Science.gov

Sample records for prevent neural damage

  1. The genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1.

    PubMed

    Lee, Youngsoo; Katyal, Sachin; Li, Yang; El-Khamisy, Sherif F; Russell, Helen R; Caldecott, Keith W; McKinnon, Peter J

    2009-08-01

    Defective responses to DNA single strand breaks underlie various neurodegenerative diseases. However, the exact role of this repair pathway during the development and maintenance of the nervous system is unclear. Using murine neural-specific inactivation of Xrcc1, a factor that is critical for the repair of DNA single strand breaks, we found a profound neuropathology that is characterized by the loss of cerebellar interneurons. This cell loss was linked to p53-dependent cell cycle arrest and occurred as interneuron progenitors commenced differentiation. Loss of Xrcc1 also led to the persistence of DNA strand breaks throughout the nervous system and abnormal hippocampal function. Collectively, these data detail the in vivo link between DNA single strand break repair and neurogenesis and highlight the diverse consequences of specific types of genotoxic stress in the nervous system.

  2. Genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1

    PubMed Central

    Lee, Youngsoo; Katyal, Sachin; Li, Yang; El-Khamisy, Sherif F.; Russell, Helen R.; Caldecott, Keith W.; McKinnon, Peter J.

    2010-01-01

    Defective responses to DNA single strand breaks underpin various neurodegenerative diseases. However, the exact role of this repair pathway during development and maintenance of the nervous system is unclear. Using murine neural-specific inactivation of Xrcc1, a factor critical for the repair of DNA single strand breaks, we identified a profound neuropathology characterized by the loss of cerebellar interneurons. This cell loss was linked to p53-dependent cell cycle arrest and occurred as interneuron progenitors commenced differentiation. Loss of Xrcc1 also led to the persistence of DNA strand breaks throughout the nervous system and abnormal hippocampal function. Collectively, these data detail the first in vivo link between DNA single strand break repair and neurogenesis, and highlight the diverse consequences of specific types of genotoxic stress in the nervous system. PMID:19633665

  3. Neural networks for damage identification

    SciTech Connect

    Paez, T.L.; Klenke, S.E.

    1997-11-01

    Efforts to optimize the design of mechanical systems for preestablished use environments and to extend the durations of use cycles establish a need for in-service health monitoring. Numerous studies have proposed measures of structural response for the identification of structural damage, but few have suggested systematic techniques to guide the decision as to whether or not damage has occurred based on real data. Such techniques are necessary because in field applications the environments in which systems operate and the measurements that characterize system behavior are random. This paper investigates the use of artificial neural networks (ANNs) to identify damage in mechanical systems. Two probabilistic neural networks (PNNs) are developed and used to judge whether or not damage has occurred in a specific mechanical system, based on experimental measurements. The first PNN is a classical type that casts Bayesian decision analysis into an ANN framework; it uses exemplars measured from the undamaged and damaged system to establish whether system response measurements of unknown origin come from the former class (undamaged) or the latter class (damaged). The second PNN establishes the character of the undamaged system in terms of a kernel density estimator of measures of system response; when presented with system response measures of unknown origin, it makes a probabilistic judgment whether or not the data come from the undamaged population. The physical system used to carry out the experiments is an aerospace system component, and the environment used to excite the system is a stationary random vibration. The results of damage identification experiments are presented along with conclusions rating the effectiveness of the approaches.

  4. Damage identification with probabilistic neural networks

    SciTech Connect

    Klenke, S.E.; Paez, T.L.

    1995-12-01

    This paper investigates the use of artificial neural networks (ANNs) to identify damage in mechanical systems. Two probabilistic neural networks (PNNs) are developed and used to judge whether or not damage has occurred in a specific mechanical system, based on experimental measurements. The first PNN is a classical type that casts Bayesian decision analysis into an ANN framework, it uses exemplars measured from the undamaged and damaged system to establish whether system response measurements of unknown origin come from the former class (undamaged) or the latter class (damaged). The second PNN establishes the character of the undamaged system in terms of a kernel density estimator of measures of system response; when presented with system response measures of unknown origin, it makes a probabilistic judgment whether or not the data come from the undamaged population. The physical system used to carry out the experiments is an aerospace system component, and the environment used to excite the system is a stationary random vibration. The results of damage identification experiments are presented along with conclusions rating the effectiveness of the approaches.

  5. Modeling neural activity with cumulative damage distributions.

    PubMed

    Leiva, Víctor; Tejo, Mauricio; Guiraud, Pierre; Schmachtenberg, Oliver; Orio, Patricio; Marmolejo-Ramos, Fernando

    2015-10-01

    Neurons transmit information as action potentials or spikes. Due to the inherent randomness of the inter-spike intervals (ISIs), probabilistic models are often used for their description. Cumulative damage (CD) distributions are a family of probabilistic models that has been widely considered for describing time-related cumulative processes. This family allows us to consider certain deterministic principles for modeling ISIs from a probabilistic viewpoint and to link its parameters to values with biological interpretation. The CD family includes the Birnbaum-Saunders and inverse Gaussian distributions, which possess distinctive properties and theoretical arguments useful for ISI description. We expand the use of CD distributions to the modeling of neural spiking behavior, mainly by testing the suitability of the Birnbaum-Saunders distribution, which has not been studied in the setting of neural activity. We validate this expansion with original experimental and simulated electrophysiological data.

  6. Neural Stability, Sparing, and Behavioral Recovery Following Brain Damage

    ERIC Educational Resources Information Center

    LeVere, T. E.

    1975-01-01

    The present article discusses the possibility that behavioral recovery following brain damage is not dependent on the functional reorganization of neural tissue but is rather the result of the continued normal operation of spared neural mechanisms. (Editor)

  7. Neural Stability, Sparing, and Behavioral Recovery Following Brain Damage

    ERIC Educational Resources Information Center

    LeVere, T. E.

    1975-01-01

    The present article discusses the possibility that behavioral recovery following brain damage is not dependent on the functional reorganization of neural tissue but is rather the result of the continued normal operation of spared neural mechanisms. (Editor)

  8. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon; Larcher, Steven; Henderson, Gena; Tran, Donald

    2011-01-01

    Over the years there have been several occurrences of damage to Space Shuttle Orbiter cold plates during removal and replacement of avionics boxes. Thus a process improvement team was put together to determine ways to prevent these kinds of damage. From this effort there were many solutions including, protective covers, training, and improved operations instructions. The focus of this paper is to explain the cold plate damage problem and the corrective actions for preventing future damage to aerospace avionics cold plate designs.

  9. 77 FR 31827 - Pipeline Safety: Pipeline Damage Prevention Programs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... Safety: Pipeline Damage Prevention Programs AGENCY: Pipeline and Hazardous Materials Safety... excavation damage prevention law enforcement programs; establish an administrative process for making... excavation damage prevention law enforcement programs; and establish the adjudication process for...

  10. Structural damage detection using active members and neural networks

    NASA Astrophysics Data System (ADS)

    Manning, R. A.

    1994-06-01

    The detection of damage in structures is a topic which has considerable interest in many fields. In the past many methods for detecting damage in structures has relied on finite element model refinement methods. This note presents a structural damage methodology in which only active member transfer function data are used in conjunction with an artificial neural network to detect damage in structures. Specifically, the method relies on training a neural network using active member transfer function pole/zero information to classify damaged structure measurements and to predict the degree of damage in the structure. The method differs from many of the past damage detection algorithms in that no attempt is made to update a finite element model or to match measured data with new finite element analyses of the structure in a damaged state.

  11. Smart Composite Damage Assessment System Based on the Neural Network,

    DTIC Science & Technology

    1995-12-04

    sensor arrays, shape memory alloy wires, and Kohenen self-organizing neural network processors. Material damage detection is realized by embedded optical...fiber sensor arrays. High speed neural network parallel distribution processors composed of TM5320C25 high speed parallel processors and IBM PC/386’s

  12. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon B.; Larchar, Steven W.; Henderson, Gena; Tran, Donald; Barth, Tim

    2012-01-01

    Problem Introduction: 1. Prevent Cold Plate Damage in Space Shuttle. 1a. The number of cold plate problems had increased from an average of 16.5 per/year between 1990 through 2000, to an average of 39.6 per year between 2001through 2005. 1b. Each complete set of 80 cold plates cost approximately $29 million, an average of $362,500 per cold plate. 1c It takes four months to produce a single cold plate. 2. Prevent Cold Plate Damage in Future Space Vehicles.

  13. On-line fan blade damage detection using neural networks

    NASA Astrophysics Data System (ADS)

    Oberholster, A. J.; Heyns, P. S.

    2006-01-01

    This paper presents a methodology for monitoring the on-line condition of axial-flow fan blades with the use of neural networks. In developing this methodology, the first stage was to utilise neural networks trained on features extracted from on-line blade vibration signals measured on an experimental test structure. Results from a stationary experimental modal analysis of the structure were used for identifying global blade mode shapes and their corresponding frequencies. These in turn were used to assist in identifying vibration-related features suitable for neural network training. The features were extracted from on-line blade vibration and strain signals which were measured using a number of sensors. The second stage in the development of the methodology entails utilising neural networks trained on numerical Frequency Response Function (FRF) features obtained from a Finite Element Model (FEM) of the test structure. Frequency domain features obtained from on-line experimental measurements were used to normalise the numerical FRF features prior to neural network training. Following training, the networks were tested using experimental frequency domain features. This approach makes it unnecessary to damage the structure in order to train the neural networks. The paper shows that it is possible to classify damage for several fan blades by using neural networks with on-line vibration measurements from sensors not necessarily installed on the damaged blades themselves. The significance of this is that it proves the possibility to perform on-line fan blade damage classification using less than one sensor per blade. Even more significant is the demonstration that an on-line damage detection system for a fan can be developed without having to damage the actual structure.

  14. Understanding and preventing mitochondrial oxidative damage

    PubMed Central

    Murphy, Michael P.

    2016-01-01

    Mitochondrial oxidative damage has long been known to contribute to damage in conditions such as ischaemia–reperfusion (IR) injury in heart attack. Over the past years, we have developed a series of mitochondria-targeted compounds designed to ameliorate or determine how this damage occurs. I will outline some of this work, from MitoQ to the mitochondria-targeted S-nitrosating agent, called MitoSNO, that we showed was effective in preventing reactive oxygen species (ROS) formation in IR injury with therapeutic implications. In addition, the protection by this compound suggested that ROS production in IR injury was mainly coming from complex I. This led us to investigate the mechanism of the ROS production and using a metabolomic approach, we found that the ROS production in IR injury came from the accumulation of succinate during ischaemia that then drove mitochondrial ROS production by reverse electron transport at complex I during reperfusion. This surprising mechanism led us to develop further new therapeutic approaches to have an impact on the damage that mitochondrial ROS do in pathology and also to explore how mitochondrial ROS can act as redox signals. I will discuss how these approaches have led to a better understanding of mitochondrial oxidative damage in pathology and also to the development of new therapeutic strategies. PMID:27911703

  15. Experience-dependent neural plasticity in the adult damaged brain

    PubMed Central

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper extremity (hand and arm) impairments. A prolonged and widespread process of repair and reorganization of surviving neural circuits is instigated by injury to the adult brain. When experience impacts these same neural circuits, it interacts with degenerative and regenerative cascades to shape neural reorganization and functional outcome. This is evident in the cortical plasticity resulting from compensatory reliance on the “good” forelimb in rats with unilateral sensorimotor cortical infarcts. Behavioral interventions (e.g., rehabilitative training) can drive functionally beneficial neural reorganization in the injured hemisphere. However, experience can have both behaviorally beneficial and detrimental effects. The interactions between experience-dependent and injury-induced neural plasticity are complex, time-dependent, and varied with age and other factors. A better understanding of these interactions is needed to understand how to optimize brain remodeling and functional outcome. Learning outcomes Readers will be able to describe (a) experience effects that are maladaptive for behavioral outcome after brain damage, (b) manipulations of experience that drive functionally beneficial neural plasticity, and (c) reasons why rehabilitative training effects can be expected to vary with age, training duration and timing. PMID:21620413

  16. 49 CFR 195.442 - Damage prevention program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Damage prevention program. 195.442 Section 195.442... PIPELINE Operation and Maintenance § 195.442 Damage prevention program. (a) Except as provided in paragraph... section. (1) The state has adopted a one-call damage prevention program under § 198.37 of this chapter; or...

  17. 49 CFR 192.614 - Damage prevention program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Damage prevention program. 192.614 Section 192.614... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Operations § 192.614 Damage prevention program. (a... section (b)(1) or (b)(2) of this section. (1) The state has adopted a one-call damage prevention program...

  18. 49 CFR 195.442 - Damage prevention program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Damage prevention program. 195.442 Section 195.442... PIPELINE Operation and Maintenance § 195.442 Damage prevention program. (a) Except as provided in paragraph... section, a written program to prevent damage to that pipeline from excavation activities. For the purpose...

  19. 49 CFR 192.614 - Damage prevention program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Damage prevention program. 192.614 Section 192.614... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Operations § 192.614 Damage prevention program. (a... carry out, in accordance with this section, a written program to prevent damage to that pipeline from...

  20. 49 CFR 195.442 - Damage prevention program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Damage prevention program. 195.442 Section 195.442... PIPELINE Operation and Maintenance § 195.442 Damage prevention program. (a) Except as provided in paragraph... section, a written program to prevent damage to that pipeline from excavation activities. For the...

  1. 49 CFR 192.614 - Damage prevention program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Damage prevention program. 192.614 Section 192.614... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Operations § 192.614 Damage prevention program. (a... carry out, in accordance with this section, a written program to prevent damage to that pipeline...

  2. Techniques for preventing accidental damage to pipelines

    SciTech Connect

    Lothon, A.; Akel, S.

    1996-12-31

    Following a survey of all of the techniques capable of preventing third-party damage to its gas transmission pipelines, Gaz de France has selected two of them, Electromagnetic Detection and Positioning by Satellite. The first technique is based on detection of the magnetic field existing around transmission pipes excited by a driving current. A receiver is mounted on the excavation equipment to detect the magnetic field, thereby preventing any risk of hitting the pipe. The second technique consists in locating excavators by satellite. Each excavator needs to be equipped with a GPS beacon to know its position. Using the map of the transmission network stored in data-base form, i.e., digitized, the system calculates the position of the excavator relative to the pipes buried in its vicinity so as to avoid any accidental contact. The main features, advantages and drawbacks of the two techniques are presented in this paper.

  3. Damage detection of bridgelike structures using neural networks

    NASA Astrophysics Data System (ADS)

    Valentin-Sivico, Javier; Rao, Vittal S.; Samanthula, Vasudha

    1998-06-01

    It is well known that the static and dynamic structural response of materials can indirectly indicate the health of structural systems. The changes in natural frequencies, mode shapes, and stiffness matrices due to damage are utilized for determination of occurrence, location and extent of damages. In recent years, many researchers have developed global damage detection algorithms using structural modal response. However most of these methods are off-line techniques based on frequency domain data. In this paper we have proposed real- time damage detection methods based on time domain data. In this method damages in the structure can be detected while the structure is kept on its regular use. The algorithm determines reduction in stiffness and/or damping of the structural elements, while assuming that the mass of the structure does not vary due to damage. This algorithm is based on the state space representation of the structure, which is identified from the time domain data. We have also determined a linear transformation matrix for converting the identified model into a state space representation based on physical coordinates of the structural system. The self-organization and learning capabilities of neural networks can be effectively used for structural damage detection purpose. In this paper a hybrid method for the damage detection has been proposed by combining the features of best achievable eigenvector method and neural network classification techniques for detection of location and extent of damage in the structural systems. The feasibility of the proposed method is verified by using simple three-bar truss structure and a cantilever beam test article.

  4. Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation

    NASA Astrophysics Data System (ADS)

    Jeon, Myounggun; Cho, Jeiwon; Kim, Yun Kyung; Jung, Dahee; Yoon, Eui-Sung; Shin, Sehyun; Cho, Il-Joo

    2014-02-01

    This paper presents a flexible microelectromechanical systems (MEMS) neural probe that minimizes neuron damage and immune response, suitable for chronic recording applications. MEMS neural probes with various features such as high electrode densities have been actively investigated for neuron stimulation and recording to study brain functions. However, successful recording of neural signals in chronic application using rigid silicon probes still remains challenging because of cell death and macrophages accumulated around the electrodes over time from continuous brain movement. Thus, in this paper, we propose a new flexible MEMS neural probe that consists of two segments: a polyimide-based, flexible segment for connection and a rigid segment composed of thin silicon for insertion. While the flexible connection segment is designed to reduce the long-term chronic neuron damage, the thin insertion segment is designed to minimize the brain damage during the insertion process. The proposed flexible neural probe was successfully fabricated using the MEMS process on a silicon on insulator wafer. For a successful insertion, a biodegradable sucrose gel is coated on the flexible segment to temporarily increase the probe stiffness to prevent buckling. After the insertion, the sucrose gel dissolves inside the brain exposing the polyimide probe. By performing an insertion test, we confirm that the flexible probe has enough stiffness. In addition, by monitoring immune responses and brain histology, we successfully demonstrate that the proposed flexible neural probe incurs fivefold less neural damage than that incurred by a conventional silicon neural probe. Therefore, the presented flexible neural probe is a promising candidate for recording stable neural signals for long-time chronic applications.

  5. Preventing Health Damaging Behaviors in Male and Female Army Recruits

    DTIC Science & Technology

    2008-01-01

    intervention, an Army-specific video, and the comparison nutrition , fitness and injury prevention intervention. Based on our focus group discussions, it is...AD_________________ Award Number: W81XWH-04-1-0159 TITLE: Preventing Health Damaging Behaviors in...NUMBER Preventing Health Damaging Behaviors in Male and Female Army Recruits 5b. GRANT NUMBER W81XWH-04-1-0159 5c. PROGRAM ELEMENT NUMBER 6

  6. Pattern Learning, Damage and Repair within Biological Neural Networks

    NASA Astrophysics Data System (ADS)

    Siu, Theodore; Fitzgerald O'Neill, Kate; Shinbrot, Troy

    2015-03-01

    Traumatic brain injury (TBI) causes damage to neural networks, potentially leading to disability or even death. Nearly one in ten of these patients die, and most of the remainder suffer from symptoms ranging from headaches and nausea to convulsions and paralysis. In vitro studies to develop treatments for TBI have limited in vivo applicability, and in vitro therapies have even proven to worsen the outcome of TBI patients. We propose that this disconnect between in vitro and in vivo outcomes may be associated with the fact that in vitro tests assess indirect measures of neuronal health, but do not investigate the actual function of neuronal networks. Therefore in this talk, we examine both in vitro and in silico neuronal networks that actually perform a function: pattern identification. We allow the networks to execute genetic, Hebbian, learning, and additionally, we examine the effects of damage and subsequent repair within our networks. We show that the length of repaired connections affects the overall pattern learning performance of the network and we propose therapies that may improve function following TBI in clinical settings.

  7. Preventing Arc Welding From Damaging Electronics

    NASA Technical Reports Server (NTRS)

    Sargent, Noel; Mareen, D.

    1988-01-01

    Shielding technique developed to protect sensitive electronic equipment from damage due to electromagnetic disturbances produced by arc welding. Established acceptable alternative in instances in which electronic equipment cannot be removed prior to arc welding. Guidelines established for open, unshielded welds. Procedure applicable to robotics or computer-aided manufacturing.

  8. Fine-particle filter prevents damage to vacuum pumps

    NASA Technical Reports Server (NTRS)

    Harlamert, P., Jr.

    1964-01-01

    A filter system for mechanical pumps is designed with a baffle assembly that rotates in a circulating oil bath which traps destructive particles. This prevents severe damage to the pump and is serviceable for long periods before it requires cleaning.

  9. Preventing Ultraviolet Light-Induced Damage: The Benefits of Antioxidants

    ERIC Educational Resources Information Center

    Yip, Cheng-Wai

    2007-01-01

    Extracts of fruit peels contain antioxidants that protect the bacterium "Escherichia coli" against damage induced by ultraviolet light. Antioxidants neutralise free radicals, thus preventing oxidative damage to cells and deoxyribonucleic acid. A high survival rate of UV-exposed cells was observed when grapefruit or grape peel extract was…

  10. Preventing Ultraviolet Light-Induced Damage: The Benefits of Antioxidants

    ERIC Educational Resources Information Center

    Yip, Cheng-Wai

    2007-01-01

    Extracts of fruit peels contain antioxidants that protect the bacterium "Escherichia coli" against damage induced by ultraviolet light. Antioxidants neutralise free radicals, thus preventing oxidative damage to cells and deoxyribonucleic acid. A high survival rate of UV-exposed cells was observed when grapefruit or grape peel extract was…

  11. Retrospective review of thoracic neural damage during lung ablation - what the interventional radiologist needs to know about neural thoracic anatomy

    SciTech Connect

    Palussiere, Jean; Canella, Mathieu; Cornelis, Francois; Catena, Vittorio; Descat, Edouard; Brouste, Veronique; Montaudon, Michel

    2013-12-15

    Background and Purpose: Radiofrequency ablation (RFA) is associated with low neural morbidity compared with surgery, which commonly causes debilitating long-term pain. The purpose was to review the thoracic neural anatomy relevant to percutaneous RFA and to retrospectively review symptomatic nerve injury after lung RFA at our institution. Materials and Methods: We retrospectively examined all symptomatic nerve injuries occurring after computed tomography (CT)-guided RFA treatment of lung tumors for 462 patients/509 procedures/708 lesions treated at our large tertiary referral centre during 10 years. Results: Eight patients experienced neurological complications after heating during the RFA procedure. These complications occurred in the phrenic (n = 1), brachial (n = 3), left recurrent (n = 1), and intercostal nerves (n = 2) and the stellate ganglion (n = 1). Three were grade 2, four grade 3 and one grade 4 injuries (CTCAE v3). Conclusion: Although rare, neurological complications can occur after RFA, and they can occasionally be severe. To prevent these complications, it is important for the interventional radiologist to be aware of the anatomy of nervous structures and to attempt to identify nerves on CT scans during the RFA procedure. Creating a pneumothorax can be useful to avoid nerve damage and related clinical complications.

  12. Prevention of Noise Damage to Cochlear Synapses

    DTIC Science & Technology

    2015-10-01

    position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting...affects hearing at normal sound levels. IEM-1460 blocks glutamate receptors used for synaptic transmission at the hair cell to spiral ganglion neuron (SGN...make a significant contribution to normal hearing at moderate sound levels. c) Determine definitively whether IEM-1460 prevents synaptopathy. We

  13. [Folic acid: Primary prevention of neural tube defects. Literature Review].

    PubMed

    Llamas Centeno, M J; Miguélez Lago, C

    2016-03-01

    Neural tube defects (NTD) are the most common congenital malformations of the nervous system, they have a multifactorial etiology, are caused by exposure to chemical, physical or biological toxic agents, factors deficiency, diabetes, obesity, hyperthermia, genetic alterations and unknown causes. Some of these factors are associated with malnutrition by interfering with the folic acid metabolic pathway, the vitamin responsible for neural tube closure. Its deficit produce anomalies that can cause abortions, stillbirths or newborn serious injuries that cause disability, impaired quality of life and require expensive treatments to try to alleviate in some way the alterations produced in the embryo. Folic acid deficiency is considered the ultimate cause of the production of neural tube defects, it is clear the reduction in the incidence of Espina Bifida after administration of folic acid before conception, this leads us to want to further study the action of folic acid and its application in the primary prevention of neural tube defects. More than 40 countries have made the fortification of flour with folate, achieving encouraging data of decrease in the prevalence of neural tube defects. This paper attempts to make a literature review, which clarify the current situation and future of the prevention of neural tube defects.

  14. Can neural blocks prevent phantom limb pain?

    PubMed

    Borghi, Battista; D'Addabbo, Marco; Borghi, Raffaele

    2014-07-01

    Phantom limb syndrome (PLS) is a syndrome including stump pain, phantom limb pain and not-painful phantom sensations, which involves a large part of amputee patients and often has devastating effects on their quality of life. The efficacy of standard therapies is very poor. Nerve blocks have been investigated for the treatment and prevention of PLS. Epidural and peripheral blocks limited to the first three postamputation days can only reduce acute pain but cannot prevent the later development of PLS. Recent studies have shown that ambulatory prolonged peripheral nerve block (up to 30 days postamputation) may represent a new possible option to treat phantom pain and prevent the development of PLS and chronic pain.

  15. Optimization of Neural Network Pattern Recognition Systems for Guided Waves Damage Identification in Beams

    NASA Astrophysics Data System (ADS)

    Liew, C. K.; Veidt, M.

    2007-03-01

    Neural network pattern recognition is an advanced regression technique that can be applied to identify guided wave response signals for quantifying damages in structures. This paper describes a procedure to optimize the design of a multi-layer perceptron backpropagation neural network with signals preprocessed by the wavelet transform. The performance can be further improved using a weight-range selection technique in a series network since there is increased sensitivity of the neural network to experimental damage patterns if the training range is reduced. Damage identification in beams with longitudinal guided waves is used in this study.

  16. Preventing alcohol related birth damage: a review.

    PubMed

    Waterson, E J; Murray-Lyon, I M

    1990-01-01

    Since 1974 numerous clinical studies have made it clear that heavy alcohol consumption during pregnancy (in excess of 80 g or 8 units daily) can result in a child being born with a specific combination of physical and mental disabilities known as the Fetal Alcohol Syndrome. More moderate levels of intake (as little as 10 g of 1 unit daily) are associated with other fetal problems known as Fetal Alcohol Effects. The most common of these is growth retardation. Reduction of alcohol consumption is beneficial to pregnancy outcome. However, despite this great clinical and research interest within the field there has been comparatively little attention paid to researching possible preventative strategies and appropriate policy development. This paper first describes the size of the problem posed by drinking in pregnancy in the U.S.A. and the U.K., detailing the contrasting policy response on either side of the Atlantic. It examines the difficulties of formulating appropriate advice and then assesses the available research reports on preventative measures. The strategies described include general publicity and counselling for pregnant women. In addition, attention has been paid to the problems of dissemination by emphasising professional education. One major shortcoming is that most of these studies appear to have been carried out with little reference to existing knowledge on health education and promotion, or educational work in the antenatal or alcohol fields. In addition, little attention appears to have been paid to the characteristics of the groups at whom intervention might be targeted or the underlying social or psychological factors which maintain drinking in these groups. The second part of this paper, therefore, attempts to suggest appropriate avenues for developing preventative strategies by presenting a wide-ranging review with special reference to British experience. Particular attention is given to the issues of form and content of appropriate messages

  17. 49 CFR 198.37 - State one-call damage prevention program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false State one-call damage prevention program. 198.37... REGULATIONS FOR GRANTS TO AID STATE PIPELINE SAFETY PROGRAMS Adoption of One-Call Damage Prevention Program § 198.37 State one-call damage prevention program. A State must adopt a one-call damage prevention...

  18. 49 CFR 198.37 - State one-call damage prevention program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false State one-call damage prevention program. 198.37... REGULATIONS FOR GRANTS TO AID STATE PIPELINE SAFETY PROGRAMS Adoption of One-Call Damage Prevention Program § 198.37 State one-call damage prevention program. A State must adopt a one-call damage prevention...

  19. Prevention of DNA damage in human skin by topical sunscreens.

    PubMed

    Olsen, Catherine M; Wilson, Louise F; Green, Adèle C; Biswas, Neela; Loyalka, Juhi; Whiteman, David C

    2017-05-01

    There is strong evidence that topical sunscreens, designed to protect against ultraviolet radiation (UVR)-induced erythema, decrease the amount of UVR to which the skin is exposed, but their effectiveness in reducing UVR-induced DNA damage in vivo has not been well quantified. We systematically reviewed the published literature (1990-2015) to determine whether sunscreens prevent DNA damage in human skin when applied prior to UVR exposure. We included experimental studies measuring UVR-induced DNA damage in human skin in vivo with and without sunscreens and excluded studies conducted in animal models and cell lines. Eligible studies were identified by computerized search of bibliographic databases, supplemented by hand-searching the reference lists of retrieved articles. We identified ten eligible studies. Despite heterogeneity in methodological approaches, including the sun protection factors of the sunscreens assessed, range of skin types examined, the UVR exposure time and dose, the timing of post-irradiation biopsies and in the markers of DNA damage examined, all studies reported markedly reduced (or nil) UVR-induced DNA damage on sunscreen-protected skin. Our review of the experimental evidence supports a protective effect of topical sunscreens in preventing UVR-induced DNA damage in human skin cells in vivo. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. 49 CFR 195.442 - Damage prevention program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... section, a written program to prevent damage to that pipeline from excavation activities. For the purpose of this section, the term “excavation activities” includes excavation, blasting, boring, tunneling... there is a central telephone number for excavators to call for excavation activities, or if the...

  1. 49 CFR 195.442 - Damage prevention program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... section, a written program to prevent damage to that pipeline from excavation activities. For the purpose of this section, the term “excavation activities” includes excavation, blasting, boring, tunneling... there is a central telephone number for excavators to call for excavation activities, or if the...

  2. Model-Trained Neural Networks and Electronic Holography Demonstrated to Detect Damage in Blades

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1998-01-01

    Detect Damage in Blades Electronic holography can show damaged regions in fan blades at 30 frames/sec. The electronic holograms are transformed by finite-element-model-trained artificial neural networks to visualize the damage. The trained neural networks are linked with video and graphics to visualize the bending-induced strain distribution, which is very sensitive to damage. By contrast, it is very difficult to detect damage by viewing the raw, speckled, characteristic fringe patterns. For neural-network visualization of damage, 2 frames or 2 fields are used, rather than the 12 frames normally used to compute the displacement distribution from electronic holograms. At the NASA Lewis Research Center, finite element models are used to compute displacement and strain distributions for the vibration modes of undamaged and cracked blades. A model of electronic time-averaged holography is used to transform the displacement distributions into finite-element-resolution characteristic fringe patterns. Then, a feedforward neural network is trained with the fringe-pattern/strain-pattern pairs, and the neural network, electronic holography, and video are implemented on a workstation. Now that the neural networks have been tested successfully at 30 frames/sec on undamaged and cracked cantilevers, the electronic holography and neural-network processing are being adapted for onsite damage inspection of twisted fan blades and rotormounted blades. Our conclusion is that model-trained neural nets are effective when they are trained with good models whose application is well understood. This work supports the aeromechanical testing portion of the Advanced Subsonic Technology Project.

  3. Model-Trained Neural Networks and Electronic Holography Demonstrated to Detect Damage in Blades

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1998-01-01

    Detect Damage in Blades Electronic holography can show damaged regions in fan blades at 30 frames/sec. The electronic holograms are transformed by finite-element-model-trained artificial neural networks to visualize the damage. The trained neural networks are linked with video and graphics to visualize the bending-induced strain distribution, which is very sensitive to damage. By contrast, it is very difficult to detect damage by viewing the raw, speckled, characteristic fringe patterns. For neural-network visualization of damage, 2 frames or 2 fields are used, rather than the 12 frames normally used to compute the displacement distribution from electronic holograms. At the NASA Lewis Research Center, finite element models are used to compute displacement and strain distributions for the vibration modes of undamaged and cracked blades. A model of electronic time-averaged holography is used to transform the displacement distributions into finite-element-resolution characteristic fringe patterns. Then, a feedforward neural network is trained with the fringe-pattern/strain-pattern pairs, and the neural network, electronic holography, and video are implemented on a workstation. Now that the neural networks have been tested successfully at 30 frames/sec on undamaged and cracked cantilevers, the electronic holography and neural-network processing are being adapted for onsite damage inspection of twisted fan blades and rotormounted blades. Our conclusion is that model-trained neural nets are effective when they are trained with good models whose application is well understood. This work supports the aeromechanical testing portion of the Advanced Subsonic Technology Project.

  4. DNA damage signalling prevents deleterious telomere addition at DNA breaks

    PubMed Central

    Makovets, Svetlana; Blackburn, Elizabeth H.

    2009-01-01

    The response to DNA damage involves regulation of multiple essential processes to maximize the accuracy of DNA damage repair and cell survival 1. Telomerase has the potential to interfere with repair by inappropriately adding telomeres to DNA breaks. It was unknown whether cells modulate telomerase in response to DNA damage, to increase the accuracy of repair. Here we report that telomerase action is regulated as a part of the cellular response to a DNA double-strand break (DSB). Using yeast, we show that the major ATR/Mec1 DNA damage signalling pathway regulates telomerase action at DSBs. Upon DNA damage, MEC1-RAD53-DUN1-dependent phosphorylation of the telomerase inhibitor Pif1 occurs. Utilizing a separation of function PIF1 mutation, we show that this phosphorylation is required for the Pif1-mediated telomerase inhibition that takes place specifically at DNA breaks, but not telomeres. Hence DNA damage signalling down-modulates telomerase action at a DNA break via Pif1 phosphorylation, thus preventing aberrant healing of broken DNA ends by telomerase. These findings uncover a novel regulatory mechanism that coordinates competing DNA end-processing activities and thereby promotes DNA repair accuracy and genome integrity. PMID:19838171

  5. 49 CFR 198.37 - State one-call damage prevention program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false State one-call damage prevention program. 198.37... REGULATIONS FOR GRANTS TO AID STATE PIPELINE SAFETY PROGRAMS Adoption of One-Call Damage Prevention Program § 198.37 State one-call damage prevention program. A State must adopt a one-call damage...

  6. Are all phytochemicals useful in the preventing of DNA damage?

    PubMed

    Bacanlı, Merve; Aydın, Sevtap; Başaran, A Ahmet; Başaran, Nurşen

    2017-09-06

    Phytochemicals derived from natural plants have been used commonly for the prevention and/or treatment of different diseases due to the belief of their safety. Many plant species synthesize toxic chemicals. New natural chemicals are being discovered but their toxic effects are unknown. Phytochemicals have been regarded as possible antioxidants. But on the other hand it is suggested that various phenolic antioxidants can display pro-oxidant properties at high doses. In this review, the role of some phytochemicals (epigallocathecin gallate, carvacrol, galangin, limonene, lycopene, naringin, puerarin, terpinene, thymol and ursolic acid) on the prevention of DNA damage will be discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Neurogenesis requires TopBP1 to prevent catastrophic replicative DNA damage in early progenitors

    PubMed Central

    Lee, Youngsoo; Katyal, Sachin; Downing, Susanna M.; Zhao, Jingfeng; Russell, Helen R.; McKinnon, Peter J.

    2012-01-01

    The rapid proliferation of progenitors during neurogenesis requires a stringent genomic maintenance program to ensure transmission of genetic fidelity. However the essential factors that govern neural progenitor genome integrity are unknown. Here we report that conditional inactivation of mouse TopBP1, a protein linked to DNA replication, and a key activator of the DNA damage response kinase ATR (ataxia telangiectasia and rad3 related) is critical for maintenance of early-born neural progenitors. During cortical development TopBP1 prevented replication-associated DNA damage in Emx1-progenitors which otherwise resulted in profound tissue ablation. Importantly, disrupted neurogenesis in TopBP1-depleted tissues was substantially rescued by p53- but not ATM-inactivation. Our data establish that TopBP1 is essential for preventing replication-associated DNA strand breaks, but is not essential per se for DNA replication. Thus, TopBP1 is crucial for maintaining genome integrity in the early progenitors that drive neurogenesis. PMID:22522401

  8. Angiotensin II type 1 receptor blockade suppresses light-induced neural damage in the mouse retina.

    PubMed

    Narimatsu, Toshio; Ozawa, Yoko; Miyake, Seiji; Nagai, Norihiro; Tsubota, Kazuo

    2014-06-01

    Exposure to light contributes to the development and progression of retinal degenerative diseases. However, the mechanisms underlying light-induced tissue damage are not fully understood. Here, we examined the role of angiotensin II type 1 receptor (AT1R) signaling, which is part of the renin-angiotensin system, in light-induced retinal damage. Light-exposed Balb/c mice that were treated with the AT1R blockers (angiotensin II receptor blockers; ARBs) valsartan, losartan, and candesartan before and after the light exposure exhibited attenuated visual function impairment, compared to vehicle-treated mice. This effect was dose-dependent and observed across the ARB class of inhibitors. Further evaluation of valsartan showed that it suppressed a number of light-induced retinal effects, including thinning of the photoreceptor cell layer caused by apoptosis, shortening of the photoreceptor cell outer segment, and increased levels of reactive oxygen species (ROS). The role of ROS in retinal pathogenesis was investigated further using the antioxidant N-acetyl-l-cysteine (NAC). Treatment of light-exposed mice with NAC before the light exposure suppressed the visual function impairment and photoreceptor cell histological changes due to apoptosis. Moreover, treatment with valsartan or NAC suppressed the induction of c-fos (a component of the AP-1 transcription factor) and the upregulation of fasl (a proapoptotic molecule whose transcript is regulated downstream of AP-1). Our results suggest that AT1R signaling mediates light-induced apoptosis, by increasing the levels of ROS and proapoptotic molecules in the retina. Thus, AT1R blockade may represent a new therapeutic approach for preventing light-induced retinal neural tissue damage. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Structural Damage Identification Based on Rough Sets and Artificial Neural Network

    PubMed Central

    Liu, Chengyin; Wu, Xiang; Wu, Ning; Liu, Chunyu

    2014-01-01

    This paper investigates potential applications of the rough sets (RS) theory and artificial neural network (ANN) method on structural damage detection. An information entropy based discretization algorithm in RS is applied for dimension reduction of the original damage database obtained from finite element analysis (FEA). The proposed approach is tested with a 14-bay steel truss model for structural damage detection. The experimental results show that the damage features can be extracted efficiently from the combined utilization of RS and ANN methods even the volume of measurement data is enormous and with uncertainties. PMID:25013847

  10. Structural damage identification based on rough sets and artificial neural network.

    PubMed

    Liu, Chengyin; Wu, Xiang; Wu, Ning; Liu, Chunyu

    2014-01-01

    This paper investigates potential applications of the rough sets (RS) theory and artificial neural network (ANN) method on structural damage detection. An information entropy based discretization algorithm in RS is applied for dimension reduction of the original damage database obtained from finite element analysis (FEA). The proposed approach is tested with a 14-bay steel truss model for structural damage detection. The experimental results show that the damage features can be extracted efficiently from the combined utilization of RS and ANN methods even the volume of measurement data is enormous and with uncertainties.

  11. Could the endogenous opioid, morphine, prevent neural stem cell proliferation?

    PubMed

    Shoae-Hassani, Alireza; Sharif, Shiva; Tabatabaei, Seyed Abdolreza Mortazavi; Verdi, Javad

    2011-02-01

    In spite of widespread use of morphine to treat pain in patients, little is known about the effects of this opioid on many cells including stem cells. Moreover the studies have been shown controversial results about morphine effects on several kinds of cells. It is well-known that morphine exposure could decrease testosterone levels in brain and spinal cord. Morphine could increase the activity of 5α-redutase, the enzyme that converts testosterone into its respective 5α-redutase derivative dihydrotestosterone (DHT). Also it could increase aromatase activity that converts testosterone to estradiol. Proliferation of neural stem cells was observed in human stem cells after exposure to certain combinations of steroids especially testosterone. On the other hand DHT has negative effect in neural stem cell reproduction. Morphine induces over-expression of p53 gene that could mediate stem cell apoptosis. Therefore we hypothesized that due to reduction in the testosterone levels, elevation in the DHT levels, and over-expression of p53 gene, morphine could prevent neural stem cell proliferation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Epidemiology, prenatal management, and prevention of neural tube defects

    PubMed Central

    Salih, Mustafa A.; Murshid, Waleed R.; Seidahmed, Mohammed Z.

    2014-01-01

    This review article discusses the epidemiology, risk factors, prenatal screening, diagnosis, prevention potentials, and epidemiologic impact of neural tube defects (NTDs). The average incidence of NTDs is 1/1000 births, with a marked geographic variation. In the developed countries, the incidence of NTDs has fallen over recent decades. However, it still remains high in the less-developed countries in Latin America, Africa, the Middle East, Asia, and the Far East (>1 to 11/1000 births). Recognized NTDs risks include maternal diabetes, obesity, lower socioeconomic status, hyperthermia, and exposure to certain teratogens during the periconceptional period. Periconceptional folic acid supplementation decreased the prevalence of NTDs by 50-70%, and an obligatory folic acid fortification of food was adopted in several countries to reach women with unplanned pregnancies and those facing social deprivation. Prevention of NTDs can be accelerated if more, especially low income countries, adopted fortification of the staple food in their communities. PMID:25551106

  13. An application of a neural network to damage identification in CFRP laminates

    SciTech Connect

    Byon, O.I.; Fujikawa, Y.

    1994-12-31

    For the wider use of CFRP, the damage specially in the laminated direction such as transverse cracking, delamination or fiber-matrix debonding should be easily and economically searched and a reasonable non-destructive test method should be also fixed. This paper presents the application of the hierarchical neural network to the damage identification in the CFRP laminated beam and discusses the accuracy and the efficiency of this method. As a result, it is found that the neural network is the very useful and practical non-destructive method as the first approximation of damage identification in the CFRP laminated beam. Even the network is developed through the iterative calculation, this network is fitted for the field measuring because the damage can be identified by the simpler operations of summations and multiplications.

  14. NBQX and TCP prevent soman-induced hippocampal damage

    SciTech Connect

    Lallement, G.; Carpentier, P.; Pernot-Marino, I.; Baubichon, D.; Blanchet, G.

    1993-05-13

    In a previous investigation we demonstrated that the measurement of w3 (peripheral-type benzodiazepine) binding site densities could be of widespread applicability in the localization and quantification of soman-induced damage in the central nervous system. We thus used this marker to assess, in mouse hippocampus, the neuroprotective activity against soman-induced brain damage of NBQX and TCP which are respective antagonists of non-NMDA and NMDA glutamatergic receptors. Injection of NBQX at 20 or 40 mg/kg 5 min prior to soman totally prevented the neuronal damage. Comparatively, TCP had neuroprotective efficacy when administered at l mg/kg 5 min prior to soman followed by a reinjection 1 hour after. These results demonstrate that both NBQX and TCP afford a satisfactory neuroprotection against soman-induced brain damage. Since it is known that the neuropathology due to soman is closely seizure-related, it is likely that the neuroprotective activities of NBQX and TCP are related to the respective roles of non-NMDA and NMDA receptors in the onset and maintenance of soman-induced seizures.

  15. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    ERIC Educational Resources Information Center

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  16. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    ERIC Educational Resources Information Center

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  17. Alternative Interventions to Prevent Oxidative Damage following Ischemia/Reperfusion

    PubMed Central

    Rodríguez-Lara, Simón Quetzalcoatl; Ramírez-Lizardo, Ernesto Javier; Totsuka-Sutto, Sylvia Elena; Castillo-Romero, Araceli; García-Cobián, Teresa Arcelia

    2016-01-01

    Ischemia/reperfusion (I/R) lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process and describe some pharmacological options that may target oxidative stress-states. PMID:28116037

  18. Devices prevent ice damage to trusses of semi

    SciTech Connect

    Marthinsen, A.

    1985-04-01

    Much exploration drilling is done in subarctic waters around the world, and this will be important in the future. Special demands will be made on the drilling structures to enable them to withstand collisions with drifting ice. A Newfoundland Certificate of Fitness, for example, says a vessel must be able to tolerate collision with the largest iceberg that can be undetectable by radar, with out the danger of platform collapse. The iceberg in this case is defined as having a weight of 5000 tons and a drifting velocity of 2 meters/second. Devices to prevent ice damage to the trusses of semisubmersibles are discussed.

  19. Regulation of endogenous neural stem/progenitor cells for neural repair—factors that promote neurogenesis and gliogenesis in the normal and damaged brain

    PubMed Central

    Christie, Kimberly J.; Turnley, Ann M.

    2012-01-01

    Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation. PMID:23346046

  20. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage

    ERIC Educational Resources Information Center

    Kleim, Jeffrey A.; Jones, Theresa A.

    2008-01-01

    Purpose: This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. Method: Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the…

  1. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage

    ERIC Educational Resources Information Center

    Kleim, Jeffrey A.; Jones, Theresa A.

    2008-01-01

    Purpose: This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. Method: Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the…

  2. Bee Products Prevent Agrichemical-Induced Oxidative Damage in Fish

    PubMed Central

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; Santos da Rosa, João Gabriel; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L−1 of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased. PMID:24098336

  3. Hydrogen prevents corneal endothelial damage in phacoemulsification cataract surgery

    PubMed Central

    Igarashi, Tsutomu; Ohsawa, Ikuroh; Kobayashi, Maika; Igarashi, Toru; Suzuki, Hisaharu; Iketani, Masumi; Takahashi, Hiroshi

    2016-01-01

    In phacoemulsification, ultrasound induces hydroxyl radical (·OH) formation, damaging corneal endothelium. Whether H2 can prevent such oxidative damage in phacoemulsification was examined by in vitro and in vivo studies. H2 was dissolved in a commercial irrigating solution. The effects of H2 against ·OH generation were first confirmed in vitro by electron-spin resonance (ESR) and hydroxyphenyl fluorescein (HPF). ESR showed a significantly decreased signal magnitude, and fluorescence intensity by oxidized HPF was significantly less in the H2-dissolved solution. The effects of H2 in phacoemulsification were evaluated in rabbits, comparing H2-dissolved and control solutions. Five hours after the procedure, the whole cornea was excised and subjected to image analysis for corneal edema, real-time semiquantitative PCR (qPCR) for heme oxygenase (HO)-1, catalase (CAT), superoxide dismutase 1 (SOD1), and SOD2 mRNA, and immunohistochemistry. Corneal edema was significantly less and the increases in anti-oxidative HO-1, CAT and SOD2 mRNA expressions were significantly suppressed in the H2 group. In addition, corneal endothelial cell expressions of two oxidative stress markers, 4-HNE and 8-OHdG, were significantly lower in the H2 group. In conclusion, H2 dissolved in the ocular irrigating solution protected corneal endothelial cells from phacoemulsification-induced oxidative stress and damage. PMID:27498755

  4. Bee products prevent agrichemical-induced oxidative damage in fish.

    PubMed

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; da Rosa, João Gabriel Santos; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L(-1) of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased.

  5. Prevention of Neural Tube Defects. ARC Q&A #101-45.

    ERIC Educational Resources Information Center

    Arc, Arlington, TX.

    This fact sheet uses a question-and-answer format to summarize issues related to the prevention of neural tube defects. Questions and answers address the following topics: what neural tube defects are and the most common types (spina bifida and anencephaly); occurrence of neural tube defects during the first month of pregnancy; the frequency of…

  6. Prevention of Neural Tube Defects. ARC Q&A #101-45.

    ERIC Educational Resources Information Center

    Arc, Arlington, TX.

    This fact sheet uses a question-and-answer format to summarize issues related to the prevention of neural tube defects. Questions and answers address the following topics: what neural tube defects are and the most common types (spina bifida and anencephaly); occurrence of neural tube defects during the first month of pregnancy; the frequency of…

  7. Neural network approach to damage detection in a building from ambient vibration measurements

    NASA Astrophysics Data System (ADS)

    Nakamura, Mitsuru; Masri, Sami F.; Chassiakos, A. G.; Caughey, T. K.

    1998-04-01

    A neural network-based approach is presented for the detection of changes in the characteristics of structure- unknown systems. The approach relies on the use of vibration measurements from a `healthy' system to train a neural network for identification purposes. Subsequently, the trained network is fed comparable vibration measurements from the same structure under different episodes of response in order to monitor the health of the structure. It is shown, through simulation studies with linear as well as nonlinear models typically encountered in the applied mechanics field, that the proposed damage detection methodology is capable of detecting relatively small changes in the structural parameters. The methodology is applied to actual data obtained from ambient vibration measurements on a steel building structure, which was damaged under strong seismic motion during the Hyogo-Ken Nanbu Earthquake of January 17, 1995. The measurements were done before and after repairs to the damaged frame were made. A neural network is trained with data after the repairs, which represents `healthy' condition of the building. The trained network, which is subsequently fed data before the repairs, successfully identified the difference between damaged story and undamaged story. Through this study, it is shown that the proposed approach has the potential of being a practical tool for damage detection methodology, which leads to smart civil structures.

  8. DNA damage during glycation of lysine by methylglyoxal: assessment of vitamins in preventing damage.

    PubMed

    Suji, G; Sivakami, S

    2007-11-01

    Amino acids react with methylglyoxal to form advanced glycation end products. This reaction is known to produce free radicals. In this study, cleavage to plasmid DNA was induced by the glycation of lysine with methylglyoxal in the presence of iron(III). This system was found to produce superoxide as well as hydroxyl radicals. The abilities of various vitamins to prevent damage to plasmid DNA were evaluated. Pyridoxal-5-phosphate showed maximum protection, while pyridoxamine showed no protection. The protective abilities could be directly correlated to inhibition of production of hydroxyl and superoxide radicals. Pyridoxal-5-phosphate exhibited low radical scavenging ability as evaluated by its TEAC, but showed maximum protection probably by interfering in free radical production. Pyridoxamine did not inhibit free radical production. Thiamine and thiamine pyrophosphate, both showed protective effects albeit to different extents. Tetrahydrofolic acid showed better antioxidant activity than folic acid but was found to damage DNA by itself probably by superoxide generation.

  9. Human neural tube defects: genetic causes and prevention.

    PubMed

    De Marco, Patrizia; Merello, Elisa; Cama, Armando; Kibar, Zoha; Capra, Valeria

    2011-01-01

    Neural tube defects (NTDs) are severe congenital malformations affecting 1-2 in 1,000 live births, whose etiology is multifactorial, involving environmental and genetic factors. NTDs arise as consequence of the failure of fusion of the neural tube early during embryogenesis. NTDs' pathogenesis has been linked to genes involved in folate metabolism, consistent with an epidemiologic evidence that 70% of NTDs can be prevented by maternal periconceptional supplementation. However, polymorphisms in such genes are not linked in all populations, suggesting that other genetic factors and environmental factors could be involved. Animal models have provided crucial mechanistic information and possible candidate genes to explain susceptibility to NTDs. A crucial role has been assigned to the planar cell polarity (PCP) pathway, a highly conserved, non-canonical Wnt-frizzled-dishevelled signaling cascade that plays a key role in establishing and maintaining polarity in the plane of the epithelium and in the process of convergent extension during gastrulation and neurulation in vertebrates. The Loop-tail (Lp) mouse that develops craniorachischisis carry missense mutations in the PCP core gene Vangl2, that is the mammalian homolog of the Drosophila Strabismus/Van gogh (Stbm/Vang). The presence of mutations in human VANGL1 and VANGL2 genes encourages us to extend the investigation to other PCP genes that, with VANGL, play an essential role in neurulation during development.

  10. Damage Identification for Large Span Structure Based on Multiscale Inputs to Artificial Neural Networks

    PubMed Central

    Teng, Jun; Cui, Yan

    2014-01-01

    In structural health monitoring system, little research on the damage identification from different types of sensors applied to large span structure has been done in the field. In fact, it is significant to estimate the whole structural safety if the multitype sensors or multiscale measurements are used in application of structural health monitoring and the damage identification for large span structure. A methodology to combine the local and global measurements in noisy environments based on artificial neural network is proposed in this paper. For a real large span structure, the capacity of the methodology is validated, including the decision on damage placement, the discussions on the number of the sensors, and the optimal parameters for artificial neural networks. Furthermore, the noisy environments in different levels are simulated to demonstrate the robustness and effectiveness of the proposed approach. PMID:24977207

  11. 49 CFR 198.35 - Grants conditioned on adoption of one-call damage prevention program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... prevention program. 198.35 Section 198.35 Transportation Other Regulations Relating to Transportation... Prevention Program § 198.35 Grants conditioned on adoption of one-call damage prevention program. In... considers whether a State has adopted or is seeking to adopt a one-call damage prevention program in...

  12. 49 CFR 198.35 - Grants conditioned on adoption of one-call damage prevention program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... prevention program. 198.35 Section 198.35 Transportation Other Regulations Relating to Transportation... Prevention Program § 198.35 Grants conditioned on adoption of one-call damage prevention program. In... considers whether a State has adopted or is seeking to adopt a one-call damage prevention program in...

  13. 49 CFR 198.35 - Grants conditioned on adoption of one-call damage prevention program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... prevention program. 198.35 Section 198.35 Transportation Other Regulations Relating to Transportation... Prevention Program § 198.35 Grants conditioned on adoption of one-call damage prevention program. In... considers whether a State has adopted or is seeking to adopt a one-call damage prevention program...

  14. Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma

    PubMed Central

    Howell, Gareth R.; Soto, Ileana; Zhu, Xianjun; Ryan, Margaret; Macalinao, Danilo G.; Sousa, Gregory L.; Caddle, Lura B.; MacNicoll, Katharine H.; Barbay, Jessica M.; Porciatti, Vittorio; Anderson, Michael G.; Smith, Richard S.; Clark, Abbot F.; Libby, Richard T.; John, Simon W.M.

    2012-01-01

    Glaucoma is a common ocular disorder that is a leading cause of blindness worldwide. It is characterized by the dysfunction and loss of retinal ganglion cells (RGCs). Although many studies have implicated various molecules in glaucoma, no mechanism has been shown to be responsible for the earliest detectable damage to RGCs and their axons in the optic nerve. Here, we show that the leukocyte transendothelial migration pathway is activated in the optic nerve head at the earliest stages of disease in an inherited mouse model of glaucoma. This resulted in proinflammatory monocytes entering the optic nerve prior to detectable neuronal damage. A 1-time x-ray treatment prevented monocyte entry and subsequent glaucomatous damage. A single x-ray treatment of an individual eye in young mice provided that eye with long-term protection from glaucoma but had no effect on the contralateral eye. Localized radiation treatment prevented detectable neuronal damage and dysfunction in treated eyes, despite the continued presence of other glaucomatous stresses and signaling pathways. Injection of endothelin-2, a damaging mediator produced by the monocytes, into irradiated eyes, combined with the other glaucomatous stresses, restored neural damage with a topography characteristic of glaucoma. Together, these data support a model of glaucomatous damage involving monocyte entry into the optic nerve. PMID:22426214

  15. Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma.

