. The five most commonly assessed pathogens were Neisseria gonorrhea (prevalence 0.5-41.3), Chlamydia trachomatis (0.61-46.2), Treponema pallidum (syphilis; 1.5-60.5), HIV (0-76.6), and Trichomonas vaginalis (trichomoniasis; 0.11-51.0). Neisseria gonorrhea and C. trachomatis were the most commonly tested pathogens and high prevalence levels were found in diverse areas of the world. HIV was highly prevalent mostly in African countries. Although human papillomavirus infection was surveyed in few studies, prevalence rates were very high and its aetiological role in cervical cancer warrant its inclusion in future FSW monitoring. Hard-to-access FSW groups tended to have higher rates of STI. The five most commonly detected pathogens correspond to those that are highly prevalent in the general population, however there is an urgent need to develop rapid testing diagnostics for all five pathogens to increase prevention and treatment, especially in outreach programs to the most vulnerable groups among FSW.

  12. Leaning in to the power of the possible: the crucial role of women scientists on preventing Haemophilus influenzae type b disease.

    PubMed

    O'Brien, Katherine L; Anderson, Porter W

    2014-03-01

    Beginning in an era when female scientists were a lonely minority, women have made major contributions to our understanding of Haemophilus influenzae type b (Hib) as a pathogen, its treatment and its prevention. The individual scientific and public health contributions, and their collective impact, are reviewed in the context of the development and successful implementation of highly efficacious Hib vaccines that are now being deployed to nearly every country worldwide for the prevention of life-threatening pediatric Hib disease.

  13. In Vitro Emergence of High Persistence upon Periodic Aminoglycoside Challenge in the ESKAPE Pathogens.

    PubMed

    Michiels, Joran Elie; Van den Bergh, Bram; Verstraeten, Natalie; Fauvart, Maarten; Michiels, Jan

    2016-08-01

    Health care-associated infections present a major threat to modern medical care. Six worrisome nosocomial pathogens-Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.-are collectively referred to as the "ESKAPE bugs." They are notorious for extensive multidrug resistance, yet persistence, or the phenotypic tolerance displayed by a variant subpopulation, remains underappreciated in these pathogens. Importantly, persistence can prevent eradication of antibiotic-sensitive bacterial populations and is thought to act as a catalyst for the development of genetic resistance. Concentration- and time-dependent aminoglycoside killing experiments were used to investigate persistence in the ESKAPE pathogens. Additionally, a recently developed method for the experimental evolution of persistence was employed to investigate adaptation to high-dose, extended-interval aminoglycoside therapy in vitro We show that ESKAPE pathogens exhibit biphasic killing kinetics, indicative of persister formation. In vitro cycling between aminoglycoside killing and persister cell regrowth, evocative of clinical high-dose extended-interval therapy, caused a 37- to 213-fold increase in persistence without the emergence of resistance. Increased persistence also manifested in biofilms and provided cross-tolerance to different clinically important antibiotics. Together, our results highlight a possible drawback of intermittent, high-dose antibiotic therapy and suggest that clinical diagnostics might benefit from taking into account persistence. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Reducing the risk of invasive forest pests and pathogens: Combining legislation, targeted management and public awareness.

    PubMed

    Klapwijk, Maartje J; Hopkins, Anna J M; Eriksson, Louise; Pettersson, Maria; Schroeder, Martin; Lindelöw, Åke; Rönnberg, Jonas; Keskitalo, E Carina H; Kenis, Marc

    2016-02-01

    Intensifying global trade will result in increased numbers of plant pest and pathogen species inadvertently being transported along with cargo. This paper examines current mechanisms for prevention and management of potential introductions of forest insect pests and pathogens in the European Union (EU). Current European legislation has not been found sufficient in preventing invasion, establishment and spread of pest and pathogen species within the EU. Costs associated with future invasions are difficult to estimate but past invasions have led to negative economic impacts in the invaded country. The challenge is combining free trade and free movement of products (within the EU) with protection against invasive pests and pathogens. Public awareness may mobilise the public for prevention and detection of potential invasions and, simultaneously, increase support for eradication and control measures. We recommend focus on commodities in addition to pathways, an approach within the EU using a centralised response unit and, critically, to engage the general public in the battle against establishment and spread of these harmful pests and pathogens.

  15. The re-emergency and persistence of vaccine preventable diseases.

    PubMed

    Borba, Rodrigo C N; Vidal, Vinícius M; Moreira, Lilian O

    2015-08-01

    The introduction of vaccination worldwide dramatically reduced the incidence of pathogenic bacterial and viral diseases. Despite the highly successful vaccination strategies, the number of cases among vaccine preventable diseases has increased in the last decade and several of those diseases are still endemic in different countries. Here we discuss some epidemiological aspects and possible arguments that may explain why ancient diseases such as, measles, polio, pertussis, diphtheria and tuberculosis are still with us.

  16. Case Study of Airborne Pathogen Dispersion Patterns in Emergency Departments with Different Ventilation and Partition Conditions

    PubMed Central

    Cheong, Chang Heon; Lee, Seonhye

    2018-01-01

    The prevention of airborne infections in emergency departments is a very important issue. This study investigated the effects of architectural features on airborne pathogen dispersion in emergency departments by using a CFD (computational fluid dynamics) simulation tool. The study included three architectural features as the major variables: increased ventilation rate, inlet and outlet diffuser positions, and partitions between beds. The most effective method for preventing pathogen dispersion and reducing the pathogen concentration was found to be increasing the ventilation rate. Installing partitions between the beds and changing the ventilation system’s inlet and outlet diffuser positions contributed only minimally to reducing the concentration of airborne pathogens. PMID:29534043

  17. Case Study of Airborne Pathogen Dispersion Patterns in Emergency Departments with Different Ventilation and Partition Conditions.

    PubMed

    Cheong, Chang Heon; Lee, Seonhye

    2018-03-13

    The prevention of airborne infections in emergency departments is a very important issue. This study investigated the effects of architectural features on airborne pathogen dispersion in emergency departments by using a CFD (computational fluid dynamics) simulation tool. The study included three architectural features as the major variables: increased ventilation rate, inlet and outlet diffuser positions, and partitions between beds. The most effective method for preventing pathogen dispersion and reducing the pathogen concentration was found to be increasing the ventilation rate. Installing partitions between the beds and changing the ventilation system's inlet and outlet diffuser positions contributed only minimally to reducing the concentration of airborne pathogens.

  18. Viral meningitis.

    PubMed

    Chadwick, David R

    2005-01-01

    Viruses probably account for most cases of acute meningitis. Viral meningitis is often assumed to be a largely benign disease. For the commonest pathogens causing meningitis, enteroviruses, this is usually the case; however, for many of the other pathogens causing viral meningitis, and for common pathogens in the immunocompromised or infants, viral meningitis is frequently associated with substantial neurological complications and a significant mortality. Diagnostic methods for rapid and accurate identification of pathogens have improved over recent years, permitting more precise and earlier diagnoses. There have been fewer developments in therapies for viral meningitis, and there remain no effective therapies for most pathogens, emphasising the importance of prevention and early diagnosis. This review focuses on the presentation, diagnosis and management of viral meningitis and also covers the prevention of meningitis for pathogens where effective vaccines are available.

  19. A conceptual framework for the evaluation of HLB surveillance activities.

    USDA-ARS?s Scientific Manuscript database

    Surveillance activities play an integral part in disease prevention and control, and underpin the three main stages of disease mitigation: the prevention of entry and establishment of exotic pathogens; the detailed investigation of more established pathogens; and the monitoring of disease control me...

  20. Starting from the bench--prevention and control of foodborne and zoonotic diseases.

    PubMed

    Vongkamjan, Kitiya; Wiedmann, Martin

    2015-02-01

    Foodborne diseases are estimated to cause around 50 million disease cases and 3000 deaths a year in the US. Worldwide, food and waterborne diseases are estimated to cause more than 2 million deaths per year. Lab-based research is a key component of efforts to prevent and control foodborne diseases. Over the last two decades, molecular characterization of pathogen isolates has emerged as a key component of foodborne and zoonotic disease prevention and control. Characterization methods have evolved from banding pattern-based subtyping methods to sequenced-based approaches, including full genome sequencing. Molecular subtyping methods not only play a key role for characterizing pathogen transmission and detection of disease outbreaks, but also allow for identification of clonal pathogen groups that show distinct transmission characteristics. Importantly, the data generated from molecular characterization of foodborne pathogens also represent critical inputs for epidemiological and modeling studies. Continued and enhanced collaborations between infectious disease related laboratory sciences and epidemiologists, modelers, and other quantitative scientists will be critical to a One-Health approach that delivers societal benefits, including improved surveillance systems and prevention approaches for zoonotic and foodborne pathogens. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Strain-Level Metagenomic Analysis of the Fermented Dairy Beverage Nunu Highlights Potential Food Safety Risks

    PubMed Central

    Walsh, Aaron M.; Crispie, Fiona; Daari, Kareem; O'Sullivan, Orla; Martin, Jennifer C.; Arthur, Cornelius T.; Claesson, Marcus J.; Scott, Karen P.

    2017-01-01

    ABSTRACT The rapid detection of pathogenic strains in food products is essential for the prevention of disease outbreaks. It has already been demonstrated that whole-metagenome shotgun sequencing can be used to detect pathogens in food but, until recently, strain-level detection of pathogens has relied on whole-metagenome assembly, which is a computationally demanding process. Here we demonstrated that three short-read-alignment-based methods, i.e., MetaMLST, PanPhlAn, and StrainPhlAn, could accurately and rapidly identify pathogenic strains in spinach metagenomes that had been intentionally spiked with Shiga toxin-producing Escherichia coli in a previous study. Subsequently, we employed the methods, in combination with other metagenomics approaches, to assess the safety of nunu, a traditional Ghanaian fermented milk product that is produced by the spontaneous fermentation of raw cow milk. We showed that nunu samples were frequently contaminated with bacteria associated with the bovine gut and, worryingly, we detected putatively pathogenic E. coli and Klebsiella pneumoniae strains in a subset of nunu samples. Ultimately, our work establishes that short-read-alignment-based bioinformatics approaches are suitable food safety tools, and we describe a real-life example of their utilization. IMPORTANCE Foodborne pathogens are responsible for millions of illnesses each year. Here we demonstrate that short-read-alignment-based bioinformatics tools can accurately and rapidly detect pathogenic strains in food products by using shotgun metagenomics data. The methods used here are considerably faster than both traditional culturing methods and alternative bioinformatics approaches that rely on metagenome assembly; therefore, they can potentially be used for more high-throughput food safety testing. Overall, our results suggest that whole-metagenome sequencing can be used as a practical food safety tool to prevent diseases or to link outbreaks to specific food products. PMID:28625983

  2. A potentially fatal mix of herpes in zoos.

    PubMed

    Greenwood, Alex D; Tsangaras, Kyriakos; Ho, Simon Y W; Szentiks, Claudia A; Nikolin, Veljko M; Ma, Guanggang; Damiani, Armando; East, Marion L; Lawrenz, Arne; Hofer, Heribert; Osterrieder, Nikolaus

    2012-09-25

    Pathogens often have a limited host range, but some can opportunistically jump to new species. Anthropogenic activities that mix reservoir species with novel, hence susceptible, species can provide opportunities for pathogens to spread beyond their normal host range. Furthermore, rapid evolution can produce new pathogens by mechanisms such as genetic recombination. Zoos unintentionally provide pathogens with a high diversity of species from different continents and habitats assembled within a confined space. Institutions alert to the problem of pathogen spread to unexpected hosts can monitor the emergence of pathogens and take preventative measures. However, asymptomatic infections can result in the causative pathogens remaining undetected in their reservoir host. Furthermore, pathogen spread to unexpected hosts may remain undiagnosed if the outcome of infection is limited, as in the case of compromised fertility, or if more severe outcomes are restricted to less charismatic species that prompt only limited investigation. We illustrate this problem here with a recombinant zebra herpesvirus infecting charismatic species including zoo polar bears over at least four years. The virus may cause fatal encephalitis and infects at least five mammalian orders, apparently without requiring direct contact with infected animals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Treatment of Lyme borreliosis

    PubMed Central

    2009-01-01

    Borrelia burgdorferi sensu lato is the causative agent of Lyme borreliosis in humans. This inflammatory disease can affect the skin, the peripheral and central nervous system, the musculoskeletal and cardiovascular system and rarely the eyes. Early stages are directly associated with viable bacteria at the site of inflammation. The pathogen-host interaction is complex and has been elucidated only in part. B. burgdorferi is highly susceptible to antibiotic treatment and the majority of patients profit from this treatment. Some patients develop chronic persistent disease despite repeated antibiotics. Whether this is a sequel of pathogen persistence or a status of chronic auto-inflammation, auto-immunity or a form of fibromyalgia is highly debated. Since vaccination is not available, prevention of a tick bite or chemoprophylaxis is important. If the infection is manifest, then treatment strategies should target not only the pathogen by using antibiotics but also the chronic inflammation by using anti-inflammatory drugs. PMID:20067594

  4. Escherichia coli O157:H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344.

    PubMed

    Roy, Debanjana; Panchal, Shweta; Rosa, Bruce A; Melotto, Maeli

    2013-04-01

    Consumption of fresh produce contaminated with bacterial human pathogens has resulted in various, sometimes deadly, disease outbreaks. In this study, we assessed plant defense responses induced by the fully pathogenic bacteria Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium SL1344 in both Arabidopsis thaliana and lettuce (Lactuca sativa). Unlike SL1344, O157:H7 induced strong plant immunity at both pre-invasion and post-invasion steps of infection. For instance, O157:H7 triggered stomatal closure even under high relative humidity, an environmental condition that generally weakens plant defenses against bacteria in the field and laboratory conditions. SL1344 instead induced a transient stomatal immunity. We also observed that PR1 gene expression was significantly higher in Arabidopsis leaves infected with O157:H7 compared with SL1344. These results suggest that plants may recognize and respond to some human pathogens more effectively than others. Furthermore, stomatal immunity can diminish the penetration of human pathogens through the leaf epidermis, resulting in low bacterial titers in the plant apoplast and suggesting that additional control measures can be employed to prevent food contamination. The understanding of how plant responses can diminish bacterial contamination is paramount in preventing outbreaks and improving the safety of food supplies.

  5. Pathogen reduction in human plasma using an ultrashort pulsed laser

    USDA-ARS?s Scientific Manuscript database

    Pathogen reduction is an ideal approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses, and they introduce chemicals with concerns of side effects which prevent...

  6. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    NASA Astrophysics Data System (ADS)

    Lamont-Friedrich, Stephanie J.; Michl, Thomas D.; Giles, Carla; Griesser, Hans J.; Coad, Bryan R.

    2016-07-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata. Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others.

  7. Vaginal Microbiota and the Use of Probiotics

    PubMed Central

    Cribby, Sarah; Taylor, Michelle; Reid, Gregor

    2008-01-01

    The human vagina is inhabited by a range of microbes from a pool of over 50 species. Lactobacilli are the most common, particularly in healthy women. The microbiota can change composition rapidly, for reasons that are not fully clear. This can lead to infection or to a state in which organisms with pathogenic potential coexist with other commensals. The most common urogenital infection in premenopausal women is bacterial vaginosis (BV), a condition characterized by a depletion of lactobacilli population and the presence of Gram-negative anaerobes, or in some cases Gram-positive cocci, and aerobic pathogens. Treatment of BV traditionally involves the antibiotics metronidazole or clindamycin, however, the recurrence rate remains high, and this treatment is not designed to restore the lactobacilli. In vitro studies have shown that Lactobacillus strains can disrupt BV and yeast biofilms and inhibit the growth of urogenital pathogens. The use of probiotics to populate the vagina and prevent or treat infection has been considered for some time, but only quite recently have data emerged to show efficacy, including supplementation of antimicrobial treatment to improve cure rates and prevent recurrences. PMID:19343185

  8. [A comparative study of the efficacy of antiseptics used for preventing infectious complications].

    PubMed

    Paliĭ, G K; Koval'chuk, V P; Kravets, V P; Paliĭ, I G; Shevnia, P S

    1993-01-01

    The results of comparative study of antimicrobial properties of decamethoxine and chlorhexidine bigluconate are presented. It is established that resistant to antibiotics strains of pathogens of nosocomial infections were highly susceptible to decamethoxine. Decamethoxine and, to a lesser degree, chlorhexidine bigluconate have a bactericidal effect in treatment of hand skin of the medical staff of surgical department. The authors consider it expedient to use the mentioned preparations for prevention of nosocomial infection.

  9. In Vitro Emergence of High Persistence upon Periodic Aminoglycoside Challenge in the ESKAPE Pathogens

    PubMed Central

    Verstraeten, Natalie; Fauvart, Maarten

    2016-01-01

    Health care-associated infections present a major threat to modern medical care. Six worrisome nosocomial pathogens—Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.—are collectively referred to as the “ESKAPE bugs.” They are notorious for extensive multidrug resistance, yet persistence, or the phenotypic tolerance displayed by a variant subpopulation, remains underappreciated in these pathogens. Importantly, persistence can prevent eradication of antibiotic-sensitive bacterial populations and is thought to act as a catalyst for the development of genetic resistance. Concentration- and time-dependent aminoglycoside killing experiments were used to investigate persistence in the ESKAPE pathogens. Additionally, a recently developed method for the experimental evolution of persistence was employed to investigate adaptation to high-dose, extended-interval aminoglycoside therapy in vitro. We show that ESKAPE pathogens exhibit biphasic killing kinetics, indicative of persister formation. In vitro cycling between aminoglycoside killing and persister cell regrowth, evocative of clinical high-dose extended-interval therapy, caused a 37- to 213-fold increase in persistence without the emergence of resistance. Increased persistence also manifested in biofilms and provided cross-tolerance to different clinically important antibiotics. Together, our results highlight a possible drawback of intermittent, high-dose antibiotic therapy and suggest that clinical diagnostics might benefit from taking into account persistence. PMID:27185802

  10. Isolation and characterization of avian influenza viruses from raw poultry products illegally imported to Japan by international flight passengers.

    PubMed

    Shibata, A; Hiono, T; Fukuhara, H; Sumiyoshi, R; Ohkawara, A; Matsuno, K; Okamatsu, M; Osaka, H; Sakoda, Y

    2018-04-01

    The transportation of poultry and related products for international trade contributes to transboundary pathogen spread and disease outbreaks worldwide. To prevent pathogen incursion through poultry products, many countries have regulations about animal health and poultry product quarantine. However, in Japan, animal products have been illegally introduced into the country in baggage and confiscated at the airport. Lately, the number of illegally imported poultry and the incursion risk of transboundary pathogens through poultry products have been increasing. In this study, we isolated avian influenza viruses (AIVs) from raw poultry products illegally imported to Japan by international passengers. Highly (H5N1 and H5N6) and low (H9N2 and H1N2) pathogenic AIVs were isolated from raw chicken and duck products carried by flight passengers. H5 and H9 isolates were phylogenetically closely related to viruses isolated from poultry in China, and haemagglutinin genes of H5N1 and H5N6 isolates belonged to clades 2.3.2.1c and 2.3.4.4, respectively. Experimental infections of H5 and H9 isolates in chickens and ducks demonstrated pathogenicity and tissue tropism to skeletal muscles. To prevent virus incursion by poultry products, it is important to encourage the phased cleaning based on the disease control and eradication and promote the reduction in contamination risk in animal products. © 2017 Blackwell Verlag GmbH.

  11. Yeast pro- and paraprobiotics have the capability to bind pathogenic bacteria associated with animal disease

    USDA-ARS?s Scientific Manuscript database

    Live yeast probiotics and yeast cell wall components (paraprobiotics) may serve as an alternative to the use of antibiotics in prevention and treatment of infections caused by pathogenic bacteria. Probiotics and paraprobiotics can bind directly to pathogens, which limits binding of the pathogens to ...

  12. Patient-derived avian influenza A (H5N6) virus is highly pathogenic in mice but can be effectively treated by anti-influenza polyclonal antibodies.

    PubMed

    Pan, Weiqi; Xie, Haojun; Li, Xiaobo; Guan, Wenda; Chen, Peihai; Zhang, Beiwu; Zhang, Mincong; Dong, Ji; Wang, Qian; Li, Zhixia; Li, Shufen; Yang, Zifeng; Li, Chufang; Zhong, Nanshan; Huang, Jicheng; Chen, Ling

    2018-06-13

    Highly pathogenic avian influenza A (H5N6) virus has been circulating in poultry since 2013 and causes sporadic infections and fatalities in humans. Due to the re-occurrence and continuous evolution of this virus subtype, there is an urgent need to better understand the pathogenicity of the H5N6 virus and to identify effective preventative and therapeutic strategies. We established a mouse model to evaluate the virulence of H5N6 A/Guangzhou/39715/2014 (H5N6/GZ14), which was isolated from an infected patient. BALB/c mice were inoculated intranasally with H5N6/GZ14 and monitored for morbidity, mortality, cytokine production, lung injury, viral replication, and viral dissemination to other organs. H5N6/GZ14 is highly pathogenic and can kill 50% of mice at a very low infectious dose of 5 plaque-forming units (pfu). Infection with H5N6/GZ14 showed rapid disease progression, viral replication to high titers in the lung, a strongly induced pro-inflammatory cytokine response, and severe lung injury. Moreover, infectious H5N6/GZ14 could be detected in the heart and brain of the infected mice. We also demonstrated that anti-influenza polyclonal antibodies generated by immunizing rhesus macaques could protect mice from lethal infection. Our results provide insights into the pathogenicity of the H5N6 human isolate.

  13. Introduction to the Centers for Disease Control and Prevention and the Healthcare Infection Control Practices Advisory Committee Guideline for the Prevention of Surgical Site Infections.

    PubMed

    Solomkin, Joseph S; Mazuski, John; Blanchard, Joan C; Itani, Kamal M F; Ricks, Philip; Dellinger, E Patchen; Allen, George; Kelz, Rachel; Reinke, Caroline E; Berríos-Torres, Sandra I

    Surgical site infection (SSI) is a common type of health-care-associated infection (HAI) and adds considerably to the individual, social, and economic costs of surgical treatment. This document serves to introduce the updated Guideline for the Prevention of SSI from the Centers for Disease Control and Prevention (CDC) and the Healthcare Infection Control Practices Advisory Committee (HICPAC). The Core section of the guideline addresses issues relevant to multiple surgical specialties and procedures. The second procedure-specific section focuses on a high-volume, high-burden procedure: Prosthetic joint arthroplasty. While many elements of the 1999 guideline remain current, others warrant updating to incorporate new knowledge and changes in the patient population, operative techniques, emerging pathogens, and guideline development methodology.

  14. Bioassimilable sulphur provides effective control of Oidium neolycopersici in tomato, enhancing the plant immune system.

    PubMed

    Llorens, Eugenio; Agustí-Brisach, Carlos; González-Hernández, Ana I; Troncho, Pilar; Vicedo, Begonya; Yuste, Teresa; Orero, Mayte; Ledó, Carlos; García-Agustín, Pilar; Lapeña, Leonor

    2017-05-01

    Developments of alternatives to the use of chemical pesticides to control pests are focused on the induction of natural plant defences. The study of new compounds based on liquid bioassimilable sulphur and its effect as an inductor of the immune system of plants would provide an alternative option to farmers to enhance plant resistance against pathogen attacks such as powdery mildew. In order to elucidate the efficacy of this compound in tomato against powdery mildew, we tested several treatments: curative foliar, preventive foliar, preventive in soil drench and combining preventive in soil drench and curative foliar. In all cases, treated plants showed lower infection development, better physiological parameters and a higher level of chlorophyll. We also observed better performance in parameters involved in plant resistance such as antioxidant response, callose deposition and hormonal levels. The results indicate that preventive and curative treatments can be highly effective for the prevention and control of powdery mildew in tomato plants. Foliar treatments are able to stop the pathogen development when they are applied as curative. Soil drench treatments induce immune response mechanisms of plants, increasing significantly callose deposition and promoting plant development. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Understanding Virulence in the Brucellae and Francisellae: Towards Efficacious Treatments for Two Potential Biothreat Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasley, A; Parsons, D A; El-Etr, S

    2009-12-30

    Francisella tularensis, Yersinia pestis and Brucellae species are highly infectious pathogens classified as select agents by the Centers for Disease Control and Prevention (CDC) with the potential for use in bioterrorism attacks. These organisms are known to be facultative intracellular pathogens that preferentially infect human monocytes. As such, understanding how the host responds to infection with these organisms is paramount in detecting and combating human disease. We have compared the ability of fully virulent strains of each pathogen and their non-pathogenic near neighbors to enter and survive inside the human monocytic cell line THP-1 and have quantified the cellular responsemore » to infection with the goal of identifying both unique and common host response patterns. We expanded the scope of these studies to include experiments with pathogenic and non-pathogenic strains of Y. pestis, the causative agent of plague. Nonpathogenic strains of each organism were impaired in their ability to survive intracellularly compared with their pathogenic counterparts. Furthermore, infection of THP-1 cells with pathogenic strains of Y. pestis and F. tularensis resulted in marked increases in the secretion of the inflammatory chemokines IL-8, RANTES, and MIP-1{beta}. In contrast, B. melitensis infection failed to elicit any significant increases in a panel of cytokines tested. These differences may underscore distinct strategies in pathogenic mechanisms employed by these pathogens.« less

  16. [Occupational exposure induced human transmissible highly pathogenic H5N1 avian influenza in one patient].

    PubMed

    Zhou, Hong-sheng; Liu, Jing-hu; Wang, Xiu-quan; Guo, Jiang-hua; Song, Xiao-lin

    2007-03-01

    To describe the clinical manifestations and lung imaging characteristics of the human transmissible highly pathogenic H5N1 avian influenza. The clinical manifestations and lung imaging characteristics of human transmissible highly pathogenic H5N1 avian influenza in one patient were reviewed and analyzed. The patient had the clear history of occupational exposure. The fever and symptoms of influenza were prominent at onset and associated with the symptoms of the digestive tract. The laboratory findings comprised the significant decrease of the white blood cell count and the lymphocyte number and the impairment of the liver function and the myocardial enzymes. The disease progressed rapidly and multiple organs including lung, heart, liver and kidneys were involved. It was ineffective to administer anti-fungal, anti-virus and anti-inflammation medicines. It was in vain to use mechanical ventilation and pneumothorax intubation and closed drainage as well as the support therapy. In the X-ray film, the lesions progressed quickly and changed diversely with absorption and development at the same time. The nasal and throat swabs and the gargle specimen were detected with RT-PCR and real time PCR by Chinese Center for Disease Control and Prevention. The results showed that both the specific HA and NA genes of the avian influenza virus H5N1 subtype were positive and in the same time a strain of avian influenza virus A/jiangxi/1/2005H5N1) was separated and obtained from the nasal and throat swabs. The autopsy showed that diffuse injury of alveolus in lungs, DIC and multiple organ injury. The human transmissible highly pathogenic H5N1 avian influenza is a lethal disease. The disease progresses rapidly with the absorption and development at the same time in the lungs and unfortunately there are no effective therapeutic measures. The prevention of the contagious disease for the occupationally exposed population should be emphasized.

  17. Anti-bacterial activity of intermittent preventive treatment of malaria in pregnancy: comparative in vitro study of sulphadoxine-pyrimethamine, mefloquine, and azithromycin

    PubMed Central

    2010-01-01

    Background Intermittent preventive treatment of malaria with sulphadoxine-pyrimethamine (SP) is recommended for the prevention of malaria in pregnancy in sub-Saharan Africa. Increasing drug resistance necessitates the urgent evaluation of alternative drugs. Currently, the most promising candidates in clinical development are mefloquine and azithromycin. Besides the anti-malarial activity, SP is also a potent antibiotic and incurs significant anti-microbial activity when given as IPTp - though systematic clinical evaluation of this action is still lacking. Methods In this study, the intrinsic anti-bacterial activity of mefloquine and azithromycin was assessed in comparison to sulphadoxine-pyrimethamine against bacterial pathogens with clinical importance in pregnancy in a standard microdilution assay. Results SP was highly active against Staphylococcus aureus and Streptococcus pneumoniae. All tested Gram-positive bacteria, except Enterococcus faecalis, were sensitive to azithromycin. Additionally, azithromycin was active against Neisseria gonorrhoeae. Mefloquine showed good activity against pneumococci but lower in vitro action against all other tested pathogens. Conclusion These data indicate important differences in the spectrum of anti-bacterial activity for the evaluated anti-malarial drugs. Given the large scale use of IPTp in Africa, the need for prospective clinical trials evaluating the impact of antibiotic activity of anti-malarials on maternal and foetal health and on the risk of promoting specific drug resistance of bacterial pathogens is discussed. PMID:21029476

  18. Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour.

    PubMed

    Pull, Christopher D; Cremer, Sylvia

    2017-10-13

    Social insects form densely crowded societies in environments with high pathogen loads, but have evolved collective defences that mitigate the impact of disease. However, colony-founding queens lack this protection and suffer high rates of mortality. The impact of pathogens may be exacerbated in species where queens found colonies together, as healthy individuals may contract pathogens from infectious co-founders. Therefore, we tested whether ant queens avoid founding colonies with pathogen-exposed conspecifics and how they might limit disease transmission from infectious individuals. Using Lasius niger queens and a naturally infecting fungal pathogen Metarhizium brunneum, we observed that queens were equally likely to found colonies with another pathogen-exposed or sham-treated queen. However, when one queen died, the surviving individual performed biting, burial and removal of the corpse. These undertaking behaviours were performed prophylactically, i.e. targeted equally towards non-infected and infected corpses, as well as carried out before infected corpses became infectious. Biting and burial reduced the risk of the queens contracting and dying from disease from an infectious corpse of a dead co-foundress. We show that co-founding ant queens express undertaking behaviours that, in mature colonies, are performed exclusively by workers. Such infection avoidance behaviours act before the queens can contract the disease and will therefore improve the overall chance of colony founding success in ant queens.

  19. Molecular detection of fungal pathogens in clinical specimens by 18S rDNA high-throughput screening in comparison to ITS PCR and culture.

    PubMed

    Wagner, K; Springer, B; Pires, V P; Keller, P M

    2018-05-03

    The rising incidence of invasive fungal infections and the expanding spectrum of fungal pathogens makes early and accurate identification of the causative pathogen a daunting task. Diagnostics using molecular markers enable rapid identification of fungi, offer new insights into infectious disease dynamics, and open new possibilities for infectious disease control and prevention. We performed a retrospective study using clinical specimens (N = 233) from patients with suspected fungal infection previously subjected to culture and/or internal transcribed spacer (ITS) PCR. We used these specimens to evaluate a high-throughput screening method for fungal detection using automated DNA extraction (QIASymphony), fungal ribosomal small subunit (18S) rDNA RT-PCR and amplicon sequencing. Fungal sequences were compared with sequences from the curated, commercially available SmartGene IDNS database for pathogen identification. Concordance between 18S rDNA RT-PCR and culture results was 91%, and congruence between 18S rDNA RT-PCR and ITS PCR results was 94%. In addition, 18S rDNA RT-PCR and Sanger sequencing detected fungal pathogens in culture negative (N = 13) and ITS PCR negative specimens (N = 12) from patients with a clinically confirmed fungal infection. Our results support the use of the 18S rDNA RT-PCR diagnostic workflow for rapid and accurate identification of fungal pathogens in clinical specimens.

  20. Modulating airway defenses against microbes.

    PubMed

    Reynolds, Herbert Y

    2002-05-01

    Prevention and treatment of respiratory infections remain an important health care challenge as the US population ages, contains more susceptible or high-risk people, and encounters new pathogens or antibiotic resistant bacteria. Reasonably protective vaccines against very common microbes are available for childhood and adult immunization, but, generally, these are underutilized. A broader definition of higher risk individuals is evolving, which will include more for immunization. Different approaches to vaccine development through design of new component vaccines are necessary. This review has updated host defense mechanisms at three levels in the human respiratory tract: naso-oropharynx (upper airways), conducting airways, and alveolar space. Examples of representative pathogenic microbes have been inserted at the respective airway segment where they may colonize or create infection (influenza, measles virus, Porphyromonas gingivalis causing periodontitis, Bordetella pertussis, Chlamydia pneumoniae, Streptococcus pneumoniae, and Bacillus anthracis ). Hopefully, microbe-host interactions will suggest new approaches for preventing these kinds of infections.

  1. Invited review: Mastitis in dairy heifers: nature of the disease, potential impact, prevention, and control.

    PubMed

    De Vliegher, S; Fox, L K; Piepers, S; McDougall, S; Barkema, H W

    2012-03-01

    Heifer mastitis is a disease that potentially threatens production and udder health in the first and subsequent lactations. In general, coagulase-negative staphylococci (CNS) are the predominant cause of intramammary infection and subclinical mastitis in heifers around parturition, whereas Staphylococcus aureus and environmental pathogens cause a minority of the cases. Clinical heifer mastitis is typically caused by the major pathogens. The variation in proportions of causative pathogens between studies, herds, and countries is considerable. The magnitude of the effect of heifer mastitis on an individual animal is influenced by the form of mastitis (clinical versus subclinical), the virulence of the causative pathogen(s) (major versus minor pathogens), the time of onset of infection relative to calving, cure or persistence of the infection when milk production has started, and the host's immunity. Intramammary infection in early lactation caused by CNS does not generally have a negative effect on subsequent productivity. At the herd level, the impact will depend on the prevalence and incidence of the disease, the nature of the problem (clinical, subclinical, nonfunctional quarters), the causative pathogens involved (major versus minor pathogens), the ability of the animals to cope with the disease, and the response of the dairy manager to control the disease through management changes. Specific recommendations to prevent and control mastitis in late gestation in periparturient heifers are not part of the current National Mastitis Council mastitis and prevention program. Control and prevention is currently based on avoidance of inter-sucking among young stock, fly control, optimal nutrition, and implementation of hygiene control and comfort measures, especially around calving. More risk factors for subclinical and clinical heifer mastitis have been identified (e.g., season, location of herd, stage of pregnancy) although they do not lend themselves to the development of specific intervention strategies designed to prevent the disease. Pathogen-specific risk factors and associated control measures need to be identified due to the pathogen-related variation in epidemiology and effect on future performance. Prepartum intramammary treatment with antibiotics has been proposed as a simple and effective way of controlling heifer mastitis but positive long-lasting effects on somatic cell count and milk yield do not always occur, ruling out universal recommendation of this practice. Moreover, use of antibiotics in this manner is off-label and results in an increased risk of antibiotic residues in milk. Prepartum treatment can be implemented only as a short-term measure to assist in the control of a significant heifer mastitis problem under supervision of the herd veterinarian. When CNS are the major cause of intramammary infection in heifers, productivity is not affected, making prepartum treatment redundant and even unwanted. In conclusion, heifer mastitis can affect the profitability of dairy farming because of a potential long-term negative effect on udder health and milk production and an associated culling risk, specifically when major pathogens are involved. Prevention and control is not easy but is possible through changes in young stock and heifer management. However, the pathogenesis and epidemiology of the disease remain largely unknown and more pathogen-specific risk factors should be identified to optimize current prevention programs. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Biosecurity and Health Monitoring at the Zebrafish International Resource Center

    PubMed Central

    Varga, Zoltán M.; Kent, Michael L.

    2016-01-01

    Abstract The Zebrafish International Resource Center (ZIRC) is a repository and distribution center for mutant, transgenic, and wild-type zebrafish. In recent years annual imports of new zebrafish lines to ZIRC have increased tremendously. In addition, after 15 years of research, we have identified some of the most virulent pathogens affecting zebrafish that should be avoided in large production facilities, such as ZIRC. Therefore, while importing a high volume of new lines we prioritize safeguarding the health of our in-house fish colony. Here, we describe the biosecurity and health-monitoring program implemented at ZIRC. This strategy was designed to prevent introduction of new zebrafish pathogens, minimize pathogens already present in the facility, and ensure a healthy zebrafish colony for in-house uses and shipment to customers. PMID:27031282

  3. Immunopathology of highly virulent pathogens: insights from Ebola virus.

    PubMed

    Zampieri, Carisa A; Sullivan, Nancy J; Nabel, Gary J

    2007-11-01

    Ebola virus is a highly virulent pathogen capable of inducing a frequently lethal hemorrhagic fever syndrome. Accumulating evidence indicates that the virus actively subverts both innate and adaptive immune responses and triggers harmful inflammatory responses as it inflicts direct tissue damage. The host immune system is ultimately overwhelmed by a combination of inflammatory factors and virus-induced cell damage, particularly in the liver and vasculature, often leading to death from septic shock. We summarize the mechanisms of immune dysregulation and virus-mediated cell damage in Ebola virus-infected patients. Future approaches to prevention and treatment of infection will be guided by answers to unresolved questions about interspecies transmission, molecular mechanisms of pathogenesis, and protective adaptive and innate immune responses to Ebola virus.

  4. Passive immunization with hyperimmune egg yolk IgY as prophylaxis and therapy for poultry diseases---A review

    USDA-ARS?s Scientific Manuscript database

    Passive immunization with pathogen-specific egg yolk antibodies (IgY) is emerging as a potential alternative to antibiotics for the treatment and prevention of various human and animal diseases. Laying hens are an excellent source of high-quality polyclonal antibodies, which can be collected noninv...

  5. Determinants of vaccine immunity in the cohort of human immunodeficiency virus-infected children living in Switzerland.

    PubMed

    Myers, Catherine; Posfay-Barbe, Klara M; Aebi, Christoph; Cheseaux, Jean-Jacques; Kind, Christian; Rudin, Christoph; Nadal, David; Siegrist, Claire-Anne

    2009-11-01

    Human immunodeficiency virus (HIV)-infected children are at increased risk of infections caused by vaccine preventable pathogens, and specific immunization recommendations have been issued. A prospective national multicenter study assessed how these recommendations are followed in Switzerland and how immunization history correlates with vaccine immunity. Among 87 HIV-infected children (mean age: 11.1 years) followed in the 5 Swiss university hospitals and 1 regional hospital, most (76%) had CD4 T cells >25%, were receiving highly active antiretroviral treatment (79%) and had undetectable viral load (60%). Immunization coverage was lower than in the general population and many lacked serum antibodies to vaccine-preventable pathogens, including measles (54%), varicella (39%), and hepatitis B (65%). The presence of vaccine antibodies correlated most significantly with having an up-to-date immunization history (P<0.05). An up-to-date immunization history was not related to age, immunologic stage, or viremia but to the referral medical center. All pediatricians in charge of HIV-infected children are urged to identify missing immunizations in this high-risk population.

  6. The control of H5 or H7 mildly pathogenic avian influenza: a role for inactivated vaccine.

    PubMed

    Halvorson, David A

    2002-02-01

    Biosecurity is the first line of defence in the prevention and control of mildly pathogenic avian influenza (MPAI). Its use has been highly successful in keeping avian influenza (AI) out of commercial poultry worldwide. However, sometimes AI becomes introduced into poultry populations and, when that occurs, biosecurity again is the primary means of controlling the disease. There is agreement that routine serological monitoring, disease reporting, isolation or quarantine of affected flocks, application of strict measures to prevent the contamination of and movement of people and equipment, and changing flock schedules are necessities for controlling AI. There is disagreement as to the disposition of MPAI-infected flocks: some advocate their destruction and others advocate controlled marketing. Sometimes biosecurity is not enough to stop the spread of MPAI. In general, influenza virus requires a dense population of susceptible hosts to maintain itself. When there is a large population of susceptible poultry in an area, use of an inactivated AI vaccine can contribute to AI control by reducing the susceptibility of the population. Does use of inactivated vaccine assist, complicate or interfere with AI control and eradication? Yes, it assists MPAI control (which may reduce the risk of highly pathogenic AI (HPAI)) but, unless steps are taken to prevent it, vaccination may interfere with sero-epidemiology in the case of an HPAI outbreak. Does lack of vaccine assist, complicate or interfere with AI control and eradication? Yes, it assists in identification of sero-positive (convalescent) flocks in a HPAI eradication program, but it interferes with MPAI control (which in turn may increase the risk of emergence of HPAI).A number of hypothetical concerns have been raised about the use of inactivated AI vaccines. Infection of vaccinated flocks, serology complications and spreading of virus by vaccine crews are some of the hypothetical concerns. The discussion of these concerns should take place in a scientific framework and should recognize that control of MPAI reduces the risk of HPAI. That inactivated vaccines have reduced a flock's susceptibility to AI infection, have reduced the quantity of virus shed post-challenge, have reduced transmission and have markedly reduced disease losses, are scientific facts. The current regulations preventing vaccination against H5 or H7 MPAI have had the effect of promoting circulation of MPAI virus in commercial poultry and live poultry markets. In the absence of highly pathogenic avian influenza, there is no justification for forbidding the use of inactivated vaccine.

  7. High-touch surfaces: microbial neighbours at hand.

    PubMed

    Cobrado, L; Silva-Dias, A; Azevedo, M M; Rodrigues, A G

    2017-11-01

    Despite considerable efforts, healthcare-associated infections (HAIs) continue to be globally responsible for serious morbidity, increased costs and prolonged length of stay. Among potentially preventable sources of microbial pathogens causing HAIs, patient care items and environmental surfaces frequently touched play an important role in the chain of transmission. Microorganisms contaminating such high-touch surfaces include Gram-positive and Gram-negative bacteria, viruses, yeasts and parasites, with improved cleaning and disinfection effectively decreasing the rate of HAIs. Manual and automated surface cleaning strategies used in the control of infectious outbreaks are discussed and current trends concerning the prevention of contamination by the use of antimicrobial surfaces are taken into consideration in this manuscript.

  8. The Drug Targets and Antiviral Molecules for Treatment of Ebola Virus Infection.

    PubMed

    Wu, Wenjiao; Liu, Shuwen

    2017-01-01

    Ebola virus (EBOV) is a highly pathogenic virus causing severe hemorrhagic fever with a high case fatality rate of 50% - 90% in humans. Without an approved vaccine or treatments, Ebola outbreak management has been limited to palliative care and barrier methods to prevent transmission. These approaches, however, have yet to end the 2014 outbreak of Ebola after its prolonged presence in West Africa. As with the increase of outbreaks, a significant effort has been made to develop promising countermeasures for the prevention and treatment of Ebola virus infection. In this review, development of therapeutics and potential inhibitors for Ebola virus infection will be discussed.

  9. High pathogenicity and strong immunogenicity of a Chinese isolate of Eimeria magna Pérard, 1925.

    PubMed

    Tao, Geru; Wang, Yunzhou; Li, Chao; Gu, Xiaolong; Cui, Ping; Fang, Sufang; Suo, Xun; Liu, Xianyong

    2017-06-01

    Coccidia infection of rabbits with one or several species of parasites of the genus Eimeria causes coccidiosis, a disease leading to huge economic losses in the rabbit industry. Eimeria magna, one of the causal agents of rabbit coccidiosis, was characterized as mildly pathogenic and moderately immunogenic in previous studies. In this study, we identified a Chinese isolate of E. magna by testing its biological features (oocyst morphology and size, prepatent time) and sequencing its internal transcribed spacer 1 (ITS-1) DNA fragment. This isolate is highly pathogenic; infection of rabbits with only 1×10 2 oocysts caused a 55% reduction in weight gain in 14days. In addition, immunization with 1×10 2 oocysts prevented body weight loss against re-infection with 5×10 4 oocysts, indicating the high immunogenicity of this isolate. Our study described the distinctive phenotype of the Chinese isolate of E. magna and contributed to the research of geographic variation of rabbit coccidia. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Use of Disinfestants to Control Plant Pathogens

    USDA-ARS?s Scientific Manuscript database

    Disinfestants are the most common chemical used to sanitize equipment, production surfaces, tools, and working areas for over a century. Chemical sanitation is an important control method used to prevent spread of pathogen propagules to other cropping areas and eliminate pathogens from production ar...

  11. A framework for optimizing phytosanitary thresholds in seed systems

    USDA-ARS?s Scientific Manuscript database

    Seedborne pathogens and pests limit production in many agricultural systems. Quarantine programs help prevent the introduction of exotic pathogens into a country, but few regulations directly apply to reducing the reintroduction and spread of endemic pathogens. Use of phytosanitary thresholds helps ...

  12. Optimise the microbial flora with milk and yoghurt to prevent disease.

    PubMed

    Morris, James A

    2018-05-01

    Pathogenic bacteria, which are temporary or permanent members of our microbial flora, cause or contribute to a wide range of human disease at all ages. Conditions include Alzheimer's disease, atherosclerosis, diabetes mellitus, obesity, cancer, autoimmunity and psychosis, amongst others. The mechanism of damage is inflammation which can be chronic or acute. An optimal microbial flora includes a wide range of pathogenic bacteria in low dose. This allows specific immunity to be developed and maintained with minimal inflammatory damage. Human milk has evolved to deliver an optimal microbial flora to the infant. Cow's milk has the potential, following appropriate fortification, to maintain an optimal human microbial flora throughout life. Yoghurt is a fermented milk product in which bacteria normally present in milk convert sugars to lactic acid. The acid suppresses the growth of pathogens in the oral cavity, oropharynx and oesophagus. Thus yoghurt can restore an optimal flora in these regions in the short term. Since bacteria are transported between epithelial surfaces, yoghurt will also optimise the flora elsewhere. The judicious use of milk and yogurt could prevent a high proportion of human disease. Copyright © 2018 The Author. Published by Elsevier Ltd.. All rights reserved.

  13. Commensal microbes provide first line defense against Listeria monocytogenes infection

    PubMed Central

    Littmann, Eric R.; Kim, Sohn G.; Morjaria, Sejal M.; Ling, Lilan; Gyaltshen, Yangtsho; Taur, Ying; Leiner, Ingrid M.

    2017-01-01

    Listeria monocytogenes is a foodborne pathogen that causes septicemia, meningitis and chorioamnionitis and is associated with high mortality. Immunocompetent humans and animals, however, can tolerate high doses of L. monocytogenes without developing systemic disease. The intestinal microbiota provides colonization resistance against many orally acquired pathogens, and antibiotic-mediated depletion of the microbiota reduces host resistance to infection. Here we show that a diverse microbiota markedly reduces Listeria monocytogenes colonization of the gut lumen and prevents systemic dissemination. Antibiotic administration to mice before low dose oral inoculation increases L. monocytogenes growth in the intestine. In immunodeficient or chemotherapy-treated mice, the intestinal microbiota provides nonredundant defense against lethal, disseminated infection. We have assembled a consortium of commensal bacteria belonging to the Clostridiales order, which exerts in vitro antilisterial activity and confers in vivo resistance upon transfer into germ free mice. Thus, we demonstrate a defensive role of the gut microbiota against Listeria monocytogenes infection and identify intestinal commensal species that, by enhancing resistance against this pathogen, represent potential probiotics. PMID:28588016

  14. [Epidemiology and etiology of bacillary dysentery in Xinjiang Uigur Autonomous Region, 2004-2014].

    PubMed

    Zhang, J; Mahemuti, Mahemuti; Xia, Y D; Mutalifu, Mutalifu; Muheyati, Muheyati; Li, F; Gu, B S; Li, X L

    2016-11-10

    Objective: To understand the epidemiological and etiological characteristics of bacillary dysentery in Xinjiang Uigur Autonomous Region (Xinjiang) during 2004-2014, and provide evidence for the prevention and control of bacillary dysentery. Methods: Descriptive epidemiological analysis was conducted by using the incidence data of bacillary dysentery in Xinjiang during 2004-2014 and the serotyping and the antibiotic susceptibility test of the pathogens isolated were performed. Results: A total of 123 238 cases of bacillary dysentery were reported in Xinjiang from 2004 to 2014. The average annual incidence of bacillary dysentery ranged from 25.91 per 100 000 to 76.04 per 100 000 and the average annual mortality ranged from 0.00 to 46.90 per 100 000. The incidence of bacillary dysentery was higher in eastern Xinjiang than other areas. The incidence peak was during July-September. The incidence of bacillary dysentery in males was higher than that in females. The incidence was highest in infants and young children under five years old. Most cases were children outside child care settings, farmers and students. Shigella flexneri was the predominant pathogen and F2a was the most frequently detected subtype. The isolated strains were highly resistant to streptomycin, penicillin, doxycycline and tetracycline. The resistant rates to penicillin, tetracycline, doxycycline and streptomycin increased with year. Up to 71.43% of the strains were resistant to more than five antibiotics. Conclusion: The incidence of bacillary dysentery was in decrease in Xinjiang from 2004 to 2014, but in some area, the incidence of bacterial dysentery was higher than national average level. It is necessary to strengthen the surveillance and conduct targeted prevention and control in areas and population at high risk and in season with high incidence. The serious drug resistance and multi drug resistance of the pathogens have posed challenge to the prevention and treatment of bacillary dysentery in Xinjiang.

  15. Listeria monocytogenes presence during fermentation, drying and storage of Petrovská klobása sausage

    NASA Astrophysics Data System (ADS)

    Janković, V.; Mitrović, R.; Lakićević, B.; Velebit, B.; Baltić, T.

    2017-09-01

    The majority of human listeriosis cases appear to be caused by consumption of ready-to-eat (RTE) foods contaminated at the time of consumption with high levels of Listeria monocytogenes. Although strategies to prevent growth of L. monocytogenes in RTE products are critical for reducing the incidence of human listeriosis, this pathogen is highly difficult to control in fermented sausage processing environments due to its high tolerance to low pH and high salt concentration. The aims of the present study were to investigate the occurrence, presence and elimination of L. monocytogenes in Petrovská klobása sausage during processing, fermentation, drying and storage. L. monocytogenes, which was detected at the beginning of the production cycle, disappeared before day 30. The pathogen decline was much faster in those sausages which were dried in controlled, industrial conditions than in those dried applying the traditional, household technique.

  16. Strain-Level Metagenomic Analysis of the Fermented Dairy Beverage Nunu Highlights Potential Food Safety Risks.

    PubMed

    Walsh, Aaron M; Crispie, Fiona; Daari, Kareem; O'Sullivan, Orla; Martin, Jennifer C; Arthur, Cornelius T; Claesson, Marcus J; Scott, Karen P; Cotter, Paul D

    2017-08-15

    The rapid detection of pathogenic strains in food products is essential for the prevention of disease outbreaks. It has already been demonstrated that whole-metagenome shotgun sequencing can be used to detect pathogens in food but, until recently, strain-level detection of pathogens has relied on whole-metagenome assembly, which is a computationally demanding process. Here we demonstrated that three short-read-alignment-based methods, i.e., MetaMLST, PanPhlAn, and StrainPhlAn, could accurately and rapidly identify pathogenic strains in spinach metagenomes that had been intentionally spiked with Shiga toxin-producing Escherichia coli in a previous study. Subsequently, we employed the methods, in combination with other metagenomics approaches, to assess the safety of nunu, a traditional Ghanaian fermented milk product that is produced by the spontaneous fermentation of raw cow milk. We showed that nunu samples were frequently contaminated with bacteria associated with the bovine gut and, worryingly, we detected putatively pathogenic E. coli and Klebsiella pneumoniae strains in a subset of nunu samples. Ultimately, our work establishes that short-read-alignment-based bioinformatics approaches are suitable food safety tools, and we describe a real-life example of their utilization. IMPORTANCE Foodborne pathogens are responsible for millions of illnesses each year. Here we demonstrate that short-read-alignment-based bioinformatics tools can accurately and rapidly detect pathogenic strains in food products by using shotgun metagenomics data. The methods used here are considerably faster than both traditional culturing methods and alternative bioinformatics approaches that rely on metagenome assembly; therefore, they can potentially be used for more high-throughput food safety testing. Overall, our results suggest that whole-metagenome sequencing can be used as a practical food safety tool to prevent diseases or to link outbreaks to specific food products. Copyright © 2017 American Society for Microbiology.

  17. Prevention of infectious diseases in aquaculture

    USGS Publications Warehouse

    Ahne, W.; Winton, J.R.; Kimura, T.

    1989-01-01

    Infectious diseases remain one of the most important limitations to the successful propagation of aquatic animals. Most of the losses caused by pathogens in aquaculture could be prevented by health inspection, adequate environment and sound management practices. Effective control measures, mainly based upon 1) avoidance of pathogens 2) modification of the environment 3) improvement of host resistance 4) vaccination and 5) chemoprophylaxis are described.

  18. Risks Posed by Reston, the Forgotten Ebolavirus

    PubMed Central

    Cantoni, Diego; Hamlet, Arran; Michaelis, Martin; Wass, Mark N.

    2016-01-01

    ABSTRACT Out of the five members of the Ebolavirus family, four cause life-threatening disease, whereas the fifth, Reston virus (RESTV), is nonpathogenic in humans. The reasons for this discrepancy remain unclear. In this review, we analyze the currently available information to provide a state-of-the-art summary of the factors that determine the human pathogenicity of Ebolaviruses. RESTV causes sporadic infections in cynomolgus monkeys and is found in domestic pigs throughout the Philippines and China. Phylogenetic analyses revealed that RESTV is most closely related to the Sudan virus, which causes a high mortality rate in humans. Amino acid sequence differences between RESTV and the other Ebolaviruses are found in all nine Ebolavirus proteins, though no one residue appears sufficient to confer pathogenicity. Changes in the glycoprotein contribute to differences in Ebolavirus pathogenicity but are not sufficient to confer pathogenicity on their own. Similarly, differences in VP24 and VP35 affect viral immune evasion and are associated with changes in human pathogenicity. A recent in silico analysis systematically determined the functional consequences of sequence variations between RESTV and human-pathogenic Ebolaviruses. Multiple positions in VP24 were differently conserved between RESTV and the other Ebolaviruses and may alter human pathogenicity. In conclusion, the factors that determine the pathogenicity of Ebolaviruses in humans remain insufficiently understood. An improved understanding of these pathogenicity-determining factors is of crucial importance for disease prevention and for the early detection of emergent and potentially human-pathogenic RESTVs. PMID:28066813

  19. Chapter 9. Sanitation for Management of Florists' Crops Diseases

    USDA-ARS?s Scientific Manuscript database

    Sanitation involves efforts aimed to prevent entrance of pathogens into production areas, eliminate pathogens from production areas, and reduce production and spread of pathogen propagules to limit disease damage in a current crop. Sanitation includes many practices such as purchasing disease-free c...

  20. Estimated Annual Numbers of Foodborne Pathogen-Associated Illnesses, Hospitalizations, and Deaths, France, 2008-2013.

    PubMed

    Van Cauteren, Dieter; Le Strat, Yann; Sommen, Cécile; Bruyand, Mathias; Tourdjman, Mathieu; Da Silva, Nathalie Jourdan; Couturier, Elisabeth; Fournet, Nelly; de Valk, Henriette; Desenclos, Jean-Claude

    2017-09-01

    Estimates of the annual numbers of foodborne illnesses and associated hospitalizations and deaths are needed to set priorities for surveillance, prevention, and control strategies. The objective of this study was to determine such estimates for 2008-2013 in France. We considered 15 major foodborne pathogens (10 bacteria, 3 viruses, and 2 parasites) and estimated that each year, the pathogens accounted for 1.28-2.23 million illnesses, 16,500-20,800 hospitalizations, and 250 deaths. Campylobacter spp., nontyphoidal Salmonella spp., and norovirus accounted for >70% of all foodborne pathogen-associated illnesses and hospitalizations; nontyphoidal Salmonella spp. and Listeria monocytogenes were the main causes of foodborne pathogen-associated deaths; and hepatitis E virus appeared to be a previously unrecognized foodborne pathogen causing ≈68,000 illnesses in France every year. The substantial annual numbers of foodborne illnesses and associated hospitalizations and deaths in France highlight the need for food-safety policymakers to prioritize foodborne disease prevention and control strategies.

  1. Detection of bovine mastitis pathogens by loop-mediated isothermal amplification and an electrochemical DNA chip.

    PubMed

    Kawai, Kazuhiro; Inada, Mika; Ito, Keiko; Hashimoto, Koji; Nikaido, Masaru; Hata, Eiji; Katsuda, Ken; Kiku, Yoshio; Tagawa, Yuichi; Hayashi, Tomohito

    2017-12-22

    Bovine mastitis causes significant economic losses in the dairy industry. Effective prevention of bovine mastitis requires an understanding of the infection status of a pathogenic microorganism in a herd that has not yet shown clinical signs of mastitis and appropriate treatment specific for the pathogenic microorganism. However, bacterial identification by culture has drawbacks in that the sensitivity may be low and the procedure can be complex. In this study, we developed a genetic detection method to identify mastitis pathogens using a simple and highly sensitive electrochemical DNA chip which can specifically detect bacterial DNA in milk specimens. First, we selected microorganisms belonging to 12 families and/or genera associated with mastitis for which testing should be performed. Next, we optimized the conditions for amplifying microorganism DNA by loop-mediated isothermal amplification (LAMP) using 32 primers and the use of a DNA chip capable of measuring all pathogens simultaneously. Sample detection could be completed in just a few hours using this method. Comparison of the results obtained with our DNA chip method and those obtained by bacterial culture verified that when the culture method was set to 100%, the total positive concordance rate of the DNA chip was 85.0% and the total negative concordance rate was 86.9%. Furthermore, the proposed method allows both rapid and highly sensitive detection of mastitis pathogens. We believe that this method will contribute to the development of an effective mastitis control program.

  2. Detection of bovine mastitis pathogens by loop-mediated isothermal amplification and an electrochemical DNA chip

    PubMed Central

    KAWAI, Kazuhiro; INADA, Mika; ITO, Keiko; HASHIMOTO, Koji; NIKAIDO, Masaru; HATA, Eiji; KATSUDA, Ken; KIKU, Yoshio; TAGAWA, Yuichi; HAYASHI, Tomohito

    2017-01-01

    Bovine mastitis causes significant economic losses in the dairy industry. Effective prevention of bovine mastitis requires an understanding of the infection status of a pathogenic microorganism in a herd that has not yet shown clinical signs of mastitis and appropriate treatment specific for the pathogenic microorganism. However, bacterial identification by culture has drawbacks in that the sensitivity may be low and the procedure can be complex. In this study, we developed a genetic detection method to identify mastitis pathogens using a simple and highly sensitive electrochemical DNA chip which can specifically detect bacterial DNA in milk specimens. First, we selected microorganisms belonging to 12 families and/or genera associated with mastitis for which testing should be performed. Next, we optimized the conditions for amplifying microorganism DNA by loop-mediated isothermal amplification (LAMP) using 32 primers and the use of a DNA chip capable of measuring all pathogens simultaneously. Sample detection could be completed in just a few hours using this method. Comparison of the results obtained with our DNA chip method and those obtained by bacterial culture verified that when the culture method was set to 100%, the total positive concordance rate of the DNA chip was 85.0% and the total negative concordance rate was 86.9%. Furthermore, the proposed method allows both rapid and highly sensitive detection of mastitis pathogens. We believe that this method will contribute to the development of an effective mastitis control program. PMID:29093278

  3. Molecular Detection of 10 of the Most Unwanted Alien Forest Pathogens in Canada Using Real-Time PCR

    PubMed Central

    Lamarche, Josyanne; Potvin, Amélie; Pelletier, Gervais; Stewart, Don; Feau, Nicolas; Alayon, Dario I. O.; Dale, Angela L.; Coelho, Aaron; Uzunovic, Adnan; Bilodeau, Guillaume J.; Brière, Stephan C.; Hamelin, Richard C.; Tanguay, Philippe

    2015-01-01

    Invasive alien tree pathogens can cause significant economic losses as well as large-scale damage to natural ecosystems. Early detection to prevent their establishment and spread is an important approach used by several national plant protection organizations (NPPOs). Molecular detection tools targeting 10 of the most unwanted alien forest pathogens in Canada were developed as part of the TAIGA project (http://taigaforesthealth.com/). Forest pathogens were selected following an independent prioritization. Specific TaqMan real-time PCR detection assays were designed to function under homogeneous conditions so that they may be used in 96- or 384-well plate format arrays for high-throughput testing of large numbers of samples against multiple targets. Assays were validated for 1) specificity, 2) sensitivity, 3) precision, and 4) robustness on environmental samples. All assays were highly specific when evaluated against a panel of pure cultures of target and phylogenetically closely-related species. Sensitivity, evaluated by assessing the limit of detection (with a threshold of 95% of positive samples), was found to be between one and ten target gene region copies. Precision or repeatability of each assay revealed a mean coefficient of variation of 3.4%. All assays successfully allowed detection of target pathogen on positive environmental samples, without any non-specific amplification. These molecular detection tools will allow for rapid and reliable detection of 10 of the most unwanted alien forest pathogens in Canada. PMID:26274489

  4. Developing hygiene protocols against mechanically transmitted pathogens in greenhouse tomato production systems

    USDA-ARS?s Scientific Manuscript database

    Greenhouse tomato propagation and production require intensive crop work that promotes the spread of mechanically transmitted pathogens (e.g. fungi, bacteria, viruses and viroids). Therefore, a clean seed program is very important to prevent any un-intentional introduction of seed-borne pathogens t...

  5. Pathogen-reduced platelets for the prevention of bleeding

    PubMed Central

    Estcourt, Lise J; Malouf, Reem; Hopewell, Sally; Trivella, Marialena; Doree, Carolyn; Stanworth, Simon J; Murphy, Michael F

    2017-01-01

    Background Platelet transfusions are used to prevent and treat bleeding in people who are thrombocytopenic. Despite improvements in donor screening and laboratory testing, a small risk of viral, bacterial, or protozoal contamination of platelets remains. There is also an ongoing risk from newly emerging blood transfusion-transmitted infections for which laboratory tests may not be available at the time of initial outbreak. One solution to reduce the risk of blood transfusion-transmitted infections from platelet transfusion is photochemical pathogen reduction, in which pathogens are either inactivated or significantly depleted in number, thereby reducing the chance of transmission. This process might offer additional benefits, including platelet shelf-life extension, and negate the requirement for gamma-irradiation of platelets. Although current pathogen-reduction technologies have been proven to reduce pathogen load in platelet concentrates, a number of published clinical studies have raised concerns about the effectiveness of pathogen-reduced platelets for post-transfusion platelet count recovery and the prevention of bleeding when compared with standard platelets. This is an update of a Cochrane review first published in 2013. Objectives To assess the effectiveness of pathogen-reduced platelets for the prevention of bleeding in people of any age requiring platelet transfusions. Search methods We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 9), MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1937), the Transfusion Evidence Library (from 1950), and ongoing trial databases to 24 October 2016. Selection criteria We included RCTs comparing the transfusion of pathogen-reduced platelets with standard platelets, or comparing different types of pathogen-reduced platelets. Data collection and analysis We used the standard methodological procedures expected by Cochrane. Main results We identified five new trials in this update of the review. A total of 15 trials were eligible for inclusion in this review, 12 completed trials (2075 participants) and three ongoing trials. Ten of the 12 completed trials were included in the original review. We did not identify any RCTs comparing the transfusion of one type of pathogen-reduced platelets with another. Nine trials compared Intercept® pathogen-reduced platelets to standard platelets, two trials compared Mirasol® pathogen-reduced platelets to standard platelets; and one trial compared both pathogen-reduced platelets types to standard platelets. Three RCTs were randomised cross-over trials, and nine were parallel-group trials. Of the 2075 participants enrolled in the trials, 1981 participants received at least one platelet transfusion (1662 participants in Intercept® platelet trials and 319 in Mirasol® platelet trials). One trial included children requiring cardiac surgery (16 participants) or adults requiring a liver transplant (28 participants). All of the other participants were thrombocytopenic individuals who had a haematological or oncological diagnosis. Eight trials included only adults. Four of the included studies were at low risk of bias in every domain, while the remaining eight included studies had some threats to validity. Overall, the quality of the evidence was low to high across different outcomes according to GRADE methodology. We are very uncertain as to whether pathogen-reduced platelets increase the risk of any bleeding (World Health Organization (WHO) Grade 1 to 4) (5 trials, 1085 participants; fixed-effect risk ratio (RR) 1.09, 95% confidence interval (CI) 1.02 to 1.15; I2 = 59%, random-effect RR 1.14, 95% CI 0.93 to 1.38; I2 = 59%; low-quality evidence). There was no evidence of a difference between pathogen-reduced platelets and standard platelets in the incidence of clinically significant bleeding complications (WHO Grade 2 or higher) (5 trials, 1392 participants; RR 1.10, 95% CI 0.97 to 1.25; I2 = 0%; moderate-quality evidence), and there is probably no difference in the risk of developing severe bleeding (WHO Grade 3 or higher) (6 trials, 1495 participants; RR 1.24, 95% CI 0.76 to 2.02; I2 = 32%; moderate-quality evidence). There is probably no difference between pathogen-reduced platelets and standard platelets in the incidence of all-cause mortality at 4 to 12 weeks (6 trials, 1509 participants; RR 0.81, 95% CI 0.50 to 1.29; I2 = 26%; moderate-quality evidence). There is probably no difference between pathogen-reduced platelets and standard platelets in the incidence of serious adverse events (7 trials, 1340 participants; RR 1.09, 95% CI 0.88 to 1.35; I2 = 0%; moderate-quality evidence). However, no bacterial transfusion-transmitted infections occurred in the six trials that reported this outcome. Participants who received pathogen-reduced platelet transfusions had an increased risk of developing platelet refractoriness (7 trials, 1525 participants; RR 2.94, 95% CI 2.08 to 4.16; I2 = 0%; high-quality evidence), though the definition of platelet refractoriness differed between trials. Participants who received pathogen-reduced platelet transfusions required more platelet transfusions (6 trials, 1509 participants; mean difference (MD) 1.23, 95% CI 0.86 to 1.61; I2 = 27%; high-quality evidence), and there was probably a shorter time interval between transfusions (6 trials, 1489 participants; MD -0.42, 95% CI -0.53 to -0.32; I2 = 29%; moderate-quality evidence). Participants who received pathogen-reduced platelet transfusions had a lower 24-hour corrected-count increment (7 trials, 1681 participants; MD -3.02, 95% CI -3.57 to -2.48; I2 = 15%; high-quality evidence). None of the studies reported quality of life. We did not evaluate any economic outcomes. There was evidence of subgroup differences in multiple transfusion trials between the two pathogen-reduced platelet technologies assessed in this review (Intercept® and Mirasol®) for all-cause mortality and the interval between platelet transfusions (favouring Intercept®). Authors' conclusions Findings from this review were based on 12 trials, and of the 1981 participants who received a platelet transfusion only 44 did not have a haematological or oncological diagnosis. In people with haematological or oncological disorders who are thrombocytopenic due to their disease or its treatment, we found high-quality evidence that pathogen-reduced platelet transfusions increase the risk of platelet refractoriness and the platelet transfusion requirement. We found moderate-quality evidence that pathogen-reduced platelet transfusions do not affect all-cause mortality, the risk of clinically significant or severe bleeding, or the risk of a serious adverse event. There was insufficient evidence for people with other diagnoses. All three ongoing trials are in adults (planned recruitment 1375 participants) with a haematological or oncological diagnosis. PMID:28756627

  6. The use of colorimetric sensor arrays to discriminate between pathogenic bacteria.

    PubMed

    Lonsdale, Claire L; Taba, Brian; Queralto, Nuria; Lukaszewski, Roman A; Martino, Raymond A; Rhodes, Paul A; Lim, Sung H

    2013-01-01

    A colorimetric sensor array is a high-dimensional chemical sensor that is cheap, compact, disposable, robust, and easy to operate, making it a good candidate technology to detect pathogenic bacteria, especially potential bioterrorism agents like Yersinia pestis and Bacillus anthracis which feature on the Center for Disease Control and Prevention's list of potential biothreats. Here, a colorimetric sensor array was used to continuously monitor the volatile metabolites released by bacteria in solid media culture in an Advisory Committee on Dangerous Pathogen Containment Level 3 laboratory. At inoculum concentrations as low as 8 colony-forming units per plate, 4 different bacterial species were identified with 100% accuracy using logistic regression to classify the kinetic profile of sensor responses to culture headspace gas. The sensor array was able to further discriminate between different strains of the same species, including 5 strains of Yersinia pestis and Bacillus anthracis. These preliminary results suggest that disposable colorimetric sensor arrays can be an effective, low-cost tool to identify pathogenic bacteria.

  7. A theoretical framework for biological control of soil-borne plant pathogens: Identifying effective strategies.

    PubMed

    Cunniffe, Nik J; Gilligan, Christopher A

    2011-06-07

    We develop and analyse a flexible compartmental model of the interaction between a plant host, a soil-borne pathogen and a microbial antagonist, for use in optimising biological control. By extracting invasion and persistence thresholds of host, pathogen and biological control agent, performing an equilibrium analysis, and numerical investigation of sensitivity to parameters and initial conditions, we determine criteria for successful biological control. We identify conditions for biological control (i) to prevent a pathogen entering a system, (ii) to eradicate a pathogen that is already present and, if that is not possible, (iii) to reduce the density of the pathogen. Control depends upon the epidemiology of the pathogen and how efficiently the antagonist can colonise particular habitats (i.e. healthy tissue, infected tissue and/or soil-borne inoculum). A sharp transition between totally effective control (i.e. eradication of the pathogen) and totally ineffective control can follow slight changes in biologically interpretable parameters or to the initial amounts of pathogen and biological control agent present. Effective biological control requires careful matching of antagonists to pathosystems. For preventative/eradicative control, antagonists must colonise susceptible hosts. However, for reduction in disease prevalence, the range of habitat is less important than the antagonist's bulking-up efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. A distributed national network for label-free rapid identification of emerging pathogens

    NASA Astrophysics Data System (ADS)

    Robinson, J. Paul; Rajwa, Bartek P.; Dundar, M. Murat; Bae, Euiwon; Patsekin, Valery; Hirleman, E. Daniel; Roumani, Ali; Bhunia, Arun K.; Dietz, J. Eric; Davisson, V. Jo; Thomas, John G.

    2011-05-01

    Typical bioterrorism prevention scenarios assume well-known and well-characterized pathogens like anthrax or tularemia, which are serious public concerns if released into food and/or water supplies or distributed using other vectors. Common governmental contingencies include rapid response to these biological threats with predefined treatments and management operations. However, bioterrorist attacks may follow a far more sophisticated route. With the widely known and immense progress in genetics and the availability of molecular biology tools worldwide, the potential for malicious modification of pathogenic genomes is very high. Common non-pathogenic microorganisms could be transformed into dangerous, debilitating pathogens. Known pathogens could also be modified to avoid detection, because organisms are traditionally identified on the basis of their known physiological or genetic properties. In the absence of defined primers a laboratory using genetic biodetection methods such as PCR might be unable to quickly identify a modified microorganism. Our concept includes developing a nationwide database of signatures based on biophysical (such as elastic light scattering (ELS) properties and/or Raman spectra) rather than genetic properties of bacteria. When paired with a machine-learning system for emerging pathogen detection these data become an effective detection system. The approach emphasizes ease of implementation using a standardized collection of phenotypic information and extraction of biophysical features of pathogens. Owing to the label-free nature of the detection modalities ELS is significantly less costly than any genotypic or mass spectrometry approach.