    PubMed

    Howell, Gareth R; Soto, Ileana; Zhu, Xianjun; Ryan, Margaret; Macalinao, Danilo G; Sousa, Gregory L; Caddle, Lura B; MacNicoll, Katharine H; Barbay, Jessica M; Porciatti, Vittorio; Anderson, Michael G; Smith, Richard S; Clark, Abbot F; Libby, Richard T; John, Simon W M

    2012-04-01

    Glaucoma is a common ocular disorder that is a leading cause of blindness worldwide. It is characterized by the dysfunction and loss of retinal ganglion cells (RGCs). Although many studies have implicated various molecules in glaucoma, no mechanism has been shown to be responsible for the earliest detectable damage to RGCs and their axons in the optic nerve. Here, we show that the leukocyte transendothelial migration pathway is activated in the optic nerve head at the earliest stages of disease in an inherited mouse model of glaucoma. This resulted in proinflammatory monocytes entering the optic nerve prior to detectable neuronal damage. A 1-time x-ray treatment prevented monocyte entry and subsequent glaucomatous damage. A single x-ray treatment of an individual eye in young mice provided that eye with long-term protection from glaucoma but had no effect on the contralateral eye. Localized radiation treatment prevented detectable neuronal damage and dysfunction in treated eyes, despite the continued presence of other glaucomatous stresses and signaling pathways. Injection of endothelin-2, a damaging mediator produced by the monocytes, into irradiated eyes, combined with the other glaucomatous stresses, restored neural damage with a topography characteristic of glaucoma. Together, these data support a model of glaucomatous damage involving monocyte entry into the optic nerve.

  16. Prevention of oxidative DNA damage in rats by brussels sprouts.

    PubMed

    Deng, X S; Tuo, J; Poulsen, H E; Loft, S

    1998-03-01

    The alleged cancer preventive effects of cruciferous vegetables could be related to protection from mutagenic oxidative DNA damage. We have studied the effects of Brussels sprouts, some non-cruciferous vegetables and isolated glucosinolates on spontaneous and induced oxidative DNA damage in terms of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in groups of 6-8 male Wistar rats. Excess oxidative DNA damage was induced by 2-nitropropane (2-NP 100 mg/kg). Four days oral administration of 3 g of cooked Brussels sprouts homogenate reduced the spontaneous urinary 8-oxodG excretion by 31% (p<0.05) whereas raw sprouts, beans and endive (1:1), isolated indolyl glucosinolates and breakdown products had no significant effect. An aqueous extract of cooked Brussels sprouts (corresponding to 6.7 g vegetable per day for 4 days) decreased the spontaneous 8-oxodG excretion from 92 +/- 12 to 52 +/- 15 pmol/24 h (p<0.05). After 2-NP administration the 8-oxodG excretion was increased to 132 +/- 26 pmol/24 h (p<0.05) whereas pretreatment with the sprouts extract reduced this to 102 +/- 30 pmol/24 h (p<0.05). The spontaneous level of 8-oxodG in nuclear DNA from liver and bone marrow was not significantly affected by the sprouts extract whereas the level decreased by 27% in the kidney (p<0.05). In the liver 2-NP increased the 8-oxodG levels in nuclear DNA 8.7 and 3.8 times (p<0.05) 6 and 24 h after dose, respectively. The sprouts extract reduced this increase by 57% (p<0.05) at 6 h whereas there was no significant effect at 24 h. In the kidneys 2-NP increased the 8-oxodG levels 2.2 and 1.2 times (p<0.05) 6 and 24 h after dose, respectively. Pretreatment with the sprouts extract abolished these increases (p<0.05). Similarly, in the bone marrow the extract protected completely (p<0.05) against a 4.9-fold 2-NP induced increase (p<0.05) in the 8-oxodG level. These findings demonstrate that cooked Brussels sprouts contain bioactive substance(s) with a potential for reducing the physiological

  17. Cognitive Flexibility through Metastable Neural Dynamics Is Disrupted by Damage to the Structural Connectome

    PubMed Central

    Hellyer, Peter J.; Scott, Gregory; Shanahan, Murray; Sharp, David J.

    2015-01-01

    Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome. PMID:26085630

  18. Cognitive Flexibility through Metastable Neural Dynamics Is Disrupted by Damage to the Structural Connectome.

    PubMed

    Hellyer, Peter J; Scott, Gregory; Shanahan, Murray; Sharp, David J; Leech, Robert

    2015-06-17

    Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome.

  19. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Gabbouj, Moncef; Inman, Daniel J.

    2017-02-01

    Structural health monitoring (SHM) and vibration-based structural damage detection have been a continuous interest for civil, mechanical and aerospace engineers over the decades. Early and meticulous damage detection has always been one of the principal objectives of SHM applications. The performance of a classical damage detection system predominantly depends on the choice of the features and the classifier. While the fixed and hand-crafted features may either be a sub-optimal choice for a particular structure or fail to achieve the same level of performance on another structure, they usually require a large computation power which may hinder their usage for real-time structural damage detection. This paper presents a novel, fast and accurate structural damage detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both feature extraction and classification blocks into a single and compact learning body. The proposed method performs vibration-based damage detection and localization of the damage in real-time. The advantage of this approach is its ability to extract optimal damage-sensitive features automatically from the raw acceleration signals. Large-scale experiments conducted on a grandstand simulator revealed an outstanding performance and verified the computational efficiency of the proposed real-time damage detection method.

  20. Detection, location, and quantification of structural damage by neural-net-processed moiré profilometry

    NASA Astrophysics Data System (ADS)

    Grossman, Barry G.; Gonzalez, Frank S.; Blatt, Joel H.; Hooker, Jeffery A.

    1992-03-01

    The development of efficient high speed techniques to recognize, locate, and quantify damage is vitally important for successful automated inspection systems such as ones used for the inspection of undersea pipelines. Two critical problems must be solved to achieve these goals: the reduction of nonuseful information present in the video image and automatic recognition and quantification of extent and location of damage. Artificial neural network processed moire profilometry appears to be a promising technique to accomplish this. Real time video moire techniques have been developed which clearly distinguish damaged and undamaged areas on structures, thus reducing the amount of extraneous information input into an inspection system. Artificial neural networks have demonstrated advantages for image processing, since they can learn the desired response to a given input and are inherently fast when implemented in hardware due to their parallel computing architecture. Video moire images of pipes with dents of different depths were used to train a neural network, with the desired output being the location and severity of the damage. The system was then successfully tested with a second series of moire images. The techniques employed and the results obtained are discussed.

  1. 49 CFR 198.35 - Grants conditioned on adoption of one-call damage prevention program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Grants conditioned on adoption of one-call damage...) PIPELINE SAFETY REGULATIONS FOR GRANTS TO AID STATE PIPELINE SAFETY PROGRAMS Adoption of One-Call Damage Prevention Program § 198.35 Grants conditioned on adoption of one-call damage prevention program. In...

  2. Lamb-wave-based damage detection using wave signal demodulation and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ju, Feng; Guo, Ningqun; Huang, Weimin; Subramanian, Saravanan

    2010-03-01

    The interaction between Lamb wave and damage will modify the response wave signal from which information related to damage can be extracted for automated damage detection. However, the interpretation of the response wave signal is not easy due to the complex nature of the wave-damage interaction. This paper discusses a damage detection algorithm based on wave signal demodulation and artificial neural networks (ANNs). The response wave signal is considered as a low-frequency signal modulated by a high-frequency carrier signal. After baseline subtraction, frequency domain convolution and filtering, the original signal is demodulated and transformed into a new simplified signal related to the energy change due to damage. Subsequently feature extraction is carried out by finding the local maxima in the new signal and the obtained peak values and locations are used as inputs into the ANNs for damage characterization. The validity of this damage detection algorithm is then verified using a finite element (FE) model of a composite laminate with notch defects. The response wave signals of different notch depths and locations are acquired from the simulations and used as the training and testing samples. Finally the assessment of the network's accuracy and generalization ability is performed and the result is satisfactory.

  3. Lamb-wave-based damage detection using wave signal demodulation and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ju, Feng; Guo, Ningqun; Huang, Weimin; Subramanian, Saravanan

    2009-12-01

    The interaction between Lamb wave and damage will modify the response wave signal from which information related to damage can be extracted for automated damage detection. However, the interpretation of the response wave signal is not easy due to the complex nature of the wave-damage interaction. This paper discusses a damage detection algorithm based on wave signal demodulation and artificial neural networks (ANNs). The response wave signal is considered as a low-frequency signal modulated by a high-frequency carrier signal. After baseline subtraction, frequency domain convolution and filtering, the original signal is demodulated and transformed into a new simplified signal related to the energy change due to damage. Subsequently feature extraction is carried out by finding the local maxima in the new signal and the obtained peak values and locations are used as inputs into the ANNs for damage characterization. The validity of this damage detection algorithm is then verified using a finite element (FE) model of a composite laminate with notch defects. The response wave signals of different notch depths and locations are acquired from the simulations and used as the training and testing samples. Finally the assessment of the network's accuracy and generalization ability is performed and the result is satisfactory.

  4. Offline and online detection of damage using autoregressive models and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Omenzetter, Piotr; de Lautour, Oliver R.

    2007-04-01

    Developed to study long, regularly sampled streams of data, time series analysis methods are being increasingly investigated for the use of Structural Health Monitoring. In this research, Autoregressive (AR) models are used in conjunction with Artificial Neural Networks (ANNs) for damage detection, localisation and severity assessment. In the first reported experimental exercise, AR models were used offline to fit the acceleration time histories of a 3-storey test structure in undamaged and various damaged states when excited by earthquake motion simulated on a shake table. Damage was introduced into the structure by replacing the columns with those of a thinner thickness. Analytical models of the structure in both damaged and undamaged states were also developed and updated using experimental data in order to determine structural stiffness. The coefficients of AR models were used as damage sensitive features and input into an ANN to build a relationship between them and the remaining structural stiffness. In the second, analytical exercise, a system with gradually progressing damage was numerically simulated and acceleration AR models with exogenous inputs were identified recursively. A trained ANN was then required to trace the structural stiffness online. The results for the offline and online approach showed the efficiency of using AR coefficient as damage sensitive features and good performance of the ANNs for damage detection, localization and quantification.

  5. Benefits of invasion prevention: Effect of time lags, spread rates, and damage persistence

    Treesearch

    Rebecca S. Epanchin-Niell; Andrew M. Liebhold

    2015-01-01

    Quantifying economic damages caused by invasive species is crucial for cost-benefit analyses of biosecurity measures. Most studies focus on short-term damage estimates, but evaluating exclusion or prevention measures requires estimates of total anticipated damages from the time of establishment onward. The magnitude of such damages critically depends on the timing of...

  6. Remote sensing-based neural network mapping of tsunami damage in Aceh, Indonesia.

    PubMed

    Aitkenhead, Matthew J; Lumsdon, Parivash; Miller, David R

    2007-09-01

    In addition to the loss of human life, the tsunami event of 26 December 2004 caused extensive damage to coastal areas. The scale of the disaster was such that remote sensing may be the only way to determine its effects on the landscape. This paper presents the results of a neural network-based mapping of part of the region of Aceh, Sumatra. Before-and-after satellite imagery, combined with a novel neural network methodology, enabled a characterisation of landscape change. The neural network technique used a threshold of acceptance for identification, in combination with a bootstrapped identification method for identifying problem pixels. Map analysis allowed identification of urban areas that were inaccessible by road, and which aid agencies could therefore only reach by air or sea. The methods used provide a rapid and effective mapping ability and would be a useful tool for aid agencies, insurance underwriters and environmental monitoring.

  7. A Neural Network/Acoustic Emission Analysis of Impact Damaged Graphite/Epoxy Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Hill, Erik v. K.; Workman, Gary L.; Russell, Samuel S.

    1995-01-01

    Acoustic emission (AE) signal analysis has been used to measure the effects of impact damage on burst pressure in 5.75 inch diameter, inert propellant filled, filament wound pressure vessels. The AE data were collected from fifteen graphite/epoxy pressure vessels featuring five damage states and three resin systems. A burst pressure prediction model was developed by correlating the AE amplitude (frequency) distribution, generated during the first pressure ramp to 800 psig (approximately 25% of the average expected burst pressure for an undamaged vessel) to known burst pressures using a four layered back propagation neural network. The neural network, trained on three vessels from each resin system, was able to predict burst pressures with a worst case error of 5.7% for the entire fifteen bottle set.

  8. Application of artificial neural network for micro-crack and damage evaluation of bone.

    PubMed

    Hasan, M S; Faruque, A; Burr, D B

    1997-01-01

    This paper presents the reasoning and adaptive learning method of artificial neural network (ANN) for micro-crack assessment and damage accumulation due to stiffness loss of dog bone. The importance of using the alternative approach of ANN is that it avoids the complexity of modeling problems, overrides the consideration of simplified assumptions and can be developed directly from experimental data using adaptive learning mechanisms. The proposed artificial neural network model provides a relationship between microdamage accumulation, stiffness loss and number of fatigue cycles (Nf) to failure from an experimental study where stiffness loss and crack area (Cr.Ar., mm2/mm2) are evaluated. This preliminary study using ANN for microdamage evaluation shows that ANN accurately predicts the amount of damage accumulation from stiffness loss.

  9. Cavitation-Induced Structural and Neural Damage in Live Brain Tissue Slices: Relevance to TBI

    DTIC Science & Technology

    2014-10-14

    0704-0188 3. DATES COVERED (From - To) - UU UU UU UU 14-10-2014 Approved for public release; distribution is unlimited. Quad: Cavitation -Induced...AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Cavitation ; Neurons, Traumatic brain injury...University of Florida Office of Engineering Research 339 Weil Hall Gainesville, FL 32611 -6550 ABSTRACT Quad: Cavitation -Induced Structural and Neural Damage

  10. Neural regeneration dynamics of Xenopus laevis olfactory epithelium after zinc sulfate-induced damage.

    PubMed

    Frontera, J L; Raices, M; Cervino, A S; Pozzi, A G; Paz, D A

    2016-11-01

    Neural stem cells (NSCs) of the olfactory epithelium (OE) are responsible for tissue maintenance and the neural regeneration after severe damage of the tissue. In the normal OE, NSCs are located in the basal layer, olfactory receptor neurons (ORNs) mainly in the middle layer, and sustentacular (SUS) cells in the most apical olfactory layer. In this work, we induced severe damage of the OE through treatment with a zinc sulfate (ZnSO4) solution directly in the medium, which resulted in the loss of ORNs and SUS cells, but retention of the basal layer. During recovery following injury, the OE exhibited increased proliferation of NSCs and rapid neural regeneration. After 24h of recovery, new ORNs and SUS cells were observed. Normal morphology and olfactory function were reached after 168h (7 days) of recovery after ZnSO4 treatment. Taken together, these data support the hypothesis that NSCs in the basal layer activate after OE injury and that these are sufficient for complete neural regeneration and olfactory function restoration. Our analysis provides histological and functional insights into the dynamics between olfactory neurogenesis and the neuronal integration into the neuronal circuitry of the olfactory bulb that restores the function of the olfactory system.

  11. Alphavirus Encephalomyelitis: Mechanisms and Approaches to Prevention of Neuronal Damage.

    PubMed

    Griffin, Diane E

    2016-07-01

    Mosquito-borne viruses are important causes of death and long-term neurologic disability due to encephalomyelitis. Studies of mice infected with the alphavirus Sindbis virus have shown that outcome is dependent on the age and genetic background of the mouse and virulence of the infecting virus. Age-dependent susceptibility reflects the acquisition by neurons of resistance to virus replication and virus-induced cell death with maturation. In mature mice, the populations of neurons most susceptible to infection are in the hippocampus and anterior horn of the spinal cord. Hippocampal infection leads to long-term memory deficits in mice that survive, while motor neuron infection can lead to paralysis and death. Neuronal death is immune-mediated, rather than a direct consequence of virus infection, and associated with entry and differentiation of pathogenic T helper 17 cells in the nervous system. To modulate glutamate excitotoxicity, mice were treated with an N-methyl-D-aspartate receptor antagonist, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonists or a glutamine antagonist. The N-methyl-D-aspartate receptor antagonist MK-801 protected hippocampal neurons but not motor neurons, and mice still became paralyzed and died. α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonists GYKI-52466 and talampanel protected both hippocampal and motor neurons and prevented paralysis and death. Glutamine antagonist 6-diazo-5-l-norleucine protected hippocampal neurons and improved memory generation in mice surviving infection with an avirulent virus. Surprisingly, in all cases protection was associated with inhibition of the antiviral immune response, reduced entry of inflammatory cells into the central nervous system, and delayed virus clearance, emphasizing the importance of treatment approaches that include prevention of immunopathologic damage.

  12. Inositol, neural tube closure and the prevention of neural tube defects

    PubMed Central

    Leung, Kit‐Yi; Copp, Andrew J.

    2017-01-01

    Susceptibility to neural tube defects (NTDs), such as anencephaly and spina bifida is influenced by genetic and environmental factors including maternal nutrition. Maternal periconceptional supplementation with folic acid significantly reduces the risk of an NTD‐affected pregnancy, but does not prevent all NTDs, and “folic acid non‐responsive” NTDs continue to occur. Similarly, among mouse models of NTDs, some are responsive to folic acid but others are not. Among nutritional factors, inositol deficiency causes cranial NTDs in mice while supplemental inositol prevents spinal and cranial NTDs in the curly tail (Grhl3 hypomorph) mouse, rodent models of hyperglycemia or induced diabetes, and in a folate‐deficiency induced NTD model. NTDs also occur in mice lacking expression of certain inositol kinases. Inositol‐containing phospholipids (phosphoinositides) and soluble inositol phosphates mediate a range of functions, including intracellular signaling, interaction with cytoskeletal proteins, and regulation of membrane identity in trafficking and cell division. Myo‐inositol has been trialed in humans for a range of conditions and appears safe for use in human pregnancy. In pilot studies in Italy and the United Kingdom, women took inositol together with folic acid preconceptionally, after one or more previous NTD‐affected pregnancies. In nonrandomized cohorts and a randomized double‐blind study in the United Kingdom, no recurrent NTDs were observed among 52 pregnancies reported to date. Larger‐scale fully powered trials are needed to determine whether supplementation with inositol and folic acid would more effectively prevent NTDs than folic acid alone. Birth Defects Research 109:68–80, 2017. © 2016 The Authors Birth Defects Research Published by Wiley Periodicals, Inc. PMID:27324558

  13. Structural Health Monitoring and Impact Detection Using Neural Networks for Damage Characterization

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.

    2006-01-01

    Detection of damage due to foreign object impact is an important factor in the development of new aerospace vehicles. Acoustic waves generated on impact can be detected using a set of piezoelectric transducers, and the location of impact can be determined by triangulation based on the differences in the arrival time of the waves at each of the sensors. These sensors generate electrical signals in response to mechanical motion resulting from the impact as well as from natural vibrations. Due to electrical noise and mechanical vibration, accurately determining these time differentials can be challenging, and even small measurement inaccuracies can lead to significant errors in the computed damage location. Wavelet transforms are used to analyze the signals at multiple levels of detail, allowing the signals resulting from the impact to be isolated from ambient electromechanical noise. Data extracted from these transformed signals are input to an artificial neural network to aid in identifying the moment of impact from the transformed signals. By distinguishing which of the signal components are resultant from the impact and which are characteristic of noise and normal aerodynamic loads, the time differentials as well as the location of damage can be accurately assessed. The combination of wavelet transformations and neural network processing results in an efficient and accurate approach for passive in-flight detection of foreign object damage.

  14. Multi-Level Interval Estimation for Locating damage in Structures by Using Artificial Neural Networks

    SciTech Connect

    Pan Danguang; Gao Yanhua; Song Junlei

    2010-05-21

    A new analysis technique, called multi-level interval estimation method, is developed for locating damage in structures. In this method, the artificial neural networks (ANN) analysis method is combined with the statistics theory to estimate the range of damage location. The ANN is multilayer perceptron trained by back-propagation. Natural frequencies and modal shape at a few selected points are used as input to identify the location and severity of damage. Considering the large-scale structures which have lots of elements, multi-level interval estimation method is developed to reduce the estimation range of damage location step-by-step. Every step, estimation range of damage location is obtained from the output of ANN by using the method of interval estimation. The next ANN training cases are selected from the estimation range after linear transform, and the output of new ANN estimation range of damage location will gained a reduced estimation range. Two numerical example analyses on 10-bar truss and 100-bar truss are presented to demonstrate the effectiveness of the proposed method.

  15. Detection and location of pipe damage by artificial-neural-net-processed moire error maps

    NASA Astrophysics Data System (ADS)

    Grossman, Barry G.; Gonzalez, Frank S.; Blatt, Joel H.; Cahall, Scott C.

    1993-05-01

    A novel automated inspection technique to recognize, locate, and quantify damage is developed. This technique is based on two already existing technologies: video moire metrology and artificial neural networks. Contour maps generated by video moire techniques provide an accurate description of surface structure that can then be automated by means of neutral networks. Artificial neural networks offer an attractive solution to the automated interpretation problem because they can generalize from the learned samples and provide an intelligent response for similar patterns having missing or noisy data. Two dimensional video moire images of pipes with dents of different depths, at several rotations, were used to train a multilayer feedforward neural network by the backpropagation algorithm. The backpropagation network is trained to recognize and classify the video moire images according to the dent's depth. Once trained, the network outputs give an indication of the probability that a dent has been found, a depth estimate, and the axial location of the center of the dent. This inspection technique has been demonstrated to be a powerful tool for the automatic location and quantification of structural damage, as illustrated using dented pipes.

  16. Consequences of ionizing radiation-induced damage in human neural stem cells.

    PubMed

    Acharya, Munjal M; Lan, Mary L; Kan, Vickie H; Patel, Neal H; Giedzinski, Erich; Tseng, Bertrand P; Limoli, Charles L

    2010-12-15

    Cranial irradiation remains a frontline treatment for brain cancer, but also leads to normal tissue damage. Although low-dose irradiation (≤10 Gy) causes minimal histopathologic change, it can elicit variable degrees of cognitive dysfunction that are associated with the depletion of neural stem cells. To decipher the mechanisms underlying radiation-induced stem cell dysfunction, human neural stem cells (hNSCs) subjected to clinically relevant irradiation (0-5 Gy) were analyzed for survival parameters, cell-cycle alterations, DNA damage and repair, and oxidative stress. hNSCs showed a marked sensitivity to low-dose irradiation that was in part due to elevated apoptosis and the inhibition of cell-cycle progression that manifested as a G2/M checkpoint delay. Efficient removal of DNA double-strand breaks was indicated by the disappearance of γ-H2AX nuclear foci. A dose-responsive and persistent increase in oxidative and nitrosative stress was found in irradiated hNSCs, possibly the result of a higher metabolic activity in the fraction of surviving cells. These data highlight the marked sensitivity of hNSCs to low-dose irradiation and suggest that long-lasting perturbations in the CNS microenvironment due to radiation-induced oxidative stress can compromise the functionality of neural stem cells.

  17. Acute damage threshold for infrared neural stimulation of the cochlea: functional and histological evaluation.

    PubMed

    Goyal, Vinay; Rajguru, Suhrud; Matic, Agnella I; Stock, Stuart R; Richter, Claus-Peter

    2012-11-01

    This article provides a mini review of the current state of infrared neural stimulation (INS), and new experimental results concerning INS damage thresholds. INS promises to be an attractive alternative for neural interfaces. With this method, one can attain spatially selective neural stimulation that is not possible with electrical stimulation. INS is based on the delivery of short laser pulses that result in a transient temperature increase in the tissue and depolarize the neurons. At a high stimulation rate and/or high pulse energy, the method bears the risk of thermal damage to the tissue from the instantaneous temperature increase or from potential accumulation of thermal energy. With the present study, we determined the injury thresholds in guinea pig cochleae for acute INS using functional measurements (compound action potentials) and histological evaluation. The selected laser parameters for INS were the wavelength (λ = 1,869 nm), the pulse duration (100 μs), the pulse repetition rate (250 Hz), and the radiant energy (0-127 μJ/pulse). For up to 5 hr of continuous irradiation at 250 Hz and at radiant energies up to 25 μJ/pulse, we did not observe any functional or histological damage in the cochlea. Functional loss was observed for energies above 25 μJ/pulse and the probability of injury to the target tissue resulting in functional loss increased with increasing radiant energy. Corresponding cochlear histology from control animals and animals exposed to 98 or 127 μJ/pulse at 250 Hz pulse repetition rate did not show a loss of spiral ganglion cells, hair cells, or other soft tissue structures of the organ of Corti. Light microscopy did not reveal any structural changes in the soft tissue either. Additionally, microcomputed tomography was used to visualize the placement of the optical fiber within the cochlea. Copyright © 2012 Wiley Periodicals, Inc.

  18. Nucleotide precursors prevent folic acid-resistant neural tube defects in the mouse.

    PubMed

    Leung, Kit-Yi; De Castro, Sandra C P; Savery, Dawn; Copp, Andrew J; Greene, Nicholas D E

    2013-09-01

    Closure of the neural tube during embryogenesis is a crucial step in development of the central nervous system. Failure of this process results in neural tube defects, including spina bifida and anencephaly, which are among the most common birth defects worldwide. Maternal use of folic acid supplements reduces risk of neural tube defects but a proportion of cases are not preventable. Folic acid is thought to act through folate one-carbon metabolism, which transfers one-carbon units for methylation reactions and nucleotide biosynthesis. Hence suboptimal performance of the intervening reactions could limit the efficacy of folic acid. We hypothesized that direct supplementation with nucleotides, downstream of folate metabolism, has the potential to support neural tube closure. Therefore, in a mouse model that exhibits folic acid-resistant neural tube defects, we tested the effect of specific combinations of pyrimidine and purine nucleotide precursors and observed a significant protective effect. Labelling in whole embryo culture showed that nucleotides are taken up by the neurulating embryo and incorporated into genomic DNA. Furthermore, the mitotic index was elevated in neural folds and hindgut of treated embryos, consistent with a proposed mechanism of neural tube defect prevention through stimulation of cellular proliferation. These findings may provide an impetus for future investigations of supplemental nucleotides as a means to prevent a greater proportion of human neural tube defects than can be achieved by folic acid alone.

  19. [Preventive measures against health damage due to chemicals in household products].

    PubMed

    Kaniwa, Masa-aki

    2010-01-01

    Chemicals in household products have been paid much attention as the main cause of health damage in consumers, such as allergic contact dermatitis. Preventive measures against health damage due to chemicals in fabrics, plastics and rubber products for household use, are reviewed, focusing on 1) the incidence of health damage due to household products, 2) causative product-chemical investigation, and 3) case studies on skin damage.

  20. Prevention of propeller foreign object damage - Theory and practice

    NASA Astrophysics Data System (ADS)

    Payne, C.; Vitale, D. J.

    Foreign object damage hazards to which ACV propellers are exposed, and the phenomena causing the damage, are discussed. Comparison of the effects of energy absorption in systems of hard, soft, smooth and rough particles impacting upon soft and hard propeller materials is made. Molded urethane strips were found to increase the life of the blades from 20 minutes between maintenance actions to nine hours between maintenance actions. Molded urethanes and sprayed or brushed urethanes are compared.

  1. Multiple damage identification on a wind turbine blade using a structural neural system

    NASA Astrophysics Data System (ADS)

    Kirikera, Goutham R.; Schulz, Mark J.; Sundaresan, Mannur J.

    2007-04-01

    A large number of sensors are required to perform real-time structural health monitoring (SHM) to detect acoustic emissions (AE) produced by damage growth on large complicated structures. This requires a large number of high sampling rate data acquisition channels to analyze high frequency signals. To overcome the cost and complexity of having such a large data acquisition system, a structural neural system (SNS) was developed. The SNS reduces the required number of data acquisition channels and predicts the location of damage within a sensor grid. The sensor grid uses interconnected sensor nodes to form continuous sensors. The combination of continuous sensors and the biomimetic parallel processing of the SNS tremendously reduce the complexity of SHM. A wave simulation algorithm (WSA) was developed to understand the flexural wave propagation in composite structures and to utilize the code for developing the SNS. Simulation of AE responses in a plate and comparison with experimental results are shown in the paper. The SNS was recently tested by a team of researchers from University of Cincinnati and North Carolina A&T State University during a quasi-static proof test of a 9 meter long wind turbine blade at the National Renewable Energy Laboratory (NREL) test facility in Golden, Colorado. Twelve piezoelectric sensor nodes were used to form four continuous sensors to monitor the condition of the blade during the test. The four continuous sensors are used as inputs to the SNS. There are only two analog output channels of the SNS, and these signals are digitized and analyzed in a computer to detect damage. In the test of the wind turbine blade, multiple damages were identified and later verified by sectioning of the blade. The results of damage identification using the SNS during this proof test will be shown in this paper. Overall, the SNS is very sensitive and can detect damage on complex structures with ribs, joints, and different materials, and the system

  2. N-Terminal Truncated UCH-L1 Prevents Parkinson's Disease Associated Damage

    PubMed Central

    Kim, Hee-Jung; Kim, Hyun Jung; Jeong, Jae-Eun; Baek, Jeong Yeob; Jeong, Jaeho; Kim, Sun; Kim, Young-Mee; Kim, Youhwa; Nam, Jin Han; Huh, Sue Hee; Seo, Jawon; Jin, Byung Kwan; Lee, Kong-Joo

    2014-01-01

    Ubiquitin C-terminal hydrolase-L1 (UCH-L1) has been proposed as one of the Parkinson's disease (PD) related genes, but the possible molecular connection between UCH-L1 and PD is not well understood. In this study, we discovered an N-terminal 11 amino acid truncated variant UCH-L1 that we called NT-UCH-L1, in mouse brain tissue as well as in NCI-H157 lung cancer and SH-SY5Y neuroblastoma cell lines. In vivo experiments and hydrogen-deuterium exchange (HDX) with tandem mass spectrometry (MS) studies showed that NT-UCH-L1 is readily aggregated and degraded, and has more flexible structure than UCH-L1. Post-translational modifications including monoubiquitination and disulfide crosslinking regulate the stability and cellular localization of NT-UCH-L1, as confirmed by mutational and proteomic studies. Stable expression of NT-UCH-L1 decreases cellular ROS levels and protects cells from H2O2, rotenone and CCCP-induced cell death. NT-UCH-L1-expressing transgenic mice are less susceptible to degeneration of nigrostriatal dopaminergic neurons seen in the MPTP mouse model of PD, in comparison to control animals. These results suggest that NT-UCH-L1 may have the potential to prevent neural damage in diseases like PD. PMID:24959670

  3. Population red blood cell folate concentrations for prevention of neural tube defects: bayesian model

    PubMed Central

    Devine, Owen; Hao, Ling; Dowling, Nicole F; Li, Song; Molloy, Anne M; Li, Zhu; Zhu, Jianghui; Berry, Robert J

    2014-01-01

    Objective To determine an optimal population red blood cell (RBC) folate concentration for the prevention of neural tube birth defects. Design Bayesian model. Setting Data from two population based studies in China. Participants 247 831 participants in a prospective community intervention project in China (1993-95) to prevent neural tube defects with 400 μg/day folic acid supplementation and 1194 participants in a population based randomized trial (2003-05) to evaluate the effect of folic acid supplementation on blood folate concentration among Chinese women of reproductive age. Intervention Folic acid supplementation (400 μg/day). Main outcome measures Estimated RBC folate concentration at time of neural tube closure (day 28 of gestation) and risk of neural tube defects. Results Risk of neural tube defects was high at the lowest estimated RBC folate concentrations (for example, 25.4 (95% uncertainty interval 20.8 to 31.2) neural tube defects per 10 000 births at 500 nmol/L) and decreased as estimated RBC folate concentration increased. Risk of neural tube defects was substantially attenuated at estimated RBC folate concentrations above about 1000 nmol/L (for example, 6 neural tube defects per 10 000 births at 1180 (1050 to 1340) nmol/L). The modeled dose-response relation was consistent with the existing literature. In addition, neural tube defect risk estimates developed using the proposed model and population level RBC information were consistent with the prevalence of neural tube defects in the US population before and after food fortification with folic acid. Conclusions A threshold for “optimal” population RBC folate concentration for the prevention of neural tube defects could be defined (for example, approximately 1000 nmol/L). Population based RBC folate concentrations, as a biomarker for risk of neural tube defects, can be used to facilitate evaluation of prevention programs as well as to identify subpopulations at elevated risk for a neural

  4. Histological assessment of thermal damage in the brain following infrared neural stimulation.

    PubMed

    Chernov, Mykyta Mikhailovich; Chen, Gang; Roe, Anna Wang

    2014-01-01

    Infrared neural stimulation (INS) is a novel technique for modulating neural function. Its advantages over electrical stimulation include high spatial specificity, lack of electrical artifact and contact-free stimulation. INS acts via a rapid, focal increase in temperature. However, in order to become a viable experimental and therapeutic tool, the safety of INS must be demonstrated. Our aim was to determine the upper limit for the radiant exposure of INS in the brain without causing damage, using an INS sequence previously shown to induce both behavioral and electrophysiological effects in rodents and non-human primates. We stimulated the brains of anesthetized rodents and two squirrel monkeys using an infrared laser, depositing radiant energies from 0.3 to 0.9 J/cm2 per pulse in 0.5 s-long 200 Hz trains. At the end of the experiment, the animals were euthanized, perfused and the brains processed using standard histological techniques. Radiant exposures greater than or equal to 0.4 J/cm2 resulted in identifiable lesions in brain sections. The lesions had a shape of a parabola and could further be subdivided into three concentric zones based on the type of damage observed. The thermal damage threshold following our INS paradigm was between 0.3 and 0.4 J/cm2 per pulse. This value is lower than the one found previously in peripheral nerve. The differences are likely due to the structure of the INS sequence itself, particularly the repetition rate. The results warrant further modeling and experimental work in order to delimit the INS parameter space that is both safe and effective. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Etiology, pathogenesis and prevention of neural tube defects.

    PubMed

    Padmanabhan, Rengasamy

    2006-06-01

    Spina bifida, anencephaly, and encephalocele are commonly grouped together and termed neural tube defects (NTD). Failure of closure of the neural tube during development results in anencephaly or spina bifida aperta but encephaloceles are possibly post-closure defects. NTD are associated with a number of other central nervous system (CNS) and non-neural malformations. Racial, geographic and seasonal variations seem to affect their incidence. Etiology of NTD is unknown. Most of the non-syndromic NTD are of multifactorial origin. Recent in vitro and in vivo studies have highlighted the molecular mechanisms of neurulation in vertebrates but the morphologic development of human neural tube is poorly understood. A multisite closure theory, extrapolated directly from mouse experiments highlighted the clinical relevance of closure mechanisms to human NTD. Animal models, such as circle tail, curly tail, loop tail, shrm and numerous knockouts provide some insight into the mechanisms of NTD. Also available in the literature are a plethora of chemically induced preclosure and a few post-closure models of NTD, which highlight the fact that CNS malformations are of hetergeneitic nature. No Mendelian pattern of inheritance has been reported. Association with single gene defects, enhanced recurrence risk among siblings, and a higher frequency in twins than in singletons indicate the presence of a strong genetic contribution to the etiology of NTD. Non-availability of families with a significant number of NTD cases makes research into genetic causation of NTD difficult. Case reports and epidemiologic studies have implicated a number of chemicals, widely differing therapeutic drugs, environmental contaminants, pollutants, infectious agents, and solvents. Maternal hyperthermia, use of valproate by epileptic women during pregnancy, deficiency and excess of certain nutrients and chronic maternal diseases (e.g. diabetes mellitus) are reported to cause a manifold increase in the

  6. DNA Damage, Fruits and Vegetables and Breast Cancer Prevention

    DTIC Science & Technology

    2001-08-01

    fruits and vegetables per day for a total of 8 weeks on measures of oxidative damage to DNA and lipids is being determined. Urine and blood ... components are being assessed for oxidative endpoints and plasma is being evaluated for biochemical markers of edible plant consumption. Body Approved

  7. Vicair Academy Mattress in the prevention of pressure damage.

    PubMed

    Collins, Fiona

    There are many costs associated with the development of pressure ulcers, both in terms of the patient experience and those associated with healing. If patients who are deemed to be at risk are identified and suitable preventive equipment is provided, incidence of pressure ulcer development can be reduced significantly. Pressure-reducing mattresses are primarily used to prevent pressure ulcers from occurring, in conjunction with other preventive measures, such as repositioning. The Vicair Academy Mattress, manufactured by Vicair BV and distributed by Gerald Simonds, uses Vicair's 'dry air' flotation system to offer maximum pressure and shear protection to patients who are at high risk of developing pressure ulcers.

  8. The neural correlates of abstract and concrete words: evidence from brain-damaged patients.

    PubMed

    Papagno, Costanza; Martello, Giorgia; Mattavelli, Giulia

    2013-08-07

    Neuropsychological and activation studies on the neural correlates of abstract and concrete words have produced contrasting results. The present study explores the anatomical substrates of abstract/concrete words in 22 brain-damaged patients with a single vascular lesion either in the right or left hemisphere. One hundred and twenty (60 concrete and 60 abstract) noun triplets were used for a semantic similarity judgment task. We found a significant interaction in word type × group since left temporal brain-damaged patients performed significantly better with concrete than abstract words. Lesion mapping of patients with predominant temporal damage showed that the left superior and middle temporal gyri and the insula were the areas of major overlapping, while the anterior portion of the left temporal lobe was generally spared. Errors on abstract words mainly concerned (although at a non-significant level) semantically associate targets, while in the case of concrete words, coordinate targets were significantly more impaired than associate ones. Our results suggest that the left superior and middle temporal gyri and the insula are crucial regions in processing abstract words. They also confirm the hypothesis of a semantic similarity vs. associative organization of concrete and abstract concepts.

  9. 36 CFR 223.113 - Modification of contracts to prevent environmental damage or to conform to forest plans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... prevent environmental damage or to conform to forest plans. 223.113 Section 223.113 Parks, Forests, and... Administration § 223.113 Modification of contracts to prevent environmental damage or to conform to forest plans. Timber sale contract, permits, and other such instruments may be modified to prevent environmental damage...

  10. Slit Molecules Prevent Entrance of Trunk Neural Crest Cells in Developing Gut

    PubMed Central

    Zuhdi, Nora; Ortega, Blanca; Giovannone, Dion; Ra, Hannah; Reyes, Michelle; Asención, Viviana; McNicoll, Ian; Ma, Le; de Bellard, Maria Elena

    2014-01-01

    Neural crest cells emerge from the dorsal neural tube early in development and give rise to sensory and sympathetic ganglia, adrenal cells, teeth, melanocytes and especially enteric nervous system. Several inhibitory molecules have been shown to play important roles in neural crest migration, among them are the chemorepulsive Slit1–3. It was known that Slits chemorepellants are expressed at the entry to the gut, and thus could play a role in the differential ability of vagal but not trunk neural crest cells to invade the gut and form enteric ganglia. Especially since trunk neural crest cells express Robo receptor while vagal do not. Thus although we know that Robo mediates migration along the dorsal pathway in neural crest cells, we do not know if it is responsible in preventing their entry into the gut. The goal of this study was to further corroborate a role for Slit molecules in keeping trunk neural crest cells away from the gut. We observed that when we silenced Robo receptor in trunk neural crest, the sympathoadrenal (somites 18–24) were capable of invading gut mesenchyme in larger proportion than more rostral counterparts. The more rostral trunk neural crest tended not to migrate beyond the ventral aorta, suggesting that there are other repulsive molecules keeping them away from the gut. Interestingly, we also found that when we silenced Robo in sacral neural crest they did not wait for the arrival of vagal crest but entered the gut and migrated rostrally, suggesting that Slit molecules are the ones responsible for keeping them waiting at the hindgut mesenchyme. These combined results confirm that Slit molecules are responsible for keeping the timeliness of colonization of the gut by neural crest cells. PMID:25490618

  11. Slit molecules prevent entrance of trunk neural crest cells in developing gut.

    PubMed

    Zuhdi, Nora; Ortega, Blanca; Giovannone, Dion; Ra, Hannah; Reyes, Michelle; Asención, Viviana; McNicoll, Ian; Ma, Le; de Bellard, Maria Elena

    2015-04-01

    Neural crest cells emerge from the dorsal neural tube early in development and give rise to sensory and sympathetic ganglia, adrenal cells, teeth, melanocytes and especially enteric nervous system. Several inhibitory molecules have been shown to play important roles in neural crest migration, among them are the chemorepulsive Slit1-3. It was known that Slits chemorepellants are expressed at the entry to the gut, and thus could play a role in the differential ability of vagal but not trunk neural crest cells to invade the gut and form enteric ganglia. Especially since trunk neural crest cells express Robo receptor while vagal do not. Thus, although we know that Robo mediates migration along the dorsal pathway in neural crest cells, we do not know if it is responsible in preventing their entry into the gut. The goal of this study was to further corroborate a role for Slit molecules in keeping trunk neural crest cells away from the gut. We observed that when we silenced Robo receptor in trunk neural crest, the sympathoadrenal (somites 18-24) were capable of invading gut mesenchyme in larger proportion than more rostral counterparts. The more rostral trunk neural crest tended not to migrate beyond the ventral aorta, suggesting that there are other repulsive molecules keeping them away from the gut. Interestingly, we also found that when we silenced Robo in sacral neural crest they did not wait for the arrival of vagal crest but entered the gut and migrated rostrally, suggesting that Slit molecules are the ones responsible for keeping them waiting at the hindgut mesenchyme. These combined results confirm that Slit molecules are responsible for keeping the timeliness of colonization of the gut by neural crest cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The unanticipated resilience of trait self-knowledge in the face of neural damage.

    PubMed

    Klein, Stanley B; Lax, Moshe L

    2010-11-01

    This paper explores the question of what the self is by reviewing research conducted with both normal and neuropsychological participants. Findings converge on the idea that the self may be more complex and differentiated than some previous treatments of the topic have suggested. Although some aspects of self-knowledge such as episodic recollection may be compromised in individuals, other aspects-for instance, semantic trait summaries-appear largely intact. Taken together, these findings support the idea that the self is not a single, unified entity. Rather, it is a set of interrelated, functionally independent systems. In the process of reviewing neuropsychological findings, an unexpected result emerges: trait self-knowledge appears unusually robust with respect to neural and cognitive damage that render other aspects of self-knowledge dysfunctional in varying degrees.

  13. ROS scavenging activity and muscle damage prevention in eccentric exercise in rats.

    PubMed

    Maruhashi, Yoshinobu; Kitaoka, Katsuhiko; Yoshiki, Yumiko; Nakamura, Ryuichi; Okano, Akira; Nakamura, Kenichi; Tsuyama, Takeshi; Shima, Yohsuke; Tomita, Katsuro

    2007-08-01

    Depending on intensity, eccentric exercise is experimentally and clinically documented to have opposing dual effects on skeletal muscle; intense eccentric exercise damages muscle, but daily low-load eccentric exercise prevents damage. To clarify the mechanisms of this dual effect, microscopic damage and oxidative stress were studied in rat quadriceps muscle. Oxidative stress was estimated from an immunostaining of advanced glycation end-products (AGE) and a measurement of muscle tissue preparations, the ability to scavenge reactive oxygen species (ROS). Intense eccentric downhill running (IEE) induced muscle damage that was, microscopically apparent 3 days later. Since AGE-positive cells and decreased ROS scavenging activity were observed earlier (on the day after IEE), cellular damage may be related to ROS production. Intense concentric uphill running (ICE) induced an immediate but transient decrease in ROS scavenging activity, which recovered within a day. Neither AGE-positive cells nor microscopic damage was observed after ICE. Since each contracting muscle fiber develops greater tension during eccentric rather than concentric exercise, the initial trigger of IEE-induced muscle damage may be damage to muscle fibers and connective tissues at the subcellular level. Daily low-load training of eccentric downhill running (LET), but not concentric uphill running, efficiently prevented muscle damage after subsequent IEE. No evident elevation of ROS scavenging activity was evident after LET. We concluded that LET prevents IEE-induced muscle damage not through elevated ROS scavenging activity, but through a suppression of initial subcellular damage that triggers subsequent ROS-producing processes, resulting in cellular delayed damage.

  14. Prevention of chloride-induced corrosion damage to bridges

    SciTech Connect

    Cramer, Stephen D.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Holcomb, Gordon R.; Russell, James H.; Ziomek-Moroz, Margaret; Virmani, Y.P. | Butler, J.T.; Nelson, F.J. | Thompson, N.G.

    2002-01-01

    The annual direct cost of bridge infrastructure corrosion to the U.S. economy is estimated at $8.3 billion, with indirect costs approximately 10 times higher. Of the approximately 600000 bridges in the U.S., between 15% and 20% are listed as ?structurally deficient,? frequently due to corrosion damage. Five technologies are presented for reducing the cost of chloride-induced corrosion damage: (1) conductive coating anodes for cathodic protection of existing reinforce concrete bridges, (2) epoxy-coated rebar (ECR), (3) stainless steel rebar, and (4) high-performance concrete for extending the service life of new structures, and (5) metalizing to provide economical, long-term corrosion protection of steel bridges. Conductive coating anodes and stainless steel rebar represent ongoing work by the Oregon Department of Transportation with final verdicts not expected for years. The ECR and metalizing technology have longer track records and are better established in the bridge construction and protection industry. Application of these technologies is guided by a thorough understanding of their performance, of characteristics of the bridge and its environment, and of the results that are sought.

  15. Effect of dieldrin in the glue line of oak plywood panels in preventing Lyctus beetle damage

    Treesearch

    Thomas McIntyre

    1961-01-01

    For many years the lumber industry has been seeking improved methods of preventing decay and insect damage to lumber and other wood products. One relatively new approach to this problem is the addition of toxic chemicals in plywood glues to prevent infestations or restrict feeding injury by wood-boring insects. Wood products treated in this manner have been marketed in...

  16. Clean Assembly Practices to Prevent Contamination and Damage to Optics

    SciTech Connect

    Pryatel, J; Gourdin, W H

    2005-12-19

    A key lesson learned from the earliest optics installed in the National Ignition Facility (NIF) was that the traditional approach for maintaining cleanliness, such as the use of cleanrooms and associated garments and protocols, is inadequate. Assembly activities often negate the benefits provided by cleanrooms, and in fact generate contamination with high damage potential. As a result, NIF introduced ''clean assembly protocols'' and related practices to supplement the traditional clean room protocols. These new protocols included ''clean-as-you-go'' activities and regular bright light inspections. Introduction of these new protocols has greatly reduced the particle contamination found on more recently installed optics. In this paper we will describe the contamination mechanisms we have observed and the details of the clean assembly protocols we have successfully introduced to mitigate them.

  17. Sulodexide prevents peripheral nerve damage in streptozotocin induced diabetic rats.

    PubMed

    Jin, Heung Yong; Lee, Kyung Ae; Song, Sun Kyung; Liu, Wei Jing; Choi, Ji Hae; Song, Chang Ho; Baek, Hong Sun; Park, Tae Sun

    2012-01-15

    We investigated whether sulodexide has additional protective effects against peripheral nerve damage caused by microvascular dysfunction in a rat model of diabetes. Female Sprague-Dawley (SD) rats were divided into the following 4 groups (n=7-9/group): Normal, Normal+Sulodexide (sulodexide 10mg/kg), diabetic group, and diabetic+Sulodexide (sulodexide 10mg/kg). We assessed current perception threshold, skin blood flow, superoxide dismutase, and proteinuria in experimental rats after oral administration of sulodexide for 20 weeks. We also performed morphometric analysis of sciatic nerves and intraepidermal nerve fibers of the foot. Superoxide dismutase activity in the blood and sciatic nerve were increased significantly after sulodexide treatment in the diabetic group. Current perception threshold was reduced at 2000 Hz (633.3 ± 24.15 vs 741.2 ± 23.5 μA, P<0.05) and skin blood flow was improved (10.90 ± 0.67 vs 8.85 ± 0.49 TPU, P<0.05) in the diabetic+Sulodexide group compared with the diabetic group. The mean myelinated axon area was significantly larger (56.6 ± 2.2 vs 49.8 ± 2.7 μm(2), P<0.05) and the intraepidermal nerve fiber density was significantly less reduced (6.27 ± 0.24 vs 5.40 ± 0.25/mm, P<0.05) in the diabetic+Sulodexide group compared to the diabetic group. Our results demonstrate that sulodexide exhibits protective effects against peripheral nerve damage in a rat experimental model of diabetes. Therefore, these findings suggest that sulodexide is a potential new therapeutic agent for diabetic peripheral neuropathy.

  18. Gastric mucosal damage in water immersion stress: mechanism and prevention with GHRP-6.

    PubMed

    Guo, Shu; Gao, Qian; Jiao, Qing; Hao, Wei; Gao, Xue; Cao, Ji-Min

    2012-06-28

    To investigate the mechanism of gastric mucosal demage induced by water immersion restraint stress (WRS) and its prevention by growth hormone releasing peptide-6 (GHRP-6). Male Wistar rats were subjected to conscious or unconscious (anesthetized) WRS, simple restraint (SR), free swimming (FS), non-water fluid immersion, immersion without water contact, or rats were placed in a cage surrounded by sand. To explore the sensitivity structures that influence the stress reaction besides skin stimuli, a group the rats had their eyes occluded. Cervical bilateral trunk vagotomy or atropine injection was performed in some rats to assess the parasympathetic role in mucosal damage. Gastric mucosal lesions, acid output and heart rate variability were measured. Plasma renin, endothelin-1 and thromboxane B2 and gastric heat shock protein 70 were also assayed. GHRP-6 was injected [intraperitoneal (IP) or intracerebroventricular (ICV)] 2 h before the onset of stress to observe its potential prevention of the mucosal lesion. WRS for 6 h induced serious gastric mucosal lesion [lesion area, WRS 81.8 ± 6.4 mm² vs normal control 0.0 ± 0.0 mm², P < 0.01], decreased the heart rate, and increased the heart rate variability and gastric acid secretion, suggesting an increase in vagal nerve-carrying stimuli. The mucosal injury was inversely correlated with water temperature (lesion area, WRS at 35 °C 56.4 ± 5.2 mm² vs WRS at 23 °C 81.8 ± 6.4 mm², P < 0.01) and was consciousness-dependent. The injury could not be prevented by eye occlusion, but could be prevented by avoiding contact of the rat body with the water by dressing it in an impermeable plastic suit. When water was replaced by vegetable oil or liquid paraffin, there were gastric lesions in the same grade of water immersion. When rat were placed in a cage surrounded by sand, there were no gastric lesions. All these data point to a remarkable importance of cutenuous information transmitted to the high neural center that by

  19. Folic acid for the prevention of neural tube defects: U.S. Preventive Services Task Force recommendation statement.

    PubMed

    2009-05-05

    In 1996, the U.S. Preventive Services Task Force (USPSTF) recommended that all women planning or capable of pregnancy take a multivitamin supplement containing folic acid for the prevention of neural tube defects. This recommendation is an update of the 1996 USPSTF recommendation. The USPSTF reviewed the evidence on folic acid supplementation in women of childbearing age published since the 1996 USPSTF recommendation. The USPSTF did not review the evidence on folic acid food fortification, counseling to increase dietary intake, or screening for neural tube defects. The USPSTF recommends that all women planning or capable of pregnancy take a daily supplement containing 0.4 to 0.8 mg (400 to 800 microg) of folic acid. (Grade A recommendation).

  20. Prevention of carcinogen and inflammation-induced dermal cancer by oral rapamycin includes reducing genetic damage.

    PubMed

    Dao, Vinh; Pandeswara, Srilakshmi; Liu, Yang; Hurez, Vincent; Dodds, Sherry; Callaway, Danielle; Liu, Aijie; Hasty, Paul; Sharp, Zelton D; Curiel, Tyler J

    2015-05-01

    Cancer prevention is a cost-effective alternative to treatment. In mice, the mTOR inhibitor rapamycin prevents distinct spontaneous, noninflammatory cancers, making it a candidate broad-spectrum cancer prevention agent. We now show that oral microencapsulated rapamycin (eRapa) prevents skin cancer in dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) carcinogen-induced, inflammation-driven carcinogenesis. eRapa given before DMBA/TPA exposure significantly increased tumor latency, reduced papilloma prevalence and numbers, and completely inhibited malignant degeneration into squamous cell carcinoma. Rapamycin is primarily an mTORC1-specific inhibitor, but eRapa did not reduce mTORC1 signaling in skin or papillomas, and did not reduce important proinflammatory factors in this model, including p-Stat3, IL17A, IL23, IL12, IL1β, IL6, or TNFα. In support of lack of mTORC1 inhibition, eRapa did not reduce numbers or proliferation of CD45(-)CD34(+)CD49f(mid) skin cancer initiating stem cells in vivo and marginally reduced epidermal hyperplasia. Interestingly, eRapa reduced DMBA/TPA-induced skin DNA damage and the hras codon 61 mutation that specifically drives carcinogenesis in this model, suggesting reduction of DNA damage as a cancer prevention mechanism. In support, cancer prevention and DNA damage reduction effects were lost when eRapa was given after DMBA-induced DNA damage in vivo. eRapa afforded picomolar concentrations of rapamycin in skin of DMBA/TPA-exposed mice, concentrations that also reduced DMBA-induced DNA damage in mouse and human fibroblasts in vitro. Thus, we have identified DNA damage reduction as a novel mechanism by which rapamycin can prevent cancer, which could lay the foundation for its use as a cancer prevention agent in selected human populations.

  1. Prevention of downhill walking-induced muscle damage by non-damaging downhill walking

    PubMed Central

    Yamamoto, Masayoshi; Kanehisa, Hiroaki; Nosaka, Kazunori

    2017-01-01

    Purpose Mountain trekking involves level, uphill, and downhill walking (DW). Prolonged DW induces damage to leg muscles, reducing force generating ability and muscle coordination. These increase risks for more serious injuries and accidents in mountain trekking, thus a strategy to minimize muscle damage is warranted. It has been shown that low-intensity eccentric contractions confer protective effect on muscle damage induced by high-intensity eccentric contractions. This study tested the hypothesis that 5-min non-damaging DW would attenuate muscle damage induced by 40-min DW, but 5-min level walking (LW) would not. Methods Untrained young men were allocated (n = 12/group) to either a control or one of the two preconditioning groups (PRE-DW or PRE-LW). The PRE-DW and PRE-LW groups performed 5-min DW (-28%) and 5-min LW, respectively, at 5 km/h with a load of 10% body mass, 1 week before 40-min DW (-28%, 5 km/h, 10% load). The control group performed 40-min DW only. Maximal knee extension strength, plasma creatine kinase (CK) activity, and muscle soreness (0–100 mm visual analogue scale) were measured before and 24 h after 5-min DW and 5-min LW, and before and 24, 48, and 72 h after 40-min DW. Results No significant changes in any variables were evident after 5-min DW and 5-min LW. After 40-min DW, the control and PRE-LW groups showed significant (P<0.05) changes in the variables without significant differences between groups (control vs. PRE-LW; peak strength reduction: -19.2 ± 6.9% vs. -18.7 ± 11.0%, peak CK: 635.5 ± 306.0 vs. 639.6 ± 405.4 U/L, peak soreness: 81.4 ± 14.8 vs. 72.0 ± 29.2 mm). These changes were significantly (P<0.05) attenuated (47–64%) for the PRE-DW group (-9.9 ± 9.6%, 339.3 ± 148.4 U/L, 27.8 ± 16.8 mm). Conclusions The results supported the hypothesis and suggest that performing small volume of downhill walking is crucial in preparation for trekking. PMID:28288187

  2. Smart building materials which prevent damage or repair themselves

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn

    We developed designs in which hollow porous fibers filled with chemicals release them into a matrix over time. A coating covering the fibers is degraded by chemicals, pH change, or broken by structural loading, thus, releasing the chemicals. These stimuli for release are the very agents of environmental attack. The design to alleviate cracking consists of hollow porous fiberglass fibers containing crack-closing chemicals. The chemicals are released from the fibers when the outer sheath cracks or the fibers flex due to loading. This is the ideal situation in which the agent of environmental degradation, namely loading, is the stimulus to release the repair chemical. The design to prevent corrosion consists of an anticorrosion chemical in hollow porous polypropylene fibers. Change in chloride ion concentration dissolves the polyol coating and allows the chemical to be released from the fiber wall. The cause of deterioration, change in chloride level which causes corrosion, is the sensor (coating deterioration) and also the activator for the remedial or preventive action (release of anticorrosion chemical). These are distributed systems responding to environmental stimuli for sensing and repairing when and where they are needed. The control of the amount of chemical released is being researched mainly as a function of coating design and also fiber type. type.

  3. Folic Acid Supplementation for the Prevention of Neural Tube Defects: US Preventive Services Task Force Recommendation Statement.

    PubMed

    Bibbins-Domingo, Kirsten; Grossman, David C; Curry, Susan J; Davidson, Karina W; Epling, John W; García, Francisco A R; Kemper, Alex R; Krist, Alex H; Kurth, Ann E; Landefeld, C Seth; Mangione, Carol M; Phillips, William R; Phipps, Maureen G; Pignone, Michael P; Silverstein, Michael; Tseng, Chien-Wen

    2017-01-10

    Neural tube defects are among the most common major congenital anomalies in the United States and may lead to a range of disabilities or death. Daily folic acid supplementation in the periconceptional period can prevent neural tube defects. However, most women do not receive the recommended daily intake of folate from diet alone. To update the 2009 US Preventive Services Task Force (USPSTF) recommendation on folic acid supplementation in women of childbearing age. In 2009, the USPSTF reviewed the effectiveness of folic acid supplementation in women of childbearing age for the prevention of neural tube defects in infants. The current review assessed new evidence on the benefits and harms of folic acid supplementation. The USPSTF assessed the balance of the benefits and harms of folic acid supplementation in women of childbearing age and determined that the net benefit is substantial. Evidence is adequate that the harms to the mother or infant from folic acid supplementation taken at the usual doses are no greater than small. Therefore, the USPSTF reaffirms its 2009 recommendation. The USPSTF recommends that all women who are planning or capable of pregnancy take a daily supplement containing 0.4 to 0.8 mg (400-800 µg) of folic acid. (A recommendation).

  4. Effectiveness of Disaster-prevention Technologies against Quake-induced Damage of MR Scanners during the Great East Japan Earthquake.

    PubMed

    Yamaguchi-Sekino, Sachiko; Machida, Yoshio; Tsuchihashi, Toshio; Isoda, Haruo; Noguchi, Takashi; Nakai, Toshiharu

    2016-01-01

    In the present study, we have performed a statistical analysis to investigate damages in magnetic resonance (MR) scanners caused by the Great East Japan Earthquake (GEJE, magnitude 9.0) and evaluated whether these disaster-prevention technologies contributed to the reduction of damages in the GEJE or not. It was confirmed that the extent of damage was significantly different between seismic scale (SS) 5 and SS over 6. Our survey study demonstrated that anchoring of MR facilities reduced damages due to quakes and demonstrated that anchoring is an efficient method for quake-induced damage prevention. The odds ratio revealed that base isolation was very useful to prevent damages in MR scanners.

  5. The APC/C cofactor Cdh1 prevents replicative stress and p53-dependent cell death in neural progenitors.

    PubMed

    Eguren, Manuel; Porlan, Eva; Manchado, Eusebio; García-Higuera, Irene; Cañamero, Marta; Fariñas, Isabel; Malumbres, Marcos

    2013-01-01

    The E3-ubiquitin ligase APC/C-Cdh1 is essential for endoreduplication but its relevance in the mammalian mitotic cell cycle is still unclear. Here we show that genetic ablation of Cdh1 in the developing nervous system results in hypoplastic brain and hydrocephalus. These defects correlate with enhanced levels of Cdh1 substrates and increased entry into the S phase in neural progenitors. However, cell division is prevented in the absence of Cdh1 due to hyperactivation of cyclin-dependent kinases, replicative stress, induction of p53, G2 arrest and apoptotic death of these progenitor cells. Concomitant ablation of p53 rescues apoptosis but not replicative stress, resulting in the presence of damaged neurons throughout the adult brain. These data indicate that the inactivation of Cdh1 in vivo results in replicative stress, cell cycle arrest and cell death, supporting recent therapeutic proposals aimed to inhibit the APC/C in tumours.

  6. Preventing Collateral Damage in Crohn’s Disease: The Lémann Index

    PubMed Central

    Fiorino, Gionata; Bonifacio, Cristiana; Peyrin-Biroulet, Laurent

    2016-01-01

    Crohn’s disease [CD] is a chronic progressive and destructive condition. Half of all CD patients will develop bowel damage at 10 years. As in rheumatic diseases, preventing the organ damage consequent to CD complications [fistula, abscess, and/or stricture] is emerging as a new therapeutic goal for these patients in clinical practice. This might be the only way to alter disease course, as surgery is often required for disease complications. Similar to the joint damage in rheumatoid arthritis, bowel damage has also emerged as a new endpoint in disease-modification trials such as the REACT trial. Recently, the Lemann Index [LI] has been developed to measure CD-related bowel damage, and to assess damage progression over time, in order to evaluate the impact of therapeutic strategies in terms of preventing bowel damage. While validation is pending, recent reports suggested that bowel damage is reversible by anti-tumour necrosis factor [TNF] therapy. The Lémann index may play a key role in CD management, and should be implemented in all upcoming disease-modification trials in CD. PMID:26744441

  7. Environmental enrichment may protect against neural and behavioural damage caused by withdrawal from chronic alcohol intake.

    PubMed

    Nobre, Manoel Jorge

    2016-12-01

    Exposure to stress and prolonged exposure to alcohol leads to neuronal damages in several brain regions, being the medial prefrontal cortex (mPFC) one of the most affected. These changes presumably reduce the ability of the organism to cope with these stimuli and may underlie a series of maladaptive behaviours among which include drug addiction and withdrawal. Drug-addicted individuals show a pattern of behavior similar to patients with lesions of the mPFC. This impairment in the decision-making could be one of the mechanisms responsible for the transition from the casual to compulsive drug use. The environmental enrichment (EE) has a protective effect on the neural and cognitive impairments induced by psychoactive drugs, including ethyl alcohol. The present study aims to determine the influence of withdrawal from intermittent long-term alcohol exposure on alcohol preference, emotional reactivity and neural aspects of early isolated or grouped reared rats kept under standard or complex environments and the influence of social isolation on these measures, as well. Our results point out new insights on this matter showing that the EE can attenuate the adverse effects of withdrawal and social isolation on rat's behavior. This effect is probably due to its protective action on the mPFC integrity, including the cingulate area 1 (Cg1), and the prelimbic (PrL) and infralimbic cortex (IL), what could account for the absence of changes in the emotional reactivity in EE alcohol withdrawal rats. We argue that morphological changes at these cortical levels can afford the emotional, cognitive and behavioural dysregulations verified following withdrawal from chronic alcohol intake.

  8. An economic evaluation of four skin damage prevention regimens in nursing home residents with incontinence: economics of skin damage prevention.

    PubMed

    Bliss, Donna Z; Zehrer, Cindy; Savik, Kay; Smith, Graham; Hedblom, Edwin

    2007-01-01

    To determine the cost and efficacy of 4 different regimens of incontinence-associated dermatitis (IAD) prevention in nursing home residents. A multi-site open-label quasi-experimental study was conducted in 16 nursing homes stratified by location in 1 of 4 regions of the United States and randomly selected. In 3 of the 4 regimens, a moisture barrier ointment or cream of different compositions was applied after each episode of incontinence, and in 1 regimen, a polymer-based barrier film was applied 3 times per week. All regimens used a pH-balanced moisturizing cleanser. Time and motion measures were documented for the amount of skin care products used; the number, type, and time of caregivers performing IAD prevention care; and the number and type of supplies used. Rates of incontinence in each nursing home were determined during a 3-day surveillance period. A total of 1,918 nursing home residents were screened, and 51% (n = 981) qualified for prospective surveillance of incontinence dermatitis; the majority were female (80.1%) and elderly (96% > or = 65 years old). A total of 78.6% (771/981) of the participants were incontinent of both urine and feces. Compared to the 3 regimens in which a barrier was applied after each episode of incontinence, the use of a regimen in which a barrier film was applied 3 times weekly had significantly lower costs for the barrier product, labor associated with barrier application, and total cost, which included products, labor, and supplies. There were also savings in total product (cleanser and barrier) and total labor costs. The use of a defined skin care regimen that includes a cleanser and a moisture barrier is associated with a low rate of IAD in nursing home residents who are incontinent. Use of a polymer skin barrier film 3 times weekly is effective for preventing incontinence-associated skin breakdown and can provide significant cost savings.

  9. A Red-Light Running Prevention System Based on Artificial Neural Network and Vehicle Trajectory Data

    PubMed Central

    Li, Pengfei; Li, Yan; Guo, Xiucheng

    2014-01-01

    The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems. PMID:25435870

  10. Melatonin Has An Ergogenic Effect But Does Not Prevent Inflammation and Damage In Exhaustive Exercise

    PubMed Central

    Beck, Wladimir Rafael; Botezelli, José Diego; Pauli, José Rodrigo; Ropelle, Eduardo Rochete; Gobatto, Claudio Alexandre

    2015-01-01

    It is well documented that exhaustive physical exercise leads to inflammation and skeletal muscle tissue damage. With this in mind, melatonin has been acutely administered before physical exercise; nevertheless, the use of melatonin as an ergogenic agent to prevent tissue inflammation and damage remains uncertain. We evaluated the effects of melatonin on swimming performance, muscle inflammation and damage and several physiological parameters after exhaustive exercise at anaerobic threshold intensity (iLAn) performed during light or dark circadian periods. The iLAn was individually determined and two days later, the animals performed an exhaustive exercise bout at iLAn 30 minutes after melatonin administration. The exercise promoted muscle inflammation and damage, mainly during the dark period, and the exogenous melatonin promoted a high ergogenic effect. The expressive ergogenic effect of melatonin leads to longer periods of muscle contraction, which superimposes a possible melatonin protective effect on the tissue damage and inflammation. PMID:26669455

  11. 36 CFR 223.113 - Modification of contracts to prevent environmental damage or to conform to forest plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prevent environmental damage or to conform to forest plans. 223.113 Section 223.113 Parks, Forests, and... TIMBER Timber Sale Contracts Contract Administration § 223.113 Modification of contracts to prevent... may be modified to prevent environmental damage or to make them consistent with amendments or...

  12. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.

    PubMed

    Hill, Sarah J; Mordes, Daniel A; Cameron, Lisa A; Neuberg, Donna S; Landini, Serena; Eggan, Kevin; Livingston, David M

    2016-11-29

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.

  13. Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury

    PubMed Central

    Martin, John H.

    2016-01-01

    As most spinal cord injuries (SCIs) are incomplete, an important target for promoting neural repair and recovery of lost motor function is to promote the connections of spared descending spinal pathways with spinal motor circuits. Among the pathways, the corticospinal tract (CST) is most associated with skilled voluntary functions in humans and many animals. CST loss, whether at its origin in the motor cortex or in the white matter tracts subcortically and in the spinal cord, leads to movement impairments and paralysis. To restore motor function after injury will require repair of the damaged CST. In this review, I discuss how knowledge of activity-dependent development of the CST—which establishes connectional specificity through axon pruning, axon outgrowth, and synaptic competition among CST terminals—informed a novel activity-based therapy for promoting sprouting of spared CST axons after injur in mature animals. This therapy, which comprises motor cortex electrical stimulation with and without concurrent trans-spinal direct current stimulation, leads to an increase in the gray matter axon length of spared CST axons in the rat spinal cord and, after a pyramidal tract lesion, restoration of skilled locomotor movements. I discuss how this approach is now being applied to a C4 contusion rat model. PMID:27857728

  14. Inhibition of autophagy prevents irradiation-induced neural stem and progenitor cell death in the juvenile mouse brain.

    PubMed

    Wang, Yafeng; Zhou, Kai; Li, Tao; Xu, Yiran; Xie, Cuicui; Sun, Yanyan; Zhang, Yaodong; Rodriguez, Juan; Blomgren, Klas; Zhu, Changlian

    2017-03-23

    Radiotherapy is an effective tool in the treatment of malignant brain tumors. However, damage to brain stem and progenitor cells constitutes a major problem and is associated with long-term side effects. Autophagy has been shown to be involved in cell death, and the purpose of this study was to evaluate the effect of autophagy inhibition on neural stem and progenitor cell death in the juvenile brain. Ten-day-old selective Atg7 knockout (KO) mice and wild-type (WT) littermates were subjected to a single 6Gy dose of whole-brain irradiation. Cell death and proliferation as well as microglia activation and inflammation were evaluated in the dentate gyrus of the hippocampus and in the cerebellum at 6 h after irradiation. We found that cell death was reduced in Atg7 KO compared with WT mice at 6 h after irradiation. The number of activated microglia increased significantly in both the dentate gyrus and the cerebellum of WT mice after irradiation, but the increase was lower in the Atg7 KO mice. The levels of proinflammatory cytokines and chemokines decreased, especially in the cerebellum, in the Atg7 KO group. These results suggest that autophagy might be a potential target for preventing radiotherapy-induced neural stem and progenitor cell death and its associated long-term side effects.

  15. Preventing Eye Damage from the Sun's Ultraviolet Light: What Health Educators Should Teach.

    ERIC Educational Resources Information Center

    Memmer, Mary Kelly

    1989-01-01

    Health educators are in an ideal position to teach individuals about dangers from the sun's ultraviolet light and how to prevent damage to eyes. Ultraviolet light is described, eye pathology which can be caused by it is outlined, and protective eyewear is discussed. (IAH)

  16. Hyaluronic acid prevents immunosuppressive drug-induced ovarian damage via up-regulating PGRMC1 expression

    PubMed Central

    Zhao, Guangfeng; Yan, Guijun; Cheng, Jie; Zhou, Xue; Fang, Ting; Sun, Haixiang; Hou, Yayi; Hu, Yali

    2015-01-01

    Chemotherapy treatment in women can frequently cause damage to the ovaries, which may lead to primary ovarian insufficiency (POI). In this study, we assessed the preventative effects of hyaluronic acid (HA) in immunosuppressive drug-induced POI-like rat models and investigated the possible mechanisms. We found that HA, which was reduced in primary and immunosuppressant-induced POI patients, could protect the immunosuppressant-induced damage to granulosa cells (GCs) in vitro. Then we found that HA blocked the tripterygium glycosides (TG) induced POI-like presentations in rats, including delayed or irregular estrous cycles, reduced 17 beta-estradiol(E2) concentration, decreased number of follicles, destruction of follicle structure, and damage of reproductive ability. Furthermore, we investigated the mechanisms of HA prevention effects on POI, which was associated with promotion of GC proliferation and PGRMC1 expression. In conclusion, HA prevents chemotherapy-induced ovarian damage by promoting PGRMC1 in GCs. This study may provide a new strategy for prevention and treatment of POI. PMID:25558795

  17. Prevention of damage to delicate connectors during mounting of heavy engines for testing

    NASA Technical Reports Server (NTRS)

    Hendrickson, R. J.

    1971-01-01

    Air-bearing-pad principle, combined with monitoring system of the air-bearing force, prevents damage between electrical and mechanical connectors joining a large engine system to the test stand during remote mating. Pad provides a cushion between engine and test stand.

  18. Heparin prevents Zika virus induced-cytopathic effects in human neural progenitor cells.

    PubMed

    Ghezzi, Silvia; Cooper, Lynsay; Rubio, Alicia; Pagani, Isabel; Capobianchi, Maria Rosaria; Ippolito, Giuseppe; Pelletier, Julien; Meneghetti, Maria Cecilia Z; Lima, Marcelo A; Skidmore, Mark A; Broccoli, Vania; Yates, Edwin A; Vicenzi, Elisa

    2017-04-01

    The recent Zika virus (ZIKV) outbreak, which mainly affected Brazil and neighbouring states, demonstrated the paucity of information concerning the epidemiology of several flaviruses, but also highlighted the lack of available agents with which to treat such emerging diseases. Here, we show that heparin, a widely used anticoagulant, while exerting a modest inhibitory effect on Zika Virus replication, fully prevents virus-induced cell death of human neural progenitor cells (NPCs).

  19. [Neural tube defects and folic acid: a historical overview of a highly successful preventive intervention].

    PubMed

    Vásquez, Adriana Ordoñez; Suarez-Obando, Fernando

    2015-12-01

    This article gives a broad overview of part of the historical evolution of medical knowledge about neural tube defects (NTD) and the discovery of vitamin B9 or folic acid, as well as some relevant research events that, over the course of several centuries, defined the relationships between the understanding of central nervous system embryology, the discovery of the vitamin, the correlation between folic acid and cell proliferation and lastly the development of preventive measures for this type of defects. This narrative allows us to examine historically relevant concepts underlying clinical actions with a populational impact that prevent NTDs via folic acid consumption prior to conception.

  20. Taurocholic Acid Prevents Biliary Damage Induced by Hepatic Artery Ligation in Cholestatic Rats

    PubMed Central

    Glaser, Shannon; Onori, Paolo; Gaudio, Eugenio; Ueno, Yoshiyuki; Pannarale, Luigi; Franchitto, Antonio; Francis, Heather; Mancinelli, Romina; Carpino, Guido; Venter, Julie; White, Mellanie; Kopriva, Shelley; Vetuschi, Antonella; Sferra, Roberta; Alpini, Gianfranco

    2010-01-01

    Background Ischemic injury by hepatic artery ligation (HAL) during obstructive cholestasis induced by bile duct ligation (BDL) results in bile duct damage, which can be prevented by administration of VEGF-A. The potential regulation of VEGF and VEGF receptor expression and secretion by bile acids in BDL with HAL is unknown. Aims We evaluated whether taurocholic acid (TC) can prevent HAL-induced cholangiocyte damage via the alteration of VEGFR-2 and/or VEGF-A expression. Methods Utilizing BDL, BDL+TC, BDL+HAL, BDL+HAL+TC, and BDL+HAL+wortmannin+TC treated rats, we evaluated cholangiocyte apoptosis, proliferation, and secretion as well VEGF-A and VEGFR-2 expression by immunohistochemistry. In vitro, we evaluated the effects of TC on cholangiocyte secretion of VEGF-A and the dependence of TC-induced proliferation on the activity of VEGFR-2. Results In BDL rats with HAL, chronic feeding of TC prevented HAL-induced loss of bile ducts and HAL-induced decreased cholangiocyte secretion. TC also prevented HAL-inhibited VEGF-A and VEGFR-2 expression in liver sections and HAL-induced circulating VEGF-A levels, which were blocked by wortmannin administration. In vitro, TC stimulated increased VEGF-A secretion by cholangiocytes, which was blocked by wortmannin and stimulated cholangiocyte proliferation that was blocked by VEGFR-2 kinase inhibitor. Conclusion TC prevented HAL-induced biliary damage by upregulation of VEGF-A expression. PMID:20303838

  1. Markers of macromolecular oxidative damage in maternal serum and risk of neural tube defects in offspring.

    PubMed

    Yuan, Yue; Zhang, Le; Jin, Lei; Liu, Jufen; Li, Zhiwen; Wang, Linlin; Ren, Aiguo

    2015-03-01

    Neural tube defects (NTDs) are among the most common and severe congenital malformations. To examine the association between markers of macromolecular oxidative damage and risk of NTDs, we measured levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), protein carbonyl (PC), and 8-iso-prostaglandin F2α (8-iso-PGF2α) in maternal serum samples of 117 women with NTD-affected pregnancies and 121 women with healthy term newborns. We found higher levels of 8-OHdG and PC in the NTD group than in the control group; however, we did not observe a statistically significant difference in 8-iso-PGF2α levels between the NTD and the control groups. NTD risk increased with increasing quartiles of 8-OHdG [odds ratio (OR)=1.17; 95% confidence interval (CI) 0.39-3.51; OR=2.19; 95% CI, 0.68-7.01; OR=3.70; 95% CI, 1.30-10.51, for the second, third, and fourth quartile relative to the lowest quartile, respectively; P=0.009], and with increasing quartiles of PC (OR=2.26; 95% CI, 0.66-7.69; OR=3.86; 95% CI, 1.17-12.80; OR=5.98; 95% CI, 1.82-19.66, for the second, third, and fourth quartile relative to the lowest quartile, respectively; P=0.002]. Serum levels of 8-OHdG were higher in women who did not take folic acid supplements during the periconceptional period. These results suggest that oxidative stress is present in women carrying pregnancies affected by NTDs.

  2. Neural Network Prediction of Failure of Damaged Composite Pressure Vessels from Strain Field Data Acquired by a Computer Vision Method

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.; Lansing, Matthew D.

    1997-01-01

    This effort used a new and novel method of acquiring strains called Sub-pixel Digital Video Image Correlation (SDVIC) on impact damaged Kevlar/epoxy filament wound pressure vessels during a proof test. To predict the burst pressure, the hoop strain field distribution around the impact location from three vessels was used to train a neural network. The network was then tested on additional pressure vessels. Several variations on the network were tried. The best results were obtained using a single hidden layer. SDVIC is a fill-field non-contact computer vision technique which provides in-plane deformation and strain data over a load differential. This method was used to determine hoop and axial displacements, hoop and axial linear strains, the in-plane shear strains and rotations in the regions surrounding impact sites in filament wound pressure vessels (FWPV) during proof loading by internal pressurization. The relationship between these deformation measurement values and the remaining life of the pressure vessels, however, requires a complex theoretical model or numerical simulation. Both of these techniques are time consuming and complicated. Previous results using neural network methods had been successful in predicting the burst pressure for graphite/epoxy pressure vessels based upon acoustic emission (AE) measurements in similar tests. The neural network associates the character of the AE amplitude distribution, which depends upon the extent of impact damage, with the burst pressure. Similarly, higher amounts of impact damage are theorized to cause a higher amount of strain concentration in the damage effected zone at a given pressure and result in lower burst pressures. This relationship suggests that a neural network might be able to find an empirical relationship between the SDVIC strain field data and the burst pressure, analogous to the AE method, with greater speed and simplicity than theoretical or finite element modeling. The process of testing SDVIC

  3. The Drosophila Sp8 transcription factor Buttonhead prevents premature differentiation of intermediate neural progenitors.

    PubMed

    Xie, Yonggang; Li, Xiaosu; Zhang, Xian; Mei, Shaolin; Li, Hongyu; Urso, Andreacarola; Zhu, Sijun

    2014-10-06

    Intermediate neural progenitor cells (INPs) need to avoid differentiation and cell cycle exit while maintaining restricted developmental potential, but mechanisms preventing differentiation and cell cycle exit of INPs are not well understood. In this study, we report that the Drosophila homolog of mammalian Sp8 transcription factor Buttonhead (Btd) prevents premature differentiation and cell cycle exit of INPs in Drosophila larval type II neuroblast (NB) lineages. We show that the loss of Btd leads to elimination of mature INPs due to premature differentiation of INPs into terminally dividing ganglion mother cells. We provide evidence to demonstrate that Btd prevents the premature differentiation by suppressing the expression of the homeodomain protein Prospero in immature INPs. We further show that Btd functions cooperatively with the Ets transcription factor Pointed P1 to promote the generation of INPs. Thus, our work reveals a critical mechanism that prevents premature differentiation and cell cycle exit of Drosophila INPs.

  4. Oats supplementation prevents alcohol-induced gut leakiness in rats by preventing alcohol-induced oxidative tissue damage.

    PubMed

    Tang, Yueming; Forsyth, Christopher B; Banan, Ali; Fields, Jeremy Z; Keshavarzian, Ali

    2009-06-01

    We reported previously that oats supplementation prevents gut leakiness and alcoholic steatohepatitis (ASH) in our rat model of alcoholic liver disease. Because oxidative stress is implicated in the pathogenesis of both alcohol-induced gut leakiness and ASH, and because oats have antioxidant properties, we tested the hypothesis that oats protect by preventing alcohol-induced oxidative damage to the intestine. Male Sprague-Dawley rats were gavaged for 12 weeks with alcohol (starting dose of 1 g/kg increasing to 6 g/kg/day over the first 2 weeks) or dextrose, with or without oats supplementation (10 g/kg/day). Oxidative stress and injury were assessed by measuring colonic mucosal inducible nitric-oxide synthase (iNOS) (by immunohistochemistry), nitric oxide (colorimetric assay), and protein carbonylation and nitrotyrosination (immunoblotting). Colonic barrier integrity was determined by assessing the integrity of the actin cytoskeleton (immunohistochemistry) and the integrity of tight junctions (electron microscopy). Oats supplementation prevented alcohol-induced up-regulation of iNOS, nitric oxide overproduction in the colonic mucosa, and increases in protein carbonyl and nitrotyrosine levels. This protection was associated with prevention of ethanol (EtOH)-induced disorganization of the actin cytoskeleton and disruption of tight junctions. We conclude that oats supplementation attenuates EtOH-induced disruption of intestinal barrier integrity, at least in part, by inhibiting EtOH-induced increases in oxidative stress and oxidative tissue damage. This inhibition prevents alcohol-induced disruption of the cytoskeleton and tight junctions. This study suggests that oats may be a useful therapeutic agent--a nutraceutical--for the prevention of alcohol-induced oxidative stress and organ dysfunction.

  5. Damage detection in carbon composite material typical of wind turbine blades using auto-associative neural networks

    NASA Astrophysics Data System (ADS)

    Dervilis, N.; Barthorpe, R. J.; Antoniadou, I.; Staszewski, W. J.; Worden, K.

    2012-04-01

    The structure of a wind turbine blade plays a vital role in the mechanical and structural operation of the turbine. As new generations of offshore wind turbines are trying to achieve a leading role in the energy market, key challenges such as a reliable Structural Health Monitoring (SHM) of the blades is significant for the economic and structural efficiency of the wind energy. Fault diagnosis of wind turbine blades is a "grand challenge" due to their composite nature, weight and length. The damage detection procedure involves additional difficulties focused on aerodynamic loads, environmental conditions and gravitational loads. It will be shown that vibration dynamic response data combined with AANNs is a robust and powerful tool, offering on-line and real time damage prediction. In this study the features used for SHM are Frequency Response Functions (FRFs) acquired via experimental methods based on an LMS system by which identification of mode shapes and natural frequencies is accomplished. The methods used are statistical outlier analysis which allows a diagnosis of deviation from normality and an Auto-Associative Neural Network (AANN). Both of these techniques are trained by adopting the FRF data for normal and damage condition. The AANN is a method which has not yet been widely used in the condition monitoring of composite materials of blades. This paper is trying to introduce a new scheme for damage detection, localisation and severity assessment by adopting simple measurements such as FRFs and exploiting multilayer neural networks and outlier novelty detection.

  6. Micronutrient special issue: coenzyme Q(10) requirements for DNA damage prevention.

    PubMed

    Schmelzer, Constance; Döring, Frank

    2012-05-01

    Coenzyme Q(10) (CoQ(10)) is an essential component for electron transport in the mitochondrial respiratory chain and serves as cofactor in several biological processes. The reduced form of CoQ(10) (ubiquinol, Q(10)H(2)) is an effective antioxidant in biological membranes. During the last years, particular interest has been grown on molecular effects of CoQ(10) supplementation on mechanisms related to DNA damage prevention. This review describes recent advances in our understanding about the impact of CoQ(10) on genomic stability in cells, animals and humans. With regard to several in vitro and in vivo studies, CoQ(10) provides protective effects on several markers of oxidative DNA damage and genomic stability. In comparison to the number of studies reporting preventive effects of CoQ(10) on oxidative stress biomarkers, CoQ(10) intervention studies in humans with a direct focus on markers of DNA damage are limited. Thus, more well-designed studies in healthy and disease populations with long-term follow up results are needed to substantiate the reported beneficial effects of CoQ(10) on prevention of DNA damage. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Nutriomes and personalised nutrition for DNA damage prevention, telomere integrity maintenance and cancer growth control.

    PubMed

    Fenech, Michael F

    2014-01-01

    DNA damage at the base sequence and chromosome level is a fundamental cause of developmental and degenerative diseases. Multiple micronutrients and their interactions with the inherited and/or acquired genome determine DNA damage and genomic instability rates. The challenge is to identify for each individual the combination of micronutrients and their doses (i.e. the nutriome) that optimises genome stability, including telomere integrity and functionality and DNA repair. Using nutrient array systems with high-content analysis diagnostics of DNA damage, cell death and cell growth, it is possible to define, on an individual basis, the optimal nutriome for DNA damage prevention and cancer growth control. This knowledge can also be used to improve culture systems for cells used in therapeutics such as stem cells to ensure that they are not genetically aberrant when returned to the body. Furthermore, this information could be used to design dietary patterns that deliver the micronutrient combinations and concentrations required for preventing DNA damage by micronutrient deficiency or excess. Using this approach, new knowledge could be obtained to identify the dietary restrictions and/or supplementations required to control specific cancers, which is particularly important given that reliable validated advice is not yet available for those diagnosed with cancer.

  8. The transcription factor Nerfin-1 prevents reversion of neurons into neural stem cells

    PubMed Central

    Froldi, Francesca; Szuperak, Milan; Weng, Chen-Fang; Shi, Wei; Papenfuss, Anthony T.

    2015-01-01

    Cellular dedifferentiation is the regression of a cell from a specialized state to a more multipotent state and is implicated in cancer. However, the transcriptional network that prevents differentiated cells from reacquiring stem cell fate is so far unclear. Neuroblasts (NBs), the Drosophila neural stem cells, are a model for the regulation of stem cell self-renewal and differentiation. Here we show that the Drosophila zinc finger transcription factor Nervous fingers 1 (Nerfin-1) locks neurons into differentiation, preventing their reversion into NBs. Following Prospero-dependent neuronal specification in the ganglion mother cell (GMC), a Nerfin-1-specific transcriptional program maintains differentiation in the post-mitotic neurons. The loss of Nerfin-1 causes reversion to multipotency and results in tumors in several neural lineages. Both the onset and rate of neuronal dedifferentiation in nerfin-1 mutant lineages are dependent on Myc- and target of rapamycin (Tor)-mediated cellular growth. In addition, Nerfin-1 is required for NB differentiation at the end of neurogenesis. RNA sequencing (RNA-seq) and chromatin immunoprecipitation (ChIP) analysis show that Nerfin-1 administers its function by repression of self-renewing-specific and activation of differentiation-specific genes. Our findings support the model of bidirectional interconvertibility between neural stem cells and their post-mitotic progeny and highlight the importance of the Nerfin-1-regulated transcriptional program in neuronal maintenance. PMID:25593306

  9. Folate and Prevention of Neural Tube Defects: New Insights from a Bayesian Model.

    PubMed

    Ströhle, Alexander; Bohn, Torsten

    2015-01-01

    Maternal folate status before and during pregnancy influences a woman's risk of having a pregnancy affected by congenital malformations of the neural tube (neural tube defects, NTD). For NTD prevention, it is recommended that women use periconceptional supplementation of folic acid. However, the recommended dose varies considerably (400 - 800 µg folic acid/day). Insufficient data exists on the relation between folate status and the risk of NTD. A recent study published in the British Medical Journal provides evidence for a generalizable dose-response relation between folate status and risk of NTD. The lowest risk of having a child with NTD was related to red blood cell (RBC) folate concentrations of ≥ 1000 nmol/L.

  10. Protective role and related mechanism of Gnaq in neural cells damaged by oxidative stress.

    PubMed

    Jia, Nannan; Li, Guoping; Huang, Pu; Guo, Jiazhi; Wei, Lugang; Lu, Di; Chen, Shaochun

    2017-03-22

    Gnaq is a member of G protein family and is rich in brain tissue. It has attracted the attention of many researchers in melanoma due to its high ratio of mutation. We have previously reported that the expression level of Gnaq in the mouse forebrain cortex was significantly decreased with age. Oxidative stress (OS) is the main cause leading to brain aging and related diseases. The roles and mechanisms of Gnaq in antioxidation in the brain have not been fully explored. In the present study, gene recombinant technique and lentivirus transfection technique were used to generate a Gnaq-overexpression cell model (Gnaq-SY5Y) coupled with H2O2 to build an OS model. The viability of cells, concentration of reactive oxygen species (ROS), apoptosis-related proteins (Bcl-2 and Bax), and signal pathways (NF-κB and Erk1/2) were compared between model cells and control cells. Results showed that the antioxidative ability of Gnaq-SY5Y cells was significantly improved. Concomitantly, the ROS level in Gnaq-SY5Y cells was significantly decreased whether the cells were subject to or not to H2O2 treatment. Anti-apoptotic protein Bcl-2 was up-regulated and apoptosis-promoting protein Bax was down-regulated in Gnaq-SY5Y cells after treatment with H2O2. NF-κB and phosphorylated Erk1/2 (p-Erk1/2) was significantly down-regulated in Gnaq-SY5Y cells. H2O2 treatment decreased Gnaq expression but increased NF-κB and p-Erk1/2 expressions in Gnaq-SY5Y cells. It is therefore concluded that Gnaq plays a pivotal role in antioxidation in neural cells. A possible mechanism for this would be that the overexpressed Gnaq inhibits the cellular damaging effect mediated by NF-κB and Erk1/2 signal pathways.

  11. Microcapsule-Type Organogel-Based Self-Healing System Having Secondary Damage Preventing Capability.

    PubMed

    Yang, Hye-In; Kim, Dong-Min; Yu, Hwan-Chul; Chung, Chan-Moon

    2016-05-04

    We have developed a novel microcapsule-type organogel-based self-healing system in which secondary damage does not occur in the healed region. A mixture of an organogelator, poor and good solvents for the gelator is used as the healing agent; when the good solvent evaporates from this agent, a viscoelastic organogel forms. The healing agent is microencapsulated with urea-formaldehyde polymer, and the resultant microcapsules are integrated into a polymer coating to prepare self-healing coatings. When the coatings are scratched, they self-heal, as demonstrated by means of corrosion testing, electrochemical testing, optical microscopy, and scanning electron microscopy (SEM). After the healed coatings are subjected to vigorous vibration, it is demonstrated that no secondary damage occurs in the healed region. The secondary damage preventing capability of the self-healing coating is attributable to the viscoelasticity of the organogel. The result can give insight into the development of a "permanent" self-healing system.

  12. Polyphenols in exercise performance and prevention of exercise-induced muscle damage.

    PubMed

    Malaguti, Marco; Angeloni, Cristina; Hrelia, Silvana

    2013-01-01

    Although moderate physical exercise is considered an essential component of a healthy lifestyle that leads the organism to adapt itself to different stresses, exercise, especially when exhaustive, is also known to induce oxidative stress, inflammation, and muscle damage. Many efforts have been carried out to identify dietary strategies or micronutrients able to prevent or at least attenuate the exercise-induced muscle damage and stress. Unfortunately most studies have failed to show protection, and at the present time data supporting the protective effect of micronutrients, as antioxidant vitamins, are weak and trivial. This review focuses on those polyphenols, present in the plant kingdom, that have been recently suggested to exert some positive effects on exercise-induced muscle damage and oxidative stress. In the last decade flavonoids as quercetin, catechins, and other polyphenols as resveratrol have caught the scientists attention. However, at the present time drawing a clear and definitive conclusion seems to be untimely.

  13. Polyphenols in Exercise Performance and Prevention of Exercise-Induced Muscle Damage

    PubMed Central

    Hrelia, Silvana

    2013-01-01

    Although moderate physical exercise is considered an essential component of a healthy lifestyle that leads the organism to adapt itself to different stresses, exercise, especially when exhaustive, is also known to induce oxidative stress, inflammation, and muscle damage. Many efforts have been carried out to identify dietary strategies or micronutrients able to prevent or at least attenuate the exercise-induced muscle damage and stress. Unfortunately most studies have failed to show protection, and at the present time data supporting the protective effect of micronutrients, as antioxidant vitamins, are weak and trivial. This review focuses on those polyphenols, present in the plant kingdom, that have been recently suggested to exert some positive effects on exercise-induced muscle damage and oxidative stress. In the last decade flavonoids as quercetin, catechins, and other polyphenols as resveratrol have caught the scientists attention. However, at the present time drawing a clear and definitive conclusion seems to be untimely. PMID:23983900

  14. Inositol for the prevention of neural tube defects: a pilot randomised controlled trial.

    PubMed

    Greene, Nicholas D E; Leung, Kit-Yi; Gay, Victoria; Burren, Katie; Mills, Kevin; Chitty, Lyn S; Copp, Andrew J

    2016-03-28

    Although peri-conceptional folic acid (FA) supplementation can prevent a proportion of neural tube defects (NTD), there is increasing evidence that many NTD are FA non-responsive. The vitamin-like molecule inositol may offer a novel approach to preventing FA-non-responsive NTD. Inositol prevented NTD in a genetic mouse model, and was well tolerated by women in a small study of NTD recurrence. In the present study, we report the Prevention of Neural Tube Defects by Inositol (PONTI) pilot study designed to gain further experience of inositol usage in human pregnancy as a preliminary trial to a future large-scale controlled trial to evaluate efficacy of inositol in NTD prevention. Study subjects were UK women with a previous NTD pregnancy who planned to become pregnant again. Of 117 women who made contact, ninety-nine proved eligible and forty-seven agreed to be randomised (double-blind) to peri-conceptional supplementation with inositol plus FA or placebo plus FA. In total, thirty-three randomised pregnancies produced one NTD recurrence in the placebo plus FA group (n 19) and no recurrences in the inositol plus FA group (n 14). Of fifty-two women who declined randomisation, the peri-conceptional supplementation regimen and outcomes of twenty-two further pregnancies were documented. Two NTD recurred, both in women who took only FA in their next pregnancy. No adverse pregnancy events were associated with inositol supplementation. The findings of the PONTI pilot study encourage a large-scale controlled trial of inositol for NTD prevention, but indicate the need for a careful study design in view of the unwillingness of many high-risk women to be randomised.

  15. Prevention of neural tube defects with folic acid: The Chinese experience.

    PubMed

    Ren, Ai-Guo

    2015-08-08

    Neural tube defects (NTDs) are a group of congenital malformations of the central nervous system that are caused by the closure failure of the embryonic neural tube by the 28(th) day of conception. Anencephaly and spina bifida are the two major subtypes. Fetuses with anencephaly are often stillborn or electively aborted due to prenatal diagnosis, or they die shortly after birth. Most infants with spina bifida are live-born and, with proper surgical treatment, can survive into adulthood. However, these children often have life-long physical disabilities. China has one of the highest prevalence of NTDs in the world. Inadequate dietary folate intake is believed to be the main cause of the cluster. Unlike many other countries that use staple fortification with folic acid as the public health strategy to prevent NTDs, the Chinese government provides all women who have a rural household registration and who plan to become pregnant with folic acid supplements, free of charge, through a nation-wide program started in 2009. Two to three years after the initiation of the program, the folic acid supplementation rate increased to 85% in the areas of the highest NTD prevalence. The mean plasma folate level of women during early and mid-pregnancy doubled the level before the program was introduced. However, most women began taking folic acid supplements when they knew that they were pregnant. This is too late for the protection of the embryonic neural tube. In a post-program survey of the women who reported folic acid supplementation, less than a quarter of the women began taking supplements prior to pregnancy, indicating that the remaining three quarters of the fetuses remained unprotected during the time of neural tube formation. Therefore, staple food fortification with folic acid should be considered as a priority in the prevention of NTDs.

  16. A systematic approach for the prevention and treatment of formation damage caused by asphaltene deposition

    SciTech Connect

    Leontaritis, K.J.; Amaefule, J.O.; Charles, R.E. )

    1994-08-01

    Asphaltene plugging is a known cause of near-wellbore formation damage. Deposited asphaltenes can reduce effective hydrocarbon mobility by (1) blocking the pore throats; (2) adsorbing onto the rock, thereby altering the formation wettability from water-wet to oil-wet; and (3) increasing hydrocarbon viscosity by nucleating water-in-oil emulsions. Asphaltene flocculation and deposition can be avoided in some, but not all, cases. Some formation damage resulting from asphaltene plugging is permanent and hence must be prevented rather than treated. Prevention of asphaltene-induced formation damage should be started in the early stages of drilling and well completion, once the oil is known to be asphaltenic. This paper presents a systematic approach to successful diagnosis, prevention, and mitigation of asphaltene problems during recovery of asphaltenic oils. A mechanism of asphaltene flocculation and deposition is proposed and analyzed, and the previously defined concept of asphaltene deposition envelope is further refined. Diagnostic technology is presented that can test the compatibility of drilling and completion fluids with any asphaltenic oil. Important issues that need to be considered in the design of treatments for asphaltene removal are discussed. Finally, the paper presents a methodology for restoring unfavorable wettability changes caused by asphaltene deposition.

  17. TRF2 dysfunction elicits DNA damage responses associated with senescence in proliferating neural cells and differentiation of neurons.

    PubMed

    Zhang, Peisu; Furukawa, Katsutoshi; Opresko, Patricia L; Xu, Xiangru; Bohr, Vilhelm A; Mattson, Mark P

    2006-04-01

    Telomeres are specialized structures at the ends of chromosomes that consist of tandem repeats of the DNA sequence TTAGGG and several proteins that protect the DNA and regulate the plasticity of the telomeres. The telomere-associated protein TRF2 (telomeric repeat binding factor 2) is critical for the control of telomere structure and function; TRF2 dysfunction results in the exposure of the telomere ends and activation of ATM (ataxia telangiectasin mutated)-mediated DNA damage response. Recent findings suggest that telomere attrition can cause senescence or apoptosis of mitotic cells, but the function of telomeres in differentiated neurons is unknown. Here, we examined the impact of telomere dysfunction via TRF2 inhibition in neurons (primary embryonic hippocampal neurons) and mitotic neural cells (astrocytes and neuroblastoma cells). We demonstrate that telomere dysfunction induced by adenovirus-mediated expression of dominant-negative TRF2 (DN-TRF2) triggers a DNA damage response involving the formation of nuclear foci containing phosphorylated histone H2AX and activated ATM in each cell type. In mitotic neural cells DN-TRF2 induced activation of both p53 and p21 and senescence (as indicated by an up-regulation of beta-galactosidase). In contrast, in neurons DN-TRF2 increased p21, but neither p53 nor beta-galactosidase was induced. In addition, TRF2 inhibition enhanced the morphological, molecular and biophysical differentiation of hippocampal neurons. These findings demonstrate divergent molecular and physiological responses to telomere dysfunction in mitotic neural cells and neurons, indicate a role for TRF2 in regulating neuronal differentiation, and suggest a potential therapeutic application of inhibition of TRF2 function in the treatment of neural tumors.

  18. Pathophysiogenesis of Mesial Temporal Lobe Epilepsy: Is Prevention of Damage Antiepileptogenic?

    PubMed Central

    Curia, G.; Lucchi, C.; Vinet, J.; Gualtieri, F.; Marinelli, C.; Torsello, A.; Costantino, L.; Biagini*,, G.

    2014-01-01

    Temporal lobe epilepsy (TLE) is frequently associated with hippocampal sclerosis, possibly caused by a primary brain injury that occurred a long time before the appearance of neurological symptoms. This type of epilepsy is characterized by refractoriness to drug treatment, so to require surgical resection of mesial temporal regions involved in seizure onset. Even this last therapeutic approach may fail in giving relief to patients. Although prevention of hippocampal damage and epileptogenesis after a primary event could be a key innovative approach to TLE, the lack of clear data on the pathophysiological mechanisms leading to TLE does not allow any rational therapy. Here we address the current knowledge on mechanisms supposed to be involved in epileptogenesis, as well as on the possible innovative treatments that may lead to a preventive approach. Besides loss of principal neurons and of specific interneurons, network rearrangement caused by axonal sprouting and neurogenesis are well known phenomena that are integrated by changes in receptor and channel functioning and modifications in other cellular components. In particular, a growing body of evidence from the study of animal models suggests that disruption of vascular and astrocytic components of the blood-brain barrier takes place in injured brain regions such as the hippocampus and piriform cortex. These events may be counteracted by drugs able to prevent damage to the vascular component, as in the case of the growth hormone secretagogue ghrelin and its analogues. A thoroughly investigation on these new pharmacological tools may lead to design effective preventive therapies. PMID:24251566

  19. DNA damage in mammalian neural stem cells leads to astrocytic differentiation mediated by BMP2 signaling through JAK-STAT.

    PubMed

    Schneider, Leonid; Pellegatta, Serena; Favaro, Rebecca; Pisati, Federica; Roncaglia, Paola; Testa, Giuseppe; Nicolis, Silvia K; Finocchiaro, Gaetano; d'Adda di Fagagna, Fabrizio

    2013-01-01

    The consequences of DNA damage generation in mammalian somatic stem cells, including neural stem cells (NSCs), are poorly understood despite their potential relevance for tissue homeostasis. Here, we show that, following ionizing radiation-induced DNA damage, NSCs enter irreversible proliferative arrest with features of cellular senescence. This is characterized by increased cytokine secretion, loss of stem cell markers, and astrocytic differentiation. We demonstrate that BMP2 is necessary to induce expression of the astrocyte marker GFAP in irradiated NSCs via a noncanonical signaling pathway engaging JAK-STAT. This is promoted by ATM and antagonized by p53. Using a SOX2-Cre reporter mouse model for cell-lineage tracing, we demonstrate irradiation-induced NSC differentiation in vivo. Furthermore, glioblastoma assays reveal that irradiation therapy affects the tumorigenic potential of cancer stem cells by ablating self-renewal and inducing astroglial differentiation.

  20. SIRT3 mediates decrease of oxidative damage and prevention of ageing in porcine fetal fibroblasts.

    PubMed

    Xie, Xiaoxian; Wang, Liangliang; Zhao, Binggong; Chen, Yangyang; Li, Jiaqi

    2017-05-15

    Sirtuin 3 (SIRT3) is a mitochondria-specific protein required for the deacetylation of metabolic enzymes and the action of oxidative phosphorylation by acting as a nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase. SIRT3 increases oxidative stress resistance and prevents mitochondrial decay associated with ageing in response to caloric restriction. However, the effects of SIRT3 on oxidative damage and ageing are not well understood. We investigated the physiological functions of porcine SIRT3 on the damage and ageing in porcine fetal fibroblasts (PFFs). Overexpression and knockdown of SIRT3 were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis, respectively. All cells were treated with three different stress reagents 12-o-tetradecanoylphorbol-13-acetate (TPA), methanesulfonic acid methylester (MMS), and tert-butylhydroperoxide (t-BHP), respectively, and then examined by flow cytometry following JC-1 (5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazol-carbocyanine iodide) staining. SIRT3 overexpression enhanced the ability of superoxide dismutase 2 (SOD2) to reduce cellular reactive oxygen species (ROS), which further decreased the damage to the membranes and the organelles of the cells, especially to mitochondria. It inhibited the initial decrease of mitochondrial membrane potential, and prevented the decrease of adenosine triphosphate (ATP) production and activity of Nampt. In contrast, SIRT3 knockdown reduced the ability of SOD2 to increase cellular ROS which was directly correlated with stress-induced oxidative damage and ageing in PFFs. Our findings identify one function of SIRT3 in PFFs was to dampen cytotoxicity, and, therefore, to decrease oxidative damage and attenuate ageing possibly by enhancing the activity of SOD2. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Mucus and pepsin role in gastric damage prevention by H2-receptor antagonists and antiulcer drugs.

    PubMed

    Impicciatore, M; Morini, G; Chiavarini, M; Plazzi, P V; Agosti, A; Soldani, G

    1984-01-01

    The effects of cimetidine and ranitidine, alone or combined with sulglycotide or carbenoxolone, and those of 16,16-dimethyl prostaglandin E2 were investigated on mucosal lesions induced in pylorus-ligated rats. The drugs were administered orally after pylorus ligation; 3 hr later the animals were killed, the stomachs removed and examined for the presence of mucosal lesions. Volume, pH, total acidity, pepsin, free and barrier mucus were determined. H2-antagonists both at nonantisecretory and antisecretory doses failed to prevent gastric mucosal lesions or to affect significantly mucus and pepsin. Sulglycotide and carbenoxolone inhibited pepsin secretion, the latter enhanced barrier mucus and both reduced lesion severity. A nearly complete prevention of mucosal damage was observed after anti-secretory doses of cimetidine plus sulglycotide or carbenoxolone. Data obtained compared with those of 16,16-dimethyl prostaglandin E2 suggest that mucus and pepsin might have a partial role in ulcer prevention.

  2. Understanding the causes and prevention of neural tube defects: Insights from the splotch mouse model.

    PubMed

    Greene, Nicholas D E; Massa, Valentina; Copp, Andrew J

    2009-04-01

    Splotch mutant mice develop neural tube defects (NTDs), comprising exencephaly and/or spina bifida, as well as neural crest-related defects and abnormalities of limb musculature. Defects in splotch mice result from mutations in Pax3, and some human NTDs may also result from mutations in the human PAX3 gene. Pax3 encodes a transcription factor whose function may influence expression of multiple downstream genes associated with a variety of cellular properties (including apoptosis, adhesion, proliferation, and differentiation), that could be important for neural tube closure. The frequency of NTDs varies between mutant alleles and is also influenced by genetic background and environmental factors. Notably, splotch provides a model for folic acid-preventable NTDs, and conversely, dietary folate deficiency exacerbates NTDs. Understanding the molecular and cellular basis of splotch NTDs, as well as the mechanisms by which the frequency of defects is influenced by genetic and environmental factors (such as sub-optimal folate status), may provide insight into the causation of these severe congenital malformations in humans.

  3. The continuing challenge of understanding, preventing, and treating neural tube defects.

    PubMed

    Wallingford, John B; Niswander, Lee A; Shaw, Gary M; Finnell, Richard H

    2013-03-01

    Human birth defects are a major public health burden: The Center for Disease Control estimates that 1 of every 33 United States newborns presents with a birth defect, and worldwide the estimate approaches 6% of all births. Among the most common and debilitating of human birth defects are those affecting the formation of the neural tube, the precursor to the central nervous system. Neural tube defects (NTDs) arise from a complex combination of genetic and environmental interactions. Although substantial advances have been made in the prevention and treatment of these malformations, NTDs remain a substantial public health problem, and we are only now beginning to understand their etiology. Here, we review the process of neural tube development and how defects in this process lead to NTDs, both in humans and in the animal models that serve to inform our understanding of these processes. The insights we are gaining will help generate new intervention strategies to tackle the clinical challenges and to alleviate the personal and societal burdens that accompany these defects.