  9. Case-Case Analysis Using 7 Years of Travelers' Diarrhea Surveillance Data: Preventive and Travel Medicine Applications in Cusco, Peru.

    PubMed

    Jennings, Mary Carol; Tilley, Drake H; Ballard, Sarah-Blythe; Villanueva, Miguel; Costa, Fernando Maldonado; Lopez, Martha; Steinberg, Hannah E; Luna, C Giannina; Meza, Rina; Silva, Maria E; Gilman, Robert H; Simons, Mark P; Maves, Ryan C; Cabada, Miguel M

    2017-05-01

    AbstractIn Cusco, Peru, and South America in general, there is a dearth of travelers' diarrhea (TD) data concerning the clinical features associated with enteropathogen-specific infections and destination-specific risk behaviors. Understanding these factors would allow travel medicine providers to tailor interventions to patients' risk profiles and travel destination. To characterize TD etiology, evaluate region-specific TD risk factors, and examine relationships between preventive recommendations and risk-taking behaviors among medium- to long-term travelers' from high-income countries, we conducted this case-case analysis using 7 years of prospective surveillance data from adult travelers' presenting with TD to a physician in Cusco. At the time of enrollment, participants provided a stool sample and answered survey questions about demographics, risk behaviors, and the clinical features of illness. Stool samples were tested for norovirus (NV), bacteria, and parasites using conventional methods. Data obtained were then analyzed using case-case methods. NV (14%), enterotoxigenic Escherichia coli (11%), and Campylobacter (9%), notably ciprofloxacin-resistant Campylobacter , were the most frequently identified pathogens among adults with TD. Coinfection with multiple enteropathogens occurred in 5% of cases. NV caused severe disease relative to other TD-associated pathogens identified, confining over 90% of infected individuals to bed. Destination-specific risk factors include consumption of the local beverage "chicha," which was associated with Cryptosporidium infection. Preventive interventions, such as vaccines, directed against these pathogens could significantly reduce the burden of TD.

  10. Case–Case Analysis Using 7 Years of Travelers' Diarrhea Surveillance Data: Preventive and Travel Medicine Applications in Cusco, Peru

    PubMed Central

    Jennings, Mary Carol; Tilley, Drake H.; Ballard, Sarah-Blythe; Villanueva, Miguel; Costa, Fernando Maldonado; Lopez, Martha; Steinberg, Hannah E.; Luna, C. Giannina; Meza, Rina; Silva, Maria E.; Gilman, Robert H.; Simons, Mark P.; Maves, Ryan C.; Cabada, Miguel M.

    2017-01-01

    In Cusco, Peru, and South America in general, there is a dearth of travelers' diarrhea (TD) data concerning the clinical features associated with enteropathogen-specific infections and destination-specific risk behaviors. Understanding these factors would allow travel medicine providers to tailor interventions to patients' risk profiles and travel destination. To characterize TD etiology, evaluate region-specific TD risk factors, and examine relationships between preventive recommendations and risk-taking behaviors among medium- to long-term travelers' from high-income countries, we conducted this case–case analysis using 7 years of prospective surveillance data from adult travelers' presenting with TD to a physician in Cusco. At the time of enrollment, participants provided a stool sample and answered survey questions about demographics, risk behaviors, and the clinical features of illness. Stool samples were tested for norovirus (NV), bacteria, and parasites using conventional methods. Data obtained were then analyzed using case–case methods. NV (14%), enterotoxigenic Escherichia coli (11%), and Campylobacter (9%), notably ciprofloxacin-resistant Campylobacter, were the most frequently identified pathogens among adults with TD. Coinfection with multiple enteropathogens occurred in 5% of cases. NV caused severe disease relative to other TD-associated pathogens identified, confining over 90% of infected individuals to bed. Destination-specific risk factors include consumption of the local beverage “chicha,” which was associated with Cryptosporidium infection. Preventive interventions, such as vaccines, directed against these pathogens could significantly reduce the burden of TD. PMID:28167602

  11. Impact of emergence of avian influenza in North America and preventative measures

    USDA-ARS?s Scientific Manuscript database

    Since 1959, the world has experienced 39 highly pathogenic avian influenza (HPAI) epizootics with the largest beginning in 1996 in China that spread to affect 70 countries in Asia, Europe and Africa, and recently North America. Eurasian H5N8 and reassortant H5N2 HPAI viruses were identified in USA. ...

  12. Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens

    PubMed Central

    Chang, Hsiao-Han; Cohen, Ted; Grad, Yonatan H.; Hanage, William P.; O'Brien, Thomas F.

    2015-01-01

    SUMMARY Many studies report the high prevalence of multiply drug-resistant (MDR) strains. Because MDR infections are often significantly harder and more expensive to treat, they represent a growing public health threat. However, for different pathogens, different underlying mechanisms are traditionally used to explain these observations, and it is unclear whether each bacterial taxon has its own mechanism(s) for multidrug resistance or whether there are common mechanisms between distantly related pathogens. In this review, we provide a systematic overview of the causes of the excess of MDR infections and define testable predictions made by each hypothetical mechanism, including experimental, epidemiological, population genomic, and other tests of these hypotheses. Better understanding the cause(s) of the excess of MDR is the first step to rational design of more effective interventions to prevent the origin and/or proliferation of MDR. PMID:25652543

  13. Growing Problem of Multidrug-Resistant Enteric Pathogens in Africa

    PubMed Central

    Aboderin, Oladiipo A.; Byarugaba, Denis K.; Ojo, Kayode K.; Opintan, Japheth A.

    2007-01-01

    Control of fecal–orally transmitted pathogens is inadequate in many developing countries, in particular, in sub-Saharan Africa. Acquired resistance to antimicrobial drugs is becoming more prevalent among Vibrio cholerae, Salmonella enteritidis, diarrheagenic Escherichia coli, and other pathogens in this region. The poor, who experience most of the infections caused by these organisms, bear the brunt of extended illness and exacerbated proportion of deaths brought about by resistance. Improved antimicrobial drug stewardship is an often cited, but inadequately implemented, intervention for resistance control. Resistance containment also requires improvements in infectious disease control, access to and quality assurance of antimicrobial agents, as well as diagnostic facilities. Structural improvements along these lines will also enhance disease prevention and control as well as rational antimicrobial drug use. Additionally, more research is needed to identify low-cost, high-impact interventions for resistance control. PMID:18217545

  14. Prevention and control of enterohaemorrhagic Escherichia coli (EHEC) infections: memorandum from a WHO meeting. WHO Consultation on Prevention and Control of Enterohaemorrhagic Escherichia coli (EHEC) Infections.

    PubMed Central

    Reilly, A.

    1998-01-01

    Escherichia coli is a commonly occurring inhabitant of the intestine of humans and other animals, but there are several pathogenic types of E. coli which cause a variety of human diseases. One of these pathogenic types, E. coli O157:H7, belongs to the group of enterohaemorrhagic E. coli (EHEC) which produce potent toxins and cause a particularly severe form of disease, haemorrhagic colitis (HC). About 10% of patients with HC can go on to develop haemolytic uraemic syndrome (HUS), a life-threatening complication of E. coli O157:H7 infection that is characterized by acute renal failure, haemolytic anaemia, and thrombocytopenia. These sequelae are particularly serious in young children and older people. On average, 2-7% of patients with HUS die, but in some outbreaks among the elderly the mortality rate has been as high as 50%. This Memorandum reviews the growing importance of E. coli O157:H7 as a foodborne pathogen and reports on the issues of surveillance, outbreak investigation, and control strategies with respect to EHEC infections that were discussed at the WHO Consultation on Prevention and Control of EHEC Infections, held in Geneva on 28 April to 1 May 1997. Recommended measures for prevention and control include the following: use of potable water in food production; presentation of clean animals at slaughter; improved hygiene throughout the slaughter process; appropriate use of food processing measures; thorough cooking of foods; and the education of food handlers, abattoir workers, and farm workers on the principles and application of food hygiene. PMID:9744244

  15. Serological and molecular prevalence of canine vector-borne diseases (CVBDs) in Korea.

    PubMed

    Suh, Guk-Hyun; Ahn, Kyu-Sung; Ahn, Jong-Ho; Kim, Ha-Jung; Leutenegger, Christian; Shin, SungShik

    2017-03-16

    Previous surveys in dogs from Korea indicated that dogs are exposed to a variety of vector- borne pathogens, but perception for a nation-wide canine vector-borne disease (CVBD) occurrence has been missing. We report here results of both serological and molecular prevalence studies for major CVBDs of dogs from all over the South Korean Peninsula except for Jeju Island. Serological survey of 532 outdoor dogs revealed the highest prevalence for Dirofilaria immitis (25.2%), followed by Anaplasma phagocytophilum (15.6%), Ehrlichia canis (4.7%) whereas Borrelia burgdorferi showed the lowest prevalence (1.1%). The number of serologically positive dogs for any of the four pathogens was 216 (40.6%). Concurrent real-time PCR assay of 440 dogs in the study indicated that DNA of "Candidatus M. haematoparvum", Mycoplasma haemocanis, Babesia gibsoni, A. phagocytophilum, and Hepatozoon canis was identified in 190 (43.2%), 168 (38.2%), 23 (5.2%), 10 (2.3%) and 1 (0.2%) dogs, respectively. DNA of Bartonella spp., Ehrlichia spp., Leishmania spp., Rickettsia spp. and Neorickettsia risticii was not identified. Analysis of questionnaires collected from owners of 440 dogs showed that the number of dogs with heartworm preventive medication was 348 (79.1%) among which dogs still positive to D. immitis infection were 60 (17.2%), probably due to the mean months of heartworm preventive medication being only 6.5. The high prevalence rates of both "Ca. M. haematoparvum" and Mycoplasma haemocanis in dogs from Korea indicate that these organisms may be transmitted by vectors other than Rhipicephalus sanguineus because this tick species has rarely been found in Korea. This is the first nationwide survey for canine haemotropic mycoplasma infections in Korea. This study showed that the risk of exposure to major vector-borne diseases in dogs is quite high throughout all areas of South Korean Peninsula. Since achieving full elimination of many pathogens causing CVBDs from infected animals is often impossible even when they are clinically cured, dogs once exposed to CVBDs can remain as lifetime reservoirs of disease for both other animals and humans in the close vicinity, and should therefore be treated with preventative medications to minimise the risk of pathogen transmission by the competent vectors.

  16. Field evaluation of a new point-of-use faucet filter for preventing exposure to Legionella and other waterborne pathogens in health care facilities.

    PubMed

    Baron, Julianne L; Peters, Tammy; Shafer, Raymond; MacMurray, Brian; Stout, Janet E

    2014-11-01

    Opportunistic waterborne pathogens (eg, Legionella, Pseudomonas) may persist in water distribution systems despite municipal chlorination and secondary disinfection and can cause health care-acquired infections. Point-of-use (POU) filtration can limit exposure to pathogens; however, their short maximum lifetime and membrane clogging have limited their use. A new faucet filter rated at 62 days was evaluated at a cancer center in Northwestern Pennsylvania. Five sinks were equipped with filters, and 5 sinks served as controls. Hot water was collected weekly for 17 weeks and cultured for Legionella, Pseudomonas, and total bacteria. Legionella was removed from all filtered samples for 12 weeks. One colony was recovered from 1 site at 13 weeks; however, subsequent tests were negative through 17 weeks of testing. Total bacteria were excluded for the first 2 weeks, followed by an average of 1.86 log reduction in total bacteria compared with controls. No Pseudomonas was recovered from filtered or control faucets. This next generation faucet filter eliminated Legionella beyond the 62 day manufacturers' recommended maximum duration of use. These new POU filters will require fewer change-outs than standard filters and could be a cost-effective method for preventing exposure to Legionella and other opportunistic waterborne pathogens in hospitals with high-risk patients. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  17. The global problem of childhood diarrhoeal diseases: emerging strategies in prevention and management

    PubMed Central

    Mokomane, Margaret; Kasvosve, Ishmael; de Melo, Emilia; Pernica, Jeffrey M.; Goldfarb, David M.

    2017-01-01

    Acute diarrhoeal diseases remain a leading cause of global morbidity and mortality particularly among young children in resource-limited countries. Recent large studies utilizing case–control design, prospective sampling and more sensitive and broad diagnostic techniques have shed light on particular pathogens of importance and highlighted the previously under recognized impact of these infections on post-acute illness mortality and growth. Vaccination, particularly against rotavirus, has emerged as a key effective means of preventing significant morbidity and mortality from childhood diarrhoeal disease. Other candidate vaccines against leading diarrhoeal pathogens, such as enterotoxigenic Escherichia coli and Shigella spp., also hold significant promise in further ameliorating the burden of enteric infections in children. Large studies are also currently underway evaluating novel and potential easy-to-implement water, sanitation and hygiene (WASH) preventive strategies. Given the ongoing global burden of this illness, the paucity of new advances in case management over the last several decades remains a challenge. The increasing recognition of post-acute illness mortality and growth impairment has highlighted the need for interventions that go beyond management of dehydration and electrolyte disturbances. The few trials of novel promising interventions such as probiotics have mainly been conducted in high-income settings. Trials of antimicrobials have also been primarily conducted in high-income settings or in travellers from high-income settings. Bloody diarrhoea has been shown to be a poor marker of potentially treatable bacterial enteritis, and rising antimicrobial resistance has also made empiric antimicrobial therapy more challenging in many settings. Novel effective and sustainable interventions and diagnostic strategies are clearly needed to help improve case management. Diarrhoeal disease and other enteric infections remain an unmet challenge in global child health. Most promising recent developments have been focused around preventive measures, in particular vaccination. Further advances in prevention and case management including the possible use of targeted antimicrobial treatment are also required to fully address this critical burden on child health and human potential. PMID:29344358

  18. Protective Effect of Vaginal Lactobacillus paracasei CRL 1289 against Urogenital Infection Produced by Staphylococcus aureus in a Mouse Animal Model

    PubMed Central

    Zárate, Gabriela; Santos, Viviana; Nader-Macias, María Elena

    2007-01-01

    Urogenital infections of bacterial origin have a high incidence among the world female population at reproductive age. Lactobacilli, the predominant microorganisms of the healthy vaginal microbiota, have shown a protective effect against the colonization and overgrowth of urogenital pathogens that increased the interest for including them into probiotics products assigned to restore the urogenital balance. In the present work, we determined in a mouse animal model the capability of Lactobacillus paracasei CRL 1289, a human vaginal strain with probiotic properties, to prevent the vaginal colonization of a uropathogenic strain of Staphylococcus aureus. Six-week-old female BALB/c mice, synchronized in their estral cycle, were intravaginally inoculated with two doses of 109 lactobacilli before challenging them with a single dose of 105 or 107 CFU of S. aureus. The vaginal colonization of both microorganisms and the effect on the vaginal structure were determined at 2, 5, and 7 days after pathogen inoculation. Control mice and those challenged only with the pathogen showed an insignificant lactobacilli population, whereas 105 lactobacilli/mL of vaginal homogenate were recovered at 2 days after challenge from the L. paracasei CRL 1289 and the probiotic + pathogen groups, decreasing this number on the following days. The treatment with L. paracasei CRL 1289 decreased significantly the number of staphylococci recovered at 2 and 5 days when mice were challenged only with 105 CFU of pathogen. The inoculation of S. aureus produced a remarkable inflammatory response and structural alterations in the vaginal mucosa that decreases in a significant manner when the mice were protected with L. paracasei CRL 1289. The results obtained suggest that this particular Lactobacillus strain could prevent the onset of urogenital infections by interfering with the epithelial colonization by uropathogenic S. aureus. PMID:17485818

  19. Npro of classical swine fever virus contributes to pathogenicity in pigs by preventing type I interferon induction at local replication sites.

    PubMed

    Tamura, Tomokazu; Nagashima, Naofumi; Ruggli, Nicolas; Summerfield, Artur; Kida, Hiroshi; Sakoda, Yoshihiro

    2014-04-17

    Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious disease of pigs. The viral protein Npro of CSFV interferes with alpha- and beta-interferon (IFN-α/β) induction by promoting the degradation of interferon regulatory factor 3 (IRF3). During the establishment of the live attenuated CSF vaccine strain GPE-, Npro acquired a mutation that abolished its capacity to bind and degrade IRF3, rendering it unable to prevent IFN-α/β induction. In a previous study, we showed that the GPE- vaccine virus became pathogenic after forced serial passages in pigs, which was attributed to the amino acid substitutions T830A in the viral proteins E2 and V2475A and A2563V in NS4B. Interestingly, during the re-adaptation of the GPE- vaccine virus in pigs, the IRF3-degrading function of Npro was not recovered. Therefore, we examined whether restoring the ability of Npro to block IFN-α/β induction of both the avirulent and moderately virulent GPE--derived virus would enhance pathogenicity in pigs. Viruses carrying the N136D substitution in Npro regained the ability to degrade IRF3 and suppress IFN-α/β induction in vitro. In pigs, functional Npro significantly reduced the local IFN-α mRNA expression in lymphoid organs while it increased quantities of IFN-α/β in the circulation, and enhanced pathogenicity of the moderately virulent virus. In conclusion, the present study demonstrates that functional Npro influences the innate immune response at local sites of virus replication in pigs and contributes to pathogenicity of CSFV in synergy with viral replication.

  20. Impact of myxomatosis in relation to local persistence in wild rabbit populations: the role of waning immunity and the reproductive period.

    PubMed

    Fouchet, David; Guitton, Jean-Sébastien; Marchandeau, Stéphane; Pontier, Dominique

    2008-02-21

    Many diseases are less severe when they are contracted in early life. For highly lethal diseases, such as myxomatosis in rabbits, getting infected early in life can represent the best chance for an individual to survive the disease. For myxomatosis, early infections are attenuated by maternal antibodies. This may lead to the immunisation of the host, preventing the subsequent development of the lethal form of the disease. But early infection of young individuals requires specific demographic and epidemiological contexts, such as a high transmission rate of the pathogen agent. To investigate other factors involved in the impact of such diseases, we have built a stochastic model of a rabbit metapopulation infected by myxomatosis. We show that the impact of the pathogen agent can be reduced by early infections only when the agent has a long local persistence time and/or when the host subpopulations are highly connected. The length of the reproductive period and the duration of acquired immunity are also important factors influencing the persistence of the pathogen and thus, the impact of the disease. Besides confirming the role of classical factors in the persistence of a pathogen agent, such as the size of the subpopulation or the degree of connectivity, our results highlight novel factors that can modulate the impact of diseases whose severity increase with age.

  1. Assessment of practices, capacities and incentives of poultry chain actors in implementation of highly pathogenic avian influenza mitigation measures in Ghana.

    PubMed

    Turkson, Paa Kobina; Okike, Iheanacho

    2016-02-01

    The animal health services-seeking behaviour of animal owners related to prevention and control of animal diseases may influence their decisions as to whether or not to use services provided by the public or private sectors. The specific objective of this paper was to assess the practices, capacities and incentives of actors involved in highly pathogenic avian influenza (HPAI) control to provide information for prevention and control in Ghana. Questionnaires were designed based on specific practices, incentives and capacities associated with each mitigation measure that was being assessed. Two peacetime preventive mitigation measures (biosecurity and reporting) and two outbreak containment measures (culling with compensation and movement control) were selected for evaluation. Supply chain actors were characterised based on baseline information. Tables were generated showing proportions of respondents in the various response categories in Likert-scale type itemised questionnaire. Mean scores (and their standard deviations) for the various actors with regard to mitigation measures were calculated. Pair-wise comparisons were done using t -ratio statistic and significance of differences were determined at a Bonferroni adjusted P -value of 0.0024. The study found statistically significant differences between certain actors for practices (biosecurity, reporting, culling and compensation and movement controls), incentives (reporting and movement control) and capacities (reporting and movement control). The findings provide lessons to help improve education and messages on HPAI and to help provide technical assistance targeted at specific actors to prevent and control future HPAI H5N1 outbreaks in Ghana.

  2. The role of water in healthcare-associated infections.

    PubMed

    Decker, Brooke K; Palmore, Tara N

    2013-08-01

    The aim is to discuss the epidemiology of infections that arise from contaminated water in healthcare settings, including Legionnaires' disease, other Gram-negative pathogens, nontuberculous mycobacteria, and fungi. Legionella can colonize a hospital water system and infect patients despite use of preventive disinfectants. Evidence-based measures are available for secondary prevention. Vulnerable patients can develop healthcare-associated infections with waterborne organisms that are transmitted by colonization of plumbing systems, including sinks and their fixtures. Room humidifiers and decorative fountains have been implicated in serious outbreaks, and pose unwarranted risks in healthcare settings. Design of hospital plumbing must be purposeful and thoughtful to avoid the features that foster growth and dissemination of Legionella and other pathogens. Exposure of patients who have central venous catheters and other invasive devices to tap water poses a risk for infection with waterborne pathogens. Healthcare facilities must conduct aggressive clinical surveillance for Legionnaires' disease and other waterborne infections in order to detect and remediate an outbreak promptly. Hand hygiene is the most important measure to prevent transmission of other Gram-negative waterborne pathogens in the healthcare setting.

  3. The Role of Water in Healthcare-Associated Infections

    PubMed Central

    Decker, Brooke K.; Palmore, Tara N.

    2017-01-01

    Purpose of review The aim is to discuss the epidemiology of infections that arise from contaminated water in healthcare settings, including Legionnaire’s disease, other Gram-negative pathogens, nontuberculous mycobacteria, and fungi. Recent findings Legionella can colonize a hospital water system and infect patients despite use of preventive disinfectants. Evidence-based measures are available for secondary prevention. Vulnerable patients can develop care-associated infections with waterborne organisms that are transmitted by colonization of plumbing systems, including sinks and their fixtures. Room humidifiers and decorative fountains have been implicated in serious outbreaks, and pose unwarranted risks in healthcare settings. Summary Design of hospital plumbing must be purposeful and thoughtful to avoid the features that foster growth and dissemination of Legionella and other pathogens. Exposure of patients who have central venous catheters and other invasive devices to tap water poses a risk for infection with waterborne pathogens. Healthcare facilities must conduct aggressive clinical surveillance for Legionnaire’s disease and other waterborne infections in order to detect and remediate an outbreak promptly. Hand hygiene is the most important measure to prevent transmission of other Gram-negative waterborne pathogens in the healthcare setting. PMID:23806897

  4. The quick and the deadly: Growth versus virulence in a seed bank pathogen

    Treesearch

    Susan E. Meyer; Thomas E. Stewart; Suzette Clement

    2010-01-01

    We studied the relationship between virulence (ability to kill nondormant Bromus tectorum seeds) and mycelial growth index in the necrotrophic seed pathogen Pyrenophora semeniperda. Seed pathosystems involving necrotrophs differ from those commonly treated in traditional evolution-of-virulence models in that host death increases pathogen fitness by preventing...

  5. Bloodborne Pathogens and Needlestick Prevention

    MedlinePlus

    ... must also describe how an employer will use engineering and work practice controls, personal protective clothing and ... OSHA's Bloodborne Pathogens Standard ( 29 CFR 1910.1030 ). Engineering controls are the primary means of eliminating or ...

  6. Seasonality and pathogen transmission in pastoral cattle contact networks.

    PubMed

    VanderWaal, Kimberly; Gilbertson, Marie; Okanga, Sharon; Allan, Brian F; Craft, Meggan E

    2017-12-01

    Capturing heterogeneity in contact patterns in animal populations is essential for understanding the spread of infectious diseases. In contrast to other regions of the world in which livestock movement networks are integral to pathogen prevention and control policies, contact networks are understudied in pastoral regions of Africa due to the challenge of measuring contact among mobile herds of cattle whose movements are driven by access to resources. Furthermore, the extent to which seasonal changes in the distribution of water and resources impacts the structure of contact networks in cattle is uncertain. Contact networks may be more conducive to pathogen spread in the dry season due to congregation at limited water sources. Alternatively, less abundant forage may result in decreased pathogen transmission due to competitive avoidance among herds, as measured by reduced contact rates. Here, we use GPS technology to concurrently track 49 free-roaming cattle herds within a semi-arid region of Kenya, and use these data to characterize seasonal contact networks and model the spread of a highly infectious pathogen. This work provides the first empirical data on the local contact network structure of mobile herds based on quantifiable contact events. The contact network demonstrated high levels of interconnectivity. An increase in contacts near to water resources in the dry season resulted in networks with both higher contact rates and higher potential for pathogen spread than in the wet season. Simulated disease outbreaks were also larger in the dry season. Results support the hypothesis that limited water resources enhance connectivity and transmission within contact networks, as opposed to reducing connectivity as a result of competitive avoidance. These results cast light on the impact of seasonal heterogeneity in resource availability on predicting pathogen transmission dynamics, which has implications for other free-ranging wild and domestic populations.

  7. Dual-mode acoustic wave biosensors microarrays

    NASA Astrophysics Data System (ADS)

    Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng

    2003-04-01

    We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.

  8. Prevention of lyme disease: promising research or sisyphean task?

    PubMed

    Krupka, Michal; Zachova, Katerina; Weigl, Evzen; Raska, Milan

    2011-08-01

    Borrelia burgdorferi sensu lato (Spirochaetes) is a group of at least 12 closely related species, some of which are responsible for chronic zoonotic infection that may cause Lyme disease. The only experimentally confirmed vector transmitting Borrelia to mammals is the Ixodes ticks. Borrelia is a highly adapted pathogen that can survive in the host organism in spite of the intense immune responses. Some patients have chronic long-lasting complications despite antibiotic therapy, probably due to adverse effects of the immune responses. A preventive vaccine against this bacterium has not been available due to the relatively broad spectrum and antigenic variability of Borrelia-surface lipoproteins and the different epitope recognition by experimental animals and humans. Although a human vaccine was marketed in the USA, it has been already pulled off the market. In addition, this vaccine was effective only in the USA, where the only pathogenic species is B. burgdorferi sensu stricto. Recent data indicate that a broadly effective vaccine will to be composed of a mixture of several antigens or multiple epitopes.

  9. Emerging zoonotic viral diseases.

    PubMed

    Wang, L-F; Crameri, G

    2014-08-01

    Zoonotic diseases are infectious diseases that are naturally transmitted from vertebrate animals to humans and vice versa. They are caused by all types of pathogenic agents, including bacteria, parasites, fungi, viruses and prions. Although they have been recognised for many centuries, their impact on public health has increased in the last few decades due to a combination of the success in reducing the spread of human infectious diseases through vaccination and effective therapies and the emergence of novel zoonotic diseases. It is being increasingly recognised that a One Health approach at the human-animal-ecosystem interface is needed for effective investigation, prevention and control of any emerging zoonotic disease. Here, the authors will review the drivers for emergence, highlight some of the high-impact emerging zoonotic diseases of the last two decades and provide examples of novel One Health approaches for disease investigation, prevention and control. Although this review focuses on emerging zoonotic viral diseases, the authors consider that the discussions presented in this paper will be equally applicable to emerging zoonotic diseases of other pathogen types.

  10. Use of vaccines as probes to define disease burden

    PubMed Central

    Feikin, Daniel R; Scott, J Anthony G; Gessner, Bradford D

    2015-01-01

    Vaccine probe studies have emerged in the past 15 years as a useful way to characterise disease. By contrast, traditional studies of vaccines focus on defining the vaccine effectiveness or efficacy. The underlying basis for the vaccine probe approach is that the difference in disease burden between vaccinated and unvaccinated individuals can be ascribed to the vaccine-specific pathogen. Vaccine probe studies can increase understanding of a vaccine’s public health value. For instance, even when a vaccine has a seemingly low efficacy, a high baseline disease incidence can lead to a large vaccine-preventable disease burden and thus that population-based vaccine introduction would be justified. So far, vaccines have been used as probes to characterise disease syndromes caused by Haemophilus influenzae type b, pneumococcus, rotavirus, and early infant influenza. However, vaccine probe studies have enormous potential and could be used more widely in epidemiology, for example, to define the vaccine-preventable burden of malaria, typhoid, paediatric influenza, and dengue, and to identify causal interactions between different pathogens. PMID:24553294

  11. Discovery and Testing of Ricin Therapeutics

    DTIC Science & Technology

    2012-06-01

    variants lung disease ER degradation Fabri disease α -D-galactosidase neurological disease ER degradation Oculocutaneous albinism tyrosinase...against other pathogens and human diseases . 15. SUBJECT TERMS Ricin toxin, dislocation, small weight compounds, chemical inhibitors, high-content screen...the U.S. Departments of Health and Human Services (HHS) and Centers for Disease Control and Prevention (CDC). The toxin’s ability to kill cells and

  12. Opposing effects of allogrooming on disease transmission in ant societies

    PubMed Central

    Theis, Fabian J.; Ugelvig, Line V.; Marr, Carsten; Cremer, Sylvia

    2015-01-01

    To prevent epidemics, insect societies have evolved collective disease defences that are highly effective at curing exposed individuals and limiting disease transmission to healthy group members. Grooming is an important sanitary behaviour—either performed towards oneself (self-grooming) or towards others (allogrooming)—to remove infectious agents from the body surface of exposed individuals, but at the risk of disease contraction by the groomer. We use garden ants (Lasius neglectus) and the fungal pathogen Metarhizium as a model system to study how pathogen presence affects self-grooming and allogrooming between exposed and healthy individuals. We develop an epidemiological SIS model to explore how experimentally observed grooming patterns affect disease spread within the colony, thereby providing a direct link between the expression and direction of sanitary behaviours, and their effects on colony-level epidemiology. We find that fungus-exposed ants increase self-grooming, while simultaneously decreasing allogrooming. This behavioural modulation seems universally adaptive and is predicted to contain disease spread in a great variety of host–pathogen systems. In contrast, allogrooming directed towards pathogen-exposed individuals might both increase and decrease disease risk. Our model reveals that the effect of allogrooming depends on the balance between pathogen infectiousness and efficiency of social host defences, which are likely to vary across host–pathogen systems. PMID:25870394

  13. Aseptic and Bacterial Meningitis: Evaluation, Treatment, and Prevention.

    PubMed

    Mount, Hillary R; Boyle, Sean D

    2017-09-01

    The etiologies of meningitis range in severity from benign and self-limited to life-threatening with potentially severe morbidity. Bacterial meningitis is a medical emergency that requires prompt recognition and treatment. Mortality remains high despite the introduction of vaccinations for common pathogens that have reduced the incidence of meningitis worldwide. Aseptic meningitis is the most common form of meningitis with an annual incidence of 7.6 per 100,000 adults. Most cases of aseptic meningitis are viral and require supportive care. Viral meningitis is generally self-limited with a good prognosis. Examination maneuvers such as Kernig sign or Brudzinski sign may not be useful to differentiate bacterial from aseptic meningitis because of variable sensitivity and specificity. Because clinical findings are also unreliable, the diagnosis relies on the examination of cerebrospinal fluid obtained from lumbar puncture. Delayed initiation of antibiotics can worsen mortality. Treatment should be started promptly in cases where transfer, imaging, or lumbar puncture may slow a definitive diagnosis. Empiric antibiotics should be directed toward the most likely pathogens and should be adjusted by patient age and risk factors. Dexamethasone should be administered to children and adults with suspected bacterial meningitis before or at the time of initiation of antibiotics. Vaccination against the most common pathogens that cause bacterial meningitis is recommended. Chemoprophylaxis of close contacts is helpful in preventing additional infections.

  14. Familial Hypercholesterolemia: Cascade Screening in Children and Relatives of the Affected.

    PubMed

    Setia, Nitika; Saxena, Renu; Sawhney, J P S; Verma, Ishwar C

    2018-05-01

    Familial Hypercholesterolemia (FH) is an inherited disorder of lipid metabolism characterized by very high low density lipoprotein (LDL) cholesterol since birth, resulting in premature atherosclerosis and coronary artery disease (CAD). Cascade screening of children and family members of proven FH individuals can identify more subjects who have high LDL cholesterol or the family mutation and appropriate intervention can reduce their risk of atherosclerosis and prevent its complications. Cascade screening by molecular testing, was carried out in 133 family members, comprising 24 children, of 31 probands with FH having a pathogenic mutation in LDLR/ApoB gene. Lipid profiles were obtained in 44 family members including 11 children. Of 133 family members tested, 88 (66.1%) were identified to carry the family mutation. Twelve of these were children below 18 y of age and 76 were adults. CAD was present in 15 (11.2%) family members and 63(47.4%) family members, including nine children, were already on Lipid Lowering Therapy. Cascade screening led to identification of 88 new cases, with a pathogenic mutation, who were at a very high risk of developing premature CAD. The authors identified 12 children with family specific mutation, out of which 9 were initiated on low dose statin therapy. Four homozygous children were treated with high dose statins because of substantially increased risk of CAD. Cascade screening, therefore, proved to be a successful initiative towards primary prevention of CAD in India.

  15. Evaluation of a select strain of Lactobacillus delbrueckii subsp. lactis as a biological control agent for pathogens on fresh-cut vegetables stored at 7 degrees C.

    PubMed

    Harp, E; Gilliland, S E

    2003-06-01

    Raw vegetables inoculated with selected pathogenic bacteria were treated with a strain of Lactobacillus delbrueckii subsp. lactis, which was selected for its ability to produce hydrogen peroxide at refrigerated temperatures. The vegetables inoculated included broccoli, cabbage, carrots, and lettuce. Each vegetable was rinsed, chopped, and stored under conditions similar to those used for ready-to-eat vegetables sold at retail. Portions of each vegetable were separately inoculated with one of two pathogenic bacteria, Escherichia coli O157:H7 or Listeria monocytogenes. Prior to packaging, one portion of each inoculated vegetable was treated with a cell suspension of the selected strain of L. delbrueckii subsp. lactis. The vegetables were stored at 7 degrees C for 6 days. The populations of pathogens and lactobacilli on each sample were enumerated on storage days 0, 3, and 6. Although populations of L. delbrueckii subsp. lactis remained at high levels during storage, there was no noticeable antagonistic action against the pathogens under conditions similar to those used for these products at the retail level. Each pathogen survived on all vegetables throughout storage. Further testing revealed that there was apparently sufficient catalase activity in the cut vegetables to destroy enough of the hydrogen peroxide to prevent antagonistic action against the pathogens.

  16. Predicting pathogen introduction: West Nile virus spread to Galáipagos.

    PubMed

    Kilpatrick, A Marm; Daszak, Peter; Goodman, Simon J; Rogg, Helmuth; Kramer, Laura D; Cedeño, Virna; Cunningham, Andrew A

    2006-08-01

    Emerging infectious diseases are a key threat to conservation and public health, yet predicting and preventing their emergence is notoriously difficult. We devised a predictive model for the introduction of a zoonotic vector-borne pathogen by considering each of the pathways by which it may be introduced to a new area and comparing the relative risk of each pathway. This framework is an adaptation of pest introduction models and estimates the number of infectious individuals arriving in a location and the duration of their infectivity. We used it to determine the most likely route for the introduction of West Nile virus to Galápagos and measures that can be taken to reduce the risk of introduction. The introduction of this highly pathogenic virus to this unique World Heritage Site could have devastating consequences, similar to those seen following introductions of pathogens into other endemic island faunas. Our model identified the transport of mosquitoes on airplanes as the highest risk for West Nile virus introduction. Pathogen dissemination through avian migration and the transportation of day-old chickens appeared to be less important pathways. Infected humans and mosquitoes transported in sea containers, in tires, or by wind all represented much lower risk. Our risk-assessment framework has broad applicability to other pathogens and other regions and depends only on the availability of data on the transport of goods and animals and the epidemiology of the pathogen.

  17. The Recent Recombinant Evolution of a Major Crop Pathogen, Potato virus Y

    PubMed Central

    Visser, Johan Christiaan; Bellstedt, Dirk Uwe; Pirie, Michael David

    2012-01-01

    Potato virus Y (PVY) is a major agricultural disease that reduces crop yields worldwide. Different strains of PVY are associated with differing degrees of pathogenicity, of which the most common and economically important are known to be recombinant. We need to know the evolutionary origins of pathogens to prevent further escalations of diseases, but putatively reticulate genealogies are challenging to reconstruct with standard phylogenetic approaches. Currently available phylogenetic hypotheses for PVY are either limited to non-recombinant strains, represent only parts of the genome, and/or incorrectly assume a strictly bifurcating phylogenetic tree. Despite attempts to date potyviruses in general, no attempt has been made to date the origins of pathogenic PVY. We test whether diversification of the major strains of PVY and recombination between them occurred within the time frame of the domestication and modern cultivation of potatoes. In so doing, we demonstrate a novel extension of a phylogenetic approach for reconstructing reticulate evolutionary scenarios. We infer a well resolved phylogeny of 44 whole genome sequences of PVY viruses, representative of all known strains, using recombination detection and phylogenetic inference techniques. Using Bayesian molecular dating we show that the parental strains of PVY diverged around the time potatoes were first introduced to Europe, that recombination between them only occurred in the last century, and that the multiple recombination events that led to highly pathogenic PVYNTN occurred within the last 50 years. Disease causing agents are often transported across the globe by humans, with disastrous effects for us, our livestock and crops. Our analytical approach is particularly pertinent for the often small recombinant genomes involved (e.g. HIV/influenza A). In the case of PVY, increased transport of diseased material is likely to blame for uniting the parents of recombinant pathogenic strains: this process needs to be minimised to prevent further such occurrences. PMID:23226339

  18. Multifaceted Defense against Listeria monocytogenes in the Gastro-Intestinal Lumen

    PubMed Central

    Becattini, Simone; Pamer, Eric G.

    2017-01-01

    Listeria monocytogenes is a foodborne pathogen that can cause febrile gastroenteritis in healthy subjects and systemic infections in immunocompromised individuals. Despite the high prevalence of L. monocytogenes in the environment and frequent contamination of uncooked meat and poultry products, infections with this pathogen are relatively uncommon, suggesting that protective defenses in the general population are effective. In the mammalian gastrointestinal tract, a variety of defense mechanisms prevent L. monocytogenes growth, epithelial penetration and systemic dissemination. Among these defenses, colonization resistance mediated by the gut microbiota is crucial in protection against a range of intestinal pathogens, including L. monocytogenes. Here we review defined mechanisms of defense against L. monocytogenes in the lumen of the gastro-intestinal tract, with particular emphasis on protection conferred by the autochthonous microbiota. We suggest that selected probiotic species derived from the microbiota may be developed for eventual clinical use to enhance resistance against L. monocytogenes infections. PMID:29271903

  19. Risk factors for community-acquired bacterial meningitis.

    PubMed

    Lundbo, Lene Fogt; Benfield, Thomas

    2017-06-01

    Bacterial meningitis is a significant burden of disease and mortality in all age groups worldwide despite the development of effective conjugated vaccines. The pathogenesis of bacterial meningitis is based on complex and incompletely understood host-pathogen interactions. Some of these are pathogen-specific, while some are shared between different bacteria. We searched the database PubMed to identify host risk factors for bacterial meningitis caused by the pathogens Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae type b, because they are three most common causative bacteria beyond the neonatal period. We describe a number of risk factors; including socioeconomic factors, age, genetic variation of the host and underlying medical conditions associated with increased susceptibility to invasive bacterial infections in both children and adults. As conjugated vaccines are available for these infections, it is of utmost importance to identify high risk patients to be able to prevent invasive disease.

  20. Seroconversion for infectious pathogens among UK military personnel deployed to Afghanistan, 2008-2011.

    PubMed

    Newman, Edmund N C; Johnstone, Penelope; Bridge, Hannah; Wright, Deborah; Jameson, Lisa; Bosworth, Andrew; Hatch, Rebecca; Hayward-Karlsson, Jenny; Osborne, Jane; Bailey, Mark S; Green, Andrew; Ross, David; Brooks, Tim; Hewson, Roger

    2014-12-01

    Military personnel are at high risk of contracting vector-borne and zoonotic infections, particularly during overseas deployments, when they may be exposed to endemic or emerging infections not prevalent in their native countries. We conducted seroprevalence testing of 467 UK military personnel deployed to Helmand Province, Afghanistan, during 2008-2011 and found that up to 3.1% showed seroconversion for infection with Rickettsia spp., Coxiella burnetii, sandfly fever virus, or hantavirus; none showed seroconversion for infection with Crimean-Congo hemorrhagic fever virus. Most seroconversions occurred in personnel who did not report illness, except for those with hantavirus (70% symptomatic). These results indicate that many exposures to infectious pathogens, and potentially infections resulting from those exposures, may go unreported. Our findings reinforce the need for continued surveillance of military personnel and for education of health care providers to help recognize and prevent illnesses and transmission of pathogens during and after overseas deployments.

  1. Real-time monitoring of immune responses under pathogen invasion and drug interference by integrated microfluidic device coupled with worm-based biosensor.

    PubMed

    Hu, Liang; Ge, Anle; Wang, Xixian; Wang, Shanshan; Yue, Xinpei; Wang, Jie; Feng, Xiaojun; Du, Wei; Liu, Bi-Feng

    2018-07-01

    Immune response to environmental pathogen invasion is a complex process to prevent host from further damage. For quantitatively understanding immune responses and revealing the pathogenic environmental information, real-time monitoring of such a whole dynamic process with single-animal resolution in well-defined environments is highly desired. In this work, an integrated microfluidic device coupled with worm-based biosensor was proposed for in vivo studies of dynamic immune responses and antibiotics interference in infected C. elegans. Individual worms housed in chambers were exposed to the various pathogens and discontinuously manipulated for imaging with limited influence on physiological activities. The expression of immune responses gene (irg-1) was time-lapse measured in intact worms during pathogen infection. Results demonstrated that irg-1 gene could be induced in the presence of P. aeruginosa strain PA14 in a dose-dependent manner, and the survival of infected worm could be rescued under gentamicin or erythromycin treatments. We expect it to be a versatile platform to facilitate future studies on pathogenesis researches and rapid drug screen using C. elegans disease model. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Study on Interactions between the Major Apple Valsa Canker Pathogen Valsa mali and Its Biocontrol Agent Saccharothrix yanglingensis Hhs.015 Using RT-qPCR

    PubMed Central

    Fan, Dongying; Li, Yanfang; Zhao, Lingyun; Li, Zhengpeng; Huang, Lili; Yan, Xia

    2016-01-01

    The mechanism of biocontrol agent Saccharothrix yanglingensis Hhs.015 action against Valsa mali, a major apple Valsa canker pathogen, was examined using a novel, sensitive (minimum detection limit 100 pg/μL) and reliably RT-qPCR technique. Prior to lesion formation, total concentration of V. mali in the bark showed a significant decrease (p<0.05) after 24 h of Hhs.015 treatment. This was more pronounced at 48 and 96 h post treatment. After lesion formation, levels of V. mali remained constant at the boundary between infected and uninfected bark tissues, although the relative expansion rate of the lesion was significantly reduced (p<0.05). Gene expression levels of endo-polygalacturonase, a marker for fungal pathogenicity, were sharply reduced while host induced resistance callose synthase levels increased significantly (p<0.05) at the boundary bark at 9 d after Hhs.015 treatment. The results showed that biocontrol agent Hhs.015 prevented infection of V. mali by inhibiting pathogen growth, down-regulating pathogenicity factor expression and inducing a high level of host resistance. PMID:27611855

  3. Complete genome sequence analysis of the fish pathogen Flavobacterium columnare provides insights into antibiotic resistance and pathogenicity related genes.

    PubMed

    Zhang, Yulei; Zhao, Lijuan; Chen, Wenjie; Huang, Yunmao; Yang, Ling; Sarathbabu, V; Wu, Zaohe; Li, Jun; Nie, Pin; Lin, Li

    2017-10-01

    We analyzed here the complete genome sequences of a highly virulent Flavobacterium columnare Pf1 strain isolated in our laboratory. The complete genome consists of a 3,171,081 bp circular DNA with 2784 predicted protein-coding genes. Among these, 286 genes were predicted as antibiotic resistance genes, including 32 RND-type efflux pump related genes which were associated with the export of aminoglycosides, indicating inducible aminoglycosides resistances in F. columnare. On the other hand, 328 genes were predicted as pathogenicity related genes which could be classified as virulence factors, gliding motility proteins, adhesins, and many putative secreted proteases. These genes were probably involved in the colonization, invasion and destruction of fish tissues during the infection of F. columnare. Apparently, our obtained complete genome sequences provide the basis for the explanation of the interactions between the F. columnare and the infected fish. The predicted antibiotic resistance and pathogenicity related genes will shed a new light on the development of more efficient preventional strategies against the infection of F. columnare, which is a major worldwide fish pathogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. In situ relationships between microbiota and potential pathobiota in Arabidopsis thaliana.

    PubMed

    Bartoli, Claudia; Frachon, Léa; Barret, Matthieu; Rigal, Mylène; Huard-Chauveau, Carine; Mayjonade, Baptiste; Zanchetta, Catherine; Bouchez, Olivier; Roby, Dominique; Carrère, Sébastien; Roux, Fabrice

    2018-05-30

    A current challenge in microbial pathogenesis is to identify biological control agents that may prevent and/or limit host invasion by microbial pathogens. In natura, hosts are often infected by multiple pathogens. However, most of the current studies have been performed under laboratory controlled conditions and by taking into account the interaction between a single commensal species and a single pathogenic species. The next step is therefore to explore the relationships between host-microbial communities (microbiota) and microbial members with potential pathogenic behavior (pathobiota) in a realistic ecological context. In the present study, we investigated such relationships within root-associated and leaf-associated bacterial communities of 163 ecologically contrasted Arabidopsis thaliana populations sampled across two seasons in southwest of France. In agreement with the theory of the invasion paradox, we observed a significant humped-back relationship between microbiota and pathobiota α-diversity that was robust between both seasons and plant organs. In most populations, we also observed a strong dynamics of microbiota composition between seasons. Accordingly, the potential pathobiota composition was explained by combinations of season-specific microbiota operational taxonomic units. This result suggests that the potential biomarkers controlling pathogen's invasion are highly dynamic.

  5. [A case of human infection with highly pathogenic avian influenza A (H7N9) virus through poultry processing without protection measure].

    PubMed

    Ma, Y; Zhang, Z B; Cao, L; Lu, J Y; Li, K B; Su, W Z; Li, T G; Yang, Z C; Wang, M

    2018-06-10

    Objective: To investigate the infection pattern and etiological characteristics of a case of human infection with highly pathogenic avian influenza A (H7N9) virus and provide evidence for the prevention and control of human infection with highly pathogenic avian influenza virus. Methods: Epidemiological investigation was conducted to explore the case's exposure history, infection route and disease progression. Samples collected from the patient, environments and poultry were tested by using real time reverse transcriptase-polymerase chain reaction (RT-PCR). Virus isolation, genome sequencing and phylogenetic analysis were conducted for positive samples. Results: The case had no live poultry contact history, but had a history of pulled chicken processing without taking protection measure in an unventilated kitchen before the onset. Samples collected from the patient's lower respiratory tract, the remaining frozen chicken meat and the live poultry market were all influenza A (H7N9) virus positive. The isolated viruses from these positive samples were highly homogenous. An insertion which lead to the addition of multiple basic amino acid residues (PEVPKRKRTAR/GL) was found at the HA cleavage site, suggesting that this virus might be highly pathogenic. Conclusions: Live poultry processing without protection measure is an important infection mode of "poultry to human" transmission of avian influenza viruses. Due to the limitation of protection measures in live poultry markets in Guangzhou, it is necessary to promote the standardized large scale poultry farming, the complete restriction of live poultry sales and centralized poultry slaughtering as well as ice fresh sale.

  6. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies.

    PubMed

    Pull, Christopher D; Ugelvig, Line V; Wiesenhofer, Florian; Grasse, Anna V; Tragust, Simon; Schmitt, Thomas; Brown, Mark Jf; Cremer, Sylvia

    2018-01-09

    In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus , the negative consequences of fungal infections ( Metarhizium brunneum ) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, utilising chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation.

  7. Prevalence of asymptomatic bacteriuria among pregnant women in Benin City, Nigeria.

    PubMed

    Akerele, J; Abhulimen, P; Okonofua, F

    2001-03-01

    A semi-quantitative screening for asymptomatic bacteriuria was carried out in the first trimester of 500 consecutive pregnant women in Benin City. The purpose was to provide baseline data and rational therapy for asymptomatic bacteriuria in pregnant women. Of the 500 women screened, 433 clinical specimens showed significant bacteriuria, representing an incidence of 86.6%. Of this number, 38 (7.4%) were of mixed bacterial colonies while 395 (91%) were of single bacterial colonies. Staphylococcus aureus (29.8%), Escherichia coli (29.1%) and Klebsiella pneumoniae (21.5%) were the most frequently isolated pathogens. The high incidence of asymptomatic bacteriuria in pregnancy correlated significantly (P < 0.05) with the observed high proportion of pyuria. On average, sensitivity of the pathogens was ciprofloxacin 99.7%; ceftazidime 81.6%; co-trimoxazole 79.4%; augmentin 71.4%; nalidixic acid 61.7%; nitrofurantoin 61.%; gentamycin 56.9% and ampicillin 25.4%. S. aureus was most sensitive, while Proteus mirabilis was least sensitive among the pathogens. Rational therapy of asymptomatic bacteriuria in pregnant women may prevent associated risks such as pyelonephritis and pre-eclampsia.

  8. Bench-to-bedside review: Functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis

    PubMed Central

    Opal, Steven M; Esmon, Charles T

    2003-01-01

    The innate immune response system is designed to alert the host rapidly to the presence of an invasive microbial pathogen that has breached the integument of multicellular eukaryotic organisms. Microbial invasion poses an immediate threat to survival, and a vigorous defense response ensues in an effort to clear the pathogen from the internal milieu of the host. The innate immune system is able to eradicate many microbial pathogens directly, or innate immunity may indirectly facilitate the removal of pathogens by activation of specific elements of the adaptive immune response (cell-mediated and humoral immunity by T cells and B cells). The coagulation system has traditionally been viewed as an entirely separate system that has arisen to prevent or limit loss of blood volume and blood components following mechanical injury to the circulatory system. It is becoming increasingly clear that coagulation and innate immunity have coevolved from a common ancestral substrate early in eukaryotic development, and that these systems continue to function as a highly integrated unit for survival defense following tissue injury. The mechanisms by which these highly complex and coregulated defense strategies are linked together are the focus of the present review. PMID:12617738

  9. High Throughput Sequencing for Detection of Foodborne Pathogens

    PubMed Central

    Sekse, Camilla; Holst-Jensen, Arne; Dobrindt, Ulrich; Johannessen, Gro S.; Li, Weihua; Spilsberg, Bjørn; Shi, Jianxin

    2017-01-01

    High-throughput sequencing (HTS) is becoming the state-of-the-art technology for typing of microbial isolates, especially in clinical samples. Yet, its application is still in its infancy for monitoring and outbreak investigations of foods. Here we review the published literature, covering not only bacterial but also viral and Eukaryote food pathogens, to assess the status and potential of HTS implementation to inform stakeholders, improve food safety and reduce outbreak impacts. The developments in sequencing technology and bioinformatics have outpaced the capacity to analyze and interpret the sequence data. The influence of sample processing, nucleic acid extraction and purification, harmonized protocols for generation and interpretation of data, and properly annotated and curated reference databases including non-pathogenic “natural” strains are other major obstacles to the realization of the full potential of HTS in analytical food surveillance, epidemiological and outbreak investigations, and in complementing preventive approaches for the control and management of foodborne pathogens. Despite significant obstacles, the achieved progress in capacity and broadening of the application range over the last decade is impressive and unprecedented, as illustrated with the chosen examples from the literature. Large consortia, often with broad international participation, are making coordinated efforts to cope with many of the mentioned obstacles. Further rapid progress can therefore be prospected for the next decade. PMID:29104564

  10. Prevention and control of viral diseases of salmonids

    USGS Publications Warehouse

    Amend, Donald F.

    1976-01-01

    Three viral diseases of salmonids are of worldwide concern: infectious pancreatic necrosis (IPN) viral hemorrhagic septicemia (VHS), and infectious hematopoietic necrosis (IHN). Six principal approaches are being used to prevent or control these diseases: 1) preventing contact o the pathogen with the host, 2) environmental manipulation, 3) immunization, 4) chemotherapy, 5 selective breeding for disease resistance, and 6) reducing stress conditions which augment disease conditions. Preventing the introduction of a pathogen into a new stock of fish has been accomplished mainly by implementing stringent laws to prevent transport of infected fish into uninfected areas. Stocks of fish already infected are sometimes destroyed, and the hatchery is disinfected and restocked with fish free of specific pathogens. Environmental manipulation (elevated water temperature) has been successfully used to control IHN. Chemotherapeutics such as povidone-iodine for IPN and benzipyrene for IHN show promise of controlling mortalities; however, the practicality of using these drugs to eliminate the carrier fish has not been evaluated. Salmonids are capable of developing immune responses to viruses; however, development of effective vaccines, selective breeding for disease resistance, and identification of stress conditions which augment disease are still in the experimental phase.

  11. Supporting business continuity during a highly pathogenic avian influenza outbreak: a collaboration of industry, academia, and government.

    PubMed

    Hennessey, Morgan; Lee, Brendan; Goldsmith, Timothy; Halvorson, Dave; Hueston, William; McElroy, Kristina; Waters, Katherine

    2010-03-01

    Since 2006, a collaborative group of egg industry, state, federal, and academia representatives have worked to enhance preparedness in highly pathogenic avian influenza (HPAI) planning. The collaborative group has created a draft egg product movement protocol, which calls for realistic, science-based contingency plans, biosecurity assessments, commodity risk assessments, and real-time reverse transcriptase-PCR testing to support the continuity of egg operations while also preventing and eradicating an HPAI outbreak. The work done by this group serves as an example of how industry, government, and academia can work together to achieve better preparedness in the event of an animal health emergency. In addition, in the event of an HPAI outbreak in domestic poultry, U.S. consumers will be assured that their egg products come from healthy chickens.

  12. Inhibitory effects of Bacillus subtilis on plant pathogens of conservatory in high latitudes

    NASA Astrophysics Data System (ADS)

    Xue, Chun-Mei; Wang, Xue; Yang, Jia-Li; Zhang, Yue-Hua

    2018-03-01

    Researching the effect of three kinds of Bacillus and their mixed strains inhibitory on common fungal diseases of conservatory vegetables. The results showed that B. megaterium culture medium had a significant inhibition effect on Cucumber Fusarium wilt, and the inhibition rate was up to 84.36%; B. mucilaginosus and B. megaterium sterile superna-tant had an obvious inhibitory effect on brown disease of eggplant, and the inhibition rate as high as 85.49%; B. subtilis sterile supernatant had a good inhibitory effect on the spore germination of C. Fusarium wilt, and the inhibition rate was 76.83%. The results revealed that Bacillus had a significant inhibitory effect on five common fungal pathogens. Three kinds of Bacillus can be used for the prevention and control of common fungal diseases in conservatory vegetables.

  13. Antimicrobial Peptides from Fish

    PubMed Central

    Masso-Silva, Jorge A.; Diamond, Gill

    2014-01-01

    Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture. PMID:24594555

  14. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Fangye; Zhou, Jian; Ma, Lei

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process hasmore » been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.« less

  15. A Novel Protective Vaccine Antigen from the Core Escherichia coli Genome

    PubMed Central

    Moriel, Danilo G.; Tan, Lendl; Goh, Kelvin G. K.; Ipe, Deepak S.; Lo, Alvin W.; Peters, Kate M.

    2016-01-01

    ABSTRACT Escherichia coli is a versatile pathogen capable of causing intestinal and extraintestinal infections that result in a huge burden of global human disease. The diversity of E. coli is reflected by its multiple different pathotypes and mosaic genome composition. E. coli strains are also a major driver of antibiotic resistance, emphasizing the urgent need for new treatment and prevention measures. Here, we used a large data set comprising 1,700 draft and complete genomes to define the core and accessory genome of E. coli and demonstrated the overlapping relationship between strains from different pathotypes. In combination with proteomic investigation, this analysis revealed core genes that encode surface-exposed or secreted proteins that represent potential broad-coverage vaccine antigens. One of these antigens, YncE, was characterized as a conserved immunogenic antigen able to protect against acute systemic infection in mice after vaccination. Overall, this work provides a genomic blueprint for future analyses of conserved and accessory E. coli genes. The work also identified YncE as a novel antigen that could be exploited in the development of a vaccine against all pathogenic E. coli strains—an important direction given the high global incidence of infections caused by multidrug-resistant strains for which there are few effective antibiotics. IMPORTANCE E. coli is a multifaceted pathogen of major significance to global human health and an important contributor to increasing antibiotic resistance. Given the paucity of therapies still effective against multidrug-resistant pathogenic E. coli strains, novel treatment and prevention strategies are urgently required. In this study, we defined the core and accessory components of the E. coli genome by examining a large collection of draft and completely sequenced strains available from public databases. This data set was mined by employing a reverse-vaccinology approach in combination with proteomics to identify putative broadly protective vaccine antigens. One such antigen was identified that was highly immunogenic and induced protection in a mouse model of bacteremia. Overall, our study provides a genomic and proteomic framework for the selection of novel vaccine antigens that could mediate broad protection against pathogenic E. coli. PMID:27904885

  16. [Human plague and pneumonic plague : pathogenicity, epidemiology, clinical presentations and therapy].

    PubMed

    Riehm, Julia M; Löscher, Thomas

    2015-07-01

    Yersinia pestis is a highly pathogenic gram-negative bacterium and the causative agent of human plague. In the last 1500 years and during three dreaded pandemics, millions of people became victims of Justinian's plague, the Black Death, or modern plague. Today, Y. pestis is endemic in natural foci of Asian, African and American countries. Due to its broad dissemination in mammal species and fleas, eradication of the pathogen will not be possible in the near future. In fact, plague is currently classified as a "re-emerging disease". Infection may occur after the bite of an infected flea, but also after oral ingestion or inhalation of the pathogen. The clinical presentations comprise the bubonic and pneumonic form, septicemia, rarely pharyngitis, and meningitis. Most human cases can successfully be treated with antibiotics. However, the high transmission rate and lethality of pneumonic plague require international and mandatory case notification and quarantine of patients. Rapid diagnosis, therapy and barrier nursing are not only crucial for the individual patient but also for the prevention of further spread of the pathogen or of epidemics. Therefore, WHO emergency schedules demand the isolation of cases, identification and surveillance of contacts as well as control of zoonotic reservoir animals and vectors. These sanctions and effective antibiotic treatment usually allow a rapid containment of outbreaks. However, multiple antibiotic resistant strains of Y. pestis have been isolated from patients in the past. So far, no outbreaks with such strains have been reported.

  17. Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection.

    PubMed

    Flieger, Miroslav; Bandouchova, Hana; Cerny, Jan; Chudíčková, Milada; Kolarik, Miroslav; Kovacova, Veronika; Martínková, Natália; Novák, Petr; Šebesta, Ondřej; Stodůlková, Eva; Pikula, Jiri

    2016-09-13

    Pathogenic and non-pathogenic related microorganisms differ in secondary metabolite production. Here we show that riboflavin overproduction by a fungal pathogen and its hyperaccumulation in affected host tissue exacerbates a skin infection to necrosis. In white-nose syndrome (WNS) skin lesions caused by Pseudogymnoascus destructans, maximum riboflavin concentrations reached up to 815 μg ml(-1), indicating bioaccumulation and lack of excretion. We found that high riboflavin concentrations are cytotoxic under conditions specific for hibernation, affect bats' primary fibroblasts and induce cell detachment, loss of mitochondrial membrane potential, polymerization of cortical actin, and cell necrosis. Our results explain molecular pathology of WNS, where a skin infection becomes fatal. Hyperaccumulation of vitamin B2 coupled with reduced metabolism and low tissue oxygen saturation during hibernation prevents removal of excess riboflavin in infected bats. Upon reperfusion, oxygen reacts with riboflavin resulting in dramatic pathology after arousal. While multiple molecules enable invasive infection, riboflavin-associated extensive necrosis likely contributes to pathophysiology and altered arousal pattern in infected bats. Bioaccumulation of a vitamin under natural infection represents a novel condition in a complex host-pathogen interplay.

  18. Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection

    PubMed Central

    Flieger, Miroslav; Bandouchova, Hana; Cerny, Jan; Chudíčková, Milada; Kolarik, Miroslav; Kovacova, Veronika; Martínková, Natália; Novák, Petr; Šebesta, Ondřej; Stodůlková, Eva; Pikula, Jiri

    2016-01-01

    Pathogenic and non-pathogenic related microorganisms differ in secondary metabolite production. Here we show that riboflavin overproduction by a fungal pathogen and its hyperaccumulation in affected host tissue exacerbates a skin infection to necrosis. In white-nose syndrome (WNS) skin lesions caused by Pseudogymnoascus destructans, maximum riboflavin concentrations reached up to 815 μg ml−1, indicating bioaccumulation and lack of excretion. We found that high riboflavin concentrations are cytotoxic under conditions specific for hibernation, affect bats’ primary fibroblasts and induce cell detachment, loss of mitochondrial membrane potential, polymerization of cortical actin, and cell necrosis. Our results explain molecular pathology of WNS, where a skin infection becomes fatal. Hyperaccumulation of vitamin B2 coupled with reduced metabolism and low tissue oxygen saturation during hibernation prevents removal of excess riboflavin in infected bats. Upon reperfusion, oxygen reacts with riboflavin resulting in dramatic pathology after arousal. While multiple molecules enable invasive infection, riboflavin-associated extensive necrosis likely contributes to pathophysiology and altered arousal pattern in infected bats. Bioaccumulation of a vitamin under natural infection represents a novel condition in a complex host-pathogen interplay. PMID:27620349

  19. Immunization of pregnant cows with Shiga toxin-2 induces high levels of specific colostral antibodies and lactoferrin able to neutralize E. coli O157:H7 pathogenicity.

    PubMed

    Albanese, Adriana; Sacerdoti, Flavia; Seyahian, E Abril; Amaral, Maria Marta; Fiorentino, Gabriela; Fernandez Brando, Romina; Vilte, Daniel A; Mercado, Elsa C; Palermo, Marina S; Cataldi, Angel; Zotta, Elsa; Ibarra, Cristina

    2018-03-20

    E. coli O157:H7 is a foodborne pathogen responsible for bloody diarrhea, hemorrhagic colitis and hemolytic uremic syndrome (HUS). The objective of the present work was to evaluate the ability of colostral IgG obtained from Stx2-immunized cows to prevent against E. coli O157:H7 infection and Stx2 cytotoxicity. Hyperimmune colostrum (HC) was obtained from cows intramuscularly immunized with inactivated Stx2 or vehicle for controls. Colostral IgG was purified by affinity chromatography. Specific IgG antibodies against Stx2 and bovine lactoferrin (bLF) levels in HC and the corresponding IgG (HC-IgG/bLF) were determined by ELISA. The protective effects of HC-IgG/bLF against Stx2 cytotoxicity and adhesion of E. coli O157:H7 and its Stx2-negative mutant were analyzed in HCT-8 cells. HC-IgG/bLF prevention against E. coli O157:H7 was studied in human colon and rat colon loops. Protection against a lethal dose of E. coli O157:H7 was evaluated in a weaned mice model. HC-IgG/bLF showed high anti-Stx2 titers and high bLF levels that were able to neutralize the cytotoxic effects of Stx2 in vitro and in vivo. Furthermore, HC-IgG/bLF avoided the inhibition of water absorption induced by E. coli O157:H7 in human colon and also the pathogenicity of E. coli O157:H7 and E. coli O157:H7Δstx2 in rat colon loops. Finally, HC-IgG/bLF prevented in a 100% the lethality caused by E. coli O157:H7 in a weaned mice model. Our study suggests that HC-IgG/bLF have protective effects against E. coli O157:H7 infection. These beneficial effects may be due to specific anti-Stx2 neutralizing antibodies in combination with high bLF levels. These results allow us to consider HC-IgG/bLF as a nutraceutical tool which could be used in combination with balanced supportive diets to prevent HUS. However further studies are required before recommendations can be made for therapeutic and clinical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens.

    PubMed

    Kant, Krishna; Shahbazi, Mohammad-Ali; Dave, Vivek Priy; Ngo, Tien Anh; Chidambara, Vinayaka Aaydha; Than, Linh Quyen; Bang, Dang Duong; Wolff, Anders

    2018-03-10

    Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner. Lab on chip is a blooming area in diagnosis, which exploits different mechanical and biological techniques to detect very low concentrations of pathogens in food samples. This is achieved through streamlining the sample handling and concentrating procedures, which will subsequently reduce human errors and enhance the accuracy of the sensing methods. Integration of sample preparation techniques into these devices can effectively minimize the impact of complex food matrix on pathogen diagnosis and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods and food production line. Copyright © 2018. Published by Elsevier Inc.

  1. 77 FR 5257 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): Initial Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... announced below concerns Detecting Emerging Vector Borne Zoonotic Pathogens in Indonesia, Funding... Pathogens in Indonesia, FOA CK12-002, initial review.'' Contact Person for More Information: Greg Anderson...

  2. Pathogen-Mediated Inhibition of Anorexia Promotes Host Survival and Transmission.

    PubMed

    Rao, Sheila; Schieber, Alexandria M Palaferri; O'Connor, Carolyn P; Leblanc, Mathias; Michel, Daniela; Ayres, Janelle S

    2017-01-26

    Sickness-induced anorexia is a conserved behavior induced during infections. Here, we report that an intestinal pathogen, Salmonella Typhimurium, inhibits anorexia by manipulating the gut-brain axis. Inhibition of inflammasome activation by the S. Typhimurium effector, SlrP, prevented anorexia caused by IL-1β-mediated signaling to the hypothalamus via the vagus nerve. Rather than compromising host defenses, pathogen-mediated inhibition of anorexia increased host survival. SlrP-mediated inhibition of anorexia prevented invasion and systemic infection by wild-type S. Typhimurium, reducing virulence while increasing transmission to new hosts, suggesting that there are trade-offs between transmission and virulence. These results clarify the complex and contextual role of anorexia in host-pathogen interactions and suggest that microbes have evolved mechanisms to modulate sickness-induced behaviors to promote health of their host and their transmission at the expense of virulence. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Report of the International Conference on Risk Communication Strategies for BSL-4 laboratories, Tokyo, October 3-5, 2007.

    PubMed

    Dickmann, Petra; Keith, Kelly; Comer, Chris; Abraham, Gordon; Gopal, Robin; Marui, Eiji

    2009-06-01

    Working with highly pathogenic agents such as Ebola or Marburg virus in the context of infection control or biodefense research requires high-biocontainment laboratories of the Biosafety Level 4 (BSL-4) to protect researchers and laboratory staff from infection and to prevent the unintentional release of harmful agents. The public perception of research on highly pathogenic agents and the operation of high-containment facilities is often ambivalent: while the output of the biomedical research is highly valued, the existence of a BSL-4 lab is often viewed with concern. Biomedical research perspectives and public perceptions often differ and can lead to tensions that could have negative effects on research, society, and politics. Therefore, risk communication plays a crucial role in siting, building, and operating a high-containment facility. The Japanese government invited risk communication experts and scientists from Canada, the U.S., Europe, and Australia to discuss their risk communication strategies for BSL-4 labs. This article describes the international perspective on risk communication and gives recommendations for successful strategies.

  4. Modeling of Virion Collisions in Cervicovaginal Mucus Reveals Limits on Agglutination as the Protective Mechanism of Secretory Immunoglobulin A

    PubMed Central

    Chen, Alex; McKinley, Scott A.; Shi, Feng; Wang, Simi; Mucha, Peter J.; Harit, Dimple; Forest, M. Gregory; Lai, Samuel K.

    2015-01-01

    Secretory immunoglobulin A (sIgA), a dimeric antibody found in high quantities in the gastrointestinal mucosa, is broadly associated with mucosal immune protection. A distinguishing feature of sIgA is its ability to crosslink pathogens, thereby creating pathogen/sIgA aggregates that are too large to traverse the dense matrix of mucin fibers in mucus layers overlying epithelial cells and consequently reducing infectivity. Here, we use modeling to investigate this mechanism of “immune exclusion” based on sIgA-mediated agglutination, in particular the potential use of sIgA to agglutinate HIV in cervicovaginal mucus (CVM) and prevent HIV transmission. Utilizing reported data on HIV diffusion in CVM and semen, we simulate HIV collision kinetics in physiologically-thick mucus layers–a necessary first step for sIgA-induced aggregation. We find that even at the median HIV load in semen of acutely infected individuals possessing high viral titers, over 99% of HIV virions will penetrate CVM and reach the vaginal epithelium without colliding with another virion. These findings imply that agglutination is unlikely to be the dominant mechanism of sIgA-mediated protection against HIV or other sexually transmitted pathogens. Rather, we surmise that agglutination is most effective against pathogens either present at exceedingly high concentrations or that possess motility mechanisms other than Brownian diffusion that significantly enhance encounter rates. PMID:26132216

  5. 21 CFR 558.630 - Tylosin and sulfamethazine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dysentery (vibrionic); control of swine pneumonias caused by bacterial pathogens (Pasteurella multocida and... dysentery (vibrionic); control of swine pneumonias caused by bacterial pathogens (Pasteurella multocida and...; prevention of swine dysentery associated with Brachyspira hyodysenteriae; and control of swine pneumonias...

  6. 21 CFR 558.630 - Tylosin and sulfamethazine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... dysentery (vibrionic); control of swine pneumonias caused by bacterial pathogens (Pasteurella multocida and... dysentery (vibrionic); control of swine pneumonias caused by bacterial pathogens (Pasteurella multocida and...; prevention of swine dysentery associated with Brachyspira hyodysenteriae; and control of swine pneumonias...

  7. Alternatives to antibiotics: why and how

    USDA-ARS?s Scientific Manuscript database

    The antibiotic resistance problem is the mobilization of genes that confer resistance to medically important antibiotics into human pathogens. The acquisition of such resistance genes by pathogens prevents disease treatment, increases health care costs, and increases morbidity and mortality. As ant...

  8. Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis.

    PubMed

    Keefe, Greg

    2012-07-01

    The primary method of spread for S agalactiae and S aureus is from cow to cow, so prevention focuses on within and between herd biosecurity to reduce or eliminate the reservoir of infection. S agalactiae is an obligate pathogen of the mammary gland, whereas S aureus is more widespread on other cow body sites and in the environment. Both organisms cause persistent infections, with S agalactiae typically causing higher SCC and bacteria counts in milk. Conventional methods of detection through culture perform well at the cow level. In bulk tanks, augmented procedures should be considered. PCR methods show promise of high sensitivity and specificity, at both the cow and bulk tank level. In developed dairy industries, prevalence of infection has decreased dramatically over the past 30 years for S agalactiae. For S aureus, the herd level of infection remains very high, although with rigorous, consistent application of control measures, within-herd prevalence has decreased. Because the milking time is the primary period for new IMI, it is the focal point of most prevention activities. Premilking and postmilking teat disinfection and proper stimulation and milk-out with adequately functioning equipment are key factors. There is growing evidence that the use of milking gloves is an integral part of contagious mastitis control and the production of high-quality milk. Treatment success is dramatically different between the 2 pathogens. For S agalactiae, eradication can be completed rapidly through a culture and treatment program with minimal culling. For S aureus, treatment success, particularly during lactation, is often disappointing and depends on cow, pathogen, and treatment factors. These factors should be reviewed prior to initiating any treatment to determine the potential for cure. Blanket dry cow therapy and strategic culling are important control procedures for contagious mastitis pathogens. Maintaining a closed herd or, at minimum, adhering to clearly defined biosecurity protocols is critical to reduce risk of reintroduction of S agalactiae or the addition of new, potentially more virulent strains of S aureus to endemic herds.

  9. Control of highly pathogenic avian influenza in Quang Tri province, Vietnam: voices from the human-animal interface.

    PubMed

    Farrell, Penny C; Hunter, Cynthia; Truong, Bui; Bunning, Michel

    2015-01-01

    Highly pathogenic avian influenza (HPAI) is caused by the haemagglutinin 5, neuraminidase 1 (H5N1) influenza A virus. Around 80% of households in rural Vietnam raise poultry, which provides food security and nutrition to their households and beyond. Of these, around 15-20% are semi-commercial producers, producing at least 28% of the country's chicken. Through learning the experiences of these semi-commercial farmers, this study aimed to explore the local understandings and sociocultural aspects of HPAI's impact, particularly the aetiology, diagnosis, and the prevention and control methods in one Vietnamese rural province. This study was conducted in Quang Tri province, Vietnam. Quang Tri province has eight districts. Five of these districts were at high risk of HPAI during the study period, of which three were selected for the present study. Within these three districts, six communes were randomly selected for the study from the list of intervention communes in Quang Tri province. Six out of the 26 intervention communes in Quang Tri were therefore selected. Participants were randomly selected and recruited from lists of semi-commercial farmers, village animal health workers, village human health workers and local authorities so that the study population (representative population) included an amount of variability similar to that of the wider population. A key benefit of this village-level control program was the residential proximity of animal and human health professionals. Participants were well aware of the typical clinical signs for avian influenza and of the reporting process for suspect cases. However there was extensive room for improvement in Quang Tri province regarding access to the HPAI vaccine, essential medical equipment for animal use, and available financial support. This qualitative research study provided an important insight for in-country policy makers and international stakeholders. It is vital that there are continued efforts to prevent and control highly pathogenic avian influenza through support programs that provide locally appropriate information and resources to those at the human-animal interface.

  10. Removal of pathogenic bacteria from sewage-treated effluent and biosolids for agricultural purposes

    NASA Astrophysics Data System (ADS)

    Al-Gheethi, A. A.; Efaq, A. N.; Bala, J. D.; Norli, I.; Abdel-Monem, M. O.; Ab. Kadir, M. O.

    2018-05-01

    The reuse of treated sewage for irrigation is considered as an important alternative water source in the new water management strategy of the countries that face a severe deficiency of water resources such as the Middle East countries. The organic material and fertilizing elements contained in biosolids are essential for maintaining soil fertility. However, both treated sewage and biosolids contain a large diversity of pathogens that would be transmitted to the environment and infect human directly or indirectly. Therefore, those pathogens should be reduced from the treated sewage and biosolids before the reuse in the agriculture. This paper reviews the considerations for reuse of treated sewage and biosolids in agriculture and further treatments used for reduction of pathogenic bacteria. The treatment methods used for the reduction of pathogens in these wastes have reviewed. It appeared that the main concern associated with the reduction of pathogenic bacteria lies in their ability to regrow in the treated sewage and biosolids. Therefore, the effective treatment method is that it has the potential to destruct pathogens cells and remove the nutrients to prevent the regrowth or recontamination from the surrounded environment. The removal of nutrients might be applicable in the sewage but not in the biosolids due to high nutrient contents. However, the reduction of health risk in the biosolids might be carried out by regulating the biosolid utilization and selecting the plant species grown in the fertilized soil with biosolids.

  11. Intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in continental and insular Greece

    PubMed Central

    Diakou, Anastasia; Di Cesare, Angela; Accettura, Paolo Matteo; Barros, Luciano; Iorio, Raffaella; Paoletti, Barbara; Frangipane di Regalbono, Antonio; Halos, Lénaïg; Beugnet, Frederic; Traversa, Donato

    2017-01-01

    This survey investigated the distribution of various intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in four regions of Greece. A total number of one hundred and fifty cats living in three Islands (Crete, Mykonos and Skopelos) and in Athens municipality was established as a realistic aim to be accomplished in the study areas. All cats were examined with different microscopic, serological and molecular assays aiming at evaluating the occurrence of intestinal parasites, and exposure to or presence of vector-borne infections. A total of 135 cats (90%) was positive for one or more parasites and/or pathogens transmitted by ectoparasites. Forty-four (29.3%) cats were positive for one single infection, while 91 (60.7%) for more than one pathogen. A high number of (n. 53) multiple infections caused by feline intestinal and vector-borne agents including at least one zoonotic pathogen was detected. Among them, the most frequently recorded helminths were roundworms (Toxocara cati, 24%) and Dipylidium caninum (2%), while a high number of examined animals (58.8%) had seroreaction for Bartonella spp., followed by Rickettsia spp. (43.2%) and Leishmania infantum (6.1%). DNA-based assays revealed the zoonotic arthropod-borne organisms Bartonella henselae, Bartonella clarridgeiae, Rickettsia spp., and L. infantum. These results show that free-ranging cats living in areas of Greece under examination may be exposed to a plethora of internal parasites and vector-borne pathogens, some of them potentially able to infect humans. Therefore, epidemiological vigilance and appropriate control measures are crucial for the prevention and control of these infections and to minimize the risk of infection for people. PMID:28141857

  12. Intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in continental and insular Greece.

    PubMed

    Diakou, Anastasia; Di Cesare, Angela; Accettura, Paolo Matteo; Barros, Luciano; Iorio, Raffaella; Paoletti, Barbara; Frangipane di Regalbono, Antonio; Halos, Lénaïg; Beugnet, Frederic; Traversa, Donato

    2017-01-01

    This survey investigated the distribution of various intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in four regions of Greece. A total number of one hundred and fifty cats living in three Islands (Crete, Mykonos and Skopelos) and in Athens municipality was established as a realistic aim to be accomplished in the study areas. All cats were examined with different microscopic, serological and molecular assays aiming at evaluating the occurrence of intestinal parasites, and exposure to or presence of vector-borne infections. A total of 135 cats (90%) was positive for one or more parasites and/or pathogens transmitted by ectoparasites. Forty-four (29.3%) cats were positive for one single infection, while 91 (60.7%) for more than one pathogen. A high number of (n. 53) multiple infections caused by feline intestinal and vector-borne agents including at least one zoonotic pathogen was detected. Among them, the most frequently recorded helminths were roundworms (Toxocara cati, 24%) and Dipylidium caninum (2%), while a high number of examined animals (58.8%) had seroreaction for Bartonella spp., followed by Rickettsia spp. (43.2%) and Leishmania infantum (6.1%). DNA-based assays revealed the zoonotic arthropod-borne organisms Bartonella henselae, Bartonella clarridgeiae, Rickettsia spp., and L. infantum. These results show that free-ranging cats living in areas of Greece under examination may be exposed to a plethora of internal parasites and vector-borne pathogens, some of them potentially able to infect humans. Therefore, epidemiological vigilance and appropriate control measures are crucial for the prevention and control of these infections and to minimize the risk of infection for people.

  13. Notable Aspects of Glycan-Protein Interactions

    PubMed Central

    Cohen, Miriam

    2015-01-01

    This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses). PMID:26340640

  14. Prevention and control strategies for ticks and pathogen transmission.

    PubMed

    de La Fuente, J; Kocan, K M; Contreras, M

    2015-04-01

    Ticks and tick-borne pathogens have evolved together, resulting in a complex relationship in which the pathogen's life cycle is perfectly coordinated with the tick's feeding cycle, and the tick can harbour high pathogen levels without affecting its biology. Tick-borne diseases (TBDs) continue to emerge and/or spread, and pose an increasing threatto human and animal health. The disruptive impacts of global change have resulted in ecosystem instability and the future outcomes of management and control programmes for ticks and TBDs are difficult to predict. In particular, the selection of acaricide-resistant ticks has reduced the value of acaricides as a sole means of tick control. Vaccines provide an alternative control method, but the use of tick vaccines has not advanced since the first vaccines were registered in the early 1990s. An understanding of the complex molecular relationship between hosts, ticks and pathogens and the use of systems biology and vaccinomics approaches are needed to discover proteins with the relevant biological function in tick feeding, reproduction, development, immune response, the subversion of host immunity and pathogen transmission, all of which mediate tick and pathogen success. The same approaches will also be required to characterise candidate protective antigens and to validate vaccine formulations. Tick vaccines with a dual effect on tick infestations and pathogen transmission could reduce both tick infestations and their vector capacity for humans, animals and reservoir hosts. The development of integrated tick control strategies, including vaccines and synthetic and botanical acaricides, in combination with managing drug resistance and educating producers, should lead to the sustainable control of ticks and TBDs.

  15. Vibrio vulnificus: new insights into a deadly opportunistic pathogen.

    PubMed

    Baker-Austin, Craig; Oliver, James D

    2018-02-01

    Vibrio vulnificus is a Gram-negative aquatic bacterium first isolated by the United States (US) Centers for Disease Control and Prevention (CDC) in 1964. This bacterium is part of the normal microbiota of estuarine waters and occurs in high numbers in molluscan shellfish around the world, particularly in warmer months. Infections in humans are derived from consumption of seafood produce and from water exposure. Vibrio vulnificus is a striking and enigmatic human pathogen, yet many aspects related to its biology, genomics, virulence capabilities and epidemiology remain elusive and poorly understood. This pathogen is responsible for over 95% of seafood-related deaths in the United States, and carries the highest fatality rate of any food-borne pathogen. Indeed, infections associated with this pathogen that progress to primary septicaemia have a similar case fatality rate to category BSL 3 and 4 pathogens, such as anthrax, bubonic plague, Ebola and Marburg fever. Interestingly, V. vulnificus infections disproportionately affect males (∼85% of cases) and older patients (> 40 years), especially those with underlying conditions such as liver diseases, diabetes and immune disorders. New insights from molecular studies and comparative genomic approaches have offered tantalising insights into this pathogen. A recent increase and geographical spread in reported infections, in particular wound cases, underlines the growing international importance of V. vulnificus, particularly in the context of coastal warming. We outline and explore here a range of current data gaps regarding this important pathogen, and provide some current thoughts on approaches to elucidate key aspects associated with this bacterium. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Poultry raising systems and highly pathogenic avian influenza outbreaks in Thailand: the situation, associations, and impacts.

    PubMed

    Chantong, Wasan; Kaneene, John B

    2011-05-01

    Highly pathogenic avian influenza (HPAI), caused by the virus strain H5N1, currently occurs worldwide with the greatest burden in Southeast Asia where the disease was first reported. In Thailand where the disease was first confirmed in January 2004, the virus had been persistent as a major threat to the poultry industry and human health over the past several years. It was generally hypothesized that the main reason for the disease to circulate in Thailand was the existence of traditional backyard chickens and free-range ducks raising systems. Consequently, this study reviewed the structure of poultry raising systems, the recent outbreaks of HPAI H5N1, the disease association to the backyard and free-grazing poultry production, and consequences of the outbreaks in Thailand. Although the major outbreaks in the country had declined, the sustaining disease surveillance and prevention are still strongly recommended.

  17. New class of monoclonal antibodies against severe influenza: prophylactic and therapeutic efficacy in ferrets.

    PubMed

    Friesen, Robert H E; Koudstaal, Wouter; Koldijk, Martin H; Weverling, Gerrit Jan; Brakenhoff, Just P J; Lenting, Peter J; Stittelaar, Koert J; Osterhaus, Albert D M E; Kompier, Ronald; Goudsmit, Jaap

    2010-02-08

    The urgent medical need for innovative approaches to control influenza is emphasized by the widespread resistance of circulating subtype H1N1 viruses to the leading antiviral drug oseltamivir, the pandemic threat posed by the occurrences of human infections with highly pathogenic avian H5N1 viruses, and indeed the evolving swine-origin H1N1 influenza pandemic. A recently discovered class of human monoclonal antibodies with the ability to neutralize a broad spectrum of influenza viruses (including H1, H2, H5, H6 and H9 subtypes) has the potential to prevent and treat influenza in humans. Here we report the latest efficacy data for a representative antibody of this novel class. We evaluated the prophylactic and therapeutic efficacy of the human monoclonal antibody CR6261 against lethal challenge with the highly pathogenic avian H5N1 virus in ferrets, the optimal model of human influenza infection. Survival rates, clinically relevant disease signs such as changes in body weight and temperature, virus replication in lungs and upper respiratory tract, as well as macro- and microscopic pathology were investigated. Prophylactic administration of 30 and 10 mg/kg CR6261 prior to viral challenge completely prevented mortality, weight loss and reduced the amount of infectious virus in the lungs by more than 99.9%, abolished shedding of virus in pharyngeal secretions and largely prevented H5N1-induced lung pathology. When administered therapeutically 1 day after challenge, 30 mg/kg CR6261 prevented death in all animals and blunted disease, as evidenced by decreased weight loss and temperature rise, reduced lung viral loads and shedding, and less lung damage. These data demonstrate the prophylactic and therapeutic efficacy of this new class of human monoclonal antibodies in a highly stringent and clinically relevant animal model of influenza and justify clinical development of this approach as intervention for both seasonal and pandemic influenza.

  18. Emerging infectious diseases: Focus on infection control issues for novel coronaviruses (Severe Acute Respiratory Syndrome-CoV and Middle East Respiratory Syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9).

    PubMed

    Weber, David J; Rutala, William A; Fischer, William A; Kanamori, Hajime; Sickbert-Bennett, Emily E

    2016-05-02

    Over the past several decades, we have witnessed the emergence of many new infectious agents, some of which are major public threats. New and emerging infectious diseases which are both transmissible from patient-to-patient and virulent with a high mortality include novel coronaviruses (SARS-CoV, MERS-CV), hemorrhagic fever viruses (Lassa, Ebola), and highly pathogenic avian influenza A viruses, A(H5N1) and A(H7N9). All healthcare facilities need to have policies and plans in place for early identification of patients with a highly communicable diseases which are highly virulent, ability to immediately isolate such patients, and provide proper management (e.g., training and availability of personal protective equipment) to prevent transmission to healthcare personnel, other patients and visitors to the healthcare facility. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  19. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine.

    PubMed

    Maltby, Rosalie; Leatham-Jensen, Mary P; Gibson, Terri; Cohen, Paul S; Conway, Tyrrell

    2013-01-01

    Escherichia coli is a single species consisting of many biotypes, some of which are commensal colonizers of mammals and others that cause disease. Humans are colonized on average with five commensal biotypes, and it is widely thought that the commensals serve as a barrier to infection by pathogens. Previous studies showed that a combination of three pre-colonized commensal E. coli strains prevents colonization of E. coli O157:H7 in a mouse model (Leatham, et al., 2010, Infect Immun 77: 2876-7886). The commensal biotypes included E. coli HS, which is known to successfully colonize humans at high doses with no adverse effects, and E. coli Nissle 1917, a human commensal strain that is used in Europe as a preventative of traveler's diarrhea. We hypothesized that commensal biotypes could exert colonization resistance by consuming nutrients needed by E. coli O157:H7 to colonize, thus preventing this first step in infection. Here we report that to colonize streptomycin-treated mice E. coli HS consumes six of the twelve sugars tested and E. coli Nissle 1917 uses a complementary yet divergent set of seven sugars to colonize, thus establishing a nutritional basis for the ability of E. coli HS and Nissle 1917 to occupy distinct niches in the mouse intestine. Together these two commensals use the five sugars previously determined to be most important for colonization of E. coli EDL933, an O157:H7 strain. As predicted, the two commensals prevented E. coli EDL933 colonization. The results support a model in which invading pathogenic E. coli must compete with the gut microbiota to obtain the nutrients needed to colonize and establish infection; accordingly, the outcome of the challenge is determined by the aggregate capacity of the native microbiota to consume the nutrients required by the pathogen.

  20. Probiotic E. coli Nissle 1917 biofilms on silicone substrates for bacterial interference against pathogen colonization.

    PubMed

    Chen, Quan; Zhu, Zhiling; Wang, Jun; Lopez, Analette I; Li, Siheng; Kumar, Amit; Yu, Fei; Chen, Haoqing; Cai, Chengzhi; Zhang, Lijuan

    2017-03-01

    Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, a non-pathogenic bacterial biofilm is used as a live, protective barrier to fence off pathogen colonization. In this work, biofilms formed by probiotic Escherichia coli strain Nissle 1917 (EcN) are investigated for their potential for long-term bacterial interference against infections associated with silicone-based urinary catheters and indwelling catheters used in the digestive system, such as feeding tubes and voice prostheses. We have shown that EcN can form stable biofilms on silicone substrates, particularly those modified with a biphenyl mannoside derivative. These biofilms greatly reduced the colonization by pathogenic Enterococcus faecalis in Lysogeny broth (LB) for 11days. Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, we use non-pathogenic bacteria to form a biofilm that serves as a live, protective barrier against pathogen colonization. Herein, we report the first use of preformed probiotic E. coli Nissle 1917 biofilms on the mannoside-presenting silicone substrates to prevent pathogen colonization. The biofilms serve as a live, protective barrier to fence off the pathogens, whereas current antimicrobial/antifouling coatings are subjected to gradual coverage by the biomass from the rapidly growing pathogens in a high-nutrient environment. It should be noted that E. coli Nissle 1917 is commercially available and has been used in many clinical trials. We also demonstrated that this probiotic strain performed significantly better than the non-commercial, genetically modified E. coli strain that we previously reported. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Pathogenic Correlates of Simian Immunodeficiency Virus-Associated B Cell Dysfunction.

    PubMed

    Brocca-Cofano, Egidio; Kuhrt, David; Siewe, Basile; Xu, Cuiling; Haret-Richter, George S; Craigo, Jodi; Labranche, Celia; Montefiori, David C; Landay, Alan; Apetrei, Cristian; Pandrea, Ivona

    2017-12-01

    We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the significance of the B cell dysfunction observed in simian (SIV) and human immunodeficiency virus (HIV) infections. We report that the loss of B cells is specifically associated with the pathogenic SIV infection, while in the natural hosts, in which SIV is nonpathogenic, B cells rapidly increase in both lymph nodes (LNs) and intestine. SIV-associated B cell dysfunction associated with the pathogenic SIV infection is characterized by loss of naive B cells, loss of resting memory B cells due to their redistribution to the gut, increases of the activated B cells and circulating tissue-like memory B cells, and expansion of the B regulatory cells (Bregs). While circulating B cells are virtually restored to preinfection levels during the chronic pathogenic SIV infection, restoration is mainly due to an expansion of the "exhausted," virus-specific B cells, i.e., activated memory cells and tissue-like memory B cells. Despite of the B cell dysfunction, SIV-specific antibody (Ab) production was higher in the PTMs than in AGMs, with the caveat that rapid disease progression in PTMs was strongly associated with lack of anti-SIV Ab. Neutralization titers and the avidity and maturation of immune responses did not differ between pathogenic and nonpathogenic infections, with the exception of the conformational epitope recognition, which evolved from low to high conformations in the natural host. The patterns of humoral immune responses in the natural host are therefore more similar to those observed in HIV-infected subjects, suggesting that natural hosts may be more appropriate for modeling the immunization strategies aimed at preventing HIV disease progression. The numerous differences between the pathogenic and nonpathogenic infections with regard to dynamics of the memory B cell subsets point to their role in the pathogenesis of HIV/SIV infections and suggest that monitoring B cells may be a reliable approach for assessing disease progression. IMPORTANCE We report here that the HIV/SIV-associated B cell dysfunction (defined by loss of total and memory B cells, increased B regulatory cell [Breg] counts, and B cell activation and apoptosis) is specifically associated with pathogenic SIV infection and absent during the course of nonpathogenic SIV infection in natural nonhuman primate hosts. Alterations of the B cell population are not correlated with production of neutralizing antibodies, the levels of which are similar in the two species. Rapid progressive infections are associated with a severe impairment in SIV-specific antibody production. While we did not find major differences in avidity and maturation between the pathogenic and nonpathogenic SIV infections, we identified a major difference in conformational epitope recognition, with the nonpathogenic infection being characterized by an evolution from low to high conformations. B cell dysfunction should be considered in designing immunization strategies aimed at preventing HIV disease progression. Copyright © 2017 American Society for Microbiology.

  2. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection.

    PubMed

    Bikard, David; Hatoum-Aslan, Asma; Mucida, Daniel; Marraffini, Luciano A

    2012-08-16

    Pathogenic bacterial strains emerge largely due to transfer of virulence and antimicrobial resistance genes between bacteria, a process known as horizontal gene transfer (HGT). Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci of bacteria and archaea encode a sequence-specific defense mechanism against bacteriophages and constitute a programmable barrier to HGT. However, the impact of CRISPRs on the emergence of virulence is unknown. We programmed the human pathogen Streptococcus pneumoniae with CRISPR sequences that target capsule genes, an essential pneumococcal virulence factor, and show that CRISPR interference can prevent transformation of nonencapsulated, avirulent pneumococci into capsulated, virulent strains during infection in mice. Further, at low frequencies bacteria can lose CRISPR function, acquire capsule genes, and mount a successful infection. These results demonstrate that CRISPR interference can prevent the emergence of virulence in vivo and that strong selective pressure for virulence or antibiotic resistance can lead to CRISPR loss in bacterial pathogens. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Prime-boost immunization using a DNA vaccine delivered by attenuated Salmonella enterica serovar typhimurium and a killed vaccine completely protects chickens from H5N1 highly pathogenic avian influenza virus.

    PubMed

    Pan, Zhiming; Zhang, Xiaoming; Geng, Shizhong; Fang, Qiang; You, Meng; Zhang, Lei; Jiao, Xinan; Liu, Xiufan

    2010-04-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) has posed a great threat not only for the poultry industry but also for human health. However, an effective vaccine to provide a full spectrum of protection is lacking in the poultry field. In the current study, a novel prime-boost vaccination strategy against H5N1 HPAIV was developed: chickens were first orally immunized with a hemagglutinin (HA) DNA vaccine delivered by attenuated Salmonella enterica serovar Typhimurium, and boosting with a killed vaccine followed. Chickens in the combined vaccination group but not in single vaccination and control groups were completely protected against disease following H5N1 HPAIV intranasal challenge, with no clinical signs and virus shedding. Chickens in the prime-boost group also generated significantly higher serum hemagglutination inhibition (HI) titers and intestinal mucosal IgA titers against avian influenza virus (AIV) and higher host immune cellular responses than those from other groups before challenge. These results demonstrated that the prime-boost vaccination strategy provides an effective way to prevent and control H5N1 highly pathogenic avian influenza virus.

  4. AuNP-RF sensor: An innovative application of RF technology for sensing pathogens electrically in liquids (SPEL) within the food supply chain.

    PubMed

    Matta, Leann Lerie; Karuppuswami, Saranraj; Chahal, Premjeet; Alocilja, Evangelyn C

    2018-07-15

    Rapid detection techniques of pathogenic bacteria in the liquid food supply chain are of significant research interest due to their pivotal role in preventing foodborne outbreaks, and in maintaining high standards of public health and safety. Milk and dairy products are of particular interest due to their widespread consumption across the globe. In this paper, a biosensor for detecting pathogenic bacteria in milk using dextrin-capped gold nanoparticles (d-AuNP) as labels decoded at microwave frequencies is presented. The SPEL (sensing pathogens electrically in liquids) biosensor consists of a 3D printed vial and uses an RF reader and an RFID (radio-frequency identification) compatible Split Ring Resonator (SRR) based tag. The SPEL biosensor is capable of detecting bacteria at 5 log CFU/mL within 75 min, with the possibility of testing multiple concurrent samples. Detection is based on impedance loading of SRR by d-AuNP bound to pathogenic bacteria. Spectrophotometry, along with carbohydrate-functionalized magnetic nanoparticle (MNP) cell capture, is used to verify the sensitivity of the SPEL biosensor with respect to d-AuNP presence. The proof-of-concept device, along with challenges and opportunities for commercialization, are also outlined. Copyright © 2018. Published by Elsevier B.V.

  5. Fungal Diversity in Field Mold-Damaged Soybean Fruits and Pathogenicity Identification Based on High-Throughput rDNA Sequencing

    PubMed Central

    Liu, Jiang; Deng, Jun-cai; Yang, Cai-qiong; Huang, Ni; Chang, Xiao-li; Zhang, Jing; Yang, Feng; Liu, Wei-guo; Wang, Xiao-chun; Yong, Tai-wen; Du, Jun-bo; Shu, Kai; Yang, Wen-yu

    2017-01-01

    Continuous rain and an abnormally wet climate during harvest can easily lead to soybean plants being damaged by field mold (FM), which can reduce seed yield and quality. However, to date, the underlying pathogen and its resistance mechanism have remained unclear. The objective of the present study was to investigate the fungal diversity of various soybean varieties and to identify and confirm the FM pathogenic fungi. A total of 62,382 fungal ITS1 sequences clustered into 164 operational taxonomic units (OTUs) with 97% sequence similarity; 69 taxa were recovered from the samples by internal transcribed spacer (ITS) region sequencing. The fungal community compositions differed among the tested soybeans, with 42 OTUs being amplified from all varieties. The quadratic relationships between fungal diversity and organ-specific mildew indexes were analyzed, confirming that mildew on soybean pods can mitigate FM damage to the seeds. In addition, four potentially pathogenic fungi were isolated from FM-damaged soybean fruits; morphological and molecular identification confirmed these fungi as Aspergillus flavus, A. niger, Fusarium moniliforme, and Penicillium chrysogenum. Further re-inoculation experiments demonstrated that F. moniliforme is dominant among these FM pathogenic fungi. These results lay the foundation for future studies on mitigating or preventing FM damage to soybean. PMID:28515718

  6. Analysis of bacterial metagenomes from the Southwestern Gulf of Mexico for pathogens detection.

    PubMed

    Escobedo-Hinojosa, Wendy; Pardo-López, Liliana

    2017-07-31

    Little is known about the diversity of bacteria in the Southwestern Gulf of Mexico. The aim of the study illustrated in this perspective was to search for the presence of bacterial pathogens in this ecosystem, using metagenomic data recently generated by the Mexican research group known as the Gulf of Mexico Research Consortium. Several genera of bacteria annotated as pathogens were detected in water and sediment marine samples. As expected, native and ubiquitous pathogenic bacteria genera such as Burkolderia, Halomonas, Pseudomonas, Shewanella and Vibrio were highly represented. Surprisingly, non-native genera of public health concern were also detected, including Borrelia, Ehrlichia, Leptospira, Mycobacterium, Mycoplasma, Salmonella, Staphylococcus, Streptococcus and Treponema. While there are no previous metagenomics studies of this environment, the potential influences of natural, anthropogenic and ecological factors on the diversity of putative pathogenic bacteria found in it are reviewed. The taxonomic annotation herein reported provides a starting point for an improved understanding of bacterial biodiversity in the Southwestern Gulf of Mexico. It also represents a useful tool in public health as it may help identify infectious diseases associated with exposure to marine water and ingestion of fish or shellfish, and thus may be useful in predicting and preventing waterborne disease outbreaks. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Risk Prioritization Tool to Identify the Public Health Risks of Wildlife Trade: The Case of Rodents from Latin America.

    PubMed

    Bueno, I; Smith, K M; Sampedro, F; Machalaba, C C; Karesh, W B; Travis, D A

    2016-06-01

    Wildlife trade (both formal and informal) is a potential driver of disease introduction and emergence. Legislative proposals aim to prevent these risks by banning wildlife imports, and creating 'white lists' of species that are cleared for importation. These approaches pose economic harm to the pet industry, and place substantial burden on importers and/or federal agencies to provide proof of low risk for importation of individual species. As a feasibility study, a risk prioritization tool was developed to rank the pathogens found in rodent species imported from Latin America into the United States with the highest risk of zoonotic consequence in the United States. Four formally traded species and 16 zoonotic pathogens were identified. Risk scores were based on the likelihood of pathogen release and human exposure, and the severity of the disease (consequences). Based on the methodology applied, three pathogens (Mycobacterium microti, Giardia spp. and Francisella tularensis) in one species (Cavia porcellus) were ranked as highest concern. The goal of this study was to present a methodological approach by which preliminary management resources can be allocated to the identified high-concern pathogen-species combinations when warranted. This tool can be expanded to other taxa and geographic locations to inform policy surrounding the wildlife trade. © 2015 Blackwell Verlag GmbH.

  8. Development of a panel of recombinase polymerase amplification assays for detection of common bacterial urinary tract infection pathogens.

    PubMed

    Raja, B; Goux, H J; Marapadaga, A; Rajagopalan, S; Kourentzi, K; Willson, R C

    2017-08-01

    To develop and evaluate the performance of a panel of isothermal real-time recombinase polymerase amplification (RPA) assays for detection of common bacterial urinary tract infection (UTI) pathogens. The panel included RPAs for Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa and Enterococcus faecalis. All five RPAs required reaction times of under 12 min to reach their lower limit of detection of 100 genomes per reaction or less, and did not cross-react with high concentrations of nontarget bacterial genomic DNA. In a 50-sample retrospective clinical study, the five-RPA assay panel was found to have a specificity of 100% (95% CI, 78-100%) and a sensitivity of 89% (95% CI, 75-96%) for UTI detection. The analytical and clinical validity of RPA for the rapid and sensitive detection of common UTI pathogens was established. Rapid identification of the causative pathogens of UTIs can be valuable in preventing serious complications by helping avoid the empirical treatment necessitated by traditional urine culture's 48-72-h turnaround time. The routine and widespread use of RPA to supplement or replace culture-based methods could profoundly impact UTI management and the emergence of multidrug-resistant pathogens. © 2017 The Society for Applied Microbiology.

  9. Circulation of Alphacoronavirus, Betacoronavirus and Paramyxovirus in Hipposideros bat species in Zimbabwe.

    PubMed

    Bourgarel, Mathieu; Pfukenyi, Davies M; Boué, Vanina; Talignani, Loïc; Chiweshe, Ngoni; Diop, Fodé; Caron, Alexandre; Matope, Gift; Missé, Dorothée; Liégeois, Florian

    2018-03-01

    Bats carry a great diversity of zoonotic viruses with a high-impact on human health and livestock. Since the emergence of new coronaviruses and paramyxoviruses in humans (e.g. Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Nipah virus), numerous studies clearly established that bats can maintain some of these viruses. Improving our understanding on the role of bats in the epidemiology of the pathogens they harbour is necessary to prevent cross-species spill over along the wild/domestic/human gradient. In this study, we screened bat faecal samples for the presence of Coronavirus and Paramyxovirus in two caves frequently visited by local people to collect manure and/or to hunt bats in Zimbabwe. We amplified partial RNA-dependent RNA polymerase genes of Alpha and Betacoronavirus together with the partial polymerase gene of Paramyxovirus. Identified coronaviruses were related to pathogenic human strains and the paramyxovirus belonged to the recently described Jeilongvirus genus. Our results highlighted the importance of monitoring virus circulation in wildlife, especially bats, in the context of intense human-wildlife interfaces in order to strengthen prevention measures among local populations and to implement sentinel surveillance in sites with high zoonotic diseases transmission potential. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Brain Meta-Transcriptomics from Harbor Seals to Infer the Role of the Microbiome and Virome in a Stranding Event.

    PubMed

    Rosales, Stephanie M; Thurber, Rebecca Vega

    2015-01-01

    Marine diseases are becoming more frequent, and tools for identifying pathogens and disease reservoirs are needed to help prevent and mitigate epizootics. Meta-transcriptomics provides insights into disease etiology by cataloguing and comparing sequences from suspected pathogens. This method is a powerful approach to simultaneously evaluate both the viral and bacterial communities, but few studies have applied this technique in marine systems. In 2009 seven harbor seals, Phoca vitulina, stranded along the California coast from a similar brain disease of unknown cause of death (UCD). We evaluated the differences between the virome and microbiome of UCDs and harbor seals with known causes of death. Here we determined that UCD stranded animals had no viruses in their brain tissue. However, in the bacterial community, we identified Burkholderia and Coxiella burnetii as important pathogens associated with this stranding event. Burkholderia were 100% prevalent and ~2.8 log2 fold more abundant in the UCD animals. Further, while C. burnetii was found in only 35.7% of all samples, it was highly abundant (~94% of the total microbial community) in a single individual. In this harbor seal, C. burnetii showed high transcription rates of invading and translation genes, implicating it in the pathogenesis of this animal. Based on these data we propose that Burkholderia taxa and C. burnetii are potentially important opportunistic neurotropic pathogens in UCD stranded harbor seals.

  11. Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death.

    PubMed

    Schuenemann, Verena J; Bos, Kirsten; DeWitte, Sharon; Schmedes, Sarah; Jamieson, Joslyn; Mittnik, Alissa; Forrest, Stephen; Coombes, Brian K; Wood, James W; Earn, David J D; White, William; Krause, Johannes; Poinar, Hendrik N

    2011-09-20

    Although investigations of medieval plague victims have identified Yersinia pestis as the putative etiologic agent of the pandemic, methodological limitations have prevented large-scale genomic investigations to evaluate changes in the pathogen's virulence over time. We screened over 100 skeletal remains from Black Death victims of the East Smithfield mass burial site (1348-1350, London, England). Recent methods of DNA enrichment coupled with high-throughput DNA sequencing subsequently permitted reconstruction of ten full human mitochondrial genomes (16 kb each) and the full pPCP1 (9.6 kb) virulence-associated plasmid at high coverage. Comparisons of molecular damage profiles between endogenous human and Y. pestis DNA confirmed its authenticity as an ancient pathogen, thus representing the longest contiguous genomic sequence for an ancient pathogen to date. Comparison of our reconstructed plasmid against modern Y. pestis shows identity with several isolates matching the Medievalis biovar; however, our chromosomal sequences indicate the victims were infected with a Y. pestis variant that has not been previously reported. Our data reveal that the Black Death in medieval Europe was caused by a variant of Y. pestis that may no longer exist, and genetic data carried on its pPCP1 plasmid were not responsible for the purported epidemiological differences between ancient and modern forms of Y. pestis infections.

  12. Preventing clostridium difficile infection in the intensive care unit.

    PubMed

    Zilberberg, Marya D; Shorr, Andrew F

    2013-01-01

    Clostridium difficile is a formidable problem in the twenty-first century. Because of injudicious use of antibiotics, the emergence of the hypervirulent epidemic strain of this organism has been difficult to contain. The NAP1/BI/027 strain causes more-severe disease than other widely prevalent strains and affects patients who were not traditionally thought to be at risk for Clostridium difficile infection. Critically ill patients remain at high risk for this pathogen, and preventive measures, such as meticulous contact precautions, hand hygiene, environmental disinfection, and, most importantly, antibiotic stewardship, are the cornerstones of mitigation in the intensive care unit. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. The expression of heterologous MAM-7 in Lactobacillus rhamnosus reduces its intrinsic capacity to inhibit colonization of pathogen Vibrio parahaemolyticus in vitro.

    PubMed

    Beltran, Sebastian; Munoz-Bergmann, Cristian A; Elola-Lopez, Ana; Quintana, Javiera; Segovia, Cristopher; Trombert, Annette N

    2016-01-07

    Vibrio parahaemolyticus (V. parahaemolyticus) is a Gram-negative, halophilic bacterium recognized as one of the most important foodborne pathogen. When ingested, V. parahaemolyticus causes a self-limiting illness (Vibriosis), characterized mainly by watery diarrhoea. Treatment is usually oral rehydration and/or antibiotics in complicated cases. Since 1996, the pathogenic and pandemic V. parahaemolyticus O3:K6 serotype has spread worldwide, increasing the reported number of vibriosis cases. Thus, the design of new strategies for pathogen control and illness prevention is necessary. Lactobacillus sp. grouped Gram positive innocuous bacteria, part of normal intestinal microbiota and usually used as oral vaccines for several diarrheic diseases. Recombinants strains of Lactobacillus (RL) expressing pathogen antigens can be used as part of an anti-adhesion strategy where RL block the pathogen union sites in host cells. Thus, we aimed to express MAM-7 V. parahaemolyticus adhesion protein in Lactobacillus sp. to generate an RL that prevents pathogen colonization. We cloned the MAM-7 gene from V. parahaemolyticus RIMD 2210633 in Lactobacillus expression vectors. Recombinant strains (Lactobacillus rhamnosus pSEC-MAM7 and L. rhamnosus pCWA-MAM7) adhered to CaCo-2 cells and competed with the pathogen. However, the L. rhamnosus wild type strain showed the best capacity to inhibit pathogen colonization in vitro. In addition, LDH-assay showed that recombinant strains were cytotoxic compared with the wild type isogenic strain. MAM-7 expression in lactobacilli reduces the intrinsic inhibitory capacity of L. rhamnosus against V. parahaemolyticus.

  14. Human enteric pathogen internalization by root uptake into food crops

    USDA-ARS?s Scientific Manuscript database

    With an increasing number of outbreaks and illnesses associated with pre-harvest contaminated produce, understanding the potential and mechanisms of produce contamination by enteric pathogens can aid in the development of preventative measures and post-harvest processing to reduce microbial populati...

  15. Nitric Oxide-Mediated Coronary Flow Regulation in Patients with Coronary Artery Disease: Recent Advances

    PubMed Central

    Toda, Noboru; Tanabe, Shinichi; Nakanishi, Sadanobu

    2011-01-01

    Nitric oxide (NO) formed via endothelial NO synthase (eNOS) plays crucial roles in the regulation of coronary blood flow through vasodilatation and decreased vascular resistance, and in inhibition of platelet aggregation and adhesion, leading to the prevention of coronary circulatory failure, thrombosis, and atherosclerosis. Endothelial function is impaired by several pathogenic factors including smoking, chronic alcohol intake, hypercholesterolemia, obesity, hyperglycemia, and hypertension. The mechanisms underlying endothelial dysfunction include reduced NO synthase (NOS) expression and activity, decreased NO bioavailability, and increased production of oxygen radicals and endogenous NOS inhibitors. Atrial fibrillation appears to be a risk factor for endothelial dysfunction. Endothelial dysfunction is an important predictor of coronary artery disease (CAD) in humans. Penile erectile dysfunction, associated with impaired bioavailability of NO produced by eNOS and neuronal NOS, is also considered to be highly predictive of ischemic heart disease. There is evidence suggesting an important role of nitrergic innervation in coronary blood flow regulation. Prophylactic and therapeutic measures to eliminate pathogenic factors inducing endothelial and nitrergic nerve dysfunction would be quite important in preventing the genesis and development of CAD. PMID:22942627

  16. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015

    PubMed Central

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F.; Shi, Weifeng; Lei, Fumin

    2015-01-01

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health. PMID:26259704

  17. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses

    PubMed Central

    BAATARTSOGT, Tugsbaatar; BUI, Vuong N.; TRINH, Dai Q.; YAMAGUCHI, Emi; GRONSANG, Dulyatad; THAMPAISARN, Rapeewan; OGAWA, Haruko; IMAI, Kunitoshi

    2016-01-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin–Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV. PMID:27193820

  18. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015.

    PubMed

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F; Shi, Weifeng; Lei, Fumin

    2015-08-11

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health.

  19. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses.

    PubMed

    Baatartsogt, Tugsbaatar; Bui, Vuong N; Trinh, Dai Q; Yamaguchi, Emi; Gronsang, Dulyatad; Thampaisarn, Rapeewan; Ogawa, Haruko; Imai, Kunitoshi

    2016-10-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin-Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV.

  20. Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities.

    PubMed

    Balakireva, Anastasia V; Zamyatnin, Andrey A

    2016-10-18

    Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD), allergy to wheat and non-celiac gluten sensitivity (NCGS). Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides: the most common is gluten-free diet (GFD), which has proved its effectiveness; prevention programs, enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for treatment of gluten-related disorders.

  1. Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities

    PubMed Central

    Balakireva, Anastasia V.; Zamyatnin, Andrey A.

    2016-01-01

    Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD), allergy to wheat and non-celiac gluten sensitivity (NCGS). Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides: the most common is gluten-free diet (GFD), which has proved its effectiveness; prevention programs, enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for treatment of gluten-related disorders. PMID:27763541

  2. Efficacy of accelerated hydrogen peroxide® disinfectant on foot-and-mouth disease virus, swine vesicular disease virus and Senecavirus A.

    PubMed

    Hole, K; Ahmadpour, F; Krishnan, J; Stansfield, C; Copps, J; Nfon, C

    2017-03-01

    In a laboratory, disinfectants used to inactivate pathogens on contaminated surfaces and to prevent spread of diseases often have adverse side effects on personnel and the environment. It is, therefore, essential to find safer, fast-acting and yet effective disinfectants. The objective of this study was to evaluate an accelerated hydrogen peroxide ® (AHP ® )-based disinfectant against high consequence foreign animal disease pathogens such as foot-and-mouth disease virus (FMDV) and swine vesicular disease virus (SVDV), as well as Senecavirus A (SVA), which causes similar lesions as FMDV and SVDV. We tested varying dilutions and contact times of AHP against FMDV, SVDV and SVA by the standard US EPA and modified methods. AHP was effective against all three viruses, albeit at a higher concentration and double the manufacturer recommended contact time when testing wet films of SVDV. AHP is an effective disinfectant against FMDV, SVDV and SVA. AHP-based disinfectant can, therefore, be used in high containment laboratories working with FMDV, SVDV and related pathogens. © 2016 The Canadian Food Inspection Agency. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  3. Complete genome sequence of Lactobacillus johnsonii FI9785, a competitive exclusion agent against pathogens in poultry.

    PubMed

    Wegmann, Udo; Overweg, Karin; Horn, Nikki; Goesmann, Alexander; Narbad, Arjan; Gasson, Michael J; Shearman, Claire

    2009-11-01

    Lactobacillus johnsonii is a member of the acidophilus group of lactobacilli. Because of their probiotic properties, including attachment to epithelial cells, immunomodulation, and competitive exclusion of pathogens, representatives of this group are being intensively studied. Here we report the complete annotated genome sequence of Lactobacillus johnsonii FI9785, a strain which prevents the colonization of specific-pathogen-free chicks by Clostridium perfringens.

  4. Diagnostic Approach to Viral Acute Encephalitis Syndrome (AES) in Paediatric Age Group: A Study from New Delhi.

    PubMed

    Goel, Shipra; Chakravarti, Anita; Mantan, Mukta; Kumar, Surinder; Ashraf, Md Anzar

    2017-09-01

    Acute Encephalitis Syndrome has heralded the emergence of multiple virulent pathogens, which may result in severe morbidity and mortality. In India, encephalitis is not notified and there has been a dearth of analysis for trends in encephalitis death rates and causation. A downward trend has been observed in encephalitis deaths, due to 'known' causes, which can be largely explained by improvement in diagnostic, treatment, and prevention methods. There is still a very high proportion of encephalitis deaths in developing countries, where the aetiological diagnosis of the pathogen is not established and thus, lies the importance of monitoring encephalitis morbidity and mortality with a view to improve pathogen diagnosis and identify emerging infectious diseases. To formulate a diagnostic approach to viral acute encephalitis syndrome in paediatric age group. A cross-sectional study including 50 paediatric patients, clinically diagnosed with acute encephalitis syndrome using WHO criteria was conducted. The CSF of all the patients was evaluated to diagnose the aetiology for viral pathogens. ELISA was used for diagnosing Japanese encephalitis and dengue encephalitis; and multiplex real time PCR was used for detecting HSV-1, HSV-2, Varicella zoster virus, Mumps virus, Enterovirus and Parechovirus. Confirmed diagnosis was established in 11 (22%) of 50 cases. A confirmed or probable viral agent of encephalitis was found in 7 (14%), bacterial agent was found in 2 (4%), non-infectious aetiology was found in 2 (4%). Fatal outcome was independently associated with patient age. Despite extensive testing, the aetiologies of more than three fourth of the cases remains elusive. Nevertheless the result from the present study may be useful for future design of early diagnosis and treatment of the disease. New strategies for pathogen identification and continued analysis of clinical features and case histories should help us improve our ability to diagnose, treat and prevent encephalitis.

  5. Preventive and social cost implications of Ebola Virus Disease (EVD) outbreak on selected organizations in Lagos state, Nigeria

    PubMed Central

    Olugasa, Babasola Oluseyi; Oshinowo, Oluwafunmilola Yemisi; Odigie, Eugene Amienwanlen

    2015-01-01

    Introduction As Ebola virus disease (EVD) continues to pose public health challenge in West Africa, with attending fears and socio-economic implications in the current epidemic challenges. It is compelling to estimate the social and preventive costs of EVD containment in a Nigerian city. Hence, this study was to determine the social and preventive cost implications of EVD among selected public institutions in Lagos, Nigeria, from July to December, 2014. Methods Questionnaires and key-informants interview were administered to respondents and administrators of selected hospitals, hotels and schools in Eti-Osa Local Government Area of Lagos State. Knowledge of disease transmission, mortality and protocols for prevention, including cost of specific preventive measures adopted against EVD were elicited from respondents. Descriptive statistics and categorical analysis were used to summarize and estimate social and preventive costs incurred by respective institutions. Results An estimated five million, nineteen thousand, three hundred and seventy-nine Naira and eighty kobo (N5,019,379.80) only was observed as direct and social cost implication of EVD prevention. This amount translated into a conservative estimate of one billion, twenty-seven million, ninety-four thousand, seven hundred and fifty-six Naira (N1,027,094,756.10) for a total of four thousand schools, two hundred and fifty-three hospitals and one thousand, four hundred and fifty one hotels in Lagos during the period (July 20-November 20, 2014). Conclusion The high cost of prevention of EVD within the short time-frame indicated high importance attached to a preventive policy against highly pathogenic zoonotic disease in Nigeria. PMID:26740848

  6. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations

    PubMed Central

    Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases. PMID:25628612

  7. Universal and reusable virus deactivation system for respiratory protection

    NASA Astrophysics Data System (ADS)

    Quan, Fu-Shi; Rubino, Ilaria; Lee, Su-Hwa; Koch, Brendan; Choi, Hyo-Jick

    2017-01-01

    Aerosolized pathogens are a leading cause of respiratory infection and transmission. Currently used protective measures pose potential risk of primary/secondary infection and transmission. Here, we report the development of a universal, reusable virus deactivation system by functionalization of the main fibrous filtration unit of surgical mask with sodium chloride salt. The salt coating on the fiber surface dissolves upon exposure to virus aerosols and recrystallizes during drying, destroying the pathogens. When tested with tightly sealed sides, salt-coated filters showed remarkably higher filtration efficiency than conventional mask filtration layer, and 100% survival rate was observed in mice infected with virus penetrated through salt-coated filters. Viruses captured on salt-coated filters exhibited rapid infectivity loss compared to gradual decrease on bare filters. Salt-coated filters proved highly effective in deactivating influenza viruses regardless of subtypes and following storage in harsh environmental conditions. Our results can be applied in obtaining a broad-spectrum, airborne pathogen prevention device in preparation for epidemic and pandemic of respiratory diseases.

  8. Biosafety and biosecurity in veterinary laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Melissa R.; Astuto-Gribble, Lisa M.; Brass, Van Hildren

    Here, with recent outbreaks of MERS-Cov, Anthrax, Nipah, and Highly Pathogenic Avian Influenza, much emphasis has been placed on rapid identification of infectious agents globally. As a result, laboratories are building capacity, conducting more advanced and sophisticated research, increasing laboratory staff, and establishing collections of dangerous pathogens in an attempt to reduce the impact of infectious disease outbreaks and characterize disease causing agents. With this expansion, the global laboratory community has started to focus on laboratory biosafety and biosecurity to prevent the accidental and/or intent ional release o f these agents. Laboratory biosafety and biosecurity systems are used around themore » world to help mit igate the risks posed by dangerous pathogens in the laboratory. Veterinary laboratories carry unique responsibilities to workers and communities to safely and securely handle disease causing microorganisms. Many microorganisms studied in veterinary laboratories not only infect animals, but also have the potential to infect humans. This paper will discuss the fundamentals of laboratory biosafety and biosecurity.« less

  9. Gall midges (Hessian flies) as plant pathogens.

    PubMed

    Stuart, Jeff J; Chen, Ming-Shun; Shukle, Richard; Harris, Marion O

    2012-01-01

    Gall midges constitute an important group of plant-parasitic insects. The Hessian fly (HF; Mayetiola destructor), the most investigated gall midge, was the first insect hypothesized to have a gene-for-gene interaction with its host plant, wheat (Triticum spp.). Recent investigations support that hypothesis. The minute larval mandibles appear to act in a manner that is analogous to nematode stylets and the haustoria of filamentous plant pathogens. Putative effector proteins are encoded by hundreds of genes and expressed in the HF larval salivary gland. Cultivar-specific resistance (R) genes mediate a highly localized plant reaction that prevents the survival of avirulent HF larvae. Fine-scale mapping of HF avirulence (Avr) genes provides further evidence of effector-triggered immunity (ETI) against HF in wheat. Taken together, these discoveries suggest that the HF, and other gall midges, may be considered biotrophic, or hemibiotrophic, plant pathogens, and they demonstrate the potential that the wheat-HF interaction has in the study of insect-induced plant gall formation.

  10. Recent Advances in Bacteria Identification by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Using Nanomaterials as Affinity Probes

    PubMed Central

    Chiu, Tai-Chia

    2014-01-01

    Identifying trace amounts of bacteria rapidly, accurately, selectively, and with high sensitivity is important to ensuring the safety of food and diagnosing infectious bacterial diseases. Microbial diseases constitute the major cause of death in many developing and developed countries of the world. The early detection of pathogenic bacteria is crucial in preventing, treating, and containing the spread of infections, and there is an urgent requirement for sensitive, specific, and accurate diagnostic tests. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an extremely selective and sensitive analytical tool that can be used to characterize different species of pathogenic bacteria. Various functionalized or unmodified nanomaterials can be used as affinity probes to capture and concentrate microorganisms. Recent developments in bacterial detection using nanomaterials-assisted MALDI-MS approaches are highlighted in this article. A comprehensive table listing MALDI-MS approaches for identifying pathogenic bacteria, categorized by the nanomaterials used, is provided. PMID:24786089

  11. Universal and reusable virus deactivation system for respiratory protection

    PubMed Central

    Quan, Fu-Shi; Rubino, Ilaria; Lee, Su-Hwa; Koch, Brendan; Choi, Hyo-Jick

    2017-01-01

    Aerosolized pathogens are a leading cause of respiratory infection and transmission. Currently used protective measures pose potential risk of primary/secondary infection and transmission. Here, we report the development of a universal, reusable virus deactivation system by functionalization of the main fibrous filtration unit of surgical mask with sodium chloride salt. The salt coating on the fiber surface dissolves upon exposure to virus aerosols and recrystallizes during drying, destroying the pathogens. When tested with tightly sealed sides, salt-coated filters showed remarkably higher filtration efficiency than conventional mask filtration layer, and 100% survival rate was observed in mice infected with virus penetrated through salt-coated filters. Viruses captured on salt-coated filters exhibited rapid infectivity loss compared to gradual decrease on bare filters. Salt-coated filters proved highly effective in deactivating influenza viruses regardless of subtypes and following storage in harsh environmental conditions. Our results can be applied in obtaining a broad-spectrum, airborne pathogen prevention device in preparation for epidemic and pandemic of respiratory diseases. PMID:28051158

  12. Recent advances in bacteria identification by matrix-assisted laser desorption/ionization mass spectrometry using nanomaterials as affinity probes.

    PubMed

    Chiu, Tai-Chia

    2014-04-28

    Identifying trace amounts of bacteria rapidly, accurately, selectively, and with high sensitivity is important to ensuring the safety of food and diagnosing infectious bacterial diseases. Microbial diseases constitute the major cause of death in many developing and developed countries of the world. The early detection of pathogenic bacteria is crucial in preventing, treating, and containing the spread of infections, and there is an urgent requirement for sensitive, specific, and accurate diagnostic tests. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an extremely selective and sensitive analytical tool that can be used to characterize different species of pathogenic bacteria. Various functionalized or unmodified nanomaterials can be used as affinity probes to capture and concentrate microorganisms. Recent developments in bacterial detection using nanomaterials-assisted MALDI-MS approaches are highlighted in this article. A comprehensive table listing MALDI-MS approaches for identifying pathogenic bacteria, categorized by the nanomaterials used, is provided.

  13. Zoonotic bacterial meningitis in human adults.

    PubMed

    van Samkar, Anusha; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2016-09-13

    To describe the epidemiology, etiology, clinical characteristics, treatment, outcome, and prevention of zoonotic bacterial meningitis in human adults. We identified 16 zoonotic bacteria causing meningitis in adults. Zoonotic bacterial meningitis is uncommon compared to bacterial meningitis caused by human pathogens, and the incidence has a strong regional distribution. Zoonotic bacterial meningitis is mainly associated with animal contact, consumption of animal products, and an immunocompromised state of the patient. In a high proportion of zoonotic bacterial meningitis cases, CSF analysis showed only a mildly elevated leukocyte count. The recommended antibiotic therapy differs per pathogen, and the overall mortality is low. Zoonotic bacterial meningitis is uncommon but is associated with specific complications. The suspicion should be raised in patients with bacterial meningitis who have recreational or professional contact with animals and in patients living in regions endemic for specific zoonotic pathogens. An immunocompromised state is associated with a worse prognosis. Identification of risk factors and underlying disease is necessary to improve treatment. © 2016 American Academy of Neurology.

  14. Seroconversion for Infectious Pathogens among UK Military Personnel Deployed to Afghanistan, 2008–2011

    PubMed Central

    Johnstone, Penelope; Bridge, Hannah; Wright, Deborah; Jameson, Lisa; Bosworth, Andrew; Hatch, Rebecca; Hayward-Karlsson, Jenny; Osborne, Jane; Bailey, Mark S.; Green, Andrew; Ross, David; Brooks, Tim; Hewson, Roger

    2014-01-01

    Military personnel are at high risk of contracting vector-borne and zoonotic infections, particularly during overseas deployments, when they may be exposed to endemic or emerging infections not prevalent in their native countries. We conducted seroprevalence testing of 467 UK military personnel deployed to Helmand Province, Afghanistan, during 2008–2011 and found that up to 3.1% showed seroconversion for infection with Rickettsia spp., Coxiella burnetii, sandfly fever virus, or hantavirus; none showed seroconversion for infection with Crimean-Congo hemorrhagic fever virus. Most seroconversions occurred in personnel who did not report illness, except for those with hantavirus (70% symptomatic). These results indicate that many exposures to infectious pathogens, and potentially infections resulting from those exposures, may go unreported. Our findings reinforce the need for continued surveillance of military personnel and for education of health care providers to help recognize and prevent illnesses and transmission of pathogens during and after overseas deployments. PMID:25418685

  15. Administration of non-pathogenic isolates of Escherichia coli and Clostridium perfringens type A to piglets in a herd affected with a high incidence of neonatal diarrhoea.

    PubMed

    Unterweger, C; Kahler, A; Gerlach, G-F; Viehmann, M; von Altrock, A; Hennig-Pauka, I

    2017-04-01

    A bacterial cocktail of living strains of Clostridium perfringens type A (CPA) without β2-toxin gene and non-pathogenic Escherichia coli was administered orally to newborn piglets before first colostrum intake and on 2 consecutive days on a farm with a high incidence of diarrhoea and antibiotic treatment in suckling piglets associated with E. coli and CPA. This clinical field study was driven by the hypothetic principle of competitive exclusion of pathogenic bacteria due to prior colonization of the gut mucosal surface by non-pathogenic strains of the same bacterial species with the aim of preventing disease. Although CPA strains used in this study did not produce toxins in vitro, their lack of pathogenicity cannot be conclusively confirmed. The health status of the herd was impaired by a high incidence of postpartum dysgalactia syndrome in sows (70%) and a high incidence of neonatal diarrhoea caused by enterotoxigenic E. coli and CPA during the study. No obvious adverse effect of the bacterial treatment occurred. On average, more piglets were weaned in litters treated (P=0.009). Visual pathological alterations in the small intestinal wall were more frequent in dead piglets of the control group (P=0.004) and necrotizing enteritis was only found in that group. A higher average daily weight gain of piglets in the control group (P<0.001) may be due to an increased milk uptake due to less competition in the smaller litters. The bacterial cocktail was tested under field conditions for its potential to stabilize gut health status in suckling piglets before disease development due to colibacillosis and clostridial infections; however, the gut flora stabilizing effect of the bacterial cocktail was not clearly discernible in this study. Further basic research is needed to confirm the positive effects of the bacterial treatment used and to identify additional potential bacterial candidates for competitive exclusion.

  16. Modeling the intracellular pathogen-immune interaction with cure rate

    NASA Astrophysics Data System (ADS)

    Dubey, Balram; Dubey, Preeti; Dubey, Uma S.

    2016-09-01

    Many common and emergent infectious diseases like Influenza, SARS, Hepatitis, Ebola etc. are caused by viral pathogens. These infections can be controlled or prevented by understanding the dynamics of pathogen-immune interaction in vivo. In this paper, interaction of pathogens with uninfected and infected cells in presence or absence of immune response are considered in four different cases. In the first case, the model considers the saturated nonlinear infection rate and linear cure rate without absorption of pathogens into uninfected cells and without immune response. The next model considers the effect of absorption of pathogens into uninfected cells while all other terms are same as in the first case. The third model incorporates innate immune response, humoral immune response and Cytotoxic T lymphocytes (CTL) mediated immune response with cure rate and without absorption of pathogens into uninfected cells. The last model is an extension of the third model in which the effect of absorption of pathogens into uninfected cells has been considered. Positivity and boundedness of solutions are established to ensure the well-posedness of the problem. It has been found that all the four models have two equilibria, namely, pathogen-free equilibrium point and pathogen-present equilibrium point. In each case, stability analysis of each equilibrium point is investigated. Pathogen-free equilibrium is globally asymptotically stable when basic reproduction number is less or equal to unity. This implies that control or prevention of infection is independent of initial concentration of uninfected cells, infected cells, pathogens and immune responses in the body. The proposed models show that introduction of immune response and cure rate strongly affects the stability behavior of the system. Further, on computing basic reproduction number, it has been found to be minimum for the fourth model vis-a-vis other models. The analytical findings of each model have been exemplified by numerical simulations.

  17. Postexposure requirements and counseling issues resulting from the bloodborne pathogens standard.

    PubMed

    Lesniak, L P; Parpart, C F

    1994-03-01

    The management of employees during follow up for an occupational exposure for bloodborne pathogens presents clear opportunities and challenges for the occupational health nurse. These include understanding the intent of the OSHA Bloodborne Pathogens Standard, identifying postexposure follow up requirements, counseling workers for pre- and posttest procedures, protecting the confidentiality of medical records and information, and educating both employees and management about bloodborne pathogens and the potential for transmission. Postexposure follow up is also another opportunity for the occupational health nurse to educate employees about health promotion and disease prevention.

  18. Recent Advancements in Nanobioassays and Nanobiosensors for Foodborne Pathogenic Bacteria Detection

    USDA-ARS?s Scientific Manuscript database

    Bacterial pathogens are one of the leading causes of food safety incidents and product recalls worldwide. Timely detection and identification of microbial contamination in agricultural and food products is crucial for disease prevention and outbreak investigation. Current gold standards are specific...

  19. Use of Pathogen-Specific Antibody Biomarkers to Estimate Waterborne Infections in Population-Based Settings

    EPA Science Inventory

    Purpose of reviewThis review discusses the utility of pathogen-specific antibody biomarkers for improving estimates of the population burden of waterborne infections, assessing the fraction of infections that can be prevented by specific water treatments, and understanding transm...

  20. [Innovative application of small molecules to influence -pathogenicity of dental plaque].

    PubMed

    Janus, M M; Volgenant, C M C; Krom, B P

    2018-05-01

    Current preventive measures against infectious oral diseases are mainly focussed on plaque removal and promoting a healthy lifestyle. This in vitro study investigated a third preventive method: maintaining healthy dental plaque with the use of small molecules. As a model of dental plaque, in vitro biofilms were cultivated under conditions that induce pathogenic characteristics. The effect of erythritol and other small molecules on the pathogenic characteristics and bacterial composition of the biofilm was evaluated. The artificial sweetener erythritol and the molecule 3-Oxo-N-(2-oxycyclohexyl)dodecanamide (3-Oxo-N) had no clinically relevant effect on total biofilm formation. Erythritol did, however, lower the gingivitis related protease activity of the biofilm, while 3-Oxo-N blocked the caries related lactic acid accumulation. Furthermore, both substances ensured the biofilm maintained a young, non-pathogenic microbial composition. This shows it is possible to influence the dental plaque in a positive manner in vitro with the help of small molecules. Further research is necessary before this manipulation of dental plaque can be applied.

  1. Effects of single- and multi-strain probiotics on biofilm formation and in vitro adhesion to bladder cells by urinary tract pathogens.

    PubMed

    Chapman, C M C; Gibson, G R; Rowland, I

    2014-06-01

    There is increasing evidence that probiotic bacteria can inhibit and/or prevent urinary tract infections. Possible mechanisms include prevention of adhesion of pathogens to the bladder epithelium and inhibition of biofilm formation. Currently there is interest in the comparative efficacy of single probiotics vs. strain mixtures. We have therefore tested the inhibitory activity of four single probiotics and four probiotic mixtures towards the urinary tract pathogens Escherichia coli NCTC 9001 and Enterococcus faecalis NCTC 00775. Inhibition of biofilm formation by cell-free supernatants was tested using the Crystal Violet assay, while prevention of pathogen adhesion to host cells was tested by using bladder cancer cells as a model for the human urinary tract. Under pH-controlled conditions, there was no significant inhibition of biofilm formation by any treatment. Without pH control, 5/8 treatments significantly inhibited biofilm production by E. coli, while 5/8 treatments inhibited production by E. faecalis. Using data from all Crystal Violet assays, there was no significant difference in the ability of single- and multi-strain probiotics to inhibit biofilm formation. In the cell culture assays, all treatments were able to significantly reduce numbers of pathogenic cells adhering to host cells by 2.5-3.5 logs. No significant difference was observed between the displacement caused by single strains and mixtures for either pathogen. Inhibition of biofilm seems to be a major mechanism of urinary tract pathogen exclusion, related to, and possibly dependent upon, the probiotic ability to reduce environmental pH. Exclusion via competition of binding sites is a possible in vivo mechanism for these probiotics. If an additive or synergistic effect exists between strains within a mixture, it does not manifest itself in a greater effect through these two inhibitory mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Infection prevention and control in deployed military medical treatment facilities.

    PubMed

    Hospenthal, Duane R; Green, Andrew D; Crouch, Helen K; English, Judith F; Pool, Jane; Yun, Heather C; Murray, Clinton K

    2011-08-01

    Infections have complicated the care of combat casualties throughout history and were at one time considered part of the natural history of combat trauma. Personnel who survived to reach medical care were expected to develop and possibly succumb to infections during their care in military hospitals. Initial care of war wounds continues to focus on rapid surgical care with debridement and irrigation, aimed at preventing local infection and sepsis with bacteria from the environment (e.g., clostridial gangrene) or the casualty's own flora. Over the past 150 years, with the revelation that pathogens can be spread from patient to patient and from healthcare providers to patients (including via unwashed hands of healthcare workers, the hospital environment and fomites), a focus on infection prevention and control aimed at decreasing transmission of pathogens and prevention of these infections has developed. Infections associated with combat-related injuries in the recent operations in Iraq and Afghanistan have predominantly been secondary to multidrug-resistant pathogens, likely acquired within the military healthcare system. These healthcare-associated infections seem to originate throughout the system, from deployed medical treatment facilities through the chain of care outside of the combat zone. Emphasis on infection prevention and control, including hand hygiene, isolation, cohorting, and antibiotic control measures, in deployed medical treatment facilities is essential to reducing these healthcare-associated infections. This review was produced to support the Guidelines for the Prevention of Infections Associated With Combat-Related Injuries: 2011 Update contained in this supplement of Journal of Trauma.

  3. Food-borne pathogens, health and role of dietary phytochemicals.

    PubMed

    Shetty, K; Labbe, R G

    1998-12-01

    Infectious diseases transmitted by food have become a major public health concern in recent years. In the USA alone, there are an estimated 6-33 million cases each year. The list of responsible agents continues to grow. In the past 20 years some dozen new pathogens that are primarily food-borne have been identified. Fruits and vegetables, often from the global food market, have been added to the traditional vehicles of food-borne illness; that is, undercooked meat, poultry, seafood, or unpasteurized milk. Such products are minimally processed and have fewer barriers to microbial growth such as salt, sugar or preservatives. The evolution of the epidemiology of food-borne illness requires a rethinking of traditional, though still valid, solutions for their prevention. Among various strategies to prevent food-borne pathogens, use of dietary phytochemicals is promising. The major obstacle in the use of dietary phytochemical is the consistency of phytochemicals in different foods due to their natural genetic variation. We have developed a novel tissue-culture-based selection strategy to isolate elite phenolic phytochemical-producing clonal lines of species belonging to the family Lamiaceae. Among several species we have targeted elite clonal lines of thyme (Thymus vulgaris) and oregano (Origanum vulgare) against Escherichia coli and Clostridium perfrigens in fresh and processed meats. We are also evaluating high phenolic profile-containing clonal lines of basil (Ocimum basilicum) to inhibit gastric ulcer-causing Helicobacter pylori. Other elite lines of the members of the family Lamiaceae, rosemary (Rosmarinus officinalis) and salvia (Salvia officinalis) also hold promise against a wide range of food pathogens such as Salmonella species in poultry products and Vibrio species in seafood.

  4. Whole-leaf wash improves chlorine efficacy for microbial reduction and prevents pathogen cross-contamination during fresh-cut lettuce processing.

    PubMed

    Nou, Xiangwu; Luo, Yaguang

    2010-06-01

    Currently, most fresh-cut processing facilities in the United States use chlorinated water or other sanitizer solutions for microbial reduction after lettuce is cut. Freshly cut lettuce releases significant amounts of organic matter that negatively impacts the effectiveness of chlorine or other sanitizers for microbial reduction. The objective of this study is to evaluate whether a sanitizer wash before cutting improves microbial reduction efficacy compared to a traditional postcutting sanitizer wash. Romaine lettuce leaves were quantitatively inoculated with E. coli O157:H7 strains and washed in chlorinated water before or after cutting, and E. coli O157:H7 cells that survived the washing process were enumerated to determine the effectiveness of microbial reduction for the 2 cutting and washing sequences. Whole-leaf washing in chlorinated water improved pathogen reduction by approximately 1 log unit over traditional cut-leaf sanitization. Similar improvement in the reduction of background microflora was also observed. Inoculated "Lollo Rossa" red lettuce leaves were mixed with noninoculated Green-Leaf lettuce leaves to evaluate pathogen cross-contamination during processing. High level (96.7% subsamples, average MPN 0.6 log CFU/g) of cross-contamination of noninoculated green leaves by inoculated red leaves was observed when mixed lettuce leaves were cut prior to washing in chlorinated water. In contrast, cross-contamination of noninoculated green leaves was significantly reduced (3.3% of subsamples, average MPN

  5. Surveillance of bacteriological examinations at hospitalization in a pediatric surgical ward.

    PubMed

    Ohno, Koichi; Nakamura, Tetsuro; Azuma, Takashi; Yoshida, Tatsuyuki; Yamada, Hiroto; Hayashi, Hiroaki; Masahata, Kazunori

    2008-08-01

    Bacteriological examinations at hospitalization were monitored to identify carriers of pathogenic bacteria and prevent the outbreak of nosocomial and postoperative infections. In 557 patients, bacteriological examinations were performed within 48 hours after hospitalization. All people were instructed to wash their hands before and after treating carriers of methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis (MRSE), and/or Pseudomonas aeruginosa (PA). The disposal of stool and urine of carriers was segregated instead of administration of sensitive antibiotics. The 1176 samples comprised 557 throat swabs, 532 stool samples, and 87 other samples. At hospitalization, 9.2% of the patients were carriers of MRSA; 22.3% of the patients were carriers of MRSA, MRSE, PA, and/or other pathogenic bacteria. This percentage increased to 29.3% in 352 patients with a history of hospitalization, and 35.2% in 244 patients who were hospitalized within 1 year after previous hospitalization. Nosocomial and postoperative infections did not occur during the study period. Many patients were detected as carriers of pathogenic bacteria at hospitalization. A history of hospitalization was found to be a risk factor for carrying pathogenic bacteria; hospitalization within 1 year after previous hospitalization was a high-risk factor.

  6. Recent advances in rapid pathogen detection method based on biosensors.

    PubMed

    Chen, Ying; Wang, Zhenzhen; Liu, Yingxun; Wang, Xin; Li, Ying; Ma, Ping; Gu, Bing; Li, Hongchun

    2018-06-01

    As strain variation and drug resistance become more pervasive, the prevention and control of infection have been a serious problem in recent years. The detection of pathogen is one of the most important parts of the process of diagnosis. Having a series of advantages, such as rapid response, high sensitivity, ease of use, and low cost, biosensors have received much attention and been studied deeply. Moreover, relying on its characteristics of small size, real time, and multiple analyses, biosensors have developed rapidly and used widely and are expected to be applied for microbiological detection in order to meet higher accuracy required by clinical diagnosis. The main goal of this contribution is not to simply collect and list all papers related to pathogen detection based on biosensors published recently, but to discuss critically the development and application of many kinds of biosensors such as electrochemical (amperometric, impedimetric, potentiometric, and conductometric), optical (fluorescent, fibre optic and surface plasmon resonance), and piezoelectric (quartz crystal microbalances and atomic force microscopy) biosensors in pathogen detection as well as the comparisons with the existing clinical detection methods (traditional culture, enzyme-linked immunosorbent assay, polymerase chain reaction, and mass spectrometry).