  4. Melatonin prevents neural tube defects in the offspring of diabetic pregnancy.

    PubMed

    Liu, Shangming; Guo, Yuji; Yuan, Qiuhuan; Pan, Yan; Wang, Liyan; Liu, Qian; Wang, Fuwu; Wang, Jingjing; Hao, Aijun

    2015-11-01

    Melatonin, an endogenous neurohormone secreted by the pineal gland, has a variety of physiological functions and neuroprotective effects. However, its protective role on the neural tube defects (NTDs) was not very clear. The aim of this study was to investigate the effects of melatonin on the incidence of NTDs (including anencephaly, encephalocele, and spina bifida) of offspring from diabetic pregnant mice as well as its underlying mechanisms. Pregnant mice were given 10 mg/kg melatonin by daily i.p. injection from embryonic day (E) 0.5 until being killed on E11.5. Here, we showed that melatonin decreased the NTDs (especially exencephaly) rate of embryos exposed to maternal diabetes. Melatonin stimulated proliferation of neural stem cells (NSCs) under hyperglycemic condition through the extracellular regulated protein kinases (ERK) pathway. Furthermore, as a direct free radical scavenger, melatonin decreased apoptosis of NSCs exposed to hyperglycemia. In the light of these findings, it suggests that melatonin supplementation may play an important role in the prevention of neural malformations in diabetic pregnancy.

  5. Neural network burst pressure prediction in impact damaged Kevlar/epoxy bottles from acoustic emission amplitude data

    SciTech Connect

    Walker, J.L.; Workman, G.L.; Russell, S.S.

    1994-12-31

    Acoustic emission (AE) signal analysis has been used to measure the effect of impact damage on the burst pressure of 5.75 inch diameter filament wound Kevlar/epoxy pressure vessels. A calibrated dead weight drop fixture, featuring both sharp and blunt hemispherical impact tups, generated impact damages with energies up to twenty ft-lb{sub f} in the mid hoop region of each vessel. Burst pressures were obtained by hydrostatically testing twenty-seven damaged and undamaged bottles, eleven of which were filled with inert propellant to simulate a rocket motor. Burst pressure prediction models were developed by correlating the differential AE amplitude distributions, Generated during the first pressure ramp to 25% of the expected burst pressure for the undamaged vessels, to known burst pressures using back propagation neural networks. Independent networks were created for the inert propellant filled vessels and the unfilled vessels using a small subset of each during the training phases. The remaining bottles served as the test sets. The eleven filled vessels had an average prediction error of 5.6%, while the unfilled bottles averaged 5.4%. Both of these results were within the 95% prediction interval, but a portion of the vessel burst pressure errors were greater than the {+-}5% worst case error obtained in previous work. in conclusion, the AE amplitude distribution data collected at low proof loads provided a suitable input for neural network burst pressure prediction in damaged and undamaged Kevlar/epoxy bottles. This included pressure vessels both with and without propellant backing. Work is ongoing to decrease the magnitude of the prediction error through network restructuring.

  6. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    SciTech Connect

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu; Boyer, Arthur; Liu, Fei

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  7. Inositol prevents folate-resistant neural tube defects in the mouse.

    PubMed

    Greene, N D; Copp, A J

    1997-01-01

    Clinical trials demonstrate that up to 70% of neural tube defects (NTDs) can be prevented by folic acid supplementation in early pregnancy, whereas the remaining NTDs are resistant to folate. Here, we show that a second vitamin, myo-inositol, is capable of significantly reducing the incidence of spinal NTDs in curly tail mice, a genetic model of folate-resistant NTDs. Inositol increases flux through the inositol/lipid cycle, stimulating protein kinase C activity and upregulating expression of retinoic acid receptor beta, specifically in the caudal portion of the embryonic hindgut. This reduces the delay in closure of the posterior neuropore, the embryonic defect that is known to lead directly to spina bifida in curly tail embryos. Our findings reveal a molecular pathway of NTD prevention and suggest the possible efficacy of combined treatment with folate and inositol in overcoming the majority of human NTDs.

  8. Apple juice concentrate prevents oxidative damage and impaired maze performance in aged mice.

    PubMed

    Tchantchou, Flaubert; Chan, Amy; Kifle, Lydia; Ortiz, Daniela; Shea, Thomas B

    2005-12-01

    Oxidative stress contributes to age-related cognitive decline. In some instances, consumption of fruits and vegetables rich in antioxidant can provide superior protection than supplementation with purified antioxidants. Our prior studies have shown that supplementation with apple juice concentrate (AJC) alleviates oxidative damage and cognitive decline in a transgenic murine model compromised in endogenous antioxidant potential when challenged with a vitamin-deficient, oxidative stress-promoting diet. Herein, we demonstrate that AJC, administered in drinking water, is neuroprotective in normal, aged mice. Normal mice aged either 9-10 months or 2-2.5 years were maintained for 1 month on a complete diet or a diet lacking folate and vitamin E and containing iron as a pro-oxidant, after which oxidative damage was assayed by thiobarbituric acid-reactive substances and cognitive decline as assayed by performance in a standard Y-maze. Mice 9-12 months of age were unaffected by the deficient diet, while older mice demonstrated statistically-increased oxidative damage and poorer performance in a Y maze test. Supplementation with AJC prevented these neurodegenerative effects. These data are consistent with normal aged individuals being susceptible to neurodegeneration following dietary compromise such as folate deficiency, and a hastened onset of neurodegeneration in those individuals harboring a genetic risk factor such as ApoE deficiency. These findings also support the efficacy of antioxidant supplementation, including consumption of antioxidant-rich foods such as apples, in preventing the decline in cognitive performance that accompanies normal aging.

  9. Preventing damage to miniature-loudspeaker by means of dynamic detection of excessive diaphragm displacement.

    PubMed

    Tsai, Yu-Ting; Pawar, S J; Wang, Chi-Chang; Huang, Jin H

    2017-03-01

    The rapid development of consumer electronics and the extensive use of mobile devices require the ample use of miniature-loudspeakers for audio applications. The demand for better sound pushes manufacturers to design digital signal processing (DSP) chips (smart amplifiers), which in turn could cause unpleasant sound due to distortion and parameter nonlinearity or transducer damage caused by large diaphragm excursion or voice-coil (VC) burn. This article presents a methodology for nonlinear parameter estimation using an inverse method and displacement limiter for large VC displacement-dependent transducer damage prevention. A set of transduction equations is employed to inversely determine parameters using a polynomial expression. The appropriate selection of an objective function incorporating the unknown vector of nonlinear parameters leads to the adjoint problem that requires a gradient solution. A numerical solver is provided to obtain the VC displacement, current, and derivatives using a robust hybrid spline differential method. The dynamic limiter is proposed to control the peak values of the VC velocity so as to limit an excessive displacement which prevents impulsive damage to the receiver and further application of the DSP board. Numerical and experimental results indicate that the proposed method has high efficiency and can be widely used in transducer applications.

  10. Preventive Effects of Poloxamer 188 on Muscle Cell Damage Mechanics Under Oxidative Stress.

    PubMed

    Wong, Sing Wan; Yao, Yifei; Hong, Ye; Ma, Zhiyao; Kok, Stanton H L; Sun, Shan; Cho, Michael; Lee, Kenneth K H; Mak, Arthur F T

    2017-04-01

    High oxidative stress can occur during ischemic reperfusion and chronic inflammation. It has been hypothesized that such oxidative challenges could contribute to clinical risks such as deep tissue pressure ulcers. Skeletal muscles can be challenged by inflammation-induced or reperfusion-induced oxidative stress. Oxidative stress reportedly can lower the compressive damage threshold of skeletal muscles cells, causing actin filament depolymerization, and reduce membrane sealing ability. Skeletal muscles thus become easier to be damaged by mechanical loading under prolonged oxidative exposure. In this study, we investigated the preventive effect of poloxamer 188 (P188) on skeletal muscle cells against extrinsic oxidative challenges (H2O2). It was found that with 1 mM P188 pre-treatment for 1 h, skeletal muscle cells could maintain their compressive damage threshold. The actin polymerization dynamics largely remained stable in term of the expression of cofilin, thymosin beta 4 and profilin. Laser photoporation demonstrated that membrane sealing ability was preserved even as the cells were challenged by H2O2. These findings suggest that P188 pre-treatment can help skeletal muscle cells retain their normal mechanical integrity in oxidative environments, adding a potential clinical use of P188 against the combined challenge of mechanical-oxidative stresses. Such effect may help to prevent deep tissue ulcer development.

  11. Omega-3 prevents behavior response and brain oxidative damage in the ketamine model of schizophrenia.

    PubMed

    Zugno, A I; Chipindo, H L; Volpato, A M; Budni, J; Steckert, A V; de Oliveira, M B; Heylmann, A S; da Rosa Silveira, F; Mastella, G A; Maravai, S G; Wessler, P G; Binatti, A R; Panizzutti, B; Schuck, P F; Quevedo, J; Gama, C S

    2014-02-14

    Supplementation with omega-3 has been identified as an adjunctive alternative for the treatment of psychiatric disorders, in order to minimize symptoms. Considering the lack of understanding concerning the pathophysiology of schizophrenia, the present study hypothesized that omega 3 prevents the onset of symptoms similar to schizophrenia in young Wistar rats submitted to ketamine treatment. Moreover, the role of oxidative stress in this model was assessed. Omega-3 (0.8g/kg) or vehicle was given by orogastric gavage once daily. Both treatments were performed during 21days, starting at the 30th day of life in young rats. After 14days of treatment with omega-3 or vehicle, a concomitant treatment with saline or ketamine (25mg/kg ip daily) was started and maintained until the last day of the experiment. We evaluated the pre-pulse inhibition of the startle reflex, activity of antioxidant systems and damage to proteins and lipids. Our results demonstrate that supplementation of omega-3 prevented: decreased inhibition of startle reflex, damage to lipids in the hippocampus and striatum and damage to proteins in the prefrontal cortex. Furthermore, these changes are associated with decreased GPx in brain tissues evaluated. Together, our results suggest the prophylactic role of omega-3 against the outcome of symptoms associated with schizophrenia.

  12. Usage of Probabilistic and General Regression Neural Network for Early Detection and Prevention of Oral Cancer.

    PubMed

    Sharma, Neha; Om, Hari

    2015-01-01

    In India, the oral cancers are usually presented in advanced stage of malignancy. It is critical to ascertain the diagnosis in order to initiate most advantageous treatment of the suspicious lesions. The main hurdle in appropriate treatment and control of oral cancer is identification and risk assessment of early disease in the community in a cost-effective fashion. The objective of this research is to design a data mining model using probabilistic neural network and general regression neural network (PNN/GRNN) for early detection and prevention of oral malignancy. The model is built using the oral cancer database which has 35 attributes and 1025 records. All the attributes pertaining to clinical symptoms and history are considered to classify malignant and non-malignant cases. Subsequently, the model attempts to predict particular type of cancer, its stage and extent with the help of attributes pertaining to symptoms, gross examination and investigations. Also, the model envisages anticipating the survivability of a patient on the basis of treatment and follow-up details. Finally, the performance of the PNN/GRNN model is compared with that of other classification models. The classification accuracy of PNN/GRNN model is 80% and hence is better for early detection and prevention of the oral cancer.

  13. Puerto Rican primary physicians' knowledge about folic acid supplementation for the prevention of neural tube defects.

    PubMed

    Miranda, Ana; Dávila Torres, René R; Gorrín Peralta, José J; Montes de Longo, Idalina

    2003-12-01

    We conducted a study of a group of primary physicians in Puerto Rico to evaluate their knowledge about folic acid supplementation to prevent neural tube defects. The study design was transverse-correlational. A total of 66 primary physicians in two hospitals (public and private) participated in the study. The sample was nonrandom and opportunistic, and only those physicians present in the hospitals at the moment of distribution of the questionnaires participated. A self-administered and anonymous questionnaire was used. Descriptive statistics and cross-tabular analysis were used to describe the results of this study. Inferential statistics were also used, including Chi square and t-tests to establish the associations/differences between physician knowledge and the independent variables. Of the participants, 87.9% demonstrated an inadequate knowledge about folic acid supplementation for the prevention of neural tube defects as part of preconception care and only 12.1% demonstrated adequate knowledge. Older physicians had greater knowledge about folic acid. Also, women demonstrated greater knowledge about folic acid than did men. Most of the physicians who always recommend supplementation to their patients demonstrated a greater knowledge about folic acid, and all participants with adequate knowledge came from the public hospital. Despite a concerted effort by the Health Department of Puerto Rico to provide education in the importance of folic acid supplementation to reduce the incidence of neural tube defects, primary physicians in two Puerto Rican hospitals generally have not availed themselves of this training and showed a lack of knowledge on this important clinical issue. Copyright 2003 Wiley-Liss, Inc.

  14. Preventive effect of Coriandrum sativum on neuronal damages in pentylentetrazole-induced seizure in rats

    PubMed Central

    Pourzaki, Mojtaba; Homayoun, Mansour; Sadeghi, Saeed; Seghatoleslam, Masoumeh; Hosseini, Mahmoud; Ebrahimzadeh Bideskan, Alireza

    2017-01-01

    Objective: Coriandrum sativum (C. sativum) as a medicinal plant has been pointed to have analgesic, hypnotic and anti-oxidant effects. In the current study, a possible preventive effect of the hydro-alcoholic extract of the plant on neuronal damages was examined in pentylenetetrazole (PTZ) rat model of seizure. Materials and Methods: Forty male rats were divided into five main groups and treated by (1) saline, (2) PTZ: 100 mg/kg PTZ (i.p) and (3-5) 50, 100 and 200 mg/kg of hydro-alcoholic extract of C. sativum during seven consecutive days before PTZ injection. After electrocorticography (ECoG), the brains were removed to use for histological examination. Results: All doses of the extract reduced duration, frequency and amplitude of the burst discharges while prolonged the latency of the seizure attacks (p<0.05, p<0.01, and p<0.001). Administration of all 3 doses of the extract significantly prevented from production of dark neurons (p<0.01, and p<0.001) and apoptotic cells (p<0.05, p<0.01, and p<0.001) in different areas of the hippocampus compared to PTZ group. Conclusion: The results of this study allow us to conclude that C. sativum, because of its antioxidant properties, prevents from neuronal damages in PTZ rat model of seizure. PMID:28348967

  15. Preventive effect of Coriandrum sativum on neuronal damages in pentylentetrazole-induced seizure in rats.

    PubMed

    Pourzaki, Mojtaba; Homayoun, Mansour; Sadeghi, Saeed; Seghatoleslam, Masoumeh; Hosseini, Mahmoud; Ebrahimzadeh Bideskan, Alireza

    2017-01-01

    Coriandrum sativum (C. sativum) as a medicinal plant has been pointed to have analgesic, hypnotic and anti-oxidant effects. In the current study, a possible preventive effect of the hydro-alcoholic extract of the plant on neuronal damages was examined in pentylenetetrazole (PTZ) rat model of seizure. Forty male rats were divided into five main groups and treated by (1) saline, (2) PTZ: 100 mg/kg PTZ (i.p) and (3-5) 50, 100 and 200 mg/kg of hydro-alcoholic extract of C. sativum during seven consecutive days before PTZ injection. After electrocorticography (ECoG), the brains were removed to use for histological examination. All doses of the extract reduced duration, frequency and amplitude of the burst discharges while prolonged the latency of the seizure attacks (p<0.05, p<0.01, and p<0.001). Administration of all 3 doses of the extract significantly prevented from production of dark neurons (p<0.01, and p<0.001) and apoptotic cells (p<0.05, p<0.01, and p<0.001) in different areas of the hippocampus compared to PTZ group. The results of this study allow us to conclude that C. sativum, because of its antioxidant properties, prevents from neuronal damages in PTZ rat model of seizure.

  16. Cranberry flavonoids prevent toxic rat liver mitochondrial damage in vivo and scavenge free radicals in vitro.

    PubMed

    Lapshina, Elena A; Zamaraeva, Maria; Cheshchevik, Vitali T; Olchowik-Grabarek, Ewa; Sekowski, Szymon; Zukowska, Izabela; Golovach, Nina G; Burd, Vasili N; Zavodnik, Ilya B

    2015-06-01

    The present study was undertaken for further elucidation of the mechanisms of flavonoid biological activity, focusing on the antioxidative and protective effects of cranberry flavonoids in free radical-generating systems and those on mitochondrial ultrastructure during carbon tetrachloride-induced rat intoxication. Treatment of rats with cranberry flavonoids (7 mg/kg) during chronic carbon tetrachloride-induced intoxication led to prevention of mitochondrial damage, including fragmentation, rupture and local loss of the outer mitochondrial membrane. In radical-generating systems, cranberry flavonoids effectively scavenged nitric oxide (IC50  = 4.4 ± 0.4 µg/ml), superoxide anion radicals (IC50  = 2.8 ± 0.3 µg/ml) and hydroxyl radicals (IC50  = 53 ± 4 µg/ml). The IC50 for reduction of 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH) was 2.2 ± 0.3 µg/ml. Flavonoids prevented to some extent lipid peroxidation in liposomal membranes and glutathione oxidation in erythrocytes treated with UV irradiation or organic hydroperoxides as well as decreased the rigidity of the outer leaflet of the liposomal membranes. The hepatoprotective potential of cranberry flavonoids could be due to specific prevention of rat liver mitochondrial damage. The mitochondria-addressed effects of flavonoids might be related both to radical-scavenging properties and modulation of various mitochondrial events.

  17. Albumin administration prevents neurological damage and death in a mouse model of severe neonatal hyperbilirubinemia

    PubMed Central

    Vodret, Simone; Bortolussi, Giulia; Schreuder, Andrea B.; Jašprová, Jana; Vitek, Libor; Verkade, Henkjan J.; Muro, Andrés F.

    2015-01-01

    Therapies to prevent severe neonatal unconjugated hyperbilirubinemia and kernicterus are phototherapy and, in unresponsive cases, exchange transfusion, which has significant morbidity and mortality risks. Neurotoxicity is caused by the fraction of unconjugated bilirubin not bound to albumin (free bilirubin, Bf). Human serum albumin (HSA) administration was suggested to increase plasma bilirubin-binding capacity. However, its clinical use is infrequent due to difficulties to address its potential preventive and curative benefits, and to the absence of reliable markers to monitor bilirubin neurotoxicity risk. We used a genetic mouse model of unconjugated hyperbilirubinemia showing severe neurological impairment and neonatal lethality. We treated mutant pups with repeated HSA administration since birth, without phototherapy application. Daily intraperitoneal HSA administration completely rescued neurological damage and lethality, depending on dosage and administration frequency. Albumin infusion increased plasma bilirubin-binding capacity, mobilizing bilirubin from tissues to plasma. This resulted in reduced plasma Bf, forebrain and cerebellum bilirubin levels. We showed that, in our experimental model, Bf is the best marker to determine the risk of developing neurological damage. These results support the potential use of albumin administration in severe acute hyperbilirubinemia conditions to prevent or treat bilirubin neurotoxicity in situations in which exchange transfusion may be required. PMID:26541892

  18. MAPK15 upregulation promotes cell proliferation and prevents DNA damage in male germ cell tumors

    PubMed Central

    Ilardi, Gennaro; Acunzo, Mario; Nigita, Giovanni; Sasdelli, Federica; Celetti, Angela; Strambi, Angela; Staibano, Stefania; Croce, Carlo Maria; Chiariello, Mario

    2016-01-01

    Germ cell tumors (GCT) are the most common malignancies in males between 15 and 35 years of age. Despite the high cure rate, achieved through chemotherapy and/or surgery, the molecular basis of GCT etiology is still largely obscure. Here, we show a positive correlation between MAPK15 (ERK8; ERK7) expression and specific GCT subtypes, with the highest levels found in the aggressive embryonal carcinomas (EC). Indeed, in corresponding cellular models for EC, MAPK15 enhanced tumorigenicity in vivo and promoted cell proliferation in vitro, supporting a role for this kinase in human GCT. At molecular level, we demonstrated that endogenous MAPK15 is necessary to sustain cell cycle progression of EC cells, by limiting p53 activation and preventing the triggering of p53-dependent mechanisms resulting in cell cycle arrest. To understand MAPK15-dependent mechanisms impinging on p53 activation, we demonstrate that this kinase efficiently protects cells from DNA damage. Moreover, we show that the ability of MAPK15 to control the autophagic process is necessary for basal management of DNA damage and for tumor formation controlled by the kinase. In conclusion, our findings suggest that MAPK15 overexpression may contribute to the malignant transformation of germ cells by controlling a “stress support” autophagic pathway, able to prevent DNA damage and the consequent activation of the p53 tumor suppressor. Moreover, in light of these results, MAPK15-specific inhibitors might represent new tools to enhance the therapeutic index of cytotoxic therapy in GCT treatment, and to increase the sensitivity to DNA-damaging drugs in other chemotherapy-resistant human tumors. PMID:26988910

  19. Neural correlates of evaluation associated with promotion and prevention regulatory focus.

    PubMed

    Cunningham, William A; Raye, Carol L; Johnson, Marcia K

    2005-06-01

    Higgins (1997, 1998) proposed two self-regulatory or motivational systems--one sensitive to gains (promotion) and one sensitive to losses (prevention). To examine the interaction of motivation and cognition, participants made good/bad or abstract/concrete judgments about concepts during fMRI scanning. After scanning, participants rated the extent to which each stimulus was good and bad and completed a questionnaire that measured promotion/prevention orientation. For each participant, contrast maps were generated representing the association between neural processing and stimulus valence (good/bad), and these factors were then regressed against participants' promotion and prevention focus scores. For the good/bad but not for the abstract/concrete task, promotion focus was associated with greater activity in the amygdala, anterior cingulate, and extrastriate cortex for positive stimuli, and prevention focus was associated with activity in the same regions for negative stimuli; these results are consistent with the hypothesis that the way in which evaluative information is processed is influenced by individual differences in self-regulatory focus.

  20. The Drosophila Sp8 transcription factor Buttonhead prevents premature differentiation of intermediate neural progenitors

    PubMed Central

    Xie, Yonggang; Li, Xiaosu; Zhang, Xian; Mei, Shaolin; Li, Hongyu; Urso, Andreacarola; Zhu, Sijun

    2014-01-01

    Intermediate neural progenitor cells (INPs) need to avoid differentiation and cell cycle exit while maintaining restricted developmental potential, but mechanisms preventing differentiation and cell cycle exit of INPs are not well understood. In this study, we report that the Drosophila homolog of mammalian Sp8 transcription factor Buttonhead (Btd) prevents premature differentiation and cell cycle exit of INPs in Drosophila larval type II neuroblast (NB) lineages. We show that the loss of Btd leads to elimination of mature INPs due to premature differentiation of INPs into terminally dividing ganglion mother cells. We provide evidence to demonstrate that Btd prevents the premature differentiation by suppressing the expression of the homeodomain protein Prospero in immature INPs. We further show that Btd functions cooperatively with the Ets transcription factor Pointed P1 to promote the generation of INPs. Thus, our work reveals a critical mechanism that prevents premature differentiation and cell cycle exit of Drosophila INPs. DOI: http://dx.doi.org/10.7554/eLife.03596.001 PMID:25285448

  1. Prevention of neural tube defects in the UK: a missed opportunity

    PubMed Central

    Morris, JK; Rankin, J; Draper, ES; Kurinczuk, JJ; Springett, A; Tucker, D; Wellesley, D; Wreyford, B; Wald, NJ

    2016-01-01

    Objective In 1991, the Medical Research Council (MRC) Vitamin Study demonstrated that folic acid taken before pregnancy and in early pregnancy reduced the risk of a neural tube defect (NTD). We aimed to estimate the number of NTD pregnancies that would have been prevented if flour had been fortified with folic acid in the UK from 1998 as it had been in the USA. Design Estimates of NTD prevalence, the preventive effect of folic acid and the proportion of women taking folic acid supplements before pregnancy were used to predict the number of NTD pregnancies that would have been prevented if folic acid fortification had been implemented. Setting Eight congenital anomaly registers in England and Wales. Main outcome measures The prevalence of pregnancies with an NTD in the UK and the number of these pregnancies that would have been prevented if folic acid fortification had been implemented. Results From 1991 to 2012, the prevalence of NTD pregnancies was 1.28 (95% CI 1.24 to 1.31) per 1000 total births (19% live births, 81% terminations and 0.5% stillbirths and fetal deaths ≥20 weeks’ gestation). If the USA levels of folic acid fortification from 1998 onwards had been adopted in the UK, an estimated 2014 fewer NTD pregnancies would have occurred. Conclusions Failure to implement folic acid fortification in the UK has caused, and continues to cause, avoidable terminations of pregnancy, stillbirths, neonatal deaths and permanent serious disability in surviving children. PMID:26681697

  2. Preventing gut leakiness by oats supplementation ameliorates alcohol-induced liver damage in rats.

    PubMed

    Keshavarzian, A; Choudhary, S; Holmes, E W; Yong, S; Banan, A; Jakate, S; Fields, J Z

    2001-11-01

    Only 30% of alcoholics develop liver disease (ALD) suggesting that additional factors are needed. Endotoxin is one such factor, but its etiology is unclear. Since the gut is the main source of endotoxin, we sought to determine whether an increase in intestinal permeability (leaky gut) is required for alcohol-induced endotoxemia and liver injury and whether the gut leakiness is preventable. For 10 weeks, rats received by gavage increasing alcohol doses (to 8 g/kg/day) and either oats (10 g/kg) or chow b.i.d. Intestinal permeability was then assessed by urinary excretion of lactulose and mannitol. Liver injury was evaluated histologically, biochemically (liver fat content), and by serum aminotransferase. Alcohol caused gut leakiness that was associated with both endotoxemia and liver injury. Oats prevented these changes. We conclude that chronic gavage of alcohol in rats is a simple experimental model that mimics key aspects of ALD, including endotoxemia and liver injury, and can be useful to study possible mechanisms of endotoxemia in ALD. Since preventing the gut leakiness by oats also prevented the endotoxemia and ameliorated liver damage in rat, our results suggest that alcohol-induced gut leakiness 1) may cause alcohol-induced endotoxemia and liver injury and 2) may be the critical cofactor in the 30% of alcoholics who develop ALD. Further studies are needed to determine whether ALD in humans can be prevented by preventing alcohol-induced gut leakiness, studies that should lead to the development of useful therapeutic agents for the prevention of ALD.

  3. Radiation damage to neuronal cells: Simulating the energy deposition and water radiolysis in a small neural network.

    PubMed

    Belov, Oleg V; Batmunkh, Munkhbaatar; Incerti, Sébastien; Lkhagva, Oidov

    2016-12-01

    Radiation damage to the central nervous system (CNS) has been an on-going challenge for the last decades primarily due to the issues of brain radiotherapy and radiation protection for astronauts during space travel. Although recent findings revealed a number of molecular mechanisms associated with radiation-induced impairments in behaviour and cognition, some uncertainties exist in the initial neuronal cell injury leading to the further development of CNS malfunction. The present study is focused on the investigation of early biological damage induced by ionizing radiations in a sample neural network by means of modelling physico-chemical processes occurring in the medium after exposure. For this purpose, the stochastic simulation of incident particle tracks and water radiation chemistry was performed in realistic neuron phantoms constructed using experimental data on cell morphology. The applied simulation technique is based on using Monte-Carlo processes of the Geant4-DNA toolkit. The calculations were made for proton, (12)C, and (56)Fe particles of different energy within a relatively wide range of linear energy transfer values from a few to hundreds of keV/μm. The results indicate that the neuron morphology is an important factor determining the accumulation of microscopic radiation dose and water radiolysis products in neurons. The estimation of the radiolytic yields in neuronal cells suggests that the observed enhancement in the levels of reactive oxygen species may potentially lead to oxidative damage to neuronal components disrupting the normal communication between cells of the neural network. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Neural network based system for damage identification and location in structural and mechanical systems

    SciTech Connect

    Farrar, C.R.; Doebling, S.W.; Prime, M.B.; Cornwell, P.; Kam, M.; Straser, E.G.; Hoerst, B.C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Recent advances in wireless, remotely monitored data acquisition systems coupled with the development of vibration-based damage detection algorithms make the possibility of self- or remotely-monitored structures and mechanical systems appear to be within the capabilities of current technology. However, before such a system can be relied upon to perform this monitoring, the variability of the vibration properties that are the basis for the damage detection algorithm must be understood and quantified. This understanding is necessary so that the artificial intelligence/expert system that is employed to discriminate when changes in modal properties are indicative of damage will not yield false indications of damage. To this end, this project has focused on developing statistical methods for quantifying variability in identified vibration proper ties of structural and mechanical systems.

  5. Epicardial Ablation: Prevention of Phrenic Nerve Damage by Pericardial Injection of Saline and the Use of a Steerable Sheath

    PubMed Central

    Neven, Kars; Fernandez-Armenta, Juan; Andreu, David; Berruezo, Antonio

    2014-01-01

    Because of the close proximity of the phrenic nerve to the pericardium, phrenic nerve damage caused by epicardial ablation can easily occur. We report two cases of epicardial VT ablation where pericardial injection of saline, combined with the use of a steerable sheath, successfully prevents the phrenic nerve from being damaged. PMID:24669108

  6. Epicardial ablation: prevention of phrenic nerve damage by pericardial injection of saline and the use of a steerable sheath.

    PubMed

    Neven, Kars; Fernandez-Armenta, Juan; Andreu, David; Berruezo, Antonio

    2014-03-01

    Because of the close proximity of the phrenic nerve to the pericardium, phrenic nerve damage caused by epicardial ablation can easily occur. We report two cases of epicardial VT ablation where pericardial injection of saline, combined with the use of a steerable sheath, successfully prevents the phrenic nerve from being damaged.

  7. Multiple organ damage caused by tumor necrosis factor and prevented by prior neutrophil depletion

    SciTech Connect

    Mallick, A.A.; Ishizaka, A.; Stephens, K.E.; Hatherill, J.R.; Tazelaar, H.D.; Raffin, T.A. )

    1989-05-01

    The effect of TNF on nonpulmonary multiple organ damage (MOD) was studied. Since polymorphonuclear leukocytes (PMN) are thought to play an important role in septic or TNF-induced MOD, we investigated both neutrophil sufficient (PMN+) and neutropenic (PMN-) guinea pigs. Sepsis was induced by Escherichia coli administration (2 x 10(9)/kg) or recombinant human TNF (1.4 x 10(6) U/kg) was infused into PMN+ and PMN- guinea pigs. During necropsy, the PMN+/TNF and PMN+/E coli animals exhibited marked damage in the adrenal glands, kidneys and liver as evidenced by hemorrhage, congestion, and PMN sequestration on histopathologic examination. There was also increased tissue albumin accumulation in the adrenal glands, kidneys, spleen, heart, and liver as demonstrated by {sup 125}I-labeled albumin determinations. In contrast, the PMN-/TNF group did not reveal histopathologic damage in any organ system and there was no abnormal organ accumulation of {sup 125}I-albumin. However, in PMN-/E coli animals, marked histopathologic damage in the adrenal glands and liver was evident. Furthermore, there were marked accumulations of {sup 125}I-albumin in the adrenals, heart, kidneys, liver, and spleen. Moreover, the PMN-/E coli guinea pigs had a much greater accumulation (p less than 0.01) of {sup 125}I-albumin in the kidneys than any other group including the PMN+/E coli group. Thus, nonpulmonary MOD in guinea pigs is caused by TNF administration and can be prevented by PMN depletion. However, while E coli administration also caused marked nonpulmonary MOD in neutrophil sufficient guinea pigs, equivalent or greater damage was produced in neutropenic animals. This suggests that while TNF-induced MOD may be primarily mediated by PMN, E coli-induced MOD seems to be mediated by more than PMN.

  8. Multiple organ damage caused by tumor necrosis factor and prevented by prior neutrophil depletion.

    PubMed

    Mallick, A A; Ishizaka, A; Stephens, K E; Hatherill, J R; Tazelaar, H D; Raffin, T A

    1989-05-01

    The effect of TNF on nonpulmonary multiple organ damage (MOD) was studied. Since polymorphonuclear leukocytes (PMN) are thought to play an important role in septic or TNF-induced MOD, we investigated both neutrophil sufficient (PMN+) and neutropenic (PMN-) guinea pigs. Sepsis was induced by Escherichia coli administration (2 x 10(9)/kg) or recombinant human TNF (1.4 x 10(6) U/kg) was infused into PMN+ and PMN- guinea pigs. During necropsy, the PMN+/TNF and PMN+/E coli animals exhibited marked damage in the adrenal glands, kidneys and liver as evidenced by hemorrhage, congestion, and PMN sequestration on histopathologic examination. There was also increased tissue albumin accumulation in the adrenal glands, kidneys, spleen, heart, and liver as demonstrated by 125I-labeled albumin determinations. In contrast, the PMN-/TNF group did not reveal histopathologic damage in any organ system and there was no abnormal organ accumulation of 125I-albumin. However, in PMN-/E coli animals, marked histopathologic damage in the adrenal glands and liver was evident. Furthermore, there were marked accumulations of 125I-albumin in the adrenals, heart, kidneys, liver, and spleen. Moreover, the PMN-/E coli guinea pigs had a much greater accumulation (p less than 0.01) of 125I-albumin in the kidneys than any other group including the PMN+/E coli group. Thus, nonpulmonary MOD in guinea pigs is caused by TNF administration and can be prevented by PMN depletion. However, while E coli administration also caused marked nonpulmonary MOD in neutrophil sufficient guinea pigs, equivalent or greater damage was produced in neutropenic animals. This suggests that while TNF-induced MOD may be primarily mediated by PMN, E coli-induced MOD seems to be mediated by more than PMN.

  9. The use of a non-probabilistic artificial neural network to consider uncertainties in vibration-based-damage detection

    NASA Astrophysics Data System (ADS)

    Padil, Khairul H.; Bakhary, Norhisham; Hao, Hong

    2017-01-01

    The effectiveness of artificial neural networks (ANNs) when applied to pattern recognition in vibration-based damage detection has been demonstrated in many studies because they are capable of providing accurate results and the reliable identification of structural damage based on modal data. However, the use of ANNs has been questioned in terms of its reliability in the face of uncertainties in measurement and modeling data. Attempts to incorporate a probabilistic method into an ANN by treating the uncertainties as normally distributed random variables has delivered promising solutions to this problem, but the probabilistic method is less straightforward in practice because it is often not possible to obtain unbiased probabilistic distributions of the uncertainties. Moreover, the probabilistic ANN method is computationally complex, especially when generating output data. In this study, a non-probabilistic ANN is proposed to address the problem of uncertainty in vibration damage detection using ANNs. The input data for the network consist of natural frequencies and mode shapes, and the output is the Young's modulus (E values), which acts as an elemental stiffness parameter (ESP). Through the interval analysis method, the noise in measured frequencies and mode shapes are considered to be coupled rather than statistically distributed. This method calculates the interval bound (lower and upper bounds) of the ESP changes based on an interval analysis method. The ANN is used to predict the output of this interval bound by considering the uncertainties in the input parameters. To establish the relationship between the input parameters and output parameters, a possibility of damage existence (PoDE) parameter is defined for the undamaged and damaged states. A stiffness reduction factor (SRF) is also used to represent changes in the stiffness parameter. A numerical model and a laboratory-tested steel portal frame demonstrate the efficacy of the method in improving the

  10. Fucoidan Extracted from Fucus Evanescens Prevents Endotoxin-Induced Damage in a Mouse Model of Endotoxemia

    PubMed Central

    Kuznetsova, Tatyana A.; Besednova, Natalya N.; Somova, Larisa M.; Plekhova, Natalya G.

    2014-01-01

    An important problem of treating patients with endotoxemia is to find drugs to reduce the negative effects of endotoxin on the organism. We tested fucoidan (sulfated polysaccharide) from the brown alga Fucus evanescens as a potential drug in a mouse model of endotoxemia inducted by lipopolysaccharide (LPS). The survival time of mice injected with LPS increased under fucoidan treatment compared with the group of mice injected with LPS only. The preventive administration of fucoidan to mice with endotoxemia resulted in inhibition of increased levels of proinflammatory cytokines (TNFα and IL-6), as well as decreasing of the processes of hypercoagulability. The parenteral or per os administration of fucoidan resulted in decreasing the degree of microcirculatory disorders and secondary dystrophic-destructive changes in parenchymal organs of mice with endotoxemia. Taken together, these results demonstrate that fucoidan prevents endotoxin-induced damage in a mouse model of endotoxemia and increases the mice’s resistance to LPS. PMID:24492521

  11. Fucoidan extracted from Fucus evanescens prevents endotoxin-induced damage in a mouse model of endotoxemia.

    PubMed

    Kuznetsova, Tatyana A; Besednova, Natalya N; Somova, Larisa M; Plekhova, Natalya G

    2014-01-31

    An important problem of treating patients with endotoxemia is to find drugs to reduce the negative effects of endotoxin on the organism. We tested fucoidan (sulfated polysaccharide) from the brown alga Fucus evanescens as a potential drug in a mouse model of endotoxemia inducted by lipopolysaccharide (LPS). The survival time of mice injected with LPS increased under fucoidan treatment compared with the group of mice injected with LPS only. The preventive administration of fucoidan to mice with endotoxemia resulted in inhibition of increased levels of proinflammatory cytokines (TNFα and IL-6), as well as decreasing of the processes of hypercoagulability. The parenteral or per os administration of fucoidan resulted in decreasing the degree of microcirculatory disorders and secondary dystrophic-destructive changes in parenchymal organs of mice with endotoxemia. Taken together, these results demonstrate that fucoidan prevents endotoxin-induced damage in a mouse model of endotoxemia and increases the mice's resistance to LPS.

  12. Recognition of Damaged Arrow-Road Markings by Visible Light Camera Sensor Based on Convolutional Neural Network

    PubMed Central

    Vokhidov, Husan; Hong, Hyung Gil; Kang, Jin Kyu; Hoang, Toan Minh; Park, Kang Ryoung

    2016-01-01

    Automobile driver information as displayed on marked road signs indicates the state of the road, traffic conditions, proximity to schools, etc. These signs are important to insure the safety of the driver and pedestrians. They are also important input to the automated advanced driver assistance system (ADAS), installed in many automobiles. Over time, the arrow-road markings may be eroded or otherwise damaged by automobile contact, making it difficult for the driver to correctly identify the marking. Failure to properly identify an arrow-road marker creates a dangerous situation that may result in traffic accidents or pedestrian injury. Very little research exists that studies the problem of automated identification of damaged arrow-road marking painted on the road. In this study, we propose a method that uses a convolutional neural network (CNN) to recognize six types of arrow-road markings, possibly damaged, by visible light camera sensor. Experimental results with six databases of Road marking dataset, KITTI dataset, Málaga dataset 2009, Málaga urban dataset, Naver street view dataset, and Road/Lane detection evaluation 2013 dataset, show that our method outperforms conventional methods. PMID:27999301

  13. Recognition of Damaged Arrow-Road Markings by Visible Light Camera Sensor Based on Convolutional Neural Network.

    PubMed

    Vokhidov, Husan; Hong, Hyung Gil; Kang, Jin Kyu; Hoang, Toan Minh; Park, Kang Ryoung

    2016-12-16

    Automobile driver information as displayed on marked road signs indicates the state of the road, traffic conditions, proximity to schools, etc. These signs are important to insure the safety of the driver and pedestrians. They are also important input to the automated advanced driver assistance system (ADAS), installed in many automobiles. Over time, the arrow-road markings may be eroded or otherwise damaged by automobile contact, making it difficult for the driver to correctly identify the marking. Failure to properly identify an arrow-road marker creates a dangerous situation that may result in traffic accidents or pedestrian injury. Very little research exists that studies the problem of automated identification of damaged arrow-road marking painted on the road. In this study, we propose a method that uses a convolutional neural network (CNN) to recognize six types of arrow-road markings, possibly damaged, by visible light camera sensor. Experimental results with six databases of Road marking dataset, KITTI dataset, Málaga dataset 2009, Málaga urban dataset, Naver street view dataset, and Road/Lane detection evaluation 2013 dataset, show that our method outperforms conventional methods.

  14. Enzyme replacement prevents neonatal death, liver damage, and osteoporosis in murine homocystinuria.

    PubMed

    Majtan, Tomas; Hůlková, Helena; Park, Insun; Krijt, Jakub; Kožich, Viktor; Bublil, Erez M; Kraus, Jan P

    2017-08-16

    Classical homocystinuria (HCU) is an inborn error of sulfur amino acid metabolism caused by deficient activity of cystathionine β-synthase (CBS), resulting in an accumulation of homocysteine and a concomitant decrease of cystathionine and cysteine in blood and tissues. In mice, the complete lack of CBS is neonatal lethal. In this study, newborn CBS knockout (KO) mice were treated with recombinant polyethyleneglycolylated human truncated CBS (PEG-CBS). Full survival of the treated KO mice, along with a positive impact on metabolite levels in plasma, liver, brain, and kidneys, was observed. The PEG-CBS treatment prevented an otherwise fatal liver disease characterized by steatosis, death of hepatocytes, and ultrastructural abnormalities of endoplasmic reticulum and mitochondria. Furthermore, treatment of the KO mice for 5 mo maintained the plasma metabolite balance and completely prevented osteoporosis and changes in body composition that characterize both the KO model and human patients. These findings argue that early treatment of patients with HCU with PEG-CBS may prevent clinical symptoms of the disease possibly without the need of dietary protein restriction.-Majtan, T., Hůlková, H., Park, I., Krijt, J., Kožich, V., Bublil, E. M., Kraus, J. P. Enzyme replacement prevents neonatal death, liver damage, and osteoporosis in murine homocystinuria. © FASEB.

  15. Prevention of DNA damage and anticarcinogenic activity of Activia(®) in a preclinical model.

    PubMed

    Limeiras, S M A; Ogo, F M; Genez, L A L; Carreira, C M; Oliveira, E J T; Pessatto, L R; Neves, S C; Pesarini, J R; Schweich, L C; Silva, R A; Cantero, W B; Antoniolli-Silva, A C M B; Oliveira, R J

    2017-03-22

    Colorectal cancer is a global public health issue. Studies have pointed to the protective effect of probiotics on colorectal carcinogenesis. Activia(®) is a lacto probiotic product that is widely consumed all over the world and its beneficial properties are related, mainly, to the lineage of traditional yoghurt bacteria combined with a specific bacillus, DanRegularis, which gives the product a proven capacity to intestinal regulation in humans. The aim of this study was to evaluate the antigenotoxic, antimutagenic, and anticarcinogenic proprieties of the Activia product, in response to damage caused by 1,2-dimethylhydrazine (DMH) in Swiss mice. Activia does not have shown antigenotoxic activity. However, the percent of DNA damage reduction, evaluated by the antimutagenicity assay, ranged from 69.23 to 96.15% indicating effective chemopreventive action. Activia reduced up to 79.82% the induction of aberrant crypt foci by DMH. Facing the results, it is inferred that Activia facilitates the weight loss, prevents DNA damage and pre-cancerous lesions in the intestinal mucosa.

  16. A single-dose live-attenuated vaccine prevents Zika virus pregnancy transmission and testis damage.

    PubMed

    Shan, Chao; Muruato, Antonio E; Jagger, Brett W; Richner, Justin; Nunes, Bruno T D; Medeiros, Daniele B A; Xie, Xuping; Nunes, Jannyce G C; Morabito, Kaitlyn M; Kong, Wing-Pui; Pierson, Theodore C; Barrett, Alan D; Weaver, Scott C; Rossi, Shannan L; Vasconcelos, Pedro F C; Graham, Barney S; Diamond, Michael S; Shi, Pei-Yong

    2017-09-22

    Zika virus infection during pregnancy can cause congenital abnormities or fetal demise. The persistence of Zika virus in the male reproductive system poses a risk of sexual transmission. Here we demonstrate that live-attenuated Zika virus vaccine candidates containing deletions in the 3' untranslated region of the Zika virus genome (ZIKV-3'UTR-LAV) prevent viral transmission during pregnancy and testis damage in mice, as well as infection of nonhuman primates. After a single-dose vaccination, pregnant mice challenged with Zika virus at embryonic day 6 and evaluated at embryonic day 13 show markedly diminished levels of viral RNA in maternal, placental, and fetal tissues. Vaccinated male mice challenged with Zika virus were protected against testis infection, injury, and oligospermia. A single immunization of rhesus macaques elicited a rapid and robust antibody response, conferring complete protection upon challenge. Furthermore, the ZIKV-3'UTR-LAV vaccine candidates have a desirable safety profile. These results suggest that further development of ZIKV-3'UTR-LAV is warranted for humans.Zika virus infection can result in congenital disorders and cause disease in adults, and there is currently no approved vaccine. Here Shan et al. show that a single dose of a live-attenuated Zika vaccine prevents infection, testis damage and transmission to the fetus during pregnancy in different animal models.

  17. Cytoprotective drugs in the prevention of ethanol-induced experimental gastric mucosal damage: a morphological study.

    PubMed

    Gaudio, E; Carpino, F; Petrozza, V; Bianchi, G; Alberico, P; Melis, M; Carlei, F; Lygidakis, N J

    1993-04-01

    Various so-called "cytoprotective" agents (sucralfate, carbenoxolone, 16,16-dimethyl-PGE2, sulglycotide and Maalox TC) have been tested on rats, with the aim of quantifying their capability to prevent ethanol-induced gastric mucosal damage. Rats fasted for 48 hours received 1 ml of 80% ethanol by oral gavage, after prior oral treatment with placebo or one of the above-mentioned drugs u.i.d. for 5 consecutive days. Six hours after ethanol administration, the animals were sacrificed and the stomach was removed and processed for computerized macroscopic assessment of the damaged surface and for structural (light microscopy) and ultrastructural (scanning and transmission electron microscopy) studies. The results obtained demonstrate that ethanol injury caused extensive mucosal necrosis of the glandular region of the stomach, an event that was effectively reduced in rats treated with 16,16-dm-PGE2, carbenoxolone or sulglycotide. These drugs appeared to preserve the mucosa, with morphology comparable to that of normal noninjured rats - in contrast to the other drugs investigated. These data confirm the cytoprotective properties of sulglycotide in particular, which was the most potent agent for preventing the development of ethanol-induced acute lesions of the gastric mucosa.

  18. Preventive effect of tert-butylhydroquinone on scrotal heat-induced damage in mouse testes.

    PubMed

    Li, Y S; Piao, Y G; Nagaoka, K; Watanabe, G; Taya, K; Li, C M

    2013-11-11

    To investigate the effect of tert-butylhydroquinone (tBHQ) on scrotal heat-induced damage in mice testes, 8-week-old mice were divided into 6 groups and administered with or without tBHQ through diet (10 mg/g), intraperitoneal injection (100 mg/kg body weight), or intratestis injection (12.5 mg/kg body weight), respectively. After single scrotal heat exposure (42 °C for 25 min), trunk blood and testes were collected 48 h later. The testes from diet and intraperitoneal tBHQ-treated mice showed more compact interstitial cells and less germ cell loss in the seminiferous epithelium compared with their corresponding non-tBHQ groups. However, intratestis tBHQ treatment showed no marked difference relative to the non-treatment group. In addition, pre-treatment of tBHQ caused lower testosterone concentrations and reduced expression of cytochrome P450 17α-hydroxylase/17,20-lyase (CYP 17) compared to the corresponding non-tBHQ groups. The results indicated that scrotal heat-induced structural damage was partly prevented by pre-treatment of tBHQ, which could be used as an effective antioxidant for preventing scrotal heat-mediated male infertility.

  19. Sulforaphane prevents pulmonary damage in response to inhaled arsenic by activating the Nrf2-defense response

    SciTech Connect

    Zheng, Yi; Tao, Shasha; Lian, Fangru; Chau, Binh T.; Chen, Jie; Sun, Guifan; Fang, Deyu; Lantz, R. Clark; Zhang, Donna D.

    2012-12-15

    Exposure to arsenic is associated with an increased risk of lung disease. Novel strategies are needed to reduce the adverse health effects associated with arsenic exposure in the lung. Nrf2, a transcription factor that mediates an adaptive cellular defense response, is effective in detoxifying environmental insults and prevents a broad spectrum of diseases induced by environmental exposure to harmful substances. In this report, we tested whether Nrf2 activation protects mice from arsenic-induced toxicity. We used an in vivo arsenic inhalation model that is highly relevant to low environmental human exposure to arsenic-containing dusts. Two-week exposure to arsenic-containing dust resulted in pathological alterations, oxidative DNA damage, and mild apoptotic cell death in the lung; all of which were blocked by sulforaphane (SF) in an Nrf2-dependent manner. Mechanistically, SF-mediated activation of Nrf2 alleviated inflammatory responses by modulating cytokine production. This study provides strong evidence that dietary intervention targeting Nrf2 activation is a feasible approach to reduce adverse health effects associated with arsenic exposure. -- Highlights: ► Exposed to arsenic particles and/or SF have elevated Nrf2 and its target genes. ► Sulforaphane prevents pathological alterations, oxidative damage and cell death. ► Sulforaphane alleviates infiltration of inflammatory cells into the lungs. ► Sulforaphane suppresses arsenic-induced proinflammatory cytokine production.

  20. Prevention of neural tube defects in Lrp2 mutant mouse embryos by folic acid supplementation.

    PubMed

    Sabatino, Julia A; Stokes, Bethany A; Zohn, Irene E

    2017-01-20

    Neural tube defects (NTDs) are among the most common structural birth defects in humans and are caused by the complex interaction of genetic and environmental factors. Periconceptional supplementation with folic acid can prevent NTDs in both mouse models and human populations. A better understanding of how genes and environmental factors interact is critical toward development of rational strategies to prevent NTDs. Low density lipoprotein-related protein 2 (Lrp2) is involved in endocytosis of the folic acid receptor among numerous other nutrients and ligands. We determined the effect of iron and/or folic acid supplementation on the penetrance of NTDs in the Lrp2(null) mouse model. The effects of supplementation on folate and iron status were measured in embryos and dams. Periconceptional dietary supplementation with folic acid did not prevent NTDs in Lrp2 mutant embryos, whereas high levels of folic acid supplementation by intraperitoneal injection reduced incidence of NTDs. Importantly, Lrp2(null/+) dams had reduced blood folate levels that improved with daily intraperitoneal injections of folate but not dietary supplementation. On the contrary, iron supplementation had no effect on the penetrance of NTDs in Lrp2 mutant embryos and negated the preventative effect of folic acid supplementation in Lrp2(null/null) mutants. Lrp2 is required for folate homeostasis in heterozygous dams and high levels of supplementation prevents NTDs. Furthermore, high levels of dietary iron supplementation interfered with folic acid supplementation negating the positive effects of supplementation in this model. Birth Defects Research 109:16-26, 2017. © 2016 The Authors Birth Defects Published by Wiley Periodicals, Inc. © 2016 The Authors Birth Defects Research Published by Wiley Periodicals, Inc.

  1. Preventive Healthcare: A Neural Network Analysis of Behavioral Habits and Chronic Diseases

    PubMed Central

    Raghupathi, Viju; Raghupathi, Wullianallur

    2017-01-01

    The research aims to explore the association between behavioral habits and chronic diseases, and to identify a portfolio of risk factors for preventive healthcare. The data is taken from the Behavioral Risk Factor Surveillance System (BRFSS) database of the Centers for Disease Control and Prevention, for the year 2012. Using SPSS Modeler, we deploy neural networks to identify strong positive and negative associations between certain chronic diseases and behavioral habits. The data for 475,687 records from BRFS database included behavioral habit variables of consumption of soda and fruits/vegetables, alcohol, smoking, weekly working hours, and exercise; chronic disease variables of heart attack, stroke, asthma, and diabetes; and demographic variables of marital status, income, and age. Our findings indicate that with chronic conditions, behavioral habits of physical activity and fruit and vegetable consumption are negatively associated; soda, alcohol, and smoking are positively associated; and income and age are positively associated. We contribute to individual and national preventive healthcare by offering a portfolio of significant behavioral risk factors that enable individuals to make lifestyle changes and governments to frame campaigns and policies countering chronic conditions and promoting public health. PMID:28178194

  2. Preventive Healthcare: A Neural Network Analysis of Behavioral Habits and Chronic Diseases.

    PubMed

    Raghupathi, Viju; Raghupathi, Wullianallur

    2017-02-06

    The research aims to explore the association between behavioral habits and chronic diseases, and to identify a portfolio of risk factors for preventive healthcare. The data is taken from the Behavioral Risk Factor Surveillance System (BRFSS) database of the Centers for Disease Control and Prevention, for the year 2012. Using SPSS Modeler, we deploy neural networks to identify strong positive and negative associations between certain chronic diseases and behavioral habits. The data for 475,687 records from BRFS database included behavioral habit variables of consumption of soda and fruits/vegetables, alcohol, smoking, weekly working hours, and exercise; chronic disease variables of heart attack, stroke, asthma, and diabetes; and demographic variables of marital status, income, and age. Our findings indicate that with chronic conditions, behavioral habits of physical activity and fruit and vegetable consumption are negatively associated; soda, alcohol, and smoking are positively associated; and income and age are positively associated. We contribute to individual and national preventive healthcare by offering a portfolio of significant behavioral risk factors that enable individuals to make lifestyle changes and governments to frame campaigns and policies countering chronic conditions and promoting public health.

  3. Patched1 is required in neural crest cells for the prevention of orofacial clefts.

    PubMed

    Metzis, Vicki; Courtney, Andrew D; Kerr, Markus C; Ferguson, Charles; Rondón Galeano, Maria C; Parton, Robert G; Wainwright, Brandon J; Wicking, Carol

    2013-12-15

    Defects such as cleft lip with or without cleft palate (CL/P) are among the most common craniofacial birth defects in humans. In many cases, the underlying molecular and cellular mechanisms that result in these debilitating anomalies remain largely unknown. Perturbed hedgehog (HH) signalling plays a major role in craniofacial development, and mutations in a number of pathway constituents underlie craniofacial disease. In particular, mutations in the gene encoding the major HH receptor and negative regulator, patched1 (PTCH1), are associated with both sporadic and familial forms of clefting, yet relatively little is known about how PTCH1 functions during craniofacial morphogenesis. To address this, we analysed the consequences of conditional loss of Ptch1 in mouse neural crest cell-derived facial mesenchyme. Using scanning electron microscopy (SEM) and live imaging of explanted facial primordia, we captured defective nasal pit invagination and CL in mouse embryos conditionally lacking Ptch1. Our analysis demonstrates interactions between HH and FGF signalling in the development of the upper lip, and reveals cell-autonomous and non-autonomous roles mediated by Ptch1. In particular, we show that deletion of Ptch1 in the facial mesenchyme alters cell morphology, specifically in the invaginating nasal pit epithelium. These findings highlight a critical link between the neural crest cells and olfactory epithelium in directing the morphogenesis of the mammalian lip and nose primordia. Importantly, these interactions are critically dependent on Ptch1 function for the prevention of orofacial clefts.

  4. Folic acid prevents neural tube defects: international comparison of awareness among obstetricians/gynecologists and urologists.

    PubMed

    Kondo, Atsuo; Kamihira, Osamu; Gotoh, Momokazu; Ozawa, Hideo; Lee, Tchun Yong; Lin, Alex T-L; Kim, Seung-Ryong; Lin, Ho-Hsiung

    2007-02-01

    It has been suggested that periconceptional intake of folic acid prevents risks of having fetuses afflicted with neural tube defects. We aim to internationally investigate knowledge of the role of folic acid and attitudes toward the life-style of young women of child-bearing age among obstetricians/gynecologists and urologists. A questionnaire was sent to obstetricians/gynecologists and urologists residing in Japan, South Korea, Taiwan, North America, Europe, Australia and New Zealand by post or e-mail. The investigation was conducted between December 2002 and November 2004. A mean of 91% of obstetricians/gynecologists and 56% of urologists are aware of the role of folic acid, where Asian urologists knew less compared to those of North America, Europe, Australia and New Zealand. A majority of doctors always, or occasionally, recommend folic acid supplements or multivitamins, well-balanced meals, and the cessation of smoking and drinking. An average of 85% of doctors believes information on folic acid should be disseminated to young women. A majority of obstetricians/gynecologists and urologists know the importance of periconceptional folic acid in reducing the risk of neural tube defects and have been advising young women to improve their lifestyle.

  5. Folic Acid supplementation and pregnancy: more than just neural tube defect prevention.

    PubMed

    Greenberg, James A; Bell, Stacey J; Guan, Yong; Yu, Yan-Hong

    2011-01-01

    Folate (vitamin B(9)) is an essential nutrient that is required for DNA replication and as a substrate for a range of enzymatic reactions involved in amino acid synthesis and vitamin metabolism. Demands for folate increase during pregnancy because it is also required for growth and development of the fetus. Folate deficiency has been associated with abnormalities in both mothers (anemia, peripheral neuropathy) and fetuses (congenital abnormalities). This article reviews the metabolism of folic acid, the appropriate use of folic acid supplementation in pregnancy, and the potential benefits of folic acid, as well as the possible supplementation of l-methylfolate for the prevention of pregnancy-related complications other than neural tube defects.

  6. Is 5-methyltetrahydrofolate an alternative to folic acid for the prevention of neural tube defects?

    PubMed

    Obeid, Rima; Holzgreve, Wolfgang; Pietrzik, Klaus

    2013-09-01

    Women have higher requirements for folate during pregnancy. An optimal folate status must be achieved before conception and in the first trimester when the neural tube closes. Low maternal folate status is causally related to neural tube defects (NTDs). Many NTDs can be prevented by increasing maternal folate intake in the preconceptional period. Dietary folate is protective, but recommending increasing folate intake is ineffective on a population level particularly during periods of high demands. This is because the recommendations are often not followed or because the bioavailability of food folate is variable. Supplemental folate [folic acid (FA) or 5-methyltetrahydrofolate (5-methylTHF)] can effectively increase folate concentrations to the level that is considered to be protective. FA is a synthetic compound that has no biological functions unless it is reduced to dihydrofolate and tetrahydrofolate. Unmetabolized FA appears in the circulation at doses of >200 μg. Individuals show wide variations in their ability to reduce FA. Carriers of certain polymorphisms in genes related to folate metabolism or absorption can better benefit from 5-methylTHF instead of FA. 5-MethylTHF [also known as (6S)-5-methylTHF] is the predominant natural form that is readily available for transport and metabolism. In contrast to FA, 5-methylTHF has no tolerable upper intake level and does not mask vitamin B12 deficiency. Supplementation of the natural form, 5-methylTHF, is a better alternative to supplementation of FA, especially in countries not applying a fortification program. Supplemental 5-methylTHF can effectively improve folate biomarkers in young women in early pregnancy in order to prevent NTDs.

  7. Metyrapone prevents brain damage induced by status epilepticus in the rat lithium-pilocarpine model.

    PubMed

    García-García, Luis; Shiha, Ahmed A; Fernández de la Rosa, Rubén; Delgado, Mercedes; Silván, Ágata; Bascuñana, Pablo; Bankstahl, Jens P; Gomez, Francisca; Pozo, Miguel A

    2017-09-01

    The status epilepticus (SE) induced by lithium-pilocarpine is a well characterized rodent model of the human temporal lobe epilepsy (TLE) which is accompanied by severe brain damage. Stress and glucocorticoids markedly contribute to exacerbate neuronal damage induced by seizures but the underlying mechanisms are poorly understood. Herein we sought to investigate whether a single administration of metyrapone (150 mg/kg, i.p.), an 11β-hydroxylase inhibitor, enzyme involved in the peripheral and central synthesis of corticosteroids, had neuroprotective properties in this model. Two experiments were carried out. In exp. 1, metyrapone was administered 3 h before pilocarpine injection whereas in exp. 2, metyrapone administration took place at the onset of the SE. In both experiments, 3 days after the insult, brain metabolism was assessed by in vivo 2-deoxy-2-[(18)F]fluoro-d-glucose ([(18)F]FDG) positron emission tomography (PET). Brains were processed for analyses of markers of hippocampal integrity (Nissl staining), neurodegeneration (Fluoro-Jade C), astrogliosis (glial fibrillary acidic protein (GFAP) immunohistochemistry) and, for a marker of activated microglia by in vitro autoradiography with the TSPO (18 kDa translocator protein) radioligand [(18)F]GE180. The SE resulted in a consistent hypometabolism in hippocampus, cortex and striatum and neuronal damage, hippocampal neurodegeneration, neuronal death and gliosis. Interestingly, metyrapone had neuroprotective effects when administered before, but not after the insult. In summary, we conclude that metyrapone administration prior but not after the SE protected from brain damage induced by SE in the lithium-pilocarpine model. Therefore, it seems that the effect of metyrapone is preventive in nature and likely related to its antiseizure properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Functionality and Robustness of Injured Connectomic Dynamics in C. elegans: Linking Behavioral Deficits to Neural Circuit Damage

    PubMed Central

    Kunert, James M.; Maia, Pedro D.; Kutz, J. Nathan

    2017-01-01

    Using a model for the dynamics of the full somatic nervous system of the nematode C. elegans, we address how biological network architectures and their functionality are degraded in the presence of focal axonal swellings (FAS) arising from neurodegenerative disease and/or traumatic brain injury. Using biophysically measured FAS distributions and swelling sizes, we are able to simulate the effects of injuries on the neural dynamics of C. elegans, showing how damaging the network degrades its low-dimensional dynamical responses. We visualize these injured neural dynamics by mapping them onto the worm’s low-dimensional postures, i.e. eigenworm modes. We show that a diversity of functional deficits arise from the same level of injury on a connectomic network. Functional deficits are quantified using a statistical shape analysis, a procrustes analysis, for deformations of the limit cycles that characterize key behaviors such as forward crawling. This procrustes metric carries information on the functional outcome of injuries in the model. Furthermore, we apply classification trees to relate injury structure to the behavioral outcome. This makes testable predictions for the structure of an injury given a defined functional deficit. More critically, this study demonstrates the potential role of computational simulation studies in understanding how neuronal networks process biological signals, and how this processing is impacted by network injury. PMID:28056097

  9. Prevention of neural tube defects in the UK: a missed opportunity.

    PubMed

    Morris, J K; Rankin, J; Draper, E S; Kurinczuk, J J; Springett, A; Tucker, D; Wellesley, D; Wreyford, B; Wald, N J

    2016-07-01

    In 1991, the Medical Research Council (MRC) Vitamin Study demonstrated that folic acid taken before pregnancy and in early pregnancy reduced the risk of a neural tube defect (NTD). We aimed to estimate the number of NTD pregnancies that would have been prevented if flour had been fortified with folic acid in the UK from 1998 as it had been in the USA. Estimates of NTD prevalence, the preventive effect of folic acid and the proportion of women taking folic acid supplements before pregnancy were used to predict the number of NTD pregnancies that would have been prevented if folic acid fortification had been implemented. Eight congenital anomaly registers in England and Wales. The prevalence of pregnancies with an NTD in the UK and the number of these pregnancies that would have been prevented if folic acid fortification had been implemented. From 1991 to 2012, the prevalence of NTD pregnancies was 1.28 (95% CI 1.24 to 1.31) per 1000 total births (19% live births, 81% terminations and 0.5% stillbirths and fetal deaths ≥20 weeks' gestation). If the USA levels of folic acid fortification from 1998 onwards had been adopted in the UK, an estimated 2014 fewer NTD pregnancies would have occurred. Failure to implement folic acid fortification in the UK has caused, and continues to cause, avoidable terminations of pregnancy, stillbirths, neonatal deaths and permanent serious disability in surviving children. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. 3,3'-Dihydroxyisorenieratene and isorenieratene prevent UV-induced DNA damage in human skin fibroblasts.

    PubMed

    Wagener, Sarah; Völker, Tanja; De Spirt, Silke; Ernst, Hansgeorg; Stahl, Wilhelm

    2012-08-01

    Skin cancer is among the most frequent neoplastic malignancies and exposure to UV irradiation is a major risk factor. In addition to topical sunscreens, photoprotection by dietary antioxidants such as carotenoids or polyphenols has been suggested as a means of prevention. Isorenieratene (IR) and dihydroxyisorenieratene (DHIR) are aromatic carotenoids with particular antioxidant properties produced by Brevibacterium linens. The aim of this study was to investigate the photoprotective and antioxidant activities of DHIR and IR in comparison to the nonaromatic carotenoid lutein in human dermal fibroblasts. Incubation of the cells with DHIR and IR significantly decreased the UV-induced formation of cyclobutane pyrimidine dimers and formation of DNA strand breaks. Lipid oxidation was lowered as determined by the formation of malondialdehyde as a biomarker. Both aromatic carotenoids also prevented oxidatively generated damage to DNA as demonstrated by a decrease in DNA strand breaks associated with the formation of oxidized DNA bases. These data highlight the multifunctional photoprotective properties of aromatic carotenoids, which may be suitable natural compounds for the prevention of skin cancer.

  11. Experimental study on asphaltene adsorption onto formation rock: An approach to asphaltene formation damage prevention

    SciTech Connect

    Piro, G.; Barberis Canonica, L.; Galbariggi, G.; Bertero, L.; Carniani, C.

    1995-12-31

    In this paper, through a comparative study on Static vs Dynamic adsorption of asphaltene onto formation rock, it is reported how, for the particular asphaltene/formation rock system here considered, the Dynamic asphaltene adsorption onto formation rock is a continuous phenomenon by which the quantity of adsorbed asphaltene increases continuously. In the authors` opinion this rather remarkable adsorption behavior may contribute to asphaltene formation damage. In the hypothesis that prevention may represent a more economical approach than removal, in this work is also reported a possible prevention approach based on formation rock treatment by means of specific chemicals more apt than asphaltenes to be adsorbed onto rock. As preliminary demonstration, with the aim at assessing qualitatively the potential of their approach, the authors have pre-treated the rock by means of commercially available asphaltene dispersant and flocculation inhibitors. Albeit the chosen additives are not commercialized on the base of their specific adsorption feature, a prevention effect has been effectively found. Experimental set ups and procedures used as a base for a test able to rank chemicals with respect to their asphaltene adsorption inhibitive effects are also reported.

  12. Asphaltene adsorption onto formation rock: An approach to asphaltene formation damage prevention

    SciTech Connect

    Piro, G.; Canonico, L.B.; Galbariggi, G.; Bertero, L.; Carniani, C.

    1996-08-01

    In this paper, through a comparative study on static vs. dynamic adsorption of asphaltene onto formation rock, the authors report how, for the particular asphaltene/formation rock system considered, the dynamic asphaltene adsorption onto formation rock is a continuous phenomenon by which the quantity of adsorbed asphaltene increases continuously. In their opinion, this rather remarkable adsorption behavior may contribute to asphaltene formation damage. In the hypothesis that prevention may represent a more economical approach than removal, they also report a possible prevention approach based on formation rock treatment by means of specific chemicals more apt than asphaltenes to be adsorbed onto rock. As a preliminary demonstration, with the aim of assessing qualitatively the potential of their approach, they have pretreated the rock with commercially available asphaltene dispersant and flocculation inhibitors. Although the chosen additives are not commercialized on the basis of their specific adsorption feature, a modest prevention effect has been found. Experimental set-ups and procedures used as a base for a test to rank chemicals with respect to their asphaltene adsorption inhibitive effects are also reported.

  13. Preventing Damaging Pressure Gradients at the Walls of an Inflatable Space System

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    2000-01-01

    An inflatable structural system to deploy a space system such as a solar shield, an antenna or another similar instrument, requires a stiffening element after it is extended by the inflated gas pressure. The stiffening element has to be packaged in a folded configuration before the deployment. It must be relatively small, lightweight, non-damaging to the inflated system, and be able to become stiff in a short time. One stiffening method is to use a flexible material inserted in the deployable system, which, upon a temperature curing, can become stiff and is capable to support the entire structure. There are two conditions during the space operations when the inflated volume could be damaged: during the transonic region of the launch phase and when the curing of the rigidizing element occurs. In both cases, an excess of pressure within the volume containing the rigid element could burst the walls of the low-pressure gas inflated portion of the system. This paper investigates those two conditions and indicates the vents, which will prevent those damaging overpressures. Vent openings at the non-inflated volumes have been calculated for the conditions existing during the launch. Those vents allow the initially folded volume to exhaust the trapped atmospheric gas at approximately the same rate as the ambient pressure drops. That will prevent pressure gradients across the container walls which otherwise could be as high as 14.7 psi. The other condition occurring during the curing of the stiffening element has been investigated. This has required the testing of the element to obtain the gas generation during the curing and the transformation from a pliable material to a rigid one. The tested material is a composite graphite/epoxy weave. The outgassing of the uncured sample at 121C was carried with the Cahn Microbalance and with other outgassing facilities including the micro-CVCM ASTM E-595 facility. The tests provided the mass of gas evolved during the test. That data

  14. Preventing Damaging Pressure Gradients at the Walls of an Inflatable Space System

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    An inflatable structural system to deploy a space system such as a solar shield, an antenna or another similar instrument requires a stiffening element after it is extended by the inflated gas pressure. The stiffening element has to be packaged in folded configuration before the deployment. It must be relatively small, lightweight, non-damaging to the inflated system and be able to become stiff in a short time. One stiffening method is to use a flexible material inserted in the deployable system, which, upon a temperature curing, can become stiff and is capable of supporting the entire structure. There are two conditions during the space operations when the inflated volume could be damaged: during the transonic region of the launch phase and when the curing of the rigidizing element occurs. In both cases, an excess of pressure within the volume containing the rigid element could burst the walls of the low-pressure gas inflated portion of the system. This paper investigates those two conditions and indicates the vents, which will prevent those damaging overpressures. Vent openings at the non-inflated volumes have been calculated for the conditions existing during the launch. Those vents allow the initially folded volume to exhaust the trapped atmospheric gas at approximately the same rate as the ambient pressure drops. That will prevent pressure gradients across the container walls which otherwise could be as high as 14.7 psi. The other condition occurring during the curing of the stiffening element has been investigated. This has required the testing of the element to obtain the gas generation during the curing and the transformation from a pliable material to a rigid on The tested material is a composite graphite/epoxy weave. The outgassing of the uncured sample at 121 deg Celcius was carried with the Cahn Microbalance and with other outgassing facilities including the micro-CVCM ASTM E-595 facility. The test provided the mass of gas evolved during the test. That

  15. Neural Hyperactivity of the Central Auditory System in Response to Peripheral Damage.

    PubMed

    Zhao, Yi; Song, Qiang; Li, Xinyi; Li, Chunyan

    2016-01-01

    It is increasingly appreciated that cochlear pathology is accompanied by adaptive responses in the central auditory system. The cause of cochlear pathology varies widely, and it seems that few commonalities can be drawn. In fact, despite intricate internal neuroplasticity and diverse external symptoms, several classical injury models provide a feasible path to locate responses to different peripheral cochlear lesions. In these cases, hair cell damage may lead to considerable hyperactivity in the central auditory pathways, mediated by a reduction in inhibition, which may underlie some clinical symptoms associated with hearing loss, such as tinnitus. Homeostatic plasticity, the most discussed and acknowledged mechanism in recent years, is most likely responsible for excited central activity following cochlear damage.

  16. Dietary antioxidants prevent age-related retinal pigment epithelium actin damage and blindness in mice lacking αvβ5 integrin

    PubMed Central

    Yu, Chia-Chia; Nandrot, Emeline F.; Dun, Ying; Finnemann, Silvia C.

    2011-01-01

    In the aging human eye, oxidative damage and accumulation of pro-oxidant lysosomal lipofuscin cause functional decline of the retinal pigment epithelium (RPE), which contributes to age-related macular degeneration. In mice with an RPE-specific phagocytosis defect due to lack of αvβ5 integrin receptors, RPE accumulation of lipofuscin suggests that the age-related blindness we previously described in this model may also result from oxidative stress. Cellular and molecular targets of oxidative stress in the eye remain poorly understood. Here we identify actin among 4-hydroxynonenal (HNE) adducts formed specifically in β5−/− RPE but not neural retina with age. HNE modification directly correlated with loss of resistance of actin to detergent extraction, suggesting cytoskeletal damage in aging RPE. Dietary enrichment with natural antioxidants grapes or marigold extract containing macular pigments lutein/zeaxanthin was sufficient to prevent HNE-adduct formation, actin solubility, lipofuscin accumulation, and age-related cone and rod photoreceptor dysfunction in β5−/− mice. Acute generation of HNE-adducts directly destabilized actin but not tubulin cytoskeletal elements of RPE cells. These findings identify destabilization of the actin cytoskeleton as a consequence of physiological, sublethal oxidative burden of RPE cells in vivo that is associated with age-related blindness and that can be prevented by consuming an antioxidant-rich diet. PMID:22178979

  17. Dietary antioxidants prevent age-related retinal pigment epithelium actin damage and blindness in mice lacking αvβ5 integrin.

    PubMed

    Yu, Chia-Chia; Nandrot, Emeline F; Dun, Ying; Finnemann, Silvia C

    2012-02-01

    In the aging human eye, oxidative damage and accumulation of pro-oxidant lysosomal lipofuscin cause functional decline of the retinal pigment epithelium (RPE), which contributes to age-related macular degeneration. In mice with an RPE-specific phagocytosis defect due to lack of αvβ5 integrin receptors, RPE accumulation of lipofuscin suggests that the age-related blindness we previously described in this model may also result from oxidative stress. Cellular and molecular targets of oxidative stress in the eye remain poorly understood. Here we identify actin among 4-hydroxynonenal (HNE) adducts formed specifically in β5(-/-) RPE but not in neural retina with age. HNE modification directly correlated with loss of resistance of actin to detergent extraction, suggesting cytoskeletal damage in aging RPE. Dietary enrichment with natural antioxidants, grapes or marigold extract containing macular pigments lutein/zeaxanthin, was sufficient to prevent HNE-adduct formation, actin solubility, lipofuscin accumulation, and age-related cone and rod photoreceptor dysfunction in β5(-/-) mice. Acute generation of HNE adducts directly destabilized actin but not tubulin cytoskeletal elements of RPE cells. These findings identify destabilization of the actin cytoskeleton as a consequence of a physiological, sublethal oxidative burden of RPE cells in vivo that is associated with age-related blindness and that can be prevented by consuming an antioxidant-rich diet. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model

    PubMed Central

    Papasavvas, Christoforos A.; Wang, Yujiang; Trevelyan, Andrew J.; Kaiser, Marcus

    2016-01-01

    Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics. PMID:26465514

  19. Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model

    NASA Astrophysics Data System (ADS)

    Papasavvas, Christoforos A.; Wang, Yujiang; Trevelyan, Andrew J.; Kaiser, Marcus

    2015-09-01

    Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics.

  20. Folic acid supplement use in the prevention of neural tube defects.

    PubMed

    Delany, C; McDonnell, R; Robson, M; Corcoran, S; Fitzpatrick, C; De La Harpe, D

    2011-01-01

    In 2008, planned folic acid fortification for the prevention of Neural Tube Defects (NTD) was postponed. Concurrently, the economic recession may have affected dietary folic acid intake, placing increased emphasis on supplement use. This study examined folic acid supplement use in 2009. A cross-sectional survey of 300 ante-natal women was undertaken to assess folic acid knowledge and use. Associations between demographic, obstetric variables and folic acid knowledge and use were examined. A majority, 284/297 (96%), had heard of folic acid, and 178/297 (60%) knew that it could prevent NTD. Most, 270/297 (91%) had taken it during their pregnancy, but only 107/297 (36%) had used it periconceptionally. Being older, married, planned pregnancy and better socioeconomic status were associated with periconceptional use. Periconceptional folic acid use in 2009 was very low, little changed from economic status were associated with periconceptional use. Periconceptional folic acid use in 2009 was very low, little changed from earlier years. Continuous promotion efforts are necessary. Close monitoring of folic acid intake and NTD rates is essential, particularly in the absence of fortification.

  1. Supplementation with an antioxidant cocktail containing coenzyme Q prevents plasma oxidative damage induced by soccer.

    PubMed

    Tauler, Pedro; Ferrer, Miguel D; Sureda, Antoni; Pujol, Pere; Drobnic, Franchek; Tur, Josep A; Pons, Antoni

    2008-11-01

    The aim of the study was to determine the effects of an antioxidant supplementation, which includes coenzyme Q(10), on plasma and neutrophil oxidative stress and the antioxidant response after a soccer match. Nineteen voluntary male pre-professional footballers were randomly and double-blinded treated with either a multivitamin and mineral supplement (n = 8) or a placebo (n = 11). After the 3 months of supplementation, the sportsmen played a friendly soccer match of 60 min. The 3-month supplementation induced higher plasma ascorbate and coenzyme Q levels when compared to the placebo group. Antioxidant supplementation influenced plasma oxidative stress markers because they were lower in the supplemented group than in the placebo one after the match. The football match induced decreased neutrophil vitamin E levels and catalase and glutathione peroxidase activities but increased glutathione reductase activity. Antioxidant diet supplementation prevented plasma oxidative damage but did not influence the neutrophil response to a football match.

  2. Resistant starch: a functional food that prevents DNA damage and chemical carcinogenesis.

    PubMed

    Navarro, S D; Mauro, M O; Pesarini, J R; Ogo, F M; Oliveira, R J

    2015-03-06

    Resistant starch is formed from starch and its degradation products and is not digested or absorbed in the intestine; thus, it is characterized as a fiber. Because fiber intake is associated with the prevention of DNA damage and cancer, the potential antigenotoxic, antimutagenic, and anticarcinogenic capabilities of resistant starch from green banana flour were evaluated. Animals were treated with 1,2-dimethylhydrazine and their diet was supplemented with 10% green banana flour according to the following resistant starch protocols: pretreatment, simultaneous treatment, post-treatment, and pre + continuous treatment. The results demonstrated that resistant starch is not genotoxic, mutagenic, or carcinogenic. The results suggest that resistant starch acts through desmutagenesis and bio-antimutagenesis, as well as by reducing aberrant crypt foci, thereby improving disease prognosis. These findings imply that green banana flour has therapeutic properties that should be explored for human dietary applications.

  3. Impact of a Novel PI3-KINASE Inhibitor in Preventing Mitochondrial DNA Damage and Damage Associated Molecular Pattern Accumulation: Results from the Biochronicity Project.

    PubMed

    Black, George E; Sokol, Kyle K; Moe, Donald M; Simmons, Jon; Muscat, David; Pastukh, Victor; Capley, Gina; Gorodnya, Olena; Ruchko, Mykhalo; Roth, Mark B; Gillespie, Mark; Martin, Matthew J

    2017-05-22

    Despite improvements in the management of severely injured patients, development of multiple organ dysfunction syndrome (MODS) remains a morbid complication of traumatic shock. One of the key attributes of MODS is a profound bioenergetics crisis, for which the mediators and mechanisms are poorly understood. We hypothesized that metabolic uncoupling using an experimental PI3-kinase inhibitor, LY294002 (LY), may prevent mitochondrial abnormalities that lead to the generation of mitochondrial DNA (mtDNA) damage and the release of mtDNA damage associated molecular patterns (DAMPs) METHODS: 16 swine were studied using LY294002 (LY), a non-selective PI3-KI: Animals were assigned to Trauma only (TO, N=3); LY drug only (LYO, N=3); and Experimental (N=10), trauma + drug (LY+T) groups. Both trauma groups underwent laparotomy, 35% hemorrhage, severe ischemia/reperfusion injury, and protocolized resuscitation. A battery of hemodynamic, laboratory, histologic, and bioenergetic parameters were monitored. mtDNA damage was determined in lung, liver, and kidney using Southern blot analyses, while plasma mtDNA DAMP analysis employed PCR amplification of a 200 bp sequence of the mtDNA D-loop region. Relative to control animals, H+I/R produced severe, time dependent decrements in hepatic, renal, cardiovascular, and pulmonary function accompanied by severe acidosis and lactate accumulation indicative of bioenergetics insufficiency. The H-I/R-animals displayed prominent oxidative mtDNA damage in all organs studied, with the most prominent damage in the liver. mtDNA damage was accompanied by accumulation of mtDNA DAMPs in plasma. Pre-treatment of H+I/R animals with LY294002 resulted in profound metabolic suppression, with approximate 50% decreases in O2 consumption and CO2 production. In addition, it prevented organ and bioenergetics dysfunction and was associated with a significant decrease in plasma mtDNA DAMPs to the levels of control animals. These findings show that H+I/R injury in

  4. Impact of a novel phosphoinositol-3 kinase inhibitor in preventing mitochondrial DNA damage and damage-associated molecular pattern accumulation: Results from the Biochronicity Project.

    PubMed

    Black, George Edward; Sokol, Kyle K; Moe, Donald M; Simmons, Jon D; Muscat, David; Pastukh, Victor; Capley, Gina; Gorodnya, Olena; Ruchko, Mykhaylo; Roth, Mark B; Gillespie, Mark; Martin, Matthew J

    2017-10-01

    Despite improvements in the management of severely injured patients, development of multiple organ dysfunction syndrome (MODS) remains a morbid complication of traumatic shock. One of the key attributes of MODS is a profound bioenergetics crisis, for which the mediators and mechanisms are poorly understood. We hypothesized that metabolic uncoupling using an experimental phosphoinositol-3 kinase (PI3-K) inhibitor, LY294002 (LY), may prevent mitochondrial abnormalities that lead to the generation of mitochondrial DNA (mtDNA) damage and the release of mtDNA damage-associated molecular patterns (DAMPs). Sixteen swine were studied using LY, a nonselective PI3-K inhibitor. Animals were assigned to trauma only (TO, n = 3), LY drug only (LYO, n = 3), and experimental (n = 10), trauma + drug (LY + T) groups. Both trauma groups underwent laparotomy, 35% hemorrhage, severe ischemia-reperfusion injury, and protocolized resuscitation. A battery of hemodynamic, laboratory, histological, and bioenergetics parameters were monitored. Mitochondrial DNA damage was determined in lung, liver, and kidney using Southern blot analyses, whereas plasma mtDNA DAMP analysis used polymerase chain reaction amplification of a 200-bp sequence of the mtDNA D-loop region. Relative to control animals, H + I/R (hemorrhage and ischemia/reperfusion) produced severe, time-dependent decrements in hepatic, renal, cardiovascular, and pulmonary function accompanied by severe acidosis and lactate accumulation indicative of bioenergetics insufficiency. The H-I/R animals displayed prominent oxidative mtDNA damage in all organs studied, with the most prominent damage in the liver. Mitochondrial DNA damage was accompanied by accumulation of mtDNA DAMPs in plasma. Pretreatment of H + I/R animals with LY resulted in profound metabolic suppression, with approximately 50% decreases in O2 consumption and CO2 production. In addition, it prevented organ and bioenergetics dysfunction and was associated with a

  5. Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation.

    PubMed

    Amaro-Ortiz, Alexandra; Yan, Betty; D'Orazio, John A

    2014-05-15

    Being the largest and most visible organ of the body and heavily influenced by environmental factors, skin is ideal to study the long-term effects of aging. Throughout our lifetime, we accumulate damage generated by UV radiation. UV causes inflammation, immune changes, physical changes, impaired wound healing and DNA damage that promotes cellular senescence and carcinogenesis. Melanoma is the deadliest form of skin cancer and among the malignancies of highest increasing incidence over the last several decades. Melanoma incidence is directly related to age, with highest rates in individuals over the age of 55 years, making it a clear age-related disease. In this review, we will focus on UV-induced carcinogenesis and photo aging along with natural protective mechanisms that reduce amount of "realized" solar radiation dose and UV-induced injury. We will focus on the theoretical use of forskolin, a plant-derived pharmacologically active compound to protect the skin against UV injury and prevent aging symptoms by up-regulating melanin production. We will discuss its use as a topically-applied root-derived formulation of the Plectranthus barbatus (Coleus forskolii) plant that grows naturally in Asia and that has long been used in various Aryuvedic teas and therapeutic preparations.

  6. Solar radiation induced skin damage: review of protective and preventive options.

    PubMed

    Svobodová, Alena; Vostálová, Jitka

    2010-12-01

    Solar energy has a number of short- and long-term detrimental effects on skin that can result in several skin disorders. The aim of this review is to summarise current knowledge on endogenous systems within the skin for protection from solar radiation and present research findings to date, on the exogenous options for such skin photoprotection. Endogenous systems for protection from solar radiation include melanin synthesis, epidermal thickening and an antioxidant network. Existing lesions are eliminated via repair mechanisms. Cells with irreparable damage undergo apoptosis. Excessive and chronic sun exposure however can overwhelm these mechanisms leading to photoaging and the development of cutaneous malignancies. Therefore exogenous means are a necessity. Exogenous protection includes sun avoidance, use of photoprotective clothing and sufficient application of broad-spectrum sunscreens as presently the best way to protect the skin. However other strategies that may enhance currently used means of protection are being investigated. These are often based on the endogenous protective response to solar light such as compounds that stimulate pigmentation, antioxidant enzymes, DNA repair enzymes, non-enzymatic antioxidants. More research is needed to confirm the effectiveness of new alternatives to photoprotection such as use of DNA repair and antioxidant enzymes and plant polyphenols and to find an efficient way for their delivery to the skin. New approaches to the prevention of skin damage are important especially for specific groups of people such as (young) children, photosensitive people and patients on immunosuppressive therapy. Changes in public awareness on the subject too must be made.

  7. Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation

    PubMed Central

    Amaro-Ortiz, Alexandra; Yan, Betty; D’Orazio, John A.

    2015-01-01

    Being the largest and most visible organ of the body and heavily influenced by environmental factors, skin is ideal to study long-term effects of aging. Throughout our lifetime, we accumulate damage generated by UV radiation. UV causes inflammation, immune changes, physical changes, impaired wound healing and DNA damage that promotes cellular senescence and carcinogenesis. Melanoma is the deadliest form of skin cancer and among the malignancies of highest increasing incidence over the last several decades. Melanoma incidence is directly related to age, with highest rates in individuals over the age of 55 years, making it a clear age-related disease. In this review, we will focus on UV-induced carcinogenesis and photo aging along with natural protective mechanisms that reduce amount of “realized” solar radiation dose and UV-induced injury. We will focus on the theoretical use of forskolin, a plant-derived pharmacologically active compound to protect the skin against UV injury and prevent aging symptoms by up-regulating melanin production. We will discuss its use as a topically-applied root-derived formulation of the Plectranthus barbatus (Coleus forskolii) plant that grows naturally in Asia and that has long been used in various Aryuvedic teas and therapeutic preparations. PMID:24838074

  8. Preventive effect of Morinda citrifolia fruit juice on neuronal damage induced by focal ischemia.

    PubMed

    Harada, Shinichi; Hamabe, Wakako; Kamiya, Kohei; Satake, Toshiko; Yamamoto, Junichiro; Tokuyama, Shogo

    2009-03-01

    It is known that the fruit juice of Morinda citrifolia (M. citrifolia, Noni, Rubiaceae) has various pharmacological effects such as antioxidant or anti-inflammatory activities, which may help the inhibition of ischemic neuronal damage. Here, we examined the effect of the fruit juice of M. citrifolia (Noni juice) on the brain damage caused by ischemic stress in mice. Noni juice was obtained from the mature fruit grown in Okinawa (about 1.5 l/4 kg of fruit; 100% Okinawa Noni juice (ONJ). Male ddY mice were supplied with 3% or 10% juice in the drinking water for 7 d, and compared to the control group. On the 7th day, mice were subjected to 2 h of middle cerebral artery occlusion (MCAO). Interestingly, the intake of juice reduced the infarct volume as analyzed by 2,3,5-triphenyltetrazolium chloride (TTC) staining on the 3rd day of MCAO when compared to the control group. Furthermore, we found that the neurological deficit scores (NDS) were decreased after the reperfusion in the juice-supplied mice. On the other hand, the intake of juice did not affect the expression levels of antioxidant such as Cu/Zn superoxide dismutase. The present study suggests that Noni juice may have a preventive effect against cerebral ischemic stress, while further studies are needed to explain the detailed mechanism.

  9. Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy.

    PubMed

    Melli, Giorgia; Taiana, Michela; Camozzi, Francesca; Triolo, Daniela; Podini, Paola; Quattrini, Angelo; Taroni, Franco; Lauria, Giuseppe

    2008-12-01

    The study investigates if alpha-lipoic acid is neuroprotective against chemotherapy induced neurotoxicity, if mitochondrial damage plays a critical role in toxic neurodegenerative cascade, and if neuroprotective effects of alpha-lipoic acid depend on mitochondria protection. We used an in vitro model of chemotherapy induced peripheral neuropathy that closely mimic the in vivo condition by exposing primary cultures of dorsal root ganglion (DRG) sensory neurons to paclitaxel and cisplatin, two widely used and highly effective chemotherapeutic drugs. This approach allowed investigating the efficacy of alpha-lipoic acid in preventing axonal damage and apoptosis and the function and ultrastructural morphology of mitochondria after exposure to toxic agents and alpha-lipoic acid. Our results demonstrate that both cisplatin and paclitaxel cause early mitochondrial impairment with loss of membrane potential and induction of autophagic vacuoles in neurons. Alpha-lipoic acid exerts neuroprotective effects against chemotherapy induced neurotoxicity in sensory neurons: it rescues the mitochondrial toxicity and induces the expression of frataxin, an essential mitochondrial protein with anti-oxidant and chaperone properties. In conclusion mitochondrial toxicity is an early common event both in paclitaxel and cisplatin induced neurotoxicity. Alpha-lipoic acid protects sensory neurons through its anti-oxidant and mitochondrial regulatory functions, possibly inducing the expression of frataxin. These findings suggest that alpha-lipoic acid might reduce the risk of developing peripheral nerve toxicity in patients undergoing chemotherapy and encourage further confirmatory clinical trials.

  10. Economic burden of neural tube defects and impact of prevention with folic acid: a literature review.

    PubMed

    Yi, Yunni; Lindemann, Marion; Colligs, Antje; Snowball, Claire

    2011-11-01

    Neural tube defects (NTDs) are the second most common group of serious birth defects. Although folic acid has been shown to reduce effectively the risk of NTDs and measures have been taken to increase the awareness, knowledge, and consumption of folic acid, the full potential of folic acid to reduce the risk of NTDs has not been realized in most countries. To understand the economic burden of NTDs and the economic impact of preventing NTDs with folic acid, a systematic review was performed on relevant studies. A total of 14 cost of illness studies and 10 economic evaluations on prevention of NTDs with folic acid were identified. Consistent findings were reported across all of the cost of illness studies. The lifetime direct medical cost for patients with NTDs is significant, with the majority of cost being for inpatient care, for treatment at initial diagnosis in childhood, and for comorbidities in adult life. The lifetime indirect cost for patients with spina bifida is even greater due to increased morbidity and premature mortality. Caregiver time costs are also significant. The results from the economic evaluations demonstrate that folic acid fortification in food and preconception folic acid consumption are cost-effective ways to reduce the incidence and prevalence of NTDs. This review highlights the significant cost burden that NTDs pose to healthcare systems, various healthcare payers, and society and concludes that the benefits of prevention of NTDs with folic acid far outweigh the cost. Further intervention with folic acid is justified in countries where the full potential of folic acid to reduce the risk of NTDs has not been realized.

  11. Prevention of oxidative damage that contributes to the loss of bioenergetic capacity in ageing skin.

    PubMed

    Corstjens, H; Declercq, L; Hellemans, L; Sente, I; Maes, D

    2007-09-01

    Skin ageing is a complex biological process related to a decline in physiological and biochemical performance. A decline in the mitochondrial energy production is a feature of ageing at the cellular level. This is partially attributed to excessive production of reactive oxygen species such as superoxide and hydrogen peroxide in aged individuals. We have investigated the effect of (glyc)oxidative stress on two biochemical targets relevant for the energy metabolism of the skin. First, we showed an age dependent decline in the activity of the hydrogen peroxide detoxifying antioxidant catalase in stratum corneum on a chronically sun-exposed site. Furthermore catalase was sensitive to peroxynitrite-induced in vitro inactivation. Catalase mimetics as well as peroxynitrite scavengers are proposed to maintain hydrogen peroxide detoxification pathways. The second target was creatine kinase, an enzyme that controls the creatine-creatine phosphate shuttle. Creatine kinase lost activity after in vitro glycation by methylglyoxal. This activity loss could be prevented by antiglycation actives. These data suggest that biomolecules involved in energy homeostasis become damaged by different sources of stress. Actives specifically selected for optimal protection against these stress situations will decrease skin vulnerability and prevent the premature loss of skin function.

  12. Further Highlighting on the Prevention of Oxidative Damage by Polyphenol-Rich Wine Extracts.

    PubMed

    Salucci, Sara; Burattini, Sabrina; Giordano, Francesco Maria; Lucarini, Simone; Diamantini, Giuseppe; Falcieri, Elisabetta

    2017-04-01

    Wine contains various polyphenols such as flavonoids, anthocyanins, and tannins. These molecules are responsible for the quality of wines, influencing their astringency, bitterness, and color and they are considered to have antioxidant activity. Polyphenols, extracted from grapes during the processes of vinification, could protect the body cells against reactive oxygen species level increase and could be useful to rescue several pathologies where oxidative stress represents the main cause. For that, in this study, red and white wine, provided by an Italian vinery (Marche region), have been analyzed. Chromatographic and morphofunctional analyses have been carried out for polyphenol extraction and to evaluate their protective effect on human myeloid U937 cells exposed to hydrogen peroxide. Both types of wines contained a mix of phenolic compounds with antioxidant properties and their content decreased, as expected, in white wine. Ultrastructural observations evidenced that wines, in particular red wine, strongly prevent mitochondrial damage and apoptotic cell death. In conclusion, the considered extracts show a relevant polyphenol content with strong antioxidant properties and abilities to prevent apoptosis. These findings suggest, for these compounds, a potential role in all pathological conditions where the body antioxidant system is overwhelmed.

  13. Vitamin C partially prevents reproductive damage in adult male rats exposed to rosuvastatin during prepuberty.

    PubMed

    Leite, Gabriel Adan Araújo; Figueiredo, Thamiris Moreira; Pacheco, Tainá Louise; Sanabria, Marciana; Silva, Patrícia Villela E; Fernandes, Fábio Henrique; Kempinas, Wilma De Grava

    2017-09-06

    Pediatric obesity is closely associated with dyslipidemias and environmental factors, such as diet and lack of physical exercises, which may alter lipid profile in children. Rosuvastatin decreases serum total cholesterol and triglycerides concentrations. Vitamin C (ascorbic acid) plays an important role on sperm integrity and fertility. Juvenile male rats were distributed into six experimental groups that received saline solution 0.9%, 3 or 10 mg/kg/day of rosuvastatin, 150 mg/day of ascorbic acid, or 3 or 10 mg/kg/day of rosuvastatin co-administered with 150 mg/day of ascorbic acid from PND23 until PND53 and then the rats were maintained until sexual maturity. Rosuvastatin-exposed groups showed lower sperm quality, androgen depletion and germ cell death. Ascorbic acid was capable to prevent partially the reproductive adverse effects provoked by rosuvastatin. In conclusion, prepubertal exposure to rosuvastatin provokes long-term reproductive damages at sexual maturity and ascorbic acid supplementation at prepuberty may be a preventive mode against these reproductive adverse effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Oxidative DNA damage preventive activity and antioxidant potential of plants used in Unani system of medicine

    PubMed Central

    2010-01-01

    Background There is increasing recognition that many of today's diseases are due to the "oxidative stress" that results from an imbalance between the formation and neutralization of reactive molecules such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), which can be removed with antioxidants. The main objective of the present study was to evaluate the antioxidant activity of plants routinely used in the Unani system of medicine. Several plants were screened for radical scavenging activity, and the ten that showed promising results were selected for further evaluation. Methods Methanol (50%) extracts were prepared from ten Unani plants, namely Cleome icosandra, Rosa damascena, Cyperus scariosus, Gardenia gummifera, Abies pindrow, Valeriana wallichii, Holarrhena antidysenterica, Anacyclus pyrethrum, Asphodelus tenuifolius and Cyperus scariosus, and were used to determine their total phenolic, flavonoid and ascorbic acid contents, in vitro scavenging of DPPH·, ABTS·+, NO, ·OH, O2.- and ONOO-, and capacity to prevent oxidative DNA damage. Cytotoxic activity was also determined against the U937 cell line. Results IC50 values for scavenging DPPH·, ABTS·+, NO, ·OH, O2.- and ONOO- were in the ranges 0.007 ± 0.0001 - 2.006 ± 0.002 mg/ml, 2.54 ± 0.04 - 156.94 ± 5.28 μg/ml, 152.23 ± 3.51 - 286.59 ± 3.89 μg/ml, 18.23 ± 0.03 - 50.13 ± 0.04 μg/ml, 28.85 ± 0.23 - 537.87 ± 93 μg/ml and 0.532 ± 0.015 - 3.39 ± 0.032 mg/ml, respectively. The total phenolic, flavonoid and ascorbic acid contents were in the ranges 62.89 ± 0.43 - 166.13 ± 0.56 mg gallic acid equivalent (GAE)/g extract, 38.89 ± 0.52 - 172.23 ± 0.08 mg quercetin equivalent (QEE)/g extract and 0.14 ± 0.09 - 0.98 ± 0.21 mg AA/g extract. The activities of the different plant extracts against oxidative DNA damage were in the range 0.13-1.60 μg/ml. Of the ten selected plant extracts studied here, seven - C. icosandra, R. damascena, C. scariosus, G. gummifera, A. pindrow, V

  15. Oxidative DNA damage preventive activity and antioxidant potential of plants used in Unani system of medicine.

    PubMed

    Kalim, Mehar Darukhshan; Bhattacharyya, Dipto; Banerjee, Anindita; Chattopadhyay, Sharmila

    2010-12-16

    There is increasing recognition that many of today's diseases are due to the "oxidative stress" that results from an imbalance between the formation and neutralization of reactive molecules such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), which can be removed with antioxidants. The main objective of the present study was to evaluate the antioxidant activity of plants routinely used in the Unani system of medicine. Several plants were screened for radical scavenging activity, and the ten that showed promising results were selected for further evaluation. Methanol (50%) extracts were prepared from ten Unani plants, namely Cleome icosandra, Rosa damascena, Cyperus scariosus, Gardenia gummifera, Abies pindrow, Valeriana wallichii, Holarrhena antidysenterica, Anacyclus pyrethrum, Asphodelus tenuifolius and Cyperus scariosus, and were used to determine their total phenolic, flavonoid and ascorbic acid contents, in vitro scavenging of DPPH(·), ABTS(·+), NO, (·)OH, O₂(·-) and ONOO(⁻), and capacity to prevent oxidative DNA damage. Cytotoxic activity was also determined against the U937 cell line. IC₅₀ values for scavenging DPPH(·), ABTS(·+), NO, (·)OH, O₂(·⁻) and ONOO(⁻) were in the ranges 0.007 ± 0.0001 - 2.006 ± 0.002 mg/ml, 2.54 ± 0.04 - 156.94 ± 5.28 μg/ml, 152.23 ± 3.51 - 286.59 ± 3.89 μg/ml, 18.23 ± 0.03 - 50.13 ± 0.04 μg/ml, 28.85 ± 0.23 - 537.87 ± 93 μg/ml and 0.532 ± 0.015 - 3.39 ± 0.032 mg/ml, respectively. The total phenolic, flavonoid and ascorbic acid contents were in the ranges 62.89 ± 0.43 - 166.13 ± 0.56 mg gallic acid equivalent (GAE)/g extract, 38.89 ± 0.52 - 172.23 ± 0.08 mg quercetin equivalent (QEE)/g extract and 0.14 ± 0.09 - 0.98 ± 0.21 mg AA/g extract. The activities of the different plant extracts against oxidative DNA damage were in the range 0.13-1.60 μg/ml. Of the ten selected plant extracts studied here, seven - C. icosandra, R. damascena, C. scariosus, G. gummifera, A

  16. Quercetin reduces neural tissue damage and promotes astrocyte activation after spinal cord injury in rats.

    PubMed

    Wang, Yeyang; Li, Wenjun; Wang, Mingsen; Lin, Chuangxin; Li, Guitao; Zhou, Xiaozhong; Luo, Junnan; Jin, Dadi

    2017-09-02

    Spinal cord injury (SCI) is lead to locomotor impairment because of neurological damage after following trauma. Quercetin (Que) has been confirmed have a neuro-protective effect during nerve damage processes. The purpose of this study was to determine the roles of Que in functional recovery, cavity formation, astrocyte activation and nerve regeneration following SCI. Sprague-Dawley rats were randomly divided into 3 groups: Sham group, SCI group and Que + SCI group. A rat model of SCI was made at T10 using the modified Allen's method. In the Que + SCI group, animals underwent laminectomy and were then intraperitoneally injected with 20 mg/kg Que for 7 days. Locomotor function was determined with the Basso, Beattie, Bresnahan (BBB) scores at 1, 3, 5 and 7 days post injury. At 7 days post injury, somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) were recorded. Hematoxylin-Eosin (HE) staining was used to investigate cavity formation. Astrocyte activation was assayed by immunohistochemistry staining with an antibody specific for glial fibrillary acidic protein (GFAP), as well as the expression of GFAP and S100β. Axons were stained using an antibody specific for neurofilament 200 (NF200) and 5-hydroxytryptamine (5-HT). In addition, the protein level of BDNF, p-JNK2 and p-STAT3 was detected using western blot. Que promoted locomotor function and electrophysiological recovery, reduced cavity formation, contributed to astrocyte activation and axonal regeneration after acute SCI. Moreover, Que up-regulated the expression of BDNF, but reduced p-JNK2 and p-STAT3 expression after acute SCI. Taken together, Que promoted locomotor and electrophysiological functional recovery, astrocyte activation and axonal regeneration after acute SCI, possibly through BDNF and JAK2/STAT3 signaling pathways. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. [Folic acid and prevention of neural tube closure defects: the question is not solved yet].

    PubMed

    Vidailhet, M; Bocquet, A; Bresson, J-L; Briend, A; Chouraqui, J-P; Dupont, C; Darmaun, D; Frelut, M-L; Ghisolfi, J; Girardet, J-P; Goulet, O; Putet, G; Rieu, D; Rigo, J; Turck, D

    2008-07-01

    Between 1981 and 1996, several interventional studies proved the efficacy of periconceptional folic acid supplementation in the prevention of neural tube closure defects (NTCD), first in women at risk (with a previous case of NTCD) and also in women of the general population in age to become pregnant. The poor observance of this supplementation led several countries (USA, Canada, Chile...) to decide mandatory folic acid fortification of cereals, which permitted a 30% (USA) to 46% (Canada) reduction in the incidence of NTCD. Moreover, this benefit was accompanied by a diminished incidence of several other malformations and of stroke and coronary accidents in elderly people. However, several papers drew attention to an increased risk of colorectal and breast cancer in relation with high blood folate levels and the use of folic acid supplements. A controlled interventional study showed a higher rate of recurrence of colic adenomas and a higher percentage of advanced adenomas in subjects receiving 1mg/day of folic acid. A recent study demonstrated an abrupt reversal of the downward trend in colorectal cancer 1 year after the beginning of cereal folic acid fortification in the USA and Canada. Two studies also reported impaired cognitive functions in elder persons with defective vitamin B(12) status. Taken in aggregate, these studies question the wisdom of a nationwide, mandatory, folic acid fortification of cereals. As of today, despite their limited preventive efficacy, a safe approach is to keep our current French recommendations and to increase the awareness of all caregivers, so as to improve the observance of these recommendations.

  18. [Neural tube defects in Austria: Assumption and calculations on the prevention potential through folic acid enrichment and supplementation].

    PubMed

    Schiller-Frühwirth, I; Mittermayr, T; Wild, C

    2010-12-01

    Countries with obligatory fortification of food (USA, Canada) document a significant decrease of neural tube defects in newborns. In this study the Daly or, respectively, the Wald method was employed for calculating the potential of fortification/and supplementation for prevention in Austria. According to the EUROCAT study, in Austria the overall prevalence of neural tube defects (live birth, still births and induced abortions due to neural defect) is assumed to be 7.95 per 10,000 live and still births, and the prevalence of 3.9 per 10,000 live births - that is 62 or, respectively, 30 in absolute numbers per 78,000 births per year. In 2006, 26 live-born children with neural tube defects were actually reported in Austria by Statistik Austria. Different folic acid fortification and supplementation strategies can avoid 1.2-1.4 per 10,000 (9-11 cases) of neural tube defects (live and still births). Folic acid supplements are effective to decrease the amount of neural tube defects, however, only when pregnancies are planned. Thus, evidence-based neural tube defects are more common among lower social groups. An obligatory fortification of food could therefore reach unplanned pregnancies and women facing social problems. A reason to justify this population-based intervention where people need not decide for themselves could be the reduction of social imbalances. There are, of course, advantages and disadvantages of obligatory fortification of food and, therefore, all circumstances have to be taken into consideration. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Tissue-dependent preventive effect of metallothionein against DNA damage in dyslipidemic mice under repeated stresses of fasting or restraint.

    PubMed

    Higashimoto, Minoru; Isoyama, Naohiro; Ishibashi, Satoshi; Inoue, Masahisa; Takiguchi, Masufumi; Suzuki, Shinya; Ohnishi, Yoshinari; Sato, Masao

    2009-04-24

    To investigate the effect of repeated stress on DNA damage in seven organs of dyslipidemic mice, and the preventive role of metallothionein (MT). Female adult 129/Sv wild-type and MT-null mice fed high-fat diet (HFD) were repeatedly subjected to mild stress of fasting or restraint in weeks 2 to 4 of 4-week study period. Serum cholesterol level, DNA damage in the liver, pancreas, spleen, bone marrow, kidney, lung and gastric mucosa, and other parameters were determined. Body weights were increased in both types of mice fed HFD compared to those fed standard diet (STD), and further increased by 12 h-fasting, while they were markedly decreased by 1-3 h-restraint. Fasting accelerated accumulation of fat in the liver, and increase in serum cholesterol of both types of mice fed HFD. Feeding of HFD increased DNA damage in the pancreas, spleen and bone marrow of both types of mice, compared with those fed STD. In the wild-type mice fed HFD, 24 h-fasting increased DNA damage in the liver and spleen, while restraint increased the damage in the liver, pancreas, spleen and bone marrow. DNA damage in the cells of organs was markedly increased in the MT-null mice. Specifically, damage in the liver, pancreas, spleen and bone marrow was greatly increased with the intensity of stress increased, and the damage was much greater in the restraint mice than in the fasting mice. MT plays a tissue-dependent preventive role against DNA damage in various murine organs induced by repeated stress.