  7. Black pod: diverse pathogens with a global impact on cocoa yield.

    PubMed

    Guest, David

    2007-12-01

    ABSTRACT Pathogens of the Straminipile genus Phytophthora cause significant disease losses to global cocoa production. P. megakarya causes significant pod rot and losses due to canker in West Africa, whereas P. capsici and P. citrophthora cause pod rots in Central and South America. The global and highly damaging P. palmivora attacks all parts of the cocoa tree at all stages of the growing cycle. This pathogen causes 20 to 30% pod losses through black pod rot, and kills up to 10% of trees annually through stem cankers. P. palmivora has a complex disease cycle involving several sources of primary inoculum and several modes of dissemination of secondary inoculum. This results in explosive epidemics during favorable environmental conditions. The spread of regional pathogens must be prevented by effective quarantine barriers. Resistance to all these Phytophthora species is typically low in commercial cocoa genotypes. Disease losses can be reduced through integrated management practices that include pruning and shade management, leaf mulching, regular and complete harvesting, sanitation and pod case disposal, appropriate fertilizer application and targeted fungicide use. Packaging these options to improve uptake by smallholders presents a major challenge for the industry.

  8. Opportunistic pathogens and faecal indicators in drinking water associated biofilms in Cluj, Romania.

    PubMed

    Farkas, A; Drăgan-Bularda, M; Ciatarâş, D; Bocoş, B; Tigan, S

    2012-09-01

    Biofouling occurs without exception in all water systems, with undesirable effects such as biocorrosion and deterioration of water quality. Drinking water associated biofilms represent a potential risk to human health by harbouring pathogenic or toxin-releasing microorganisms. This is the first study investigating the attached microbiota, with potential threat to human health, in a public water system in Romania. The presence and the seasonal variation of viable faecal indicators and opportunistic pathogens were investigated within naturally developed biofilms in a drinking water treatment plant. Bacterial frequencies were correlated with microbial loads in biofilms as well as with physical and chemical characteristics of biofilms and raw water. The biofilms assessed in the current study proved to be extremely active microbial consortia. High bacterial numbers were recovered by cultivation, including Pseudomonas aeruginosa, Escherichia coli, Aeromonas hydrophila, intestinal enterococci and Clostridium perfringens. There were no Legionella spp. detected in any biofilm sample. Emergence of opportunistic pathogens in biofilms was not significantly affected by the surface material, but by the treatment process. Implementation of a water safety plan encompassing measures to prevent microbial contamination and to control biofouling would be appropriate.

  9. Diversity of honey stores and their impact on pathogenic bacteria of the honeybee, Apis mellifera

    PubMed Central

    Erler, Silvio; Denner, Andreas; Bobiş, Otilia; Forsgren, Eva; Moritz, Robin F A

    2014-01-01

    Honeybee colonies offer an excellent environment for microbial pathogen development. The highest virulent, colony killing, bacterial agents are Paenibacillus larvae causing American foulbrood (AFB), and European foulbrood (EFB) associated bacteria. Besides the innate immune defense, honeybees evolved behavioral defenses to combat infections. Foraging of antimicrobial plant compounds plays a key role for this “social immunity” behavior. Secondary plant metabolites in floral nectar are known for their antimicrobial effects. Yet, these compounds are highly plant specific, and the effects on bee health will depend on the floral origin of the honey produced. As worker bees not only feed themselves, but also the larvae and other colony members, honey is a prime candidate acting as self-medication agent in honeybee colonies to prevent or decrease infections. Here, we test eight AFB and EFB bacterial strains and the growth inhibitory activity of three honey types. Using a high-throughput cell growth assay, we show that all honeys have high growth inhibitory activity and the two monofloral honeys appeared to be strain specific. The specificity of the monofloral honeys and the strong antimicrobial potential of the polyfloral honey suggest that the diversity of honeys in the honey stores of a colony may be highly adaptive for its “social immunity” against the highly diverse suite of pathogens encountered in nature. This ecological diversity may therefore operate similar to the well-known effects of host genetic variance in the arms race between host and parasite. PMID:25505523

  10. Viral replication rate regulates clinical outcome and CD8 T cell responses during highly pathogenic H5N1 influenza virus infection in mice.

    PubMed

    Hatta, Yasuko; Hershberger, Karen; Shinya, Kyoko; Proll, Sean C; Dubielzig, Richard R; Hatta, Masato; Katze, Michael G; Kawaoka, Yoshihiro; Suresh, M

    2010-10-07

    Since the first recorded infection of humans with H5N1 viruses of avian origin in 1997, sporadic human infections continue to occur with a staggering mortality rate of >60%. Although sustained human-to-human transmission has not occurred yet, there is a growing concern that these H5N1 viruses might acquire this trait and raise the specter of a pandemic. Despite progress in deciphering viral determinants of pathogenicity, we still lack crucial information on virus/immune system interactions pertaining to severe disease and high mortality associated with human H5N1 influenza virus infections. Using two human isolates of H5N1 viruses that differ in their pathogenicity in mice, we have defined mechanistic links among the rate of viral replication, mortality, CD8 T cell responses, and immunopathology. The extreme pathogenicity of H5N1 viruses was directly linked to the ability of the virus to replicate rapidly, and swiftly attain high steady-state titers in the lungs within 48 hours after infection. The remarkably high replication rate of the highly pathogenic H5N1 virus did not prevent the induction of IFN-β or activation of CD8 T cells, but the CD8 T cell response was ineffective in controlling viral replication in the lungs and CD8 T cell deficiency did not affect viral titers or mortality. Additionally, BIM deficiency ameliorated lung pathology and inhibited T cell apoptosis without affecting survival of mice. Therefore, rapidly replicating, highly lethal H5N1 viruses could simply outpace and overwhelm the adaptive immune responses, and kill the host by direct cytopathic effects. However, therapeutic suppression of early viral replication and the associated enhancement of CD8 T cell responses improved the survival of mice following a lethal H5N1 infection. These findings suggest that suppression of early H5N1 virus replication is key to the programming of an effective host response, which has implications in treatment of this infection in humans.

  11. The Evolution of Foodborne Pathogens

    NASA Astrophysics Data System (ADS)

    Abu-Ali, Galeb S.; Manning, Shannon D.

    Despite continuous advances in food safety and disease surveillance, control, and prevention, foodborne bacterial infections remain a major public health concern. Because foodborne pathogens are commonly exposed to multiple environmental stressors, such as low pH and antibiotics, most have evolved specific mechanisms to facilitate survival in adverse environments.

  12. A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity.

    PubMed

    Gebhart, Dana; Lok, Stephen; Clare, Simon; Tomas, Myreen; Stares, Mark; Scholl, Dean; Donskey, Curtis J; Lawley, Trevor D; Govoni, Gregory R

    2015-03-24

    Clostridium difficile is a leading cause of nosocomial infections worldwide and has become an urgent public health threat requiring immediate attention. Epidemic lineages of the BI/NAP1/027 strain type have emerged and spread through health care systems across the globe over the past decade. Limiting person-to-person transmission and eradicating C. difficile, especially the BI/NAP1/027 strain type, from health care facilities are difficult due to the abundant shedding of spores that are impervious to most interventions. Effective prophylaxis for C. difficile infection (CDI) is lacking. We have genetically modified a contractile R-type bacteriocin ("diffocin") from C. difficile strain CD4 to kill BI/NAP1/027-type strains for this purpose. The natural receptor binding protein (RBP) responsible for diffocin targeting was replaced with a newly discovered RBP identified within a prophage of a BI/NAP1/027-type target strain by genome mining. The resulting modified diffocins (a.k.a. Avidocin-CDs), Av-CD291.1 and Av-CD291.2, were stable and killed all 16 tested BI/NAP1/027-type strains. Av-CD291.2 administered in drinking water survived passage through the mouse gastrointestinal (GI) tract, did not detectably alter the mouse gut microbiota or disrupt natural colonization resistance to C. difficile or the vancomycin-resistant Enterococcus faecium (VREF), and prevented antibiotic-induced colonization of mice inoculated with BI/NAP1/027-type spores. Given the high incidence and virulence of the pathogen, preventing colonization by BI/NAP1/027-type strains and limiting their transmission could significantly reduce the occurrence of the most severe CDIs. This modified diffocin represents a prototype of an Avidocin-CD platform capable of producing targetable, precision anti-C. difficile agents that can prevent and potentially treat CDIs without disrupting protective indigenous microbiota. Treatment and prevention strategies for bacterial diseases rely heavily on traditional antibiotics, which impose strong selection for resistance and disrupt protective microbiota. One consequence has been an upsurge of opportunistic pathogens, such as Clostridium difficile, that exploit antibiotic-induced disruptions in gut microbiota to proliferate and cause life-threatening diseases. We have developed alternative agents that utilize contractile bactericidal protein complexes (R-type bacteriocins) to kill specific C. difficile pathogens. Efficacy in a preclinical animal study indicates these molecules warrant further development as potential prophylactic agents to prevent C. difficile infections in humans. Since these agents do not detectably alter the indigenous gut microbiota or colonization resistance in mice, we believe they will be safe to administer as a prophylactic to block transmission in high-risk environments without rendering patients susceptible to enteric infection after cessation of treatment. Copyright © 2015 Gebhart et al.

  13. Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle.

    PubMed

    Jupe, Julietta; Stam, Remco; Howden, Andrew J M; Morris, Jenny A; Zhang, Runxuan; Hedley, Pete E; Huitema, Edgar

    2013-06-25

    Plant-microbe interactions feature complex signal interplay between pathogens and their hosts. Phytophthora species comprise a destructive group of fungus-like plant pathogens, collectively affecting a wide range of plants important to agriculture and natural ecosystems. Despite the availability of genome sequences of both hosts and microbes, little is known about the signal interplay between them during infection. In particular, accurate descriptions of coordinate relationships between host and microbe transcriptional programs are lacking. Here, we explore the molecular interaction between the hemi-biotrophic broad host range pathogen Phytophthora capsici and tomato. Infection assays and use of a composite microarray allowed us to unveil distinct changes in both P. capsici and tomato transcriptomes, associated with biotrophy and the subsequent switch to necrotrophy. These included two distinct transcriptional changes associated with early infection and the biotrophy to necrotrophy transition that may contribute to infection and completion of the P. capsici lifecycle Our results suggest dynamic but highly regulated transcriptional programming in both host and pathogen that underpin P. capsici disease and hemi-biotrophy. Dynamic expression changes of both effector-coding genes and host factors involved in immunity, suggests modulation of host immune signaling by both host and pathogen. With new unprecedented detail on transcriptional reprogramming, we can now explore the coordinate relationships that drive host-microbe interactions and the basic processes that underpin pathogen lifestyles. Deliberate alteration of lifestyle-associated transcriptional changes may allow prevention or perhaps disruption of hemi-biotrophic disease cycles and limit damage caused by epidemics.

  14. Preventing and treating biologic-associated opportunistic infections.

    PubMed

    Winthrop, Kevin L; Chiller, Tom

    2009-07-01

    A variety of opportunistic pathogens have been reported to infect patients receiving tumor necrosis factor (TNF) antagonists for the treatment of autoimmune diseases. These pathogens are numerous, and include coccidioides, histoplasma, nontuberculous mycobacteria, Mycobacteria tuberculosis, and others of public health concern. Accordingly, TNF antagonists should be used with caution in patients at risk for tuberculosis, and screening for latent tuberculosis infection should be undertaken before anti-TNF therapy is initiated. Although screening and prevention efforts have decreased the risk of tuberculosis in this setting, optimal screening methods represent an area of evolving controversy. This article discusses the latest developments in screening methodologies for latent tuberculosis infection, as well as potential preventive and therapeutic considerations for opportunistic infections associated with anti-TNF agents and other biologic therapies.

  15. Pathogen evolution under host avoidance plasticity.

    PubMed

    McLeod, David V; Day, Troy

    2015-09-07

    Host resistance consists of defences that limit pathogen burden, and can be classified as either adaptations targeting recovery from infection or those focused upon infection avoidance. Conventional theory treats avoidance as a fixed strategy which does not vary from one interaction to the next. However, there is increasing empirical evidence that many avoidance strategies are triggered by external stimuli, and thus should be treated as phenotypically plastic responses. Here, we consider the implications of avoidance plasticity for host-pathogen coevolution. We uncover a number of predictions challenging current theory. First, in the absence of pathogen trade-offs, plasticity can restrain pathogen evolution; moreover, the pathogen exploits conditions in which the host would otherwise invest less in resistance, causing resistance escalation. Second, when transmission trades off with pathogen-induced mortality, plasticity encourages avirulence, resulting in a superior fitness outcome for both host and pathogen. Third, plasticity ensures the sterilizing effect of pathogens has consequences for pathogen evolution. When pathogens castrate hosts, selection forces them to minimize mortality virulence; moreover, when transmission trades off with sterility alone, resistance plasticity is sufficient to prevent pathogens from evolving to fully castrate. © 2015 The Author(s).

  16. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 7. Barriers to reduce contamination of food by workers.

    PubMed

    Todd, Ewen C D; Michaels, Barry S; Greig, Judy D; Smith, Debra; Holah, John; Bartleson, Charles A

    2010-08-01

    Contamination of food and individuals by food workers has been identified as an important contributing factor during foodborne illness investigations. Physical and chemical barriers to prevent microbial contamination of food are hurdles that block or reduce the transfer of pathogens to the food surface from the hands of a food worker, from other foods, or from the environment. In food service operations, direct contact of food by hands should be prevented by the use of barriers, especially when gloves are not worn. Although these barriers have been used for decades in food processing and food service operations, their effectiveness is sometimes questioned or their use may be ignored. Physical barriers include properly engineered building walls and doors to minimize the flow of outside particles and pests to food storage and food preparation areas; food shields to prevent aerosol contamination of displayed food by customers and workers; work clothing designated strictly for work (clothing worn outdoors can carry undesirable microorganisms, including pathogens from infected family members, into the work environment); and utensils such as spoons, tongs, and deli papers to prevent direct contact between hands and the food being prepared or served. Money and ready-to-eat foods should be handled as two separate operations, preferably by two workers. Chemical barriers include sanitizing solutions used to remove microorganisms (including pathogens) from objects or materials used during food production and preparation and to launder uniforms, work clothes, and soiled linens. However, laundering as normally practiced may not effectively eliminate viral pathogens.

  17. Antimicrobial resistance of mastitis pathogens.

    PubMed

    Oliver, Stephen P; Murinda, Shelton E

    2012-07-01

    Antibiotics are used extensively in the dairy industry to combat disease and to improve animal performance. Antibiotics such as penicillin, cephalosporin, streptomycin, and tetracycline are used for the treatment and prevention of diseases affecting dairy cows caused by a variety of gram-positive and gram-negative bacteria. Antibiotics are often administrated routinely to entire herds to prevent mastitis during the dry period. An increase in the incidence of disease in a herd generally results in increased use of antimicrobials, which in turn increases the potential for antibiotic residues in milk and the potential for increased bacterial resistance to antimicrobials. Continued use of antibiotics in the treatment and prevention of diseases of dairy cows will continue to be scrutinized. It is clear that strategies employing the prudent use of antimicrobials are needed. This clearly illustrates the importance of effective herd disease prevention and control programs. Based on studies published to date, scientific evidence does not support widespread, emerging resistance among mastitis pathogens to antibacterial drugs even though many of these antibiotics have been used in the dairy industry for treatment and prevention of disease for several decades. However, it is clear that use of antibiotics in dairy cows can contribute to increased antimicrobial resistance. While antimicrobial resistance does occur, we are of the opinion that the advantages of using antibiotics for the treatment of mastitis far outweigh the disadvantages. The clinical consequences of antimicrobial resistance of dairy pathogens affecting humans appear small. Antimicrobial resistance among dairy pathogens, particularly those found in milk, is likely not a human health concern as long as the milk is pasteurized. However, there are an increasing number of people who choose to consume raw milk. Transmission of an antimicrobial-resistant mastitis pathogen and/or foodborne pathogen to humans could occur if contaminated unpasteurized milk is consumed, which is another important reason why people should not consume raw milk. Likewise, resistant bacteria contaminating meat from dairy cows should not be a significant human health concern if the meat is cooked properly. Prudent use of antibiotics in the dairy industry is important, worthwhile, and necessary. Use of antibiotics at times when animals are susceptible to new infection such as the dry period is a sound management decision and a prudent use of antibiotics on the farm. Strategies involving prudent use of antibiotics for treatment encompass identification of the pathogen causing the infection, determining the susceptibility/resistance of the pathogen to assess the most appropriate antibiotic to use for treatment, and a sufficient treatment duration to ensure effective concentrations of the antibiotic to eliminate the pathogen. As the debate on the use of antibiotics in animal agriculture continues, we need to consider the consequences of, “What would happen if antibiotics are banned for use in the dairy industry and in other food-producing animals?” The implications of this question are far reaching and include such aspects as animal welfare, health, and well-being and impacts on food quantity, quality, and food costs. This question should be an important aspect in this ongoing and controversial debate!

  18. Response of soybean fungal and oomycete pathogens to apigenin and genistein

    USDA-ARS?s Scientific Manuscript database

    Plants recognize invading pathogens and respond biochemically to prevent invasion or inhibit the colonization of plant cells. Many plant defense compounds are flavonoids and some of these are known to have a broad spectrum of biological activity. In this study, we tested two flavonoids, apigenin and...

  19. A systems approach for management of pests and pathogens of nursery crops

    Treesearch

    Jennifer L. Parke; Niklaus J. Grünwald

    2012-01-01

    Horticultural nurseries are heterogeneous and spatially complex agricultural systems, which present formidable challenges to management of diseases and pests. Moreover, nursery plants shipped interstate and internationally can serve as important vectors for pathogens and pests that threaten both agriculture and forestry. Current regulatory strategies to prevent this...

  20. Enhanced salmonella reduction on tomatoes washed in chlorinated water with wash aid T-128

    USDA-ARS?s Scientific Manuscript database

    Chlorine is widely used by the fresh and fresh-cut produce industries to reduce microbial populations and to prevent potential pathogen cross contamination during produce washing. However, the organic materials released from produce quickly react with chlorine and degrade its efficacy for pathogen i...

  1. Moesin and myosin phosphatase confine neutrophil orientation in a chemotactic gradient

    PubMed Central

    Liu, Xiaowen; Yang, Tao; Suzuki, Koya; Tsukita, Sachiko; Ishii, Masaru; Zhou, Shuping; Wang, Gang; Cao, Luyang; Qian, Feng; Taylor, Shalina; Oh, Myung-Jin; Levitan, Irena; Ye, Richard D.; Carnegie, Graeme K.; Malik, Asrar B.

    2015-01-01

    Neutrophils respond to invading bacteria by adopting a polarized morphology, migrating in the correct direction, and engulfing the bacteria. How neutrophils establish and precisely orient this polarity toward pathogens remains unclear. Here we report that in resting neutrophils, the ERM (ezrin, radixin, and moesin) protein moesin in its active form (phosphorylated and membrane bound) prevented cell polarization by inhibiting the small GTPases Rac, Rho, and Cdc42. Attractant-induced activation of myosin phosphatase deactivated moesin at the prospective leading edge to break symmetry and establish polarity. Subsequent translocation of moesin to the trailing edge confined the formation of a prominent pseudopod directed toward pathogens and prevented secondary pseudopod formation in other directions. Therefore, both moesin-mediated inhibition and its localized deactivation by myosin phosphatase are essential for neutrophil polarization and effective neutrophil tracking of pathogens. PMID:25601651

  2. Probiotic Bacteria and their Supernatants Protect Enterocyte Cell Lines from Enteroinvasive Escherichia coli (EIEC) Invasion

    PubMed Central

    Khodaii, Zohreh; Ghaderian, Sayyed Mohammad Hossein; Natanzi, Mahboobeh Mehrabani

    2017-01-01

    Probiotic microorganisms have attracted a growing interest for prevention and therapy of gastrointestinal disorders. Many probiotic strains have been shown to inhibit growth and metabolic activity of enteropathogenic bacteria as well as their adhesion and invasion to intestinal cells. In the present study, we evaluated the interference of bacteria-free supernatants (BFS) of cultures belonging to sixteen strains of lactobacilli and bifidobacteria, with invasion of enteroinvasive Escherichia coli (EIEC) strain, using human colonic adenocarcinoma cell lines, T84 and Caco2 cells. To assess invasion of Caco-2 and T84 cells by EIEC, and measure the number of pathogens inside the enterocytes, the gentamicin protection assay was conducted. In addition, three different invasion inhibition assays were designed; namely co-incubation, pre-incubation and treatment with the BFS of probiotics. Data obtained and theoretical calculation showed that the most effective assay in the prevention of pathogen invasion was treatment with BFS. Besides, co-incubation assay was more valid than pre-incubation assay in invasion prevention. The obtained results suggest that probiotics may produce some metabolites that strongly prevent invasion of enteroinvasive E.coli into the small and large intestine. Also, probiotics are able to compete with or exclude pathogen invasion. PMID:29682490

  3. ASAS Centennial Paper: Developments and future outlook for preharvest food safety.

    PubMed

    Oliver, S P; Patel, D A; Callaway, T R; Torrence, M E

    2009-01-01

    The last century of food animal agriculture is a remarkable triumph of scientific research. Knowledge derived through research has resulted in the development and use of new technologies that have increased the efficiency of food production and created a huge animal production and food manufacturing industry capable of feeding the US population while also providing significant quantities of high-quality food for export to other countries. Although the US food supply is among the safest in the world, the US Center for Disease Prevention and Control estimates that 76 million people get sick, more than 300,000 are hospitalized, and 5,000 die each year from foodborne illness. Consequently, preventing foodborne illness and death remains a major public health concern. Challenges to providing a safe, abundant, and nutritious food supply are complex because all aspects of food production, from farm to fork, must be considered. Given the national and international demand and expectations for food safety as well as the formidable challenges of producing and maintaining a safe food supply, food safety research and educational programs have taken on a new urgency. Remarkable progress has been made during the last century. Wisdom from a century of animal agriculture research now includes the realization that on-farm pathogens are intricately associated with animal health and well-being, the production of high-quality food, and profitability. In this review, some of the developments that have occurred over the last few decades are summarized, including types, sources, and concentrations of disease-causing pathogens encountered in food-producing animal environments and their association with food safety; current and future methods to control or reduce foodborne pathogens on the farm; and present and future preharvest food safety research directions. Future scientific breakthroughs will no doubt have a profound impact on animal agriculture and the production of high-quality food, but we will also be faced with moral, ethical, and societal dilemmas that must be reconciled. A strong, science-based approach that addresses all the complex issues involved in continuing to improve food safety and public health is necessary to prevent foodborne illnesses. Not only must research be conducted to solve complex food safety issues, but results of that research must also be communicated effectively to producers and consumers.

  4. Pathogens: raft hijackers.

    PubMed

    Mañes, Santos; del Real, Gustavo; Martínez-A, Carlos

    2003-07-01

    Throughout evolution, organisms have developed immune-surveillance networks to protect themselves from potential pathogens. At the cellular level, the signalling events that regulate these defensive responses take place in membrane rafts--dynamic microdomains that are enriched in cholesterol and glycosphingolipids--that facilitate many protein-protein and lipid-protein interactions at the cell surface. Pathogens have evolved many strategies to ensure their own survival and to evade the host immune system, in some cases by hijacking rafts. However, understanding the means by which pathogens exploit rafts might lead to new therapeutic strategies to prevent or alleviate certain infectious diseases, such as those caused by HIV-1 or Ebola virus.

  5. Bloodborne Pathogens Program

    NASA Technical Reports Server (NTRS)

    Blasdell, Sharon

    1993-01-01

    The final rule on the Occupational Exposure to Bloodborne Pathogens was published in the Federal Register on Dec. 6, 1991. This Standard, 29 CFR Part 1910.130, is expected to prevent 8,900 hepatitis B infections and nearly 200 deaths a year in healthcare workers in the U.S. The Occupational Medicine and Environmental Health Services at KSC has been planning to implement this standard for several years. Various aspects of this standard and its Bloodborne Pathogens Program at KSC are discussed.

  6. 75 FR 26266 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel: Developing Novel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Disease, Disability, and Injury Prevention and Control Special Emphasis Panel: Developing Novel Diagnostic Tests To Improve Surveillance for Antimicrobial Resistant Pathogens, Funding Opportunity Announcement CI10-002; Initial Review Correction: This notice was...

  7. Pathogen and antimicrobial resistance profiles of culture-proven neonatal sepsis in Southwest China, 1990-2014.

    PubMed

    Lu, Qi; Zhou, Min; Tu, Yan; Yao, Yao; Yu, Jialin; Cheng, Shupeng

    2016-10-01

    Neonatal sepsis (NS) sustains high mortality and morbidity in China, but data on the epidemiology and antimicrobial resistance patterns of NS pathogens are limited. The clinical features, aetiology and antimicrobial resistance of culture-proven NS were analysed over a period of 25 years in the metropolitan city of Chongqing in Southwest China. The occurrence rates of neonatal early-onset sepsis (EOS) were found to gradually decrease while late-onset sepsis (LOS) was kept stable from 1990 to 2014. Although coagulase-negative staphylococcus (CoNS) sepsis accounted for most infections, the occurrence rates of CoNS sepsis gradually decreased, especially in EOS. Escherichia coli and Klebsiella were common Gram-negative bacteria. The occurrence rates of E. coli and Klebsiella remained stable in EOS; however, in LOS, those had increased mildly, especially from 2009 to 2014. Although a high-degree resistance to common first- and second-line antimicrobials was observed for the main causative pathogens of NS, the gentamicin-resistance rate declined gradually from the year 2003. Similarly, the ceftazidime-resistance rate of E. coli dropped gradually from the year 2007. The alarmingly high degree of antibiotic resistance calls for urgent evaluation and development of antibiotic policy and protocols for the treatment of NS. Clinicians should strictly control the antibiotics use, decrease invasive manipulations and shorten hospitalisation to prevent LOS. © 2016 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  8. Social life and sanitary risks: evolutionary and current ecological conditions determine waste management in leaf-cutting ants.

    PubMed

    Farji-Brener, Alejandro G; Elizalde, Luciana; Fernández-Marín, Hermógenes; Amador-Vargas, Sabrina

    2016-05-25

    Adequate waste management is vital for the success of social life, because waste accumulation increases sanitary risks in dense societies. We explored why different leaf-cutting ants (LCA) species locate their waste in internal nest chambers or external piles, including ecological context and accounting for phylogenetic relations. We propose that waste location depends on whether the environmental conditions enhance or reduce the risk of infection. We obtained the geographical range, habitat and refuse location of LCA from published literature, and experimentally determined whether pathogens on ant waste survived to the high soil temperatures typical of xeric habitats. The habitat of the LCA determined waste location after phylogenetic correction: species with external waste piles mainly occur in xeric environments, whereas those with internal waste chambers mainly inhabit more humid habitats. The ancestral reconstruction suggests that dumping waste externally is less derived than digging waste nest chambers. Empirical results showed that high soil surface temperatures reduce pathogen prevalence from LCA waste. We proposed that LCA living in environments unfavourable for pathogens (i.e. xeric habitats) avoid digging costs by dumping the refuse above ground. Conversely, in environments suitable for pathogens, LCA species prevent the spread of diseases by storing waste underground, presumably, a behaviour that contributed to the colonization of humid habitats. These results highlight the adaptation of organisms to the hygienic challenges of social living, and illustrate how sanitary behaviours can result from a combination of evolutionary history and current environmental conditions. © 2016 The Author(s).

  9. Social life and sanitary risks: evolutionary and current ecological conditions determine waste management in leaf-cutting ants

    PubMed Central

    Farji-Brener, Alejandro G.; Elizalde, Luciana; Amador-Vargas, Sabrina

    2016-01-01

    Adequate waste management is vital for the success of social life, because waste accumulation increases sanitary risks in dense societies. We explored why different leaf-cutting ants (LCA) species locate their waste in internal nest chambers or external piles, including ecological context and accounting for phylogenetic relations. We propose that waste location depends on whether the environmental conditions enhance or reduce the risk of infection. We obtained the geographical range, habitat and refuse location of LCA from published literature, and experimentally determined whether pathogens on ant waste survived to the high soil temperatures typical of xeric habitats. The habitat of the LCA determined waste location after phylogenetic correction: species with external waste piles mainly occur in xeric environments, whereas those with internal waste chambers mainly inhabit more humid habitats. The ancestral reconstruction suggests that dumping waste externally is less derived than digging waste nest chambers. Empirical results showed that high soil surface temperatures reduce pathogen prevalence from LCA waste. We proposed that LCA living in environments unfavourable for pathogens (i.e. xeric habitats) avoid digging costs by dumping the refuse above ground. Conversely, in environments suitable for pathogens, LCA species prevent the spread of diseases by storing waste underground, presumably, a behaviour that contributed to the colonization of humid habitats. These results highlight the adaptation of organisms to the hygienic challenges of social living, and illustrate how sanitary behaviours can result from a combination of evolutionary history and current environmental conditions. PMID:27226469

  10. Comparing the efficacy of hyper-pure chlorine-dioxide with other oral antiseptics on oral pathogen microorganisms and biofilm in vitro.

    PubMed

    Herczegh, Anna; Gyurkovics, Milán; Agababyan, Hayk; Ghidán, Agoston; Lohinai, Zsolt

    2013-09-01

    This study examines the antibacterial properties of sodium hypochlorite (NaOCl), chlorhexidine gluconate (CHX), Listerine®, and high purity chlorine dioxide (Solumium, ClO2) on selected common oral pathogen microorganisms and on dental biofilm in vitro. Antimicrobial activity of oral antiseptics was compared to the gold standard phenol. We investigated Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis, Veillonella alcalescens, Eikenella corrodens, Actinobacillus actinomycetemcomitans and Candida albicans as some important representatives of the oral pathogens. Furthermore, we collected dental plaque from the upper first molars of healthy young students. Massive biofilm was formed in vitro and its reduction was measured after treating it with mouthrinses: CHX, Listerine® or hyper pure ClO2. Their biofilm disrupting effect was measured after dissolving the crystal violet stain from biofilm by photometer. The results have showed that hyper pure ClO2 solution is more effective than other currently used disinfectants in case of aerobic bacteria and Candida yeast. In case of anaerobes its efficiency is similar to CHX solution. The biofilm dissolving effect of hyper pure ClO2 is significantly stronger compared to CHX and Listerine® after 5 min treatment. In conclusion, hyper pure ClO2 has a potent disinfectant efficacy on oral pathogenic microorganisms and a powerful biofilm dissolving effect compared to the current antiseptics, therefore high purity ClO2 may be a new promising preventive and therapeutic adjuvant in home oral care and in dental or oral surgery practice.

  11. Protective Microbiota: From Localized to Long-Reaching Co-Immunity

    PubMed Central

    Chiu, Lynn; Bazin, Thomas; Truchetet, Marie-Elise; Schaeverbeke, Thierry; Delhaes, Laurence; Pradeu, Thomas

    2017-01-01

    Resident microbiota do not just shape host immunity, they can also contribute to host protection against pathogens and infectious diseases. Previous reviews of the protective roles of the microbiota have focused exclusively on colonization resistance localized within a microenvironment. This review shows that the protection against pathogens also involves the mitigation of pathogenic impact without eliminating the pathogens (i.e., “disease tolerance”) and the containment of microorganisms to prevent pathogenic spread. Protective microorganisms can have an impact beyond their niche, interfering with the entry, establishment, growth, and spread of pathogenic microorganisms. More fundamentally, we propose a series of conceptual clarifications in support of the idea of a “co-immunity,” where an organism is protected by both its own immune system and components of its microbiota. PMID:29270167

  12. Taking forward a 'One Health' approach for turning the tide against the Middle East respiratory syndrome coronavirus and other zoonotic pathogens with epidemic potential.

    PubMed

    Zumla, Alimuddin; Dar, Osman; Kock, Richard; Muturi, Matthew; Ntoumi, Francine; Kaleebu, Pontiano; Eusebio, Macete; Mfinanga, Sayoki; Bates, Matthew; Mwaba, Peter; Ansumana, Rashid; Khan, Mishal; Alagaili, Abdulaziz N; Cotten, Matthew; Azhar, Esam I; Maeurer, Markus; Ippolito, Giuseppe; Petersen, Eskild

    2016-06-01

    The appearance of novel pathogens of humans with epidemic potential and high mortality rates have threatened global health security for centuries. Over the past few decades new zoonotic infectious diseases of humans caused by pathogens arising from animal reservoirs have included West Nile virus, Yellow fever virus, Ebola virus, Nipah virus, Lassa Fever virus, Hanta virus, Dengue fever virus, Rift Valley fever virus, Crimean-Congo haemorrhagic fever virus, severe acute respiratory syndrome coronavirus, highly pathogenic avian influenza viruses, Middle East Respiratory Syndrome Coronavirus, and Zika virus. The recent Ebola Virus Disease epidemic in West Africa and the ongoing Zika Virus outbreak in South America highlight the urgent need for local, regional and international public health systems to be be more coordinated and better prepared. The One Health concept focuses on the relationship and interconnectedness between Humans, Animals and the Environment, and recognizes that the health and wellbeing of humans is intimately connected to the health of animals and their environment (and vice versa). Critical to the establishment of a One Health platform is the creation of a multidisciplinary team with a range of expertise including public health officers, physicians, veterinarians, animal husbandry specialists, agriculturalists, ecologists, vector biologists, viral phylogeneticists, and researchers to co-operate, collaborate to learn more about zoonotic spread between animals, humans and the environment and to monitor, respond to and prevent major outbreaks. We discuss the unique opportunities for Middle Eastern and African stakeholders to take leadership in building equitable and effective partnerships with all stakeholders involved in human and health systems to take forward a 'One Health' approach to control such zoonotic pathogens with epidemic potential. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Prevention of Lung Carcinogenesis by Suppressing Pathogenic CD4 T Cells

    DTIC Science & Technology

    2017-05-01

    intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells . Nat Med, 2016. 22(3): p. 319-23.   ...stable population of YFP+  cells  similar  to  innate  IL‐17–producing  cells  (e.g., γδ T  cells ) during acute infection (Fig.2) , which is in sharp contrast...AWARD NUMBER: W81XWH-16-1-0100 TITLE: Prevention of Lung Carcinogenesis by Suppressing Pathogenic CD4 T Cells PRINCIPAL INVESTIGATOR: Seon Hee

  14. Modelling the impact of vaccination on curtailing Haemophilus influenzae serotype 'a'.

    PubMed

    Konini, Angjelina; Moghadas, Seyed M

    2015-12-21

    Haemophilus influenzae serotype a (Hia) is a human-restricted bacterial pathogen transmitted via direct contacts with an infectious individual. Currently, there is no vaccine available for prevention of Hia, and the disease is treated with antibiotics upon diagnosis. With ongoing efforts for the development of an anti-Hia protein-polysaccharide conjugated vaccine, we sought to investigate the effect of vaccination on curtailing Hia infection. We present the first stochastic model of Hia transmission and control dynamics, and parameterize it using available estimates in the literature. Since both naturally acquired and vaccine-induced immunity wane with time, model simulations show three important results. First, vaccination of only newborns cannot eliminate the pathogen from the population, even when a booster program is implemented with a high coverage. Second, achieving and maintaining a sufficiently high level of herd immunity for pathogen elimination requires vaccination of susceptible individuals in addition to a high vaccination coverage of newborns. Third, for a low vaccination rate of susceptible individuals, a high coverage of booster dose may be needed to raise the level of herd immunity for Hia eradication. Our findings highlight the importance of vaccination and timely boosting of the individual׳s immunity within the expected duration of vaccine-induced protection against Hia. When an anti-Hia vaccine becomes available, enhanced surveillance of Hia incidence and herd immunity could help determine vaccination rates and timelines for booster doses necessary to eliminate Hia from affected populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Health professionals' knowledge and understanding about Listeria monocytogenes indicates a need for improved professional training.

    PubMed

    Buffer, Janet L; Medeiros, Lydia C; Kendall, Patricia; Schroeder, Mary; Sofos, John

    2012-07-01

    Listeria monocytogenes causes listeriosis, an uncommon but potentially fatal disease in immunocompromised persons, with a public health burden of approximately $2 billion annually. Those consumers most at risk are the highly susceptible populations otherwise known as the immunocompromised. Health professionals have a considerable amount of interaction with the immunocompromised and are therefore a valuable resource for providing appropriate safe food handling information. To determine how knowledgeable health professionals are about Listeria monocytogenes, a nationwide Web-based survey was distributed targeting registered nurses (RNs) and registered dietitians (RDs) who work with highly susceptible populations. Responses were received from 499 health professionals. Knowledge and understanding of Listeria monocytogenes was assessed descriptively. Parametric and nonparametric analyses were used to detect differences between RNs and RDs. The major finding is that there are gaps in knowledge and a self-declared lack of understanding by both groups, but especially RNs, about Listeria monocytogenes. RDs were more likely than RNs to provide information about specific foods and food storage behaviors to prevent a Listeria infection. Notably, neither group of health professionals consistently provided Listeria prevention messages to their immunocompromised patients. Pathogens will continue to emerge as food production, climate, water, and waste management systems change. Health professionals, represented by RNs and RDs, need resources and training to ensure that they are providing the most progressive information about various harmful pathogens; in this instance, Listeria monocytogenes.

  16. Disease intelligence for highly pathogenic avian influenza.

    PubMed

    Domenech, J; Slingenbergh, J; Martin, V; McLeod, A; Lubroth, J; Sims, L D

    2007-01-01

    A comprehensive approach to highly pathogenic avian influenza (HPAI) is crucial for identifying all the factors that contribute to its emergence, spread and persistence. Epidemiological understanding makes it possible to predict the evolution of the virus and to prevent and control the socioeconomic, environmental, institutional and policy consequences. At FAO, risk assessment and intelligence with regard to HPAI are based on lessons learnt from assisting countries to design strategies and on implementation of technical assistance programmes, which reveal important elements, such as the roles of ducks, live-bird markets and trade. Wild birds were found to contribute, by transporting the H5N1 virus over long distances. The contributions of different poultry farming systems and market chains in the epidemiology of HPAI are well recognized; however, the respective roles of smallholder systems and commercial farms are unclear. FAO considers that smallholders will continue to be an important factor and should be taken into account in control and prevention programmes. Changes in poultry farming are essentially driven by the private sector and market forces and could have negative consequences on the livelihoods of smallholders and on ecologically balanced production systems and agricultural biodiversity. Biosecurity can, however, be improved at the level of farms and markets. Institutional factors, such as the capacity of animal health systems to deliver control programmes, are also important, requiring strengthening and innovation in risk analysis and management.

  17. Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration.

    PubMed

    Levy, Olivier; Calippe, Bertrand; Lavalette, Sophie; Hu, Shulong J; Raoul, William; Dominguez, Elisa; Housset, Michael; Paques, Michel; Sahel, José-Alain; Bemelmans, Alexis-Pierre; Combadiere, Christophe; Guillonneau, Xavier; Sennlaub, Florian

    2015-02-01

    Physiologically, the retinal pigment epithelium (RPE) expresses immunosuppressive signals such as FAS ligand (FASL), which prevents the accumulation of leukocytes in the subretinal space. Age-related macular degeneration (AMD) is associated with a breakdown of the subretinal immunosuppressive environment and chronic accumulation of mononuclear phagocytes (MPs). We show that subretinal MPs in AMD patients accumulate on the RPE and express high levels of APOE. MPs of Cx3cr1(-/-) mice that develop MP accumulation on the RPE, photoreceptor degeneration, and increased choroidal neovascularization similarly express high levels of APOE. ApoE deletion in Cx3cr1(-/-) mice prevents pathogenic age- and stress-induced subretinal MP accumulation. We demonstrate that increased APOE levels induce IL-6 in MPs via the activation of the TLR2-CD14-dependent innate immunity receptor cluster. IL-6 in turn represses RPE FasL expression and prolongs subretinal MP survival. This mechanism may account, in part, for the MP accumulation observed in Cx3cr1(-/-) mice. Our results underline the inflammatory role of APOE in sterile inflammation in the immunosuppressive subretinal space. They provide rationale for the implication of IL-6 in AMD and open avenues toward therapies inhibiting pathogenic chronic inflammation in late AMD. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  18. Role of Natural IgM Autoantibodies (IgM-NAA) and IgM Anti-Leukocyte Antibodies (IgM-ALA) in Regulating Inflammation.

    PubMed

    Lobo, Peter I

    2017-01-01

    Natural IgM autoantibodies (IgM-NAA) are rapidly produced to inhibit pathogens and abrogate inflammation mediated by invading microorganisms and host neoantigens. IgM-NAA achieve this difficult task by being polyreactive with low binding affinity but with high avidity, characteristics that allow these antibodies to bind antigenic determinants shared by pathogens and neoantigens. Hence the same clones of natural IgM can bind and mask host neoantigens as well as inhibit microorganisms. In addition, IgM-NAA regulate the inflammatory response via mechanisms involving binding of IgM to apoptotic cells to enhance their removal and binding of IgM to live leukocytes to regulate their function. Secondly, we review how natural IgM prevents autoimmune disorders arising from pathogenic IgG autoantibodies as well as by autoreactive B and T cells that have escaped tolerance mechanisms. Thirdly, using IgM knockout mice, we show that regulatory B and T cells require IgM to effectively regulate inflammation mediated by innate, adaptive and autoimmune mechanisms. It is therefore not surprising why the host positively selects such autoreactive B1 cells that generate protective IgM-NAA, which are also evolutionarily conserved. Fourthly, we show that IgM anti-leukocyte autoantibodies (IgM-ALA) levels and their repertoire can vary in normal humans and disease states and this variation may partly explain the observed differences in the inflammatory response after infection, ischemic injury or after a transplant. Finally we also show how protective IgM-NAA can be rendered pathogenic under non-physiological conditions. IgM-NAA have therapeutic potential. Polyclonal IgM infusions can be used to abrogate ongoing inflammation. Additionally, inflammation arising after ischemic kidney injury, e.g., during high-risk elective cardiac surgery or after allograft transplantation, can be prevented by pre-emptively infusing polyclonal IgM, or DC pretreated ex vivo with IgM, or by increasing in vivo IgM with a vaccine approach. Cell therapy with IgM pretreated cells, is appealing as less IgM will be required.

  19. Copper Tolerance and Characterization of a Copper-Responsive Operon, copYAZ, in an M1T1 Clinical Strain of Streptococcus pyogenes

    PubMed Central

    Gordon, Lily D.; Fang, Zhong; Holder, Robert C.; Reid, Sean D.

    2015-01-01

    ABSTRACT Infection with Streptococcus pyogenes is associated with a breadth of clinical manifestations ranging from mild pharyngitis to severe necrotizing fasciitis. Elevated levels of intracellular copper are highly toxic to this bacterium, and thus, the microbe must tightly regulate the level of this metal ion by one or more mechanisms, which have, to date, not been clearly defined. In this study, we have identified two virulence mechanisms by which S. pyogenes protects itself against copper toxicity. We defined a set of putative genes, copY (for a regulator), copA (for a P1-type ATPase), and copZ (for a copper chaperone), whose expression is regulated by copper. Our results indicate that these genes are highly conserved among a range of clinical S. pyogenes isolates. The copY, copA, and copZ genes are induced by copper and are transcribed as a single unit. Heterologous expression assays revealed that S. pyogenes CopA can confer copper tolerance in a copper-sensitive Escherichia coli mutant by preventing the accumulation of toxic levels of copper, a finding that is consistent with a role for CopA in copper export. Evaluation of the effect of copper stress on S. pyogenes in a planktonic or biofilm state revealed that biofilms may aid in protection during initial exposure to copper. However, copper stress appears to prevent the shift from the planktonic to the biofilm state. Therefore, our results indicate that S. pyogenes may use several virulence mechanisms, including altered gene expression and a transition to and from planktonic and biofilm states, to promote survival during copper stress. IMPORTANCE Bacterial pathogens encounter multiple stressors at the host-pathogen interface. This study evaluates a virulence mechanism(s) utilized by S. pyogenes to combat copper at sites of infection. A better understanding of pathogen tolerance to stressors such as copper is necessary to determine how host-pathogen interactions impact bacterial survival during infections. These insights may lead to the identification of novel therapeutic targets that can be used to address antibiotic resistance. PMID:26013489

  20. Copper Tolerance and Characterization of a Copper-Responsive Operon, copYAZ, in an M1T1 Clinical Strain of Streptococcus pyogenes.

    PubMed

    Young, Christie A; Gordon, Lily D; Fang, Zhong; Holder, Robert C; Reid, Sean D

    2015-08-01

    Infection with Streptococcus pyogenes is associated with a breadth of clinical manifestations ranging from mild pharyngitis to severe necrotizing fasciitis. Elevated levels of intracellular copper are highly toxic to this bacterium, and thus, the microbe must tightly regulate the level of this metal ion by one or more mechanisms, which have, to date, not been clearly defined. In this study, we have identified two virulence mechanisms by which S. pyogenes protects itself against copper toxicity. We defined a set of putative genes, copY (for a regulator), copA (for a P1-type ATPase), and copZ (for a copper chaperone), whose expression is regulated by copper. Our results indicate that these genes are highly conserved among a range of clinical S. pyogenes isolates. The copY, copA, and copZ genes are induced by copper and are transcribed as a single unit. Heterologous expression assays revealed that S. pyogenes CopA can confer copper tolerance in a copper-sensitive Escherichia coli mutant by preventing the accumulation of toxic levels of copper, a finding that is consistent with a role for CopA in copper export. Evaluation of the effect of copper stress on S. pyogenes in a planktonic or biofilm state revealed that biofilms may aid in protection during initial exposure to copper. However, copper stress appears to prevent the shift from the planktonic to the biofilm state. Therefore, our results indicate that S. pyogenes may use several virulence mechanisms, including altered gene expression and a transition to and from planktonic and biofilm states, to promote survival during copper stress. Bacterial pathogens encounter multiple stressors at the host-pathogen interface. This study evaluates a virulence mechanism(s) utilized by S. pyogenes to combat copper at sites of infection. A better understanding of pathogen tolerance to stressors such as copper is necessary to determine how host-pathogen interactions impact bacterial survival during infections. These insights may lead to the identification of novel therapeutic targets that can be used to address antibiotic resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Perspectives on emerging zoonotic disease research and capacity building in Canada

    PubMed Central

    Stephen, Craig; Artsob, Harvey; Bowie, William R; Drebot, Michael; Fraser, Erin; Leighton, Ted; Morshed, Muhammad; Ong, Corinne; Patrick, David

    2004-01-01

    Zoonoses are fundamental determinants of community health. Preventing, identifying and managing these infections must be a central public health focus. Most current zoonoses research focuses on the interface of the pathogen and the clinically ill person, emphasizing microbial detection, mechanisms of pathogenicity and clinical intervention strategies, rather than examining the causes of emergence, persistence and spread of new zoonoses. There are gaps in the understanding of the animal determinants of emergence and the capacity to train highly qualified individuals; these are major obstacles to preventing new disease threats. The ability to predict the emergence of zoonoses and their resulting public health and societal impacts are hindered when insufficient effort is devoted to understanding zoonotic disease epidemiology, and when zoonoses are not examined in a manner that yields fundamental insight into their origin and spread. Emerging infectious disease research should rest on four pillars: enhanced communications across disciplinary and agency boundaries; the assessment and development of surveillance and disease detection tools; the examination of linkages between animal health determinants of human health outcomes; and finally, cross-disciplinary training and research. A national strategy to predict, prevent and manage emerging diseases must have a prominent and explicit role for veterinary and biological researchers. An integrated health approach would provide decision makers with a firmer foundation from which to build evidence-based disease prevention and control plans that involve complex human/animal/environmental systems, and would serve as the foundation to train and support the new cadre of individuals ultimately needed to maintain and apply research capacity in this area. PMID:18159512

  2. Perspectives on emerging zoonotic disease research and capacity building in Canada.

    PubMed Central

    Stephen, Craig; Artsob, Harvey; Bowie, William R.; Drebot, Michael; Fraser, Erin; Leighton, Ted; Morshed, Muhammad; Ong, Corinne; Patrick, David

    2005-01-01

    Zoonoses are fundamental determinants of community health. Preventing, identifying and managing these infections must be a central public health focus. Most current zoonoses research focuses on the interface of the pathogen and the clinically ill person, emphasizing microbial detection, mechanisms of pathogenicity and clinical intervention strategies, rather than examining the causes of emergence, persistence and spread of new zoonoses. There are gaps in the understanding of the animal determinants of emergence and the capacity to train highly qualified individuals; these are major obstacles to preventing new disease threats. The ability to predict the emergence of zoonoses and their resulting public health and societal impacts are hindered when insufficient effort is devoted to understanding zoonotic disease epidemiology, and when zoonoses are not examined in a manner that yields fundamental insight into their origin and spread. Emerging infectious disease research should rest on four pillars: enhanced communications across disciplinary and agency boundaries; the assessment and development of surveillance and disease detection tools; the examination of linkages between animal health determinants of human health outcomes; and finally, cross-disciplinary training and research. A national strategy to predict, prevent and manage emerging diseases must have a prominent and explicit role for veterinary and biological researchers. An integrated health approach would provide decision makers with a firmer foundation from which to build evidence-based disease prevention and control plans that involve complex human/animal/environmental systems, and would serve as the foundation to train and support the new cadre of individuals ultimately needed to maintain and apply research capacity in this area. PMID:15759832

  3. Geographic variation in the relationship between human Lyme disease incidence and density of infected host-seeking Ixodes scapularis nymphs in the Eastern United States.

    PubMed

    Pepin, Kim M; Eisen, Rebecca J; Mead, Paul S; Piesman, Joseph; Fish, Durland; Hoen, Anne G; Barbour, Alan G; Hamer, Sarah; Diuk-Wasser, Maria A

    2012-06-01

    Prevention and control of Lyme disease is difficult because of the complex biology of the pathogen's (Borrelia burgdorferi) vector (Ixodes scapularis) and multiple reservoir hosts with varying degrees of competence. Cost-effective implementation of tick- and host-targeted control methods requires an understanding of the relationship between pathogen prevalence in nymphs, nymph abundance, and incidence of human cases of Lyme disease. We quantified the relationship between estimated acarological risk and human incidence using county-level human case data and nymphal prevalence data from field-derived estimates in 36 eastern states. The estimated density of infected nymphs (mDIN) was significantly correlated with human incidence (r = 0.69). The relationship was strongest in high-prevalence areas, but it varied by region and state, partly because of the distribution of B. burgdorferi genotypes. More information is needed in several high-prevalence states before DIN can be used for cost-effectiveness analyses.

  4. Highly Pathogenic Avian Influenza Virus (H5N1) in Frozen Duck Carcasses, Germany, 2007

    PubMed Central

    Harder, Timm C.; Teuffert, Jürgen; Starick, Elke; Gethmann, Jörn; Grund, Christian; Fereidouni, Sasan; Durban, Markus; Bogner, Karl-Heinz; Neubauer-Juric, Antonie; Repper, Reinhard; Hlinak, Andreas; Engelhardt, Andreas; Nöckler, Axel; Smietanka, Krzysztof; Minta, Zenon; Kramer, Matthias; Globig, Anja; Mettenleiter, Thomas C.; Conraths, Franz J.

    2009-01-01

    We conducted phylogenetic and epidemiologic analyses to determine sources of outbreaks of highly pathogenic avian influenza virus (HPAIV), subtype H5N1, in poultry holdings in 2007 in Germany, and a suspected incursion of HPAIV into the food chain through contaminated deep-frozen duck carcasses. In summer 2007, HPAIV (H5N1) outbreaks in 3 poultry holdings in Germany were temporally, spatially, and phylogenetically linked to outbreaks in wild aquatic birds. Detection of HPAIV (H5N1) in frozen duck carcass samples of retained slaughter batches of 1 farm indicated that silent infection had occurred for some time before the incidental detection. Phylogenetic analysis established a direct epidemiologic link between HPAIV isolated from duck meat and strains isolated from 3 further outbreaks in December 2007 in backyard chickens that had access to uncooked offal from commercial deep-frozen duck carcasses. Measures that will prevent such undetected introduction of HPAIV (H5N1) into the food chain are urgently required. PMID:19193272

  5. Evaluation of the Luminex xTAG Respiratory Viral Panel FAST v2 assay for detection of multiple respiratory viral pathogens in nasal and throat swabs in Vietnam

    PubMed Central

    Thi Ty Hang, Vu; Thi Han Ny, Nguyen; My Phuc, Tran; Thi Thanh Tam, Pham; Thao Huong, Dang; Dang Trung Nghia, Ho; Tran Anh Vu, Nguyen; Thi Hong Phuong, Pham; Van Xang, Nguyen; Dong, Nguyen; Nhu Hiep, Pham; Van Hung, Nguyen; Tinh Hien, Tran; Rabaa, Maia; Thwaites, Guy E.; Baker, Stephen; Van Tan, Le; van Doorn, H.Rogier

    2018-01-01

    Background: Acute respiratory infections (ARI) are among the leading causes of hospitalization in children ≤5 years old. Rapid diagnostics of viral pathogens is essential to avoid unnecessary antibiotic treatment, thereby slowing down antibiotic-resistance. We evaluated the diagnostic performance of the Luminex xTAG Respiratory Viral Panel FAST v2 against viral specific PCR as reference assays for ARI in Vietnam. Methods: Four hundred and forty two nose and throat swabs were collected in viral transport medium, and were tested with Luminex xTAG Respiratory Viral Panel FAST v2. Multiplex RT-PCR and single RT-PCR were used as references.    Results: Overall, sensitivity of the Luminex against reference assays was 91.8%, 95% CI 88.1-94.7 (270/294), whilst 112/6336 (1.8%, 95% CI, 1.4-2.1) of pathogens were detected by the Luminex, but not by reference assays. Frequency of pathogens detected by Luminex and reference assays was 379 and 292, respectively. The diagnostic yield was 66.7% (295/442, 95%CI 62.1-71.1%) for the Luminex assay and 54.1% (239/442, 95% CI, 49.3-58.8%) for reference assays. The Luminex kit had higher yields for all viruses except influenza B virus, respiratory syncytial virus, and human bocavirus. High agreements between both methods [mean (range): 0.91 (0.83-1.00)] were found for 10/15 viral agents. Conclusions: The Luminex assay is a high throughput multiplex platform for rapid detection of common viral pathogens causing ARI. Although the current high cost may prevent Luminex assays from being widely used, especially in limited resource settings where ARI are felt most, its introduction in clinical diagnostics may help reduce unnecessary use of antibiotic prescription. PMID:29503874

  6. Toxin-positive Clostridium difficile latently infect mouse colonies and protect against highly pathogenic C. difficile.

    PubMed

    Etienne-Mesmin, Lucie; Chassaing, Benoit; Adekunle, Oluwaseyi; Mattei, Lisa M; Bushman, Frederic D; Gewirtz, Andrew T

    2018-05-01

    Clostridium difficile is a toxin-producing bacterium and a leading cause of antibiotic-associated disease. The ability of C. difficile to form spores and infect antibiotic-treated persons at low multiplicity of infection (MOI) underlies its large disease burden. However, C. difficile -induced disease might also result from long-harboured C. difficile that blooms in individuals administered antibiotics. Mice purchased from multiple vendors and repeatedly testing negative for this pathogen by quantitative PCR bloomed C. difficile following antibiotic treatment. This endogenous C. difficile strain, herein termed LEM1, which formed spores and produced toxin, was compared with highly pathogenic C. difficile strain VPI10463. Whole-genome sequencing revealed that LEM1 and VPI10463 shared 95% of their genes, including all known virulence genes. In contrast to VPI10463, LEM1 did not induce overt disease when administered to antibiotic-treated or germ-free mice, even at high doses. Rather, blooms of LEM1 correlated with survival following VPI10463 inoculation, and exogenous administration of LEM1 before or shortly following VPI10463 inoculation prevented C. difficile -induced death. Accordingly, despite similar growth properties in vitro, LEM1 strongly outcompeted VPI10463 in mice even at 100-fold lower inocula. These results highlight the difficulty of determining whether individual cases of C. difficile infection resulted from a bloom of endogenous C. difficile or a new exposure to this pathogen. In addition to impacting the design of studies using mouse models of C. difficile -induced disease, this study identified, isolated and characterised an endogenous murine spore-forming C. difficile strain able to decrease colonisation, associated disease and death induced by a pathogenic C. difficile strain. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. Diagnostic Peptide Discovery: Prioritization of Pathogen Diagnostic Markers Using Multiple Features

    PubMed Central

    Carmona, Santiago J.; Sartor, Paula A.; Leguizamón, María S.; Campetella, Oscar E.; Agüero, Fernán

    2012-01-01

    The availability of complete pathogen genomes has renewed interest in the development of diagnostics for infectious diseases. Synthetic peptide microarrays provide a rapid, high-throughput platform for immunological testing of potential B-cell epitopes. However, their current capacity prevent the experimental screening of complete “peptidomes”. Therefore, computational approaches for prediction and/or prioritization of diagnostically relevant peptides are required. In this work we describe a computational method to assess a defined set of molecular properties for each potential diagnostic target in a reference genome. Properties such as sub-cellular localization or expression level were evaluated for the whole protein. At a higher resolution (short peptides), we assessed a set of local properties, such as repetitive motifs, disorder (structured vs natively unstructured regions), trans-membrane spans, genetic polymorphisms (conserved vs. divergent regions), predicted B-cell epitopes, and sequence similarity against human proteins and other potential cross-reacting species (e.g. other pathogens endemic in overlapping geographical locations). A scoring function based on these different features was developed, and used to rank all peptides from a large eukaryotic pathogen proteome. We applied this method to the identification of candidate diagnostic peptides in the protozoan Trypanosoma cruzi, the causative agent of Chagas disease. We measured the performance of the method by analyzing the enrichment of validated antigens in the high-scoring top of the ranking. Based on this measure, our integrative method outperformed alternative prioritizations based on individual properties (such as B-cell epitope predictors alone). Using this method we ranked 10 million 12-mer overlapping peptides derived from the complete T. cruzi proteome. Experimental screening of 190 high-scoring peptides allowed the identification of 37 novel epitopes with diagnostic potential, while none of the low scoring peptides showed significant reactivity. Many of the metrics employed are dependent on standard bioinformatic tools and data, so the method can be easily extended to other pathogen genomes. PMID:23272069

  8. Complete Genome Sequences for 59 Burkholderia Isolates, Both Pathogenic and Near Neighbor

    DOE PAGES

    Johnson, Shannon L.; Bishop-Lilly, Kimberly A.; Ladner, Jason T.; ...

    2015-04-30

    The genus Burkholderia encompasses both pathogenic (including Burkholderia mallei and Burkholderia pseudomallei, U.S. Centers for Disease Control and Prevention Category B listed), and nonpathogenic Gram-negative bacilli. Presented in this document are full genome sequences for a panel of 59 Burkholderia strains, selected to aid in detection assay development.

  9. Environmental E.coli isolate characterization and selection as improved indicators for pathogens associated with produce contamination

    USDA-ARS?s Scientific Manuscript database

    Contamination of food and water by pathogens is a substantial public health issue in the United States. According to the Centers for Disease Control and Prevention, 49% of foodborne illness is caused by produce, and despite efforts to reduce produce contamination, these issues persist. Escherichia c...

  10. New wash aid T-128 improves efficacy of chlorine against cross contamination by bacterial pathogens in fresh-cut lettuce processing

    USDA-ARS?s Scientific Manuscript database

    Chlorinated water is widely used as the primary anti-microbial intervention during fresh-cut produce processing. Free chlorine in chlorinated water can provide effective reduction of potential contaminations by microbial pathogens, and, more importantly, effectively prevent cross contamination of p...

  11. Western gall rust -- A threat to Pinus radiata in New Zealand

    Treesearch

    Tod D. Ramsfield; Darren J. Kriticos; Detlev R. Vogler; Brian W. Geils

    2007-01-01

    Western gall rust (Peridermium harknessii J. P. Moore (syn. Endocronartium harknessii (J. P. Moore) Y. Hiratsuka) is potentially a serious threat to exotic Pinus radiata D. Don plantations of New Zealand although the pathogen has not been recorded here. Mechanisms that may have prevented invasion of the pathogen include geographic...

  12. Seasonal availability of inoculum of the Heterobasidion root disease pathogen in central Wisconsin

    Treesearch

    Glen R. Stanosz; Denise R. Smith; Jennifer Juzwik

    2016-01-01

    After deposition of airborne basidiospores, the root disease pathogen Heterobasidion irregulare Garbelotto and Otrosina infects fresh conifer stumps and spreads through root grafts or by root contact to adjacent trees. Infection can be prevented, however, by borate application. Because the need for stump protection depends on inoculum availability...

  13. Microbial profiling, neural network and semantic web: an integrated information system for human pathogen risk management, prevention and surveillance in food safety

    USDA-ARS?s Scientific Manuscript database

    It is estimated that food-borne pathogens cause approximately 76 million cases of gastrointestinal illnesses, 325,000 hospitalizations, and 5,000 deaths in the United States annually. Genomic, proteomic, and metabolomic studies, particularly, genome sequencing projects are providing valuable inform...

  14. Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions.

    PubMed

    Song, Geun Cheol; Ryu, Choong-Min

    2013-05-08

    Systemic acquired resistance (SAR) is a plant self-defense mechanism against a broad-range of pathogens and insect pests. Among chemical SAR triggers, plant and bacterial volatiles are promising candidates for use in pest management, as these volatiles are highly effective, inexpensive, and can be employed at relatively low concentrations compared with agrochemicals. However, such volatiles have some drawbacks, including the high evaporation rate of these compounds after application in the open field, their negative effects on plant growth, and their inconsistent levels of effectiveness. Here, we demonstrate the effectiveness of volatile organic compound (VOC)-mediated induced resistance against both the bacterial angular leaf spot pathogen, Pseudononas syringae pv. lachrymans, and the sucking insect aphid, Myzus persicae, in the open field. Using the VOCs 3-pentanol and 2-butanone where fruit yields increased gave unexpectedly, a significant increase in the number of ladybird beetles, Coccinella septempunctata, a natural enemy of aphids. The defense-related gene CsLOX was induced by VOC treatment, indicating that triggering the oxylipin pathway in response to the emission of green leaf volatiles can recruit the natural enemy of aphids. These results demonstrate that VOCs may help prevent plant disease and insect damage by eliciting induced resistance, even in open fields.

  15. Mammalian Models for the Study of H7 Virus Pathogenesis and Transmission

    PubMed Central

    Belser, Jessica A.; Tumpey, Terrence M.

    2018-01-01

    Mammalian models, most notably the mouse and ferret, have been instrumental in the assessment of avian influenza virus pathogenicity and transmissibility, and have been used widely to characterize the molecular determinants that confer H5N1 virulence in mammals. However, while H7 influenza viruses have typically been associated with conjunctivitis and/or mild respiratory disease in humans, severe disease and death is also possible, as underscored by the recent emergence of H7N9 viruses in China. Despite the public health need to understand the pandemic potential of this virus subtype, H7 virus pathogenesis and transmission has not been as extensively studied. In this review, we discuss the heterogeneity of H7 subtype viruses isolated from humans, and the characterization of mammalian models to study the virulence of H7 subtype viruses associated with human infection, including viruses of both high and low pathogenicity and following multiple inoculation routes. The use of the ferret transmission model to assess the influence of receptor binding preference among contemporary H7 influenza viruses is described. These models have enabled the study of preventative and therapeutic agents, including vaccines and antivirals, to reduce disease burden, and have permitted a greater appreciation that not all highly pathogenic influenza viruses are created equal. PMID:24996862

  16. H5N8 Highly Pathogenic Avian Influenza in the Republic of Korea: Epidemiology During the First Wave, from January Through July 2014.

    PubMed

    Yoon, Hachung; Moon, Oun-Kyong; Jeong, Wooseog; Choi, Jida; Kang, Young-Myong; Ahn, Hyo-Young; Kim, Jee-Hye; Yoo, Dae-Sung; Kwon, Young-Jin; Chang, Woo-Seok; Kim, Myeong-Soo; Kim, Do-Soon; Kim, Yong-Sang; Joo, Yi-Seok

    2015-04-01

    This study describes the outbreaks of H5N8 highly pathogenic avian influenza (HPAI) in Korea during the first wave, from January 16, 2014 through July 25, 2014. Its purpose is to provide a better understanding of the epidemiology of H5N8 HPAI. Information on the outbreak farms and HPAI positive wild birds was provided by the Animal and Plant Quarantine Agency. The epidemiological investigation sheets for the outbreak farms were examined. During the 7-month outbreak period (January-July 2014), H5N8 HPAI was confirmed in 212 poultry farms, 38 specimens from wild birds (stools, birds found dead or captured). Ducks were the most frequently infected poultry species (159 outbreak farms, 75.0%), and poultry in 67 (31.6%) outbreak farms was asymptomatic. As in the previous four H5N1 epidemics of HPAI that occurred in Korea, this epidemic of H5N8 proved to be associated with migratory birds. Poultry farms in Korea can hardly be free from the risk of HPAI introduced via migratory birds. The best way to overcome this geographical factor is to reinforce biosecurity to prevent exposure of farms, related people, and poultry to the pathogen.

  17. Balancing Selection at the Tomato RCR3 Guardee Gene Family Maintains Variation in Strength of Pathogen Defense

    PubMed Central

    Hörger, Anja C.; Ilyas, Muhammad; Stephan, Wolfgang; Tellier, Aurélien; van der Hoorn, Renier A. L.; Rose, Laura E.

    2012-01-01

    Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors) and host resistance genes such as the major histocompatibility complex (MHC) in mammals or resistance (R) genes in plants. In plant–pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the “Guard-Hypothesis,” R proteins (the “guards”) can sense modification of target molecules in the host (the “guardees”) by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3) and its guard (Cf-2). We conclude that, in addition to coevolution at the “guardee-effector” interface for pathogen recognition, natural selection acts on the “guard-guardee” interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto-immune responses in the absence of the corresponding pathogen. PMID:22829777

  18. Abundances and profiles of antibiotic resistance genes as well as co-occurrences with human bacterial pathogens in ship ballast tank sediments from a shipyard in Jiangsu Province, China.

    PubMed

    Lv, Baoyi; Cui, Yuxue; Tian, Wen; Li, Jing; Xie, Bing; Yin, Fang

    2018-08-15

    Ship ballasting operations may transfer harmful aquatic organisms across global ocean. This study aims to reveal the occurrences and abundances of antibiotic resistance genes (ARGs) and human bacterial pathogens (HBPs) in ballast tank sediments. Nine samples were collected and respectively analyzed by real-time quantitative PCR and high-throughput sequencing technologies. Ten ARGs (aadA1, blaCTX-M, blaTEM, ermB, mefA, strB, sul1, sul2, tetM, and tetQ) and the Class-I integron gene (intI1) were highly prevalent (10 5 -10 9 gene copies/g) in ballast tank sediments. The sul1 was the most abundant ARG with the concentration of 10 8 -10 9 copies/g and intI1 was much more abundant than the ARGs in ballast tank sediments. The strong positive correlations between intI1 and ARGs (blaCTX-M, sul1, sul2 and tetM) indicated the potential spread of ARGs via horizontal gene transfer. In ballast tank sediments, 44 bacterial species were identified as HBPs and accounted for 0.13-21.46% of the total bacterial population although the three indicator pathogenic microbes (Vibrio cholerae, Escherichia coli, and Enterococci) proposed by the International Maritime Organization were not detected. Pseudomonas pseudoalcaligenes, Enterococcus hirae, Shigella sonnei and Bacillus anthracis were the dominant pathogens in ballast tank sediments. Zn and P in sediments had positive effects on the ARGs. Network analysis results indicated that sul1 and sul2 genes existed in several bacterial pathogens. Ballast tank sediments could be regarded as a carrier for the migration of ARGs. It is important to manage ballast tank sediments reasonably in order to prevent the dissemination of ARGs and bacterial pathogens. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. High cytokinin levels induce a hypersensitive-like response in tobacco.

    PubMed

    Novák, Jan; Pavlů, Jaroslav; Novák, Ondřej; Nožková-Hlaváčková, Vladimíra; Špundová, Martina; Hlavinka, Jan; Koukalová, Šárka; Skalák, Jan; Černý, Martin; Brzobohatý, Břetislav

    2013-07-01

    Cytokinins are positive regulators of shoot development. However, it has previously been demonstrated that efficient activation of the cytokinin biosynthesis gene ipt can cause necrotic lesions and wilting in tobacco leaves. Some plant pathogens reportedly use their ability to produce cytokinins in disease development. In response to pathogen attacks, plants can trigger a hypersensitive response that rapidly kills cells near the infection site, depriving the pathogen of nutrients and preventing its spread. In this study, a diverse set of processes that link ipt activation to necrotic lesion formation were investigated in order to evaluate the potential of cytokinins as signals and/or mediators in plant defence against pathogens. The binary pOp-ipt/LhGR system for dexamethasone-inducible ipt expression was used to increase endogenous cytokinin levels in transgenic tobacco. Changes in the levels of cytokinins and the stress hormones salicylic, jasmonic and abscisic acid following ipt activation were determined by ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC-MS/MS). Trends in hydrogen peroxide content and lipid peroxidation were monitored using the potassium iodide and malondialdehyde assays. The subcellular distribution of hydrogen peroxide was investigated using 3,3'-diaminobenzidine staining. The dynamics of transcripts related to photosynthesis and pathogen response were analysed by reverse transcription followed by quantitative PCR. The effects of cytokinins on photosynthesis were deciphered by analysing changes in chlorophyll fluorescence and leaf gas exchange. Plants can produce sufficiently high levels of cytokinins to trigger fast cell death without any intervening chlorosis - a hallmark of the hypersensitive response. The results suggest that chloroplastic hydrogen peroxide orchestrates the molecular responses underpinning the hypersensitive-like response, including the inhibition of photosynthesis, elevated levels of stress hormones, oxidative membrane damage and stomatal closure. Necrotic lesion formation triggered by ipt activation closely resembles the hypersensitive response. Cytokinins may thus act as signals and/or mediators in plant defence against pathogen attack.

  20. Liquid based formulations of bacteriophages for the management of waterborne bacterial pathogens in water microcosms.

    PubMed

    Ahiwale, Sangeeta; Tagunde, Sujata; Khopkar, Sushama; Karni, Mrudula; Gajbhiye, Milind; Kapadnis, Balasaheb

    2013-11-01

    Water resources are contaminated by life-threatening multidrug resistant pathogenic bacteria. Unfortunately, these pathogenic bacteria do not respond to the traditional water purification methods. Therefore, there is a need of environmentally friendly strategies to overcome the problems associated with the antimicrobial resistant bacterial pathogens. In the present study, highly potent lytic phages against multidrug-resistant Salmonella enterica serovar Paratyphi B, Pseudomonas aeruginosa and Klebsiella pneumoniae were isolated from the Pavana river water. They belonged to the Podoviridae and Siphoviridae families. These phages were purified and enriched in the laboratory. Monovalent formulations of phiSPB, BVPaP-3 and KPP phages were prepared in three different liquids viz., phage broth, saline and distilled water. The phages were stable for almost 8-10 months in the phage broth at 4 degrees C. The stability of the phages in saline and distilled water was 5-6 months at 4 degrees C. All of the phages were stable only for 4-6 months in the phage broth at 30 degrees C. The monovalent phage formulation of psiSPB was applied at MOI < 1, as disinfectant against an exponential and stationary phase cells of Salmonella enterica serovar Paratyphi B in various water microcosms. The results indicated that there was almost 80 % reduction in the log phase cells of Salmonella serovar Paratyphi B in 24 h. In stationary phase cells, the reduction was comparatively less within same period. At the same time, there was concomitant increase in the phage population by 80% in all the microcosms indicating that psiSPB phage is highly potent in killing pathogen in water. Results strongly support that the formulation of psiSPB in the phage broth in monovalent form could be used as an effective biological disinfectant for preventing transmission of water-borne bacterial pathogens, including antimicrobial resistant ones.