  20. Methylene blue prevents retinal damage in an experimental model of ischemic proliferative retinopathy.

    PubMed

    Rey-Funes, Manuel; Larrayoz, Ignacio M; Fernández, Juan C; Contartese, Daniela S; Rolón, Federico; Inserra, Pablo I F; Martínez-Murillo, Ricardo; López-Costa, Juan J; Dorfman, Verónica B; Martínez, Alfredo; Loidl, César F

    2016-06-01

    Perinatal asphyxia induces retinal lesions, generating ischemic proliferative retinopathy, which may result in blindness. Previously, we showed that the nitrergic system was involved in the physiopathology of perinatal asphyxia. Here we analyze the application of methylene blue, a well-known soluble guanylate cyclase inhibitor, as a therapeutic strategy to prevent retinopathy. Male rats (n = 28 per group) were treated in different ways: 1) control group comprised born-to-term animals; 2) methylene blue group comprised animals born from pregnant rats treated with methylene blue (2 mg/kg) 30 and 5 min before delivery; 3) perinatal asphyxia (PA) group comprised rats exposed to perinatal asphyxia (20 min at 37°C); and 4) methylene blue-PA group comprised animals born from pregnant rats treated with methylene blue (2 mg/kg) 30 and 5 min before delivery, and then the pups were subjected to PA as above. For molecular studies, mRNA was obtained at different times after asphyxia, and tissue was collected at 30 days for morphological and biochemical analysis. Perinatal asphyxia produced significant gliosis, angiogenesis, and thickening of the inner retina. Methylene blue treatment reduced these parameters. Perinatal asphyxia resulted in a significant elevation of the nitrergic system as shown by NO synthase (NOS) activity assays, Western blotting, and (immuno)histochemistry for the neuronal isoform of NOS and NADPH-diaphorase activity. All these parameters were also normalized by the treatment. In addition, methylene blue induced the upregulation of the anti-angiogenic peptide, pigment epithelium-derived factor. Application of methylene blue reduced morphological and biochemical parameters of retinopathy. This finding suggests the use of methylene blue as a new treatment to prevent or decrease retinal damage in the context of ischemic proliferative retinopathy. Copyright © 2016 the American Physiological Society.

  1. Folate deficiency and folic acid supplementation: the prevention of neural-tube defects and congenital heart defects.

    PubMed

    Czeizel, Andrew E; Dudás, Istvan; Vereczkey, Attila; Bánhidy, Ferenc

    2013-11-21

    Diet, particularly vitamin deficiency, is associated with the risk of birth defects. The aim of this review paper is to show the characteristics of common and severe neural-tube defects together with congenital heart defects (CHD) as vitamin deficiencies play a role in their origin. The findings of the Hungarian intervention (randomized double-blind and cohort controlled) trials indicated that periconceptional folic acid (FA)-containing multivitamin supplementation prevented the major proportion (about 90%) of neural-tube defects (NTD) as well as a certain proportion (about 40%) of congenital heart defects. Finally the benefits and drawbacks of three main practical applications of folic acid/multivitamin treatment such as (i) dietary intake; (ii) periconceptional supplementation; and (iii) flour fortification are discussed. The conclusion arrived at is indeed confirmation of Benjamin Franklin's statement: "An ounce of prevention is better than a pound of care".

  2. Folate Deficiency and Folic Acid Supplementation: The Prevention of Neural-Tube Defects and Congenital Heart Defects

    PubMed Central

    Czeizel, Andrew E.; Dudás, Istvan; Vereczkey, Attila; Bánhidy, Ferenc

    2013-01-01

    Diet, particularly vitamin deficiency, is associated with the risk of birth defects. The aim of this review paper is to show the characteristics of common and severe neural-tube defects together with congenital heart defects (CHD) as vitamin deficiencies play a role in their origin. The findings of the Hungarian intervention (randomized double-blind and cohort controlled) trials indicated that periconceptional folic acid (FA)-containing multivitamin supplementation prevented the major proportion (about 90%) of neural-tube defects (NTD) as well as a certain proportion (about 40%) of congenital heart defects. Finally the benefits and drawbacks of three main practical applications of folic acid/multivitamin treatment such as (i) dietary intake; (ii) periconceptional supplementation; and (iii) flour fortification are discussed. The conclusion arrived at is indeed confirmation of Benjamin Franklin’s statement: “An ounce of prevention is better than a pound of care”. PMID:24284617

  3. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation

    PubMed Central

    Zhang, Wei; Bao, Zhangmin; Jiang, Shan; He, Jingjing

    2016-01-01

    In the aerospace and aviation sectors, the damage tolerance concept has been applied widely so that the modeling analysis of fatigue crack growth has become more and more significant. Since the process of crack propagation is highly nonlinear and determined by many factors, such as applied stress, plastic zone in the crack tip, length of the crack, etc., it is difficult to build up a general and flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial neural network (ANN) is considered a powerful tool for establishing the nonlinear multivariate projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue crack calculation algorithm based on a radial basis function (RBF)-ANN is proposed to study this relationship from the experimental data. In addition, a parameter called the equivalent stress intensity factor is also employed as training data to account for loading interaction effects. The testing data is then placed under constant amplitude loading with different stress ratios or overloads used for model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with our proposed algorithm. The current investigation shows that the ANN-based approach can deliver a better agreement with the experimental data than the other two models, which supports that the RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it implies that the proposed algorithm is possibly a sophisticated and promising method to compute fatigue crack growth in terms of loading interaction effects. PMID:28773606

  4. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation.

    PubMed

    Zhang, Wei; Bao, Zhangmin; Jiang, Shan; He, Jingjing

    2016-06-17

    In the aerospace and aviation sectors, the damage tolerance concept has been applied widely so that the modeling analysis of fatigue crack growth has become more and more significant. Since the process of crack propagation is highly nonlinear and determined by many factors, such as applied stress, plastic zone in the crack tip, length of the crack, etc., it is difficult to build up a general and flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial neural network (ANN) is considered a powerful tool for establishing the nonlinear multivariate projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue crack calculation algorithm based on a radial basis function (RBF)-ANN is proposed to study this relationship from the experimental data. In addition, a parameter called the equivalent stress intensity factor is also employed as training data to account for loading interaction effects. The testing data is then placed under constant amplitude loading with different stress ratios or overloads used for model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with our proposed algorithm. The current investigation shows that the ANN-based approach can deliver a better agreement with the experimental data than the other two models, which supports that the RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it implies that the proposed algorithm is possibly a sophisticated and promising method to compute fatigue crack growth in terms of loading interaction effects.

  5. 36 CFR 223.113 - Modification of contracts to prevent environmental damage or to conform to forest plans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Modification of contracts to prevent environmental damage or to conform to forest plans. 223.113 Section 223.113 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM...

  6. 36 CFR 223.113 - Modification of contracts to prevent environmental damage or to conform to forest plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Modification of contracts to prevent environmental damage or to conform to forest plans. 223.113 Section 223.113 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM...

  7. 36 CFR 223.113 - Modification of contracts to prevent environmental damage or to conform to forest plans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Modification of contracts to prevent environmental damage or to conform to forest plans. 223.113 Section 223.113 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM...

  8. Ferulic acid prevents methylglyoxal-induced protein glycation, DNA damage, and apoptosis in pancreatic β-cells.

    PubMed

    Sompong, Weerachat; Cheng, Henrique; Adisakwattana, Sirichai

    2017-02-01

    Methylglyoxal (MG) can react with amino acids of proteins to induce protein glycation and consequently the formation of advanced glycation end-products (AGEs). Previous studies reported that ferulic acid (FA) prevented glucose-, fructose-, and ribose-induced protein glycation. In this study, FA (0.1-1 mM) inhibited MG-induced protein glycation and oxidative protein damage in bovine serum albumin (BSA). Furthermore, FA (0.0125-0.2 mM) protected against lysine/MG-mediated oxidative DNA damage, thereby inhibiting superoxide anion and hydroxyl radical generation during lysine and MG reaction. In addition, FA did not have the ability to trap MG. Finally, FA (0.1 mM) pretreatment attenuated MG-induced decrease in cell viability and prevented MG-induced cell apoptosis in pancreatic β-cells. The results suggest that FA is capable of protecting β-cells from MG-induced cell damage during diabetes.

  9. Betulinic acid prevents alcohol-induced liver damage by improving the antioxidant system in mice

    PubMed Central

    Xia, Wei; Wu, Jianping; Yuan, Liyun; Wu, Jing; Tu, Di; Fang, Jun

    2014-01-01

    Betulinic acid (BA), a pentacyclic lupane-type triterpene, has a wide range of bioactivities. The main objective of this work was to evaluate the hepatoprotective activity of BA and the potential mechanism underlying the ability of this compound to prevent liver damage induced by alcohol in vivo. Mice were given oral doses of BA (0.25, 0.5, and 1.0 mg/kg) daily for 14 days, and induced liver injury by feeding 50% alcohol orally at the dosage of 10 ml/kg after 1 h last administration of BA. BA pretreatment significantly reduced the serum levels of alanine transaminase, aspartate transaminase, total cholesterol, and triacylglycerides in a dose-dependent manner in the mice administered alcohol. Hepatic levels of glutathione, superoxide dismutase, glutathione peroxidase, and catalase were remarkably increased, while malondialdehyde contents and microvesicular steatosis in the liver were decreased by BA in a dose-dependent manner after alcohol-induced liver injury. These findings suggest that the mechanism underlying the hepatoprotective effects of BA might be due to increased antioxidant capacity, mainly through improvement of the tissue redox system, maintenance of the antioxidant system, and decreased lipid peroxidation in the liver. PMID:24378582

  10. In vitro PAMAM, phosphorus and viologen-phosphorus dendrimers prevent rotenone-induced cell damage.

    PubMed

    Milowska, Katarzyna; Szwed, Aleksandra; Zablocka, Maria; Caminade, Anne-Marie; Majoral, Jean-Pierre; Mignani, Serge; Gabryelak, Teresa; Bryszewska, Maria

    2014-10-20

    We have investigated whether polyamidoamine (PAMAM), phosphorus (pd) and viologen-phosphorus (vpd) dendrimers can prevent damage to embryonic mouse hippocampal cells (mHippoE-18) caused by rotenone, which is used as a pesticide, insecticide, and as a nonselective piscicide, that works by interfering with the electron transport chain in mitochondria. Several basic aspects, such as cell viability, production of reactive oxygen species and changes in mitochondrial transmembrane potential, were analyzed. mHippoE-18 cells were treated with these structurally different dendrimers at 0.1μM. A 1h incubation with dendrimers was followed by the addition of rotenone at 1μM, and a further 24h incubation. PAMAM, phosphorus and viologen-phosphorus dendrimers all increased cell viability (reduced cell death-data need to be compared with untreated controls). A lower level of reactive oxygen species and a favorable effect on mitochondrial system were found with PAMAM and viologen-phosphorus dendrimers. These results indicate reduced toxicity in the presence of dendrimers. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Low molecular weight hyaluronic acid prevents oxygen free radical damage to granulation tissue during wound healing.

    PubMed

    Trabucchi, E; Pallotta, S; Morini, M; Corsi, F; Franceschini, R; Casiraghi, A; Pravettoni, A; Foschi, D; Minghetti, P

    2002-01-01

    Hyaluronic acid protects granulation tissue from oxygen free radical damage and stimulates wound healing, but its molecular weight prevents it from permeating the epidermal barrier A low molecular weight hyaluronic acid preparation is able to permeate the skin, but it is unknown whether or not it retains the scavenging effects of oxygen free radicals in granulation tissue. Our experiments were conducted in rats with excisional or incisional wounds. Wound contraction over 11 days and breaking strength on the fifth day were measured. Oxygen free radical production was induced by intraperitoneal administration of two different xenobiotics: phenazine methosulfate and zymosan. The wounds were treated topically with low molecular weight hyaluronic acid (0.2%) cream or placebo. In the incisional wound group, the effects of superoxide dismutase were also determined. Absolute controls received wounds and placebo but no xenobiotics. Wound healing was significantly slower in the xenobiotic group than in the control groups. These effects were strongly reduced by topical administration of low molecular weight hyaluronic acid (0.2%) cream and in incisional wounds by topically injected superoxide dismutase. Low molecular weight hyaluronic acid is effective as the native compound against oxygen free radicals. Its pharmacological effects through transdermal administration should be tested in appropriate models.

  12. UV-B-Induced Damage to the Lens In Vitro: Prevention by Caffeine

    PubMed Central

    Hegde, Kavita R.; Kovtun, Svitlana

    2008-01-01

    Abstract Ultraviolet (UV) irradiation is one of the significant risk factors in the genesis of cataracts. Pathogenetically, the process can be triggered by the intraocular generation of various reactive species of oxygen that are well known to be initiated by the penetration of light, especially of the UV frequencies. The contribution of UV exposure in the etiology of this disease is likely to increase further due to ozone depletion in the upper atmosphere. The present studies were undertaken to examine if the UV effects can be attenuated with the xanthine-based alkaloids primarily present in tea and coffee. We have examined this possibility by in vitro lens culture studies with caffeine. As expected, mice lenses incubated in Tyrode solution exposed to UV at 302 nm are physiologically damaged, as evidenced by the inhibition of the active transport of 86Rb+, an ion acting as a surrogate of the K+. There was a simultaneous decrease in the levels of adenosine triphosphate and glutathione. The addition of caffeine to the medium prevented such deleterious effects. That caffeine and perhaps other xanthinoids have a protective effect against cataract formation induced by UV has hence been demonstrated for the first time. PMID:18788993

  13. Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage.

    PubMed

    Puster, Matthew; Rodríguez-Manzo, Julio A; Balan, Adrian; Drndić, Marija

    2013-12-23

    Graphene-based nanopore devices are promising candidates for next-generation DNA sequencing. Here we fabricated graphene nanoribbon-nanopore (GNR-NP) sensors for DNA detection. Nanopores with diameters in the range 2-10 nm were formed at the edge or in the center of graphene nanoribbons (GNRs), with widths between 20 and 250 nm and lengths of 600 nm, on 40 nm thick silicon nitride (SiN(x)) membranes. GNR conductance was monitored in situ during electron irradiation-induced nanopore formation inside a transmission electron microscope (TEM) operating at 200 kV. We show that GNR resistance increases linearly with electron dose and that GNR conductance and mobility decrease by a factor of 10 or more when GNRs are imaged at relatively high magnification with a broad beam prior to making a nanopore. By operating the TEM in scanning TEM (STEM) mode, in which the position of the converged electron beam can be controlled with high spatial precision via automated feedback, we were able to prevent electron beam-induced damage and make nanopores in highly conducting GNR sensors. This method minimizes the exposure of the GNRs to the beam before and during nanopore formation. The resulting GNRs with unchanged resistances after nanopore formation can sustain microampere currents at low voltages (∼50 mV) in buffered electrolyte solution and exhibit high sensitivity, with a large relative change of resistance upon changes of gate voltage, similar to pristine GNRs without nanopores.

  14. Sperm Chromatin Integrity: Etiologies and Mechanisms of Abnormality, Assays, Clinical Importance, Preventing and Repairing Damage

    PubMed Central

    Hekmatdoost, Azita; Lakpour, Niknam; Sadeghi, Mohammad Reza

    2009-01-01

    The standard semen analysis is the first line and the most popular laboratory test in the diagnosis of male fertility. It evaluates sperm concentration, motility, morphology and their vitality. However, it is well-known that normal results of semen analysis can not exclude men from the causes of couples′ infertility. One of the most important parameters of sperm in its fertilizing potential is “Sperm chromatin integrity” that has direct positive correlation with Assisted Reproductive Techniques (ART) outcomes including; fertilization rate, embryo quality, pregnancy and successful delivery rate. It seems that sperm DNA chromatin integrity provides better diagnostic and prognostic approaches than standard semen parameters. For these reasons under-standing the sperm chromatin structure, etiology of sperm chromatin abnormality, identification factors that disturbs sperm chromatin integrity and the mechanism of their action can help in recognizing the causes of couples′ infertility. Various methods of its evaluation, its importance in male fertility, clinical relevance in the outcomes of ART and application of laboratory and medical protocols to improve this integrity have valuable position in diagnosis and treatment of male infertility. There has recently been interest in the subject and its application in the field of andrology. Therefore, with regard to the above mentioned importance of sperm chromatin integrity, this review article describes details of the useful information pertaining to sperm DNA damage including the origins, assessments, etiologies, clinical aspects, and prevention of it. PMID:23408441

  15. Prevention of ultraviolet damage to the dermis of hairless mice by sunscreens

    SciTech Connect

    Kligman, L.H.; Akin, F.J.; Kligman, A.M.

    1982-02-01

    To assess the ability of sunscreens to protect connective tissue from actinic damage, hairless mice were irradiated with Westinghouse FS20 sunlamps thrice weekly for 30 weeks. Each exposure, consisting mainly of UV-B and the less energetic UV-A, was approximately 6 human minimal erythema doses under these lights. One group of animals received irradiation only. The other 2 groups were treated, prior to irradiation, with sunscreens of either low or high sun protection factors (SPF 2 and SPF 15, respectively). Skin biopsies were taken at 10-week intervals and were stained with various histochemical stains to reveal changes in the dermis. The unprotected, irradiated animals showed a great increase in the following: reticulin fibers, elastic fibers to the extent of elastosis, neutral and acid mucopolysaccharides and melanin production. The SPF 15 sunscreen completely prevented these changes. The SPF 2 sunscreen was less effective. These effects were substantiated by ultrastructural examination of the tissues by electron microscopy. A surprising histologic finding was the repair capability of the dermis in the post-irradiation period.

  16. Logging damage in thinned, young-growth true fir stands in California and recommendations for prevention.

    Treesearch

    Paul E. Aho; Gary Fiddler; Mike. Srago

    1983-01-01

    Logging-damage surveys and tree-dissection studies were made in commercially thinned, naturally established young-growth true fir stands in the Lassen National Forest in northern California. Significant damage occurred to residual trees in stands logged by conventional methods. Logging damage was substantially lower in stands thinned using techniques designed to reduce...

  17. Use of Family History Information for Neural Tube Defect Prevention: Integration into State-Based Recurrence Prevention Programs

    ERIC Educational Resources Information Center

    Green, Ridgely Fisk; Ehrhardt, Joan; Ruttenber, Margaret F.; Olney, Richard S.

    2011-01-01

    A family history of neural tube defects (NTDs) can increase the risk of a pregnancy affected by an NTD. Periconceptional folic acid use decreases this risk. Purpose: Our objective was to determine whether second-degree relatives of NTD-affected children showed differences in folic acid use compared with the general population and to provide them…

  18. [Folic acid use by pregnant women in Israel for preventing neural tube defects].

    PubMed

    Gil, Z; Aran, A; Friedman, O; Beni-Adani, L; Constantini, S

    2000-12-01

    Spina bifida and anencephaly are the most common, serious malformations in neural tube defects (NTD). Randomized trials in the last 2 decades have demonstrated that folic acid, 0.4 mg/d, reduces the incidence of NTD by more than 50%. We investigated the use of folic acid and multivitamins containing folic acid in childbearing women. Of 221 women interviewed, 67 (30%) regularly took pills containing 0.4 mg folic acid. Women with higher educational levels were more likely to take multivitamins with folic acid than were the less educated (p = 0.05). Of the women who took folic acid, only 5 (7.5%) used separate folic acid tablets, before and during their pregnancy. The rest used multivitamins containing folic acid. The 5 women who took folic acid separately were college-educated and nonreligious, and they took multivitamins in addition (p > 0.05). Of the women interviewed, 58 (26.2%) were Bedouin of the Negev. 24 (41.4%) of them took pills containing folic acid on a regular basis. This percentage is higher than that in the Jewish women in the study who took folic acid for prevention of NTD (17%; p = 0.038). Most of the women took folic acid after the first trimester. Only a minority took daily periconceptional folic acid. Multivitamins containing 0.4 mg of folic acid were more popular than folic acid tablets alone. This study emphasizes the need for continuing efforts to increase consumption of folic acid and awareness of its benefits among women of childbearing age.

  19. Prevention of neural tube defects by folic acid - awareness among women of childbearing age in Slovakia.

    PubMed

    Horn, F; Sabova, L; Pinterova, E; Hornova, J; Trnka, J

    2014-01-01

    Folic acid deficiency plays a central role in the aetiology of many congenital anomalies including neural tube defects. Protective effect of folic acid on embryo may be acquired only if taken periconceptionally. The aim of the study was to investigate the awareness about folic acid among women of childbearing age in Bratislava, Slovakia. There were 130 respondents involved in the research (106 pregnant women, 24 female students of medical faculty). Using questionnaire we acquired following data: pregnancy details, interest in diet before and during pregnancy, recommendations regarding nutrition and supplementation pre- and post-conception, knowledge about folic and other acid in 2004 and 2009. More than half of the respondents knew the sources of folic acid. The interest in the nutrition facts of the food dropped from 91 % to 58.5 %. The number of pregnant women advised about correct nutrition and folic acid supplementation before and during pregnancy increased from 16 % to 37 %. Planning the next gravidity with folic acid supplementation became greater than 21 % (38 % in 2009). Nevertheless, only 46 % of these women believed that proper food content with folic acid may prevent congenital anomalies. In a group of students planning to take folic acid periconceptionally the number raised up to 62.5 %. The results revealed low knowledge about the effect of folic acid on developing embryo among women of childbearing age. Effective intervention programs are needed with the aim to improve periconceptional intake of folic acid in 2004 and 2009. The results in both periods show low knowledge about this essential vitamin (Tab. 1, Fig. 8, Ref. 31).

  20. Effect of mineral oil, sunflower oil, and coconut oil on prevention of hair damage.

    PubMed

    Rele, Aarti S; Mohile, R B

    2003-01-01

    Previously published results showed that both in vitro and in vivo coconut oil (CNO) treatments prevented combing damage of various hair types. Using the same methodology, an attempt was made to study the properties of mineral oil and sunflower oil on hair. Mineral oil (MO) was selected because it is extensively used in hair oil formulations in India, because it is non-greasy in nature, and because it is cheaper than vegetable oils like coconut and sunflower oils. The study was extended to sunflower oil (SFO) because it is the second most utilized base oil in the hair oil industry on account of its non-freezing property and its odorlessness at ambient temperature. As the aim was to cover different treatments, and the effect of these treatments on various hair types using the above oils, the number of experiments to be conducted was a very high number and a technique termed as the Taguchi Design of Experimentation was used. The findings clearly indicate the strong impact that coconut oil application has to hair as compared to application of both sunflower and mineral oils. Among three oils, coconut oil was the only oil found to reduce the protein loss remarkably for both undamaged and damaged hair when used as a pre-wash and post-wash grooming product. Both sunflower and mineral oils do not help at all in reducing the protein loss from hair. This difference in results could arise from the composition of each of these oils. Coconut oil, being a triglyceride of lauric acid (principal fatty acid), has a high affinity for hair proteins and, because of its low molecular weight and straight linear chain, is able to penetrate inside the hair shaft. Mineral oil, being a hydrocarbon, has no affinity for proteins and therefore is not able to penetrate and yield better results. In the case of sunflower oil, although it is a triglyceride of linoleic acid, because of its bulky structure due to the presence of double bonds, it does not penetrate the fiber, consequently resulting

  1. Are we preventing flood damage eco-efficiently? An integrated method applied to post-disaster emergency actions.

    PubMed

    Petit-Boix, Anna; Arahuetes, Ana; Josa, Alejandro; Rieradevall, Joan; Gabarrell, Xavier

    2017-02-15

    Flood damage results in economic and environmental losses in the society, but flood prevention also entails an initial investment in infrastructure. This study presents an integrated eco-efficiency approach for assessing flood prevention and avoided damage. We focused on ephemeral streams in the Maresme region (Catalonia, Spain), which is an urbanized area affected by damaging torrential events. Our goal was to determine the feasibility of post-disaster emergency actions implemented after a major event through an integrated hydrologic, environmental and economic approach. Life cycle assessment (LCA) and costing (LCC) were used to determine the eco-efficiency of these actions, and their net impact and payback were calculated by integrating avoided flood damage. Results showed that the actions effectively reduced damage generation when compared to the registered water flows and rainfall intensities. The eco-efficiency of the emergency actions resulted in 1.2kgCO2eq. per invested euro. When integrating the avoided damage into the initial investment, negative net impacts were obtained (e.g., -5.2E+05€ and -2.9E+04kgCO2eq. per event), which suggests that these interventions contributed with environmental and economic benefits to the society. The economic investment was recovered in two years, whereas the design could be improved to reduce their environmental footprint, which is recovered in 25years. Our method and results highlight the effects of integrating the environmental and economic consequences of decisions at an urban scale and might help the administration and insurance companies in the design of prevention plans and climate change adaptation.

  2. Zinc prevention of electromagnetically induced damage to rat testicle and kidney tissues.

    PubMed

    Ozturk, Ahmet; Baltaci, Abdülkerim Kasim; Mogulkoc, Rasim; Oztekin, Esma

    2003-01-01

    The aim of this study was to investigate the extent of lipid peroxidation when zinc is administered to rats periodically exposed to a 50-Hz electromagnetic field for 5 min at a time over a period of 6 mo. Twenty-four Sprague-Dawley adult male rats were subdivided in groups of eight animals each. Group 1 served as untreated controls, group 2 was exposed to an electromagnetic field but received no additional treatment, and group 3 was exposed to electromagnetic radiation and treated with 3-mg/kg daily intraperitoneal injections of zinc sulfate. The erythrocyte glutathione activity (GSH) and the plasma, testicle, and kidney tissue levels of zinc (Zn) and of malondialdehyde (MDA) were measured in all of the animals. The plasma and testicle MDA levels in group 2 were higher than those in groups 1 and 3, with group 3 values significantly higher than those in group 1 (p<0.001). The kidney MDA levels in group 2 were higher than in groups 1 and 3 (p<0.001). The erythrocyte GSH level was lower in group 2 than in groups 1 and 3, with group 1 significantly lower than group 3 (p<0.001). In testicle and kidney tissues, the GSH levels in group 1 were lower than for groups 2 and 3, with group 2 significantly lower than group 3 (p<0.001) The plasma zinc levels were highest in group 3, followed by group 1 and group 2, which showed the lowest value (p<0.001). These results indicate that testicle and kidney tissue damage caused by periodic exposure to an electromagnetic field are ameliorated or prevented by zinc supplementation.

  3. The failure of selenium supplementation to prevent copper-induced liver damage in Fischer 344 rats.

    PubMed Central

    Aburto, E M; Cribb, A; Fuentealba, I C; Ikede, B O; Kibenge, F S; Markham, F

    2001-01-01

    This study evaluates the ability of selenium (Se) supplementation to prevent experimental copper (Cu)-induced hepatocellular damage. Weanling male Fischer 344 rats were randomly assigned to groups of 15, 3 groups (A,B,C) were fed Cu-loaded diets (containing 2000 microg/g copper, added as CuSO4) and different levels of Se (added as Na2SeO3 x 5H2O) as follows: A) Cu-loaded/Se adequate diet (0.4 microg/g Se, fed basis); B) Cu-loaded/Se-supplemented diet (2 microg/g Se); and C) Cu-loaded/Se-deficient diet (< 0.2 microg/g). Three additional groups (D,E,F) were fed diets containing adequate levels of Cu (14 microg/g Cu, fed basis) and different levels of Se as follows: D) Cu-adequate/Se-adequate diet; E) Cu-adequate/Se-supplemented diet (2 microg/g Se); and F) Cu-adequate/Se-deficient (< 0.2 microg/g) diet. After 4, 8, and 12 weeks on the experimental diets, liver samples were processed for histology, histochemistry, metal analysis, glutathione peroxidase (GSH-Px) measurement, and quantification of malondialdehyde (MDA). Morphologic changes characteristic of Cu-associated hepatitis, without an increase in hepatic MDA levels, were seen in all Cu-loaded rats in each sampling. Similar changes occurred in rats fed Se-adequate, Se-supplemented and Se-deficient diets. This study demonstrates that Fischer 344 rats fed 2000 microg/g Cu develop morphologic changes due to Cu toxicity without evidence of lipid peroxidation. Furthermore, Se supplementation does not result in protection against Cu-induced liver injury. Images Figure 3. Figure 4. Figure 5. Figure 6. PMID:11346254

  4. Hypothermia Prevents Retinal Damage Generated by Optic Nerve Trauma in the Rat.

    PubMed

    Rey-Funes, Manuel; Larrayoz, Ignacio M; Contartese, Daniela S; Soliño, Manuel; Sarotto, Anibal; Bustelo, Martín; Bruno, Martín; Dorfman, Verónica B; Loidl, César F; Martínez, Alfredo

    2017-07-31

    Ocular and periocular traumatisms may result in loss of vision. Hypothermia provides a beneficial intervention for brain and heart conditions and, here, we study whether hypothermia can prevent retinal damage caused by traumatic neuropathy. Intraorbital optic nerve crush (IONC) or sham manipulation was applied to male rats. Some animals were subjected to hypothermia (8 °C) for 3 h following surgery. Thirty days later, animals were subjected to electroretinography and behavioral tests. IONC treatment resulted in amplitude reduction of the b-wave and oscillatory potentials of the electroretinogram, whereas the hypothermic treatment significantly (p < 0.05) reversed this process. Using a descending method of limits in a two-choice visual task apparatus, we demonstrated that hypothermia significantly (p < 0.001) preserved visual acuity. Furthermore, IONC-treated rats had a lower (p < 0.0001) number of retinal ganglion cells and a higher (p < 0.0001) number of TUNEL-positive cells than sham-operated controls. These numbers were significantly (p < 0.0001) corrected by hypothermic treatment. There was a significant (p < 0.001) increase of RNA-binding motif protein 3 (RBM3) and of BCL2 (p < 0.01) mRNA expression in the eyes exposed to hypothermia. In conclusion, hypothermia constitutes an efficacious treatment for traumatic vision-impairing conditions, and the cold-shock protein pathway may be involved in mediating the beneficial effects shown in the retina.

  5. Hypoxia acclimation and subsequent reoxygenation partially prevent Mn-induced damage in silver catfish.

    PubMed

    Dolci, G S; Rosa, H Z; Barcelos, R C S; Vey, L T; Santos, A; DallaVechia, P; Bizzi, C; Cunha, M A; Baldisserotto, B; Burger, M E

    2017-01-01

    This study investigated if hypoxia acclimation modifies the hematological and oxidative profiles in tissues of Mn-exposed silver catfish (Rhamdia quelen), and if such modifications persist upon subsequent reoxygenation. Silver catfish acclimated to hypoxia (~3mgL(-1)) for 10days and subsequently exposed to Mn (~8.1mgL(-1)) for additional 10days exhibited lower Mn accumulation in plasma, liver and kidney, even after reoxygenation, as compared to normoxia-acclimated fish. Hypoxia acclimation increased per se red blood cells count and hematocrit, suggesting adaptations under hypoxia, while the reoxygenation process was also related to increased hematocrit and hemoglobin per se. Fish exposed to Mn under normoxia for 20days showed decreased red blood cells count and hematocrit, while reoxygenation subsequent to hypoxia increased red blood cells count. Hypoxia acclimation also prevented Mn-induced oxidative damage, observed by increased reactive species generation and higher protein carbonyl levels in both liver and kidney under normoxia. Mn-exposed fish under hypoxia and after reoxygenation showed decreased plasma transaminases in relation to the normoxia group. Moreover, acclimation to hypoxia increased reduced glutathione levels, catalase activity and Na(+)/K(+)-ATPase activity in liver and kidney during Mn exposure, remaining increased even after reoxygenation. These findings show that previous acclimation to hypoxia generates physiological adjustments, which drive coordinated responses that ameliorate the antioxidant status even after reoxygenation. Such responses represent a physiological regulation of this teleost fish against oxygen restriction and/or Mn toxicity in order to preserve the stability of a particular tissue or system. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Intranasal delivery of obidoxime to the brain prevents mortality and CNS damage from organophosphate poisoning.

    PubMed

    Krishnan, Jishnu K S; Arun, Peethambaran; Appu, Abhilash P; Vijayakumar, Nivetha; Figueiredo, Taíza H; Braga, Maria F M; Baskota, Sudikshya; Olsen, Cara H; Farkas, Natalia; Dagata, John; Frey, William H; Moffett, John R; Namboodiri, Aryan M A

    2016-03-01

    Intranasal delivery is an emerging method for bypassing the blood brain barrier (BBB) and targeting therapeutics to the CNS. Oximes are used to counteract the effects of organophosphate poisoning, but they do not readily cross the BBB. Therefore, they cannot effectively counteract the central neuropathologies caused by cholinergic over-activation when administered peripherally. For these reasons we examined intranasal administration of oximes in an animal model of severe organophosphate poisoning to determine their effectiveness in reducing mortality and seizure-induced neuronal degeneration. Using the paraoxon model of organophosphate poisoning, we administered the standard treatment (intramuscular pralidoxime plus atropine sulphate) to all animals and then compared the effectiveness of intranasal application of obidoxime (OBD) to saline in the control groups. Intranasally administered OBD was effective in partially reducing paraoxon-induced acetylcholinesterase inhibition in the brain and substantially reduced seizure severity and duration. Further, intranasal OBD completely prevented mortality, which was 41% in the animals given standard treatment plus intranasal saline. Fluoro-Jade-B staining revealed extensive neuronal degeneration in the surviving saline-treated animals 24h after paraoxon administration, whereas no detectable degenerating neurons were observed in any of the animals given intranasal OBD 30min before or 5min after paraoxon administration. These findings demonstrate that intranasally administered oximes bypass the BBB more effectively than those administered peripherally and provide an effective method for protecting the brain from organophosphates. The addition of intranasally administered oximes to the current treatment regimen for organophosphate poisoning would improve efficacy, reducing both brain damage and mortality.

  7. A new material to prevent urethral damage after implantation of artificial devices: an experimental study

    PubMed Central

    Lima, Salvador Vilar Correia; Machado, Marcilio Romero; Pinto, Flávia Cristina Morone; Lira, Mariana Montenegro de Melo; de Albuquerque, Amanda Vasconcelos; Lustosa, Eugênio Soares; da Silva, Jaiurte Gomes Martins; Campos, Olávio

    2017-01-01

    ABSTRACT Objective To validate the application of the bacterial cellulose (BC) membrane as a protecting barrier to the urethra. Materials and Methods Forty female Wistar rats (four groups of 10): Group 1 (sham), the urethra was dissected as in previous groups and nothing applied around; Group 2, received a 0.7cm strip of the BC applied around the urethra just below the bladder neck; Group 3, received a silicon strip with the same dimensions as in group 2; Group 4, had a combination of 2 and 3 groups being the silicon strip applied over the cellulosic material. Half of the animals in each group were killed at 4 and 8 months. Bladder and urethra were fixed in formalin for histological analysis. Results Inflammatory infiltrates were more intense at 4 months at lymphonodes (80% Grade 2), statistically different in the group 2 compared with groups 1 (p=0.0044) and 3 (p=0.0154). At 8 months, all samples were classified as grade 1 indicating a less intense inflammatory reaction in all groups. In group 2, at 8 months, there was a reduction in epithelial thickness (30±1μm) when com-pared to groups 1 (p=0.0001) and 3 (p<0.0001). Angiogenesis was present in groups 2 and 4 and absent in group 3. In BC implant, at 4 and 8 months, it was significant when comparing groups 4 with 1 (p=0.0159). Conclusion BC membrane was well integrated to the urethral wall promoting tissue remodeling and strengthening based on morphometric and histological results and may be a future option to prevent urethral damage. PMID:27819753

  8. A new material to prevent urethral damage after implantation of artificial devices: an experimental study.

    PubMed

    Lima, Salvador Vilar Correia; Machado, Marcilio Romero; Pinto, Flávia Cristina Morone; Lira, Mariana Montenegro de Melo; Albuquerque, Amanda Vasconcelos de; Lustosa, Eugênio Soares; Silva, Jaiurte Gomes Martins da; Campos, Olávio

    2017-01-01

    To validate the application of the bacterial cellulose (BC) membrane as a protecting bar-rier to the urethra. Forty female Wistar rats (four groups of 10): Group 1 (sham), the urethra was dissected as in previous groups and nothing applied around; Group 2, received a 0.7cm strip of the BC applied around the urethra just below the bladder neck; Group 3, received a silicon strip with the same dimensions as in group 2; Group 4, had a combination of 2 and 3 groups being the silicon strip applied over the cellulosic material. Half of the animals in each group were killed at 4 and 8 months. Bladder and urethra were fixed in formalin for histological analysis. Inflammatory infiltrates were more intense at 4 months at lymphonodes (80% Grade 2), statistically different in the group 2 compared with groups 1 (p=0.0044) and 3 (p=0.0154). At 8 months, all samples were classified as grade 1 indicating a less intense inflammatory reaction in all groups. In group 2, at 8 months, there was a reduction in epithelial thickness (30±1μm) when com-pared to groups 1 (p=0.0001) and 3 (p<0.0001). Angiogenesis was present in groups 2 and 4 and absent in group 3. In BC implant, at 4 and 8 months, it was significant when comparing groups 4 with 1 (p=0.0159). BC membrane was well integrated to the urethral wall promoting tissue remodeling and strengthening based on morphometric and histological results and may be a future option to prevent urethral damage. Copyright® by the International Brazilian Journal of Urology.

  9. The failure of selenium supplementation to prevent copper-induced liver damage in Fischer 344 rats.

    PubMed

    Aburto, E M; Cribb, A; Fuentealba, I C; Ikede, B O; Kibenge, F S; Markham, F

    2001-04-01

    This study evaluates the ability of selenium (Se) supplementation to prevent experimental copper (Cu)-induced hepatocellular damage. Weanling male Fischer 344 rats were randomly assigned to groups of 15, 3 groups (A,B,C) were fed Cu-loaded diets (containing 2000 microg/g copper, added as CuSO4) and different levels of Se (added as Na2SeO3 x 5H2O) as follows: A) Cu-loaded/Se adequate diet (0.4 microg/g Se, fed basis); B) Cu-loaded/Se-supplemented diet (2 microg/g Se); and C) Cu-loaded/Se-deficient diet (< 0.2 microg/g). Three additional groups (D,E,F) were fed diets containing adequate levels of Cu (14 microg/g Cu, fed basis) and different levels of Se as follows: D) Cu-adequate/Se-adequate diet; E) Cu-adequate/Se-supplemented diet (2 microg/g Se); and F) Cu-adequate/Se-deficient (< 0.2 microg/g) diet. After 4, 8, and 12 weeks on the experimental diets, liver samples were processed for histology, histochemistry, metal analysis, glutathione peroxidase (GSH-Px) measurement, and quantification of malondialdehyde (MDA). Morphologic changes characteristic of Cu-associated hepatitis, without an increase in hepatic MDA levels, were seen in all Cu-loaded rats in each sampling. Similar changes occurred in rats fed Se-adequate, Se-supplemented and Se-deficient diets. This study demonstrates that Fischer 344 rats fed 2000 microg/g Cu develop morphologic changes due to Cu toxicity without evidence of lipid peroxidation. Furthermore, Se supplementation does not result in protection against Cu-induced liver injury.

  10. Midazolam fails to prevent neurological damage in children with convulsive refractory febrile status epilepticus.

    PubMed

    Nagase, Hiroaki; Nishiyama, Masahiro; Nakagawa, Taku; Fujita, Kyoko; Saji, Yohsuke; Maruyama, Azusa

    2014-07-01

    We conducted a retrospective study to compare the outcome of intravenous midazolam infusion without electroencephalography or targeted temperature management and barbiturate coma therapy with electroencephalography and targeted temperature management for treating convulsive refractory febrile status epilepticus. Of 49 consecutive convulsive refractory febrile status epilepticus patients admitted to the pediatric intensive care unit of our hospital, 29 were excluded because they received other treatments or because of various underlying illnesses. Thus, eight patients were treated with midazolam and 10 with barbiturate coma therapy using thiamylal. Midazolam-treated patients were intubated only when necessary, whereas barbiturate coma therapy patients were routinely intubated. Continuous electroencephalography monitoring was utilized only for the barbiturate coma group. The titration goal for anesthesia was clinical termination of status epilepticus in the midazolam group and suppression or burst-suppression patterns on electroencephalography in the barbiturate coma group. Normothermia was maintained using blankets and neuromuscular blockade in the barbiturate coma group and using antipyretics in the midazolam group. Prognoses were measured at 1 month after onset; children were classified into poor and good outcome groups. Good outcome was achieved in all the barbiturate coma group patients and 50% of the midazolam group patients (P = 0.02, Fisher's exact test). Although the sample size was small and our study could not determine which protocol element is essential for the neurological outcome, the findings suggest that clinical seizure control using midazolam without continuous electroencephalography monitoring or targeted temperature management is insufficient in preventing neurological damage in children with convulsive refractory febrile status epilepticus. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The Effect of Ascorbic Acid and Garlic Administration on Lead-Induced Neural Damage in Rat Offspring’s Hippocampus

    PubMed Central

    Sadeghi, Akram; Ebrahimzadeh Bideskan, Alireza; Alipour, Fatemeh; Fazel, Alireza; Haghir, Hossein

    2013-01-01

    Objective(s): The aim of this study was to investigate ascorbic acid and garlic protective effects on lead-induced neurotoxicity during rat hippocampus development. Materials and Methods: 90 pregnant wistar rats were divided randomly into nine groups: 1- Animals received leaded water (L). 2- Rats received leaded water and ascorbic acid (L+AA). 3- Animals received leaded water and garlic juice (L+G). 4-Animals received leaded water, ascorbic acid and garlic juice (L+G+AA). 5- Rats treated with ascorbic acid (AA). 6- Rats treated with garlic juice (G). 7- Rats treated with ascorbic acid and garlic juice (AA+G). 8- Rats treated with tap water plus 0.4 ml/l normal hydrogen chloride (HCl) and 0.5 mg/l Glucose (Sham). 9- Normal group (N). Leaded water (1500 ppm), garlic juice (1 ml/100g/day, gavage) and ascorbic acid (500 mg/kg/day, IP) were used. Finally, blood lead levels (BLL) were measured in both rats and their offspring. The rat offspring brain sections were stained using Toluidine Blue and photographed. Dark neurons (DNs) were counted to compare all groups. Results: BLL significantly increased in L group compared to control and sham groups and decreased in L+G and L+AA groups in comparison to the L group (P<0.05). the number of DNs in the CA1, CA3, and DG of rat offspring hippocampus significantly increased in L group in comparison to control and sham groups (P<0.05) and decreased in L+G and L+AA groups compared to L group (P<0.05). Conclusion: Garlic juice and ascorbic acid administration during pregnancy and lactation may protect lead-induced neural damage in rat offspring hippocampus. PMID:24298384

  12. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage.

    PubMed

    Feng, Zhichun; Liu, Jing; Ju, Rong

    2013-05-05

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  13. Apple polyphenol extracts prevent damage to human gastric epithelial cells in vitro and to rat gastric mucosa in vivo.

    PubMed

    Graziani, G; D'Argenio, G; Tuccillo, C; Loguercio, C; Ritieni, A; Morisco, F; Del Vecchio Blanco, C; Fogliano, V; Romano, M

    2005-02-01

    Fresh fruit and vegetables exert multiple biological effects on the gastrointestinal mucosa. To assess whether apple extracts counteract oxidative or indomethacin induced damage to gastric epithelial cells in vitro and to rat gastric mucosa in vivo. Apple extracts were obtained from freeze dried apple flesh of the "Annurca" variety. Cell damage was induced by incubating MKN 28 cells with xanthine-xanthine oxidase or indomethacin and quantitated by MTT. In vivo gastric damage was induced by indomethacin 35 mg/kg. Intracellular antioxidant activity was determined using the (2,2'-azinobis (3-ethylbenzothiazolin-6-sulfonate) method. Malondialdehyde intracellular concentration, an index of lipid peroxidation, was determined by high pressure liquid chromatography with fluorometric detection. (1) Apple extracts decreased xanthine-xanthine oxidase or indomethacin induced injury to gastric epithelial cells by 50%; (2) catechin or chlorogenic acid (the main phenolic components of apple extracts) were equally effective as apple extracts in preventing oxidative injury to gastric cells; and (3) apple extracts (i) caused a fourfold increase in intracellular antioxidant activity, (ii) prevented its decrease induced by xanthine-xanthine oxidase, (iii) counteracted xanthine-xanthine oxidase induced lipid peroxidation, and (iv) decreased indomethacin injury to the rat gastric mucosa by 40%. Apple extracts prevent exogenous damage to human gastric epithelial cells in vitro and to the rat gastric mucosa in vivo. This effect seems to be associated with the antioxidant activity of apple phenolic compounds. A diet rich in apple antioxidants might exert a beneficial effect in the prevention of gastric diseases related to generation of reactive oxygen species.

  14. Black soybean seed coat polyphenols prevent AAPH-induced oxidative DNA-damage in HepG2 cells

    PubMed Central

    Yoshioka, Yasukiyo; Li, Xiu; Zhang, Tianshun; Mitani, Takakazu; Yasuda, Michiko; Nanba, Fumio; Toda, Toshiya; Yamashita, Yoko; Ashida, Hitoshi

    2017-01-01

    Black soybean seed coat extract (BE), which contains abundant polyphenols such as procyanidins, cyanidin 3-glucoside, (+)-catechin, and (−)­epicatechin, has been reported on health beneficial functions such as antioxidant activity, anti-inflammatory, anti-obesity, and anti-diabetic activities. In this study, we investigated that prevention of BE and its polyphenols on 2,2'-azobis(2-methylpropionamide) dihydrochloride (AAPH)-induced oxidative DNA damage, and found that these polyphenols inhibited AAPH-induced formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a biomarker for oxidative DNA damage in HepG2 cells. Under the same conditions, these polyphenols also inhibited AAPH-induced accumulation of reactive oxygen species (ROS) in the cells. Inhibition of ROS accumulation was observed in both cytosol and nucleus. It was confirmed that these polyphenols inhibited formation of AAPH radical using oxygen radical absorbance capacity assay under the cell-free conditions. These results indicate that polyphenols in BE inhibit free radical-induced oxidative DNA damages by their potent antioxidant activity. Thus, BE is an effective food material for prevention of oxidative stress and oxidative DNA damages. PMID:28366989

  15. Black soybean seed coat polyphenols prevent AAPH-induced oxidative DNA-damage in HepG2 cells.

    PubMed

    Yoshioka, Yasukiyo; Li, Xiu; Zhang, Tianshun; Mitani, Takakazu; Yasuda, Michiko; Nanba, Fumio; Toda, Toshiya; Yamashita, Yoko; Ashida, Hitoshi

    2017-03-01

    Black soybean seed coat extract (BE), which contains abundant polyphenols such as procyanidins, cyanidin 3-glucoside, (+)-catechin, and (-)-epicatechin, has been reported on health beneficial functions such as antioxidant activity, anti-inflammatory, anti-obesity, and anti-diabetic activities. In this study, we investigated that prevention of BE and its polyphenols on 2,2'-azobis(2-methylpropionamide) dihydrochloride (AAPH)-induced oxidative DNA damage, and found that these polyphenols inhibited AAPH-induced formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a biomarker for oxidative DNA damage in HepG2 cells. Under the same conditions, these polyphenols also inhibited AAPH-induced accumulation of reactive oxygen species (ROS) in the cells. Inhibition of ROS accumulation was observed in both cytosol and nucleus. It was confirmed that these polyphenols inhibited formation of AAPH radical using oxygen radical absorbance capacity assay under the cell-free conditions. These results indicate that polyphenols in BE inhibit free radical-induced oxidative DNA damages by their potent antioxidant activity. Thus, BE is an effective food material for prevention of oxidative stress and oxidative DNA damages.

  16. Folic Acid Supplementation for the Prevention of Neural Tube Defects: An Updated Evidence Report and Systematic Review for the US Preventive Services Task Force.

    PubMed

    Viswanathan, Meera; Treiman, Katherine A; Kish-Doto, Julia; Middleton, Jennifer C; Coker-Schwimmer, Emmanuel J L; Nicholson, Wanda K

    2017-01-10

    Neural tube defects are among the most common congenital anomalies in the United States. Periconceptional folic acid supplementation is a primary care-relevant preventive intervention. To review the evidence on folic acid supplementation for preventing neural tube defects to inform the US Preventive Services Task Force for an updated Recommendation Statement. MEDLINE, Cochrane Library, EMBASE, and trial registries through January 28, 2016, with ongoing surveillance through November 11, 2016; references; experts. English-language studies of folic acid supplementation in women. Excluded were poor-quality studies; studies of prepubertal girls, men, women without the potential for childbearing, and neural tube defect recurrence; and studies conducted in developing countries. Two investigators independently reviewed abstracts, full-text articles, and risk of bias of included studies. One investigator extracted data and a second checked accuracy. Because of heterogeneity, data were not pooled. Neural tube defects, harms of treatment (twinning, respiratory outcomes). A total of 24 studies (N > 58 860) were included. In 1 randomized clinical trial from Hungary initiated in 1984, incidence of neural tube defects for folic acid supplementation compared with trace element supplementation was 0% vs 0.25% (Peto odds ratio [OR], 0.13 [95% CI, 0.03-0.65]; n = 4862). Odds ratios from cohort studies recruiting participants between 1984 and 1996 demonstrated beneficial associations and ranged from 0.11 to 0.27 (n = 19 982). Three of 4 case-control studies with data from 1976 through 1998 reported ORs ranging from 0.6 to 0.7 (n > 7121). Evidence of benefit led to food fortification in the United States beginning in 1998, after which no new prospective studies have been conducted. More recent case-control studies drawing from data collected after 1998 have not demonstrated a protective association consistently with folic acid supplementation, with ORs ranging from

  17. Intranasal Delivery of A Novel Amnion Cell Secretome Prevents Neuronal Damage and Preserves Function In A Mouse Multiple Sclerosis Model

    PubMed Central

    Khan, Reas S.; Dine, Kimberly; Bauman, Bailey; Lorentsen, Michael; Lin, Lisa; Brown, Helayna; Hanson, Leah R.; Svitak, Aleta L.; Wessel, Howard; Brown, Larry; Shindler, Kenneth S.

    2017-01-01

    The ability of a novel intranasally delivered amnion cell derived biologic to suppress inflammation, prevent neuronal damage and preserve neurologic function in the experimental autoimmune encephalomyelitis animal model of multiple sclerosis was assessed. Currently, there are no existing optic nerve treatment methods for disease or trauma that result in permanent vision loss. Demyelinating optic nerve inflammation, termed optic neuritis, induces permanent visual dysfunction due to retinal ganglion cell damage in multiple sclerosis and experimental autoimmune encephalomyelitis. ST266, the biological secretome of Amnion-derived Multipotent Progenitor cells, contains multiple anti-inflammatory cytokines and growth factors. Intranasally administered ST266 accumulated in rodent eyes and optic nerves, attenuated visual dysfunction, and prevented retinal ganglion cell loss in experimental optic neuritis, with reduced inflammation and demyelination. Additionally, ST266 reduced retinal ganglion cell death in vitro. Neuroprotective effects involved oxidative stress reduction, SIRT1-mediated mitochondrial function promotion, and pAKT signaling. Intranasal delivery of neuroprotective ST266 is a potential novel, noninvasive therapeutic modality for the eyes, optic nerves and brain. The unique combination of biologic molecules in ST266 provides an innovative approach with broad implications for suppressing inflammation in autoimmune diseases, and for preventing neuronal damage in acute neuronal injury and chronic neurodegenerative diseases such as multiple sclerosis. PMID:28139754

  18. Bacteria used for the production of yogurt inactivate carcinogens and prevent DNA damage in the colon of rats.

    PubMed

    Wollowski, I; Ji, S T; Bakalinsky, A T; Neudecker, C; Pool-Zobel, B L

    1999-01-01

    Lactic acid-producing bacteria prevent carcinogen-induced preneoplastic lesions and tumors in rat colon. Because the mechanisms responsible for these protective effects are unknown, two strains of lactic acid bacteria, Lactobacillus delbrueckii ssp. bulgaricus 191R and Streptococcus salivarius ssp. thermophilus CH3, that are used to produce yogurt, were investigated in vitro and in vivo to elucidate their potential to deactivate carcinogens. Using the "Comet assay" to detect genetic damage, we found that L. bulgaricus 191R applied orally to rats could prevent 1, 2-dimethylhydrazine-induced DNA breaks in the colon in vivo, whereas St. thermophilus CH3 were not effective. However, in vitro, both strains prevented DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in isolated primary rat colon cells. Extracts prepared from milk fermented with St. thermophilus CH3 were as efficient in deactivating MNNG as was L-cysteine. Isolated metabolites arising from bacteria during fermentation in the colon or in milk [L(+) lactate, D(-) lactate, palmitic acid and isopalmitic acid] were not effective. We postulate that thiol-containing breakdown products of proteins, via catalysis by bacterial proteases, could be one mechanism by which MNNG or other carcinogens are deactivated in the gut lumen resulting in reduced damage to colonic mucosal cells.

  19. Non-steroidal anti-inflammatory drug, nabumetone, prevents indometacin-induced gastric damage via inhibition of neutrophil functions.

    PubMed

    Ishiwata, Yoshiro; Okamoto, Masayuki; Yokochi, Shoji; Hashimoto, Hiroyuki; Nakamura, Takashi; Miyachi, Atsushi; Naito, Yuji; Yoshikawa, Toshikazu

    2003-02-01

    Nabumetone is a non-steroidal anti-inflammatory drug (NSAID). It works as a prodrug and is extensively metabolized to an active metabolite, 6-methoxy-2-naphthylacetic acid (6MNA). It is well known that neutrophil infiltration and activation are critical in the pathogenesis of NSAID-induced gastric injury, and nabumetone shows less incidence of gastrointestinal irritancy. We examined the effects of nabumetone on neutrophil activation and on indometacin-induced gastric damage. In the indometacin-induced gastric mucosal injury, rats were treated with indometacin and then nabumetone or 6MNA was orally administered. Nabumetone prevented gastric damage accompanied by the reduction of neutrophil infiltration into gastric mucosa, but such an effect was not observed with 6MNA. Nabumetone reduced the formyl methionyl leucyl phenylalanine (fMLP)-induced respiratory burst of human neutrophils to 30% of the control level in-vitro, but 6MNA did not. In addition, nabumetone prevented the fMLP-induced migration of neutrophils. Nabumetone did not inhibit O2- generation in the xanthine-xanthine oxidase system. These results suggest that nabumetone prevents gastric damage induced by the active metabolite, 6MNA, via the suppression of neutrophil activation in gastric mucosa.

  20. The Preventive Effects of Neural Stem Cells and Mesenchymal Stem Cells Intra-ventricular Injection on Brain Stroke in Rats.

    PubMed

    Hosseini, Seyed Mojtaba; Samimi, Nastaran; Farahmandnia, Mohammad; Shakibajahromi, Benafshe; Sarvestani, Fatemeh Sabet; Sani, Mahsa; Mohamadpour, Masoomeh

    2015-09-01

    Stroke is one of the most important causes of disability in developed countries and, unfortunately, there is no effective treatment for this major problem of central nervous system (CNS); cell therapy may be helpful to recover this disease. In some conditions such as cardiac surgeries and neurosurgeries, there are some possibilities of happening brain stroke. Inflammation of CNS plays an important role in stroke pathogenesis, in addition, apoptosis and neural death could be the other reasons of poor neurological out come after stroke. In this study, we examined the preventive effects of the neural stem cells (NSCs) and mesenchymal stem cells (MSCs) intra-ventricular injected on stroke in rats. The aim of this study was to investigate the preventive effects of neural and MSCs for stroke in rats. The MSCs were isolated by flashing the femurs and tibias of the male rats with appropriate media. The NSCs were isolated from rat embryo ganglion eminence and they cultured NSCs media till the neurospheres formed. Both NSCs and MSCs were labeled with PKH26-GL. One day before stroke, the cells were injected into lateral ventricle stereotactically. During following for 28 days, the neurological scores indicated that there are better recoveries in the groups received stem cells and they had less lesion volume in their brain measured by hematoxylin and eosin staining. Furthermore, the activities of caspase-3 were lower in the stem cell received groups than control group and the florescent microscopy images showed that the stem cells migrated to various zones of the brains. Both NSCs and MSCs are capable of protecting the CNS against ischemia and they may be good ways to prevent brain stroke consequences situations.

  1. Metformin does not prevent DNA damage in lymphocytes despite its antioxidant properties against cumene hydroperoxide-induced oxidative stress.

    PubMed

    Onaran, Ilhan; Guven, Gulgun S; Ozdaş, Sule Beyhan; Kanigur, Gonul; Vehid, Suphi

    2006-12-10

    Metformin (1-(diaminomethylidene)-3,3-dimethyl-guanidine), which is the most commonly prescribed oral antihyperglycaemic drug in the world, was reported to have several antioxidant properties such as the inhibition of advanced glycation end-products. In addition to its use in the treatment of diabetes, it has been suggested that metformin may be a promising anti-aging agent. The present work was aimed at assessing the possible protective effects of metformin against DNA-damage induction by oxidative stress in vitro. The effects of metformin were compared with those of N-acetylcysteine (NAC). For this purpose, peripheral blood lymphocytes from aged (n=10) and young (n=10) individuals were pre-incubated with various concentrations of metformin (10-50microM), followed by incubation with 15microM cumene hydroperoxide (CumOOH) for 48h, under conditions of low oxidant level, which do not induce cell death. Protection against oxidative DNA damage was evaluated by use of the Comet assay and the cytokinesis-block micronucleus technique. Changes in the levels of malondialdehyde+4-hydroxy-alkenals, an index of oxidative stress, were also measured in lymphocytes. At concentrations ranging from 10microM to 50microM, metformin did not protect the lymphocytes from DNA damage, while 50microM NAC possessed an effective protective effect against CumOOH-induced DNA damage. Furthermore, NAC, but not metformin, inhibited DNA fragmentation induced by CumOOH. In contrast to the lack of protection against oxidative damage in lymphocyte cultures, metformin significantly protected the cells from lipid peroxidation in both age groups, although not as effective as NAC in preventing the peroxidative damage at the highest doses. Within the limitations of this study, the results indicate that pharmacological concentrations of metformin are unable to protect against DNA damage induced by a pro-oxidant stimulus in cultured human lymphocytes, despite its antioxidant properties.

  2. Mitochondria-targeted Ogg1 and aconitase-2 prevent oxidant-induced mitochondrial DNA damage in alveolar epithelial cells.

    PubMed

    Kim, Seok-Jo; Cheresh, Paul; Williams, David; Cheng, Yuan; Ridge, Karen; Schumacker, Paul T; Weitzman, Sigmund; Bohr, Vilhelm A; Kamp, David W

    2014-02-28

    Mitochondria-targeted human 8-oxoguanine DNA glycosylase (mt-hOgg1) and aconitase-2 (Aco-2) each reduce oxidant-induced alveolar epithelial cell (AEC) apoptosis, but it is unclear whether protection occurs by preventing AEC mitochondrial DNA (mtDNA) damage. Using quantitative PCR-based measurements of mitochondrial and nuclear DNA damage, mtDNA damage was preferentially noted in AEC after exposure to oxidative stress (e.g. amosite asbestos (5-25 μg/cm(2)) or H2O2 (100-250 μM)) for 24 h. Overexpression of wild-type mt-hOgg1 or mt-long α/β 317-323 hOgg1 mutant incapable of DNA repair (mt-hOgg1-Mut) each blocked A549 cell oxidant-induced mtDNA damage, mitochondrial p53 translocation, and intrinsic apoptosis as assessed by DNA fragmentation and cleaved caspase-9. In contrast, compared with controls, knockdown of Ogg1 (using Ogg1 shRNA in A549 cells or primary alveolar type 2 cells from ogg1(-/-) mice) augmented mtDNA lesions and intrinsic apoptosis at base line, and these effects were increased further after exposure to oxidative stress. Notably, overexpression of Aco-2 reduced oxidant-induced mtDNA lesions, mitochondrial p53 translocation, and apoptosis, whereas siRNA for Aco-2 (siAco-2) enhanced mtDNA damage, mitochondrial p53 translocation, and apoptosis. Finally, siAco-2 attenuated the protective effects of mt-hOgg1-Mut but not wild-type mt-hOgg1 against oxidant-induced mtDNA damage and apoptosis. Collectively, these data demonstrate a novel role for mt-hOgg1 and Aco-2 in preserving AEC mtDNA integrity, thereby preventing oxidant-induced mitochondrial dysfunction, p53 mitochondrial translocation, and intrinsic apoptosis. Furthermore, mt-hOgg1 chaperoning of Aco-2 in preventing oxidant-mediated mtDNA damage and apoptosis may afford an innovative target for the molecular events underlying oxidant-induced toxicity.

  3. Preventing Long-Term Cardiac Damage in Pediatric Patients With Kawasaki Disease.

    PubMed

    Williams, Kelly

    Kawasaki disease is currently the leading cause of long-term cardiac damage in pediatric patients in the United States. Kawasaki disease is diagnosed based on symptomatology and by ruling out other etiology. There is a significant need for an improved, standardized treatment protocol for patients diagnosed with Kawasaki disease and a more rapid initiation of treatment for these patients. Decreasing the cardiac damage caused by Kawasaki disease with timely diagnosis and treatment needs be a principal goal.

  4. Blood flow restriction prevents muscle damage but not protein synthesis signaling following eccentric contractions

    PubMed Central

    Sudo, Mizuki; Ando, Soichi; Poole, David C; Kano, Yutaka

    2015-01-01

    There is a growing body of evidence to suggest that resistance training exercise combined with blood flow restriction (BFR) increases muscle size and strength in humans. Eccentric contraction (ECC) frequently induces severe muscle damage. However, it is not known whether and to what extent muscle damage occurs following ECC + BFR due to the difficulty of conducting definitive invasive studies. The purpose of this study was to examine muscle fiber damage following ECC + BFR at the cellular level. High-intensity ECC was purposefully selected to maximize the opportunity for muscle damage and hypertrophic signaling in our novel in vivo animal model. Male Wistar rats were assigned randomly to the following groups: ECC and ECC + BFR at varying levels of occlusion pressure (140, 160, and 200 Torr). In all conditions, electrical stimulation was applied to the dorsiflexor muscles simultaneously with electromotor-induced plantar flexion. We observed severe histochemical muscle fiber damage (area of damaged fibers/total fiber area analyzed) following ECC (26.4 ± 4.0%). Surprisingly, however, muscle damage was negligible following ECC + BFR140 (2.6 ± 1.2%), ECC+BFR160 (3.0 ± 0.5%), and ECC + BFR200 (0.2 ± 0.1%). Ribosomal S6 kinase 1 (S6K1) phosphorylation, a downstream target of rapamycin (mTOR)-phosphorylation kinase, increased following ECC + BFR200 as well as ECC. In contrast, S6K1 phosphorylation was not altered by BFR alone. The present findings suggest that ECC combined with BFR, even at high exercise intensities, may enhance muscle protein synthesis without appreciable muscle fiber damage. PMID:26149281

  5. Neural Stem Cells Injected into the Sound-Damaged Cochlea Migrate Throughout the Cochlea and Express Markers of Hair Cells, Supporting Cells, and Spiral Ganglion Cells

    PubMed Central

    Corliss, Deborah A.; Gray, Brianna; Anderson, Julia K.; Bobbin, Richard P.; Snyder, Evan Y.; Cotanche, Douglas A.

    2007-01-01

    Most cases of hearing loss are caused by the death or dysfunction of one of the many cochlear cell types. We examined whether cells from a neural stem cell line could replace cochlear cell types lost after exposure to intense noise. For this purpose, we transplanted a clonal stem cell line into the scala tympani of sound damaged mice and guinea pigs. Utilizing morphological, protein expression and genetic criteria, stem cells were found with characteristics of both neural tissues (satellite, spiral ganglion and Schwann cells) and cells of the organ of Corti (hair cells, supporting cells). Additionally, noise-exposed, stem cell-injected animals exhibited a small but significant increase in the number of satellite cells and Type I spiral ganglion neurons compared to non-injected noise-exposed animals. These results indicate that cells of this neural stem cell line migrate from the scala tympani to Rosenthal's canal and the organ of Corti. Moreover, it suggests that cells of this neural stem cell line may derive some information needed from the microenvironment of the cochlea to differentiate into replacement cells in the cochlea. PMID:17659854

  6. Use of grafting to prevent Hypsipyla grandella (Zeller) (Lepidoptera: Pyralidae) damage to new world Meliaceae species.

    PubMed

    Perez, Julian; Eigenbrode, Sanford D; Hilje, Luko; Tripepi, Robert R; Aguilar, Maria E; Mesen, Francisco

    2010-01-01

    The susceptible species Cedrela odorata and Swietenia macrophylla to attack by Hypsipyla grandella (Zeller) larvae were grafted onto the resistant species Khaya senegalensis and Toona ciliata. Six-month-old grafted plants were then compared to their reciprocal grafts and to both intact (non-grafted) and autografted plants for damage due to H. grandella larvae and for their effects on larval performance. Two experiments were conducted: one in which the apical bud of the main plant shoot was inoculated with H. grandella eggs, and the other in which the bud was inoculated with third instars. Damage in each experiment was assessed by the number of frass piles, number and length of tunnels, number of damaged leaves, and damage to the apical bud. Larval performance was evaluated in terms of time to reach pupation and pupal weight and length. In both experiments, plant damage differed significantly among treatments (P < 0.03). Resistant rootstocks conferred resistance to susceptible scions. In both experiments, grafting by itself, regardless of the rootstock and scion combination, also reduced damage caused by H. grandella larvae. Scions of autografted susceptible species had similar resistance to susceptible scions grafted on resistant rootstocks. Few larvae reached pupation, and their pupal weight and length were similar.

  7. The sensitivity of the DNA damage checkpoint prevents oocyte maturation in endometriosis

    PubMed Central

    Hamdan, Mukhri; Jones, Keith T.; Cheong, Ying; Lane, Simon I. R.

    2016-01-01

    Mouse oocytes respond to DNA damage by arresting in meiosis I through activity of the Spindle Assembly Checkpoint (SAC) and DNA Damage Response (DDR) pathways. It is currently not known if DNA damage is the primary trigger for arrest, or if the pathway is sensitive to levels of DNA damage experienced physiologically. Here, using follicular fluid from patients with the disease endometriosis, which affects 10% of women and is associated with reduced fertility, we find raised levels of Reactive Oxygen Species (ROS), which generate DNA damage and turn on the DDR-SAC pathway. Only follicular fluid from patients with endometriosis, and not controls, produced ROS and damaged DNA in the oocyte. This activated ATM kinase, leading to SAC mediated metaphase I arrest. Completion of meiosis I could be restored by ROS scavengers, showing this is the primary trigger for arrest and offering a novel clinical therapeutic treatment. This study establishes a clinical relevance to the DDR induced SAC in oocytes. It helps explain how oocytes respond to a highly prevalent human disease and the reduced fertility associated with endometriosis. PMID:27841311

  8. Pre-treatment with LCZ696, an orally active angiotensin receptor neprilysin inhibitor, prevents ischemic brain damage.

    PubMed

    Bai, Hui-Yu; Mogi, Masaki; Nakaoka, Hirotomo; Kan-No, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Kukida, Masayoshi; Shan, Bao-Shuai; Yamauchi, Toshifumi; Higaki, Akinori; Iwanami, Jun; Horiuchi, Masatsugu

    2015-09-05

    Angiotensin II receptor blockers (ARBs) are known to prevent ischemic brain damage after stroke. Natriuretic peptides, which are increased by a neprilysin inhibitor, are also reported to protect against brain damage. Therefore, we investigated the possible protective effect of valsartan (VAL) compared with LCZ696 (VAL+ neprilysin inhibitor; 1:1) after middle cerebral artery (MCA) occlusion. Eight-week-old male C57BL/6J mice were treated with VAL (3mg/kg per day) or LCZ696 (6mg/kg per day) for 2 weeks before MCA occlusion. Blood pressure and heart rate were measured by telemetry. Cerebral blood flow (CBF) was determined by laser-Doppler flowmetry. Ischemic area was evaluated by triphenytetrasodium chloride staining, and oxidative stress was determined by dihydroethidium staining. Blood pressure and heart rate were not significantly different before and after treatment. Pre-treatment with LCZ696 or VAL reduced the ischemic area, and this effect of LCZ696 was more marked than that of VAL pre-treatment. The decrease in CBF in the peripheral region of the ischemic area was significantly attenuated by pre-treatment with LCZ696 or VAL, without any significant effect on CBF in the core region. VAL or LCZ696 pre-treatment significantly decreased the increase of superoxide anion production in the cortex on the ischemic side. However, no significant difference in CBF and superoxide anion production was observed between VAL and LCZ696 pre-treatment. The preventive effect of LCZ696 on ischemic brain damage after stroke was more marked than that of VAL. LCZ696 could be used as a new approach to prevent brain damage after stroke. (246 words).

  9. Long-term prehypertension treatment with losartan effectively prevents brain damage and stroke in stroke-prone spontaneously hypertensive rats.

    PubMed

    He, De-Hua; Zhang, Liang-Min; Lin, Li-Ming; Ning, Ruo-Bing; Wang, Hua-Jun; Xu, Chang-Sheng; Lin, Jin-Xiu

    2014-02-01

    Prehypertension has been associated with adverse cerebrovascular events and brain damage. The aims of this study were to investigate ⅰ) whether short‑ and long-term treatments with losartan or amlodipine for prehypertension were able to prevent blood pressure (BP)-linked brain damage, and ⅱ) whether there is a difference in the effectiveness of treatment with losartan and amlodipine in protecting BP-linked brain damage. In the present study, prehypertensive treatment with losartan and amlodipine (6 and 16 weeks treatment with each drug) was performed on 4-week‑old stroke-prone spontaneously hypertensive rats (SHRSP). The results showed that long-term (16 weeks) treatment with losartan is the most effective in lowering systolic blood pressure in the long term (up to 40 weeks follow-up). Additionally, compared with the amlodipine treatment groups, the short‑ and long-term losartan treatments protected SHRSP from stroke and improved their brains structurally and functionally more effectively, with the long-term treatment having more benefits. Mechanistically, the short‑ and long-term treatments with losartan reduced the activity of the local renin-angiotensin-aldosterone system (RAAS) in a time-dependent manner and more effectively than their respective counterpart amlodipine treatment group mainly by decreasing AT1R levels and increasing AT2R levels in the cerebral cortex. By contrast, the amlodipine treatment groups inhibited brain cell apoptosis more effectively as compared with the losartan treatment groups mainly through the suppression of local oxidative stress. Taken together, the results suggest that long-term losartan treatment for prehypertension effectively protects SHRSP from stroke-induced brain damage, and this protection is associated with reduced local RAAS activity than with brain cell apoptosis. Thus, the AT1R receptor blocker losartan is a good candidate drug that may be used in the clinic for long-term treatment on prehypertensive

  10. Sertraline promotes hippocampus-derived neural stem cells differentiating into neurons but not glia and attenuates LPS-induced cellular damage.

    PubMed

    Peng, Zheng-Wu; Xue, Yun-Yun; Wang, Hua-Ning; Wang, Huai-Hai; Xue, Fen; Kuang, Fang; Wang, Bai-Ren; Chen, Yun-Chun; Zhang, Li-Yi; Tan, Qing-Rong

    2012-01-10

    Sertraline is one of the most commonly used antidepressants in clinic. Although it is well accepted that sertraline exerts its action through inhibition of the reuptake of serotonin at presynaptic site in the brain, its effect on the neural stem cells (NSCs) has not been well elucidated. In this study, we utilized NSCs separated from the hippocampus of fetal rat to investigate the effect of sertraline on the proliferation and differentiation of NSCs. The study demonstrated that sertraline had no effect on NSCs proliferation but it significantly promoted NSCs to differentiate into serotoninergic neurons other than glia cells. Furthermore, we found that sertraline protected NSCs against the lipopolysaccharide-induced cellular damage. These data indicate that sertraline can promote neurogenesis and protect the viability of neural stem cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Neural correlates of promotion and prevention goal activation: an fMRI study using an idiographic approach.

    PubMed

    Eddington, Kari M; Dolcos, Florin; Cabeza, Roberto; R Krishnan, K Ranga; Strauman, Timothy J

    2007-07-01

    Regulatory focus theory [Higgins, E. T. Beyond pleasure and pain. American Psychologist, 52, 1280-1300, 1997] postulates two social-cognitive motivational systems, the promotion and prevention systems, for self-regulation of goal pursuit. However, the neural substrates of promotion and prevention goal activation remain unclear. Drawing on several literatures, we hypothesized that priming promotion versus prevention goals would activate areas in the left versus right prefrontal cortex (PFC), respectively, and that activation in these areas would be correlated with individual differences in chronic regulatory focus. Sixteen participants underwent functional magnetic resonance imaging while engaged in a depth-of-processing task, during which they were exposed incidentally to their own promotion and prevention goals. Task-related cortical activation was consistent with previous studies. At the same time, incidental priming of promotion goals was associated with left orbital PFC activation, and activation in this area was stronger for individuals with a chronic promotion focus. Findings regarding prevention goal priming were not consistent with predictions. The data illustrate the centrality of self-regulation and personal goal pursuit within the multilayered process of social cognition.

  12. The use of folic acid for the prevention of neural tube defects and other congenital anomalies.

    PubMed

    Wilson, R Douglas; Davies, Gregory; Désilets, Valérie; Reid, Gregory J; Summers, Anne; Wyatt, Philip; Young, David

    2003-11-01

    To provide information regarding the use of folic acid for the prevention of neural tube defects (NTDs) and other congenital anomalies, in order that physicians, midwives, nurses, and other health-care workers can assist in the education of women in the preconception phase of their health care. OPTION: Folic acid supplementation is problematic, since 50% of pregnancies are unplanned and the health status of women may not be optimal. Folic acid supplementation has been proven to decrease or minimize specific birth defects. A systematic review of the literature, including review and peer-reviewed articles, government publications, the previous Society of Obstetricians and Gynaecologists of Canada (SOGC) Policy Statement of March 1993, and statements from the American College of Obstetrics and Gynecology, was used to develop a new clinical practice guideline for the SOGC. Peer-review process within the committee structure. The benefit is reduced lethal and severe morbidity birth defects and the harm is minimal. The personal cost is of vitamin supplementation on a daily basis and eating a healthy diet. 1. Women in the reproductive age group should be advised about the benefits of folic acid supplementation during wellness visits (birth control renewal, Pap testing, yearly examination), especially if pregnancy is contemplated. (III-A) 2. Women should be advised to maintain a healthy nutritional diet, as recommended in Canada's Food Guide to Healthy Eating (good or excellent sources of folic acid: broccoli, spinach, peas, Brussels sprouts, corn, beans, lentils, oranges). (III-A) 3. Women who could become pregnant should be advised to take a multivitamin containing 0.4 mg to 1.0 mg of folic acid daily. (II-1A) 4. Women taking a multivitamin with folic acid supplement should be advised not to take more than 1 daily dose of vitamin supplement, as indicated on the product label. (II-2A) 5. Women in intermediate- to high-risk categories for NTDs (NTD-affected previous

  13. Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage.

    PubMed

    Schürmann, Nura; Forrer, Pascal; Casse, Olivier; Li, Jiagui; Felmy, Boas; Burgener, Anne-Valérie; Ehrenfeuchter, Nikolaus; Hardt, Wolf-Dietrich; Recher, Mike; Hess, Christoph; Tschan-Plessl, Astrid; Khanna, Nina; Bumann, Dirk

    2017-01-23

    Host control of infections crucially depends on the capability to kill pathogens with reactive oxygen species (ROS). However, these toxic molecules can also readily damage host components and cause severe immunopathology. Here, we show that neutrophils use their most abundant granule protein, myeloperoxidase, to target ROS specifically to pathogens while minimizing collateral tissue damage. A computational model predicted that myeloperoxidase efficiently scavenges diffusible H2O2 at the surface of phagosomal Salmonella and converts it into highly reactive HOCl (bleach), which rapidly damages biomolecules within a radius of less than 0.1 μm. Myeloperoxidase-deficient neutrophils were predicted to accumulate large quantities of H2O2 that still effectively kill Salmonella, but most H2O2 would leak from the phagosome. Salmonella stimulation of neutrophils from normal and myeloperoxidase-deficient human donors experimentally confirmed an inverse relationship between myeloperoxidase activity and extracellular H2O2 release. Myeloperoxidase-deficient mice infected with Salmonella had elevated hydrogen peroxide tissue levels and exacerbated oxidative damage of host lipids and DNA, despite almost normal Salmonella control. These data show that myeloperoxidase has a major function in mitigating collateral tissue damage during antimicrobial oxidative bursts, by converting diffusible long-lived H2O2 into highly reactive, microbicidal and locally confined HOCl at pathogen surfaces.

  14. Insights into prevention of human neural tube defects by folic acid arising from consideration of mouse mutants.

    PubMed

    Harris, Muriel J

    2009-04-01

    Almost 30 years after the initial study by Richard W. Smithells and coworkers, it is still unknown how maternal periconceptional folic acid supplementation prevents human neural tube defects (NTDs). In this article, questions about human NTD prevention are considered in relation to three groups of mouse models: NTD mutants that respond to folate, NTD mutants and strains that do not respond to folate, and mutants involving folate-pathway genes. Of the 200 mouse NTD mutants, only a few have been tested with folate; half respond and half do not. Among responsive mutants, folic acid supplementation reduces exencephaly and/or spina bifida aperta frequency in the Sp(2H), Sp, Cd, Cited2, Cart1, and Gcn5 mutants. Prevention ranges from 35 to 85%. The responsive Sp(2H) (Pax3) mutant has abnormal folate metabolism, but the responsive Cited2 mutant does not. Neither folic nor folinic acid reduces NTD frequency in Axd, Grhl3, Fkbp8, Map3k4, or Nog mutants or in the curly tail or SELH/Bc strains. Spina bifida frequency is reduced in Axd by methionine and in curly tail by inositol. Exencephaly frequency is reduced in SELH/Bc by an alternative commercial ration. Mutations in folate-pathway genes do not cause NTDs, except for 30% exencephaly in folate-treated Folr1. Among folate-pathway mutants, neural tube closure is normal in Cbs, Folr2, Mthfd1, Mthfd2, Mthfr, and Shmt1 mutants. Embryos die by midgestation in Folr1, Mtr, Mtrr, and RFC1 mutants. The mouse models point to genetic heterogeneity in the ability to respond to folic acid and also to heterogeneity in genetic cause of NTDs that can be prevented by folic acid.

  15. Chlorogenic acid prevents isoproterenol-induced DNA damage in vascular smooth muscle cells

    PubMed Central

    Wang, Jingshuai; Li, Jiyang; Liu, Jie; Xu, Mengjiao; Tong, Xiaowen; Wang, Jianjun

    2016-01-01

    Numerous clinical therapeutic agents have been identified as DNA damaging. The present study revealed that isoproterenol (Iso) resulted in DNA damage in vascular smooth muscle cells (VSMCs) and increased the levels of intracellular oxygen free radicals. Administration of chlorogenic acid (CGA) inhibited this effect. Pretreatment with CGA abrogated the increase in protein expression levels of γ-H2A histone family member X, phosphorylated ataxia telangiectasia mutated, phosphorylated Rad3-related protein, breast cancer 1 and C-terminal Src homologous kinase induced by Iso. In addition, the increase in levels of intracellular reactive oxygen species (ROS) induced by Iso was inhibited by CGA pretreatment in a dose-dependent manner. The results of the present study suggest that CGA may inhibit Iso-induced VSMC damage via the suppression of ROS generation. Therefore, CGA may be a novel agent for the treatment of vascular diseases. PMID:27634104

  16. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes.

    PubMed

    Green, Katherine; Brand, Martin D; Murphy, Michael P

    2004-02-01

    Hyperglycemia causes many of the pathological consequences of both type 1 and type 2 diabetes. Much of this damage is suggested to be a consequence of elevated production of reactive oxygen species by the mitochondrial respiratory chain during hyperglycemia. Mitochondrial radical production associated with hyperglycemia will also disrupt glucose-stimulated insulin secretion by pancreatic beta-cells, because pancreatic beta-cells are particularly susceptible to oxidative damage. Therefore, mitochondrial radical production in response to hyperglycemia contributes to both the progression and pathological complications of diabetes. Consequently, strategies to decrease mitochondrial radical production and oxidative damage may have therapeutic potential. This could be achieved by the use of antioxidants or by decreasing the mitochondrial membrane potential. Here, we outline the background to these strategies and discuss how antioxidants targeted to mitochondria, or selective mitochondrial uncoupling, may be potential therapies for diabetes.

  17. 17β-estradiol prevents experimentally-induced oxidative damage to membrane lipids and nuclear DNA in porcine ovary.

    PubMed

    Stepniak, Jan; Karbownik-Lewinska, Malgorzata

    2016-01-01

    Estrogens, with their principle representative 17β-estradiol, contribute to the redox state of cells showing both pro- and antioxidative properties. In the ovary, being the main source of estrogens, maintaining balance between the production and detoxification of ROS is crucial. Whereas ovary estrogen concentration is difficult to estimate, its circulating concentration in women may reach the nanomolar level. The aim of the study was to evaluate the effects of 17β-estradiol on oxidative damage to membrane lipids (lipid peroxidation, LPO) and to nuclear DNA in the porcine ovary under basal conditions and in the presence of Fenton reaction (Fe(2+)+H2O2→Fe(3+)+(•)OH + OH(-)) substrates. Ovary homogenates and DNA were incubated in the presence of 17β-estradiol (1 mM-1 pM), without/with FeSO4 (30 μM) + H2O2 (0.5 mM). Malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. The concentration of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) (DNA damage index) was measured by HPLC. We observed that 17β-estradiol did not alter the basal level of oxidative damage, but reduced Fe(2+)+H2O2-induced oxidative damage to membrane lipids when ≥10 nM and to DNA at concentrations ≥1 nM. In the ovary at near physiological concentration, 17β-estradiol prevents experimentally induced oxidative damage. This suggests that under physiological conditions this hormone may contribute to protecting the ovary against oxidative damage.

  18. Preventive effects of metallothionein against DNA and lipid metabolic damages in dyslipidemic mice under repeated mild stress.

    PubMed

    Higashimoto, Minoru; Isoyama, Naohiro; Ishibashi, Satoshi; Ogawa, Naoko; Takiguchi, Masufumi; Suzuki, Shinya; Ohnishi, Yoshinari; Sato, Masao

    2013-01-01

    The effects of repeated mild stress on DNA and lipid metabolic damages in multiple organs of dyslipidemic mice, and the preventive role of metallothionein (MT) were investigated. Female adult wild-type and MT-null mice fed high-fat diet (HFD) or standard diet (STD) were repeatedly subjected to fasting or restraint for three weeks. The liver, pancreas, spleen, bone marrow and serum samples were taken for evaluating DNA damage, MT, glutathione (GSH), corticosterone, carnitine and adiponectin. Body weights of restraint groups were reduced with the intensity of stress increased, even if the energy intakes were higher than those of STD group. Hepatic GSH levels were reduced in HFD control group and were further reduced in stress groups, especially in restraint groups, while the hepatic MT and serum corticosterone levels were increased in concert with the intensity of stress. Cellular DNA damages were generally increased by the restraint stress, especially in MT-null mice. Hepatic carnitine levels of MT-null mice were markedly lower than those of wild-type mice. The data suggest that MT plays a preventive role by acting as an antioxidant in corporation with GSH decreased by repeated stress and that MT may be an essential factor for inducing carnitine under the stress.

  19. Dexamethasone prevents motor deficits and neurovascular damage produced by shiga toxin 2 and lipopolysaccharide in the mouse striatum.

    PubMed

    Pinto, Alipio; Cangelosi, Adriana; Geoghegan, Patricia A; Goldstein, Jorge

    2017-03-06

    Shiga toxin 2 (Stx2) from enterohemorrhagic Escherichia coli (EHEC) causes bloody diarrhea and Hemolytic Uremic Syndrome (HUS) that may derive to fatal neurological outcomes. Neurological abnormalities in the striatum are frequently observed in affected patients and in studies with animal models while motor disorders are usually associated with pyramidal and extra pyramidal systems. A translational murine model of encephalopathy was employed to demonstrate that systemic administration of a sublethal dose of Stx2 damaged the striatal microvasculature and astrocytes, increase the blood brain barrier permeability and caused neuronal degeneration. All these events were aggravated by lipopolysaccharide (LPS). The injury observed in the striatum coincided with locomotor behavioral alterations. The anti-inflammatory Dexamethasone resulted to prevent the observed neurologic and clinical signs, proving to be an effective drug. Therefore, the present work demonstrates that: (i) systemic sub-lethal Stx2 damages the striatal neurovascular unit as it succeeds to pass through the blood brain barrier. (ii) This damage is aggravated by the contribution of LPS which is also produced and secreted by EHEC, and (iii) the observed neurological alterations may be prevented by an anti-inflammatory treatment.

  20. Chromosome-wide histone deacetylation by sirtuins prevents hyperactivation of DNA damage-induced signaling upon replicative stress.

    PubMed

    Simoneau, Antoine; Ricard, Étienne; Weber, Sandra; Hammond-Martel, Ian; Wong, Lai Hong; Sellam, Adnane; Giaever, Guri; Nislow, Corey; Raymond, Martine; Wurtele, Hugo

    2016-04-07

    The Saccharomyces cerevisiae genome encodes five sirtuins (Sir2 and Hst1-4), which constitute a conserved family of NAD-dependent histone deacetylases. Cells lacking any individual sirtuin display mild growth and gene silencing defects. However, hst3Δ hst4Δ double mutants are exquisitely sensitive to genotoxins, and hst3Δ hst4Δ sir2Δmutants are inviable. Our published data also indicate that pharmacological inhibition of sirtuins prevents growth of several fungal pathogens, although the biological basis is unclear. Here, we present genome-wide fitness assays conducted with nicotinamide (NAM), a pan-sirtuin inhibitor. Our data indicate that NAM treatment causes yeast to solicit specific DNA damage response pathways for survival, and that NAM-induced growth defects are mainly attributable to inhibition of Hst3 and Hst4 and consequent elevation of histone H3 lysine 56 acetylation (H3K56ac). Our results further reveal that in the presence of constitutive H3K56ac, the Slx4 scaffolding protein and PP4 phosphatase complex play essential roles in preventing hyperactivation of the DNA damage-response kinase Rad53 in response to spontaneous DNA damage caused by reactive oxygen species. Overall, our data support the concept that chromosome-wide histone deacetylation by sirtuins is critical to mitigate growth defects caused by endogenous genotoxins.

  1. Ganoderma lucidum total triterpenes prevent radiation-induced DNA damage and apoptosis in splenic lymphocytes in vitro.

    PubMed

    Smina, T P; De, Strayo; Devasagayam, T P A; Adhikari, S; Janardhanan, K K

    2011-12-24

    The development of radioprotective agents has been the subject of intense research, especially in the field of radiotherapy. In this study, we examined the radioprotective activity of the total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst in mouse splenic lymphocytes in vitro. Using the MTT assay, Ganoderma triterpenes were found to have no effect on cell viability, indicating that they are non-toxic to splenic lymphocytes. The effect of the total triterpenes on DNA damage and apoptosis induced by radiation was analyzed using the comet assay, DNA ladder assay and flow cytometric analysis. Total triterpenes were found to be highly effective in preventing DNA laddering, even at low concentrations (25μg/ml). The comet assay demonstrated that the G. triterpenes effectively prevented DNA damage, and flow cytometry revealed a reduction in apoptotic cells. The effect of the total triterpenes on intracellular reactive oxygen species (ROS) level and endogenous antioxidant enzyme activity in splenic lymphocytes were determined to elucidate possible radioprotective mechanisms. Total triterpenes successfully reduced the formation of intracellular ROS and enhanced endogenous antioxidant enzyme activity in splenic lymphocytes following irradiation. Thus, these findings indicate that the total triterpenes isolated from G. lucidum have a remarkable ability to protect normal cells from radiation-induced damage, which suggests therapeutic potential. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Preventive effects of quercetin against benzo[a]pyrene-induced DNA damages and pulmonary precancerous pathologic changes in mice.

    PubMed

    Jin, Nian-zu; Zhu, Yan-ping; Zhou, Jian-wei; Mao, Li; Zhao, Ren-cheng; Fang, Tai-hui; Wang, Xin-ru

    2006-06-01

    The aim of this study was to investigate the preventive effects of quercetin against benzo[a]pyrene-induced blood lymphocyte DNA damages and pulmonary precancerous pathologic changes in mice, and to reveal the potential mechanism behind these effects. In this study, mice in quercetin-treated groups were given quercetin for 90 days. After one week of treatment, mice in the quercetin-treated groups and the positive control group received a single intraperitoneal dose of benzo[a]pyrene (100 mg/kg body weight). The results of single cell gel electrophoresis assay showed that the average lengths of the comet cell tail and DNA damage in the peripheral blood lymphocytes of mice induced by benzo[a]pyrene decreased significantly as a result of quercetin treatment dose-dependently. Light microscopic examination showed that the degrees of pulmonary precancerous pathologic changes in the quercetin-treated groups decreased significantly compared with those in the positive control group. Meanwhile, the cytochrome P4501A1-linked 7-ethoxyresorufin O-dealkylase activities in lung microsomes of mice decreased as the dose of quercetin increased. The results of this in vivo study revealed that quercetin had a significant preventive effect on benzo[a]pyrene-induced DNA damage, and had a potential chemopreventive effect on the carcinogenesis of lung cancer induced by benzo[a]pyrene. The mechanism of these effects of quercetin could be related to the inhibition of cytochrome P4501A1 activity.

  3. Melatonin enhances the developmental competence of porcine somatic cell nuclear transfer embryos by preventing DNA damage induced by oxidative stress.

    PubMed

    Liang, Shuang; Jin, Yong-Xun; Yuan, Bao; Zhang, Jia-Bao; Kim, Nam-Hyung

    2017-09-11

    Melatonin has antioxidant and scavenger effects in the cellular antioxidant system. This research investigated the protective effects and underlying mechanisms of melatonin action in porcine somatic cell nuclear transfer (SCNT) embryos. The results suggested that the developmental competence of porcine SCNT embryos was considerably enhanced after melatonin treatment. In addition, melatonin attenuated the increase in reactive oxygen species levels induced by oxidative stress, the decrease in glutathione levels, and the mitochondrial dysfunction. Importantly, melatonin inhibited phospho-histone H2A.X (γH2A.X) expression and comet tail formation, suggesting that γH2A.X prevents oxidative stress-induced DNA damage. The expression of genes involved in homologous recombination and non-homologous end-joining pathways for the repair of double-stranded breaks (DSB) was reduced upon melatonin treatment in porcine SCNT embryos at day 5 of development under oxidative stress condition. These results indicated that melatonin promoted porcine SCNT embryo development by preventing oxidative stress-induced DNA damage via quenching of free radical formation. Our results revealed a previously unrecognized regulatory effect of melatonin in response to oxidative stress and DNA damage. This evidence provides a novel mechanism for the improvement in SCNT embryo development associated with exposure to melatonin.

  4. Knowledge and practice of urban Iranian pregnant women towards folic acid intake for neural tube defect prevention.

    PubMed

    Nosrat, Sepideh Bakhshande; Sedehi, Maliheh; Golalipour, Mohammad Jafar

    2012-08-01

    To assess the knowledge and practice of urban Iranian pregnant women regarding periconceptional folic acid intake for neural tube defect (NTD) prevention. The population-based study was done on 676 primiparous women in an urban area in Golestan province in northern Iran from June to November, 2008. A questionnaire was completed by the subjects regarding their knowledge of folic acid. Questionnaires were administered to women who were seeking routine antenatal care at health centres, private gynaecological clinic and the Dezyani Gynaecologic and Obstetric Hospital. Questions covered knowledge and use of folic acid supplements and demographic and socioeconomic characteristics. Out of the 676 women surveyed, 96.2% reported that they heard of folate. Of these, only 27.6% knew that folate was something important in the prevention of neural tube defects. Overall, 20.12% of the total women took folic acid during periconceptional period. The most common information sources on folate were healthcare service (54.5%). Besides, 37.6% of the subjects who heard about folate were aware that green leafy vegetables were fortified with folic acid. In univariate analysis, knowledge and intake of folic acid was not associated with education and the age of women. A healthcare plan for intervention to increase the knowledge and intake of folic acid by pregnant women during the protective period is required.

  5. Prevention of UVB Radiation-induced Epidermal Damage by Expression of Heat Shock Protein 70*

    PubMed Central

    Matsuda, Minoru; Hoshino, Tatsuya; Yamashita, Yasuhiro; Tanaka, Ken-ichiro; Maji, Daisuke; Sato, Keizo; Adachi, Hiroaki; Sobue, Gen; Ihn, Hironobu; Funasaka, Yoko; Mizushima, Tohru

    2010-01-01

    Irradiation with UV light, especially UVB, causes epidermal damage via the induction of apoptosis, inflammatory responses, and DNA damage. Various stressors, including UV light, induce heat shock proteins (HSPs) and the induction, particularly that of HSP70, provides cellular resistance to such stressors. The anti-inflammatory activity of HSP70, such as its inhibition of nuclear factor kappa B (NF-κB), was recently revealed. These in vitro results suggest that HSP70 protects against UVB-induced epidermal damage. Here we tested this idea by using transgenic mice expressing HSP70 and cultured keratinocytes. Irradiation of wild-type mice with UVB caused epidermal damage such as induction of apoptosis, which was suppressed in transgenic mice expressing HSP70. UVB-induced apoptosis in cultured keratinocytes was suppressed by overexpression of HSP70. Irradiation of wild-type mice with UVB decreased the cutaneous level of IκB-α (an inhibitor of NF-κB) and increased the infiltration of leukocytes and levels of pro-inflammatory cytokines and chemokines in the epidermis. These inflammatory responses were suppressed in transgenic mice expressing HSP70. In vitro, the overexpression of HSP70 suppressed the expression of pro-inflammatory cytokines and chemokines and increased the level of IκB-α in keratinocytes irradiated with UVB. UVB induced an increase in cutaneous levels of cyclobutane pyrimidine dimers and 8-hydroxy-2′-deoxyguanosine, both of which were suppressed in transgenic mice expressing HSP70. This study provides genetic evidence that HSP70 protects the epidermis from UVB-induced radiation damage. The findings here also suggest that the protective action of HSP70 is mediated by anti-apoptotic, anti-inflammatory, and anti-DNA damage effects. PMID:20018843

  6. Dizocilpine (MK-801) arrests status epilepticus and prevents brain damage induced by Soman. (Reannouncement with new availability information)

    SciTech Connect

    Sparenborg, S.; Brennecke, L.H.; Jaax, N.K.; Braitman, D.J.

    1992-12-31

    The involvement of the NMDA receptor in the neurotoxicity induced by soman, an organophosphorus compound which irreversibly inhibits cholinesterase, was studied in guinea pigs. The drug MK-801 (0.5, 1 or 5 mg/kg, i.p.) was given as a pretreatment before a convulsant dose of soman or as a post treatment (30, 100 or 300 micron g/kg, i.m.) 5 min after the development of soman-induced status epilepticus. Pyridostigmine, atropine and pralidoxime chloride were also given to each subject to counteract the lethality of soman. All subjects that were challenged with soman and given the vehicle for MK-801 (saline) exhibited severe convulsions and electrographic seizure activity. Neuronal necrosis was found in the hippocampus, amygdala, thalamus and the pyriform and cerebral cortices of those subjects surviving for 48 hr. Pretreatment with 0.5 or 1 mg/kg doses of MK-801 did not prevent nor delay the onset of seizure activity but did diminish its intensity and led to its early arrest. At the largest dose (5 mg/kg), MK-801 completely prevented the development of seizure activity and brain damage. Post treatment with MK-801 prevented, arrested or reduced seizure activity, convulsions and neuronal necrosis in a dose-dependent manner. The NMDA receptor may play a more critical role in the spread and maintenance, rather than the initiation of cholinergically-induced seizure activity....Seizure-related brain damage, Organophosphorus compound, Nerve agent, Cholinesterase inhibition, Excitotoxicity, Guinea pig.

  7. Multiscale Models of Multifunctional Composites for On-Board Damage Detection and Failure Prevention

    DTIC Science & Technology

    2008-10-08

    2 n = 3 n = 4 n = 5 S C ck lin g S tra in S B u 9 IV. Publications 1. Z. Xia and W. A. Curtin, “Modeling of Mechanical Damage Detection in...CFRPs via Electrical Resistance”, Comp. Sci. Tech. 67, 1518 -1529 (2007). 2. Z. Xia and W. A. Curtin, “Detection of Penetration and Delamination

  8. Prevention of Cold Damage to Container-Grown Longleaf Pine Roots

    Treesearch

    Richard W. Tinus; Mary Anne Sword; James P. Barnett

    2002-01-01

    When longleaf pine (Pinus palustris Mill.) seedlings are container-grown in open fields, their roots may be exposed to damaging, cold temperatures. Major losses in some nurseries have occurred. Between November 1996 and February 1997, we measured the cold hardiness of container-grown longleaf pine roots by measuring electrolyte leakage (a) of...

  9. Preventive Role of Specific Dietary Factors and Natural Compounds Against DNA Damage and Oxidative Stress.

    DTIC Science & Technology

    1998-08-01

    environmental contaminants in the air, food , and cigarette smoke may result in significant levels of DNA damage, it was more recently recognized that...as fruits and vegetables (vitamins C and E), the popular medicine honeybee propolis (CAPE), or green tea (EGCG). Studies carried out to date suggest

  10. Preventive role of lens antioxidant defense mechanism against riboflavin-mediated sunlight damaging of lens crystallins.

    PubMed

    Anbaraki, Afrooz; Khoshaman, Kazem; Ghasemi, Younes; Yousefi, Reza

    2016-10-01

    The main components of sunlight reaching the eye lens are UVA and visible light exerting their photo-damaging effects indirectly by the aid of endogenous photosensitizer molecules such as riboflavin (RF). In this study, lens proteins solutions were incubated with RF and exposed to the sunlight. Then, gel mobility shift analysis and different spectroscopic assessments were applied to examine the structural damaging effects of solar radiation on these proteins. Exposure of lens proteins to direct sunlight, in the presence of RF, leads to marked structural crosslinking, oligomerization and proteolytic instability. These structural damages were also accompanied with reduction in the emission fluorescence of Trp and Tyr and appearance of a new absorption peak between 300 and 400nm which can be related to formation of new chromophores. Also, photo-oxidation of lens crystallins increases their oligomeric size distribution as examined by dynamic light scattering analysis. The above mentioned structural insults, as potential sources of sunlight-induced senile cataract and blindness, were significantly attenuated in the presence of ascorbic acid and glutathione which are two important components of lens antioxidant defense system. Therefore, the powerful antioxidant defense mechanism of eye lens is an important barrier against molecular photo-damaging effects of solar radiations during the life span.

  11. A study of foreign object damage (FOD) and prevention method at the airport and aircraft maintenance area

    NASA Astrophysics Data System (ADS)

    Hussin, R.; Ismail, N.; Mustapa, S.

    2016-10-01

    Foreign object damage (FOD) is common risk for aviation industry since long time ago and it has contributed to many terrible incidents and fatalities. The cost of FOD cases every year is very high, which is around RM 1.2 billion. Therefore, a proper technique and strategy has to be taken by the designated organizations including airlines to further eliminate the FOD occurrences. It is not easy to control FOD due to some circumstances such as inappropriate working behaviour, poor working environment, insufficient technology and also disorganized housekeeping system. The main purpose of this research is to discuss and explain further about FOD and the techniques to prevent FOD. FOD is a universal concern in aviation industry and it is one of the reasons that contribute to aircraft failure and unwanted damages such as fatalities and causalities. Throughout this research, many information related to FOD problems and their impact on aviation industry are gathered and presented.

  12. Optimal conditions in [3H]-thymidine uptake studies to prevent radiation damage to cells. A scintimetric and cytofluorographic analysis.

    PubMed Central

    Ruiz-Arguelles, A; Llorente, L; Díaz-Jouanen, E; Alarcón-Segovia, D

    1981-01-01

    Cells subjected to nucleoside incorporation studies using radiolabelled materials may suffer radiation damage that can alter the results. We did scintimetric and cytofluorographic analysis to confirm this and to determine the optimal experimental doses of, and exposure times to, [3H]-TdR, in order to prevent or minimize such radiation damage to cells. We found that cultures should be pulsed with 0.125 microCi for 14 hr when stimulated with phytohaemagglutinin 0.125 microCi for 18 hr when stimulated with pokeweed mitogen, 0.5 microCi for 8 hr when stimulated with concanavalin A and 0.5 microCi for 8 hr when subject to allogeneic stimulus, in order to achieve optimal incorporation with minimal disturbance of the cell cycle. PMID:7319560

  13. Comparison of L-thyroxine and a saturated solution of potassium iodide in preventing damage to the thyroid following iodine-131-labeled antibody injection

    SciTech Connect

    Abdel-Nabi, H.; Waldman, W.J.; Hinkle, G.H.; Miller, E.A.; Trembath, L.; Olsen, J.O.; Martin, E.W. Jr.

    1987-01-01

    Following injection of radioiodinated antibodies in diagnostic amounts, there is variable uptake of radioiodine by the thyroid. Unless preventive steps are taken, radiation damage to the gland may occur. We have evaluated the role of L-thyroxine and a saturated solution of potassium iodide (SSKI) in preventing radiation damage to the thyroid glands of Sprague-Dawley adult male rats by measuring DNA strand breakage by the nucleoid sedimentation gradient method. Pretreatment with SSKI reduced DNA damage and also reduced /sup 131/I accumulation in the thyroid. Pretreatment with L-thyroxine also reduced DNA damage without significantly reducing /sup 131/I accumulation in the thyroid. The possible mechanisms of action of L-thyroxine and SSKI in preventing radiation damage to the thyroid are addressed.

  14. C5a receptor signaling prevents folate deficiency-induced neural tube defects in mice.

    PubMed

    Denny, Kerina J; Coulthard, Liam G; Jeanes, Angela; Lisgo, Steven; Simmons, David G; Callaway, Leonie K; Wlodarczyk, Bogdan; Finnell, Richard H; Woodruff, Trent M; Taylor, Stephen M

    2013-04-01

    The complement system is involved in a range of diverse developmental processes, including cell survival, growth, differentiation, and regeneration. However, little is known about the role of complement in embryogenesis. In this study, we demonstrate a novel role for the canonical complement 5a receptor (C5aR) in the development of the mammalian neural tube under conditions of maternal dietary folic acid deficiency. Specifically, we found C5aR and C5 to be expressed throughout the period of neurulation in wild-type mice and localized the expression to the cephalic regions of the developing neural tube. C5aR was also found to be expressed in the neuroepithelium of early human embryos. Ablation of the C5ar1 gene or the administration of a specific C5aR peptide antagonist to folic acid-deficient pregnant mice resulted in a high prevalence of severe anterior neural tube defect-associated congenital malformations. These findings provide a new and compelling insight into the role of the complement system during mammalian embryonic development.

  15. Copper sulfate pretreatment prevents mitochondrial electron transport chain damage and apoptosis against MPP(+)-induced neurotoxicity.

    PubMed

    Rubio-Osornio, Moisés; Orozco-Ibarra, Marisol; Díaz-Ruiz, Araceli; Brambila, Eduardo; Boll, Marie-Catherine; Monroy-Noyola, Antonio; Guevara, Jorge; Montes, Sergio; Ríos, Camilo

    2017-06-01

    Intrastriatal injection of 1-methyl-4-phenylpyridinium (MPP(+)) is considered a model to reproduce some biochemical alterations observed in Parkinson's disease (PD) patients. Among those alterations, inhibition of mitochondrial complex I activity, increased free radical production and reduced antioxidant responses have been reported. Copper (Cu) plays an important role in the metabolism and antioxidative responses through its participation as a cofactor in the cytochrome c oxidase enzyme (COX), Cu/Zn-superoxide dismutase (Cu/Zn-SOD), and metallothioneins. We tested the effect of copper sulfate (CuSO4) pretreatment on the mitochondrial electron transport chain (METC) in the striatum after MPP(+) toxicity in rats. The results showed that the MPP(+) intrastriatal injection reduced mitochondrial complex I, II, IV and V activities; while 10 μmol of CuSO4 pretreatment counteracted this damage. Activities of complexes I, II and IV, were coincident with ATP recovery. Moreover, Cu/Zn-SOD activity was reduced as a consequence of MPP(+) damage; however, copper pre-treatment kept the striatal Cu/Zn-SOD activity unchanged in MPP(+)-damaged animals. We observed that MPP(+) also reduced the metallothionein (MT) content and that CuSO4 pretreatment maintained baseline values. CuSO4 pretreatment also reduced the striatal caspase-3 and caspase-9 activities that were increased three days after MPP(+)-induced damage. The present study provided evidence that copper pretreatment reduced MPP(+)-induced apoptotic damage, probably through direct action on copper-dependent proteins or indirectly on proteins in the apoptotic pathway. Copyright © 2017. Published by Elsevier B.V.

  16. SIRT3 blocks myofibroblast differentiation and pulmonary fibrosis by preventing mitochondrial DNA damage.

    PubMed

    Bindu, Samik; Pillai, Vinodkumar B; Kanwal, Abhinav; Samant, Sadhana; Mutlu, Gökhan M; Verdin, Eric; Dulin, Nickolai; Gupta, Mahesh P

    2017-01-01

    Myofibroblast differentiation is a key process in the pathogenesis of fibrotic diseases. Transforming growth factor-β1 (TGF-β1) is a powerful inducer of myofibroblast differentiation and is implicated in pathogenesis of tissue fibrosis. This study was undertaken to determine the role of mitochondrial deacetylase SIRT3 in TGF-β1-induced myofibroblast differentiation in vitro and lung fibrosis in vivo. Treatment of human lung fibroblasts with TGF-β1 resulted in increased expression of fibrosis markers, smooth muscle α-actin (α-SMA), collagen-1, and fibronectin. TGF-β1 treatment also caused depletion of endogenous SIRT3, which paralleled with increased production of reactive oxygen species (ROS), DNA damage, and subsequent reduction in levels of 8-oxoguanine DNA glycosylase (OGG1), an enzyme that hydrolyzes oxidized guanine (8-oxo-dG) and thus protects DNA from oxidative damage. Overexpression of SIRT3 by adenovirus-mediated transduction reversed the effects of TGF-β1 on ROS production and mitochondrial DNA damage and inhibited TGF-β1-induced myofibroblast differentiation. To determine the antifibrotic role of SIRT3 in vivo, we used the bleomycin-induced mouse model of pulmonary fibrosis. Compared with wild-type controls, Sirt3-knockout mice showed exacerbated fibrosis after intratracheal instillation of bleomycin. Increased lung fibrosis was associated with decreased levels of OGG1 and concomitant accumulation of 8-oxo-dG and increased mitochondrial DNA damage. In contrast, the transgenic mice with whole body Sirt3 overexpression were protected from bleomycin-induced mtDNA damage and development of lung fibrosis. These data demonstrate a critical role of SIRT3 in the control of myofibroblast differentiation and lung fibrosis. Copyright © 2017 the American Physiological Society.

  17. Hydroxytyrosol, a natural antioxidant from olive oil, prevents protein damage induced by long-wave ultraviolet radiation in melanoma cells.