  1. Abundance & distribution of trombiculid mites & Orientia tsutsugamushi, the vectors & pathogen of scrub typhus in rodents & shrews collected from Puducherry & Tamil Nadu, India.

    PubMed

    Candasamy, Sadanandane; Ayyanar, Elango; Paily, Kummankottil; Karthikeyan, Patricia Anitha; Sundararajan, Agatheswaran; Purushothaman, Jambulingam

    2016-12-01

    Human cases of scrub typhus are reported every year from Puducherry and adjoining areas in southern India. However, information on the presence of causative agent, Orientia tsutsugamushi, and its vectors is lacking. Hence, the objective of the study was to find out the vector as well as pathogen distribution in rodents and shrews present in the scrub typhus-reported areas in southern India. Trombiculid mites were collected by combing rats and shrews collected using Sherman traps and identified to species level following standard taxonomical keys. The serum samples of the animals were used for Weil-Felix test and the clots containing blood cells were used for DNA extraction and polymerase chain reaction (PCR). A total of 181 animals comprising four rodent species and one shrew species were collected from 12 villages. High proportion of chiggers was collected from the shrew, Suncus murinus (79.1%) and Rattus rattus (47.6%). A total of 10,491 trombiculid mites belonging to nine species were collected. Leptotrombidium deliense, the known vector of scrub typhus pathogen, was the predominant species (71.0%) and the chigger (L. deliense) index was 41.1 per animal. Of the 50 animals screened for the pathogen, 28 showed agglutination against OX-K in Weil-Felix test indicating the presence of antibodies against O. tsutsugamushi, the causative agent of scrub typhus. PCR carried out with the DNA extracted from blood samples of two of the animals were positive for GroEl gene of O. tsutsugamushi. L. deliense index was well above the critical limit of chigger load, indicating that all the villages were receptive for high risk of transmission of scrub typhus to human. Pathogen positivity was higher among animals collected from villages recorded for higher chigger indices due to active transmission between the chigger mites and reservoir host animals. The results are suggestive of routine vector/pathogen surveillance at hot spots to initiate timely preventive measures.

  2. RecA: a universal drug target in pathogenic bacteria.

    PubMed

    Pavlopoulou, Athanasia

    2018-01-01

    The spread of bacterial infectious diseases due to the development of resistance to antibiotic drugs in pathogenic bacteria is an emerging global concern. Therefore, the efficacious management and prevention of bacterial infections are major public health challenges. RecA is a pleiotropic recombinase protein that has been demonstrated to be implicated strongly in the bacterial drug resistance, survival and pathogenicity. In this minireview, RecA's role in the development of antibiotic resistance and its potential as an antimicrobial drug target are discussed.

  3. Directing Environmental Science towards Disease Surveillance Objectives: Waterborne Pathogens in the Developed World

    NASA Astrophysics Data System (ADS)

    Bridge, J. W.; Oliver, D.; Heathwaite, A.; Banwart, S.; Going Underground: Human Pathogens in The Soil-Water Environment Working Group

    2010-12-01

    We present the findings and recommendations of a recent UK working group convened to identify research priorities in environmental science and epidemiology of waterborne pathogens. Robust waterborne disease surveillance in the developed world remains a critical need, despite broad success of regulation and water treatment. Recent estimates suggest waterborne pathogens result in between 12 million and 19.5 million cases of illness per year in the US alone. Across the developed world, the value of preventing acute waterborne disease in 150 million people using small community or single-user supplies is estimated at above US$ 4,671 million. The lack of a high quality, reliable environmental knowledge base for waterborne pathogens is a key obstacle. Substantial improvements in understanding of pathogen survival and transport in soils, sediments and water are required both to aid identification of environmental aetiologies for organisms isolated in disease cases and to support novel mitigation responses directed towards specific exposure risks. However, the focus in monitoring and regulation on non-pathogenic faecal indicator organisms (easier and cheaper to detect in water samples) creates a lack of motivation to conduct detailed environmental studies of the actual pathogens likely to be encountered in disease surveillance. Robust disease surveillance may be regarded as an essential objective in epidemiology; but it constitutes a significant shift in perspective for the water industry. The health sector can play a vital role in changing attitudes by explicitly placing value on environmental water research which looks beyond compliance with water quality standards towards informing disease surveillance and influencing health outcomes. The summary of critical research priorities we outline provides a focus for developing and strengthening dialogue between health and water sectors to achieve a common goal - sophisticated management of waterborne diseases through sophisticated understanding of their environmental sources and dynamics.

  4. TRI Microspheres prevent key signs of dry eye disease in a murine, inflammatory model.

    PubMed

    Ratay, Michelle L; Balmert, Stephen C; Acharya, Abhinav P; Greene, Ashlee C; Meyyappan, Thiagarajan; Little, Steven R

    2017-12-13

    Dry eye disease (DED) is a highly prevalent, ocular disorder characterized by an abnormal tear film and ocular surface. Recent experimental data has suggested that the underlying pathology of DED involves inflammation of the lacrimal functional unit (LFU), comprising the cornea, conjunctiva, lacrimal gland and interconnecting innervation. This inflammation of the LFU ultimately results in tissue deterioration and the symptoms of DED. Moreover, an increase of pathogenic lymphocyte infiltration and the secretion of pro-inflammatory cytokines are involved in the propagation of DED-associated inflammation. Studies have demonstrated that the adoptive transfer of regulatory T cells (Tregs) can mediate the inflammation caused by pathogenic lymphocytes. Thus, as an approach to treating the inflammation associated with DED, we hypothesized that it was possible to enrich the body's own endogenous Tregs by locally delivering a specific combination of Treg inducing factors through degradable polymer microspheres (TRI microspheres; TGF-β1, Rapamycin (Rapa), and IL-2). This local controlled release system is capable of shifting the balance of Treg/T effectors and, in turn, preventing key signs of dry eye disease such as aqueous tear secretion, conjunctival goblet cells, epithelial corneal integrity, and reduce the pro-inflammatory cytokine milieu in the tissue.

  5. THE ROLE OF FILTRATION IN PREVENTING WATERBORNE DISEASE

    EPA Science Inventory

    Filtration is an important treatment process in the removal of pathogenic microorganisms and the prevention of waterborne disease. Historically, filtration was responsible for reducing death and illness from waterborne disease in 1871 in Germany. Other early examples in the U.S. ...

  6. High-Throughput Genetic Screen Reveals that Early Attachment and Biofilm Formation Are Necessary for Full Pyoverdine Production by Pseudomonas aeruginosa

    PubMed Central

    Kang, Donghoon; Kirienko, Natalia V.

    2017-01-01

    Pseudomonas aeruginosa is a re-emerging, multidrug-resistant, opportunistic pathogen that threatens the lives of immunocompromised patients, patients with cystic fibrosis, and those in critical care units. One of the most important virulence factors in this pathogen is the siderophore pyoverdine. Pyoverdine serves several critical roles during infection. Due to its extremely high affinity for ferric iron, pyoverdine gives the pathogen a significant advantage over the host in their competition for iron. In addition, pyoverdine can regulate the production of multiple bacterial virulence factors and perturb host mitochondrial homeostasis. Inhibition of pyoverdine biosynthesis decreases P. aeruginosa pathogenicity in multiple host models. To better understand the regulation of pyoverdine production, we developed a high-throughput genetic screen that uses the innate fluorescence of pyoverdine to identify genes necessary for its biosynthesis. A substantial number of hits showing severe impairment of pyoverdine production were in genes responsible for early attachment and biofilm formation. In addition to genetic disruption of biofilm, both physical and chemical perturbations also attenuated pyoverdine production. This regulatory relationship between pyoverdine and biofilm is particularly significant in the context of P. aeruginosa multidrug resistance, where the formation of biofilm is a key mechanism preventing access to antimicrobials and the immune system. Furthermore, we demonstrate that the biofilm inhibitor 2-amino-5,6-dimethylbenzimidazole effectively attenuates pyoverdine production and rescues Caenorhabditis elegans from P. aeruginosa-mediated pathogenesis. Our findings suggest that targeting biofilm formation in P. aeruginosa infections may have multiple therapeutic benefits and that employing an unbiased, systems biology-based approach may be useful for understanding the regulation of specific virulence factors and identifying novel anti-virulence therapeutics or new applications for existing therapies for P. aeruginosa infections. PMID:28928729

  7. Treatment of acute otitis media - challenges in the era of antibiotic resistance.

    PubMed

    Dagan, R

    2000-12-08

    The last decade is characterized by the increase in antibiotic resistance among respiratory bacterial pathogens in the presence of only modest progress in the development of new antibacterial agents to overcome this resistance. A series of recent studies show clearly that the increased resistance among the main AOM pathogens (namely Streptococcus pneumoniae and Haemophilus influenzae) is associated with a dramatic decrease in bacteriologic response to antibiotic treatment, which in turn has an impact on clinical response. Thus, the individual patient is affected by the increasing antibiotic resistance. Moreover, the society as a whole is now also affected because the carriage and spread of antibiotic resistant AOM pathogens is remarkably impacted by antibiotic treatment. New studies show the remarkable ability of antibiotics to rapidly promote nasopharyngeal carriage and spread of antibiotic-resistant AOM pathogens. In these studies, the increase in carriage of antibiotic resistant S. pneumoniae is shown already after 3-4 days from initiation of antibiotic treatment and may last for weeks to months after treatment. Children carrying antibiotic-resistant organisms transmit those organisms to their family and to their day care centers and thus a vicious cycle is created in which increased antibiotic resistance with decreased response leads to increased antibiotic use, which in turn leads to further increase in resistance. New antibiotics are not likely to improve this situation. It is clear that the challenge in the next decade is to prevent AOM rather than to treat it. Efforts to prevent AOM include improved environmental factors, immunization with bacterial and viral vaccines and some creative measures such as prevention of colonization and attachment to epithelium of AOM pathogens. Whether these efforts will prove successful or, even if successful, will only modify the clinical and bacteriologic picture presenting new challenges, only time will tell.

  8. Next Science Wound Gel Technology, a Novel Agent That Inhibits Biofilm Development by Gram-Positive and Gram-Negative Wound Pathogens

    PubMed Central

    Miller, Kyle G.; Tran, Phat L.; Haley, Cecily L.; Kruzek, Cassandra; Colmer-Hamood, Jane A.; Myntti, Matt

    2014-01-01

    Loss of the skin barrier facilitates the colonization of underlying tissues with various bacteria, where they form biofilms that protect them from antibiotics and host responses. Such wounds then become chronically infected. Topical antimicrobials are a major component of chronic wound therapy, yet currently available topical antimicrobials vary in their effectiveness on biofilm-forming pathogens. In this study, we evaluated the efficacy of Next Science wound gel technology (NxtSc), a novel topical agent designed to kill planktonic bacteria, penetrate biofilms, and kill the bacteria within. In vitro quantitative analysis, using strains isolated from wounds, showed that NxtSc inhibited biofilm development by Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae by inhibiting bacterial growth. The gel formulation NxtSc-G5, when applied to biofilms preformed by these pathogens, reduced the numbers of bacteria present by 7 to 8 log10 CFU/disc or CFU/g. In vivo, NxtSc-G5 prevented biofilm formation for 72 h when applied at the time of wounding and infection and eliminated biofilm infection when applied 24 h after wounding and infection. Storage of NxtSc-G5 at room temperature for 9 months did not diminish its efficacy. These results establish that NxtSc is efficacious in vitro and in vivo in preventing infection and biofilm development by different wound pathogens when applied immediately and in eliminating biofilm infection already established by these pathogens. This novel antimicrobial agent, which is nontoxic and has a usefully long shelf life, shows promise as an effective agent for the prevention and treatment of biofilm-related infections. PMID:24637684

  9. Pseudomonas fluorescens CHA0 maintains carbon delivery to Fusarium graminearum-infected roots and prevents reduction in biomass of barley shoots through systemic interactions

    PubMed Central

    Henkes, Gunnar J.; Jousset, Alexandre; Bonkowski, Michael; Thorpe, Michael R.; Scheu, Stefan; Lanoue, Arnaud; Schurr, Ulrich; Röse, Ursula S. R.

    2011-01-01

    Soil bacteria such as pseudomonads may reduce pathogen pressure for plants, both by activating plant defence mechanisms and by inhibiting pathogens directly due to the production of antibiotics. These effects are hard to distinguish under field conditions, impairing estimations of their relative contributions to plant health. A split-root system was set up with barley to quantify systemic and local effects of pre-inoculation with Pseudomonas fluorescens on the subsequent infection process by the fungal pathogen Fusarium graminearum. One root half was inoculated with F. graminearum in combination with P. fluorescens strain CHA0 or its isogenic antibiotic-deficient mutant CHA19. Bacteria were inoculated either together with the fungal pathogen or in separate halves of the root system to separate local and systemic effects. The short-term plant response to fungal infection was followed by using the short-lived isotopic tracer 11CO2 to track the delivery of recent photoassimilates to each root half. In the absence of bacteria, fungal infection diverted carbon from the shoot to healthy roots, rather than to infected roots, although the overall partitioning from the shoot to the entire root system was not modified. Both local and systemic pre-inoculation with P. fluorescens CHA0 prevented the diversion of carbon as well as preventing a reduction in plant biomass in response to F. graminearum infection, whereas the non-antibiotic-producing mutant CHA19 lacked this ability. The results suggest that the activation of plant defences is a central feature of biocontrol bacteria which may even surpass the effects of direct pathogen inhibition. PMID:21561952

  10. Knowledge and Perceptions of Highly Pathogenic Avian Influenza (HPAI) among Poultry Traders in Live Bird Markets in Bali and Lombok, Indonesia

    PubMed Central

    Kurscheid, Johanna; Millar, Joanne; Abdurrahman, Muktasam; Ambarawati, I Gusti Agung Ayu; Suadnya, Wayan; Yusuf, Ria Puspa; Fenwick, Stanley; Toribio, Jenny-Ann L. M. L

    2015-01-01

    Highly Pathogenic Avian Influenza (HPAI) has been prevalent in Indonesia since 2003 causing major losses to poultry production and human deaths. Live bird markets are considered high risk areas due to the density of large numbers of mixed poultry species of unknown disease status. Understanding trader knowledge and perceptions of HPAI and biosecurity is critical to reducing transmission risk and controlling the disease. An interview-administered survey was conducted at 17 live bird markets on the islands of Bali and Lombok in 2008 and 2009. A total of 413 live poultry traders were interviewed. Respondents were mostly male (89%) with a mean age of 45 years (range: 19–81). The main source of AI information was TV (78%), although personal communication was also identified to be an important source, particularly among female traders (60%) and respondents from Bali (43%). More than half (58%) of live poultry traders interviewed knew that infected birds can transmit HPAI viruses but were generally unaware that viruses can be introduced to markets by fomites. Cleaning cages and disposing of sick and dead birds were recognized as the most important steps to prevent the spread of disease by respondents. Two thirds (n = 277) of respondents were unwilling to report sudden or suspicious bird deaths to authorities. Bali vendors perceive biosecurity to be of higher importance than Lombok vendors and are more willing to improve biosecurity within markets than traders in Lombok. Collectors and traders selling large numbers (>214) of poultry, or selling both chickens and ducks, have better knowledge of HPAI transmission and prevention than vendors or traders selling smaller quantities or only one species of poultry. Education was strongly associated with better knowledge but did not influence positive reporting behavior. Our study reveals that most live poultry traders have limited knowledge of HPAI transmission and prevention and are generally reluctant to report bird deaths. Greater efforts are needed to engage local government, market managers and traders in education and awareness programs, regulatory measures and incentive mechanisms. Understanding and evaluating the social responses to such an integrated approach could lead to more effective HPAI prevention and control. PMID:26430785

  11. Knowledge and Perceptions of Highly Pathogenic Avian Influenza (HPAI) among Poultry Traders in Live Bird Markets in Bali and Lombok, Indonesia.

    PubMed

    Kurscheid, Johanna; Millar, Joanne; Abdurrahman, Muktasam; Ambarawati, I Gusti Agung Ayu; Suadnya, Wayan; Yusuf, Ria Puspa; Fenwick, Stanley; Toribio, Jenny-Ann L M L

    2015-01-01

    Highly Pathogenic Avian Influenza (HPAI) has been prevalent in Indonesia since 2003 causing major losses to poultry production and human deaths. Live bird markets are considered high risk areas due to the density of large numbers of mixed poultry species of unknown disease status. Understanding trader knowledge and perceptions of HPAI and biosecurity is critical to reducing transmission risk and controlling the disease. An interview-administered survey was conducted at 17 live bird markets on the islands of Bali and Lombok in 2008 and 2009. A total of 413 live poultry traders were interviewed. Respondents were mostly male (89%) with a mean age of 45 years (range: 19-81). The main source of AI information was TV (78%), although personal communication was also identified to be an important source, particularly among female traders (60%) and respondents from Bali (43%). More than half (58%) of live poultry traders interviewed knew that infected birds can transmit HPAI viruses but were generally unaware that viruses can be introduced to markets by fomites. Cleaning cages and disposing of sick and dead birds were recognized as the most important steps to prevent the spread of disease by respondents. Two thirds (n = 277) of respondents were unwilling to report sudden or suspicious bird deaths to authorities. Bali vendors perceive biosecurity to be of higher importance than Lombok vendors and are more willing to improve biosecurity within markets than traders in Lombok. Collectors and traders selling large numbers (>214) of poultry, or selling both chickens and ducks, have better knowledge of HPAI transmission and prevention than vendors or traders selling smaller quantities or only one species of poultry. Education was strongly associated with better knowledge but did not influence positive reporting behavior. Our study reveals that most live poultry traders have limited knowledge of HPAI transmission and prevention and are generally reluctant to report bird deaths. Greater efforts are needed to engage local government, market managers and traders in education and awareness programs, regulatory measures and incentive mechanisms. Understanding and evaluating the social responses to such an integrated approach could lead to more effective HPAI prevention and control.

  12. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.

    PubMed

    Gerwien, Franziska; Safyan, Abu; Wisgott, Stephanie; Hille, Fabrice; Kaemmer, Philipp; Linde, Jörg; Brunke, Sascha; Kasper, Lydia; Hube, Bernhard

    2016-10-18

    Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker's yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. The fungus Candida glabrata represents an evolutionarily close relative of the well-studied and benign baker's yeast and model organism Saccharomyces cerevisiae On the other hand, C. glabrata is an important opportunistic human pathogen causing both superficial and systemic infections. The ability to acquire trace metals, in particular, iron, and to tightly regulate this process during infection is considered an important virulence attribute of a variety of pathogens. Importantly, S. cerevisiae uses a highly derivative regulatory system distinct from those of other fungi. Until now, the regulatory mechanism of iron homeostasis in C. glabrata has been mostly unknown. Our study revealed a hybrid iron regulation network that is unique to C. glabrata and is placed at an evolutionary midpoint between those of S. cerevisiae and related fungal pathogens. We thereby show that, in the host, even a successful human pathogen can rely largely on a strategy normally found in nonpathogenic fungi from a terrestrial environment. Copyright © 2016 Gerwien et al.

  13. Probiotics: their role in the treatment and prevention of disease.

    PubMed

    Doron, Shira; Gorbach, Sherwood L

    2006-04-01

    A probiotic is a "live microbial food ingredients that, when ingested in sufficient quantities, exerts health benefits on the consumer". Probiotics exert their benefits through several mechanisms; they prevent colonization, cellular adhesion and invasion by pathogenic organisms, they have direct antimicrobial activity and they modulate the host immune response. The strongest evidence for the clinical effectiveness of probiotics has been in their use for the prevention of symptoms of lactose intolerance, treatment of acute diarrhea, attenuation of antibiotic-associated gastrointestinal side effects and the prevention and treatment of allergy manifestations. More research needs to be carried out to clarify conflicting findings on the use of probiotics for prevention of travelers' diarrhea, infections in children in daycare and dental caries, and elimination of nasal colonization with potentially pathogenic bacteria. Promising ongoing research is being conducted on the use of probiotics for the treatment of Clostridium difficile colitis, treatment of Helicobacter pylori infection, treatment of inflammatory bowel disease and prevention of relapse, treatment of irritable bowel syndrome, treatment of intestinal inflammation in cystic fibrosis patients, and prevention of necrotizing enterocolitis in premature infants. Finally, areas of future research include the use of probiotics for the treatment of rheumatoid arthritis, prevention of cancer and the treatment of graft-versus-host disease in bone marrow transplant recipients.

  14. Novel Reassortant Influenza A(H5N8) Viruses among Inoculated Domestic and Wild Ducks, South Korea, 2014

    PubMed Central

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Jeong, Jipseol; Choi, Jun-Gu; Jeong, Joojin; Moon, Oun-Kyong; Yoon, Hachung; Cho, Youngmi; Kang, Young-Myong; Lee, Hee-Soo

    2015-01-01

    An outbreak of highly pathogenic avian influenza, caused by a novel reassortant influenza A (H5N8) virus, occurred among poultry and wild birds in South Korea in 2014. The aim of this study was to evaluate the pathogenesis in and mode of transmission of this virus among domestic and wild ducks. Three of the viruses had similar pathogenicity among infected domestic ducks: the H5N8 viruses were moderately pathogenic (0%–20% mortality rate); in wild mallard ducks, the H5N8 and H5N1 viruses did not cause severe illness or death; viral replication and shedding were greater in H5N8-infected mallards than in H5N1-infected mallards. Identification of H5N8 viruses in birds exposed to infected domestic ducks and mallards indicated that the viruses could spread by contact. We propose active surveillance to support prevention of the spread of this virus among wild birds and poultry, especially domestic ducks. PMID:25625281

  15. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization

    PubMed Central

    Kombrink, Anja; Hansen, Guido; Valkenburg, Dirk-Jan

    2013-01-01

    While host immune receptors detect pathogen-associated molecular patterns to activate immunity, pathogens attempt to deregulate host immunity through secreted effectors. Fungi employ LysM effectors to prevent recognition of cell wall-derived chitin by host immune receptors, although the mechanism to compete for chitin binding remained unclear. Structural analysis of the LysM effector Ecp6 of the fungal tomato pathogen Cladosporium fulvum reveals a novel mechanism for chitin binding, mediated by intrachain LysM dimerization, leading to a chitin-binding groove that is deeply buried in the effector protein. This composite binding site involves two of the three LysMs of Ecp6 and mediates chitin binding with ultra-high (pM) affinity. Intriguingly, the remaining singular LysM domain of Ecp6 binds chitin with low micromolar affinity but can nevertheless still perturb chitin-triggered immunity. Conceivably, the perturbation by this LysM domain is not established through chitin sequestration but possibly through interference with the host immune receptor complex. DOI: http://dx.doi.org/10.7554/eLife.00790.001 PMID:23840930

  16. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem.

    PubMed

    Russo, Thomas A; Johnson, James R

    2003-04-01

    Escherichia coli is probably the best-known bacterial species and one of the most frequently isolated organisms from clinical specimens. Despite this, underappreciation and misunderstandings exist among medical professionals and the lay public alike regarding E. coli as an extraintestinal pathogen. Underappreciated features include (i) the wide variety of extraintestinal infections E. coli can cause, (ii) the high incidence and associated morbidity, mortality, and costs of these diverse clinical syndromes, (iii) the pathogenic potential of different groups of E. coli strains for causing intestinal versus extraintestinal disease, and (iv) increasing antimicrobial resistance. In this era in which health news often sensationalizes uncommon infection syndromes or pathogens, the strains of E. coli that cause extraintestinal infection are an increasingly important endemic problem and underappreciated "killers". Billions of health care dollars, millions of work days, and hundreds of thousands of lives are lost each year to extraintestinal infections due to E. coli. New treatments and prevention measures will be needed for improved outcomes and a diminished disease burden.

  17. Epidemiology of the Ebola Virus: Facts and Hypotheses.

    PubMed

    Portela Câmara F

    1998-12-01

    Marburg and Ebola viruses are emerging pathogens recognized since 1967, and in 1976, when they were first identified. These viruses are the only members of the Filoviridae family. They cause severe, frequently fatal, hemorrhagic fever. Each genus includes some serotypes with the distinctive characteristics to cause high mortality rate during outbreaks. The Ebola-Zaire subtype is the most lethal variant. The epidemiology of human pathogenic filovirus is reviewed in this paper considering the most relevant facts. Primary human cases arise probably through close contact with infected primates. This point may be the key to preventing the introduction of these viruses in human populations. Once introduced in humans, the infection may spread through close contact with infected individuals or their body fluids, particularly in hospital environments. A main feature of filovirus outbreaks is the occurrence of cycles of secondary infection.

  18. Flow cytometric purification of Colletotrichum higginsianum biotrophic hyphae from Arabidopsis leaves for stage-specific transcriptome analysis.

    PubMed

    Takahara, Hiroyuki; Dolf, Andreas; Endl, Elmar; O'Connell, Richard

    2009-08-01

    Generation of stage-specific cDNA libraries is a powerful approach to identify pathogen genes that are differentially expressed during plant infection. Biotrophic pathogens develop specialized infection structures inside living plant cells, but sampling the transcriptome of these structures is problematic due to the low ratio of fungal to plant RNA, and the lack of efficient methods to isolate them from infected plants. Here we established a method, based on fluorescence-activated cell sorting (FACS), to purify the intracellular biotrophic hyphae of Colletotrichum higginsianum from homogenates of infected Arabidopsis leaves. Specific selection of viable hyphae using a fluorescent vital marker provided intact RNA for cDNA library construction. Pilot-scale sequencing showed that the library was enriched with plant-induced and pathogenicity-related fungal genes, including some encoding small, soluble secreted proteins that represent candidate fungal effectors. The high purity of the hyphae (94%) prevented contamination of the library by sequences derived from host cells or other fungal cell types. RT-PCR confirmed that genes identified in the FACS-purified hyphae were also expressed in planta. The method has wide applicability for isolating the infection structures of other plant pathogens, and will facilitate cell-specific transcriptome analysis via deep sequencing and microarray hybridization, as well as proteomic analyses.

  19. Membrane microdomains in immunity: glycosphingolipid-enriched domain-mediated innate immune responses.

    PubMed

    Iwabuchi, Kazuhisa; Nakayama, Hitoshi; Masuda, Hiromi; Kina, Katsunari; Ogawa, Hideoki; Takamori, Kenji

    2012-01-01

    Over the last 30 years, many studies have indicated that glycosphingolipids (GSLs) expressed on the cell surface may act as binding sites for microorganisms. Based on their physicochemical characteristics, GSLs form membrane microdomains with cholesterol, sphingomyelin, glycosylphosphatidylinositol (GPI)-anchored proteins, and various signaling molecules, and GSL-enriched domains have been shown to be involved in these defense responses. Among the GSLs, lactosylceramide (LacCer, CDw17) can bind to various microorganisms. LacCer is expressed at high levels on the plasma membrane of human neutrophils, and forms membrane microdomains associated with the Src family tyrosine kinase Lyn. LacCer-enriched membrane microdomains mediate superoxide generation, chemotaxis, and non-opsonic phagocytosis. Therefore, LacCer-enriched membrane microdomains are thought to function as pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) expressed on microorganisms. In contrast, several pathogens have developed infection mechanisms using membrane microdomains. In addition, some pathogens have the ability to avoid degradation by escaping from the vacuolar compartment or preventing phagosome maturation, utilizing membrane microdomains, such as LacCer-enriched domains, of host cells. The detailed molecular mechanisms of these membrane microdomain-associated host-pathogen interactions remain to be elucidated. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  20. RNA Editing of the GP Gene of Ebola Virus is an Important Pathogenicity Factor.

    PubMed

    Volchkova, Valentina A; Dolnik, Olga; Martinez, Mikel J; Reynard, Olivier; Volchkov, Viktor E

    2015-10-01

    Synthesis of the surface glycoprotein GP of Ebola virus (EBOV) is dependent on transcriptional RNA editing, whereas direct expression of the GP gene results in synthesis of nonstructural secreted glycoprotein sGP. In this study, we investigate the role of RNA editing in the pathogenicity of EBOV using a guinea pig model and recombinant guinea pig-adapted EBOV containing mutations at the editing site, allowing expression of surface GP without the need for RNA editing, and also preventing synthesis of sGP. We demonstrate that the elimination of the editing site leads to EBOV attenuation in vivo, explained by lower virus spread caused by the higher virus cytotoxicity and, most likely, by an increased ability of the host defense systems to recognize and eliminate virus-infected cells. We also demonstrate that expression of sGP does not affect pathogenicity of EBOV in guinea pigs. In conclusion, data obtained indicate that downregulation of the level of surface GP expression through a mechanism of GP gene RNA editing plays an important role in the high pathogenicity of EBOV. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. First Evidence of Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in Hong Kong Amphibian Trade

    PubMed Central

    Kolby, Jonathan E.; Smith, Kristine M.; Berger, Lee; Karesh, William B; Preston, Asa; Pessier, Allan P.; Skerratt, Lee F.

    2014-01-01

    The emerging infectious amphibian diseases caused by amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) and ranaviruses are responsible for global amphibian population declines and extinctions. Although likely to have been spread by a variety of activities, transcontinental dispersal appears closely associated with the international trade in live amphibians. The territory of Hong Kong reports frequent, high volume trade in amphibians, and yet the presence of Bd and ranavirus have not previously been detected in either traded or free-ranging amphibians. In 2012, a prospective surveillance project was conducted to investigate the presence of these pathogens in commercial shipments of live amphibians exported from Hong Kong International Airport. Analysis of skin (Bd) and cloacal (ranavirus) swabs by quantitative PCR detected pathogen presence in 31/265 (11.7%) and in 105/185 (56.8%) of amphibians, respectively. In addition, the water in which animals were transported tested positive for Bd, demonstrating the risk of pathogen pollution by the disposal of untreated wastewater. It is uncertain whether Bd and ranavirus remain contained within Hong Kong’s trade sector, or if native amphibians have already been exposed. Rapid response efforts are now urgently needed to determine current pathogen distribution in Hong Kong, evaluate potential trade-associated exposure to free-ranging amphibians, and identify opportunities to prevent disease establishment. PMID:24599268

  2. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies

    PubMed Central

    Terlizzi, Maria E.; Gribaudo, Giorgio; Maffei, Massimo E.

    2017-01-01

    Urinary tract infections (UTIs) are one of the most common pathological conditions in both community and hospital settings. It has been estimated that about 150 million people worldwide develop UTI each year, with high social costs in terms of hospitalizations and medical expenses. Among the common uropathogens associated to UTIs development, UroPathogenic Escherichia coli (UPEC) is the primary cause. UPEC strains possess a plethora of both structural (as fimbriae, pili, curli, flagella) and secreted (toxins, iron-acquisition systems) virulence factors that contribute to their capacity to cause disease, although the ability to adhere to host epithelial cells in the urinary tract represents the most important determinant of pathogenicity. On the opposite side, the bladder epithelium shows a multifaceted array of host defenses including the urine flow and the secretion of antimicrobial substances, which represent useful tools to counteract bacterial infections. The fascinating and intricate dynamics between these players determine a complex interaction system that needs to be revealed. This review will focus on the most relevant components of UPEC arsenal of pathogenicity together with the major host responses to infection, the current approved treatment and the emergence of resistant UPEC strains, the vaccine strategies, the natural antimicrobial compounds along with innovative anti-adhesive and prophylactic approaches to prevent UTIs. PMID:28861072

  3. Lipoteichoic acid (LTA) and lipopolysaccharides (LPS) from periodontal pathogenic bacteria facilitate oncogenic herpesvirus infection within primary oral cells.

    PubMed

    Dai, Lu; DeFee, Michael R; Cao, Yueyu; Wen, Jiling; Wen, Xiaofei; Noverr, Mairi C; Qin, Zhiqiang

    2014-01-01

    Kaposi's sarcoma (KS) remains the most common tumor arising in patients with HIV/AIDS, and involvement of the oral cavity represents one of the most common clinical manifestations of this tumor. HIV infection incurs an increased risk for periodontal diseases and oral carriage of a variety of bacteria. Whether interactions involving pathogenic bacteria and oncogenic viruses in the local environment facilitate replication or maintenance of these viruses in the oral cavity remains unknown. In the current study, our data indicate that pretreatment of primary human oral fibroblasts with two prototypical pathogen-associated molecular patterns (PAMPs) produced by oral pathogenic bacteria-lipoteichoic acid (LTA) and lipopolysaccharide (LPS), increase KSHV entry and subsequent viral latent gene expression during de novo infection. Further experiments demonstrate that the underlying mechanisms induced by LTA and/or LPS include upregulation of cellular receptor, increasing production of reactive oxygen species (ROS), and activating intracellular signaling pathways such as MAPK and NF-κB, and all of which are closely associated with KSHV entry or gene expression within oral cells. Based on these findings, we hope to provide the framework of developing novel targeted approaches for treatment and prevention of oral KSHV infection and KS development in high-risk HIV-positive patients.

  4. Lipoteichoic Acid (LTA) and Lipopolysaccharides (LPS) from Periodontal Pathogenic Bacteria Facilitate Oncogenic Herpesvirus Infection within Primary Oral Cells

    PubMed Central

    Dai, Lu; DeFee, Michael R.; Cao, Yueyu; Wen, Jiling; Wen, Xiaofei; Noverr, Mairi C.; Qin, Zhiqiang

    2014-01-01

    Kaposi’s sarcoma (KS) remains the most common tumor arising in patients with HIV/AIDS, and involvement of the oral cavity represents one of the most common clinical manifestations of this tumor. HIV infection incurs an increased risk for periodontal diseases and oral carriage of a variety of bacteria. Whether interactions involving pathogenic bacteria and oncogenic viruses in the local environment facilitate replication or maintenance of these viruses in the oral cavity remains unknown. In the current study, our data indicate that pretreatment of primary human oral fibroblasts with two prototypical pathogen-associated molecular patterns (PAMPs) produced by oral pathogenic bacteria–lipoteichoic acid (LTA) and lipopolysaccharide (LPS), increase KSHV entry and subsequent viral latent gene expression during de novo infection. Further experiments demonstrate that the underlying mechanisms induced by LTA and/or LPS include upregulation of cellular receptor, increasing production of reactive oxygen species (ROS), and activating intracellular signaling pathways such as MAPK and NF-κB, and all of which are closely associated with KSHV entry or gene expression within oral cells. Based on these findings, we hope to provide the framework of developing novel targeted approaches for treatment and prevention of oral KSHV infection and KS development in high-risk HIV-positive patients. PMID:24971655

  5. Nipah and Hendra Virus Nucleoproteins Inhibit Nuclear Accumulation of Signal Transducer and Activator of Transcription 1 (STAT1) and STAT2 by Interfering with Their Complex Formation

    PubMed Central

    Sugai, Akihiro; Sato, Hiroki; Takayama, Ikuyo; Yoneda, Misako

    2017-01-01

    ABSTRACT Henipaviruses, such as Nipah (NiV) and Hendra (HeV) viruses, are highly pathogenic zoonotic agents within the Paramyxoviridae family. The phosphoprotein (P) gene products of the paramyxoviruses have been well characterized for their interferon (IFN) antagonist activity and their contribution to viral pathogenicity. In this study, we demonstrated that the nucleoprotein (N) of henipaviruses also prevents the host IFN signaling response. Reporter assays demonstrated that the NiV and HeV N proteins (NiV-N and HeV-N, respectively) dose-dependently suppressed both type I and type II IFN responses and that the inhibitory effect was mediated by their core domains. Additionally, NiV-N prevented the nuclear transport of signal transducer and activator of transcription 1 (STAT1) and STAT2. However, NiV-N did not associate with Impα5, Impβ1, or Ran, which are members of the nuclear transport system for STATs. Although P protein is known as a binding partner of N protein and actively retains N protein in the cytoplasm, the IFN antagonist activity of N protein was not abolished by the coexpression of P protein. This suggests that the IFN inhibition by N protein occurs in the cytoplasm. Furthermore, we demonstrated that the complex formation of STATs was hampered in the N protein-expressing cells. As a result, STAT nuclear accumulation was reduced, causing a subsequent downregulation of interferon-stimulated genes (ISGs) due to low promoter occupancy by STAT complexes. This novel route for preventing host IFN responses by henipavirus N proteins provides new insight into the pathogenesis of these viruses. IMPORTANCE Paramyxoviruses are well known for suppressing interferon (IFN)-mediated innate immunity with their phosphoprotein (P) gene products, and the henipaviruses also possess P, V, W, and C proteins for evading host antiviral responses. There are numerous studies providing evidence for the relationship between viral pathogenicity and antagonistic activities against IFN responses by P gene products. Meanwhile, little attention has been paid to the influence of nucleoprotein (N) on host innate immune responses. In this study, we demonstrated that both the NiV and HeV N proteins have antagonistic activity against the JAK/STAT signaling pathway by preventing the nucleocytoplasmic trafficking of STAT1 and STAT2. This inhibitory effect is due to an impairment of the ability of STATs to form complexes. These results provide new insight into the involvement of N protein in viral pathogenicity via its IFN antagonism. PMID:28835499

  6. Nipah and Hendra Virus Nucleoproteins Inhibit Nuclear Accumulation of Signal Transducer and Activator of Transcription 1 (STAT1) and STAT2 by Interfering with Their Complex Formation.

    PubMed

    Sugai, Akihiro; Sato, Hiroki; Takayama, Ikuyo; Yoneda, Misako; Kai, Chieko

    2017-11-01

    Henipaviruses, such as Nipah (NiV) and Hendra (HeV) viruses, are highly pathogenic zoonotic agents within the Paramyxoviridae family. The phosphoprotein (P) gene products of the paramyxoviruses have been well characterized for their interferon (IFN) antagonist activity and their contribution to viral pathogenicity. In this study, we demonstrated that the nucleoprotein (N) of henipaviruses also prevents the host IFN signaling response. Reporter assays demonstrated that the NiV and HeV N proteins (NiV-N and HeV-N, respectively) dose-dependently suppressed both type I and type II IFN responses and that the inhibitory effect was mediated by their core domains. Additionally, NiV-N prevented the nuclear transport of signal transducer and activator of transcription 1 (STAT1) and STAT2. However, NiV-N did not associate with Impα5, Impβ1, or Ran, which are members of the nuclear transport system for STATs. Although P protein is known as a binding partner of N protein and actively retains N protein in the cytoplasm, the IFN antagonist activity of N protein was not abolished by the coexpression of P protein. This suggests that the IFN inhibition by N protein occurs in the cytoplasm. Furthermore, we demonstrated that the complex formation of STATs was hampered in the N protein-expressing cells. As a result, STAT nuclear accumulation was reduced, causing a subsequent downregulation of interferon-stimulated genes (ISGs) due to low promoter occupancy by STAT complexes. This novel route for preventing host IFN responses by henipavirus N proteins provides new insight into the pathogenesis of these viruses. IMPORTANCE Paramyxoviruses are well known for suppressing interferon (IFN)-mediated innate immunity with their phosphoprotein (P) gene products, and the henipaviruses also possess P, V, W, and C proteins for evading host antiviral responses. There are numerous studies providing evidence for the relationship between viral pathogenicity and antagonistic activities against IFN responses by P gene products. Meanwhile, little attention has been paid to the influence of nucleoprotein (N) on host innate immune responses. In this study, we demonstrated that both the NiV and HeV N proteins have antagonistic activity against the JAK/STAT signaling pathway by preventing the nucleocytoplasmic trafficking of STAT1 and STAT2. This inhibitory effect is due to an impairment of the ability of STATs to form complexes. These results provide new insight into the involvement of N protein in viral pathogenicity via its IFN antagonism. Copyright © 2017 American Society for Microbiology.

  7. Identifying and exploiting genes that potentiate the evolution of antibiotic resistance.

    PubMed

    Gifford, Danna R; Furió, Victoria; Papkou, Andrei; Vogwill, Tom; Oliver, Antonio; MacLean, R Craig

    2018-06-01

    There is an urgent need to develop novel approaches for predicting and preventing the evolution of antibiotic resistance. Here, we show that the ability to evolve de novo resistance to a clinically important β-lactam antibiotic, ceftazidime, varies drastically across the genus Pseudomonas. This variation arises because strains possessing the ampR global transcriptional regulator evolve resistance at a high rate. This does not arise because of mutations in ampR. Instead, this regulator potentiates evolution by allowing mutations in conserved peptidoglycan biosynthesis genes to induce high levels of β-lactamase expression. Crucially, blocking this evolutionary pathway by co-administering ceftazidime with the β-lactamase inhibitor avibactam can be used to eliminate pathogenic P. aeruginosa populations before they can evolve resistance. In summary, our study shows that identifying potentiator genes that act as evolutionary catalysts can be used to both predict and prevent the evolution of antibiotic resistance.

  8. [Prevention and control of nosocomial and health-care facilities associated infections caused by species of Candida and other yeasts].

    PubMed

    Pemán, Javier; Zaragoza, Rafael; Salavert, Miguel

    2013-12-01

    Knowledge of the epidemiology of invasive fungal diseases caused by yeasts (Candida spp., especially) in health care settings allows the establishment of the levels necessary for its prevention. A first step is to identify groups of patients at high risk of nosocomial invasive fungal infections, establish accurate risk factors, observing the periods of greatest risk, and analyze the epidemiological profile in genera and species as well as the patterns of antifungal resistance. Secondly, mechanisms to avoid persistent exposure to potential fungal pathogens must be programed, protecting areas and recommending measures such as the control of the quality of the air and water, inside and outside the hospital, and other products or substances able to cause outbreaks. Finally, apart from the correct implementation of these measures, in selected patients at very high risk, the use of antifungal prophylaxis should be considered following the guidelines published.

  9. Bioengineered probiotics, a strategic approach to control enteric infections

    PubMed Central

    Amalaradjou, Mary Anne Roshni; Bhunia, Arun K

    2013-01-01

    Enteric infections account for high morbidity and mortality and are considered to be the fifth leading cause of death at all ages worldwide. Seventy percent of all enteric infections are foodborne. Thus significant efforts have been directed toward the detection, control and prevention of foodborne diseases. Many antimicrobials including antibiotics have been used for their control and prevention. However, probiotics offer a potential alternative intervention strategy owing to their general health beneficial properties and inhibitory effects against foodborne pathogens. Often, antimicrobial probiotic action is non-specific and non-discriminatory or may be ineffective. In such cases, bioengineered probiotics expressing foreign gene products to achieve specific function is highly desirable. In this review we summarize the strategic development of recombinant bioengineered probiotics to control enteric infections, and to examine how scientific advancements in the human microbiome and their immunomodulatory effects help develop such novel and safe bioengineered probiotics. PMID:23327986

  10. US Centers for Disease Control and Prevention and Its Partners' Contributions to Global Health Security.

    PubMed

    Tappero, Jordan W; Cassell, Cynthia H; Bunnell, Rebecca E; Angulo, Frederick J; Craig, Allen; Pesik, Nicki; Dahl, Benjamin A; Ijaz, Kashef; Jafari, Hamid; Martin, Rebecca

    2017-12-01

    To achieve compliance with the revised World Health Organization International Health Regulations (IHR 2005), countries must be able to rapidly prevent, detect, and respond to public health threats. Most nations, however, remain unprepared to manage and control complex health emergencies, whether due to natural disasters, emerging infectious disease outbreaks, or the inadvertent or intentional release of highly pathogenic organisms. The US Centers for Disease Control and Prevention (CDC) works with countries and partners to build and strengthen global health security preparedness so they can quickly respond to public health crises. This report highlights selected CDC global health protection platform accomplishments that help mitigate global health threats and build core, cross-cutting capacity to identify and contain disease outbreaks at their source. CDC contributions support country efforts to achieve IHR 2005 compliance, contribute to the international framework for countering infectious disease crises, and enhance health security for Americans and populations around the world.

  11. Analysis of drug binding pockets and repurposing opportunities for twelve essential enzymes of ESKAPE pathogens

    PubMed Central

    Naz, Sadia; Ngo, Tony; Farooq, Umar

    2017-01-01

    Background The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis. The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Methods Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli, two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. Results High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis. Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket alignments and distance-based maps provide guidelines for drug discovery and repurposing. In addition they also provide recommendations for the relevant model bacteria that may be used for initial drug testing. Discussion Comparing ligand binding sites through sequence identity calculation could be an effective approach to identify conserved orthologs as drug binding pockets have shown higher level of conservation among various species. By using this approach we could avoid the problems associated with full sequence comparison. We identified essential metabolic enzymes among ESKAPE pathogens that share high sequence identity in their putative drug binding pockets (up to 100%), of which known inhibitors can potentially antagonize these identical pockets in the various species in a similar manner. PMID:28948099

  12. Analysis of drug binding pockets and repurposing opportunities for twelve essential enzymes of ESKAPE pathogens.

    PubMed

    Naz, Sadia; Ngo, Tony; Farooq, Umar; Abagyan, Ruben

    2017-01-01

    The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis . The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli , two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis . Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket alignments and distance-based maps provide guidelines for drug discovery and repurposing. In addition they also provide recommendations for the relevant model bacteria that may be used for initial drug testing. Comparing ligand binding sites through sequence identity calculation could be an effective approach to identify conserved orthologs as drug binding pockets have shown higher level of conservation among various species. By using this approach we could avoid the problems associated with full sequence comparison. We identified essential metabolic enzymes among ESKAPE pathogens that share high sequence identity in their putative drug binding pockets (up to 100%), of which known inhibitors can potentially antagonize these identical pockets in the various species in a similar manner.

  13. Antibacterial isoeugenol coating on stainless steel and polyethylene surfaces prevents biofilm growth.

    PubMed

    Nielsen, C K; Subbiahdoss, G; Zeng, G; Salmi, Z; Kjems, J; Mygind, T; Snabe, T; Meyer, R L

    2018-01-01

    Pathogenic bacteria can spread between individuals or between food items via the surfaces they share. Limiting the survival of pathogens on surfaces, therefore, presents an opportunity to limit at least one route of how pathogens spread. In this study, we propose that a simple coating with the essential oil isoeugenol can be used to circumvent the problem of bacterial transfer via surfaces. Two commonly used materials, stainless steel and polyethylene, were coated by physical adsorption, and the coatings were characterized by Raman spectroscopy, atomic force microscopy and water contact angle measurements. We quantified and visualized the colonization of coated and uncoated surfaces by three bacteria: Staphylococcus aureus, Listeria monocytogenes and Pseudomonas fluorescens. No viable cells were detected on surfaces coated with isoeugenol. The isoeugenol coating prepared with simple adsorption proved effective in preventing biofilm formation on stainless steel and polyethylene surfaces. The result was caused by the antibacterial effect of isoeugenol, as the coating did not diminish the adhesive properties of the surface. Our study demonstrates that a simple isoeugenol coating can prevent biofilm formation of S. aureus, L. monocytogenes and P. fluorescens on two commonly used surfaces. © 2017 The Society for Applied Microbiology.

  14. Topical application of probiotics in skin: adhesion, antimicrobial and antibiofilm in vitro assays.

    PubMed

    Lopes, E G; Moreira, D A; Gullón, P; Gullón, B; Cardelle-Cobas, A; Tavaria, F K

    2017-02-01

    When skin dysbiosis occurs as a result of skin disorders, probiotics can act as modulators, restoring microbial balance. Several properties of selected probiotics were evaluated so that their topical application could be considered. Adhesion, antimicrobial, quorum sensing and antibiofilm assays were carried out with several probiotic strains and tested against selected skin pathogens. All tested strains displayed significant adhesion to keratin. All lactobacilli with the exception of Lactobacillus delbrueckii, showed antimicrobial activity against skin pathogens, mainly due to organic acid production. Most of them also prevented biofilm formation, but only Propioniferax innocua was able to break down mature biofilms. This study demonstrates that although all tested probiotics adhered to human keratin, they showed limited ability to prevent adhesion of some potential skin pathogens. Most of the tested probiotics successfully prevented biofilm formation, suggesting that they may be successfully used in the future as a complement to conventional therapies in the treatment of a range of skin disorders. The topically used probiotics may be a natural, targeted treatment approach to several skin disorders and a complement to conventional therapies which present many undesirable side effects. © 2016 The Society for Applied Microbiology.

  15. Avian Influenza Risk Perception and Preventive Behavior among Traditional Market Workers and Shoppers in Taiwan: Practical Implications for Prevention

    PubMed Central

    Liu, Ming-Der

    2011-01-01

    Background Avian influenza (AI) can be highly pathogenic and fatal. Preventive behavior such as handwashing and wearing face masks has been recommended. However, little is known about what psychosocial factors might influence people's decision to adopt such preventive behavior. This study aims to explore risk perception and other factors associated with handwashing and wearing face masks to prevent AI. Methodology/Principal Findings An interviewer-administered survey was conducted among 352 traditional market workers and shoppers in Taiwan between December 2009 and January 2010. Factors associated with the recommended AI preventive behavior (i.e., when in a traditional market, wearing a face mask and also washing hands after any contact with poultry) included: having correct knowledge about the fatality rate of AI (adjusted odds ratio [AOR] = 4.18), knowing of severe cases of AI (AOR = 2.13), being informed of local AI outbreaks (AOR = 2.24), living in northeastern Taiwan (AOR = 6.01), having a senior high-school education (AOR = 3.33), and having a university or higher education (AOR = 6.86). Gender interactive effect was also found among participants with a senior high-school education, with males being less likely to engage in the recommended AI preventive behavior than their female counterparts (AOR = 0.34). Conclusions/Significance Specific information concerning AI risk perception was associated with the recommended AI preventive behavior. In particular, having correct knowledge about the fatality rate of AI and being informed of severe cases and local outbreaks of AI were linked to increased AI preventive behavior. These findings underscore the importance of transparency in dealing with epidemic information. These results also have practical implications for prevention and policy-making to more effectively promote the recommended AI preventive behavior in the public. PMID:21912667

  16. Mosquitoes on a plane: Disinsection will not stop the spread of vector-borne pathogens, a simulation study

    PubMed Central

    Mier-y-Teran-Romero, Luis; Tatem, Andrew J.

    2017-01-01

    Mosquito-borne diseases are increasingly being recognized as global threats, with increased air travel accelerating their occurrence in travelers and their spread to new locations. Since the early days of aviation, concern over the possible transportation of infected mosquitoes has led to recommendations to disinsect aircraft. Despite rare reports of mosquitoes, most likely transported on aircraft, infecting people far from endemics areas, it is unclear how important the role of incidentally transported mosquitoes is compared to the role of traveling humans. We used data for Plasmodium falciparum and dengue viruses to estimate the probability of introduction of these pathogens by mosquitoes and by humans via aircraft under ideal conditions. The probability of introduction of either pathogen by mosquitoes is low due to few mosquitoes being found on aircraft, low infection prevalence among mosquitoes, and high mortality. Even without disinsection, introduction via infected human travelers was far more likely than introduction by infected mosquitoes; more than 1000 times more likely for P. falciparum and more than 200 times more likely for dengue viruses. Even in the absence of disinsection and under the most favorable conditions, introduction of mosquito-borne pathogens via air travel is far more likely to occur as a result of an infected human travelling rather than the incidental transportation of infected mosquitoes. Thus, while disinsection may serve a role in preventing the spread of vector species and other invasive insects, it is unlikely to impact the spread of mosquito-borne pathogens. PMID:28672006

  17. Evidence for the Convergence Model: The Emergence of Highly Pathogenic Avian Influenza (H5N1) in Viet Nam

    PubMed Central

    Saksena, Sumeet; Fox, Jefferson; Epprecht, Michael; Tran, Chinh C.; Nong, Duong H.; Spencer, James H.; Nguyen, Lam; Finucane, Melissa L.; Tran, Vien D.; Wilcox, Bruce A.

    2015-01-01

    Building on a series of ground breaking reviews that first defined and drew attention to emerging infectious diseases (EID), the ‘convergence model’ was proposed to explain the multifactorial causality of disease emergence. The model broadly hypothesizes disease emergence is driven by the co-incidence of genetic, physical environmental, ecological, and social factors. We developed and tested a model of the emergence of highly pathogenic avian influenza (HPAI) H5N1 based on suspected convergence factors that are mainly associated with land-use change. Building on previous geospatial statistical studies that identified natural and human risk factors associated with urbanization, we added new factors to test whether causal mechanisms and pathogenic landscapes could be more specifically identified. Our findings suggest that urbanization spatially combines risk factors to produce particular types of peri-urban landscapes with significantly higher HPAI H5N1 emergence risk. The work highlights that peri-urban areas of Viet Nam have higher levels of chicken densities, duck and geese flock size diversities, and fraction of land under rice or aquaculture than rural and urban areas. We also found that land-use diversity, a surrogate measure for potential mixing of host populations and other factors that likely influence viral transmission, significantly improves the model’s predictability. Similarly, landscapes where intensive and extensive forms of poultry production overlap were found at greater risk. These results support the convergence hypothesis in general and demonstrate the potential to improve EID prevention and control by combing geospatial monitoring of these factors along with pathogen surveillance programs. PMID:26398118

  18. Relationships among bather density, levels of human waterborne pathogens, and fecal coliform counts in marine recreational beach water.

    PubMed

    Graczyk, Thaddeus K; Sunderland, Deirdre; Awantang, Grace N; Mashinski, Yessika; Lucy, Frances E; Graczyk, Zofi; Chomicz, Lidia; Breysse, Patrick N

    2010-04-01

    During summer months, samples of marine beach water were tested weekly for human waterborne pathogens in association with high and low bather numbers during weekends and weekdays, respectively. The numbers of bathers on weekends were significantly higher than on weekdays (P < 0.001), and this was associated with a significant (P < 0.04) increase in water turbidity. The proportion of water samples containing Cryptosporidium parvum, Giardia duodenalis, and Enterocytozoon bieneusi was significantly higher (P < 0.03) on weekends than on weekdays, and significantly (P < 0.01) correlated with enterococci counts. The concentration of all three waterborne pathogens was significantly correlated with bather density (P < 0.01). The study demonstrated that: (a) human pathogens were present in beach water on days deemed acceptable for bathing according to fecal bacterial standards; (b) enterococci count was a good indicator for the presence of Cryptosporidium, Giardia, and microsporidian spores in recreational marine beach water; (c) water should be tested for enterococci during times when bather numbers are high; (d) re-suspension of bottom sediments by bathers caused elevated levels of enterococci and waterborne parasites, thus bathers themselves can create a non-point source for water contamination; and (e) exposure to recreational bathing waters can play a role in epidemiology of microsporidiosis. In order to protect public health, it is recommended to: (a) prevent diapered children from entering beach water; (b) introduce bather number limits to recreational areas; (c) advise people with gastroenteritis to avoid bathing; and (d) use showers prior to and after bathing.

  19. Prevalence of Trichomonas vaginalis in Women Visiting 2 Obstetrics and Gynecology Clinics in Daegu, South Korea.

    PubMed

    Goo, Youn-Kyoung; Shin, Won-Sik; Yang, Hye-Won; Joo, So-Young; Song, Su-Min; Ryu, Jae-Sook; Lee, Won-Myung; Kong, Hyun-Hee; Lee, Won-Ki; Lee, Sang-Eun; Lee, Won-Ja; Chung, Dong-Il; Hong, Yeonchul

    2016-02-01

    This study explored epidemiological trends in trichomoniasis in Daegu, South Korea. Wet mount microscopy, PCR, and multiplex PCR were used to test for Trichomonas vaginalis in vaginal swab samples obtained from 621 women visiting 2 clinics in Daegu. Of the 621 women tested, microscopy detected T. vaginalis in 4 (0.6%) patients, PCR detected T. vaginalis in 19 (3.0%) patients, and multiplex PCR detected T. vaginalis in 12 (1.9%) patients. Testing via PCR demonstrated high sensitivity and high negative predictive value for T. vaginalis. Among the 19 women who tested positive for T. vaginalis according to PCR, 94.7% (18/19) reported vaginal signs and symptoms. Notably, more than 50% of T. vaginalis infections occurred in females younger than 30 years old, and 58% were unmarried. Multiplex PCR, which simultaneously detects pathogens from various sexually transmitted infections, revealed that 91.7% (11/12) of patients were infected with 2 or more pathogens. Mycoplasma hominis was the most prevalent co-infection pathogen with T. vaginalis, followed by Ureaplasma urealyticum and Chlamydia trachomatis. Our results indicate that PCR and multiplex PCR are the most sensitive tools for T. vaginalis diagnosis, rather than microscopy which has been routinely used to detect T. vaginalis infections in South Korea. Therefore, clinicians should take note of the high prevalence of T. vaginalis infections among adolescent and young women in order to prevent persistent infection and transmission of this disease.

  20. Reintroduction of H5N1 highly pathogenic avian influenza virus by migratory water birds, causing poultry outbreaks in the 2010-2011 winter season in Japan.

    PubMed

    Sakoda, Yoshihiro; Ito, Hiroshi; Uchida, Yuko; Okamatsu, Masatoshi; Yamamoto, Naoki; Soda, Kosuke; Nomura, Naoki; Kuribayashi, Saya; Shichinohe, Shintaro; Sunden, Yuji; Umemura, Takashi; Usui, Tatsufumi; Ozaki, Hiroichi; Yamaguchi, Tsuyoshi; Murase, Toshiyuki; Ito, Toshihiro; Saito, Takehiko; Takada, Ayato; Kida, Hiroshi

    2012-03-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) was reintroduced and caused outbreaks in chickens in the 2010-2011 winter season in Japan, which had been free from highly pathogenic avian influenza (HPAI) since 2007 when HPAI outbreaks occurred and were controlled. On 14 October 2010 at Lake Ohnuma, Wakkanai, the northernmost part of Hokkaido, Japan, H5N1 HPAIVs were isolated from faecal samples of ducks flying from their nesting lakes in Siberia. Since then, in Japan, H5N1 HPAIVs have been isolated from 63 wild birds in 17 prefectures and caused HPAI outbreaks in 24 chicken farms in nine prefectures by the end of March in 2011. Each of these isolates was genetically closely related to the HPAIV isolates at Lake Ohnuma, and those in China, Mongolia, Russia and Korea, belonging to genetic clade 2.3.2.1. In addition, these isolates were genetically classified into three groups, suggesting that the viruses were transmitted by migratory water birds through at least three different routes from their northern territory to Japan. These isolates were antigenic variants, which is consistent with selection in poultry under the immunological pressure induced by vaccination. To prevent the perpetuation of viruses in the lakes where water birds nest in summer in Siberia, prompt eradication of HPAIVs in poultry is urgently needed in Asian countries where HPAI has not been controlled.

  1. Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014.

    PubMed

    Weiner, Lindsey M; Webb, Amy K; Limbago, Brandi; Dudeck, Margaret A; Patel, Jean; Kallen, Alexander J; Edwards, Jonathan R; Sievert, Dawn M

    2016-11-01

    OBJECTIVE To describe antimicrobial resistance patterns for healthcare-associated infections (HAIs) that occurred in 2011-2014 and were reported to the Centers for Disease Control and Prevention's National Healthcare Safety Network. METHODS Data from central line-associated bloodstream infections, catheter-associated urinary tract infections, ventilator-associated pneumonias, and surgical site infections were analyzed. These HAIs were reported from acute care hospitals, long-term acute care hospitals, and inpatient rehabilitation facilities. Pooled mean proportions of pathogens that tested resistant (or nonsusceptible) to selected antimicrobials were calculated by year and HAI type. RESULTS Overall, 4,515 hospitals reported that at least 1 HAI occurred in 2011-2014. There were 408,151 pathogens from 365,490 HAIs reported to the National Healthcare Safety Network, most of which were reported from acute care hospitals with greater than 200 beds. Fifteen pathogen groups accounted for 87% of reported pathogens; the most common included Escherichia coli (15%), Staphylococcus aureus (12%), Klebsiella species (8%), and coagulase-negative staphylococci (8%). In general, the proportion of isolates with common resistance phenotypes was higher among device-associated HAIs compared with surgical site infections. Although the percent resistance for most phenotypes was similar to earlier reports, an increase in the magnitude of the resistance percentages among E. coli pathogens was noted, especially related to fluoroquinolone resistance. CONCLUSION This report represents a national summary of antimicrobial resistance among select HAIs and phenotypes. The distribution of frequent pathogens and some resistance patterns appear to have changed from 2009-2010, highlighting the need for continual, careful monitoring of these data across the spectrum of HAI types. Infect Control Hosp Epidemiol 2016;1-14.

  2. Hygiene on maternity units: lessons from a needs assessment in Bangladesh and India

    PubMed Central

    Cross, Suzanne; Afsana, Kaosar; Banu, Morsheda; Mavalankar, Dileep; Morrison, Emma; Rahman, Atiya; Roy, Tapash; Saxena, Deepak; Vora, Kranti; Graham, Wendy J

    2016-01-01

    Background As the proportion of deliveries in health institutions increases in low- and middle-income countries, so do the challenges of maintaining standards of hygiene and preventing healthcare-associated infections (HCAIs) in mothers and babies. Adequate water, sanitation, and hygiene (WASH) and infection prevention and control (IPC) in these settings should be seen as integral parts of the broader domain of quality care. Assessment approaches are needed which capture standards for both WASH and IPC, and so inform quality improvement processes. Design A needs assessment was conducted in seven maternity units in Gujarat, India, and eight in Dhaka Division, Bangladesh in 2014. The WASH & CLEAN study developed and applied a suite of tools – a ‘walkthrough checklist’ which included the collection of swab samples, a facility needs assessment tool and document review, and qualitative interviews with staff and recently delivered women – to establish the state of hygiene as measured by visual cleanliness and the presence of potential pathogens, and individual and contextual determinants or drivers. Results No clear relationship was found between visually assessed cleanliness and the presence of pathogens; findings from qualitative interviews and the facility questionnaire found inadequacies in IPC training for healthcare providers and no formal training at all for ward cleaners. Lack of written policies and protocols, and poor monitoring and supervision also contributed to suboptimal IPC standards. Conclusions Visual assessment of cleanliness and hygiene is an inadequate marker for ‘safety’ in terms of the presence of potential pathogens and associated risk of infection. Routine environmental screening of high-risk touch sites using simple microbiology could improve detection and control of pathogens. IPC training for both healthcare providers and ward cleaners represents an important opportunity for quality improvement. This should occur in conjunction with broader systems changes, including the establishment of functioning IPC committees, implementing standard policies and protocols, and improving health management information systems to capture information on maternal and newborn HCAIs. PMID:27964775

  3. Respiratory syncytial virus and influenza are the key viral pathogens in children <2 years hospitalized with bronchiolitis and pneumonia in Islamabad Pakistan.

    PubMed

    Bashir, Uzma; Nisar, Nadia; Arshad, Yasir; Alam, Muhammad Masroor; Ashraf, Asiya; Sadia, Hajra; Kazi, Birjees Mazher; Zaidi, Syed Sohail Zahoor

    2017-03-01

    Pneumonia remains a leading cause of morbidity and mortality in developing countries. Comprehensive surveillance data are needed to review the prevention and control strategies. We conducted active surveillance of acute lower respiratory infections among children aged <2 years hospitalized at two hospitals of Islamabad, Pakistan. Viral etiology was determined using real-time PCR on respiratory specimens collected during March 2011-April 2012. The overall mean age was 7.83 ± 5.25 months while no statistical difference between age or sex distribution of patients with positive and negative viral etiology (p > 0.05). The average weight of the study group was 6.1 ± 2.25 kg. ≥1 viral pathogens were detected in 75% cases. Major respiratory viruses included RSV-A: 44%, RSV-B: 23%, Influenza-A: 24.5%, Influenza-B: 7%, Adenovirus: 8.4% and HmPV: 5.2%. A single, dual or multiple viral pathogens were detected in 43%, 27% and 5.2% patients respectively. Common symptoms were cough (95%), apnoea (84%), fever (78%), wheeze (64.5%), nasal congestion (55%) and rhinorrhea (48%). Among the RSV positive cases, 2-6 months age group had highest detection rate for RSV-A (30%, n = 21/69) and RSV-B (20%, n = 14/69) while patients infected with Influenza-A were in 2.1-6 months age group (61%, 23/38). Statistically significant difference was observed between RSV-positive and negative cases for nutrition status (p = 0.001), cigarette/wood smoke exposure (p = 0.001) and concomitant clinical findings. Most patients had successful outcome on combination therapy with bronchodilators, inhaled steroids and antibiotics. Our findings underscore high burden of ALRI in Pakistan. Interventions targeting viral pathogens coupled with improved diagnostic approaches are critical for better prevention and control.

  4. Study of Staphylococcus aureus N315 Pathogenic Genes by Text Mining and Enrichment Analysis of Pathways and Operons.

    PubMed

    Yang, Chun-Feng; Gou, Wei-Hui; Dai, Xin-Lun; Li, Yu-Mei

    2018-06-01

    Staphylococcus aureus (S. aureus) is a versatile pathogen found in many environments and can cause nosocomial infections in the community and hospitals. S. aureus infection is an increasingly serious threat to global public health that requires action across many government bodies, medical and health sectors, and scientific research institutions. In the present study, S. aureus N315 genes that have been shown in the literature to be pathogenic were extracted using a bibliometric method for functional enrichment analysis of pathways and operons to statistically discover novel pathogenic genes associated with S. aureus N315. A total of 383 pathogenic genes were mined from the literature using bibliometrics, and subsequently a few new pathogenic genes of S. aureus N315 were identified by functional enrichment analysis of pathways and operons. The discovery of these novel S. aureus N315 pathogenic genes is of great significance to treat S. aureus induced diseases and identify potential diagnostic markers, thus providing theoretical fundamentals for epidemiological prevention.

  5. Growth and survival of foodborne pathogens in beer.

    PubMed

    Menz, Garry; Aldred, Peter; Vriesekoop, Frank

    2011-10-01

    This work aimed to assess the growth and survival of four foodborne pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus) in beer. The effects of ethanol, pH, and storage temperature were investigated for the gram-negative pathogens (E. coli O157:H7 and Salmonella Typhimurium), whereas the presence of hops ensured that the gram-positive pathogens (L. monocytogenes and S. aureus) were rapidly inactivated in alcohol-free beer. The pathogens E. coli O157:H7 and Salmonella Typhimurium could not grow in the mid-strength or full-strength beers, although they could survive for more than 30 days in the mid-strength beer when held at 4°C. These pathogens grew rapidly in the alcohol-free beer; however, growth was prevented when the pH of the alcohol-free beer was lowered from the "as received" value of 4.3 to 4.0. Pathogen survival in all beers was prolonged at lowered storage temperatures.

  6. Binding of hepatitis A virus to its cellular receptor 1 inhibits T-regulatory cell functions in humans.

    PubMed

    Manangeeswaran, Mohanraj; Jacques, Jérôme; Tami, Cecilia; Konduru, Krishnamurthy; Amharref, Nadia; Perrella, Oreste; Casasnovas, Jose M; Umetsu, Dale T; Dekruyff, Rosemarie H; Freeman, Gordon J; Perrella, Alessandro; Kaplan, Gerardo G

    2012-06-01

    CD4+ T-regulatory (Treg) cells suppress immune responses and control self-tolerance and immunity to pathogens, cancer, and alloantigens. Most pathogens activate Treg cells to minimize immune-mediated tissue damage and prevent clearance, which promotes chronic infections. However, hepatitis A virus (HAV) temporarily inhibits Treg-cell functions. We investigated whether the interaction of HAV with its cellular receptor 1 (HAVCR1), a T-cell co-stimulatory molecule, inhibits the function of Treg cells to control HAV infection. We studied the effects of HAV interaction with HAVCR1 on human T cells using binding, signal transduction, apoptosis, activation, suppression, cytokine production, and confocal microscopy analyses. Cytokines were analyzed in sera from 14 patients with HAV infection using bead arrays. Human Treg cells constitutively express HAVCR1. Binding of HAV to HAVCR1 blocked phosphorylation of Akt, prevented activation of the T-cell receptor, and inhibited function of Treg cells. At the peak viremia, patients with acute HAV infection had no Treg-cell suppression function, produced low levels of transforming growth factor-β , which limited leukocyte recruitment and survival, and produced high levels of interleukin-22, which prevented liver damage. Interaction between HAV and its receptor HAVCR1 inhibits Treg-cell function, resulting in an immune imbalance that allows viral expansion with limited hepatocellular damage during early stages of infection-a characteristic of HAV pathogenesis. The mechanism by which HAV is cleared in the absence of Treg-cell function could be used as a model to develop anticancer therapies, modulate autoimmune and allergic responses, and prevent transplant rejection. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. An annotated bibliography of invasive tree pathogens Sirococcus clavigignenti-juglandacearum, Phytophthora alni, and Phytophthora quercina and a regulatory policy and management practices for invasive species

    Treesearch

    T.M. Seeland; M.E. Ostry; R. Venette; J. Juzwik

    2006-01-01

    Provides a database of selected literature pertaining to the prevention, early detection and rapid response, control and management, and rehabilitation and restoration related to three invasive fungal pathogens of forest trees. Literature addressing regulatory policy and management practices for invasive species is also included.

  8. Factors Affecting Occupational Exposure to Needlestick and Sharps Injuries among Dentists in Taiwan: A Nationwide Survey

    PubMed Central

    Cheng, Hsin-Chung; Su, Chen-Yi; Yen, Amy Ming-Fang; Huang, Chiung-Fang

    2012-01-01

    Background Although the risks of needlestick and sharps injuries (NSIs) for dentists are well recognized, most papers published only described the frequency of occupational exposure to NSIs. Less has been reported assessing factors contributing to exposure to NSIs. The purpose of this study was to update the epidemiology of NSIs among dentists in Taiwan and identify factors affecting NSIs in order to find preventive strategies. Methodology/Principal Findings A nationwide survey was conducted in dentists at 60 hospitals and 340 clinics in Taiwan. The survey included questions about factors supposedly affecting exposure to NSIs, such as dentist and facility characteristics, knowledge and attitudes about infectious diseases, and practices related to infection control. Univariate and multivariate logistic regression analyses were conducted to determine the association between risk factors and exposure to NSIs. In total, 434 (74.8%) of 580 dentists returned the survey questionnaires, and 100 (23.0%) reported that they had experienced more than one NSI per week. Our data showed that the risk of occupational NSIs is similarly heightened by an older age (odds ratio [OR], 3.18; 95% confidence interval [CI], 1.62–6.25), more years in practice (OR, 2.57; 95% CI, 1.41–4.69), working in clinics (OR, 1.73; 95% CI, 1.08–2.77), exhibiting less compliance with infection-control procedures (OR, 1.82; 95% CI, 1.04–3.18), having insufficient knowledge of blood-borne pathogens (OR, 1.67; 95% CI, 1.04–2.67), and being more worried about being infected by blood-borne pathogens (OR, 1.82; 95% CI, 1.05–3.13). Conclusions/Significance High rates of NSIs and low compliance with infection-control procedures highly contribute to the chance of acquiring a blood-borne pathogen infection and threaten occupational safety. This study reveals the possible affecting factors and helps in designing prevention strategies for occupational exposure to NSIs. PMID:22509367

  9. Administration of Probiotics Improves the Brine Shrimp Production and Prevents Detrimental Effects of Pathogenic Vibrio Species.

    PubMed

    Quiroz-Guzmán, Eduardo; Vázquez-Juárez, Ricardo; Luna-González, Antonio; Balcázar, José L; Barajas-Sandoval, Diana R; Martínez-Díaz, Sergio F

    2018-04-11

    In this study, we evaluated a consortium of probiotic bacteria as an environmentally-friendly strategy for controlling pathogenic Vibrio species during the brine shrimp incubation period. Probiotic strains were initially selected on basis of (i) their ability to colonize the cyst surfaces, (ii) their absence of cross-inhibitory effects, and (iii) no detrimental effect on cyst hatching. The cysts and nauplius surfaces were immediately colonized after the application of selected probiotic strains, without detrimental effects on survival. Ten probiotic strains were mixed at similar proportions (probiotic consortium) and evaluated at different concentrations into brine shrimp cultures during incubation and early stages of development. Subsequently, these cultures were challenged with Vibrio parahaemolyticus and Vibrio harveyi. The probiotic consortium was effective to reduce the abundance of pathogenic Vibrio species and to prevent the mortality during Vibrio challenges; however, its effect was concentration-dependent and was successful at a starting concentration of 1.8 × 10 6  CFU/ml. Our results suggest that this probiotic consortium offers an alternative to antimicrobial agents routinely used to reduce the incidence and prevalence of pathogenic Vibrio species in brine shrimp production.

  10. Pathogen-induced secretory diarrhea and its prevention.

    PubMed

    Anand, S; Mandal, S; Patil, P; Tomar, S K

    2016-11-01

    Secretory diarrhea is a historically known serious health implication around the world which primarily originates through pathogenic microorganisms rather than immunological or genetical disorders. This review highlights infective mechanisms of non-inflammatory secretory diarrhea causing pathogens, known therapeutics and their efficacy against them. These non-inflammatory diarrheal pathogens breach cell barriers, induce inflammation, disrupt fluid secretion across the epithelium by alteration in ion transport by faulting cystic fibrosis transmembrane conductance regulator (CFTR), calcium activated chloride channels and ion exchanger functions. Currently, a variety of prevention strategies have been used to treat these symptoms like use of antibacterial drugs, vaccines, fluid and nutritional therapy, probiotics and prebiotics as adjuncts. In progression of the need for a therapy having quick physiological effects, withdrawing the symptoms with a wide and safe therapeutic index, newer antisecretory agents like potent inhibitors, agonists and herbal remedies are some of the interventions which have come into light through greater understanding of the mechanisms and molecular targets involved in intestinal fluid secretion. Although these therapies have their own pros and cons inside the host, the quest for new antisecretory agents has been a successful elucidation to reduce burden of diarrheal disease.

  11. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses

    PubMed Central

    Hendricks, Gabriel L.; Velazquez, Lourdes; Pham, Serena; Qaisar, Natasha; Delaney, James C.; Viswanathan, Karthik; Albers, Leila; Comolli, James C.; Shriver, Zachary; Knipe, David M.; Kurt-Jones, Evelyn A.; Fygenson, Deborah K.; Trevejo, Jose M.

    2016-01-01

    Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as ‘molecular sinks’ and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform. PMID:25637710

  12. Proof of principle for epitope-focused vaccine design

    PubMed Central

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Christopher; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-01-01

    Summary Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Multiple major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus (RSV), that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for research and development of a human RSV vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets including antigenically highly variable pathogens such as HIV and influenza. PMID:24499818

  13. Globalization, land use and the invasion of West Nile virus

    PubMed Central

    Kilpatrick, A. Marm

    2012-01-01

    Many invasive species that have been spread through the globalization of trade and travel are infectious pathogens. A paradigmatic case is the introduction of West Nile virus (WNV) into North America in 1999. A decade of research on the ecology and evolution of WNV includes three findings that provide insight into the outcome of future viral introductions. First, WNV transmission in North America is highest in urbanized and agricultural habitats, in part because the hosts and vectors of WNV are abundant in human-modified areas. Second, after its introduction, the virus quickly adapted to infect local mosquito vectors more efficiently than the originally introduced strain. Third, highly focused feeding patterns of the mosquito vectors of WNV result in unexpected host species being important for transmission. These findings provide a framework for predicting and preventing the emergence of foreign vector-borne pathogens. PMID:22021850

  14. Proof of principle for epitope-focused vaccine design

    NASA Astrophysics Data System (ADS)

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Chris; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-03-01

    Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.

  15. Role of transition metal exporters in virulence: the example of Neisseria meningitidis.

    PubMed

    Guilhen, Cyril; Taha, Muhamed-Kheir; Veyrier, Frédéric J

    2013-01-01

    Transition metals such as iron, manganese, and zinc are essential micronutrients for bacteria. However, at high concentration, they can generate non-functional proteins or toxic compounds. Metal metabolism is therefore regulated to prevent shortage or overload, both of which can impair cell survival. In addition, equilibrium among these metals has to be tightly controlled to avoid molecular replacement in the active site of enzymes. Bacteria must actively maintain intracellular metal concentrations to meet physiological needs within the context of the local environment. When intracellular buffering capacity is reached, they rely primarily on membrane-localized exporters to maintain metal homeostasis. Recently, several groups have characterized new export systems and emphasized their importance in the virulence of several pathogens. This article discusses the role of export systems as general virulence determinants. Furthermore, it highlights the contribution of these exporters in pathogens emergence with emphasis on the human nasopharyngeal colonizer Neisseria meningitidis.

  16. Superinfection exclusion and the long-term survival of honey bees in Varroa-infested colonies

    PubMed Central

    Mordecai, Gideon J; Brettell, Laura E; Martin, Stephen J; Dixon, David; Jones, Ian M; Schroeder, Declan C

    2016-01-01

    Over the past 50 years, many millions of European honey bee (Apis mellifera) colonies have died as the ectoparasitic mite, Varroa destructor, has spread around the world. Subsequent studies have indicated that the mite's association with a group of RNA viral pathogens (Deformed Wing Virus, DWV) correlates with colony death. Here, we propose a phenomenon known as superinfection exclusion that provides an explanation of how certain A. mellifera populations have survived, despite Varroa infestation and high DWV loads. Next-generation sequencing has shown that a non-lethal DWV variant ‘type B' has become established in these colonies and that the lethal ‘type A' DWV variant fails to persist in the bee population. We propose that this novel stable host-pathogen relationship prevents the accumulation of lethal variants, suggesting that this interaction could be exploited for the development of an effective treatment that minimises colony losses in the future. PMID:26505829

  17. Lessons to be Learned from Recent Biosafety Incidents in the United States.

    PubMed

    Weiss, Shay; Yitzhaki, Shmuel; Shapira, Shmuel C

    2015-05-01

    During recent months, the Centers for Disease Control and Prevention (CDC) announced the occurrence of three major biosafety incidents, raising serious concern about biosafety and biosecurity guideline implementation in the most prestigious agencies in the United States: the CDC, the National Institutes of Health (NIH) and the Federal Drug Administration (FDA). These lapses included: a) the mishandling of Bacillus anthracis spores potentially exposing dozens of employees to anthrax; b) the shipment of low pathogenic influenza virus unknowingly cross-contaminated with a highly pathogenic strain; and c) an inventory lapse of hundreds of samples of biological agents, including six vials of variola virus kept in a cold storage room for decades, unnoticed. In this review we present the published data on these events, report the CDC inquiry's main findings, and discuss the key lessons to be learnt to ensure safer scientific practice in biomedical and microbiological service and research laboratories.

  18. Complement and innate immune evasion strategies of the human pathogenic fungus Candida albicans.

    PubMed

    Luo, Shanshan; Skerka, Christine; Kurzai, Oliver; Zipfel, Peter F

    2013-12-15

    Candida albicans is a medically important fungus that can cause a wide range of diseases ranging from superficial infections to disseminated disease, which manifests primarily in immuno-compromised individuals. Despite the currently applied anti-fungal therapies, both mortality and morbidity caused by this human pathogenic fungus are still unacceptably high. Therefore new prophylactic and therapeutic strategies are urgently needed to prevent fungal infection. In order to define new targets for combating fungal disease, there is a need to understand the immune evasion strategies of C. albicans in detail. In this review, we summarize different sophisticated immune evasion strategies that are utilized by C. albicans. The description of the molecular mechanisms used for immune evasion does on one hand help to understand the infection process, and on the other hand provides valuable information to define new strategies and diagnostic approaches to fight and interfere with Candida infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Antimicrobial peptides extend lifespan in Drosophila

    PubMed Central

    Mori, Tetsushi; Carrera, Pilar; Schroer, Jonas; Takeyama, Haruko

    2017-01-01

    Antimicrobial peptides (AMPs) are important defense molecules of the innate immune system. High levels of AMPs are induced in response to infections to fight pathogens, whereas moderate levels induced by metabolic stress are thought to shape commensal microbial communities at barrier tissues. We expressed single AMPs in adult flies either ubiquitously or in the gut by using the inducible GeneSwitch system to tightly regulate AMP expression. We found that activation of single AMPs, including Drosocin, resulted in a significant extension of Drosophila lifespan. These animals showed reduced activity of immune pathways over lifetime, less intestinal regenerative processes, reduced stress response and a delayed loss of gut barrier integrity. Furthermore, intestinal Drosocin induction protected the animals against infections with the natural Drosophila pathogen Pseudomonas entomophila, whereas a germ-reduced environment prevented the lifespan extending effect of Drosocin. Our study provides new insights into the crosstalk of innate immunity, intestinal homeostasis and ageing. PMID:28520752

  20. Antimicrobial peptides extend lifespan in Drosophila.

    PubMed

    Loch, Gerrit; Zinke, Ingo; Mori, Tetsushi; Carrera, Pilar; Schroer, Jonas; Takeyama, Haruko; Hoch, Michael

    2017-01-01

    Antimicrobial peptides (AMPs) are important defense molecules of the innate immune system. High levels of AMPs are induced in response to infections to fight pathogens, whereas moderate levels induced by metabolic stress are thought to shape commensal microbial communities at barrier tissues. We expressed single AMPs in adult flies either ubiquitously or in the gut by using the inducible GeneSwitch system to tightly regulate AMP expression. We found that activation of single AMPs, including Drosocin, resulted in a significant extension of Drosophila lifespan. These animals showed reduced activity of immune pathways over lifetime, less intestinal regenerative processes, reduced stress response and a delayed loss of gut barrier integrity. Furthermore, intestinal Drosocin induction protected the animals against infections with the natural Drosophila pathogen Pseudomonas entomophila, whereas a germ-reduced environment prevented the lifespan extending effect of Drosocin. Our study provides new insights into the crosstalk of innate immunity, intestinal homeostasis and ageing.

  1. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission.

    PubMed

    Blisnick, Adrien A; Foulon, Thierry; Bonnet, Sarah I

    2017-01-01

    New tick and tick-borne pathogen control approaches that are both environmentally sustainable and which provide broad protection are urgently needed. Their development, however, will rely on a greater understanding of tick biology, tick-pathogen, and tick-host interactions. The recent advances in new generation technologies to study genomes, transcriptomes, and proteomes has resulted in a plethora of tick biomacromolecular studies. Among these, many enzyme inhibitors have been described, notably serine protease inhibitors (SPIs), whose importance in various tick biological processes is only just beginning to be fully appreciated. Among the multiple active substances secreted during tick feeding, SPIs have been shown to be directly involved in regulation of inflammation, blood clotting, wound healing, vasoconstriction and the modulation of host defense mechanisms. In light of these activities, several SPIs were examined and were experimentally confirmed to facilitate tick pathogen transmission. In addition, to prevent coagulation of the ingested blood meal within the tick alimentary canal, SPIs are also involved in blood digestion and nutrient extraction from the meal. The presence of SPIs in tick hemocytes and their involvement in tick innate immune defenses have also been demonstrated, as well as their implication in hemolymph coagulation and egg development. Considering the involvement of SPIs in multiple crucial aspects of tick-host-pathogen interactions, as well as in various aspects of the tick parasitic lifestyle, these molecules represent highly suitable and attractive targets for the development of effective tick control strategies. Here we review the current knowledge regarding this class of inhibitors in tick biology and tick-borne pathogen transmission, and their potential as targets for future tick control trials.

  2. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission

    PubMed Central

    Blisnick, Adrien A.; Foulon, Thierry; Bonnet, Sarah I.

    2017-01-01

    New tick and tick-borne pathogen control approaches that are both environmentally sustainable and which provide broad protection are urgently needed. Their development, however, will rely on a greater understanding of tick biology, tick-pathogen, and tick-host interactions. The recent advances in new generation technologies to study genomes, transcriptomes, and proteomes has resulted in a plethora of tick biomacromolecular studies. Among these, many enzyme inhibitors have been described, notably serine protease inhibitors (SPIs), whose importance in various tick biological processes is only just beginning to be fully appreciated. Among the multiple active substances secreted during tick feeding, SPIs have been shown to be directly involved in regulation of inflammation, blood clotting, wound healing, vasoconstriction and the modulation of host defense mechanisms. In light of these activities, several SPIs were examined and were experimentally confirmed to facilitate tick pathogen transmission. In addition, to prevent coagulation of the ingested blood meal within the tick alimentary canal, SPIs are also involved in blood digestion and nutrient extraction from the meal. The presence of SPIs in tick hemocytes and their involvement in tick innate immune defenses have also been demonstrated, as well as their implication in hemolymph coagulation and egg development. Considering the involvement of SPIs in multiple crucial aspects of tick-host-pathogen interactions, as well as in various aspects of the tick parasitic lifestyle, these molecules represent highly suitable and attractive targets for the development of effective tick control strategies. Here we review the current knowledge regarding this class of inhibitors in tick biology and tick-borne pathogen transmission, and their potential as targets for future tick control trials. PMID:28589099

  3. Exploring the Pathogens Present at the Patient Care Equipments & Supplies to Sensitise the Health Care Workers for Preventing Health Care-Associated Infections among In-Patients.

    PubMed

    Dadhich, Amit; Arya, Sanjay; Kapil, Arti

    2014-01-01

    Health care-associated infection (HCAI) is an infection that a person acquires in hospital after 24 hours of his/her admission. A health care worker (HCW) does not have any right to provide another infection to in-patients. While caring the patients, HCW innocently or otherwise can transmit various pathogens to the patient. It is both ethically and legally wrong and HCW is answerable for it. The current study was conducted with the objectives to find out the rate of presence of pathogens at the patient care equipments & supplies, to identify the most common pathogens present at the patient care equipments & supplies and to identify such equipments & supplies that are at high risk of contamination. Investigator collected 1,145 samples of different equipments & supplies used for patient care from operation theaters, labour room & medical wards of a tertiary care hospital in New Delhi. The sample was collected from April 2012 to April 2013 by random sampling. Out of 1,145 samples, 112 were positive or contaminated with certain kind of pathogen. The finding revealed that the contamination rate of patient care equipments & supplies is 9.78 percent. The most common and frequent pathogen present at the equipments & supplies is Pseudomonas (39.29%) and water of oxygen humidifier is most commonly and frequently infected (47.32%). Nurses as the backbone of hospital should strictly adhere to the policies and protocols of the institution. She/he must update the knowledge of infection control practices and various methods of controlling HCAI including hand hygiene, disinfection of patient care equipments & supplies and cleanliness of environment. A Nurse should also transmit this knowledge to other team members so as to minimise the health care-associated infection rate.

  4. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part I: Overview, vaccines for enteric viruses and Vibrio cholerae.

    PubMed

    O'Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Salazar, Juan Carlos; Montero, David

    2015-01-01

    Efforts to develop vaccines for prevention of acute diarrhea have been going on for more than 40 y with partial success. The myriad of pathogens, more than 20, that have been identified as a cause of acute diarrhea throughout the years pose a significant challenge for selecting and further developing the most relevant vaccine candidates. Based on pathogen distribution as identified in epidemiological studies performed mostly in low-resource countries, rotavirus, Cryptosporidium, Shigella, diarrheogenic E. coli and V. cholerae are predominant, and thus the main targets for vaccine development and implementation. Vaccination against norovirus is most relevant in middle/high-income countries and possibly in resource-deprived countries, pending a more precise characterization of disease impact. Only a few licensed vaccines are currently available, of which rotavirus vaccines have been the most outstanding in demonstrating a significant impact in a short time period. This is a comprehensive review, divided into 2 articles, of nearly 50 vaccine candidates against the most relevant viral and bacterial pathogens that cause acute gastroenteritis. In order to facilitate reading, sections for each pathogen are organized as follows: i) a discussion of the main epidemiological and pathogenic features; and ii) a discussion of vaccines based on their stage of development, moving from current licensed vaccines to vaccines in advanced stage of development (in phase IIb or III trials) to vaccines in early stages of clinical development (in phase I/II) or preclinical development in animal models. In this first article we discuss rotavirus, norovirus and Vibrio cholerae. In the following article we will discuss Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic), and Campylobacter jejuni.

  5. Membership and Behavior of Ultra-Low-Diversity Pathogen Communities Present in the Gut of Humans during Prolonged Critical Illness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaborin, Alexander; Smith, Daniel; Garfield, Kevin

    We analyzed the 16S rRNA amplicon composition in fecal samples of selected patients during their prolonged stay in an intensive care unit (ICU) and observed the emergence of ultra-low-diversity communities (1 to 4 bacterial taxa) in 30% of the patients. Bacteria associated with the genera Enterococcus and Staphylococcus and the family Enterobacteriaceae comprised the majority of these communities. The composition of cultured species from stool samples correlated to the 16S rRNA analysis and additionally revealed the emergence of Candida albicans and Candida glabrata in ~75% of cases. Four of 14 ICU patients harbored 2-member pathogen communities consisting of one Candidamore » taxon and one bacterial taxon. Bacterial members displayed a high degree of resistance to multiple antibiotics. The virulence potential of the 2-member communities was examined in C. elegans during nutrient deprivation and exposure to opioids in order to mimic local conditions in the gut during critical illness. Under conditions of nutrient deprivation, the bacterial members attenuated the virulence of fungal members, leading to a “commensal lifestyle.” However, exposure to opioids led to a breakdown in this commensalism in 2 of the ultra-low-diversity communities. Application of a novel antivirulence agent (phosphate-polyethylene glycol [Pi-PEG]) that creates local phosphate abundance prevented opioid-induced virulence among these pathogen communities, thus rescuing the commensal lifestyle. To conclude, the gut microflora in critically ill patients can consist of ultra-low-diversity communities of multidrug-resistant pathogenic microbes. Local environmental conditions in gut may direct pathogen communities to adapt to either a commensal style or a pathogenic style.« less

  6. Membership and Behavior of Ultra-Low-Diversity Pathogen Communities Present in the Gut of Humans during Prolonged Critical Illness

    DOE PAGES

    Zaborin, Alexander; Smith, Daniel; Garfield, Kevin; ...

    2014-09-23

    We analyzed the 16S rRNA amplicon composition in fecal samples of selected patients during their prolonged stay in an intensive care unit (ICU) and observed the emergence of ultra-low-diversity communities (1 to 4 bacterial taxa) in 30% of the patients. Bacteria associated with the genera Enterococcus and Staphylococcus and the family Enterobacteriaceae comprised the majority of these communities. The composition of cultured species from stool samples correlated to the 16S rRNA analysis and additionally revealed the emergence of Candida albicans and Candida glabrata in ~75% of cases. Four of 14 ICU patients harbored 2-member pathogen communities consisting of one Candidamore » taxon and one bacterial taxon. Bacterial members displayed a high degree of resistance to multiple antibiotics. The virulence potential of the 2-member communities was examined in C. elegans during nutrient deprivation and exposure to opioids in order to mimic local conditions in the gut during critical illness. Under conditions of nutrient deprivation, the bacterial members attenuated the virulence of fungal members, leading to a “commensal lifestyle.” However, exposure to opioids led to a breakdown in this commensalism in 2 of the ultra-low-diversity communities. Application of a novel antivirulence agent (phosphate-polyethylene glycol [Pi-PEG]) that creates local phosphate abundance prevented opioid-induced virulence among these pathogen communities, thus rescuing the commensal lifestyle. To conclude, the gut microflora in critically ill patients can consist of ultra-low-diversity communities of multidrug-resistant pathogenic microbes. Local environmental conditions in gut may direct pathogen communities to adapt to either a commensal style or a pathogenic style.« less

  7. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part I: Overview, vaccines for enteric viruses and Vibrio cholerae

    PubMed Central

    O’Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Salazar, Juan Carlos; Montero, David

    2015-01-01

    Efforts to develop vaccines for prevention of acute diarrhea have been going on for more than 40 y with partial success. The myriad of pathogens, more than 20, that have been identified as a cause of acute diarrhea throughout the years pose a significant challenge for selecting and further developing the most relevant vaccine candidates. Based on pathogen distribution as identified in epidemiological studies performed mostly in low-resource countries, rotavirus, Cryptosporidium, Shigella, diarrheogenic E. coli and V. cholerae are predominant, and thus the main targets for vaccine development and implementation. Vaccination against norovirus is most relevant in middle/high-income countries and possibly in resource-deprived countries, pending a more precise characterization of disease impact. Only a few licensed vaccines are currently available, of which rotavirus vaccines have been the most outstanding in demonstrating a significant impact in a short time period. This is a comprehensive review, divided into 2 articles, of nearly 50 vaccine candidates against the most relevant viral and bacterial pathogens that cause acute gastroenteritis. In order to facilitate reading, sections for each pathogen are organized as follows: i) a discussion of the main epidemiological and pathogenic features; and ii) a discussion of vaccines based on their stage of development, moving from current licensed vaccines to vaccines in advanced stage of development (in phase IIb or III trials) to vaccines in early stages of clinical development (in phase I/II) or preclinical development in animal models. In this first article we discuss rotavirus, norovirus and Vibrio cholerae. In the following article we will discuss Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic), and Campylobacter jejuni. PMID:25715048

  8. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases

    PubMed Central

    de la Fuente, José; Antunes, Sandra; Bonnet, Sarah; Cabezas-Cruz, Alejandro; Domingos, Ana G.; Estrada-Peña, Agustín; Johnson, Nicholas; Kocan, Katherine M.; Mansfield, Karen L.; Nijhof, Ard M.; Papa, Anna; Rudenko, Nataliia; Villar, Margarita; Alberdi, Pilar; Torina, Alessandra; Ayllón, Nieves; Vancova, Marie; Golovchenko, Maryna; Grubhoffer, Libor; Caracappa, Santo; Fooks, Anthony R.; Gortazar, Christian; Rego, Ryan O. M.

    2017-01-01

    Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases. PMID:28439499

  9. [Adaptogenic potentialities of dynamic magnetotherapy in the treatment and prevention of ENT pathology in ailing children].

    PubMed

    Bolotova, N V; Grinkevich, A V; Grishchenko, T P; Raĭgorodskiĭ, Iu M; Tupkin, V D

    2007-01-01

    Efficacy of dynamic magnetotherapy (in transcranial and adrenal variants) for treatment of ENT pathology and prevention of its exacerbations is demonstrated in 126 ailing children. Mechanism of action of this magnetotherapy is due to formation of adequate adaptation reactions raising resistance to pathogens.

  10. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies

    PubMed Central

    Ugelvig, Line V; Wiesenhofer, Florian; Grasse, Anna V; Tragust, Simon; Schmitt, Thomas; Brown, Mark JF

    2018-01-01

    In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus, the negative consequences of fungal infections (Metarhizium brunneum) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogen’s non-contagious incubation period, utilising chemical ‘sickness cues’ emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation. PMID:29310753

  11. Epidemiological survey of ticks and tick-borne pathogens in pet dogs in south-eastern China.

    PubMed

    Zhang, Jianwei; Liu, Qingbiao; Wang, Demou; Li, Wanmeng; Beugnet, Frédéric; Zhou, Jinlin

    2017-01-01

    To understand the epidemiology of tick infestation and tick-borne diseases in pet dogs in south-eastern China and to develop a reference for their prevention and treatment, we collected 1550 ticks parasitizing 562 dogs in 122 veterinary clinics from 20 cities of south-eastern China. Dogs were tested for common tick-borne pathogens; collected ticks were identified and processed for the detection of tick-borne pathogens. The use of an in vitro ELISA diagnostic kit for antibody detection (SNAP®4Dx® Plus) on dog sera found the infection rates with Borrelia burgdorferi sensu lato, Ehrlichia canis, and Anaplasma spp. to be 0.4%, 1.3% and 2.7%, respectively. By using a specific ELISA method, the infection rate with Babesia gibsoni was 3.9%. Rhipicephalus sanguineus sensu lato, Haemaphysalis longicornis and Rhipicephalus haemaphysaloides were the major tick species identified on pet dogs. PCR tests were conducted to detect five tick-borne pathogens in 617 ticks. The infection rate was 10.2% for E. canis, 3.4% for Anaplasma platys, 2.3% for B. gibsoni, 0.3% for B. burgdorferi s.l. and 0% for Babesia canis. Some ticks were co-infected with two (1.46%) or three pathogens (0.16%). These results indicate the infestation of pet dogs by ticks infected with tick-borne pathogens in south-eastern China, and the need for effective treatment and routine prevention of tick infestations in dogs. © J. Zhang et al., published by EDP Sciences, 2017.

  12. Genetic and biological characterization of three poultry-origin H5N6 avian influenza viruses with all internal genes from genotype S H9N2 viruses.

    PubMed

    Liu, Kaituo; Gu, Min; Hu, Shunlin; Gao, Ruyi; Li, Juan; Shi, Liwei; Sun, Wenqi; Liu, Dong; Gao, Zhao; Xu, Xiulong; Hu, Jiao; Wang, Xiaoquan; Liu, Xiaowen; Chen, Sujuan; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2018-04-01

    During surveillance for avian influenza viruses, three H5N6 viruses were isolated in chickens obtained from live bird markets in eastern China, between January 2015 and April 2016. Sequence analysis revealed a high genomic homology between these poultry isolates and recent human H5N6 variants whose internal genes were derived from genotype S H9N2 avian influenza viruses. Glycan binding assays revealed that all avian H5N6 viruses were capable of binding to both human-type SAα-2,6Gal receptors and avian-type SAα-2,3Gal receptors. Their biological characteristics were further studied in BALB/c mice, specific-pathogen-free chickens, and mallard ducks. All three isolates had low pathogenicity in mice but were highly pathogenic to chickens, as evidenced by 100% mortality 36-120 hours post infection at a low dose of 10 3.0 EID 50 and through effective contact transmission. Moreover, all three poultry H5N6 isolates caused asymptomatic infections in ducks, which may serve as a reservoir host for their maintenance and dissemination; these migrating waterfowl could cause a potential global pandemic. Our study suggests that continuous epidemiological surveillance in poultry should be implemented for the early prevention of future influenza outbreaks.

  13. Theories of otitis media pathogenesis, with a focus on Indigenous children.

    PubMed

    Wiertsema, Selma P; Leach, Amanda J

    2009-11-02

    Otitis media is a common childhood illness associated with hearing loss, social disadvantage and medical costs. Prevalence and severity are high among Indigenous children. Respiratory bacterial and viral pathogens ascend the eustachian tube from the nasopharynx to the middle ear, causing inflammation, fluid accumulation, and bulging of the tympanic membrane, with or without pain. Among Australian Indigenous children, ear disease commences earlier in life, and involves multiple strains of bacterial pathogens at high density that persist longer. Persistent nasal discharge, overcrowded living conditions (particularly exposure to many children) and poor facilities for washing children perpetuate a vicious cycle of transmission and infection. Risk factors include environmental tobacco smoke, season, lack of breastfeeding, younger age and immature immune system, and possibly genetic factors. The innate immune system is a critical first response to infection, particularly as passive maternal antibodies decline and during the maturation of the infant adaptive immune response. The relative contributions of innate factors to protection from otitis media are currently not well understood. A diversity of antibodies that target strain-specific and conserved antigens are generated in response to natural exposure to otitis media pathogens (or to vaccines). Deficiencies in these antibodies may explain susceptibility to recurrent infections. Incremental contributions from all these elements are likely to be important in otitis media susceptibility versus protection. Effective medical and social strategies to prevent early age of onset are urgently needed.

  14. Coinfection takes its toll: Sea lice override the protective effects of vaccination against a bacterial pathogen in Atlantic salmon.

    PubMed

    Figueroa, Carolina; Bustos, Paulina; Torrealba, Débora; Dixon, Brian; Soto, Carlos; Conejeros, Pablo; Gallardo, José A

    2017-12-19

    Vaccination is considered crucial for disease prevention and fish health in the global salmon farming industry. Nevertheless, some aspects, such as the efficacy of vaccines, can be largely circumvented during natural coinfections. Sea lice are ectoparasitic copepods that can occur with a high prevalence in the field, are frequently found in co-infection with other pathogens, and are highly detrimental to fish health. The aim of this case-control study was to evaluate the interaction between the detrimental effects of coinfection and the protective effects of vaccination in fish. We used the interaction between the sea louse Caligus rogercresseyi, the bacterial pathogen Piscirickettsia salmonis, and their host, the Atlantic salmon Salmo salar, as a study model. Our results showed that coinfection decreased the accumulated survival (AS) and specific growth rate (SGR) of vaccinated fish (AS = 5.2 ± 0.6%; SGR = -0.05 ± 0.39%) compared to a single infection of P. salmonis (AS = 42.7 ± 1.3%; SGR = 0.21 ± 0.22%). Concomitantly, the bacterial load and clinical signs of disease were significantly increased in coinfected fish. Coinfection may explain the reduced efficacy of vaccines in sea cages and highlights the need to test fish vaccines in more diverse conditions rather than with a single infection.

  15. APIC position paper: safe injection, infusion, and medication vial practices in health care.

    PubMed

    Dolan, Susan A; Felizardo, Gwenda; Barnes, Sue; Cox, Tracy R; Patrick, Marcia; Ward, Katherine S; Arias, Kathleen Meehan

    2010-04-01

    Outbreaks involving the transmission of bloodborne pathogens or other microbial pathogens to patients in various types of health care settings due to unsafe injection, infusion, and medication vial practices are unacceptable. Each of the outbreaks could have been prevented by the use of proper aseptic technique in conjunction with basic infection prevention practices for handling parenteral medications, administration of injections, and procurement and sampling of blood. This document provides practice guidance for health care facilities on essential safe injection, infusion, and vial practices that should be consistently implemented in such settings. 2010 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  16. The Influence of Programmed Cell Death in Myeloid Cells on Host Resilience to Infection with Legionella pneumophila or Streptococcus pyogenes

    PubMed Central

    Gamradt, Pia; Xu, Yun; Gratz, Nina; Duncan, Kellyanne; Kobzik, Lester; Högler, Sandra; Decker, Thomas

    2016-01-01

    Pathogen clearance and host resilience/tolerance to infection are both important factors in surviving an infection. Cells of the myeloid lineage play important roles in both of these processes. Neutrophils, monocytes, macrophages, and dendritic cells all have important roles in initiation of the immune response and clearance of bacterial pathogens. If these cells are not properly regulated they can result in excessive inflammation and immunopathology leading to decreased host resilience. Programmed cell death (PCD) is one possible mechanism that myeloid cells may use to prevent excessive inflammation. Myeloid cell subsets play roles in tissue repair, immune response resolution, and maintenance of homeostasis, so excessive PCD may also influence host resilience in this way. In addition, myeloid cell death is one mechanism used to control pathogen replication and dissemination. Many of these functions for PCD have been well defined in vitro, but the role in vivo is less well understood. We created a mouse that constitutively expresses the pro-survival B-cell lymphoma (bcl)-2 protein in myeloid cells (CD68(bcl2tg), thus decreasing PCD specifically in myeloid cells. Using this mouse model we explored the impact that decreased cell death of these cells has on infection with two different bacterial pathogens, Legionella pneumophila and Streptococcus pyogenes. Both of these pathogens target multiple cell death pathways in myeloid cells, and the expression of bcl2 resulted in decreased PCD after infection. We examined both pathogen clearance and host resilience and found that myeloid cell death was crucial for host resilience. Surprisingly, the decreased myeloid PCD had minimal impact on pathogen clearance. These data indicate that the most important role of PCD during infection with these bacteria is to minimize inflammation and increase host resilience, not to aid in the clearance or prevent the spread of the pathogen. PMID:27973535

  17. Engineered nanoconstructs for the multiplexed and sensitive detection of high-risk pathogens

    NASA Astrophysics Data System (ADS)

    Seo, Youngmin; Kim, Ji-Eun; Jeong, Yoon; Lee, Kwan Hong; Hwang, Jangsun; Hong, Jongwook; Park, Hansoo; Choi, Jonghoon

    2016-01-01

    Many countries categorize the causative agents of severe infectious diseases as high-risk pathogens. Given their extreme infectivity and potential to be used as biological weapons, a rapid and sensitive method for detection of high-risk pathogens (e.g., Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Vaccinia virus) is highly desirable. Here, we report the construction of a novel detection platform comprising two units: (1) magnetic beads separately conjugated with multiple capturing antibodies against four different high-risk pathogens for simple and rapid isolation, and (2) genetically engineered apoferritin nanoparticles conjugated with multiple quantum dots and detection antibodies against four different high-risk pathogens for signal amplification. For each high-risk pathogen, we demonstrated at least 10-fold increase in sensitivity compared to traditional lateral flow devices that utilize enzyme-based detection methods. Multiplexed detection of high-risk pathogens in a sample was also successful by using the nanoconstructs harboring the dye molecules with fluorescence at different wavelengths. We ultimately envision the use of this novel nanoprobe detection platform in future applications that require highly sensitive on-site detection of high-risk pathogens.

  18. Disease Prevention: An Opportunity to Expand Edible Plant-Based Vaccines?

    PubMed Central

    Concha, Christopher; Cañas, Raúl; Macuer, Johan; Torres, María José; Herrada, Andrés A.; Jamett, Fabiola; Ibáñez, Cristian

    2017-01-01

    The lethality of infectious diseases has decreased due to the implementation of crucial sanitary procedures such as vaccination. However, the resurgence of pathogenic diseases in different parts of the world has revealed the importance of identifying novel, rapid, and concrete solutions for control and prevention. Edible vaccines pose an interesting alternative that could overcome some of the constraints of traditional vaccines. The term “edible vaccine” refers to the use of edible parts of a plant that has been genetically modified to produce specific components of a particular pathogen to generate protection against a disease. The aim of this review is to present and critically examine “edible vaccines” as an option for global immunization against pathogenic diseases and their outbreaks and to discuss the necessary steps for their production and control and the list of plants that may already be used as edible vaccines. Additionally, this review discusses the required standards and ethical regulations as well as the advantages and disadvantages associated with this powerful biotechnology tool. PMID:28556800

  19. Estimated Annual Numbers of Foodborne Pathogen–Associated Illnesses, Hospitalizations, and Deaths, France, 2008–2013

    PubMed Central

    Le Strat, Yann; Sommen, Cécile; Bruyand, Mathias; Tourdjman, Mathieu; Da Silva, Nathalie Jourdan; Couturier, Elisabeth; Fournet, Nelly; de Valk, Henriette; Desenclos, Jean-Claude

    2017-01-01

    Estimates of the annual numbers of foodborne illnesses and associated hospitalizations and deaths are needed to set priorities for surveillance, prevention, and control strategies. The objective of this study was to determine such estimates for 2008–2013 in France. We considered 15 major foodborne pathogens (10 bacteria, 3 viruses, and 2 parasites) and estimated that each year, the pathogens accounted for 1.28–2.23 million illnesses, 16,500–20,800 hospitalizations, and 250 deaths. Campylobacter spp., nontyphoidal Salmonella spp., and norovirus accounted for >70% of all foodborne pathogen–associated illnesses and hospitalizations; nontyphoidal Salmonella spp. and Listeria monocytogenes were the main causes of foodborne pathogen–associated deaths; and hepatitis E virus appeared to be a previously unrecognized foodborne pathogen causing ≈68,000 illnesses in France every year. The substantial annual numbers of foodborne illnesses and associated hospitalizations and deaths in France highlight the need for food-safety policymakers to prioritize foodborne disease prevention and control strategies. PMID:28820137

  20. An Escherichia coli O157-specific engineered pyocin prevents and ameliorates infection by E. coli O157:H7 in an animal model of diarrheal disease.

    PubMed

    Ritchie, Jennifer M; Greenwich, Jennifer L; Davis, Brigid M; Bronson, Roderick T; Gebhart, Dana; Williams, Steven R; Martin, David; Scholl, Dean; Waldor, Matthew K

    2011-12-01

    AvR2-V10.3 is an engineered R-type pyocin that specifically kills Escherichia coli O157, an enteric pathogen that is a major cause of food-borne diarrheal disease. New therapeutics to counteract E. coli O157 are needed, as currently available antibiotics can exacerbate the consequences of infection. We show here that orogastric administration of AvR2-V10.3 can prevent or ameliorate E. coli O157:H7-induced diarrhea and intestinal inflammation in an infant rabbit model of infection when the compound is administered either in a postexposure prophylactic regimen or after the onset of symptoms. Notably, administration of AvR2-V10.3 also reduces bacterial carriage and fecal shedding of this pathogen. Our findings support the further development of pathogen-specific R-type pyocins as a way to treat enteric infections.

  1. The XIX century smallpox prevention in Naples and the risk of transmission of human blood-related pathogens.

    PubMed

    Buonaguro, Franco Maria; Tornesello, Maria Lina; Buonaguro, Luigi

    2015-01-27

    Vaccines are the most successful strategy developed in Medicine to prevent and even eradicate the most dreadful epidemic infectious diseases. The history of smallpox vaccination in Naples is quite unique. Although Galbiati established the retro-vaccination (1803) and developed the "calf" lymph vaccine, recognized and implemented since 1864 as the optimal smallpox vaccine in the following hundred years, Naples general population was mainly vaccinated with "human" lymph from abandoned children until 1893. Mini-epidemics of syphilis and serum hepatitis were periodically reported as results of arm-to-arm procedure. The risk of transmission of blood-related pathogens was higher in Naples where >80% of abandoned children, used as repository of cowpox virus, were dying in their first year of life. Recent vaccinology standards finally eliminated the risk of adventitious contaminating pathogens. Implementation of hepatitis B vaccination since 1991 eventually contributed to current HBV prevalence in Campania region <1%, within the range of the European Countries.

  2. Role of vaccination-induced immunity and antigenic distance in the transmission dynamics of highly pathogenic avian influenza H5N1

    PubMed Central

    Rousou, Xanthoula; Kalthoff, Donata; Beer, Martin

    2016-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 epidemics in poultry cause huge economic losses as well as sporadic human morbidity and mortality. Vaccination in poultry has often been reported as being ineffective in preventing transmission and as a potential driving force in the selection of immune escape mutants. We conducted transmission experiments to evaluate the transmission dynamics of HPAI H5N1 strains in chickens vaccinated with high and low doses of immune escape mutants we have previously selected, and analysed the data using mathematical models. Remarkably, we demonstrate that the effect of antigenic distances between the vaccine and challenge strains used in this study is too small to influence the transmission dynamics of the strains used. This is because the effect of a sufficient vaccine dose on antibody levels against the challenge viruses is large enough to compensate for any decrease in antibody titres due to antigenic differences between vaccine and challenge strains. Our results show that at least under experimental conditions, vaccination will remain effective even after antigenic changes as may be caused by the initial selection in vaccinated birds. PMID:26763336

  3. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    .... APHIS-2006-0074] RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal and Plant Health... any subtype of highly pathogenic avian influenza is considered to exist. The interim rule also imposed... avian influenza, or that have moved through regions where any subtype of highly pathogenic avian...

  4. Effects of natural honey on polymicrobial culture of various human pathogens

    PubMed Central

    Al-Waili, Faiza S.; Akmal, Mohammed; Ali, Amjed; Salom, Khelod Y.; Al Ghamdi, Ahmad A.

    2012-01-01

    Introduction Honey has a wide range of antimicrobial activity. All previous studies have considered honey's effect on a single microbe. The present study investigated activity of honey towards a high dose of single or polymicrobial culture. Material and methods 10 µl specimens of Staphylococcus aureus (S. aureus), Streptococcus pyogenes (S. pyogenes), Escherichia coli (E. coli) and Candida albicans (C. albicans) were cultured in 10 ml of 10-100% (wt/v) honey diluted in broth. Six types of polymicrobial microbial cultures were prepared by culturing the isolates with each other onto broth (control) and broth containing various concentrations of honey (10-100% wt/v). Microbial growth was assessed on solid plate media after 24 h incubation. Results Honey (30-70%) prevents growth of 10 µl specimens of all the isolates. Greater reduction in growth of E. coli was observed when cultured with S. aureus. Culturing of S. aureus with S. pyogenes, C. albicans, or E. coli increased its sensitivity to honey. S. aureus and S. pyogenes increased sensitivity of C. albicans to honey while E. coli and C. albicans decreased sensitivity of S. pyogenes. Conclusions It might be concluded that honey prevents and inhibits growth of single and polymicrobial pathogenic cultures. Polymicrobial culture affects growth of the isolates and increases their sensitivity to honey. PMID:24904656

  5. Effects of natural honey on polymicrobial culture of various human pathogens.

    PubMed

    Al-Waili, Noori S; Al-Waili, Faiza S; Akmal, Mohammed; Ali, Amjed; Salom, Khelod Y; Al Ghamdi, Ahmad A

    2014-05-12

    Honey has a wide range of antimicrobial activity. All previous studies have considered honey's effect on a single microbe. The present study investigated activity of honey towards a high dose of single or polymicrobial culture. 10 µl specimens of Staphylococcus aureus (S. aureus), Streptococcus pyogenes (S. pyogenes), Escherichia coli (E. coli) and Candida albicans (C. albicans) were cultured in 10 ml of 10-100% (wt/v) honey diluted in broth. Six types of polymicrobial microbial cultures were prepared by culturing the isolates with each other onto broth (control) and broth containing various concentrations of honey (10-100% wt/v). Microbial growth was assessed on solid plate media after 24 h incubation. Honey (30-70%) prevents growth of 10 µl specimens of all the isolates. Greater reduction in growth of E. coli was observed when cultured with S. aureus. Culturing of S. aureus with S. pyogenes, C. albicans, or E. coli increased its sensitivity to honey. S. aureus and S. pyogenes increased sensitivity of C. albicans to honey while E. coli and C. albicans decreased sensitivity of S. pyogenes. It might be concluded that honey prevents and inhibits growth of single and polymicrobial pathogenic cultures. Polymicrobial culture affects growth of the isolates and increases their sensitivity to honey.

  6. Emerging issues, challenges, and changing epidemiology of fungal disease outbreaks.

    PubMed

    Benedict, Kaitlin; Richardson, Malcolm; Vallabhaneni, Snigdha; Jackson, Brendan R; Chiller, Tom

    2017-12-01

    Several high-profile outbreaks have drawn attention to invasive fungal infections (IFIs) as an increasingly important public health problem. IFI outbreaks are caused by many different fungal pathogens and are associated with numerous settings and sources. In the community, IFI outbreaks often occur among people without predisposing medical conditions and are frequently precipitated by environmental disruption. Health-care-associated IFI outbreaks have been linked to suboptimal hospital environmental conditions, transmission via health-care workers' hands, contaminated medical products, and transplantation of infected organs. Outbreak investigations provide important insights into the epidemiology of IFIs, uncover risk factors for infection, and identify opportunities for preventing similar events in the future. Well recognised challenges with IFI outbreak recognition, response, and prevention include the need for improved rapid diagnostic methods, the absence of routine surveillance for most IFIs, adherence to infection control practices, and health-care provider awareness. Additionally, IFI outbreak investigations have revealed several emerging issues, including new populations at risk because of travel or relocation, occupation, or immunosuppression; fungal pathogens appearing in geographical areas in which they have not been previously recognised; and contaminated compounded medications. This report highlights notable IFI outbreaks in the past decade, with an emphasis on these emerging challenges in the USA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Occupational exposure investigation and protective measures in a tertiary infectious disease hospital].

    PubMed

    Ding, H M; Zhou, X P; Huang, J Z

    2018-02-20

    Objective: To investigate the cause of occupational exposure among 136 nurses in a tertiary infectious disease hospital, and puts forward the prevention strategy. Methods: A total of 136 nurses exposed to occupational exposure between 2014 and 2016 were included in the study. Analysis was conducted from the years of work of nurses, exposure routes, and the pathogens. Results: The nurses suffer from the highest risk of occupational exposures (73.91%) .Nurses working for less than 5 years and interns are most likely to suffer occupational exposure (45.59% and 35.29% respectively) . Occupational exposure was mainly caused by needle injuries, in which infusion was the main route of occupational exposure (36.76%) . The improper treatment of needle pulling after infusion is the main link of needle puncture (36.76%) . Occupational exposure pathogens were mainly HBV (63.24%) . Conclusion: Nursing staff is the high-risk group of occupational exposure. Irregular operation, lack of awareness of protection, improper disposal after the needle withdrawal and poor safety assessment of the operating environment are the main causes of occupational exposure. It is suggested to strengthen the training of occupational safety and protection, enhance clinical nurses occupational safety protection consciousness, standardize medical operation, so as to prevent the occurrence of occupational exposure.

  8. Chemotherapeutic potential of cow urine: A review

    PubMed Central

    Randhawa, Gurpreet Kaur; Sharma, Rajiv

    2015-01-01

    In the grim scenario where presently about 70% of pathogenic bacteria are resistant to at least one of the drugs for the treatment, cue is to be taken from traditional/indigenous medicine to tackle it urgently. The Indian traditional knowledge emanates from ayurveda, where Bos indicus is placed at a high pedestal for numerous uses of its various products. Urine is one of the products of a cow with many benefits and without toxicity. Various studies have found good antimicrobial activity of cow’s urine (CU) comparable with standard drugs such as ofloxacin, cefpodoxime, and gentamycin, against a vast number of pathogenic bacteria, more so against Gram-positive than negative bacteria. Interestingly antimicrobial activity has also been found against some resistant strains such as multidrug-resistant (MDR) Escherichia coli and Klebsiella pneumoniae. Antimicrobial action is enhanced still further by it being an immune-enhancer and bioenhancer of some antibiotic drugs. Antifungal activity was comparable to amphotericin B. CU also has anthelmintic and antineoplastic action. CU has, in addition, antioxidant properties, and it can prevent the damage to DNA caused by the environmental stress. In the management of infectious diseases, CU can be used alone or as an adjunctive to prevent the development of resistance and enhance the effect of standard antibiotics. PMID:26401404

  9. Efficacy of clade 2.3.2 H5 commercial vaccines in protecting chickens from clade 2.3.4.4 H5N8 highly pathogenic avian influenza infection.

    PubMed

    Yuk, Seong-Su; Erdene-Ochir, T O; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Jeong, Sol; Gwon, Gyeong-Bin; Shin, Jong-Il; Sur, Jung-Hyang; Song, Chang-Seon

    2017-03-01

    Emerging clade 2.3.4.4 of the highly pathogenic avian influenza (HPAI) virus strain H5N8, which had been detected sporadically in domestic poultry in China, started to affect wild birds and poultry in South Korea in 2014. The virus was spread to Germany, Italy, the Netherlands, United Kingdom, and even United States by migratory birds. Here, we tested currently used commercial clade 2.3.2 H5 vaccines to evaluate mortality, clinical signs, virus shedding, and histological damage after experimental infection of chickens with the clade 2.3.4.4 HPAI H5N8 virus. Although the vaccination protected chickens from death, it failed to prevent chickens from shedding the virus and from tissue damage according to histological examination. These results suggest that the use of appropriate vaccines that match the currently epidemic HPAI virus is recommended, and continuous HPAI surveillance and testing of currently used commercial vaccines should be performed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ocelots on Barro Colorado Island are infected with feline immunodeficiency virus but not other common feline and canine viruses.

    PubMed

    Franklin, Samuel P; Kays, Roland W; Moreno, Ricardo; TerWee, Julie A; Troyer, Jennifer L; VandeWoude, Sue

    2008-07-01

    Transmission of pathogens from domestic animals to wildlife populations (spill-over) has precipitated local wildlife extinctions in multiple geographic locations. Identifying such events before they cause population declines requires differentiating spillover from endemic disease, a challenge complicated by a lack of baseline data from wildlife populations that are isolated from domestic animals. We tested sera collected from 12 ocelots (Leopardus pardalis) native to Barro Colorado Island, Panama, which is free of domestic animals, for antibodies to feline herpes virus, feline calicivirus, feline corona virus, feline panleukopenia virus, canine distemper virus, and feline immunodeficiency virus (FIV), typically a species-specific infection. Samples also were tested for feline leukemia virus antigens. Positive tests results were only observed for FIV; 50% of the ocelots were positive. We hypothesize that isolation of this population has prevented introduction of pathogens typically attributed to contact with domestic animals. The high density of ocelots on Barro Colorado Island may contribute to a high prevalence of FIV infection, as would be expected with increased contact rates among conspecifics in a geographically restricted population.

  11. Ocelots on Barro Colorado Island Are Infected with Feline Immunodeficiency Virus but Not Other Common Feline and Canine Viruses

    PubMed Central

    Franklin, Samuel P.; Kays, Roland W.; Moreno, Ricardo; TerWee, Julie A.; Troyer, Jennifer L.; VandeWoude, Sue

    2011-01-01

    Transmission of pathogens from domestic animals to wildlife populations (spill-over) has precipitated local wildlife extinctions in multiple geographic locations. Identifying such events before they cause population declines requires differentiating spillover from endemic disease, a challenge complicated by a lack of baseline data from wildlife populations that are isolated from domestic animals. We tested sera collected from 12 ocelots (Leopardus pardalis) native to Barro Colorado Island, Panama, which is free of domestic animals, for antibodies to feline herpes virus, feline calicivirus, feline corona virus, feline panleukopenia virus, canine distemper virus, and feline immunodeficiency virus (FIV), typically a species-specific infection. Samples also were tested for feline leukemia virus antigens. Positive tests results were only observed for FIV; 50% of the ocelots were positive. We hypothesize that isolation of this population has prevented introduction of pathogens typically attributed to contact with domestic animals. The high density of ocelots on Barro Colorado Island may contribute to a high prevalence of FIV infection, as would be expected with increased contact rates among conspecifics in a geographically restricted population. PMID:18689668

  12. The effects of yeast feed supplementaion on turkey performance and pathogen colonization in a transport stress/Escherichia coli challenge

    USDA-ARS?s Scientific Manuscript database

    A commercial yeast culture feed supplement (Celmanax® SCP, Vi-COR, Mason City, IA, YC)was provided to turkeys throughout a 16 wk grow-out to determine if it would prevent the effects of stress on production and pathogen colonization. YC was provided either continuously at 100g/tonne (YC-CS) or inter...

  13. Heating times for round and rectangular cross sections of wood in steam

    Treesearch

    William T. Simpson

    2001-01-01

    Heat sterilization of wood in various forms is currently receiving attention as a means of killing insects or pathogens to prevent their transfer from one region of the world to another in trade. One concern is the amount of time required to heat wood of various cross-sectional sizes and configurations to a temperature that will kill the insects or pathogens....

  14. Subunit vaccines for the prevention of mucosal infection with Chlamydia trachomatis

    PubMed Central

    Yu, Hong; Karunakaran, Karuna P.; Jiang, Xiaozhou; Brunham, Robert C.

    2016-01-01

    Chlamydia trachomatis is the most common preventable cause of tubal infertility in women. In high-income countries, despite public health control efforts, C. trachomatis case rates continue to rise. Most medium and low-income countries lack any Chlamydia control program; therefore, a vaccine is essential for the control of Chlamydia infections. A rationally designed Chlamydia vaccine requires understanding of the immunological correlates of protective immunity, pathological responses to this mucosal pathogen, identification of optimal vaccine antigens and selection of suitable adjuvant delivery systems that engender protective immunity. Fortunately, Chlamydia vaccinology is facilitated by genomic knowledge and by murine models that reproduce many of the features of human C. trachomatis infection. This article reviews recent progress in these areas with a focus on subunit vaccine development. PMID:26938202

  15. The mitochondrial alternative oxidase Aox1 is needed to cope with respiratory stress but dispensable for pathogenic development in Ustilago maydis

    PubMed Central

    Piñón-Zárate, Gabriela; Matus-Ortega, Genaro; Guerra, Guadalupe; Feldbrügge, Michael; Pardo, Juan Pablo

    2017-01-01

    The mitochondrial alternative oxidase is an important enzyme that allows respiratory activity and the functioning of the Krebs cycle upon disturbance of the respiration chain. It works as a security valve in transferring excessive electrons to oxygen, thereby preventing potential damage by the generation of harmful radicals. A clear biological function, besides the stress response, has so far convincingly only been shown for plants that use the alternative oxidase to generate heat to distribute volatiles. In fungi it was described that the alternative oxidase is needed for pathogenicity. Here, we investigate expression and function of the alternative oxidase at different stages of the life cycle of the corn pathogen Ustilago maydis (Aox1). Interestingly, expression of Aox1 is specifically induced during the stationary phase suggesting a role at high cell density when nutrients become limiting. Studying deletion strains as well as overexpressing strains revealed that Aox1 is dispensable for normal growth, for cell morphology, for response to temperature stress as well as for filamentous growth and plant pathogenicity. However, during conditions eliciting respiratory stress yeast-like growth as well as hyphal growth is strongly affected. We conclude that Aox1 is dispensable for the normal biology of the fungus but specifically needed to cope with respiratory stress. PMID:28273139

  16. Investigating source water Cryptosporidium concentration, species and infectivity rates during rainfall-runoff in a multi-use catchment.

    PubMed

    Swaffer, Brooke A; Vial, Hayley M; King, Brendon J; Daly, Robert; Frizenschaf, Jacqueline; Monis, Paul T

    2014-12-15

    Protozoan pathogens present a significant human health concern, and prevention of contamination into potable networks remains a key focus for drinking water providers. Here, we monitored the change in Cryptosporidium concentration in source water during high flow events in a multi-use catchment. Furthermore, we investigated the diversity of Cryptosporidium species/genotypes present in the source water, and delivered an oocyst infectivity fraction. There was a positive and significant correlation between Cryptosporidium concentration and flow (ρ = 0.756) and turbidity (ρ = 0.631) for all rainfall-runoff events, despite variable source water pathogen concentrations. Cell culture assays measured oocyst infectivity and suggested an overall source water infectious fraction of 3.1%. No infectious Cryptosporidium parvum or Cryptosporidium hominis were detected, although molecular testing detected C. parvum in 7% of the samples analysed using PCR-based molecular techniques. Twelve Cryptosporidium species/genotypes were identified using molecular techniques, and were reflective of the host animals typically found in remnant vegetation and agricultural areas. The inclusion of molecular approaches to identify Cryptosporidium species and genotypes highlighted the diversity of pathogens in water, which originated from various sources across the catchment. We suggest this mixing of runoff water from a range of landuses containing diverse Cryptosporidium hosts is a key explanation for the often-cited difficulty forming strong pathogen-indicator relationships. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Prevention and treatment of urinary tract infection with probiotics: Review and research perspective.

    PubMed

    Borchert, D; Sheridan, L; Papatsoris, A; Faruquz, Z; Barua, J M; Junaid, I; Pati, Y; Chinegwundoh, F; Buchholz, N

    2008-04-01

    The spiralling costs of antibiotic therapy, the appearance of multiresistant bacteria and more importantly for patients and clinicians, unsatisfactory therapeutic options in recurrent urinary tract infection (RUTI) calls for alternative and advanced medical solutions. So far no sufficient means to successfully prevent painful and disabling RUTI has been found. Even though long-term oral antibiotic treatment has been used with some success as a therapeutic option, this is no longer secure due to the development of bacterial resistance. One promising alternative is the use of live microorganisms (probiotics) to prevent and treat recurrent complicated and uncomplicated urinary tract infection (UTI).The human normal bacterial flora is increasingly recognised as an important defence to infection. Since the advent of antibiotic treatment five decades ago, a linear relation between antibiotic use and reduction in pathogenic bacteria has become established as medical conventional wisdom. But with the use of antibiotics the beneficial bacterial flora hosted by the human body is destroyed and pathogenic bacteria are selectively enabled to overgrow internal and external surfaces. The benign bacterial flora is crucial for body function and oervgrowth with pathogenic microorganisms leads to illness. Thus the concept of supporting the human body's normal flora with live microorganisms conferring a beneficial health effect is an important medical strategy.

  18. In Vitro Characterization of Lactic Acid Bacteria Isolated from Bovine Milk as Potential Probiotic Strains to Prevent Bovine Mastitis.

    PubMed

    Pellegrino, Matías S; Frola, Ignacio D; Natanael, Berardo; Gobelli, Dino; Nader-Macias, María E F; Bogni, Cristina I

    2018-01-02

    Bovine mastitis causes economic losses on dairy farms worldwide. Lactic acid bacteria (LAB) in animal health are an alternative tool to avoid antibiotic therapy on the prevention of bovine mastitis. In previous studies, 12 LAB isolated from bovine milk were selected taking into account some of the following characteristics: hydrophobicity, auto aggregative capability, inhibition of indicator pathogens, hydrogen peroxide, and capsular polysaccharide production. These LAB were considered because of their beneficial properties. In this work, we also analyzed the antimicrobial activity and the co-aggregation against mastitis causing bacteria, auto-inhibition, adhesion to bovine teat canal epithelial cells (BTCEC), and growth kinetic curves for the 12 LAB. Two of them, Lactococcus lactis subsp. lactis CRL 1655 and Lactobacillus perolens CRL 1724, were selected because they had an interesting pattern of adhesion to BTEC, the inhibition of pathogens and the co-aggregation with the 100% of the assayed pathogens. They showed a predictable difference in the PFGE genomic pattern bands. The kinetic growth of these two strains was similar between them and with the rest of the assayed LAB. The strains selected in the present study showed indispensable characteristics for their inclusion in a probiotic formulation to be used at dry-off period for the prevention of bovine mastitis.

  19. Use of Bloodborne Pathogens Exposure Control Plans in Private Dental Practices: Results and Clinical Implications of a National Survey

    PubMed Central

    Laramie, Angela K.; Bednarsh, Helene; Isman, Beverly; Boiano, James M.; McCrone, Susan H.

    2018-01-01

    Dental healthcare workers (DHWs) are at risk for occupational exposure to bloodborne pathogens (BBPs). The Occupational Safety and Health Administration Bloodborne Pathogens Standard requires employers to have a written exposure control plan (ECP) detailing methods and means to reduce and manage occupational BBP exposures. Because little information is available on whether ECPs are created and used, the National Institute for Occupational Safety and Health and the Organization for Safety, Asepsis and Prevention conducted an online survey to determine if dental practices had an ECP, whether present ECPs had the necessary components, and if impediments existed to prevent having an ECP in place. Respondents were primarily from nonfranchised practices (69%) and dentists who owned the practice (63%). Seventy-two percent of survey participants had an ECP and 20% were unaware of any federal requirements for an ECP prior to the survey. Engineering controls were used by many practices, although the type varied. Fifteen percent of practices did not offer the hepatitis B vaccine for employees. The survey revealed many dental practices were unaware of or were lacking required elements of the ECP Findings from this survey indicate DHWs would benefit from increased education regarding methods to prevent occupational exposures to BBPs. PMID:28570085

  20. Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.

    PubMed

    Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R

    2010-01-06

    Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.

  1. Pre- and postharvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables.

    PubMed

    Gil, Maria I; Selma, Maria V; Suslow, Trevor; Jacxsens, Liesbeth; Uyttendaele, Mieke; Allende, Ana

    2015-01-01

    This review includes an overview of the most important preventive measures along the farm to fork chain to prevent microbial contamination of leafy greens. It also includes the technological and managerial interventions related to primary production, postharvest handling, processing practices, distribution, and consumer handling to eliminate pathogens in leafy greens. When the microbiological risk is already present, preventive measures to limit actual contamination events or pathogen survival are considered intervention strategies. In codes of practice the focus is mainly put on explaining preventive measures. However, it is also important to establish more focused intervention strategies. This review is centered mainly on leafy vegetables as the commodity identified as the highest priority in terms of fresh produce microbial safety from a global perspective. There is no unique preventive measure or intervention strategy that could be applied at one point of the food chain. We should encourage growers of leafy greens to establish procedures based on the HACCP principles at the level of primary production. The traceability of leafy vegetables along the chain is an essential element in ensuring food safety. Thus, in dealing with the food safety issues associated with fresh produce it is clear that a multidisciplinary farm to fork strategy is required.

  2. Treatment of whole blood with riboflavin plus ultraviolet light, an alternative to gamma irradiation in the prevention of transfusion-associated graft-versus-host disease?

    PubMed

    Fast, Loren D; Nevola, Martha; Tavares, Jennifer; Reddy, Heather L; Goodrich, Ray P; Marschner, Susanne

    2013-02-01

    Exposure of blood products to gamma irradiation is currently the standard of care in the prevention of transfusion-associated graft-versus-host disease (TA-GVHD). Regulatory, technical, and clinical challenges associated with the use of gamma irradiators are driving efforts to develop alternatives. Pathogen reduction methods were initially developed to reduce the risk of microbial transmission by blood components. Through modifications of nucleic acids, these technologies interfere with the replication of both pathogens and white blood cells (WBCs). To date, systems for pathogen and WBC inactivation of products containing red blood cells are less well established than those for platelets and plasma. In this study, the in vitro and in vivo function of WBCs present in whole blood after exposure to riboflavin plus ultraviolet light (Rb-UV) was examined and compared to responses of WBCs obtained from untreated or gamma-irradiated blood by measuring proliferation, cytokine production, activation, and antigen presentation and xenogeneic (X-)GVHD responses in an in vivo mouse model. In vitro studies demonstrated that treatment of whole blood with Rb-UV was as effective as gamma irradiation in preventing WBC proliferation, but was more effective in preventing antigen presentation, cytokine production, and T-cell activation. Consistent with in vitro findings, treatment with Rb-UV was as effective as gamma irradiation in preventing X-GVHD, a mouse model for TA-GVHD. The ability to effectively inactivate WBCs in fresh whole blood using Rb-UV, prior to separation into components, provides the transfusion medicine community with a potential alternative to gamma irradiation. © 2012 American Association of Blood Banks.

  3. Humidifiers for oxygen therapy: what risk for reusable and disposable devices?

    PubMed

    La Fauci, V; Costa, G B; Facciolà, A; Conti, A; Riso, R; Squeri, R

    2017-06-01

    Nosocomial pneumonia accounts for the vast majority of healthcare-associated infections (HAI). Although numerous medical devices have been discussed as potential vehicles for microorganisms, very little is known about the role played by oxygen humidifiers as potential sources of nosocomial pathogens. The purpose of this research was to evaluate the safety of the reuse of humidifiers by analysing the rate of microbial contamination in reusable and disposable oxygen humidifiers used during therapy, and then discuss their potential role in the transmission of respiratory pathogens. Water samples from reusable and disposable oxygen humidifiers were collected from different wards of the University Hospital of Messina, Italy, where nosocomial pneumonia has a higher incidence rate due to the "critical" clinical conditions of inpatients. In particular, we monitored the Internal Medicine and Pulmonology wards for the medical area; the General Surgery and Thoracic and Cardiovascular Surgery wards for the surgical area and the Intensive Care Unit and Neonatal Intensive Care Unit for the emergency area. The samples were always collected after a period of 5 days from initial use for both types of humidifiers. Samples were processed using standard bacteriological techniques and microbial colonies were identified using manual and automated methods. High rates of microbial contamination were observed in samples from reusable oxygen humidifiers employed in medical (83%), surgical (77%) and emergency (50%) areas. The most relevant pathogens were Pseudomonas aeruginosa, amongst the Gram-negative bacteria, and Staphylococcus aureus, amongst the Gram-positive bacteria. Other pathogens were detected in lower percentage. The disposable oxygen humidifier samples showed no contamination. This research presents evidence of the high rate and type of microbial contamination of reusable humidifiers employed for oxygen therapy. These devices may thus be involved in the transmission of potential pathogens. It could be important, for the prevention of nosocomial pneumonia, to replace them with singleuse humidifiers for which the absence of microbial contamination has been confirmed.

  4. PubMed Central

    Costa, G.B.; Facciolà, A.; Conti, A.; Riso, R.; Squeri, R.

    2017-01-01

    Summary Introduction. Nosocomial pneumonia accounts for the vast majority of healthcare-associated infections (HAI). Although numerous medical devices have been discussed as potential vehicles for microorganisms, very little is known about the role played by oxygen humidifiers as potential sources of nosocomial pathogens. The purpose of this research was to evaluate the safety of the reuse of humidifiers by analysing the rate of microbial contamination in reusable and disposable oxygen humidifiers used during therapy, and then discuss their potential role in the transmission of respiratory pathogens. Methods. Water samples from reusable and disposable oxygen humidifiers were collected from different wards of the University Hospital of Messina, Italy, where nosocomial pneumonia has a higher incidence rate due to the "critical" clinical conditions of inpatients. In particular, we monitored the Internal Medicine and Pulmonology wards for the medical area; the General Surgery and Thoracic and Cardiovascular Surgery wards for the surgical area and the Intensive Care Unit and Neonatal Intensive Care Unit for the emergency area. The samples were always collected after a period of 5 days from initial use for both types of humidifiers. Samples were processed using standard bacteriological techniques and microbial colonies were identified using manual and automated methods. Results. High rates of microbial contamination were observed in samples from reusable oxygen humidifiers employed in medical (83%), surgical (77%) and emergency (50%) areas. The most relevant pathogens were Pseudomonas aeruginosa, amongst the Gram-negative bacteria, and Staphylococcus aureus, amongst the Gram-positive bacteria. Other pathogens were detected in lower percentage. The disposable oxygen humidifier samples showed no contamination. Conclusions. This research presents evidence of the high rate and type of microbial contamination of reusable humidifiers employed for oxygen therapy. These devices may thus be involved in the transmission of potential pathogens. It could be important, for the prevention of nosocomial pneumonia, to replace them with singleuse humidifiers for which the absence of microbial contamination has been confirmed. PMID:28900356

  5. Global research trends of World Health Organization's top eight emerging pathogens.

    PubMed

    Sweileh, Waleed M

    2017-02-08

    On December 8 th , 2015, World Health Organization published a priority list of eight pathogens expected to cause severe outbreaks in the near future. To better understand global research trends and characteristics of publications on these emerging pathogens, we carried out this bibliometric study hoping to contribute to global awareness and preparedness toward this topic. Scopus database was searched for the following pathogens/infectious diseases: Ebola, Marburg, Lassa, Rift valley, Crimean-Congo, Nipah, Middle Eastern Respiratory Syndrome (MERS), and Severe Respiratory Acute Syndrome (SARS). Retrieved articles were analyzed to obtain standard bibliometric indicators. A total of 8619 journal articles were retrieved. Authors from 154 different countries contributed to publishing these articles. Two peaks of publications, an early one for SARS and a late one for Ebola, were observed. Retrieved articles received a total of 221,606 citations with a mean ± standard deviation of 25.7 ± 65.4 citations per article and an h-index of 173. International collaboration was as high as 86.9%. The Centers for Disease Control and Prevention had the highest share (344; 5.0%) followed by the University of Hong Kong with 305 (4.5%). The top leading journal was Journal of Virology with 572 (6.6%) articles while Feldmann, Heinz R. was the most productive researcher with 197 (2.3%) articles. China ranked first on SARS, Turkey ranked first on Crimean-Congo fever, while the United States of America ranked first on the remaining six diseases. Of retrieved articles, 472 (5.5%) were on vaccine - related research with Ebola vaccine being most studied. Number of publications on studied pathogens showed sudden dramatic rise in the past two decades representing severe global outbreaks. Contribution of a large number of different countries and the relatively high h-index are indicative of how international collaboration can create common health agenda among distant different countries.

  6. Omics approaches in food safety: fulfilling the promise?

    PubMed Central

    Bergholz, Teresa M.; Moreno Switt, Andrea I.; Wiedmann, Martin

    2014-01-01

    Genomics, transcriptomics, and proteomics are rapidly transforming our approaches to detection, prevention and treatment of foodborne pathogens. Microbial genome sequencing in particular has evolved from a research tool into an approach that can be used to characterize foodborne pathogen isolates as part of routine surveillance systems. Genome sequencing efforts will not only improve outbreak detection and source tracking, but will also create large amounts of foodborne pathogen genome sequence data, which will be available for data mining efforts that could facilitate better source attribution and provide new insights into foodborne pathogen biology and transmission. While practical uses and application of metagenomics, transcriptomics, and proteomics data and associated tools are less prominent, these tools are also starting to yield practical food safety solutions. PMID:24572764

  7. Adhesins in Human Fungal Pathogens: Glue with Plenty of Stick

    PubMed Central

    de Groot, Piet W. J.; Bader, Oliver; de Boer, Albert D.; Weig, Michael

    2013-01-01

    Understanding the pathogenesis of an infectious disease is critical for developing new methods to prevent infection and diagnose or cure disease. Adherence of microorganisms to host tissue is a prerequisite for tissue invasion and infection. Fungal cell wall adhesins involved in adherence to host tissue or abiotic medical devices are critical for colonization leading to invasion and damage of host tissue. Here, with a main focus on pathogenic Candida species, we summarize recent progress made in the field of adhesins in human fungal pathogens and underscore the importance of these proteins in establishment of fungal diseases. PMID:23397570

  8. Mycobacterium tuberculosis effectors interfering host apoptosis signaling.

    PubMed

    Liu, Minqiang; Li, Wu; Xiang, Xiaohong; Xie, Jianping

    2015-07-01

    Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.

  9. Inferring epidemiologic dynamics from viral evolution: 2014–2015 Eurasian/North American highly pathogenic avian influenza viruses exceed transmission threshold, R0 = 1, in wild birds and poultry in North America

    USGS Publications Warehouse

    Grear, Daniel R.; Hall, Jeffrey S.; Dusek, Robert; Ip, Hon S.

    2018-01-01

    Highly pathogenic avian influenza virus (HPAIV) is a multihost pathogen with lineages that pose health risks for domestic birds, wild birds, and humans. One mechanism of intercontinental HPAIV spread is through wild bird reservoirs, and wild birds were the likely sources of a Eurasian (EA) lineage HPAIV into North America in 2014. The introduction resulted in several reassortment events with North American (NA) lineage low-pathogenic avian influenza viruses and the reassortant EA/NA H5N2 went on to cause one of the largest HPAIV poultry outbreaks in North America. We evaluated three hypotheses about novel HPAIV introduced into wild and domestic bird hosts: (i) transmission of novel HPAIVs in wild birds was restricted by mechanisms associated with highly pathogenic phenotypes; (ii) the HPAIV poultry outbreak was not self-sustaining and required viral input from wild birds; and (iii) reassortment of the EA H5N8 generated reassortant EA/NA AIVs with a fitness advantage over fully Eurasian lineages in North American wild birds. We used a time-rooted phylodynamic model that explicitly incorporated viral population dynamics with evolutionary dynamics to estimate the basic reproductive number (R0) and viral migration among host types in domestic and wild birds, as well as between the EA H5N8 and EA/NA H5N2 in wild birds. We did not find evidence to support hypothesis (i) or (ii) as our estimates of the transmission parameters suggested that the HPAIV outbreak met or exceeded the threshold for persistence in wild birds (R0 > 1) and poultry (R0 ≈ 1) with minimal estimated transmission among host types. There was also no evidence to support hypothesis (iii) because R0 values were similar among EA H5N8 and EA/NA H5N2 in wild birds. Our results suggest that this novel HPAIV and reassortments did not encounter any transmission barriers sufficient to prevent persistence when introduced to wild or domestic birds.

  10. Inferring epidemiologic dynamics from viral evolution: 2014-2015 Eurasian/North American highly pathogenic avian influenza viruses exceed transmission threshold, R0 = 1, in wild birds and poultry in North America.

    PubMed

    Grear, Daniel A; Hall, Jeffrey S; Dusek, Robert J; Ip, Hon S

    2018-04-01

    Highly pathogenic avian influenza virus (HPAIV) is a multihost pathogen with lineages that pose health risks for domestic birds, wild birds, and humans. One mechanism of intercontinental HPAIV spread is through wild bird reservoirs, and wild birds were the likely sources of a Eurasian (EA) lineage HPAIV into North America in 2014. The introduction resulted in several reassortment events with North American (NA) lineage low-pathogenic avian influenza viruses and the reassortant EA/NA H5N2 went on to cause one of the largest HPAIV poultry outbreaks in North America. We evaluated three hypotheses about novel HPAIV introduced into wild and domestic bird hosts: (i) transmission of novel HPAIVs in wild birds was restricted by mechanisms associated with highly pathogenic phenotypes; (ii) the HPAIV poultry outbreak was not self-sustaining and required viral input from wild birds; and (iii) reassortment of the EA H5N8 generated reassortant EA/NA AIVs with a fitness advantage over fully Eurasian lineages in North American wild birds. We used a time-rooted phylodynamic model that explicitly incorporated viral population dynamics with evolutionary dynamics to estimate the basic reproductive number ( R 0 ) and viral migration among host types in domestic and wild birds, as well as between the EA H5N8 and EA/NA H5N2 in wild birds. We did not find evidence to support hypothesis (i) or (ii) as our estimates of the transmission parameters suggested that the HPAIV outbreak met or exceeded the threshold for persistence in wild birds ( R 0  > 1) and poultry ( R 0  ≈ 1) with minimal estimated transmission among host types. There was also no evidence to support hypothesis (iii) because R 0 values were similar among EA H5N8 and EA/NA H5N2 in wild birds. Our results suggest that this novel HPAIV and reassortments did not encounter any transmission barriers sufficient to prevent persistence when introduced to wild or domestic birds.

  11. Immune Evasion Strategies of Pathogens in Macrophages: the Potential for Limiting Pathogen Transmission.

    PubMed

    Ren, Yuwei; Khan, Faheem Ahmed; Pandupuspitasari, Nuruliarizki Shinta; Zhang, Shujun

    2017-01-01

    Preventing pathogen transmission to a new host is of major interest to the immunologist and could benefit from a detailed investigation of pathogen immune evasion strategies. The first line of defense against pathogen invasion is provided by macrophages. When they sense pathogens, macrophages initiate signals to inflammatory and pro-inflammatory cytokines through pattern recognition receptors (PRRs) subsequently mediating phagocytosis and inflammation. The macrophage immune machinery classically includes two subsets: the activated M1 and the activated M2 that respond accordingly in diverse immune challenges. The lipid and glycogen metabolic pathways work together with the lysosome to help the mature phagosome to degrade and eliminate intracellular pathogens in macrophages. The viral evasion strategies are even more complex due to the interplay between autophagy and apoptosis. However, pathogens evolve several strategies to camouflage themselves against immune responses in order to ensure their survival, replication and transmission. These strategies include the muting of PRRs initiated inflammatory responses, attenuation of M1 and/or induction of M2 macrophages, suppression of autophago-lysosomal formation, interference with lipid and glycogen metabolism, and viral mediation of autophagy and apoptosis cross-talk to enhance viral replication. This review focuses on pathogen immune evasion methods and on the strategies used by the host against camouflaged pathogens.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hong; Zeng, Hong; Lam, Robert

    Mismatch repair prevents the accumulation of erroneous insertions/deletions and non-Watson–Crick base pairs in the genome. Pathogenic mutations in theMLH1gene are associated with a predisposition to Lynch and Turcot's syndromes. Although genetic testing for these mutations is available, robust classification of variants requires strong clinical and functional support. Here, the first structure of the N-terminus of human MLH1, determined by X-ray crystallography, is described. Lastly, the structure shares a high degree of similarity with previously determined prokaryoticMLH1homologs; however, this structure affords a more accurate platform for the classification ofMLH1variants.

  13. Respiratory tract immune response to microbial pathogens.

    PubMed

    Wilkie, B N

    1982-11-15

    Effective resistance to respiratory tract infection depends principally on specific immunity on mucosal surfaces of the upper or lower respiratory tract. Respiratory tract immune response comprises antibody and cell-mediated systems and may be induced most readily by surface presentation of replicating agents but can result from parenteral or local presentation of highly immunogenic antigens. Upper and lower respiratory tract systems differ in immunologic competence, with the lungs having a greater inventory of protective mechanisms than the trachea or nose. Several effective vaccines have been developed for prevention or modification of respiratory tract diseases.

  14. Stress tolerant virulent strains of Cronobacter sakazakii from food.

    PubMed

    Fakruddin, Md; Rahaman, Mizanur; Ahmed, Monzur Morshed; Hoque, Md Mahfuzul

    2014-11-25

    Cronobacter sakazakii is considered as an emerging foodborne pathogen. The aim of this study was to isolate and characterize virulent strains of Cronobacter sakazakii from food samples of Bangladesh. Six (6) Cronobacter sakazakii was isolated and identified from 54 food samples on the basis of biochemical characteristics, sugar fermentation, SDS-PAGE of whole cell protein, plasmid profile and PCR of Cronobacter spp. specific genes (esak, gluA, zpx, ompA, ERIC, BOX-AIR) and sequencing. These strains were found to have moderately high antibiotic resistance against common antibiotics and some are ESBL producer. Most of the C. sakazakii isolates were capable of producing biofilm (strong biofilm producer), extracellular protease and siderophores, curli expression, haemolysin, haemagglutinin, mannose resistant haemagglutinin, had high cell surface hydrophobicity, significant resistance to human serum, can tolerate high concentration of salt, bile and DNase production. Most of them produced enterotoxins of different molecular weight. The isolates pose significant serological cross-reactivity with other gram negative pathogens such as serotypes of Salmonella spp., Shigella boydii, Shigella sonnei, Shigella flexneri and Vibrio cholerae. They had significant tolerance to high temperature, low pH, dryness and osmotic stress. Special attention should be given in ensuring hygiene in production and post-processing to prevent contamination of food with such stress-tolerant virulent Cronobacter sakazakii.

  15. Application of Species Distribution Modeling for Avian Influenza surveillance in the United States considering the North America Migratory Flyways

    NASA Astrophysics Data System (ADS)

    Belkhiria, Jaber; Alkhamis, Moh A.; Martínez-López, Beatriz

    2016-09-01

    Highly Pathogenic Avian Influenza (HPAI) has recently (2014-2015) re-emerged in the United States (US) causing the largest outbreak in US history with 232 outbreaks and an estimated economic impact of $950 million. This study proposes to use suitability maps for Low Pathogenic Avian Influenza (LPAI) to identify areas at high risk for HPAI outbreaks. LPAI suitability maps were based on wild bird demographics, LPAI surveillance, and poultry density in combination with environmental, climatic, and socio-economic risk factors. Species distribution modeling was used to produce high-resolution (cell size: 500m x 500m) maps for Avian Influenza (AI) suitability in each of the four North American migratory flyways (NAMF). Results reveal that AI suitability is heterogeneously distributed throughout the US with higher suitability in specific zones of the Midwest and coastal areas. The resultant suitability maps adequately predicted most of the HPAI outbreak areas during the 2014-2015 epidemic in the US (i.e. 89% of HPAI outbreaks were located in areas identified as highly suitable for LPAI). Results are potentially useful for poultry producers and stakeholders in designing risk-based surveillance, outreach and intervention strategies to better prevent and control future HPAI outbreaks in the US.

  16. Diagnosis, Treatment, and Prevention of Hemodialysis Emergencies.

    PubMed

    Saha, Manish; Allon, Michael

    2017-02-07

    Given the high comorbidity in patients on hemodialysis and the complexity of the dialysis treatment, it is remarkable how rarely a life-threatening complication occurs during dialysis. The low rate of dialysis emergencies can be attributed to numerous safety features in modern dialysis machines; meticulous treatment and testing of the dialysate solution to prevent exposure to trace elements, toxins, and pathogens; adherence to detailed treatment protocols; and extensive training of dialysis staff to handle medical emergencies. Most hemodialysis emergencies can be attributed to human error. A smaller number are due to rare idiosyncratic reactions. In this review, we highlight major emergencies that may occur during hemodialysis treatments, describe their pathogenesis, offer measures to minimize them, and provide specific interventions to prevent catastrophic consequences on the rare occasions when such emergencies arise. These emergencies include dialysis disequilibrium syndrome, venous air embolism, hemolysis, venous needle dislodgement, vascular access hemorrhage, major allergic reactions to the dialyzer or treatment medications, and disruption or contamination of the dialysis water system. Finally, we describe root cause analysis after a dialysis emergency has occurred to prevent a future recurrence. Copyright © 2017 by the American Society of Nephrology.

  17. Diagnosis, Treatment, and Prevention of Hemodialysis Emergencies

    PubMed Central

    Saha, Manish

    2017-01-01

    Given the high comorbidity in patients on hemodialysis and the complexity of the dialysis treatment, it is remarkable how rarely a life-threatening complication occurs during dialysis. The low rate of dialysis emergencies can be attributed to numerous safety features in modern dialysis machines; meticulous treatment and testing of the dialysate solution to prevent exposure to trace elements, toxins, and pathogens; adherence to detailed treatment protocols; and extensive training of dialysis staff to handle medical emergencies. Most hemodialysis emergencies can be attributed to human error. A smaller number are due to rare idiosyncratic reactions. In this review, we highlight major emergencies that may occur during hemodialysis treatments, describe their pathogenesis, offer measures to minimize them, and provide specific interventions to prevent catastrophic consequences on the rare occasions when such emergencies arise. These emergencies include dialysis disequilibrium syndrome, venous air embolism, hemolysis, venous needle dislodgement, vascular access hemorrhage, major allergic reactions to the dialyzer or treatment medications, and disruption or contamination of the dialysis water system. Finally, we describe root cause analysis after a dialysis emergency has occurred to prevent a future recurrence. PMID:27831511

  18. Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence Factors Associated with Human Pathogens

    PubMed Central

    Bashir, Mina; Ahmed, Mahjabeen; Weinmaier, Thomas; Ciobanu, Doina; Ivanova, Natalia; Pieber, Thomas R.; Vaishampayan, Parag A.

    2016-01-01

    Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella pneumophila, and their corresponding virulence factors were present in all cleanroom samples. This is the first functional metagenomics study describing presence of pathogens and their corresponding virulence factors in cleanroom environments. The results of this study should be considered for microbial monitoring of enclosed environments such as schools, homes, hospitals and more isolated habitation such the International Space Station and future manned missions to Mars. PMID:27667984

  19. SIGIRR, a negative regulator of TLR/IL-1R signalling promotes Microbiota dependent resistance to colonization by enteric bacterial pathogens.

    PubMed

    Sham, Ho Pan; Yu, Emily Yi Shan; Gulen, Muhammet F; Bhinder, Ganive; Stahl, Martin; Chan, Justin M; Brewster, Lara; Morampudi, Vijay; Gibson, Deanna L; Hughes, Michael R; McNagny, Kelly M; Li, Xiaoxia; Vallance, Bruce A

    2013-01-01

    Enteric bacterial pathogens such as enterohemorrhagic E. coli (EHEC) and Salmonella Typhimurium target the intestinal epithelial cells (IEC) lining the mammalian gastrointestinal tract. Despite expressing innate Toll-like receptors (TLRs), IEC are innately hypo-responsive to most bacterial products. This is thought to prevent maladaptive inflammatory responses against commensal bacteria, but it also limits antimicrobial responses by IEC to invading bacterial pathogens, potentially increasing host susceptibility to infection. One reason for the innate hypo-responsiveness of IEC is their expression of Single Ig IL-1 Related Receptor (SIGIRR), a negative regulator of interleukin (IL)-1 and TLR signaling. To address whether SIGIRR expression and the innate hypo-responsiveness of IEC impacts on enteric host defense, Sigirr deficient (-/-) mice were infected with the EHEC related pathogen Citrobacter rodentium. Sigirr -/- mice responded with accelerated IEC proliferation and strong pro-inflammatory and antimicrobial responses but surprisingly, Sigirr -/- mice proved dramatically more susceptible to infection than wildtype mice. Through haematopoietic transplantation studies, it was determined that SIGIRR expression by non-haematopoietic cells (putative IEC) regulated these responses. Moreover, the exaggerated responses were found to be primarily dependent on IL-1R signaling. Whilst exploring the basis for their susceptibility, Sigirr -/- mice were found to be unusually susceptible to intestinal Salmonella Typhimurium colonization, developing enterocolitis without the typical requirement for antibiotic based removal of competing commensal microbes. Strikingly, the exaggerated antimicrobial responses seen in Sigirr -/- mice were found to cause a rapid and dramatic loss of commensal microbes from the infected intestine. This depletion appears to reduce the ability of the microbiota to compete for space and nutrients (colonization resistance) with the invading pathogens, leaving the intestine highly susceptible to pathogen colonization. Thus, SIGIRR expression by IEC reflects a strategy that sacrifices maximal innate responsiveness by IEC in order to promote commensal microbe based colonization resistance against bacterial pathogens.

  20. A new in vitro bioassay system for discovery and quantitative evaluation of mosquito repellents

    USDA-ARS?s Scientific Manuscript database

    Mosquitoes are vectors of many pathogens that cause human diseases. Although prevention and control of immature stages is the best method to control mosquitoes, repellents play a significant role in reducing the risk of these diseases by preventing mosquito bites. The In vitro K & D bioassay system ...

  1. Mutant prevention concentrations of ABT-492, levofloxacin, moxifloxacin, and gatifloxacin against three common respiratory pathogens.

    PubMed

    Hermsen, Elizabeth D; Hovde, Laurie B; Konstantinides, George N; Rotschafer, John C

    2005-04-01

    The purpose of this study was to compare the mutant prevention concentration (MPC) of ABT-492 to those of levofloxacin, moxifloxacin, and gatifloxacin against Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. The fluoroquinolones had comparable mutation selection windows, which is the ratio of MPC/MIC, for all isolates.

  2. The niche reduction approach: an opportunity for optimal control of infectious diseases in low-income countries?

    PubMed

    Roche, Benjamin; Broutin, Hélène; Choisy, Marc; Godreuil, Sylvain; de Magny, Guillaume Constantin; Chevaleyre, Yann; Zucker, Jean-Daniel; Breban, Romulus; Cazelles, Bernard; Simard, Frédéric

    2014-07-25

    During the last century, WHO led public health interventions that resulted in spectacular achievements such as the worldwide eradication of smallpox and the elimination of malaria from the Western world. However, besides major successes achieved worldwide in infectious diseases control, most elimination/control programs remain frustrating in many tropical countries where specific biological and socio-economical features prevented implementation of disease control over broad spatial and temporal scales. Emblematic examples include malaria, yellow fever, measles and HIV. There is consequently an urgent need to develop affordable and sustainable disease control strategies that can target the core of infectious diseases transmission in highly endemic areas. Meanwhile, although most pathogens appear so difficult to eradicate, it is surprising to realize that human activities are major drivers of the current high rate of extinction among upper organisms through alteration of their ecology and evolution, i.e., their "niche". During the last decades, the accumulation of ecological and evolutionary studies focused on infectious diseases has shown that the niche of a pathogen holds more dimensions than just the immune system targeted by vaccination and treatment. Indeed, it is situated at various intra- and inter- host levels involved on very different spatial and temporal scales. After developing a precise definition of the niche of a pathogen, we detail how major advances in the field of ecology and evolutionary biology of infectious diseases can enlighten the planning and implementation of infectious diseases control in tropical countries with challenging economic constraints. We develop how the approach could translate into applied cases, explore its expected benefits and constraints, and we conclude on the necessity of such approach for pathogen control in low-income countries.

  3. Model-based evaluation of highly and low pathogenic avian influenza dynamics in wild birds

    USGS Publications Warehouse

    Hénaux, Viviane; Samuel, Michael D.; Bunck, Christine M.

    2010-01-01

    There is growing interest in avian influenza (AI) epidemiology to predict disease risk in wild and domestic birds, and prevent transmission to humans. However, understanding the epidemic dynamics of highly pathogenic (HPAI) viruses remains challenging because they have rarely been detected in wild birds. We used modeling to integrate available scientific information from laboratory and field studies, evaluate AI dynamics in individual hosts and waterfowl populations, and identify key areas for future research. We developed a Susceptible-Exposed-Infectious-Recovered (SEIR) model and used published laboratory challenge studies to estimate epidemiological parameters (rate of infection, latency period, recovery and mortality rates), considering the importance of age classes, and virus pathogenicity. Infectious contact leads to infection and virus shedding within 1–2 days, followed by relatively slower period for recovery or mortality. We found a shorter infectious period for HPAI than low pathogenic (LP) AI, which may explain that HPAI has been much harder to detect than LPAI during surveillance programs. Our model predicted a rapid LPAI epidemic curve, with a median duration of infection of 50–60 days and no fatalities. In contrast, HPAI dynamics had lower prevalence and higher mortality, especially in young birds. Based on field data from LPAI studies, our model suggests to increase surveillance for HPAI in post-breeding areas, because the presence of immunologically naïve young birds is predicted to cause higher HPAI prevalence and bird losses during this season. Our results indicate a better understanding of the transmission, infection, and immunity-related processes is required to refine predictions of AI risk and spread, improve surveillance for HPAI in wild birds, and develop disease control strategies to reduce potential transmission to domestic birds and/or humans.

  4. Ecological theory as a foundation to control pathogenic invasion in aquaculture

    PubMed Central

    De Schryver, Peter; Vadstein, Olav

    2014-01-01

    Detrimental host–pathogen interactions are a normal phenomenon in aquaculture animal production, and have been counteracted by prophylactic use of antibiotics. Especially, the youngest life stages of cultivated aquatic animals are susceptible to pathogen invasion, resulting in disease and mortality. To establish a more sustainable aquatic food production, there is a need for new microbial management strategies that focus on ‘join them' and not the traditional ‘beat them' approaches. We argue that ecological theory could serve as a foundation for developing sustainable microbial management methods that prevent pathogenic disease in larviculture. Management of the water microbiota in aquaculture systems according to ecological selection principles has been shown to decrease opportunistic pathogen pressure and to result in an improved performance of the cultured animals. We hypothesize that manipulation of the biodiversity of the gut microbiota can increase the host's resistance against pathogenic invasion and infection. However, substantial barriers need to be overcome before active management of the intestinal microbiota can effectively be applied in larviculture. PMID:24892581

  5. Pathogen-Sensing and Regulatory T Cells: Integrated Regulators of Immune Responses

    PubMed Central

    Grossman, Zvi; Paul, William E.

    2014-01-01

    We present the concept that pathogen-sensing and Tregs mutually regulate immune responses to conventional and tumor antigens through countervailing effects on dendritic cells. Normally, conventional CD4 T cells recognizing their cognate antigen-presented by a dendritic cell will respond only if the dendritic cell also receives a signal through its pathogen-sensing/ danger / adjuvant recognition systems (the pathogen-sensing triad). However, if Tregs capable of interacting with the same DC are absent, dendritic cells are competent to present antigens, both foreign and self, even without the stimulation provided by the pathogen-sensing triad. Tregs recognizing an antigen presented by the DC that is also presenting antigen to a conventional CD4 T cell will prevent such responses but a signal delivered by a member of the pathogen-sensing traid will overcome the Tregs’inhibitory action and will allow responses to go forward. These considerations take on special meaning for responses to “weak antigens” such as many of the antigens displayed by spontaneous human tumors. PMID:24894087

  6. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts

    PubMed Central

    Gerwien, Franziska; Safyan, Abu; Wisgott, Stephanie; Hille, Fabrice; Kaemmer, Philipp; Linde, Jörg; Brunke, Sascha; Kasper, Lydia

    2016-01-01

    ABSTRACT Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker’s yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. PMID:27795405

  7. Schizophrenia: A Pathogenetic Autoimmune Disease Caused by Viruses and Pathogens and Dependent on Genes

    PubMed Central

    Carter, C. J.

    2011-01-01

    Many genes have been implicated in schizophrenia as have viral prenatal or adult infections and toxoplasmosis or Lyme disease. Several autoantigens also target key pathology-related proteins. These factors are interrelated. Susceptibility genes encode for proteins homologous to those of the pathogens while the autoantigens are homologous to pathogens' proteins, suggesting that the risk-promoting effects of genes and risk factors are conditional upon each other, and dependent upon protein matching between pathogen and susceptibility gene products. Pathogens' proteins may act as dummy ligands, decoy receptors, or via interactome interference. Many such proteins are immunogenic suggesting that antibody mediated knockdown of multiple schizophrenia gene products could contribute to the disease, explaining the immune activation in the brain and lymphocytes in schizophrenia, and the preponderance of immune-related gene variants in the schizophrenia genome. Schizophrenia may thus be a “pathogenetic” autoimmune disorder, caused by pathogens, genes, and the immune system acting together, and perhaps preventable by pathogen elimination, or curable by the removal of culpable antibodies and antigens. PMID:22567321

  8. Membrane rafts in host-pathogen interactions.

    PubMed

    Riethmüller, Joachim; Riehle, Andrea; Grassmé, Heike; Gulbins, Erich

    2006-12-01

    Central elements in the infection of mammalian cells with viral, bacterial and parasitic pathogens include the adhesion of the pathogen to surface receptors of the cell, recruitment of additional receptor proteins to the infection-site, a re-organization of the membrane and, in particular, the intracellular signalosome. Internalization of the pathogen results in the formation of a phagosome that is supposed to fuse with lysosomes to form phagolysosomes, which serve the degradation of the pathogen, an event actively prevented by some pathogens. In summary, these changes in the infected cell permit pathogens to trigger apoptosis (for instance of macrophages paralysing the initial immune response), to invade the cell and/or to survive in the cell, but they also serve the mammalian cell to defeat the infection, for instance by activation of transcription factors and the release of cytokines. Distinct membrane domains in the plasma membrane and intracellular vesicles that are mainly composed of sphingolipids and cholesterol or enriched with the sphingolipid ceramide, are critically involved in all of these events occurring during the infection. These membrane structures are therefore very attractive targets for novel drugs to interfere with bacterial, viral and parasitic infections.

  9. B cells and their role in the teleost gut

    PubMed Central

    Korytář, Tomáš; Takizawa, Fumio

    2016-01-01

    Mucosal surfaces are the main route of entry for pathogens in all living organisms. In the case of teleost fish, mucosal surfaces cover the vast majority of the animal. As these surfaces are in constant contact with the environment, fish are perpetually exposed to a vast number of pathogens. Despite the potential prevalence and variety of pathogens, mucosal surfaces are primarily populated by commensal non-pathogenic bacteria. Indeed, a fine balance between these two populations of microorganisms is crucial for animal survival. This equilibrium, controlled by the mucosal immune system, maintains homeostasis at mucosal tissues. Teleost fish possess a diffuse mucosa-associated immune system in the intestine, with B cells being one of the main responders. Immunoglobulins produced by these lymphocytes are a critical line of defense against pathogens and also prevent the entrance of commensal bacteria into the epithelium. In this review we will summarize recent literature regarding the role of B-lymphocytes and immunoglobulins in gut immunity in teleost fish, with specific focus on immunoglobulin isotypes and the microorganisms, pathogenic and non-pathogenic that interact with the immune system. PMID:26995768

  10. Partial budget of the discounted annual benefit of mastitis control strategies.

    PubMed

    Allore, H G; Erb, H N

    1998-08-01

    The objective of this study was to rank the benefits associated with various mastitis control strategies in simulated herds with intramammary infections caused by Streptococcus agalactiae, Streptococcus spp. other than Strep. agalactiae, Staphylococcus aureus, coagulase-negative staphylococci, and Escherichia coli. The control strategies tested were prevention, vaccination for E. coli, lactation therapy, and dry cow antibiotic therapy. Partial budgets were based on changes caused by mastitis control strategies from the mean values for milk, fat, and protein yields of the control herd and the number of cows that were culled under a fixed mastitis culling criterion. Each annual benefit (dollars per cow per year) of a mastitis control strategy was compared with the revenue for the control herd and was calculated under two different milk pricing plans (3.5% milk fat and multiple-component pricing), three net replacement costs, and three prevalences of pathogen-specific intramammary infection. Twenty replicates of each control strategy were run with SIMMAST (a dynamic discrete event stochastic simulation model) for 5 simulated yr. Rankings of discounted annual benefits differed only slightly according to milk pricing plans within a pathogen group but differed among the pathogen groups. Differences in net replacement costs for cows culled because of mastitis did not change the ranking of control strategies within a pathogen group. Both prevention and dry cow therapy were important mastitis control strategies. For herds primarily infected with environmental pathogens, strategies that included vaccination for mastitis caused by E. coli dominated strategies that did not include vaccination against this microorganism.

  11. Pathogen Reduction in Human Plasma Using an Ultrashort Pulsed Laser

    PubMed Central

    Tsen, Shaw-Wei D.; Kingsley, David H.; Kibler, Karen; Jacobs, Bert; Sizemore, Sara; Vaiana, Sara M.; Anderson, Jeanne; Tsen, Kong-Thon; Achilefu, Samuel

    2014-01-01

    Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma. PMID:25372037

  12. Subverting Toll-Like Receptor Signaling by Bacterial Pathogens

    PubMed Central

    McGuire, Victoria A.; Arthur, J. Simon C.

    2015-01-01

    Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection. PMID:26648936

  13. The ecology of emerging infectious diseases in migratory birds: an assessment of the role of climate change and priorities for future research.

    PubMed

    Fuller, Trevon; Bensch, Staffan; Müller, Inge; Novembre, John; Pérez-Tris, Javier; Ricklefs, Robert E; Smith, Thomas B; Waldenström, Jonas

    2012-03-01

    Pathogens that are maintained by wild birds occasionally jump to human hosts, causing considerable loss of life and disruption to global commerce. Preliminary evidence suggests that climate change and human movements and commerce may have played a role in recent range expansions of avian pathogens. Since the magnitude of climate change in the coming decades is predicted to exceed climatic changes in the recent past, there is an urgent need to determine the extent to which climate change may drive the spread of disease by avian migrants. In this review, we recommend actions intended to mitigate the impact of emergent pathogens of migratory birds on biodiversity and public health. Increased surveillance that builds upon existing bird banding networks is required to conclusively establish a link between climate and avian pathogens and to prevent pathogens with migratory bird reservoirs from spilling over to humans.

  14. Cationic Antimicrobial Peptide Resistance Mechanisms of Streptococcal Pathogens

    PubMed Central

    LaRock, Christopher N.; Nizet, Victor

    2015-01-01

    Cationic antimicrobial peptides (CAMPs) are critical front line contributors to host defense against invasive bacterial infection. These immune factors have direct killing activity toward microbes, but many pathogens are able to resist their effects. Group A Streptococcus, group B Streptococcus and Streptococcus pneumoniae are among the most common pathogens of humans and display a variety of phenotypic adaptations to resist CAMPs. Common themes of CAMP resistance mechanisms among the pathogenic streptococci are repulsion, sequestration, export, and destruction. Each pathogen has a different array of CAMP-resistant mechanisms, with invasive disease potential reflecting the utilization of several mechanisms that may act in synergy. Here we discuss recent progress in identifying the sources of CAMP resistance in the medically important Streptococcus genus. Further study of these mechanisms can contribute to our understanding of streptococcal pathogenesis, and may provide new therapeutic targets for therapy and disease prevention. PMID:25701232

  15. Mechanisms responsible for the effect of wet bulb depression on heat sterilization of slash pine lumber

    Treesearch

    William T. Simpson

    2003-01-01

    Heat sterilization is often required to prevent spread of insects and pathogens in wood products in international trade. Heat sterilization requires estimating the time necessary for the center of the wood configuration to reach the temperature required to kill insects or pathogens. In these experiments on 1.0- and 1.8-in.- (25- and 46-mm-) thick slash pine, heating...

  16. Regional and international approaches on prevention and control of animal transboundary and emerging diseases.

    PubMed

    Domenech, J; Lubroth, J; Eddi, C; Martin, V; Roger, F

    2006-10-01

    Transboundary animal diseases pose a serious risk to the world animal agriculture and food security and jeopardize international trade. The world has been facing devastating economic losses from major outbreaks of transboundary animal diseases (TADs) such as foot-and-mouth disease, classical swine fever, rinderpest, peste des petits ruminants (PPR), and Rift Valley fever. Lately the highly pathogenic avian influenza (HPAI) due to H5N1 virus, has become an international crisis as all regions around the world can be considered at risk. In the past decades, public health authorities within industrialized countries have been faced with an increasing number of food safety issues. The situation is equally serious in developing countries. The globalization of food (and feed) trade, facilitated by the liberalization of world trade, while offering many benefits and opportunities, also represents new risks. The GF-TADs Global Secretariat has carried out several regional consultations for the identification of priority diseases and best ways for their administration, prevention and control. In the questionnaires carried out and through the consultative process, it was noted that globally, FMD was ranked as the first and foremost priority. Rift Valley fever, and today highly pathogenic avian influenza, are defined as major animal diseases which also affect human health. PPR and CBPP, a disease which is particularly serious in Africa and finally, African swine fever (ASF) and classical swine fever (CSF) are also regionally recognised as top priorities on which the Framework is determined to work. The FAO philosophy--shared by the OIE--embraces the need to prevent and control TADs and emerging diseases at their source, which is most of the time in developing countries. Regional and international approaches have to be followed, and the FAO and OIE GF-TADs initiative provides the appropriate concepts and objectives as well as an organizational framework to link international and regional organizations at the service of their countries to better prevent and control the risks on animal and human health and the economic impact of TADs and emerging animal diseases.

  17. Development of a dual vaccine for prevention of Brucella abortus infection and Escherichia coli O157:H7 intestinal colonization.

    PubMed

    Iannino, Florencia; Herrmann, Claudia K; Roset, Mara S; Briones, Gabriel

    2015-05-05

    Zoonoses that affect human and animal health have an important economic impact. In the study now presented, a bivalent vaccine has been developed that has the potential for preventing the transmission from cattle to humans of two bacterial pathogens: Brucella abortus and Shiga toxin-producing Escherichia coli (STEC). A 66kDa chimeric antigen, composed by EspA, Intimin, Tir, and H7 flagellin (EITH7) from STEC, was constructed and expressed in B. abortus Δpgm vaccine strain (BabΔpgm). Mice orally immunized with BabΔpgm(EITH7) elicited an immune response with the induction of anti-EITH7 antibodies (IgA) that clears an intestinal infection of E. coli O157:H7 three times faster (t=4 days) than mice immunized with BabΔpgm carrier strain (t=12 days). As expected, mice immunized with BabΔpgm(EITH7) strain also elicited a protective immune response against B. abortus infection. A Brucella-based vaccine platform is described capable of eliciting a combined protective immune response against two bacterial pathogens with diverse lifestyles-the intracellular pathogen B. abortus and the intestinal extracellular pathogen STEC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses.

    PubMed

    Hendricks, Gabriel L; Velazquez, Lourdes; Pham, Serena; Qaisar, Natasha; Delaney, James C; Viswanathan, Karthik; Albers, Leila; Comolli, James C; Shriver, Zachary; Knipe, David M; Kurt-Jones, Evelyn A; Fygenson, Deborah K; Trevejo, Jose M; Wang, Jennifer P; Finberg, Robert W

    2015-04-01

    Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as 'molecular sinks' and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Conditioned medium from Bifidobacteria infantis protects against Cronobacter sakazakii-induced intestinal inflammation in newborn mice

    PubMed Central

    Weng, Meiqian; Ganguli, Kriston; Zhu, Weishu; Shi, Hai Ning

    2014-01-01

    Necrotizing enterocolitis (NEC) is associated with a high morbidity and mortality in very low birth weight infants. Several hypotheses regarding the pathogenesis of NEC have been proposed but to date no effective treatment is available. Previous studies suggest that probiotic supplementation is protective. We recently reported that probiotic (Bifidobacterium infantis) conditioned medium (PCM) has an anti-inflammatory effect in cultured fetal human intestinal cells (H4) and fetal intestine explants. In this study, we tested in vivo whether PCM protects neonatal mice from developing intestinal inflammation induced by exposure to Cronobacter sakazakii (C. sakazakii), an opportunistic pathogen associated with NEC. We found that infected neonatal mice had a significantly lower body weight than control groups. Infection led to ileal tissue damage including villous rupture, disruption of epithelial cell alignment, intestinal inflammation, apoptotic cell loss, and decreased mucus production. Pretreatment with PCM prevented infection caused decrease in body weight, attenuated enterocyte apoptotic cell death, mitigated reduced mucin production, and maintained ileal structure. Infected ileum expressed reduced levels of IκBα, which could be restored upon pretreatment with PCM. We also observed a nuclear translocation of NF-κB p65 in H4 cells exposed to C. sakazakii, which was prevented in PCM-pretreated cells. Finally, treatment of neonatal mice with PCM prior to infection sustained the capacity of ileal epithelial proliferation. This study suggests that an active component(s) released into the culture medium by B. infantis may prevent ileal damage by a pathogen linked to NEC. PMID:24627567

  20. Keeping Control: The Role of Senescence and Development in Plant Pathogenesis and Defense

    PubMed Central

    Häffner, Eva; Konietzki, Sandra; Diederichsen, Elke

    2015-01-01

    Many plant pathogens show interactions with host development. Pathogens may modify plant development according to their nutritional demands. Conversely, plant development influences pathogen growth. Biotrophic pathogens often delay senescence to keep host cells alive, and resistance is achieved by senescence-like processes in the host. Necrotrophic pathogens promote senescence in the host, and preventing early senescence is a resistance strategy of plants. For hemibiotrophic pathogens both patterns may apply. Most signaling pathways are involved in both developmental and defense reactions. Increasing knowledge about the molecular components allows to distinguish signaling branches, cross-talk and regulatory nodes that may influence the outcome of an infection. In this review, recent reports on major molecular players and their role in senescence and in pathogen response are reviewed. Examples of pathosystems with strong developmental implications illustrate the molecular basis of selected control strategies. A study of gene expression in the interaction between the hemibiotrophic vascular pathogen Verticillium longisporum and its cruciferous hosts shows processes that are fine-tuned to counteract early senescence and to achieve resistance. The complexity of the processes involved reflects the complex genetic control of quantitative disease resistance, and understanding the relationship between disease, development and resistance will support resistance breeding. PMID:27135337

  1. Optimization of PMA-PCR Protocol for Viability Detection of Pathogens

    NASA Technical Reports Server (NTRS)

    Mikkelson, Brian J.; Lee, Christine M.; Ponce, Adrian

    2011-01-01

    This presented study demonstrates the need that PMA-PCR can be used to capture the loss of viability of a sample that is much more specific and time-efficient than alternative methods. This protocol is particularly useful in scenarios in which sterilization treatments may inactivate organisms but not degrade their DNA. The use of a PCR-based method of pathogen detection without first inactivating the DNA of nonviable cells will potentially lead to false positives. The loss of culturability, by heat-killing, did not prevent amplified PCR products, which supports the use of PMA to prevent amplification and differentiate between viable and dead cells. PMA was shown to inhibit the amplification of DNA by PCR in vegetative cells that had been heat-killed.

  2. Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa.

    PubMed

    Arts, Isabelle S; Ball, Geneviève; Leverrier, Pauline; Garvis, Steven; Nicolaes, Valérie; Vertommen, Didier; Ize, Bérengère; Tamu Dufe, Veronica; Messens, Joris; Voulhoux, Romé; Collet, Jean-François

    2013-12-10

    Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. The human pathogen Pseudomonas aeruginosa causes life-threatening infections in immunodepressed and cystic fibrosis patients. The emergence of P. aeruginosa strains resistant to all of the available antibacterial agents calls for the urgent development of new antibiotics active against this bacterium. The pathogenic power of P. aeruginosa is mediated by an arsenal of extracellular virulence factors, most of which are stabilized by disulfide bonds. Thus, targeting the machinery that introduces disulfide bonds appears to be a promising strategy to combat P. aeruginosa. Here, we unraveled the oxidative protein folding system of P. aeruginosa in full detail. The system uniquely consists of two membrane proteins that generate disulfide bonds de novo to deliver them to P. aeruginosa DsbA1 (PaDsbA1), a soluble oxidoreductase. PaDsbA1 in turn donates disulfide bonds to secreted proteins, including virulence factors. Disruption of the disulfide bond formation machinery dramatically decreases P. aeruginosa virulence, confirming that disulfide formation systems are valid targets for the design of antimicrobial drugs.

  3. Pathogenomics: an updated European Research Agenda.

    PubMed

    Demuth, Andreas; Aharonowitz, Yair; Bachmann, Till T; Blum-Oehler, Gabriele; Buchrieser, Carmen; Covacci, Antonello; Dobrindt, Ulrich; Emödy, Levente; van der Ende, Arie; Ewbank, Jonathan; Fernández, Luis Angel; Frosch, Matthias; García-Del Portillo, Francisco; Gilmore, Michael S; Glaser, Philippe; Goebel, Werner; Hasnain, Seyed E; Heesemann, Jürgen; Islam, Khalid; Korhonen, Timo; Maiden, Martin; Meyer, Thomas F; Montecucco, Cesare; Oswald, Eric; Parkhill, Julian; Pucciarelli, M Graciela; Ron, Eliora; Svanborg, Catharina; Uhlin, Bernt Eric; Wai, Sun Nyunt; Wehland, Jürgen; Hacker, Jörg

    2008-05-01

    The emerging genomic technologies and bioinformatics provide novel opportunities for studying life-threatening human pathogens and to develop new applications for the improvement of human and animal health and the prevention, treatment, and diagnosis of infections. Based on the ecology and population biology of pathogens and related organisms and their connection to epidemiology, more accurate typing technologies and approaches will lead to better means of disease control. The analysis of the genome plasticity and gene pools of pathogenic bacteria including antigenic diversity and antigenic variation results in more effective vaccines and vaccine implementation programs. The study of newly identified and uncultivated microorganisms enables the identification of new threats. The scrutiny of the metabolism of the pathogen in the host allows the identification of new targets for anti-infectives and therapeutic approaches. The development of modulators of host responses and mediators of host damage will be facilitated by the research on interactions of microbes and hosts, including mechanisms of host damage, acute and chronic relationships as well as commensalisms. The study of multiple pathogenic and non-pathogenic microbes interacting in the host will improve the management of multiple infections and will allow probiotic and prebiotic interventions. Needless to iterate, the application of the results of improved prevention and treatment of infections into clinical tests will have a positive impact on the management of human and animal disease. The Pathogenomics Research Agenda draws on discussions with experts of the Network of Excellence "EuroPathoGenomics" at the management board meeting of the project held during 18-21 April 2007, in the Villa Vigoni, Menaggio, Italy. Based on a proposed European Research Agenda in the field of pathogenomics by the ERA-NET PathoGenoMics the meeting's participants updated the established list of topics as the research agenda for the future.

  4. Social and Economic Aspects of the Transmission of Pathogenic Bacteria between Wildlife and Food Animals: A Thematic Analysis of Published Research Knowledge.

    PubMed

    Fournier, A; Young, I; Rajić, A; Greig, J; LeJeune, J

    2015-09-01

    Wildlife is a known reservoir of pathogenic bacteria, including Mycobacterium bovis and Brucella spp. Transmission of these pathogens between wildlife and food animals can lead to damaging impacts on the agri-food industry and public health. Several international case studies have highlighted the complex and cross-sectoral challenges involved in preventing and managing these potential transmission risks. The objective of our study was to develop a better understanding of the socio-economic aspects of the transmission of pathogenic bacteria between wildlife and food animals to support more effective and sustainable risk mitigation strategies. We conducted qualitative thematic analysis on a purposive sample of 30/141 articles identified in a complementary scoping review of the literature in this area and identified two key themes. The first related to the framing of this issue as a 'wicked problem' that depends on a complex interaction of social factors and risk perceptions, governance and public policy, and economic implications. The second theme consisted of promising approaches and strategies to prevent and mitigate the potential risks from transmission of pathogenic bacteria between wildlife and food animals. These included participatory, collaborative and multidisciplinary decision-making approaches and the proactive incorporation of credible scientific evidence and local contextual factors into solutions. The integration of these approaches to address 'wicked problems' in this field may assist stakeholders and decision-makers in improving the acceptability and sustainability of future strategies to reduce the transmission of pathogenic bacteria between wildlife and food animals. © 2015 Zoonoses and Public Health © 2015 Her Majesty the Queen in Right of Canada Reproduced with the permission of the Minister of the Public Health Agency of Canada.

  5. Agro-Environmental Determinants of Avian Influenza Circulation: A Multisite Study in Thailand, Vietnam and Madagascar

    PubMed Central

    Paul, Mathilde C.; Gilbert, Marius; Desvaux, Stéphanie; Rasamoelina Andriamanivo, Harena; Peyre, Marisa; Khong, Nguyen Viet; Thanapongtharm, Weerapong; Chevalier, Véronique

    2014-01-01

    Outbreaks of highly pathogenic avian influenza have occurred and have been studied in a variety of ecological systems. However, differences in the spatial resolution, geographical extent, units of analysis and risk factors examined in these studies prevent their quantitative comparison. This study aimed to develop a high-resolution, comparative study of a common set of agro-environmental determinants of avian influenza viruses (AIV) in domestic poultry in four different environments: (1) lower-Northern Thailand, where H5N1 circulated in 2004–2005, (2) the Red River Delta in Vietnam, where H5N1 is circulating widely, (3) the Vietnam highlands, where sporadic H5N1 outbreaks have occurred, and (4) the Lake Alaotra region in Madagascar, which features remarkable similarities with Asian agro-ecosystems and where low pathogenic avian influenza viruses have been found. We analyzed H5N1 outbreak data in Thailand in parallel with serological data collected on the H5 subtype in Vietnam and on low pathogenic AIV in Madagascar. Several agro-environmental covariates were examined: poultry densities, landscape dominated by rice cultivation, proximity to a water body or major road, and human population density. Relationships between covariates and AIV circulation were explored using spatial generalized linear models. We found that AIV prevalence was negatively associated with distance to the closest water body in the Red River Delta, Vietnam highlands and Madagascar. We also found a positive association between AIV and duck density in the Vietnam highlands and Thailand, and with rice landscapes in Thailand and Madagascar. Our findings confirm the important role of wetlands-rice-ducks ecosystems in the epidemiology of AI in diverse settings. Variables influencing circulation of the H5 subtype in Southeast Asia played a similar role for low pathogenic AIV in Madagascar, indicating that this area may be at risk if a highly virulent strain is introduced. PMID:25029441

  6. Agro-environmental determinants of avian influenza circulation: a multisite study in Thailand, Vietnam and Madagascar.

    PubMed

    Paul, Mathilde C; Gilbert, Marius; Desvaux, Stéphanie; Andriamanivo, Harena Rasamoelina; Peyre, Marisa; Khong, Nguyen Viet; Thanapongtharm, Weerapong; Chevalier, Véronique

    2014-01-01

    Outbreaks of highly pathogenic avian influenza have occurred and have been studied in a variety of ecological systems. However, differences in the spatial resolution, geographical extent, units of analysis and risk factors examined in these studies prevent their quantitative comparison. This study aimed to develop a high-resolution, comparative study of a common set of agro-environmental determinants of avian influenza viruses (AIV) in domestic poultry in four different environments: (1) lower-Northern Thailand, where H5N1 circulated in 2004-2005, (2) the Red River Delta in Vietnam, where H5N1 is circulating widely, (3) the Vietnam highlands, where sporadic H5N1 outbreaks have occurred, and (4) the Lake Alaotra region in Madagascar, which features remarkable similarities with Asian agro-ecosystems and where low pathogenic avian influenza viruses have been found. We analyzed H5N1 outbreak data in Thailand in parallel with serological data collected on the H5 subtype in Vietnam and on low pathogenic AIV in Madagascar. Several agro-environmental covariates were examined: poultry densities, landscape dominated by rice cultivation, proximity to a water body or major road, and human population density. Relationships between covariates and AIV circulation were explored using spatial generalized linear models. We found that AIV prevalence was negatively associated with distance to the closest water body in the Red River Delta, Vietnam highlands and Madagascar. We also found a positive association between AIV and duck density in the Vietnam highlands and Thailand, and with rice landscapes in Thailand and Madagascar. Our findings confirm the important role of wetlands-rice-ducks ecosystems in the epidemiology of AI in diverse settings. Variables influencing circulation of the H5 subtype in Southeast Asia played a similar role for low pathogenic AIV in Madagascar, indicating that this area may be at risk if a highly virulent strain is introduced.

  7. US Centers for Disease Control and Prevention and Its Partners’ Contributions to Global Health Security

    PubMed Central

    Cassell, Cynthia H.; Bunnell, Rebecca E.; Angulo, Frederick J.; Craig, Allen; Pesik, Nicki; Dahl, Benjamin A.; Ijaz, Kashef; Jafari, Hamid; Martin, Rebecca

    2017-01-01

    To achieve compliance with the revised World Health Organization International Health Regulations (IHR 2005), countries must be able to rapidly prevent, detect, and respond to public health threats. Most nations, however, remain unprepared to manage and control complex health emergencies, whether due to natural disasters, emerging infectious disease outbreaks, or the inadvertent or intentional release of highly pathogenic organisms. The US Centers for Disease Control and Prevention (CDC) works with countries and partners to build and strengthen global health security preparedness so they can quickly respond to public health crises. This report highlights selected CDC global health protection platform accomplishments that help mitigate global health threats and build core, cross-cutting capacity to identify and contain disease outbreaks at their source. CDC contributions support country efforts to achieve IHR 2005 compliance, contribute to the international framework for countering infectious disease crises, and enhance health security for Americans and populations around the world. PMID:29155656

  8. Why is There Still no Human Vaccine Against Lyme Borreliosis?

    PubMed

    Skotarczak, Bogumiła

    2015-01-01

    Lyme disease, transmitted by ticks, is a complex illness that can be difficult to diagnose but easy to treat in most early cases, yet difficult in its latest stage. Every year, infections with Borrelia burgdorferi sensu lato spirochetes cause thousands of new cases of illness around the world, including people with a normal immunological reaction. Prevention in the form of vaccines is difficult due to e.g. very high variability of Borrelia antigen proteins, which precludes the construction of an effective vaccine. After the withdrawal of the OspA vaccine (LYMErix) in the USA, despite promising results, no vaccine protecting humans against all pathogenic species from the B. burgdorferi s.l. group is available. Recent data indicate that an effective vaccine may require a combination of several antigens or multiple epitopes based on vector-borne proteins and several outer membrane proteins of Borrelia. With the discontinuance of Lyme vaccines, personal protective behavior and the avoidance of exposure in high-risk areas remain necessary resources of prevention.

  9. Highly pathogenic avian influenza A(H7N9) virus, Tennessee, USA, March 2017

    USDA-ARS?s Scientific Manuscript database

    In March 2017, highly pathogenic avian influenza A(H7N9) was detected at 2 poultry farms in Tennessee, USA. Surveillance data and genetic analyses indicated multiple introductions of low pathogenicity avian influenza virus before mutation to high pathogenicity and interfarm transmission. Poultry sur...

  10. Novel Biocontrol Methods for Listeria monocytogenes Biofilms in Food Production Facilities.

    PubMed

    Gray, Jessica A; Chandry, P Scott; Kaur, Mandeep; Kocharunchitt, Chawalit; Bowman, John P; Fox, Edward M

    2018-01-01

    High mortality and hospitalization rates have seen Listeria monocytogenes as a foodborne pathogen of public health importance for many years and of particular concern for high-risk population groups. Food manufactures face an ongoing challenge in preventing the entry of L. monocytogenes into food production environments (FPEs) due to its ubiquitous nature. In addition to this, the capacity of L. monocytogenes strains to colonize FPEs can lead to repeated identification of L. monocytogenes in FPE surveillance. The contamination of food products requiring product recall presents large economic burden to industry and is further exacerbated by damage to the brand. Poor equipment design, facility layout, and worn or damaged equipment can result in Listeria hotspots and biofilms where traditional cleaning and disinfecting procedures may be inadequate. Novel biocontrol methods may offer FPEs effective means to help improve control of L. monocytogenes and decrease cross contamination of food. Bacteriophages have been used as a medical treatment for many years for their ability to infect and lyse specific bacteria. Endolysins, the hydrolytic enzymes of bacteriophages responsible for breaking the cell wall of Gram-positive bacteria, are being explored as a biocontrol method for food preservation and in nanotechnology and medical applications. Antibacterial proteins known as bacteriocins have been used as alternatives to antibiotics for biopreservation and food product shelf life extension. Essential oils are natural antimicrobials formed by plants and have been used as food additives and preservatives for many years and more recently as a method to prevent food spoilage by microorganisms. Competitive exclusion occurs naturally among bacteria in the environment. However, intentionally selecting and applying bacteria to effect competitive exclusion of food borne pathogens has potential as a biocontrol application. This review discusses these novel biocontrol methods and their use in food safety and prevention of spoilage, and examines their potential to control L. monocytogenes within biofilms in food production facilities.

  11. Novel Biocontrol Methods for Listeria monocytogenes Biofilms in Food Production Facilities

    PubMed Central

    Gray, Jessica A.; Chandry, P. Scott; Kaur, Mandeep; Kocharunchitt, Chawalit; Bowman, John P.; Fox, Edward M.

    2018-01-01

    High mortality and hospitalization rates have seen Listeria monocytogenes as a foodborne pathogen of public health importance for many years and of particular concern for high-risk population groups. Food manufactures face an ongoing challenge in preventing the entry of L. monocytogenes into food production environments (FPEs) due to its ubiquitous nature. In addition to this, the capacity of L. monocytogenes strains to colonize FPEs can lead to repeated identification of L. monocytogenes in FPE surveillance. The contamination of food products requiring product recall presents large economic burden to industry and is further exacerbated by damage to the brand. Poor equipment design, facility layout, and worn or damaged equipment can result in Listeria hotspots and biofilms where traditional cleaning and disinfecting procedures may be inadequate. Novel biocontrol methods may offer FPEs effective means to help improve control of L. monocytogenes and decrease cross contamination of food. Bacteriophages have been used as a medical treatment for many years for their ability to infect and lyse specific bacteria. Endolysins, the hydrolytic enzymes of bacteriophages responsible for breaking the cell wall of Gram-positive bacteria, are being explored as a biocontrol method for food preservation and in nanotechnology and medical applications. Antibacterial proteins known as bacteriocins have been used as alternatives to antibiotics for biopreservation and food product shelf life extension. Essential oils are natural antimicrobials formed by plants and have been used as food additives and preservatives for many years and more recently as a method to prevent food spoilage by microorganisms. Competitive exclusion occurs naturally among bacteria in the environment. However, intentionally selecting and applying bacteria to effect competitive exclusion of food borne pathogens has potential as a biocontrol application. This review discusses these novel biocontrol methods and their use in food safety and prevention of spoilage, and examines their potential to control L. monocytogenes within biofilms in food production facilities. PMID:29666613

  12. Emerging horizons for tick-borne pathogens: from the ‘one pathogen–one disease’ vision to the pathobiome paradigm

    PubMed Central

    Vayssier-Taussat, Muriel; Kazimirova, Maria; Hubalek, Zdenek; Hornok, Sándor; Farkas, Robert; Cosson, Jean-François; Bonnet, Sarah; Vourch, Gwenaël; Gasqui, Patrick; Mihalca, Andrei Daniel; Plantard, Olivier; Silaghi, Cornelia; Cutler, Sally; Rizzoli, Annapaola

    2015-01-01

    Ticks, as vectors of several notorious zoonotic pathogens, represent an important and increasing threat for human and animal health in Europe. Recent applications of new technology revealed the complexity of the tick microbiome, which may affect its vectorial capacity. Appreciation of these complex systems is expanding our understanding of tick-borne pathogens, leading us to evolve a more integrated view that embraces the ‘pathobiome’; the pathogenic agent integrated within its abiotic and biotic environments. In this review, we will explore how this new vision will revolutionize our understanding of tick-borne diseases. We will discuss the implications in terms of future research approaches that will enable us to efficiently prevent and control the threat posed by ticks. PMID:26610021

  13. Glycomaterials for probing host–pathogen interactions and the immune response

    PubMed Central

    Huang, Mia L; Fisher, Christopher J

    2016-01-01

    The initial engagement of host cells by pathogens is often mediated by glycan structures presented on the cell surface. Various components of the glycocalyx can be targeted by pathogens for adhesion to facilitate infection. Glycans also play integral roles in the modulation of the host immune response to infection. Therefore, understanding the parameters that define glycan interactions with both pathogens and the various components of the host immune system can aid in the development of strategies to prevent, interrupt, or manage infection. Glycomaterials provide a unique and powerful tool with which to interrogate the compositional and functional complexity of the glycocalyx. The objective of this review is to highlight some key contributions from this area of research in deciphering the mechanisms of pathogenesis and the associated host response. PMID:27190259

  14. Porcine semen as a vector for transmission of viral pathogens.

    PubMed

    Maes, Dominiek; Van Soom, Ann; Appeltant, Ruth; Arsenakis, Ioannis; Nauwynck, Hans

    2016-01-01

    Different viruses have been detected in porcine semen. Some of them are on the list of the World Organization for Animal Health (OIE), and consequently, these pathogens are of socioeconomic and/or public health importance and are of major importance in the international trade of animals and animal products. Artificial insemination (AI) is one of the most commonly used assisted reproductive technologies in pig production worldwide. This extensive use has enabled pig producers to benefit from superior genetics at a lower cost compared to natural breeding. However, the broad distribution of processed semen doses for field AI has increased the risk of widespread transmission of swine viral pathogens. Contamination of semen can be due to infections of the boar or can occur during semen collection, processing, and storage. It can result in reduced semen quality, embryonic mortality, endometritis, and systemic infection and/or disease in the recipient female. The presence of viral pathogens in semen can be assessed by demonstration of viable virus, nucleic acid of virus, or indirectly by measuring serum antibodies in the boar. The best way to prevent disease transmission via the semen is to assure that the boars in AI centers are free from the disease, to enforce very strict biosecurity protocols, and to perform routine health monitoring of boars. Prevention of viral semen contamination should be the primary focus because it is easier to prevent contamination than to eliminate viruses once present in semen. Nevertheless, research and development of novel semen processing treatments such as single-layer centrifugation is ongoing and may allow in the future to decontaminate semen. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Control strategies for highly pathogenic avian influenza: a global perspective.

    PubMed

    Lubroth, J

    2007-01-01

    Comprehensive programmes for the prevention, detection and control of highly pathogenic avian influenza (HPAI) require a national dimension and relevant national legislation in which veterinary services can conduct surveillance, competent diagnosis and rapid response. Avian influenza was controlled and prevented by vaccination long before the current H5N1 crisis. The use of vaccine cannot be separated from other essential elements of a vaccination campaign, which include education in poultry production practices, such as hygiene, all in-all out production concepts, separation of species, biosecurity (bio-exclusion to keep the disease out and biocontainment to keep the disease from spreading once suspected or detected), competence in giving the vaccine and the role of vaccination teams, post-vaccination monitoring to ensure efficacy and to detect the circulation of wild-type virus, surveillance and buffer zones in outbreak areas, and performance indicators to determine when vaccination can cease. Reporting of disease can be improved through well-structured, adequately financed veterinary services and also by fair compensation for producers who suffer financial loss. A rapid response to suspected cases of HPAI should be ensured in simulation exercises involving various sectors of the food production and marketing chain, policy-makers, official veterinary structures and other government personnel. As for other transboundary animal diseases, national approaches must be part of a regional strategy and regional networks for cooperation and information sharing, which in turn reflect global policies and international standards, such as the quality of vaccines, reporting obligations, humane interventions, cleaning and disinfection methods, restocking times, monitoring and safe trade.

  16. High-Sensitivity Monoclonal Antibodies Specific for Homoserine Lactones Protect Mice from Lethal Pseudomonas aeruginosa Infections

    PubMed Central

    Downham, Christina; Broadbent, Ian; Charlton, Keith; Porter, Andrew J.

    2014-01-01

    A number of bacteria, including pathogens like Pseudomonas aeruginosa, utilize homoserine lactones (HSLs) as quorum sensing (QS) signaling compounds and engage in cell-to-cell communication to coordinate their behavior. Blocking this bacterial communication may be an attractive strategy for infection control as QS takes a central role in P. aeruginosa biology. In this study, immunomodulation of HSL molecules by monoclonal antibodies (MAbs) was used as a novel approach to prevent P. aeruginosa infections and as tools to detect HSLs in bodily fluids as a possible first clue to an undiagnosed Gram-negative infection. Using sheep immunization and recombinant antibody technology, a panel of sheep-mouse chimeric MAbs were generated which recognized HSL compounds with high sensitivity (nanomolar range) and cross-reactivity. These MAbs retained their nanomolar sensitivity in complex matrices and were able to recognize HSLs in P. aeruginosa cultures grown in the presence of urine. In a nematode slow-killing assay, HSL MAbs significantly increased the survival of worms fed on the antibiotic-resistant strain PA058. The therapeutic benefit of these MAbs was further studied using a mouse model of Pseudomonas infection in which groups of mice treated with HSL-2 and HSL-4 MAbs survived, 7 days after pathogen challenge, in significantly greater numbers (83 and 67%, respectively) compared with the control groups. This body of work has provided early proof-of-concept data to demonstrate the potential of HSL-specific, monoclonal antibodies as theranostic clinical leads suitable for the diagnosis, prevention, and treatment of life-threatening bacterial infections. PMID:24185854

  17. Analysis of spatial distribution and transmission characters for highly pathogenic avian influenza in Chinese mainland in 2004

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Wei, C. J.; Yan, L.; Chi, T. H.; Wu, X. B.; Xiao, C. S.

    2006-03-01

    After the outbreak of highly pathogenic Avian Influenza (HPAI) in South Korea in the end of year 2003, estimates of the impact of HPAI in affected countries vary greatly, the total direct losses are about 3 billion US dollars, and it caused 15 million birds and poultry flocks death. It is significant to understand the spatial distribution and transmission characters of HPAI for its prevention and control. According to 50 outbreak cases for HPAI in Chinese mainland during 2004, this paper introduces the approach of spatial distribution and transmission characters for HPAI and its results. Its approach is based on remote sensing and GIS techniques. Its supporting data set involves normalized difference vegetation index (NDVI) and land surface temperature (Ts) derived from a time-series of remote sensing data of 1 kilometer-resolution NOAA/AVHRR, birds' migration routes, topology geographic map, lake and wetland maps, and meteorological observation data. In order to analyze synthetically using these data, a supporting platform for analysis Avian Influenza epidemic situation (SPAS/AI) was developed. Supporting by SPAS/AI, the integrated information from multi-sources can be easily used to the analysis of the spatial distribution and transmission character of HPAI. The results show that the range of spatial distribution and transmission of HPAI in China during 2004 connected to environment factors NDVI, Ts and the distributions of lake and wetland, and especially to bird migration routes. To some extent, the results provide some suggestions for the macro-decision making for the prevention and control of HPAI in the areas of potential risk and reoccurrence.

  18. De Novo Synthesis and Functional Analysis of Polyphosphate-Loaded Poly(Ethylene) Glycol Hydrogel Nanoparticles Targeting Pyocyanin and Pyoverdin Production in Pseudomonas aeruginosa as a Model Intestinal Pathogen

    PubMed Central

    Yin, Yushu; Papavasiliou, Georgia; Zaborina, Olga Y.; Alverdy, John C.; Teymour, Fouad

    2017-01-01

    The human gastrointestinal tract is the primary site of colonization of multidrug resistant pathogens and the major source of life-threatening complications in critically ill and immunocompromised patients. Eradication measures using antibiotics carry further risk of antibiotic resistance. Furthermore, antibiotic treatment can adversely shift the intestinal microbiome toward domination by resistant pathogens. Therefore, approaches directed to prevent replacement of health promoting microbiota with resistant pathogens should be developed. The use of non-microbicidal drugs to create microenvironmental conditions that suppress virulence of pathogens is an attractive strategy to minimize the negative consequences of intestinal microbiome disruption. We have previously shown that phosphate is depleted in the intestinal tract following surgical injury, that this depletion is a major “cue” that triggers bacterial virulence, and that the maintenance of phosphate abundance prevents virulence expression. However, the use of inorganic phosphate may not be a suitable agent to deliver to the site of the host-pathogen interaction since it is readily adsorbed in small intestine. Here we propose a novel drug delivery approach that exploits the use of nanoparticles that allow for prolonged release of phosphates. We have synthesized phosphate (Pi) and polyphosphate (PPi) crosslinked poly (ethylene) glycol (PEG) hydrogel nanoparticles (NP-Pi and NP-PPi, respectively) that result in sustained delivery of Pi and PPi. NP-PPi demonstrated more prolonged release of PPi as compared to the release of Pi from NP-Pi. In vitro studies indicate that free PPi as well NP-PPi are effective compounds for suppressing pyoverdin and pyocyanin production, two global virulence systems of virulence of P. aeruginosa. These studies suggest that sustained release of polyphosphate from NP-PPi can be exploited as a target for virulence suppression of lethal pathogenic phenotypes in the gastrointestinal tract. PMID:27761766

  19. Measuring distance through dense weighted networks: The case of hospital-associated pathogens

    PubMed Central

    Smieszek, Timo; Henderson, Katherine L.; Johnson, Alan P.

    2017-01-01

    Hospital networks, formed by patients visiting multiple hospitals, affect the spread of hospital-associated infections, resulting in differences in risks for hospitals depending on their network position. These networks are increasingly used to inform strategies to prevent and control the spread of hospital-associated pathogens. However, many studies only consider patients that are received directly from the initial hospital, without considering the effect of indirect trajectories through the network. We determine the optimal way to measure the distance between hospitals within the network, by reconstructing the English hospital network based on shared patients in 2014–2015, and simulating the spread of a hospital-associated pathogen between hospitals, taking into consideration that each intermediate hospital conveys a delay in the further spread of the pathogen. While the risk of transferring a hospital-associated pathogen between directly neighbouring hospitals is a direct reflection of the number of shared patients, the distance between two hospitals far-away in the network is determined largely by the number of intermediate hospitals in the network. Because the network is dense, most long distance transmission chains in fact involve only few intermediate steps, spreading along the many weak links. The dense connectivity of hospital networks, together with a strong regional structure, causes hospital-associated pathogens to spread from the initial outbreak in a two-step process: first, the directly surrounding hospitals are affected through the strong connections, second all other hospitals receive introductions through the multitude of weaker links. Although the strong connections matter for local spread, weak links in the network can offer ideal routes for hospital-associated pathogens to travel further faster. This hold important implications for infection prevention and control efforts: if a local outbreak is not controlled in time, colonised patients will appear in other regions, irrespective of the distance to the initial outbreak, making import screening ever more difficult. PMID:28771581

  20. Mutant Prevention Concentrations of ABT-492, Levofloxacin, Moxifloxacin, and Gatifloxacin against Three Common Respiratory Pathogens

    PubMed Central

    Hermsen, Elizabeth D.; Hovde, Laurie B.; Konstantinides, George N.; Rotschafer, John C.

    2005-01-01

    The purpose of this study was to compare the mutant prevention concentration (MPC) of ABT-492 to those of levofloxacin, moxifloxacin, and gatifloxacin against Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. The fluoroquinolones had comparable mutation selection windows, which is the ratio of MPC/MIC, for all isolates. PMID:15793158

  1. Phytosanitation: A systematic approach to disease prevention

    Treesearch

    Thomas D. Landis

    2013-01-01

    Phytosanitation is not a new concept but has received renewed attention due to the increasing threat of nursery spread Phytophthora ramorum (PRAM), the fungus-like pathogen that causes Sudden Oak Death. This disease has the potental to become the most serious forest pest since white pine blister rust and chestnut blight. Phytosanitation can help prevent the spread of...

  2. Plumbing of hospital premises is a reservoir for opportunistically pathogenic microorganisms: a review.

    PubMed

    Williams, Margaret M; Armbruster, Catherine R; Arduino, Matthew J

    2013-01-01

    Several bacterial species that are natural inhabitants of potable water distribution system biofilms are opportunistic pathogens important to sensitive patients in healthcare facilities. Waterborne healthcare-associated infections (HAI) may occur during the many uses of potable water in the healthcare environment. Prevention of infection is made more challenging by lack of data on infection rate and gaps in understanding of the ecology, virulence, and infectious dose of these opportunistic pathogens. Some healthcare facilities have been successful in reducing infections by following current water safety guidelines. This review describes several infections, and remediation steps that have been implemented to reduce waterborne HAIs.

  3. Varicella zoster vaccines and their implications for development of HSV vaccines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershon, Anne A., E-mail: aag1@columbia.edu

    Live attenuated vaccines to prevent varicella and zoster have been available in the US for the past 17 years, with a resultant dramatic decrease in varicella incidence and a predicted future decrease in the incidence of zoster. The pathogenesis and immune responses to varicella zoster virus (VZV) as well as the safety and effectiveness of VZV vaccines are reviewed. The lack of sterilizing immunity provided by VZV vaccines has not prevented them from being safe and effective. Virological and pathological information concerning parallels and differences between VZV and herpes simplex virus (HSV) are highlighted. Although VZV and HSV are distinctmore » pathogens, they appear to have similarities in target organs and immunity that provide an expectation of a high likelihood for the success of vaccination against HSV, and predicted to be similar to that of VZV.« less

  4. Bacterial bloodstream infections in the allogeneic hematopoietic cell transplant patient: new considerations for a persistent nemesis.

    PubMed

    Dandoy, C E; Ardura, M I; Papanicolaou, G A; Auletta, J J

    2017-08-01

    Bacterial bloodstream infections (BSI) cause significant transplant-related morbidity and mortality following allogeneic hematopoietic cell transplantation (allo-HCT). This manuscript reviews the risk factors for and the bacterial pathogens causing BSIs in allo-HCT recipients in the contemporary transplant period. In addition, it offers insight into emerging resistant pathogens and reviews clinical management considerations to treat and strategies to prevent BSIs in allo-HCT patients.

  5. Bioinspired, dynamic, structured surfaces for biofilm prevention

    NASA Astrophysics Data System (ADS)

    Epstein, Alexander K.

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even low surface tension commercial antimicrobials. Our study shows multiple contributing factors, including biochemical components and multiscale reentrant topography. Reliant on surface chemistry, conventional strategies for preventing biofilm only transiently affect attachment and/or are environmentally toxic. In this work, we look to Nature's antifouling solutions, such as the dynamic spiny skin of the echinoderm, and we develop a versatile surface nanofabrication platform. Our benchtop approach unites soft lithography, electrodeposition, mold deformation, and material selection to enable many degrees of freedom—material, geometric, mechanical, dynamic—that can be programmed starting from a single master structure. The mechanical properties of the bio-inspired nanostructures, verified by AFM, are precisely and rationally tunable. We examine how synthetic dynamic nanostructured surfaces control the attachment of pathogenic biofilms. The parameters governing long-range patterning of bacteria on high-aspect-ratio (HAR) nanoarrays are combinatorially elucidated, and we discover that sufficiently low effective stiffness of these HAR arrays mechanoselectively inhibits ˜40% of Pseudomonas aeruginosa biofilm attachment. Inspired by the active echinoderm skin, we design and fabricate externally actuated dynamic elastomer surfaces with active surface microtopography. We extract from a large parameter space the critical topographic length scales and actuation time scales for achieving nearly ˜80% attachment reduction. We furthermore investigate an atomically mobile, slippery liquid infused porous surface (SLIPS) inspired by the pitcher plant. We show up to 99.6% reduction of multiple pathogenic biofilms over a 7-day period under both static and physiologically realistic flow conditions—a ˜35x improvement over state-of-the-art surface chemistry, and over a far longer timeframe. Moreover, SLIPS is shown to be nontoxic: bacteria simply cannot attach to the smooth liquid interface. These bio-inspired strategies significantly advance biofilm attachment prevention and promise a tremendous range of industrial, clinical, and consumer applications.

  6. The animal-human interface and infectious disease in industrial food animal production: rethinking biosecurity and biocontainment.

    PubMed

    Graham, Jay P; Leibler, Jessica H; Price, Lance B; Otte, Joachim M; Pfeiffer, Dirk U; Tiensin, T; Silbergeld, Ellen K

    2008-01-01

    Understanding interactions between animals and humans is critical in preventing outbreaks of zoonotic disease. This is particularly important for avian influenza. Food animal production has been transformed since the 1918 influenza pandemic. Poultry and swine production have changed from small-scale methods to industrial-scale operations. There is substantial evidence of pathogen movement between and among these industrial facilities, release to the external environment, and exposure to farm workers, which challenges the assumption that modern poultry production is more biosecure and biocontained as compared with backyard or small holder operations in preventing introduction and release of pathogens. An analysis of data from the Thai government investigation in 2004 indicates that the odds of H5N1 outbreaks and infections were significantly higher in large-scale commercial poultry operations as compared with backyard flocks. These data suggest that successful strategies to prevent or mitigate the emergence of pandemic avian influenza must consider risk factors specific to modern industrialized food animal production.

  7. Biosecurity procedures for the environmental management of carcasses burial sites in Korea.

    PubMed

    Kim, Geon-Ha; Pramanik, Sudipta

    2016-12-01

    Avian influenza and foot-and-mouth disease are two main contagious pathogenic viral disease which are responsible for the massive burials of livestock in Korea since burial is the primary measure to control these outbreaks. Biosecurity is a set of preventive measures designed to prevent the risk of spreading of these infectious diseases. The main objective of this paper is to discuss about the requirements of biosecurity and develop protocol outlines for environmental management of burial sites in Korea. Current practice prescribes to minimize the potential for on-farm pollution and the spread of the infectious diseases. Specific biosecurity procedures such as proper assessment of leachate quality, safe handling and disposal of leachate, adequate leachate pollution monitoring, necessary seasonal management of burial site, and appropriate sterilization process must be carried out to prevent the indirect transmission of pathogens from the burial sites. Policy makers should acquire robust knowledge of biosecurity for establishing more effective future legislation for carcasses disposal in Korea.

  8. Recent introduction and recombination in Colletotrichum acutatum populations associated with citrus postbloom fruit drop epidemics in São Paulo, Brazil.

    PubMed

    Ciampi-Guillardi, Maisa; Baldauf, Cristina; Souza, Anete Pereira; Silva-Junior, Geraldo José; Amorim, Lilian

    2014-07-01

    Citrus crops in São Paulo State, Brazil, have been severely affected by postbloom fruit drop disease (PFD), which is caused by Colletotrichum acutatum. This disease leads to the drop of up to 100% of young fruits. Previous studies have assumed that this pathogen exhibits a clonal reproductive mode, although no population genetic studies have been conducted so far. Thus, the genetic structure of six C. acutatum populations from sweet orange orchards showing PFD symptoms was determined using nine microsatellite markers, enabling inference on predominant mode of reproduction. C. acutatum populations exhibit a nearly panmictic genetic structure and a high degree of admixture, indicating either ongoing contemporary gene flow at a regional scale or a recent introduction from a common source, since this pathogen was introduced in Brazil only very recently. Sharing haplotypes among orchards separated by 400 km suggests the natural dispersal of fungal propagules, with the possible involvement of pollinators. A significant population expansion was detected, which was consistent with an increase in host density associated with crop expansion toward new areas across the state. Findings of moderate to high levels of haplotypic diversity and gametic equilibrium suggest that recombination might play an important role in these pathogen populations, possibly via parasexual reproduction or a cryptic sexual cycle. This study provides additional tools for epidemiological studies of C. acutatum to improve prevention and management strategies for this disease.

  9. Silicon protects soybean plants against Phytophthora sojae by interfering with effector-receptor expression.

    PubMed

    Rasoolizadeh, Aliyeh; Labbé, Caroline; Sonah, Humira; Deshmukh, Rupesh K; Belzile, François; Menzies, James G; Bélanger, Richard R

    2018-05-30

    Silicon (Si) is known to protect against biotrophic and hemibiotrophic plant pathogens; however, the mechanisms by which it exerts its prophylactic role remain unknown. In an attempt to obtain unique insights into the mode of action of Si, we conducted a full comparative transcriptomic analysis of soybean (Glycine max) plants and Phytophthora sojae, a hemibiotroph that relies heavily on effectors for its virulence. Supplying Si to inoculated plants provided a strong protection against P. sojae over the course of the experiment (21 day). Our results showed that the response of Si-free (Si - ) plants to inoculation was characterized early (4 dpi) by a high expression of defense-related genes, including plant receptors, which receded over time as the pathogen progressed into the roots. The infection was synchronized with a high expression of effectors by P. sojae, the nature of which changed over time. By contrast, the transcriptomic response of Si-fed (Si + ) plants was remarkably unaffected by the presence of P. sojae, and the expression of effector-coding genes by the pathogen was significantly reduced. Given that the apoplast is a key site of interaction between effectors and plant defenses and receptors in the soybean-P. sojae complex, as well as the site of amorphous-Si accumulation, our results indicate that Si likely interferes with the signaling network between P. sojae and the plant, preventing or decreasing the release of effectors reaching plant receptors, thus creating a form of incompatible interaction.

  10. Potency, efficacy, and antigenic mapping of H7 avian influenza virus vaccines against the 2012 H7N3 highly pathogenic avian influenza virus from Mexico.

    PubMed

    Spackman, Erica; Wan, Xiu-Feng; Kapczynski, Darrell; Xu, Yifei; Pantin-Jackwood, Mary; Suarez, David L; Swayne, David

    2014-09-01

    In the spring of 2012 an outbreak of H7N3 highly pathogenic (HP) avian influenza virus (AIV) occurred in poultry in Mexico. Vaccination was implemented as a control measure, along with increased biosecurity and surveillance. At that time there was no commercially available H7 AIV vaccine in North America; therefore, a recent H7N3 wild bird isolate of low pathogenicity from Mexico (A/cinnamon teal/Mexico/2817/2006 H7N3) was selected and utilized as the vaccine seed strain. In these studies, the potency and efficacy of this vaccine strain was evaluated in chickens against challenge with the 2012 Jalisco H7N3 HPAIV. Although vaccine doses of 256 and 102 hemagglutinating units (HAU) per bird decreased morbidity and mortality significantly compared to sham vaccinates, a dose of 512 HAU per bird was required to prevent mortality and morbidity completely. Additionally, the efficacy of 11 other H7 AIV vaccines and an antigenic map of hemagglutination inhibition assay data with all the vaccines and challenge viruses were evaluated, both to identify other potential vaccine strains and to characterize the relationship between genetic and antigenic distance with protection against this HPAIV. Several other isolates provided adequate protection against the 2012 Jalisco H7N3 lineage, but antigenic and genetic differences were not clear indicators of protection because the immunogenicity of the vaccine seed strain was also a critical factor.

  11. Health implications associated with exposure to farmed and wild sea turtles.

    PubMed

    Warwick, Clifford; Arena, Phillip C; Steedman, Catrina

    2013-01-01

    Exposure to sea turtles may be increasing with expanding tourism, although reports of problems arising from interaction with free-living animals appear of negligible human health and safety concern. Exposure both to wild-caught and captive-housed sea turtles, including consumption of turtle products, raises several health concerns for the public, including: microbiological (bacteria, viruses, parasites and fungi), macrobiological (macroparasites), and organic and inorganic toxic contaminants (biotoxins, organochlorines and heavy metals). We conducted a review of sea turtle associated human disease and its causative agents as well as a case study of the commercial sea turtle facility known as the Cayman Turtle Farm (which receives approximately 240,000 visitors annually) including the use of water sampling and laboratory microbial analysis which identified Pseudomonas aeruginosa, Aeromonas spp., Vibrio spp. and Salmonella spp. Our assessment is that pathogens and toxic contaminants may be loosely categorized to represent the following levels of potential risk: viruses and fungi = very low; protozoan parasites = very low to low; metazoan parasites, bacteria and environmental toxic contaminants = low or moderate to high; and biotoxin contaminant = moderate to very high. Farmed turtles and their consumable products may constitute a significant reservoir of potential human pathogen and toxin contamination. Greater awareness among health-care professionals regarding both potential pathogens and toxic contaminants from sea turtles, as well as key signs and symptoms of sea turtle-related human disease, is important for the prevention and control of salient disease.

  12. Negative impact of laws regarding biosecurity and bioterrorism on real diseases.

    PubMed

    Wurtz, N; Grobusch, M P; Raoult, D

    2014-06-01

    Research on highly pathogenic microorganisms in biosafety level 3 and 4 laboratories is very important for human public health, as it provides opportunities for the development of vaccines and novel therapeutics as well as diagnostic methods to prevent epidemics. However, in recent years, after the anthrax and World Trade Center attacks in 2001 in the USA, the threat of bioterrorism has grown for both the public and the authorities. As a result, technical and physical containment measures and biosafety and biosecurity practices have been implemented in laboratories handling these dangerous pathogens. Working with selected biological agents and toxins is now highly regulated, owing to their potential to pose a threat to public health and safety, despite the fact that the anthrax attack was found to be the result of a lack of security at a US Army laboratory. Thus, these added regulations have been associated with a large amount of fruitless investment. Herein, we describe the limitations of research in these facilities, and the multiple consequences of the increased regulations. These limitations have seriously negatively impacted on the number of collaborations, the size of research projects, and, more generally, scientific research on microbial pathogens. Clearly, the actual number of known victims and fatalities caused by the intentional use of microorganisms has been negligible as compared with those caused by naturally acquired human infections. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  13. The novel polysaccharide deacetylase homologue Pdi contributes to virulence of the aquatic pathogen Streptococcus iniae

    PubMed Central

    Milani, Carlo J. E.; Aziz, Ramy K.; Locke, Jeffrey B.; Dahesh, Samira; Nizet, Victor; Buchanan, John T.

    2010-01-01

    The aquatic zoonotic pathogen Streptococcus iniae represents a threat to the worldwide aquaculture industry and poses a risk to humans who handle raw fish. Because little is known about the mechanisms of S. iniae pathogenesis or virulence factors, we established a high-throughput system combining whole-genome pyrosequencing and transposon mutagenesis that allowed us to identify virulence proteins, including Pdi, the polysaccharide deacetylase of S. iniae, that we describe here. Using bioinformatics tools, we identified a highly conserved signature motif in Pdi that is also conserved in the peptidoglycan deacetylase PgdA protein family. A Δpdi mutant was attenuated for virulence in the hybrid striped bass model and for survival in whole fish blood. Moreover, Pdi was found to promote bacterial resistance to lysozyme killing and the ability to adhere to and invade epithelial cells. On the other hand, there was no difference in the autolytic potential, resistance to oxidative killing or resistance to cationic antimicrobial peptides between S. iniae wild-type and Δpdi. In conclusion, we have demonstrated that pdi is involved in S. iniae adherence and invasion, lysozyme resistance and survival in fish blood, and have shown that pdi plays a role in the pathogenesis of S. iniae. Identification of Pdi and other S. iniae virulence proteins is a necessary initial step towards the development of appropriate preventive and therapeutic measures against diseases and economic losses caused by this pathogen. PMID:19762441

  14. Nuts and Grains: Microbiology and Preharvest Contamination Risks.

    PubMed

    Brar, Pardeepinder K; Danyluk, Michelle D

    2018-04-01

    Low-water-activity foods have been involved in recalls and foodborne disease outbreaks. Increased consumption; better detection methods and reporting systems; improved surveillance, trace-back, and ability to connect sporadic foodborne illnesses; and inadequate implementation of food safety programs are some of the likely reasons for the increase in frequency of recalls and outbreaks linked to dry foods. Nuts and grains can be contaminated with foodborne pathogens at any stage during production, processing, storage, and distribution. Focusing on preharvest contamination, the various potential sources of contamination include soil, animal intrusion, contaminated harvesting equipment, harvest and preharvest handling, storage conditions, and others. The low water activity of nuts and grains prevents the growth of most foodborne pathogens on their surfaces. The long-term survival of bacterial foodborne pathogens ( Salmonella , Escherichia coli O157:H7, and Listeria monocytogenes ) on dry foods has been documented in the literature for different nut types. Preventing contamination is the key to avoiding foodborne disease risks linked to dry foods. The implementation of good agricultural practices and other food safety systems provides a proactive approach to address concerns thoroughly. A plethora of research is available on preventing the growth of mycotoxin-producing fungi on the surface of nuts and grains. Milling is an effective mechanism to reduce the microbial load on grains. This review focuses on providing information about associated foodborne microorganisms, preharvest contamination sources, and good agricultural practice recommendations for nuts and grains.

  15. Prefoldin Protects Neuronal Cells from Polyglutamine Toxicity by Preventing Aggregation Formation*

    PubMed Central

    Tashiro, Erika; Zako, Tamotsu; Muto, Hideki; Itoo, Yoshinori; Sörgjerd, Karin; Terada, Naofumi; Abe, Akira; Miyazawa, Makoto; Kitamura, Akira; Kitaura, Hirotake; Kubota, Hiroshi; Maeda, Mizuo; Momoi, Takashi; Iguchi-Ariga, Sanae M. M.; Kinjo, Masataka; Ariga, Hiroyoshi

    2013-01-01

    Huntington disease is caused by cell death after the expansion of polyglutamine (polyQ) tracts longer than ∼40 repeats encoded by exon 1 of the huntingtin (HTT) gene. Prefoldin is a molecular chaperone composed of six subunits, PFD1–6, and prevents misfolding of newly synthesized nascent polypeptides. In this study, we found that knockdown of PFD2 and PFD5 disrupted prefoldin formation in HTT-expressing cells, resulting in accumulation of aggregates of a pathogenic form of HTT and in induction of cell death. Dead cells, however, did not contain inclusions of HTT, and analysis by a fluorescence correlation spectroscopy indicated that knockdown of PFD2 and PFD5 also increased the size of soluble oligomers of pathogenic HTT in cells. In vitro single molecule observation demonstrated that prefoldin suppressed HTT aggregation at the small oligomer (dimer to tetramer) stage. These results indicate that prefoldin inhibits elongation of large oligomers of pathogenic Htt, thereby inhibiting subsequent inclusion formation, and suggest that soluble oligomers of polyQ-expanded HTT are more toxic than are inclusion to cells. PMID:23720755

  16. Identification of infectious microbiota from oral cavity environment of various population group patients as a preventive approach to human health risk factors.

    PubMed

    Zawadzki, Paweł J; Perkowski, Konrad; Starościak, Bohdan; Baltaza, Wanda; Padzik, Marcin; Pionkowski, Krzysztof; Chomicz, Lidia

    2016-12-23

    This study presents the results of comparative investigations aimed to determine microbiota that can occur in the oral environment in different human populations. The objective of the research was to identify pathogenic oral microbiota, the potential cause of health complications in patients of different population groups. The study included 95 patients requiring dental or surgical treatment; their oral cavity environment microbiota as risk factors of local and general infections were assessed. In clinical assessment, differences occurred in oral cavity conditions between patients with malformations of the masticatory system, kidney allograft recipients and individuals without indications for surgical procedures. The presence of various pathogenic and opportunistic bacterial strains in oral cavities were revealed by direct microscopic and in vitro culture techniques. Colonization of oral cavities of patients requiring surgical treatment by the potentially pathogenic bacteria constitutes the threat of their spread, and development of general infections. Assessment of oral cavity infectious microbiota should be performed as a preventive measure against peri-surgical complications.

  17. Recent advances in molecular medicine techniques for the diagnosis, prevention, and control of infectious diseases.

    PubMed

    França, R F O; da Silva, C C; De Paula, S O

    2013-06-01

    In recent years we have observed great advances in our ability to combat infectious diseases. Through the development of novel genetic methodologies, including a better understanding of pathogen biology, pathogenic mechanisms, advances in vaccine development, designing new therapeutic drugs, and optimization of diagnostic tools, significant infectious diseases are now better controlled. Here, we briefly describe recent reports in the literature concentrating on infectious disease control. The focus of this review is to describe the molecular methods widely used in the diagnosis, prevention, and control of infectious diseases with regard to the innovation of molecular techniques. Since the list of pathogenic microorganisms is extensive, we emphasize some of the major human infectious diseases (AIDS, tuberculosis, malaria, rotavirus, herpes virus, viral hepatitis, and dengue fever). As a consequence of these developments, infectious diseases will be more accurately and effectively treated; safe and effective vaccines are being developed and rapid detection of infectious agents now permits countermeasures to avoid potential outbreaks and epidemics. But, despite considerable progress, infectious diseases remain a strong challenge to human survival.

  18. Protective Capacity of Memory CD8+ T Cells is Dictated by Antigen Exposure History and Nature of the Infection

    PubMed Central

    Nolz, Jeffrey C.; Harty, John T.

    2011-01-01

    SUMMARY Infection or vaccination confers heightened resistance to pathogen re-challenge due to quantitative and qualitative differences between naïve and primary memory T cells. Herein, we show that secondary (boosted) memory CD8+ T cells were better than primary memory CD8+ T cells in controlling some, but not all acute infections with diverse pathogens. However, secondary memory CD8+ T cells were less efficient than an equal number of primary memory cells at preventing chronic LCMV infection and are more susceptible to functional exhaustion. Importantly, localization of memory CD8+ T cells within lymph nodes, which is reduced by antigen re-stimulation, was critical for both viral control in lymph nodes and for the sustained CD8+ T cell response required to prevent chronic LCMV infection. Thus, repeated antigen-stimulation shapes memory CD8+ T cell populations to either enhance or decrease per cell protective immunity in a pathogen-specific manner, a concept of importance in vaccine design against specific diseases. PMID:21549619

  19. Short communication: Lactic acid bacteria from the honeybee inhibit the in vitro growth of mastitis pathogens.

    PubMed

    Piccart, K; Vásquez, A; Piepers, S; De Vliegher, S; Olofsson, T C

    2016-04-01

    Despite the increasing knowledge of prevention and control strategies, bovine mastitis remains one of the most challenging diseases in the dairy industry. This study investigated the antimicrobial activity of 13 species of lactic acid bacteria (LAB), previously isolated from the honey crop of the honeybee, on several mastitis pathogens. The viable LAB were first reintroduced into a sterilized heather honey matrix. More than 20 different bovine mastitis isolates were tested against the mixture of the 13 LAB species in the honey medium using a dual-culture overlay assay. The mastitis isolates were identified through bacteriological culturing, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Additionally, the mastitis isolates were subjected to antimicrobial susceptibility testing through disk diffusion. Growth of all tested mastitis pathogens, including the ones displaying antimicrobial resistance to one or more antimicrobial compounds, were inhibited to some extent by the honey and LAB combination. The antibacterial effect of these LAB opens up new perspectives on alternative treatment and prevention of bovine mastitis. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. The immunoproteasome-specific inhibitor ONX 0914 reverses susceptibility to acute viral myocarditis.

    PubMed

    Althof, Nadine; Goetzke, Carl Christoph; Kespohl, Meike; Voss, Karolin; Heuser, Arnd; Pinkert, Sandra; Kaya, Ziya; Klingel, Karin; Beling, Antje

    2018-02-01

    Severe heart pathology upon virus infection is closely associated with the immunological equipment of the host. Since there is no specific treatment available, current research focuses on identifying new drug targets to positively modulate predisposing immune factors. Utilizing a murine model with high susceptibility to coxsackievirus B3-induced myocarditis, this study describes ONX 0914-an immunoproteasome-specific inhibitor-as highly protective during severe heart disease. Represented by reduced heart infiltration of monocytes/macrophages and diminished organ damage, ONX 0914 treatment reversed fulminant pathology. Virus-induced immune response features like overwhelming pro-inflammatory cytokine and chemokine production as well as a progressive loss of lymphocytes all being reminiscent of a sepsis-like disease course were prevented by ONX 0914. Although the viral burden was only minimally affected in highly susceptible mice, resulting maintenance of immune homeostasis improved the cardiac output, and saved animals from severe illness as well as high mortality. Altogether, this could make ONX 0914 a potent drug for the treatment of severe virus-mediated inflammation of the heart and might rank immunoproteasome inhibitors among drugs for preventing pathogen-induced immunopathology. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  1. Lynch syndrome associated with two MLH1 promoter variants and allelic imbalance of MLH1 expression.

    PubMed

    Hesson, Luke B; Packham, Deborah; Kwok, Chau-To; Nunez, Andrea C; Ng, Benedict; Schmidt, Christa; Fields, Michael; Wong, Jason W H; Sloane, Mathew A; Ward, Robyn L

    2015-06-01

    Lynch syndrome is a hereditary cancer syndrome caused by a constitutional mutation in one of the mismatch repair genes. The implementation of predictive testing and targeted preventative surveillance is hindered by the frequent finding of sequence variants of uncertain significance in these genes. We aimed to determine the pathogenicity of previously reported variants (c.-28A>G and c.-7C>T) within the MLH1 5'untranslated region (UTR) in two individuals from unrelated suspected Lynch syndrome families. We investigated whether these variants were associated with other pathogenic alterations using targeted high-throughput sequencing of the MLH1 locus. We also determined their relationship to gene expression and epigenetic alterations at the promoter. Sequencing revealed that the c.-28A>G and c.-7C>T variants were the only potentially pathogenic alterations within the MLH1 gene. In both individuals, the levels of transcription from the variant allele were reduced to 50% compared with the wild-type allele. Partial loss of expression occurred in the absence of constitutional epigenetic alterations within the MLH1 promoter. We propose that these variants may be pathogenic due to constitutional partial loss of MLH1 expression, and that this may be associated with intermediate penetrance of a Lynch syndrome phenotype. Our findings provide further evidence of the potential importance of noncoding variants in the MLH1 5'UTR in the pathogenesis of Lynch syndrome. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

  2. Lynch Syndrome Associated with Two MLH1 Promoter Variants and Allelic Imbalance of MLH1 Expression

    PubMed Central

    Hesson, Luke B; Packham, Deborah; Kwok, Chau-To; Nunez, Andrea C; Ng, Benedict; Schmidt, Christa; Fields, Michael; Wong, Jason WH; Sloane, Mathew A; Ward, Robyn L

    2015-01-01

    Lynch syndrome is a hereditary cancer syndrome caused by a constitutional mutation in one of the mismatch repair genes. The implementation of predictive testing and targeted preventative surveillance is hindered by the frequent finding of sequence variants of uncertain significance in these genes. We aimed to determine the pathogenicity of previously reported variants (c.-28A>G and c.-7C>T) within the MLH1 5′untranslated region (UTR) in two individuals from unrelated suspected Lynch syndrome families. We investigated whether these variants were associated with other pathogenic alterations using targeted high-throughput sequencing of the MLH1 locus. We also determined their relationship to gene expression and epigenetic alterations at the promoter. Sequencing revealed that the c.-28A>G and c.-7C>T variants were the only potentially pathogenic alterations within the MLH1 gene. In both individuals, the levels of transcription from the variant allele were reduced to 50% compared with the wild-type allele. Partial loss of expression occurred in the absence of constitutional epigenetic alterations within the MLH1 promoter. We propose that these variants may be pathogenic due to constitutional partial loss of MLH1 expression, and that this may be associated with intermediate penetrance of a Lynch syndrome phenotype. Our findings provide further evidence of the potential importance of noncoding variants in the MLH1 5′UTR in the pathogenesis of Lynch syndrome. PMID:25762362

  3. Exposure to selected Pathogens in to selected pathogens in Geoffroy's cats and domestic carnivores from central Argentina.

    PubMed

    Uhart, Marcela M; Rago, M Virginia; Marull, Carolina A; Ferreyra, Hebe del Valle; Pereira, Javier A

    2012-10-01

    Wild carnivores share a high percentage of parasites and viruses with closely related domestic carnivores. Because of increased overlap and potential contact with domestic species, we conducted a retrospective serosurvey for 11 common carnivore pathogens in 40 Geoffroy's cats (Leopardus geoffroyi) sampled between 2000 and 2008 within or near two protected areas in central Argentina (Lihué Calel National Park, La Pampa, and Campos del Tuyú National Park, Buenos Aires), as well as five domestic cats and 11 domestic dogs from catde ranches adjacent to Lihué Calel Park. Geoffroy's cats had detectable antibody to canine distemper virus (CDV), feline calicivirus (FCV), feline coronavirus, feline panleukopenia virus (FPV), Toxoplasma gondii, Leptospira interrogans (serovars Ictero/Icter and Ballum), and Dirofilaria immitis. None of the wild cats had antibodies to feline herpesvirus, feline immunodeficiency virus (FIV), feline leukemia virus, or rabies virus. Domestic dogs had antibodies to CDV, canine adenovirus, canine herpesvirus, and canine parvovirus. Antibodies to FPV, FCV, FIV, and T. gondii were found in domestic cats. We provide the first data on exposure of free-ranging Geoffroy's cats to pathogens at two sites within the core area of the species distribution range, including the first report of antibodies to CDV in this species. We encourage continued monitoring for diseases in wild and domestic carnivores as well as preventive health care for domestic animals, particularly in park buffer zones where overlap is greatest.

  4. Pathogenic waterborne free-living amoebae: An update from selected Southeast Asian countries

    PubMed Central

    Abdul Majid, Mohamad Azlan; Mahboob, Tooba; Mong, Brandon G. J.; Jaturas, Narong; Richard, Reena Leeba; Tian-Chye, Tan; Phimphila, Anusorn; Mahaphonh, Panomphanh; Aye, Kyaw Nyein; Aung, Wai Lynn; Chuah, Joon; Ziegler, Alan D.; Yasiri, Atipat; Sawangjaroen, Nongyao; Lim, Yvonne A. L.; Nissapatorn, Veeranoot

    2017-01-01

    Data on the distribution of free-living amoebae is still lacking especially in Southeast Asian region. The aquatic environment revealed a high occurrence of free-living amoebae (FLA) due to its suitable condition and availability of food source, which subsequently causes infection to humans. A total of 94 water samples consisted of both treated and untreated from Laos (31), Myanmar (42), and Singapore (21) were investigated for the presence of pathogenic FLA. Each water sample was filtered and cultured onto non-nutrient agar seeded with live suspension of Escherichia coli and incubated at room temperature. Morphological identification was conducted for both trophozoites and cysts via microscopic stains (Giemsa and immunofluorescence). The presence of Naegleria-like structures was the most frequently encountered in both treated and untreated water samples, followed by Acanthamoeba-like and Vermamoeba-like features. To identify the pathogenic isolates, species-specific primer sets were applied for molecular identification of Acanthamoeba, Naegleria, and Vermamoeba. The pathogenic species of Acanthamoeba lenticulata and A. triangularis were detected from untreated water samples, while Vermamoeba vermiformis was found in both treated and untreated water samples. Our results suggested that poor water quality as well as inadequate maintenance and treatment might be the cause of this alarming problem since chlorine disinfection is ineffective in eradicating these amoebas in treated water samples. Regular monitoring and examination of water qualities are necessary in order to control the growth, hence, further preventing the widespread of FLA infections among the public. PMID:28212409

  5. Pathogenic waterborne free-living amoebae: An update from selected Southeast Asian countries.

    PubMed

    Abdul Majid, Mohamad Azlan; Mahboob, Tooba; Mong, Brandon G J; Jaturas, Narong; Richard, Reena Leeba; Tian-Chye, Tan; Phimphila, Anusorn; Mahaphonh, Panomphanh; Aye, Kyaw Nyein; Aung, Wai Lynn; Chuah, Joon; Ziegler, Alan D; Yasiri, Atipat; Sawangjaroen, Nongyao; Lim, Yvonne A L; Nissapatorn, Veeranoot

    2017-01-01

    Data on the distribution of free-living amoebae is still lacking especially in Southeast Asian region. The aquatic environment revealed a high occurrence of free-living amoebae (FLA) due to its suitable condition and availability of food source, which subsequently causes infection to humans. A total of 94 water samples consisted of both treated and untreated from Laos (31), Myanmar (42), and Singapore (21) were investigated for the presence of pathogenic FLA. Each water sample was filtered and cultured onto non-nutrient agar seeded with live suspension of Escherichia coli and incubated at room temperature. Morphological identification was conducted for both trophozoites and cysts via microscopic stains (Giemsa and immunofluorescence). The presence of Naegleria-like structures was the most frequently encountered in both treated and untreated water samples, followed by Acanthamoeba-like and Vermamoeba-like features. To identify the pathogenic isolates, species-specific primer sets were applied for molecular identification of Acanthamoeba, Naegleria, and Vermamoeba. The pathogenic species of Acanthamoeba lenticulata and A. triangularis were detected from untreated water samples, while Vermamoeba vermiformis was found in both treated and untreated water samples. Our results suggested that poor water quality as well as inadequate maintenance and treatment might be the cause of this alarming problem since chlorine disinfection is ineffective in eradicating these amoebas in treated water samples. Regular monitoring and examination of water qualities are necessary in order to control the growth, hence, further preventing the widespread of FLA infections among the public.

  6. Teleosts Genomics: Progress and Prospects in Disease Prevention and Control.

    PubMed

    Munang'andu, Hetron Mweemba; Galindo-Villegas, Jorge; David, Lior

    2018-04-04

    Genome wide studies based on conventional molecular tools and upcoming omics technologies are beginning to gain functional applications in the control and prevention of diseases in teleosts fish. Herein, we provide insights into current progress and prospects in the use genomics studies for the control and prevention of fish diseases. Metagenomics has emerged to be an important tool used to identify emerging infectious diseases for the timely design of rational disease control strategies, determining microbial compositions in different aquatic environments used for fish farming and the use of host microbiota to monitor the health status of fish. Expounding the use of antimicrobial peptides (AMPs) as therapeutic agents against different pathogens as well as elucidating their role in tissue regeneration is another vital aspect of genomics studies that had taken precedent in recent years. In vaccine development, prospects made include the identification of highly immunogenic proteins for use in recombinant vaccine designs as well as identifying gene signatures that correlate with protective immunity for use as benchmarks in optimizing vaccine efficacy. Progress in quantitative trait loci (QTL) mapping is beginning to yield considerable success in identifying resistant traits against some of the highly infectious diseases that have previously ravaged the aquaculture industry. Altogether, the synopsis put forth shows that genomics studies are beginning to yield positive contribution in the prevention and control of fish diseases in aquaculture.

  7. Respiratory Tract Infections and the Role of Biologically Active Polysaccharides in Their Management and Prevention.

    PubMed

    Jesenak, Milos; Urbancikova, Ingrid; Banovcin, Peter

    2017-07-20

    Respiratory tract infections (RTIs) are the most common form of infections in every age category. Recurrent respiratory tract infections (RRTIs), a specific form of RTIs, represent a typical and common problem associated with early childhood, causing high indirect and direct costs on the healthcare system. They are usually the consequence of immature immunity in children and high exposure to various respiratory pathogens. Their rational management should aim at excluding other severe chronic diseases associated with increased morbidity (e.g., primary immunodeficiency syndromes, cystic fibrosis, and ciliary dyskinesia) and at supporting maturity of the mucosal immune system. However, RRTIs can also be observed in adults (e.g., during exhausting and stressful periods, chronic inflammatory diseases, secondary immunodeficiencies, or in elite athletes) and require greater attention. Biologically active polysaccharides (e.g., β-glucans) are one of the most studied natural immunomodulators with a pluripotent mode of action and biological activity. According to many studies, they possess immunomodulatory, anti-inflammatory, and anti-infectious activities and therefore could be suggested as an effective part of treating and preventing RTIs. Based on published studies, the application of β-glucans was proven as a possible therapeutic and preventive approach in managing and preventing recurrent respiratory tract infections in children (especially β-glucans from Pleurotus ostreatus ), adults (mostly the studies with yeast-derived β-glucans), and in elite athletes (studies with β-glucans from Pleurotus ostreatus or yeast).

  8. Assessment of Environmental Contamination with Pathogenic Bacteria at a Hospital Laundry Facility.

    PubMed

    Michael, Karen E; No, David; Daniell, William E; Seixas, Noah S; Roberts, Marilyn C

    2017-11-10

    Little is known about exposure to pathogenic bacteria among industrial laundry workers who work with soiled clinical linen. To study worker exposures, an assessment of surface contamination was performed at an industrial laundry facility serving hospitals in Seattle, WA, USA. Surface swab samples (n = 240) from the environment were collected during four site visits at 3-month intervals. These samples were cultured for Clostridium difficile, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant enterococci (VRE). Voluntary participation of 23 employees consisted of nasal swabs for detection of MRSA, observations during work, and questionnaires. Contamination with all three pathogens was observed in both dirty (laundry handling prior to washing) and clean areas (subsequent to washing). The dirty area had higher odds of overall contamination (≥1 pathogen) than the clean area (odds ratio, OR = 18.0, 95% confidence interval 8.9-36.5, P < 0.001). The odds of contamination were high for each individual pathogen: C. difficile, OR = 15.5; MRSA, OR = 14.8; and VRE, OR = 12.6 (each, P < 0.001). The highest odds of finding surface contamination occurred in the primary and secondary sort areas where soiled linens were manually sorted by employees (OR = 63.0, P < 0.001). The study substantiates that the laundry facility environment can become contaminated by soiled linens. Workers who handle soiled linen may have a higher risk of exposure to C. difficile, MRSA, and VRE than those who handle clean linens. Improved protocols for prevention and reduction of environmental contamination were implemented because of this study. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  9. Adhesion to brown trout skin mucus, antagonism against cyst adhesion and pathogenicity to rainbow trout of some inhibitory bacteria against Saprolegnia parasitica .

    PubMed

    Carbajal-González, M T; Fregeneda-Grandes, J M; González-Palacios, C; Aller-Gancedo, J M

    2013-04-29

    Biological control of saprolegniosis with bacteria might be an alternative to the use of chemical compounds. Among criteria for the selection of such bacteria are their absence of pathogenicity to fish and their ability to prevent adhesion of the pathogen to the skin mucus. The pathogenicity to rainbow trout of 21 bacterial isolates with in vitro inhibitory activity against Saprolegnia parasitica was studied. Fifteen of the isolates, identified as Aeromonas sobria, Pantoea agglomerans, Pseudomonas fluorescens, Serratia fonticola, Xanthomonas retroflexus and Yersinia kristensenii, were non-pathogenic when injected into rainbow trout. Their capacity to adhere to the skin mucus of male and female brown trout and to reduce the adhesion of S. parasitica cysts under exclusion, competition and displacement conditions was tested. The 15 bacterial isolates showed a low adhesion rate, ranging between 1.7% (for an A. sobria isolate) and 15.3% (a P. fluorescens isolate). This adhesion was greater in the case of mucus from male brown trout than from females. Similarities in the adhesion to male mucus and other substrates and correlation to that observed to polystyrene suggest that adhesion to skin mucus does not depend on the substrate. A high percentage (88.9%) of the S. parasitica cysts adhered to the skin mucus of male brown trout. Almost all of the bacteria reduced this adhesion ratio significantly under exclusion and competition conditions. However, only half of the isolates displaced cysts from skin mucus, and more bacterial cells were necessary for this effect. A novel method to study the adhesion of S. parasitica cysts to skin mucus of trout and their interactions with inhibitory bacteria is described.

  10. Evaluation of Suppressiveness of Soils Exhibiting Soil-Borne Disease Suppression after Long-Term Application of Organic Amendments by the Co-cultivation Method of Pathogenic Fusarium oxysporum and Indigenous Soil Microorganisms.

    PubMed

    Mitsuboshi, Masahiro; Kioka, Yuuzou; Noguchi, Katsunori; Asakawa, Susumu

    2018-03-29

    Preventive measures against soil-borne diseases need to be implemented before cultivation because very few countermeasures are available after the development of diseases. Some soils suppress soil-borne diseases despite the presence of a high population density of pathogens. If the suppressiveness of soil against soil-borne diseases may be predicted and diagnosed for crop fields, it may be possible to reduce the labor and cost associated with excessive disinfection practices. We herein evaluated the suppressiveness of soils in fields with the long-term application of organic amendments by examining the growth of pathogenic Fusarium oxysporum co-cultivated with indigenous soil microorganisms on agar plates. Soils treated with coffee residue compost or rapeseed meal showed suppressiveness against spinach wilt disease by F. oxysporum f. sp. spinaciae or spinach wilt and lettuce root rot diseases by F. oxysporum f. sp. spinaciae and F. oxysporum f. sp. lactucae, respectively, and the growth of pathogenic Fusarium spp. on agar plates was suppressed when co-cultured with microorganisms in a suspension from these soils before crop cultivation. These results indicate the potential of the growth degree of pathogenic F. oxysporum estimated by this method as a diagnostic indicator of the suppressiveness of soil associated with the inhabiting microorganisms. A correlation was found between the incidence of spinach wilt disease in spinach and the growth degree of F. oxysporum f. sp. spinaciae by this co-cultivation method, indicating that suppressiveness induced by organic amendment applications against F. oxysporum f. sp. spinaciae is evaluable by this method. The co-cultivation method may be useful for predicting and diagnosing suppressiveness against soil-borne diseases.

  11. Evaluation of Suppressiveness of Soils Exhibiting Soil-Borne Disease Suppression after Long-Term Application of Organic Amendments by the Co-cultivation Method of Pathogenic Fusarium oxysporum and Indigenous Soil Microorganisms

    PubMed Central

    Mitsuboshi, Masahiro; Kioka, Yuuzou; Noguchi, Katsunori; Asakawa, Susumu

    2018-01-01

    Preventive measures against soil-borne diseases need to be implemented before cultivation because very few countermeasures are available after the development of diseases. Some soils suppress soil-borne diseases despite the presence of a high population density of pathogens. If the suppressiveness of soil against soil-borne diseases may be predicted and diagnosed for crop fields, it may be possible to reduce the labor and cost associated with excessive disinfection practices. We herein evaluated the suppressiveness of soils in fields with the long-term application of organic amendments by examining the growth of pathogenic Fusarium oxysporum co-cultivated with indigenous soil microorganisms on agar plates. Soils treated with coffee residue compost or rapeseed meal showed suppressiveness against spinach wilt disease by F. oxysporum f. sp. spinaciae or spinach wilt and lettuce root rot diseases by F. oxysporum f. sp. spinaciae and F. oxysporum f. sp. lactucae, respectively, and the growth of pathogenic Fusarium spp. on agar plates was suppressed when co-cultured with microorganisms in a suspension from these soils before crop cultivation. These results indicate the potential of the growth degree of pathogenic F. oxysporum estimated by this method as a diagnostic indicator of the suppressiveness of soil associated with the inhabiting microorganisms. A correlation was found between the incidence of spinach wilt disease in spinach and the growth degree of F. oxysporum f. sp. spinaciae by this co-cultivation method, indicating that suppressiveness induced by organic amendment applications against F. oxysporum f. sp. spinaciae is evaluable by this method. The co-cultivation method may be useful for predicting and diagnosing suppressiveness against soil-borne diseases. PMID:29459498

  12. Survey for selected pathogens in wild pigs (Sus scrofa) from Guam, Marianna Islands, USA.

    PubMed

    Cleveland, Christopher A; DeNicola, Anthony; Dubey, J P; Hill, Dolores E; Berghaus, Roy D; Yabsley, Michael J

    2017-06-01

    Pigs (Sus scrofa) were introduced to Guam in the 1600's and are now present in high densities throughout the island. Wild pigs are reservoirs for pathogens of concern to domestic animals and humans. Exposure to porcine parvovirus, transmissible gastroenteritis, and Leptospira interrogans has been documented in domestic swine but data from wild pigs are lacking. The close proximity of humans, domestic animals, and wild pigs, combined with the liberal hunting of wild pigs, results in frequent opportunities for pathogen transmission. From February-March 2015, blood, tissue and ectoparasite samples were collected from 47 wild pigs. Serologic testing found exposure to Brucella spp. (2%), Toxoplasma gondii (11%), porcine reproductive and respiratory syndrome (PRRS) virus (13%), porcine circovirus type 2 (36%), pseudorabies virus (64%), Actinobacillus pleuropneumoniae (93%), Lawsonia intracellularis (93%), and porcine parvovirus (94%). Eleven (24%) samples had low titers (1:100) to Leptospira interrogans serovars Bratislava (n=6), Icterohaemorrhagiae (n=6), Pomona (n=2), and Hardjo (n=1). Kidney samples from nine pigs with Leptospira antibodies were negative for Leptospira antigens. Numerous pigs had Metastrongylus lungworms and three had Stephanurus dentatus. Lice (Hematopinus suis) and ticks (Amblyomma breviscutatum) were also detected. No antibodies to Influenza A viruses were detected. In contrast to the previous domestic swine survey, we found evidence of numerous pathogens in wild pigs including new reports of pseudorabies virus, PRRS virus, Brucella, and Leptospira in pigs on Guam. These findings highlight that domestic swine-wild pig interactions should be prevented and precautions are needed when handling wild pigs to minimize the risk of pathogen transmission. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Use of Synthetic Single-Stranded Oligonucleotides as Artificial Test Soiling for Validation of Surgical Instrument Cleaning Processes

    PubMed Central

    Wilhelm, Nadja; Perle, Nadja; Simmoteit, Robert; Schlensak, Christian; Wendel, Hans P.; Avci-Adali, Meltem

    2014-01-01

    Surgical instruments are often strongly contaminated with patients' blood and tissues, possibly containing pathogens. The reuse of contaminated instruments without adequate cleaning and sterilization can cause postoperative inflammation and the transmission of infectious diseases from one patient to another. Thus, based on the stringent sterility requirements, the development of highly efficient, validated cleaning processes is necessary. Here, we use for the first time synthetic single-stranded DNA (ssDNA_ODN), which does not appear in nature, as a test soiling to evaluate the cleaning efficiency of routine washing processes. Stainless steel test objects were coated with a certain amount of ssDNA_ODN. After cleaning, the amount of residual ssDNA_ODN on the test objects was determined using quantitative real-time PCR. The established method is highly specific and sensitive, with a detection limit of 20 fg, and enables the determination of the cleaning efficiency of medical cleaning processes under different conditions to obtain optimal settings for the effective cleaning and sterilization of instruments. The use of this highly sensitive method for the validation of cleaning processes can prevent, to a significant extent, the insufficient cleaning of surgical instruments and thus the transmission of pathogens to patients. PMID:24672793

  14. Early infections by myxoma virus of young rabbits (Oryctolagus cuniculus) protected by maternal antibodies activate their immune system and enhance herd immunity in wild populations.

    PubMed

    Marchandeau, Stéphane; Pontier, Dominique; Guitton, Jean-Sébastien; Letty, Jérôme; Fouchet, David; Aubineau, Jacky; Berger, Francis; Léonard, Yves; Roobrouck, Alain; Gelfi, Jacqueline; Peralta, Brigitte; Bertagnoli, Stéphane

    2014-03-04

    The role of maternal antibodies is to protect newborns against acute early infection by pathogens. This can be achieved either by preventing any infection or by allowing attenuated infections associated with activation of the immune system, the two strategies being based on different cost/benefit ratios. We carried out an epidemiological survey of myxomatosis, which is a highly lethal infectious disease, in two distant wild populations of rabbits to describe the epidemiological pattern of the disease. Detection of specific IgM and IgG enabled us to describe the pattern of immunity. We show that maternal immunity attenuates early infection of juveniles and enables activation of their immune system. This mechanism associated with steady circulation of the myxoma virus in both populations, which induces frequent reinfections of immune rabbits, leads to the maintenance of high immunity levels within populations. Thus, myxomatosis has a low impact, with most infections being asymptomatic. This work shows that infection of young rabbits protected by maternal antibodies induces attenuated disease and activates their immune system. This may play a major role in reducing the impact of a highly lethal disease when ecological conditions enable permanent circulation of the pathogen.

  15. Early infections by myxoma virus of young rabbits (Oryctolagus cuniculus) protected by maternal antibodies activate their immune system and enhance herd immunity in wild populations

    PubMed Central

    2014-01-01

    The role of maternal antibodies is to protect newborns against acute early infection by pathogens. This can be achieved either by preventing any infection or by allowing attenuated infections associated with activation of the immune system, the two strategies being based on different cost/benefit ratios. We carried out an epidemiological survey of myxomatosis, which is a highly lethal infectious disease, in two distant wild populations of rabbits to describe the epidemiological pattern of the disease. Detection of specific IgM and IgG enabled us to describe the pattern of immunity. We show that maternal immunity attenuates early infection of juveniles and enables activation of their immune system. This mechanism associated with steady circulation of the myxoma virus in both populations, which induces frequent reinfections of immune rabbits, leads to the maintenance of high immunity levels within populations. Thus, myxomatosis has a low impact, with most infections being asymptomatic. This work shows that infection of young rabbits protected by maternal antibodies induces attenuated disease and activates their immune system. This may play a major role in reducing the impact of a highly lethal disease when ecological conditions enable permanent circulation of the pathogen. PMID:24589193

  16. A novel approach to probe host-pathogen interactions of bovine digital dermatitis, a model of a complex polymicrobial infection.

    PubMed

    Marcatili, Paolo; Nielsen, Martin W; Sicheritz-Pontén, Thomas; Jensen, Tim K; Schafer-Nielsen, Claus; Boye, Mette; Nielsen, Morten; Klitgaard, Kirstine

    2016-12-01

    Polymicrobial infections represent a great challenge for the clarification of disease etiology and the development of comprehensive diagnostic or therapeutic tools, particularly for fastidious and difficult-to-cultivate bacteria. Using bovine digital dermatitis (DD) as a disease model, we introduce a novel strategy to study the pathogenesis of complex infections. The strategy combines meta-transcriptomics with high-density peptide-microarray technology to screen for in vivo-expressed microbial genes and the host antibody response at the site of infection. Bacterial expression patterns supported the assumption that treponemes were the major DD pathogens but also indicated the active involvement of other phyla (primarily Bacteroidetes). Bacterial genes involved in chemotaxis, flagellar synthesis and protection against oxidative and acidic stress were among the major factors defining the disease. The extraordinary diversity observed in bacterial expression, antigens and host antibody responses between individual cows pointed toward microbial variability as a hallmark of DD. Persistence of infection and DD reinfection in the same individual is common; thus, high microbial diversity may undermine the host's capacity to mount an efficient immune response and maintain immunological memory towards DD. The common antigenic markers identified here using a high-density peptide microarray address this issue and may be useful for future preventive measures against DD.

  17. Intestinal Tissues Induce an SNP Mutation in Pseudomonas aeruginosa That Enhances Its Virulence: Possible Role in Anastomotic Leak

    PubMed Central

    Olivas, Andrea D.; Shogan, Benjamin D.; Valuckaite, Vesta; Zaborin, Alexander; Belogortseva, Natalya; Musch, Mark; Meyer, Folker; L.Trimble, William; An, Gary; Gilbert, Jack

    2012-01-01

    The most feared complication following intestinal resection is anastomotic leakage. In high risk areas (esophagus/rectum) where neoadjuvant chemoradiation is used, the incidence of anastomotic leaks remains unacceptably high (∼10%) even when performed by specialist surgeons in high volume centers. The aims of this study were to test the hypothesis that anastomotic leakage develops when pathogens colonizing anastomotic sites become in vivo transformed to express a tissue destroying phenotype. We developed a novel model of anastomotic leak in which rats were exposed to pre-operative radiation as in cancer surgery, underwent distal colon resection and then were intestinally inoculated with Pseudomonas aeruginosa, a common colonizer of the radiated intestine. Results demonstrated that intestinal tissues exposed to preoperative radiation developed a significant incidence of anastomotic leak (>60%; p<0.01) when colonized by P. aeruginosa compared to radiated tissues alone (0%). Phenotype analysis comparing the original inoculating strain (MPAO1- termed P1) and the strain retrieved from leaking anastomotic tissues (termed P2) demonstrated that P2 was altered in pyocyanin production and displayed enhanced collagenase activity, high swarming motility, and a destructive phenotype against cultured intestinal epithelial cells (i.e. apoptosis, barrier function, cytolysis). Comparative genotype analysis between P1 and P2 revealed a single nucleotide polymorphism (SNP) mutation in the mexT gene that led to a stop codon resulting in a non-functional truncated protein. Replacement of the mutated mexT gene in P2 with mexT from the original parental strain P1 led to reversion of P2 to the P1 phenotype. No spontaneous transformation was detected during 20 passages in TSB media. Use of a novel virulence suppressing compound PEG/Pi prevented P. aeruginosa transformation to the tissue destructive phenotype and prevented anastomotic leak in rats. This work demonstrates that in vivo transformation of microbial pathogens to a tissue destroying phenotype may have important implications in the pathogenesis of anastomotic leak. PMID:22952955

  18. Immune Responses to Bacillus Calmette–Guérin Vaccination: Why Do They Fail to Protect against Mycobacterium tuberculosis?

    PubMed Central

    Moliva, Juan I.; Turner, Joanne; Torrelles, Jordi B.

    2017-01-01

    Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), is the current leading cause of death due to a single infectious organism. Although curable, the broad emergence of multi-, extensive-, extreme-, and total-drug resistant strains of M.tb has hindered eradication efforts of this pathogen. Furthermore, computational models predict a quarter of the world’s population is infected with M.tb in a latent state, effectively serving as the largest reservoir for any human pathogen with the ability to cause significant morbidity and mortality. The World Health Organization has prioritized new strategies for improved vaccination programs; however, the lack of understanding of mycobacterial immunity has made it difficult to develop new successful vaccines. Currently, Mycobacterium bovis bacillus Calmette–Guérin (BCG) is the only vaccine approved for use to prevent TB. BCG is highly efficacious at preventing meningeal and miliary TB, but is at best 60% effective against the development of pulmonary TB in adults and wanes as we age. In this review, we provide a detailed summary on the innate immune response of macrophages, dendritic cells, and neutrophils in response to BCG vaccination. Additionally, we discuss adaptive immune responses generated by BCG vaccination, emphasizing their specific contributions to mycobacterial immunity. The success of future vaccines against TB will directly depend on our understanding of mycobacterial immunity. PMID:28424703

  19. Implications of the cattle trade network in Cameroon for regional disease prevention and control

    PubMed Central

    Motta, Paolo; Porphyre, Thibaud; Handel, Ian; Hamman, Saidou M.; Ngu Ngwa, Victor; Tanya, Vincent; Morgan, Kenton; Christley, Rob; Bronsvoort, Barend M. deC.

    2017-01-01

    Movement of live animals is a major risk factor for the spread of livestock diseases and zoonotic infections. Understanding contact patterns is key to informing cost-effective surveillance and control strategies. In West and Central Africa some of the most rapid urbanization globally is expected to increase the demand for animal-source foods and the need for safer and more efficient animal production. Livestock trading points represent a strategic contact node in the dissemination of multiple pathogens. From October 2014 to May 2015 official transaction records were collected and a questionnaire-based survey was carried out in cattle markets throughout Western and Central-Northern Cameroon. The data were used to analyse the cattle trade network including a total of 127 livestock markets within Cameroon and five neighboring countries. This study explores for the first time the influence of animal trade on infectious disease spread in the region. The investigations showed that national borders do not present a barrier against pathogen dissemination and that non-neighbouring countries are epidemiologically connected, highlighting the importance of a regional approach to disease surveillance, prevention and control. Furthermore, these findings provide evidence for the benefit of strategic risk-based approaches for disease monitoring, surveillance and control, as well as for communication and training purposes through targeting key regions, highly connected livestock markets and central trading links. PMID:28266589

  20. PubMed Central

    Facciolà, A.; Riso, R.; Avventuroso, E.; Visalli, G.; Delia, S.A.

    2017-01-01

    Summary In last years, Campylobacter spp has become one of the most important foodborne pathogens even in high-income countries. Particularly, in Europe, Campylobacteriosis is, since 2005, the foodborne disease most frequently notified and the second in USA, preceded by the infection due to Salmonella spp. Campylobacter spp is a commensal microorganism of the gastrointestinal tract of many wild animals (birds such as ducks and gulls), farm animals (cattle and pigs) and companion animals (such as dogs and cats) and it is responsible for zoonoses. The transmission occurs via the fecal-oral route through ingestion of contaminated food and water. The disease varied from a watery diarrhea to a severe inflammatory diarrhea with abdominal pain and fever and can be burdened by some complications. The main recognized sequelae are Guillain-Barré Syndrome (GBS), the Reactive Arthritis (REA) and irritable bowel syndrome (IBS). Recently, many cases of Campylobacter spp isolated from human infections, showed an important resistance to various antibiotics such as tetracyclines and fluoroquinolones. For these reasons, the prevention of this infection plays an essential role. Many preventive measures exist to limit the transmission of the pathogens and the subsequent disease such as the health surveillance, the vaccination of the poultry and the correct food hygiene throughout the entire production chain. A global surveillance of Campylobacteriosis is desirable and should include data from all countries, including notifications of cases and the microbiological data typing of strains isolated from both human and animal cases. PMID:28900347

  1. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    PubMed Central

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  2. Implications of the cattle trade network in Cameroon for regional disease prevention and control

    NASA Astrophysics Data System (ADS)

    Motta, Paolo; Porphyre, Thibaud; Handel, Ian; Hamman, Saidou M.; Ngu Ngwa, Victor; Tanya, Vincent; Morgan, Kenton; Christley, Rob; Bronsvoort, Barend M. Dec.

    2017-03-01

    Movement of live animals is a major risk factor for the spread of livestock diseases and zoonotic infections. Understanding contact patterns is key to informing cost-effective surveillance and control strategies. In West and Central Africa some of the most rapid urbanization globally is expected to increase the demand for animal-source foods and the need for safer and more efficient animal production. Livestock trading points represent a strategic contact node in the dissemination of multiple pathogens. From October 2014 to May 2015 official transaction records were collected and a questionnaire-based survey was carried out in cattle markets throughout Western and Central-Northern Cameroon. The data were used to analyse the cattle trade network including a total of 127 livestock markets within Cameroon and five neighboring countries. This study explores for the first time the influence of animal trade on infectious disease spread in the region. The investigations showed that national borders do not present a barrier against pathogen dissemination and that non-neighbouring countries are epidemiologically connected, highlighting the importance of a regional approach to disease surveillance, prevention and control. Furthermore, these findings provide evidence for the benefit of strategic risk-based approaches for disease monitoring, surveillance and control, as well as for communication and training purposes through targeting key regions, highly connected livestock markets and central trading links.

  3. Low Prevalence of Human Pathogens on Fresh Produce on Farms and in Packing Facilities: A Systematic Review

    PubMed Central

    Van Pelt, Amelia E.; Quiñones, Beatriz; Lofgren, Hannah L.; Bartz, Faith E.; Newman, Kira L.; Leon, Juan S.

    2018-01-01

    Foodborne illness burdens individuals around the world and may be caused by consuming fresh produce contaminated with bacterial, parasite, and viral pathogens. Pathogen contamination on produce may originate at the farm and packing facility. This research aimed to determine the prevalence of human pathogens (bacteria, parasites, and viruses) on fresh produce (fruits, herbs, and vegetables) on farms and in packing facilities worldwide through a systematic review of 38 peer-reviewed articles. The median and range of the prevalence was calculated, and Kruskal–Wallis tests and logistic regression were performed to compare prevalence among pooled samples of produce groups, pathogen types, and sampling locations. Results indicated a low median percentage of fresh produce contaminated with pathogens (0%). Both viruses (p-value = 0.017) and parasites (p-value = 0.033), on fresh produce, exhibited higher prevalence than bacteria. No significant differences between fresh produce types or between farm and packing facility were observed. These results may help to better quantify produce contamination in the production environment and inform strategies to prevent future foodborne illness. PMID:29527522

  4. Antimicrobial activity of a multispecies probiotic (Ecologic 641) against pathogens isolated from infected pancreatic necrosis.

    PubMed

    Ridwan, B U; Koning, C J M; Besselink, M G H; Timmerman, H M; Brouwer, E C; Verhoef, J; Gooszen, H G; Akkermans, L M A

    2008-01-01

    Although probiotic prophylaxis has been suggested to prevent small bowel bacterial overgrowth, bacterial translocation and infection of pancreatic necrosis in severe acute pancreatitis, limited data are available on their antimicrobial activity. Using the well-diffusion method, we studied the antimicrobial properties of a multispecies probiotic product (Ecologic 641) against a collection of pathogens cultured from infected pancreatic necrosis. All individual probiotic strains included in the multispecies preparation were able to inhibit the growth of the pathogens to some extent. However, the combination of the individual strains (i.e. the multispecies preparation) was able to inhibit all pathogenic isolates. Probiotic-free supernatants adjusted to pH 7 were not able to inhibit pathogen growth. Ecologic 641 is capable of inhibiting growth of a wide variety of pathogens isolated from infected pancreatic necrosis. The antimicrobial properties are to a large extent explained by the production of organic acids. Ecologic 641 is currently being used in a Dutch nationwide double-blind, placebo-controlled, randomized multicentre trial in patients with predicted severe acute pancreatitis.

  5. Epidemiology, geographical distribution, and economic consequences of swine zoonoses: a narrative review

    PubMed Central

    Uddin Khan, Salah; Atanasova, Kalina R; Krueger, Whitney S; Ramirez, Alejandro; Gray, Gregory C

    2013-01-01

    We sought to review the epidemiology, international geographical distribution, and economic consequences of selected swine zoonoses. We performed literature searches in two stages. First, we identified the zoonotic pathogens associated with swine. Second, we identified specific swine-associated zoonotic pathogen reports for those pathogens from January 1980 to October 2012. Swine-associated emerging diseases were more prevalent in the countries of North America, South America, and Europe. Multiple factors were associated with the increase of swine zoonoses in humans including: the density of pigs, poor water sources and environmental conditions for swine husbandry, the transmissibility of the pathogen, occupational exposure to pigs, poor human sanitation, and personal hygiene. Swine zoonoses often lead to severe economic consequences related to the threat of novel pathogens to humans, drop in public demand for pork, forced culling of swine herds, and international trade sanctions. Due to the complexity of swine-associated pathogen ecology, designing effective interventions for early detection of disease, their prevention, and mitigation requires an interdisciplinary collaborative “One Health” approach from veterinarians, environmental and public health professionals, and the swine industry. PMID:26038451

  6. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.

    PubMed

    Stein, Richard R; Bucci, Vanni; Toussaint, Nora C; Buffie, Charlie G; Rätsch, Gunnar; Pamer, Eric G; Sander, Chris; Xavier, João B

    2013-01-01

    The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka-Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli.

  7. Antigen identification starting from the genome: a "Reverse Vaccinology" approach applied to MenB.

    PubMed

    Palumbo, Emmanuelle; Fiaschi, Luigi; Brunelli, Brunella; Marchi, Sara; Savino, Silvana; Pizza, Mariagrazia

    2012-01-01

    Most of the vaccines available today, albeit very effective, have been developed using traditional "old-style" methodologies. Technologies developed in recent years have opened up new perspectives in the field of vaccinology and novel strategies are now being used to design improved or new vaccines against infections for which preventive measures do not exist. The Reverse Vaccinology (RV) approach is one of the most powerful examples of biotechnology applied to the field of vaccinology for identifying new protein-based vaccines. RV combines the availability of genomic data, the analyzing capabilities of new bioinformatic tools, and the application of high throughput expression and purification systems combined with serological screening assays for a coordinated screening process of the entire genomic repertoire of bacterial, viral, or parasitic pathogens. The application of RV to Neisseria meningitidis serogroup B represents the first success of this novel approach. In this chapter, we describe how this revolutionary approach can be easily applied to any pathogen.

  8. Challenges of influenza A viruses in humans and animals and current animal vaccines as an effective control measure

    PubMed Central

    2018-01-01

    Influenza A viruses (IAVs) are genetically diverse and variable pathogens that share various hosts including human, swine, and domestic poultry. Interspecies and intercontinental viral spreads make the ecology of IAV more complex. Beside endemic IAV infections, human has been exposed to pandemic and zoonotic threats from avian and swine influenza viruses. Animal health also has been threatened by high pathogenic avian influenza viruses (in domestic poultry) and reverse zoonosis (in swine). Considering its dynamic interplay between species, prevention and control against IAV should be conducted effectively in both humans and animal sectors. Vaccination is one of the most efficient tools against IAV. Numerous vaccines against animal IAVs have been developed by a variety of vaccine technologies and some of them are currently commercially available. We summarize several challenges in control of IAVs faced by human and animals and discuss IAV vaccines for animal use with those application in susceptible populations. PMID:29399575

  9. How host regulation of Helicobacter pylori-induced gastritis protects against peptic ulcer disease and gastric cancer.

    PubMed

    Dhar, Poshmaal; Ng, Garrett Z; Sutton, Philip

    2016-09-01

    The bacterial pathogen Helicobacter pylori is the etiological agent of a range of gastrointestinal pathologies including peptic ulcer disease and the major killer, gastric adenocarcinoma. Infection with this bacterium induces a chronic inflammatory response in the gastric mucosa (gastritis). It is this gastritis that, over decades, eventually drives the development of H. pylori-associated disease in some individuals. The majority of studies investigating H. pylori pathogenesis have focused on factors that promote disease development in infected individuals. However, an estimated 85% of those infected with H. pylori remain completely asymptomatic, despite the presence of pathogenic bacteria that drive a chronic gastritis that lasts many decades. This indicates the presence of highly effective regulatory processes in the host that, in most cases, keeps a check on inflammation and protect against disease. In this minireview we discuss such known host factors and how they prevent the development of H. pylori-associated pathologies. Copyright © 2016 the American Physiological Society.

  10. Loss of Microbiota-Mediated Colonization Resistance to Clostridium difficile Infection With Oral Vancomycin Compared With Metronidazole

    PubMed Central

    Lewis, Brittany B.; Buffie, Charlie G.; Carter, Rebecca A.; Leiner, Ingrid; Toussaint, Nora C.; Miller, Liza C.; Gobourne, Asia; Ling, Lilan; Pamer, Eric G.

    2015-01-01

    Antibiotic administration disrupts the intestinal microbiota, increasing susceptibility to pathogens such as Clostridium difficile. Metronidazole or oral vancomycin can cure C. difficile infection, and administration of these agents to prevent C. difficile infection in high-risk patients, although not sanctioned by Infectious Disease Society of America guidelines, has been considered. The relative impacts of metronidazole and vancomycin on the intestinal microbiota and colonization resistance are unknown. We investigated the effect of brief treatment with metronidazole and/or oral vancomycin on susceptibility to C. difficile, vancomycin-resistant Enterococcus, carbapenem-resistant Klebsiella pneumoniae, and Escherichia coli infection in mice. Although metronidazole resulted in transient loss of colonization resistance, oral vancomycin markedly disrupted the microbiota, leading to prolonged loss of colonization resistance to C. difficile infection and dense colonization by vancomycin-resistant Enterococcus, K. pneumoniae, and E. coli. Our results demonstrate that vancomycin, and to a lesser extent metronidazole, are associated with marked intestinal microbiota destruction and greater risk of colonization by nosocomial pathogens. PMID:25920320

  11. Vector-borne diseases in Haiti: a review.

    PubMed

    Ben-Chetrit, Eli; Schwartz, Eli

    2015-01-01

    Haiti lies on the western third of the island of Hispaniola in the Caribbean, and is one of the poorest nations in the Western hemisphere. Haiti attracts a lot of medical attention and support due to severe natural disasters followed by disastrous health consequences. Vector-borne infections are still prevalent there with some unique aspects comparing it to Latin American countries and other Caribbean islands. Although vector-borne viral diseases such as dengue and recently chikungunya can be found in many of the Caribbean islands, including Haiti, there is an apparent distinction of the vector-borne parasitic diseases. Contrary to neighboring Carribbean islands, Haiti is highly endemic for malaria, lymphatic filariasis and mansonellosis. Affected by repeat natural disasters, poverty and lack of adequate infrastructure, control of transmission within Haiti and prevention of dissemination of vector-borne pathogens to other regions is challenging. In this review we summarize some aspects concerning diseases caused by vector-borne pathogens in Haiti. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Systems Biology-Based Platforms to Accelerate Research of Emerging Infectious Diseases.

    PubMed

    Oh, Soo Jin; Choi, Young Ki; Shin, Ok Sarah

    2018-03-01

    Emerging infectious diseases (EIDs) pose a major threat to public health and security. Given the dynamic nature and significant impact of EIDs, the most effective way to prevent and protect against them is to develop vaccines in advance. Systems biology approaches provide an integrative way to understand the complex immune response to pathogens. They can lead to a greater understanding of EID pathogenesis and facilitate the evaluation of newly developed vaccine-induced immunity in a timely manner. In recent years, advances in high throughput technologies have enabled researchers to successfully apply systems biology methods to analyze immune responses to a variety of pathogens and vaccines. Despite recent advances, computational and biological challenges impede wider application of systems biology approaches. This review highlights recent advances in the fields of systems immunology and vaccinology, and presents ways that systems biology-based platforms can be applied to accelerate a deeper understanding of the molecular mechanisms of immunity against EIDs. © Copyright: Yonsei University College of Medicine 2018.

  13. Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota

    PubMed Central

    Toussaint, Nora C.; Buffie, Charlie G.; Rätsch, Gunnar; Pamer, Eric G.; Sander, Chris; Xavier, João B.

    2013-01-01

    The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka–Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli. PMID:24348232

  14. Systems Biology-Based Platforms to Accelerate Research of Emerging Infectious Diseases

    PubMed Central

    2018-01-01

    Emerging infectious diseases (EIDs) pose a major threat to public health and security. Given the dynamic nature and significant impact of EIDs, the most effective way to prevent and protect against them is to develop vaccines in advance. Systems biology approaches provide an integrative way to understand the complex immune response to pathogens. They can lead to a greater understanding of EID pathogenesis and facilitate the evaluation of newly developed vaccine-induced immunity in a timely manner. In recent years, advances in high throughput technologies have enabled researchers to successfully apply systems biology methods to analyze immune responses to a variety of pathogens and vaccines. Despite recent advances, computational and biological challenges impede wider application of systems biology approaches. This review highlights recent advances in the fields of systems immunology and vaccinology, and presents ways that systems biology-based platforms can be applied to accelerate a deeper understanding of the molecular mechanisms of immunity against EIDs. PMID:29436184

  15. Kyasanur Forest Disease (KFD): Rare Disease of Zoonotic Origin.

    PubMed

    Muraleedharan, M

    2016-09-01

    Kyasanur forest disease (KFD) is a rare tick borne zoonotic disease that causes acute febrile hemorrhagic illness in humans and monkeys especially in southern part of India. The disease is caused by highly pathogenic KFD virus (KFDV) which belongs to member of the genus Flavivirus and family Flaviviridae. The disease is transmitted to monkeys and humans by infective tick Haemaphysalisspinigera. Seasonal outbreaks are expected to occur during the months of January to June. The aim of this paper is to briefly summarize the epidemiology, mode of transmission of KFD virus, clinical findings, diagnosis, treatment, control and prevention of the disease..

  16. Phase Transitions in a Model of Y-Molecules Abstract

    NASA Astrophysics Data System (ADS)

    Holz, Danielle; Ruth, Donovan; Toral, Raul; Gunton, James

    Immunoglobulin is a Y-shaped molecule that functions as an antibody to neutralize pathogens. In special cases where there is a high concentration of immunoglobulin molecules, self-aggregation can occur and the molecules undergo phase transitions. This prevents the molecules from completing their function. We used a simplified model of 2-Dimensional Y-molecules with three identical arms on a triangular lattice with 2-dimensional Grand Canonical Ensemble. The molecules were permitted to be placed, removed, rotated or moved on the lattice. Once phase coexistence was found, we used histogram reweighting and multicanonical sampling to calculate our phase diagram.

  17. Plasma fractionation issues.

    PubMed

    Farrugia, Albert; Evers, Theo; Falcou, Pierre-Francois; Burnouf, Thierry; Amorim, Luiz; Thomas, Sylvia

    2009-04-01

    Procurement and processing of human plasma for fractionation of therapeutic proteins or biological medicines used in clinical practice is a multi-billion dollar international trade. Together the private sector and public sector (non-profit) provide large amounts of safe and effective therapeutic plasma proteins needed worldwide. The principal therapeutic proteins produced by the dichotomous industry include gamma globulins or immunoglobulins (including pathogen-specific hyperimmune globulins, such as hepatitis B immune globulins) albumin, factor VIII and Factor IX concentrates. Viral inactivation, principally by solvent detergent and other processes, has proven highly effective in preventing transmission of enveloped viruses, viz. HBV, HIV, and HCV.

  18. A novel HRM assay for differentiating classical strains and highly pathogenic strains of type 2 porcine reproductive and respiratory syndrome virus.

    PubMed

    Sun, Junying; Bingga, Gali; Liu, Zhicheng; Zhang, Chunhong; Shen, Haiyan; Guo, Pengju; Zhang, Jianfeng

    2018-06-01

    Differentiation of classical strains and highly pathogenic strains of porcine reproductive and respiratory syndrome virus is crucial for effective vaccination programs and epidemiological studies. We used nested PCR and high resolution melting curve analysis with unlabeled probe to distinguish between the classical and the highly pathogenic strains of this virus. Two sets of primers and a 20 bp unlabeled probe were designed from the NSP3 gene. The unlabeled probe included two mutations specific for the classical and highly pathogenic strains of the virus. An additional primer set from the NSP2 gene of the highly pathogenic vaccine strain JXA1-R was used to detect its exclusive single nucleotide polymorphism. We tested 107 clinical samples, 21 clinical samples were positive for PRRSV (consistent with conventional PCR assay), among them four were positive for the classical strain with the remainder 17 for the highly pathogenic strain. Around 10 °C difference between probe melting temperatures showed the high discriminatory power of this method. Among highly pathogenic positive samples, three samples were determined as positive for JXA1-R vaccine-related strain with a 95% genotype confidence percentage. All these genotyping results using the high resolution melting curve assay were confirmed with DNA sequencing. This unlabeled probe method provides an alternative means to differentiate the classical strains from the highly pathogenic porcine reproductive and respiratory syndrome virus strains rapidly and accurately. Copyright © 2018. Published by Elsevier Ltd.

  19. Prevention of Infection Due to Clostridium difficile.

    PubMed

    Cooper, Christopher C; Jump, Robin L P; Chopra, Teena

    2016-12-01

    Clostridium difficile is one of the foremost nosocomial pathogens. Preventing infection is particularly challenging. Effective prevention efforts typically require a multifaceted bundled approach. A variety of infection control procedures may be advantageous, including strict hand decontamination with soap and water, contact precautions, and using chlorine-containing decontamination agents. Additionally, risk factor reduction can help reduce the burden of disease. The risk factor modification is principally accomplished though antibiotic stewardship programs. Unfortunately, most of the current evidence for prevention is in acute care settings. This review focuses on preventative approaches to reduce the incidence of Clostridium difficile infection in healthcare settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. An Overview of the Control of Bacterial Pathogens in Cattle Manure

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Makaka, Golden; Simon, Michael; Okoh, Anthony I.

    2016-01-01

    Cattle manure harbors microbial constituents that make it a potential source of pollution in the environment and infections in humans. Knowledge of, and microbial assessment of, manure is crucial in a bid to prevent public health and environmental hazards through the development of better management practices and policies that should govern manure handling. Physical, chemical and biological methods to reduce pathogen population in manure do exist, but are faced with challenges such as cost, odor pollution, green house gas emission, etc. Consequently, anaerobic digestion of animal manure is currently one of the most widely used treatment method that can help to salvage the above-mentioned adverse effects and in addition, produces biogas that can serve as an alternative/complementary source of energy. However, this method has to be monitored closely as it could be fraught with challenges during operation, caused by the inherent characteristics of the manure. In addition, to further reduce bacterial pathogens to a significant level, anaerobic digestion can be combined with other methods such as thermal, aerobic and physical methods. In this paper, we review the bacterial composition of cattle manure as well as methods engaged in the control of pathogenic microbes present in manure and recommendations that need to be respected and implemented in order to prevent microbial contamination of the environment, animals and humans. PMID:27571092

Top