    PubMed

    D'Angelo, Stefania; Ingrosso, Diego; Migliardi, Valentina; Sorrentino, Alvara; Donnarumma, Giovanna; Baroni, Adone; Masella, Lucia; Tufano, Maria Antonietta; Zappia, Marcello; Galletti, Patrizia

    2005-04-01

    Previous studies showed that long-wave ultraviolet (UVA) radiation induces severe skin damage through the generation of reactive oxygen species and the depletion of endogenous antioxidant systems. Recent results from our laboratory indicate a dramatic increase of both lipid peroxidation products (TBARS) and abnormal L-isoaspartyl residues, marker of protein damage, in UVA-irradiated human melanoma cells. In this study, the effects of hydroxytyrosol (DOPET), the major antioxidant compound present in olive oil, on UVA-induced cell damages, have been investigated, using a human melanoma cell line (M14) as a model system. In UVA-irradiated M14 cells, a protective effect of DOPET in preventing the uprise of typical markers of oxidative stress, such as TBARS and 2'7'-dichlorofluorescein (DCF) fluorescence intensity, was observed. In addition, DOPET prevents the increase of altered L-isoAsp residues induced by UVA irradiation. These protective effects are dose dependent, reaching the maximum at 400 microM DOPET. At higher concentrations, DOPET causes an arrest of M14 cell proliferation and acts as a proapoptotic stimulus by activating caspase-3 activity. In the investigated model system, DOPET is quantitatively converted into its methylated derivative, endowed with a radical scavenging ability comparable to that of its parent compound. These findings are in line with the hypothesis that the oxidative stress plays a major role in mediating the UVA-induced protein damage. Results suggest that DOPET may exerts differential effects on melanoma cells according to the dose employed and this must always be taken into account when olive oil-derived large consumer products, including cosmetics and functional foods, are employed.

  18. [Preventing damage to workers' health: redesigning jobs through day-to-day negotiation].

    PubMed

    Sato, Leny

    2002-01-01

    This paper reflects on prevention of harm to workers' health by redesigning jobs. Assuming redesign as the process of negotiating organizational choices, the author discusses the characteristics of routine negotiation at the workplace, illustrated by daily negotiations in work process organization at a Brazilian food-processing factory. Finally, the author discusses both the range and limits of such negotiations in the prevention of harm to workers' health.

  19. The preventive effects of taurine on neural tube defects through the Wnt/PCP-Jnk-dependent pathway.

    PubMed

    Zhang, Qinghua; Liu, Yang; Wang, Hui; Ma, Li; Xia, Hechun; Niu, Jianguo; Sun, Tao; Zhang, Li

    2017-07-17

    The aim of this study was to clarify the protective role of taurine in neuronal apoptosis and the role of the Wnt/PCP-Jnk pathway in mediating the preventive effects of taurine on neural tube defects (NTDs). HT-22 cells (a hippocampal neuron cell line) were divided into a control group, a glutamate-induced apoptosis group, and glutamate (4.0 mmol/L) plus low-dose taurine (L; 0.5 mmol/L) and high-dose taurine (H; 2.0 mmol/L) groups. The MTT assay was used to monitor cell proliferation and cell survival. Immunofluorescence and Western blot analyses were used to determine caspase 9 expression. Retinoic acid (RA) induced embryonic NTDs in Kunming mice, thus establishing an NTD model. Pregnant mice were divided into a control group, an RA (30 mg/kg body weight) group, and an RA (30 mg/kg body weight) plus taurine (free drinking of 2 g/L solution) group. Immunohistochemistry and Western blot analyses were used to detect the expression of Dvl, RhoA and phosphorylated (p)-Jnk/Jnk in the embryonic neural tubes. In HT-22 cells, the apoptosis rate was significantly higher and caspase 9 activation was also significantly increased in the glutamate-induced apoptosis group compared to the L and H taurine groups. In the NTD model, the expression levels of Dvl, RhoA, and p-Jnk were significantly higher in the RA group than in the control group, whereas they were significantly reduced in the RA + taurine group. This study suggests that taurine has positive effects on neuronal protection and NTD prevention. Moreover, the Wnt/PCP-Jnk-dependent pathway plays an important role in taurine-mediated prevention of NTDs.

  20. Folic Acid Protected Neural Cells Against Aluminum-Maltolate-Induced Apoptosis by Preventing miR-19 Downregulation.

    PubMed

    Zhu, Mingming; Li, Bingfei; Ma, Xiao; Huang, Cong; Wu, Rui; Zhu, Weiwei; Li, Xiaoting; Liang, Zhaofeng; Deng, Feifei; Zhu, Jianyun; Xie, Wei; Yang, Xue; Jiang, Ye; Wang, Shijia; Wu, Jieshu; Geng, Shanshan; Xie, Chunfeng; Zhong, Caiyun; Liu, Haiyan

    2016-08-01

    Aluminum (Al)-induced apoptosis is considered as the major cause of its neurotoxicity. Folic acid possesses neuroprotective function by preventing neural cell apoptosis. microRNAs (miRNAs) are important regulators of gene expression participating in cellular processes. As a key component of the miR-17-92 cluster, miR-19 is implicated in regulating apoptotic process, while its role in the neuroprotective effect of folic acid has not been investigated. The present study aimed to investigate the potential involvement and function of miR-19 in the protective action of folic acid against Al-induced neural cell apoptosis. Human SH-SY5Y cells were treated with Al-maltolate (Al-malt) in the presence or absence of folic acid. Results showed that Al-malt-induced apoptosis of SH-SY5Y cells was effectively prevented by folic acid. Al-malt suppressed the expression of miR-19a/19b, along with alterations of miR-19 related apoptotic proteins including PTEN, p-AKT, p53, Bax, Bcl-2, caspase 9 and caspase 3; and these effects were ameliorated by folic acid. miR-19 inhibitor alone induced apoptosis of SH-SY5Y cells. Combination treatment of folic acid and miR-19 inhibitor diminished the neuroprotective effect of folic acid. These findings demonstrated that folic acid protected neuronal cells against Al-malt-induced apoptosis by preventing the downregulation of miR-19 and modulation of miR-19 related downstream PTEN/AKT/p53 pathway.

  1. Quantitative Analyses of Synergistic Responses between Cannabidiol and DNA-Damaging Agents on the Proliferation and Viability of Glioblastoma and Neural Progenitor Cells in Culture.

    PubMed

    Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya; Stella, Nephi

    2017-01-01

    Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Moderate or deep local hypothermia does not prevent the onset of ischemia-induced dendritic damage

    PubMed Central

    Tran, Sherri; Chen, Shangbin; Liu, Ran R; Xie, Yicheng; Murphy, Timothy H

    2012-01-01

    We studied the acute (up to 2 hours after reperfusion) effects of localized cortical hypothermia on ischemia-induced dendritic structural damage. Moderate (31°C) and deep (22°C) hypothermia delays, but does not block the onset of dendritic blebbing or spine loss during global ischemia in mouse in vivo. Hypothermic treatment promoted more consistent recovery of dendritic structure and spines during reperfusion. These results suggest that those using therapeutic hypothermia will need to consider that it does not spare neurons from structural changes that are the result of ischemia, but hypothermia may interact with mechanisms that control the onset of damage and recovery during reperfusion. PMID:22167237

  3. Pasta containing tartary buckwheat sprouts prevents DNA damage in spontaneously hypertensive rats.

    PubMed

    Meschini, Roberta; Filippi, Silvia; Molinari, Romina; Costantini, Lara; Bonafaccia, Giovanni; Merendino, Nicolò

    2015-01-01

    Recent studies have shown that DNA damage occurs more often in hypertensive patients than non-hypertensive individuals. Here, we analyzed the in vivo effect of pasta containing 30% of tartary buckwheat sprouts (TBSP) on spontaneously hypertensive rats (SHRs) and normotensive Wistar Kyoto rats (WKY) to elucidate if TBSP could have an anti-genotoxic effect in hypertensive animal models. Both SHRs and WKY rats were divided into two groups and fed for six weeks with 5 g of TBSP and durum wheat flour commercial pasta, respectively. Our results showed that a diet rich in TBSP has anti-genotoxic effect. Indeed, SHRs fed with TBSP exhibited a significant decrease in DNA damage (38%) and more efficient DNA repair (84%) compared to SHRs fed with commercial pasta.

  4. Antioxidant Activity of Tocotrienol Rich Fraction Prevents Fenitrothion-induced Renal Damage in Rats

    PubMed Central

    Budin, Siti Balkis; Han, Kim Jit; Jayusman, Putri Ayu; Taib, Izatus Shima; Ghazali, Ahmad Rohi; Mohamed, Jamaludin

    2013-01-01

    Fenitrothion (FNT) is an organophosphate compound widely used as pesticide in Malaysia. The present study aims to investigate effects of palm oil tocotrienol rich fraction (TRF) on the renal damage of FNT-treated rats. A total of 40 male Sprague Dawley rats were divided into 4 groups randomly, the control, TRF, FNT and FNT+TRF groups. FNT (20 mg/kg b.w.) and TRF (200 mg/kg b.w.) were given orally for 28 days continuously. Rats from the FNT+TRF group were supplemented with TRF 30 minutes prior to administration of FNT. Rats were sacrificed after 28 days, and the kidneys were removed for determination of oxidative stress and histological analysis. Plasma was collected for determination of blood creatinine and urea level. Statistical analysis showed that palm oil TRF has a protective effect against renal oxidative damage induced by FNT. In the FNT+TRF group, malondialdehyde and protein carbonyl levels were significantly lower, while the glutathione level as well as superoxide dismutase and catalase activities were significantly higher compared with the FNT-treated group (p<0.05). As for renal function, there was a markedly lower urea level (p<0.05) in the FNT+TRF group compared with the FNT-treated group, but there was no significant difference in creatinine level. Besides, total protein also showed no significant difference for all groups of rats (p>0.05). Histological evaluation also revealed that the FNT+TRF group had less glomerulus and renal tubule damage than the FNT-treated group. In conclusion, palm oil TRF was able to reduce oxidative stress and renal damage in FNT-treated rats. PMID:23914053

  5. CUPRAC colorimetric and electroanalytical methods determining antioxidant activity based on prevention of oxidative DNA damage.

    PubMed

    Uzunboy, Seda; Çekiç, Sema Demirci; Eksin, Ece; Erdem, Arzum; Apak, Reşat

    2017-02-01

    An unbalanced excess of oxygen/nitrogen species (ROS/RNS) can give oxidative hazard to DNA and other biomacromolecules under oxidative stress conditions. While the 'comet' assay for measuring DNA damage is neither specific nor practical, monitoring oxidative changes on individual DNA bases and other oxidation products needs highly specialized equipment and operators. Thus, we developed a modified CUPRAC (cupric ion reducing antioxidant capacity) colorimetric method to determine the average total damage on DNA produced by Fenton oxidation, taking advantage of the fact that the degradation products of DNA but not the original macromolecule is CUPRAC-responsive. The DNA-protective effects of water-soluble antioxidants were used to devise a novel antioxidant activity assay, considered to be physiologically more realistic than those using artificial probes. Our method, based on the measurement of DNA oxidative products with CUPRAC colorimetry proved to be 2 orders-of-magnitude more sensitive than the widely used TBARS (thiobarbituric acid-reactive substances) colorimetric assay used as reference. Additionally, the DNA damage was electrochemically investigated using pencil graphite electrodes (PGEs) as DNA sensor platform in combination with differential pulse voltammetry (DPV). The interaction of the radical species with DNA in the absence/presence of antioxidants was detected according to the changes in guanine oxidation signal.

  6. Detection of drug-induced, superoxide-mediated cell damage and its prevention by antioxidants.

    PubMed

    Horáková, K; Sovcíková, A; Seemannová, Z; Syrová, D; Busányová, K; Drobná, Z; Ferencík, M

    2001-03-15

    The mode of the cytotoxic activity of three benzo(c)fluorene derivatives was characterized. The observed morphological changes of lysosomes or variations of mitochondrial activity are assumed to be the consequence of cell protection against oxidative damage and/or the part of the damage process. To establish the relationship between the quantity of superoxide (O2*-) generated and the degree of damage resulting from O2*-, a simple system based on measurement of 3-(4-iodophenyl)-2-(4-nitrophenyl)-5-phenyltetrazolium chloride (INT) reductase activity in the presence of superoxide dismutase (SOD) was used. The functionality of the chosen battery of in vitro tests was proved using several known superoxide inducers: cyclosporin A (CsA) and benzo(a)pyrene (BP), as well as noninducers: citrinin (CT) and cycloheximide (CH). From the results followed that the cell growth tests are much better indices of toxicity than the other tests. The model system for the evaluation of the protective capacity of antioxidants against superoxide-induced cytotoxicity included simultaneous exposure of HeLa cells to cytotoxic drugs and to quercetin (Qe), an antioxidant of plant origin. The complete abolishment of the inhibition of cell proliferation and clonogenic survival was concluded to be due to the protective effect of the antioxidant. These observations correlated with the decrease of superoxide content as estimated by the INT-reductase assay in the presence of SOD using the same model system, as well as with the increase of intracellular SOD content and its activity.

  7. Severe esophageal damage due to button battery ingestion: can it be prevented?

    PubMed

    Yardeni, D; Yardeni, H; Coran, A G; Golladay, E S

    2004-07-01

    Batteries represent less than 2% of foreign bodies ingested by children, but in the last 2 decades, the frequency has continuously increased. Most ingestions have an uneventful course, but those that lodge in the esophagus can lead to serious complications and even death. Medline was used to search the English medical literature, combining "button battery" and "esophageal burn" as keywords. Cases were studied for type, size, and source of the batteries; duration and location of the battery impaction in the esophagus; symptoms; damage caused by the battery; and outcome. Nineteen cases of esophageal damage have been reported since 1979. Batteries less than 15 mm in diameter almost never lodged in the esophagus. Only 3% of button batteries were larger than 20 mm but were responsible for the severe esophageal injuries in this series. These data suggest that manufacturers should replace large batteries with smaller ones and thus eliminate most of the complications. When the battery remains in the esophagus, endoscopic examination and removal done urgently will allow assessment of the esophageal damage, and treatment can be tailored accordingly. There is a need for more public education about the dangers of battery ingestion; this information should be included as part of the routine guidelines for childproofing the home.

  8. The hydrogen sulfide donor, Lawesson's reagent, prevents alendronate-induced gastric damage in rats

    PubMed Central

    Nicolau, L.A.D.; Silva, R.O.; Damasceno, S.R.B.; Carvalho, N.S.; Costa, N.R.D.; Aragão, K.S.; Barbosa, A.L.R.; Soares, P.M.G.; Souza, M.H.L.P.; Medeiros, J.V.R.

    2013-01-01

    Our objective was to investigate the protective effect of Lawesson's reagent, an H2S donor, against alendronate (ALD)-induced gastric damage in rats. Rats were pretreated with saline or Lawesson's reagent (3, 9, or 27 µmol/kg, po) once daily for 4 days. After 30 min, gastric damage was induced by ALD (30 mg/kg) administration by gavage. On the last day of treatment, the animals were killed 4 h after ALD administration. Gastric lesions were measured using a computer planimetry program, and gastric corpus pieces were assayed for malondialdehyde (MDA), glutathione (GSH), proinflammatory cytokines [tumor necrosis factor (TNF)-α and interleukin (IL)-1β], and myeloperoxidase (MPO). Other groups were pretreated with glibenclamide (5 mg/kg, ip) or with glibenclamide (5 mg/kg, ip)+diazoxide (3 mg/kg, ip). After 1 h, 27 µmol/kg Lawesson's reagent was administered. After 30 min, 30 mg/kg ALD was administered. ALD caused gastric damage (63.35±9.8 mm2); increased levels of TNF-α, IL-1β, and MDA (2311±302.3 pg/mL, 901.9±106.2 pg/mL, 121.1±4.3 nmol/g, respectively); increased MPO activity (26.1±3.8 U/mg); and reduced GSH levels (180.3±21.9 µg/g). ALD also increased cystathionine-γ-lyase immunoreactivity in the gastric mucosa. Pretreatment with Lawesson's reagent (27 µmol/kg) attenuated ALD-mediated gastric damage (15.77±5.3 mm2); reduced TNF-α, IL-1β, and MDA formation (1502±150.2 pg/mL, 632.3±43.4 pg/mL, 78.4±7.6 nmol/g, respectively); lowered MPO activity (11.7±2.8 U/mg); and increased the level of GSH in the gastric tissue (397.9±40.2 µg/g). Glibenclamide alone reversed the gastric protective effect of Lawesson's reagent. However, glibenclamide plus diazoxide did not alter the effects of Lawesson's reagent. Our results suggest that Lawesson's reagent plays a protective role against ALD-induced gastric damage through mechanisms that depend at least in part on activation of ATP-sensitive potassium (KATP) channels. PMID:23969974

  9. Folic acid in the prevention of neural tube defect--a programme for Malaysia?

    PubMed

    Ho, J J

    2004-03-01

    There is good evidence that folic acid is safe and efficacious for reducing neural tube defect (NTD). All women capable of becoming pregnant should take 400 microgram daily. This can be given in the form of a daily vitamin supplement, by food fortification, or by increasing natural dietary folates. Compulsory grain fortification has been shown to reduce NTD in a population but supplementation and dietary advice have not. Malaysia should work towards a programme of grain fortification and use alternative strategies to reach sections of the population that would not be covered but several research questions need to be answered before a programme could be implemented in Malaysia.

  10. Dividing the Self: Distinct Neural Substrates of Task-Based and Automatic Self-Prioritization after Brain Damage

    ERIC Educational Resources Information Center

    Sui, Jie; Chechlacz, Magdalena; Humphreys, Glyn W.

    2012-01-01

    Facial self-awareness is a basic human ability dependent on a distributed bilateral neural network and revealed through prioritized processing of our own over other faces. Using non-prosopagnosic patients we show, for the first time, that facial self-awareness can be fractionated into different component processes. Patients performed two face…

  11. Dividing the Self: Distinct Neural Substrates of Task-Based and Automatic Self-Prioritization after Brain Damage

    ERIC Educational Resources Information Center

    Sui, Jie; Chechlacz, Magdalena; Humphreys, Glyn W.

    2012-01-01

    Facial self-awareness is a basic human ability dependent on a distributed bilateral neural network and revealed through prioritized processing of our own over other faces. Using non-prosopagnosic patients we show, for the first time, that facial self-awareness can be fractionated into different component processes. Patients performed two face…

  12. Lycopene treatment prevents hematological, reproductive and histopathological damage induced by acute zearalenone administration in male Swiss mice.

    PubMed

    Boeira, Silvana Peterini; Filho, Carlos Borges; Del'Fabbro, Lucian; Roman, Silvane Souza; Royes, Luiz Fernando Freire; Fighera, Michele Rechia; Jessé, Cristiano Ricardo; Oliveira, Mauro Schneider; Furian, Ana Flávia

    2014-07-01

    Zearalenone (ZEA) is a mycotoxin commonly found as a contaminant in cereals. ZEA toxicity targets mainly the reproductive system, and oxidative stress plays an etiological role in its toxic effects. Therefore, the present study aimed to investigate the effect of lycopene, a potent carotenoid antioxidant, on markers of oxidative stress in liver, kidney and testes, and on reproductive, hematological and histopathological parameters after ZEA administration. Adult Swiss albino male mice received lycopene (20mg/kg, p.o.) for ten days before a single oral administration of ZEA (40mg/kg, p.o.), and 48h thereafter tissues (liver, kidney, testes and blood) were collected for biochemical, hematological and histological analyses. Lycopene prevented ZEA-induced changes in hematological parameters (increased number of leukocytes, segmented neutrophils, sticks, eosinophils and monocytes and decreased number of red blood cells (RBC), number of lymphocytes and platelets). Moreover, lycopene prevented the reduction in the number and motility of spermatozoa and the testicular tissue damage induced by ZEA. In addition, lycopene prevented the decrease in glutathione-S-transferase activity in kidney and testes and increased glutathione-S-transferase activity per se in the liver, kidneys and testes as well as superoxide dismutase activity in the liver. In summary, lycopene was able to prevent ZEA-induced acute toxic effects in male mice, suggesting that this antioxidant carotenoid may represent a promising prophylactic strategy against ZEA toxicity.

  13. Peptidylarginine deiminases: novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates.

    PubMed

    Lange, Sigrun; Rocha-Ferreira, Eridan; Thei, Laura; Mawjee, Priyanka; Bennett, Kate; Thompson, Paul R; Subramanian, Venkataraman; Nicholas, Anthony P; Peebles, Donald; Hristova, Mariya; Raivich, Gennadij

    2014-08-01

    Neonatal hypoxic ischaemic (HI) injury frequently causes neural impairment in surviving infants. Our knowledge of the underlying molecular mechanisms is still limited. Protein deimination is a post-translational modification caused by Ca(+2) -regulated peptidylarginine deiminases (PADs), a group of five isozymes that display tissue-specific expression and different preference for target proteins. Protein deimination results in altered protein conformation and function of target proteins, and is associated with neurodegenerative diseases, gene regulation and autoimmunity. In this study, we used the neonatal HI and HI/infection [lipopolysaccharide (LPS) stimulation] murine models to investigate changes in protein deimination. Brains showed increases in deiminated proteins, cell death, activated microglia and neuronal loss in affected brain areas at 48 h after hypoxic ischaemic insult. Upon treatment with the pan-PAD inhibitor Cl-amidine, a significant reduction was seen in microglial activation, cell death and infarct size compared with control saline or LPS-treated animals. Deimination of histone 3, a target protein of the PAD4 isozyme, was increased in hippocampus and cortex specifically upon LPS stimulation and markedly reduced following Cl-amidine treatment. Here, we demonstrate a novel role for PAD enzymes in neural impairment in neonatal HI Encephalopathy, highlighting their role as promising new candidates for drug-directed intervention in neurotrauma. Hypoxic Ischaemic Insult (HI) results in activation of peptidylarginine deiminases (PADs) because of calcium dysregulation. Target proteins undergo irreversible changes of protein bound arginine to citrulline, resulting in protein misfolding. Infection in synergy with HI causes up-regulation of TNFα, nuclear translocation of PAD4 and change in gene regulation as a result of histone deimination. Pharmacological PAD inhibition significantly reduced HI brain damage.

  14. Ischemic neurons prevent vascular regeneration of neural tissue by secreting semaphorin 3A

    PubMed Central

    Joyal, Jean-Sébastien; Sitaras, Nicholas; Binet, François; Rivera, Jose Carlos; Stahl, Andreas; Zaniolo, Karine; Shao, Zhuo; Polosa, Anna; Zhu, Tang; Hamel, David; Djavari, Mikheil; Kunik, Dario; Honoré, Jean-Claude; Picard, Emilie; Zabeida, Alexandra; Varma, Daya R.; Hickson, Gilles; Mancini, Joseph; Klagsbrun, Michael; Costantino, Santiago; Beauséjour, Christian; Lachapelle, Pierre; Smith, Lois E. H.

    2011-01-01

    The failure of blood vessels to revascularize ischemic neural tissue represents a significant challenge for vascular biology. Examples include proliferative retinopathies (PRs) such as retinopathy of prematurity and proliferative diabetic retinopathy, which are the leading causes of blindness in children and working-age adults. PRs are characterized by initial microvascular degeneration, followed by a compensatory albeit pathologic hypervascularization mounted by the hypoxic retina attempting to reinstate metabolic equilibrium. Paradoxically, this secondary revascularization fails to grow into the most ischemic regions of the retina. Instead, the new vessels are misdirected toward the vitreous, suggesting that vasorepulsive forces operate in the avascular hypoxic retina. In the present study, we demonstrate that the neuronal guidance cue semaphorin 3A (Sema3A) is secreted by hypoxic neurons in the avascular retina in response to the proinflammatory cytokine IL-1β. Sema3A contributes to vascular decay and later forms a chemical barrier that repels neo-vessels toward the vitreous. Conversely, silencing Sema3A expression enhances normal vascular regeneration within the ischemic retina, thereby diminishing aberrant neovascularization and preserving neuroretinal function. Overcoming the chemical barrier (Sema3A) released by ischemic neurons accelerates the vascular regeneration of neural tissues, which restores metabolic supply and improves retinal function. Our findings may be applicable to other neurovascular ischemic conditions such as stroke. PMID:21355092

  15. Myo-inositol soft gel capsules may prevent the risk of coffee-induced neural tube defects.

    PubMed

    De Grazia, Sara; Carlomagno, Gianfranco; Unfer, Vittorio; Cavalli, Pietro

    2012-09-01

    Neural tube defects (NTDs) are classified as folate sensitive (about 70%) and folate resistant (about 30%); although folic acid is able to prevent the former, several data have shown that inositol may prevent the latter. It has recently been proposed that coffee intake might represent a risk factor for NTD, likely by interfering with the inositol signaling. In the present study, we tested the hypothesis that, beside affecting the inositol signaling pathway, coffee also interferes with inositol absorption. In order to evaluate coffee possible negative effects on inositol gastrointestinal absorption, a single-dose bioavailability trial was conducted. Pharmacokinetics (PK) parameters of myo-inositol (MI) powder and MI soft gelatin capsules swallowed with water and with a single 'espresso' were compared. PK profiles were obtained by analysis of MI plasma concentration, and the respective MI bioavailability was compared. Myo-inositol powder administration was negatively affected by coffee intake, thus suggesting an additional explanation to the interference between inositol deficiency and coffee consumption. On the contrary, the concomitant single 'espresso' consumption did not affect MI absorption following MI soft gelatin capsules administration. Furthermore, it was observed that MI soft gelatin capsule administration resulted in improved bioavailability compared to the MI powder form. Myo-inositol soft gelatin capsules should be considered for the preventive treatment of NTDs in folate-resistant subjects due to their higher bioavailability and to the capability to reduce espresso interference.

  16. Melatonin restores hippocampal neural precursor cell proliferation and prevents cognitive deficits induced by jet lag simulation in adult mice.

    PubMed

    Iggena, Deetje; Winter, York; Steiner, Barbara

    2017-05-01

    Frequent flyers and shift workers undergo circadian dysrhythmia with adverse impact on body and mind. The circadian rhythm disorder "jet lag" disturbs hippocampal neurogenesis and spatial cognition, which represent morphological and functional adult brain plasticity. This raises the question if pro-neurogenic stimuli might prevent those consequences. However, suitable measures to mitigate jet lag-induced adverse effects on brain plasticity have been neglected so far. Here, we used adult C57Bl6 mice to investigate the pro-neurogenic stimuli melatonin (8 mg/kg i.p.) as well as environmental enrichment as potential measures. We applied photoperiod alterations to simulate "jet lag" by shortening the dark period every third day by 6 hours for 3 weeks. We found that "jet lag" simulation reduced hippocampal neural precursor cell proliferation by 24% and impaired spatial memory performance in the water maze indicated by a prolonged swim path to the target (~23%). While melatonin prevented both the cellular (~1%) as well as the cognitive deficits (~5%), environmental enrichment only preserved precursor cell proliferation (~12%). Our results indicate that lifestyle interventions are insufficient to completely compensate jet lag-induced consequences. Instead, melatonin is required to prevent cognitive impairment caused by the same environmental factors to which frequent flyers and shift workers are typically exposed to.

  17. Protection of corneal epithelial stem cells prevents ultraviolet A damage during corneal collagen cross-linking treatment for keratoconus.

    PubMed

    Moore, Jonathan E; Atkinson, Sarah D; Azar, Dimitri T; Worthington, Jenny; Downes, C Stephen; Courtney, David G; Moore, C B Tara

    2014-02-01

    Cross-linking of the cornea is usually carried out at a young age as a treatment to manage ectasia. The corneal limbal region contains delicate long-lived stem cells, which could potentially be deleteriously affected by Ultraviolet A (UV-A) radiation. Damage to these stem cells may not demonstrate as a clinical problem for many years subsequent to cross-linking treatment. UV-A radiation is known to have potential mutagenic effects upon mammalian DNA and can result in cancer. Cultured corneal epithelial cells and ex vivo corneal tissue were treated with the standard clinical cross-linking protocol for UV-A irradiation. 8-hydroxydeoxyguansoine (8-OHdG) and cyclin-dependent kinase inhibitor genes (CDKN1A and CDKN2A) were assayed as markers of DNA damage using immunohistochemistry, ELISA and quantitative real time PCR. Staining of treated limbal tissue demonstrated the presence of 8-OHdG within p63 positive basal limbal cells. Levels of 8-OHdG and CDKN1A mRNA were found to be significantly increased in cultured corneal epithelial cells and limbal epithelial cells but no increase was demonstrated with the use of a polymethyl methylacrylate protective cover. This study provides evidence that oxidative nuclear DNA damage can occur through cross-linking in layers of corneal epithelial cells at the limbus and that this can be easily prevented by covering the limbus.

  18. Lipid droplet accumulation is associated with an increase in hyperglycemia-induced renal damage: prevention by liver X receptors.

    PubMed

    Kiss, Eva; Kränzlin, Bettina; Wagenblaβ, Katja; Bonrouhi, Mahnaz; Thiery, Joachim; Gröne, Elisabeth; Nordström, Viola; Teupser, Daniel; Gretz, Norbert; Malle, Ernst; Gröne, Hermann-Josef

    2013-03-01

    Dyslipidemia is a frequent component of the metabolic disorder of diabetic patients contributing to organ damage. Herein, in low-density lipoprotein receptor-deficient hyperlipidemic and streptozotozin-induced diabetic mice, hyperglycemia and hyperlipidemia acted reciprocally, accentuating renal injury and altering renal function. In hyperglycemic-hyperlipidemic kidneys, the accumulation of Tip47-positive lipid droplets in glomeruli, tubular epithelia, and macrophages was accompanied by the concomitant presence of the oxidative stress markers xanthine oxidoreductase and nitrotyrosine, findings that could also be evidenced in renal biopsy samples of diabetic patients. As liver X receptors (LXRα,β) regulate genes linked to lipid and carbohydrate homeostasis and inhibit inflammatory gene expression in macrophages, the effects of systemic and macrophage-specific LXR activation were analyzed on renal damage in hyperlipidemic-hyperglycemic mice. LXR stimulation by GW3965 up-regulated genes involved in cholesterol efflux and down-regulated proinflammatory/profibrotic cytokines, inhibiting the pathomorphology of diabetic nephropathy, renal lipid accumulation, and improving renal function. Xanthine oxidoreductase and nitrotyrosine levels were reduced. In macrophages, GW3965 or LXRα overexpression significantly suppressed glycated or acetylated low-density lipoprotein-induced cytokines and reactive oxygen species. Specifically, in mice, transgenic expression of LXRα in macrophages significantly ameliorated hyperlipidemic-hyperglycemic nephropathy. The results demonstrate the presence of lipid droplet-induced oxidative mechanisms and the pathophysiologic role of macrophages in diabetic kidneys and indicate the potent regulatory role of LXRs in preventing renal damage in diabetes.

  19. The craving stops before you feel it: neural correlates of chocolate craving during cue exposure with response prevention.

    PubMed

    Frankort, Astrid; Roefs, Anne; Siep, Nicolette; Roebroeck, Alard; Havermans, Remco; Jansen, Anita

    2014-06-01

    Cue reactivity and craving can be influenced by cue exposure with response prevention (CERP). This study investigated the neural correlates of CERP using functional magnetic resonance imaging, while participants smelled chocolate (17 participants) or a control object (17 participants). CERP was interrupted by 7 scanning sequences measuring the brain response to neutral and chocolate pictures. Chocolate craving was hypothesized to be mirrored by activation in brain reward regions. As expected, control group craving remained similar throughout the session. A short exposure (30 min) increased chocolate craving in the experimental group, which was mirrored by significant group differences in activation in brain reward regions. Unexpectedly, a long exposure (60 min) did not lead to craving extinction in the experimental group, although craving started to decrease at this point. On a neural level, however, activation in regions of interest in the experimental group seemed to have extinguished after the long exposure, as activation levels returned to or fell below control group levels. These results indicate that brain reward activation during CERP is linked to craving, at least for a short exposure. Regarding a longer exposure, the decline in brain reward activation in the experimental group may be a precursor of a decrease in craving.

  20. Micronutrient prenatal supplementation prevents the development of hypertension and vascular endothelial damage induced by intrauterine malnutrition.

    PubMed

    Franco, Maria do Carmo; Ponzio, Beatriz Felice; Gomes, Guiomar Nascimento; Gil, Frida Zaladek; Tostes, Rita; Carvalho, Maria Helena Catelli; Fortes, Zuleica Bruno

    2009-08-12

    The premise that intrauterine malnutrition plays an important role in the development of cardiovascular and renal diseases implies that these disorders can be programmed during fetal life. Here, we analyzed the hypothesis that supplementation with mixed antioxidant vitamins and essential mineral in early life could prevent later elevation of blood pressure and vascular and renal dysfunction associated with intrauterine malnutrition. For this, female Wistar rats were randomly divided into three groups on day 1 of pregnancy: control fed standard chow ad libitum; restricted group fed 50% of the ad libitum intake and a restricted plus micronutrient cocktail group treated daily with a combination of micronutrient (selenium, folate, vitamin C and vitamin E) by oral gavage. In adult offspring, renal function and glomerular number were impaired by intrauterine malnutrition, and the prenatal micronutrient treatment did not prevent it. However, increased blood pressure and reduced endothelium-dependent vasodilation were prevented by the micronutrient prenatal treatment. Intrauterine malnutrition also led to reduced NO production associated with increased superoxide generation, and these parameters were fully normalized by this prenatal treatment. Our current findings indicate that programming alterations during fetal life can be prevented by interventions during the prenatal period, and that disturbance in availability of both antioxidant vitamins and mineral may play a crucial role in determining the occurrence of long-term cardiovascular injury.

  1. A Nonhematopoietic Erythropoietin Analogue, ARA 290, Inhibits Macrophage Activation and Prevents Damage to Transplanted Islets.

    PubMed

    Watanabe, Masaaki; Lundgren, Torbjörn; Saito, Yu; Cerami, Anthony; Brines, Michael; Östenson, Claes-Göran; Kumagai-Braesch, Makiko

    2016-03-01

    Erythropoietin exerts anti-inflammatory, antiapoptotic, and cytoprotective effects in addition to its hematopoietic action. A nonhematopoietic erythropoietin analogue, ARA 290, has similar properties. The efficacy of pancreatic islet transplantation (PITx) is reduced due to islet damage that occurs during isolation and from the severe inflammatory reactions caused by the transplantation procedure. We investigated whether ARA 290 protects islets and ameliorates inflammatory responses following PITx thus improving engraftment. The effects of ARA 290 on pancreatic islets of C57BL/6J (H-2) mice and on murine macrophages were investigated using an in vitro culture model. As a marginal PITx, 185 islets were transplanted into the liver of streptozotocin-induced diabetic mice (H-2) via the portal vein. Recipients were given ARA 290 (120 μg/kg) intraperitoneally just before and at 0, 6, and 24 hours after PITx. Liver samples were obtained at 12 hours after PITx, and expression levels of proinflammatory cytokines were assessed. ARA 290 protected islets from cytokine-induced damage and apoptosis. Secretion of pro-inflammatory cytokines (IL-6, IL-12, and TNF-α) from macrophages was significantly inhibited by ARA 290. After the marginal PITx, ARA 290 treatment significantly improved the blood glucose levels when compared to those of control animals (P < 0.001). Upregulation of monocyte chemoattractant protein-1, macrophage inflammatory protein-1β, IL-1β, and IL-6 messenger RNA expression within the liver was suppressed by ARA 290 treatment. ARA 290 protected pancreatic islets from cytokine-induced damage and apoptosis and ameliorated the inflammatory response after PITx. ARA 290 appears to be a promising candidate for improvement of PITx.

  2. Acetylation promotes TyrRS nuclear translocation to prevent oxidative damage

    PubMed Central

    Cao, Xuanye; Li, Chaoqun; Xiao, Siyu; Tang, Yunlan; Huang, Jing; Zhao, Shuan; Li, Xueyu; Li, Jixi; Zhang, Ruilin; Yu, Wei

    2017-01-01

    Tyrosyl-tRNA synthetase (TyrRS) is well known for its essential aminoacylation function in protein synthesis. Recently, TyrRS has been shown to translocate to the nucleus and protect against DNA damage due to oxidative stress. However, the mechanism of TyrRS nuclear localization has not yet been determined. Herein, we report that TyrRS becomes highly acetylated in response to oxidative stress, which promotes nuclear translocation. Moreover, p300/CBP-associated factor (PCAF), an acetyltransferase, and sirtuin 1 (SIRT1), a NAD+-dependent deacetylase, regulate the nuclear localization of TyrRS in an acetylation-dependent manner. Oxidative stress increases the level of PCAF and decreases the level of SIRT1 and deacetylase activity, all of which promote the nuclear translocation of hyperacetylated TyrRS. Furthermore, TyrRS is primarily acetylated on the K244 residue near the nuclear localization signal (NLS), and acetylation inhibits the aminoacylation activity of TyrRS. Molecular dynamics simulations have shown that the in silico acetylation of K244 induces conformational changes in TyrRS near the NLS, which may promote the nuclear translocation of acetylated TyrRS. Herein, we show that the acetylated K244 residue of TyrRS protects against DNA damage in mammalian cells and zebrafish by activating DNA repair genes downstream of transcription factor E2F1. Our study reveals a previously unknown mechanism by which acetylation regulates an aminoacyl-tRNA synthetase, thus affecting the repair pathways for damaged DNA. PMID:28069943

  3. Basics of voice dysfunction--etiology and prevention of voice damage.

    PubMed

    Sepić, Tatjana; Pankas, Josipa; Grubesić, Aron; Tićac, Robert; Starcević, Radan

    2011-09-01

    Voice is one of the most important means of communication and as such should be taken care of. The etiology of voice disorders is diverse. Due to the development of the society we live in, way of life, environmental factors, and exposure to pharmacological agents as well as demands we make towards our voice, there is a substantial growth in the number of people with voice disorders. We tasked ourselves to find out if it is possible to enlighten people on the importance of voice, to motivate them to take care of it, to notice the changes in its quality and eventually ask for help. We assessed in which measure do we understand the importance of a healthy voice, and do we know which is the most important factor that adds to its decline. For a long number of years voice therapists and other experts in the voice disorder field have been discussing the optimal voice impostation as well as vocal exercises and methods behind voice recovery. They have all come to the same conclusion that phonation is dependant on the sort of the voice disorder and the patient motivation. We wanted to go one step further and investigate, dependence of voice quality and the damage etiology (organic - functional), which are the predominant causes, what are the factors that account for the damage and how the disorder motivates the patient and therefore influences the rehabilitation success rate.

  4. Aspirin-induced gastric mucosal damage: prevention by enteric-coating and relation to prostaglandin synthesis.

    PubMed

    Hawthorne, A B; Mahida, Y R; Cole, A T; Hawkey, C J

    1991-07-01

    1. Gastric damage induced by low-dose aspirin and the protective effect of enteric-coating was assessed in healthy volunteers in a double-blind placebo-controlled cross-over trial using Latin square design. Each was administered placebo, plain aspirin 300 mg daily, plain aspirin 600 mg four times daily, enteric-coated aspirin 300 mg daily, or enteric-coated aspirin 600 mg four times daily for 5 days. Gastric damage was assessed endoscopically, and gastric mucosal bleeding measured. 2. Aspirin 300 mg daily and 600 mg four times daily caused significant increases in gastric injury compared with placebo. Gastric mucosal bleeding was significantly more with the high dose, with a trend towards increased gastric erosions, compared with the low dose. 3. Enteric-coating of aspirin eliminated the injury caused by low dose aspirin and substantially reduced that caused by the higher dose. 4. All dosages and formulations caused similar inhibition of gastric mucosal prostaglandin E2 synthesis. 5. Serum thromboxane levels were suppressed equally with plain and enteric-coated aspirin. 6. In this short-term study in healthy volunteers, gastric toxicity from aspirin was largely topical, independent of inhibition of prostaglandin synthesis, and could be virtually eliminated by the use of an enteric-coated preparation.

  5. Heat management prevents tissue buckling and collateral damage in NIR-laser welding

    NASA Astrophysics Data System (ADS)

    Sriramoju, Vidyasagar; Savage, Howard E.; Halder, Rabindra; Rosen, Richard B.; Katz, A.; Alfano, R. R.

    2006-02-01

    In this study, a NIR erbium fiber laser tuned to a water vibrational overtone absorption band at 1455 nm was used to weld directly, in vitro, seventy-six porcine aorta tissues without the need for extrinsic solder materials. The tissues were divided into eleven groups based on the multiple and variable parameters that were used to weld the tissues. The effectiveness of the parameters used in each of the weld groups was evaluated directly at the time of the weld and also by tensile strength measurements done at the termination of the weld. Management of heat produced in tissues is of critical importance for good laser tissue welding (LTW). To address heat management issues, we report LTW using a transparent cover over the tissue specimen as a heat sink. Multiple scanning helps distribute the laser-generated heat and allows the tissue to cool between scans, reducing thermal damage. Better heat management using a transparent cover slide enhances the welding success. It reduces collateral damage and limits water evaporation and control the buckling of tissue around the line of apposition so that the two pieces that are welded do not move apart along the line of apposition due to buckling pressure and ensure a full-length weld.

  6. Differential effects of melatonin as a broad range UV-damage preventive dermato-endocrine regulator.

    PubMed

    Kleszczyński, Konrad; Hardkop, Lena H; Fischer, Tobias W

    2011-01-01

    Melatonin or N-acetyl-5-methoxytryptamine, is a compound derived from tryptophan that is found in all organisms from single cells to vertebrates and the human. It is one of the most evolutionarily conserved and pleiotropic hormone still active in humans and has been implicated in vital skin functions such as hair growth, fur pigmentation as well as melanoma control. Being a main secretory product of the pineal gland, melatonin regulates seasonal biorhythms, reproductive mechanisms or mammary gland metabolism. Due to its wide range endocrine properties it is also recognized to modulate numerous additional functions ranging from scavenging free radicals, immunomodulation-mediated DNA repair, wound healing, involvement in gene expression connected with circadian clocks and modulation of secondary endocrine signaling including prolactin release. Recently, apart from above mentioned entities, it was shown that melatonin suppresses ultraviolet (UV)-induced damage in human skin and human derived cell lines (e.g., keratinocytes, fibroblasts). The magnitude of UV-induced damage is mediated apparently by various molecular mechanisms related to generation of reactive oxygen species (ROS), apoptosis and mitochondrial-mediated cell death which are all counteracted or modulated by melatonin. We provide here an update of the relevant protective effects and molecular mechanisms of action of melatonin in the skin.

  7. Dendrosomal nanocurcumin prevents morphine self-administration behavior in rats despite CA1 damage.

    PubMed

    Norozi, Jalaleden; Hassanpour-Ezatti, Majid; Alaei, Hojjat A

    2017-01-25

    Dendrosomal nanocurcumin (DNC) is fabricated from esterification of oleic acid and polyethylene glycol residues with curcumin. DNC has shown antioxidant, neuroprotective, and neurogenesis-enhancing effects. In addition, it can attenuate morphine tolerance. Morphine self-administration is associated with neurodegenerative changes of CA1 neurons in the adult hippocampus. The present study evaluated the effect of DNC pretreatment on morphine self-administration and hippocampal damage. Rats were pretreated with DNC (5 and 10 mg/kg, intraperitoneally) 30 min before a morphine self-administration paradigm performed in 2-h/sessions for 12 days under a FR-1 schedule. Pretreatment with both doses of DNC markedly suppressed morphine intake. Morphine self-administration resulted in a 71% reduction in the number of hippocampal CA1 neurons. DNC (5 mg/kg) pretreatment only marginally improved (by 22%) neuronal loss in this area. The data suggest that the effect of DNC on morphine self-administration is largely independent of the CA1 area. A functional restoration and regulation of reward circuit activity by DNC may reduce the motivation for morphine despite CA1 damage.

  8. Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy.

    PubMed

    Scheibye-Knudsen, Morten; Ramamoorthy, Mahesh; Sykora, Peter; Maynard, Scott; Lin, Ping-Chang; Minor, Robin K; Wilson, David M; Cooper, Marcus; Spencer, Richard; de Cabo, Rafael; Croteau, Deborah L; Bohr, Vilhelm A

    2012-04-09

    Cockayne syndrome (CS) is a devastating autosomal recessive disease characterized by neurodegeneration, cachexia, and accelerated aging. 80% of the cases are caused by mutations in the CS complementation group B (CSB) gene known to be involved in DNA repair and transcription. Recent evidence indicates that CSB is present in mitochondria, where it associates with mitochondrial DNA (mtDNA). We report an increase in metabolism in the CSB(m/m) mouse model and CSB-deficient cells. Mitochondrial content is increased in CSB-deficient cells, whereas autophagy is down-regulated, presumably as a result of defects in the recruitment of P62 and mitochondrial ubiquitination. CSB-deficient cells show increased free radical production and an accumulation of damaged mitochondria. Accordingly, treatment with the autophagic stimulators lithium chloride or rapamycin reverses the bioenergetic phenotype of CSB-deficient cells. Our data imply that CSB acts as an mtDNA damage sensor, inducing mitochondrial autophagy in response to stress, and that pharmacological modulators of autophagy are potential treatment options for this accelerated aging phenotype.

  9. Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy

    PubMed Central

    Scheibye-Knudsen, Morten; Ramamoorthy, Mahesh; Sykora, Peter; Maynard, Scott; Lin, Ping-Chang; Minor, Robin K.; Wilson III, David M.; Cooper, Marcus; Spencer, Richard; de Cabo, Rafael; Croteau, Deborah L.

    2012-01-01

    Cockayne syndrome (CS) is a devastating autosomal recessive disease characterized by neurodegeneration, cachexia, and accelerated aging. 80% of the cases are caused by mutations in the CS complementation group B (CSB) gene known to be involved in DNA repair and transcription. Recent evidence indicates that CSB is present in mitochondria, where it associates with mitochondrial DNA (mtDNA). We report an increase in metabolism in the CSBm/m mouse model and CSB-deficient cells. Mitochondrial content is increased in CSB-deficient cells, whereas autophagy is down-regulated, presumably as a result of defects in the recruitment of P62 and mitochondrial ubiquitination. CSB-deficient cells show increased free radical production and an accumulation of damaged mitochondria. Accordingly, treatment with the autophagic stimulators lithium chloride or rapamycin reverses the bioenergetic phenotype of CSB-deficient cells. Our data imply that CSB acts as an mtDNA damage sensor, inducing mitochondrial autophagy in response to stress, and that pharmacological modulators of autophagy are potential treatment options for this accelerated aging phenotype. PMID:22473955

  10. Nerve damage in leprosy: An electrophysiological evaluation of ulnar and median nerves in patients with clinical neural deficits: A pilot study.

    PubMed

    Kar, Sumit; Krishnan, Ajay; Singh, Neha; Singh, Ramji; Pawar, Sachin

    2013-04-01

    Leprosy involves peripheral nerves sooner or later in the course of the disease leading to gross deformities and disabilities. Sadly, by the time it becomes clinically apparent, the nerve damage is already quite advanced. However, if the preclinical damage is detected early in the course of disease, it can be prevented to a large extent. We conducted an electrophysiological pilot study on 10 patients with clinically manifest leprosy, in the Dermatology Department of Mahatma Gandhi Institute of Medical Sciences, Sewagram. This study was done to assess the nerve conduction velocity, amplitude and latency of ulnar and median nerves. We found reduced conduction velocities besides changes in latency and amplitude in the affected nerves. Changes in sensory nerve conduction were more pronounced. Also, sensory latencies and amplitude changes were more severe than motor latencies and amplitude in those presenting with muscle palsies. However, further studies are going on to identify parameters to detect early nerve damage in leprosy.

  11. Date (Phoenix dactylifera) Polyphenolics and Other Bioactive Compounds: A Traditional Islamic Remedy’s Potential in Prevention of Cell Damage, Cancer Therapeutics and Beyond

    PubMed Central

    Yasin, Bibi R.; El-Fawal, Hassan A. N.; Mousa, Shaker A.

    2015-01-01

    This review analyzes current studies of the therapeutic effects of Phoenix dactylifera, or date palm fruit, on the physiologic system. Specifically, we sought to summarize the effects of its application in preventing cell damage, improving cancer therapeutics and reducing damage caused by conventional chemotherapy. Phoenix dactylifera exhibits potent anti-oxidative properties both in vitro and in vivo. This allows the fruit to prevent depletion of intrinsic protection from oxidative cell damage and assist these defense systems in reducing cell damage. Macroscopically, this mechanism may be relevant to the prevention of various adverse drug events common to chemotherapy including hepatotoxicity, nephrotoxicity, gastrotoxicity, and peripheral neuropathy. While such effects have only been studied in small animal systems, research suggests a potential application to more complex mammalian systems and perhaps a solution to some problems of chemotherapy in hepato-compromised and nephro-compromised patients. PMID:26694370

  12. Date (Phoenix dactylifera) Polyphenolics and Other Bioactive Compounds: A Traditional Islamic Remedy's Potential in Prevention of Cell Damage, Cancer Therapeutics and Beyond.

    PubMed

    Yasin, Bibi R; El-Fawal, Hassan A N; Mousa, Shaker A

    2015-12-17

    This review analyzes current studies of the therapeutic effects of Phoenix dactylifera, or date palm fruit, on the physiologic system. Specifically, we sought to summarize the effects of its application in preventing cell damage, improving cancer therapeutics and reducing damage caused by conventional chemotherapy. Phoenix dactylifera exhibits potent anti-oxidative properties both in vitro and in vivo. This allows the fruit to prevent depletion of intrinsic protection from oxidative cell damage and assist these defense systems in reducing cell damage. Macroscopically, this mechanism may be relevant to the prevention of various adverse drug events common to chemotherapy including hepatotoxicity, nephrotoxicity, gastrotoxicity, and peripheral neuropathy. While such effects have only been studied in small animal systems, research suggests a potential application to more complex mammalian systems and perhaps a solution to some problems of chemotherapy in hepato-compromised and nephro-compromised patients.

  13. DIETARY FLAXSEED PREVENTS RADIATION-INDUCED OXIDATIVE LUNG DAMAGE, INFLAMMATION AND FIBROSIS IN A MOUSE MODEL OF THORACIC RADIATION INJURY

    PubMed Central

    Lee, James C.; Krochak, Ryan; Blouin, Aaron; Kanterakis, Stathis; Chatterjee, Shampa; Arguiri, Evguenia; Vachani, Anil; Solomides, Charalambos C.; Cengel, Keith A.; Christofidou-Solomidou, Melpo

    2009-01-01

    Flaxseed (FS) has high contents of omega-3 fatty acids and lignans with antioxidant properties. Its use in preventing thoracic X-ray radiation therapy (XRT)-induced pneumonopathy has never been evaluated. We evaluated FS supplementation given to mice given before and post-XRT. FS-derived lignans, known for their direct antioxidant properties, were evaluated in abrogating ROS generation in cultured endothelial cells following gamma radiation exposure. Mice were fed 10% FS or isocaloric control diet for three weeks and given 13.5 Gy thoracic XRT. Lungs were evaluated at 24 hours for markers of radiation-induced injury, three weeks for acute lung damage (lipid peroxidation, lung edema and inflammation), and at four months for late lung damage (inflammation and fibrosis). FS-Lignans blunted ROS generation in vitro, resulting from radiation in a dose-dependent manner. FS-fed mice had reduced expression of lung injury biomarkers (Bax, p21, and TGF-beta1) at 24 hours following XRT and reduced oxidative lung damage as measured by malondialdehyde (MDA) levels at 3 weeks following XRT. In addition, FS-fed mice had decreased lung fibrosis as determined by hydroxyproline content and decreased inflammatory cell influx into lungs at 4 months post XRT. Importantly, when Lewis Lung carcinoma cells were injected systemically in mice, FS dietary supplementation did not appear to protect lung tumors from responding to thoracic XRT. Dietary FS is protective against pulmonary fibrosis, inflammation and oxidative lung damage in a murine model. Moreover, in this model, tumor radioprotection was not observed. FS lignans exhibited potent radiation-induced ROS scavenging action. Taken together, these data suggest that dietary flaxseed may be clinically useful as an agent to increase the therapeutic index of thoracic XRT by increasing the radiation tolerance of lung tissues. PMID:18981722

  14. Selenium prevents cognitive decline and oxidative damage in rat model of streptozotocin-induced experimental dementia of Alzheimer's type.

    PubMed

    Ishrat, Tauheed; Parveen, Kehkashan; Khan, Mohd Moshahid; Khuwaja, Gulrana; Khan, M Badruzzaman; Yousuf, Seema; Ahmad, Ajmal; Shrivastav, Pallavi; Islam, Fakhrul

    2009-07-24

    Selenium (Se), a nutritionally essential trace element with known antioxidant potential, protects the brain from oxidative damage in various models of neurodegeneration. Intracerebroventricular-streptozotocin (ICV-STZ) in rats causes impairment of brain glucose and energy metabolism along with oxidative damage and cholinergic dysfunction, and provides a relevant model for sporadic dementia of Alzheimer's type (SDAT). The present study demonstrates the therapeutic efficacy of Se on cognitive deficits and oxidative damage in ICV-STZ in rats. Male Wistar rats were pre-treated with sodium selenite, a salt of Se (0.1 mg/kg; body weight) for 7 days and then were injected bilaterally with ICV-STZ (3 mg/kg), while sham rats received the same volume of vehicle. After two ICV-STZ infusions, rats were tested for memory deficits in passive avoidance and Morris water maze (MWM) tests and then were sacrificed for biochemical and histopathological assays. ICV-STZ-infused rats showed significant loss in learning and memory ability, which were significantly improved by Se supplementation. A significant increase in thio-barbituric acid reactive species (TBARS), protein carbonyl (PC) and a significant decrease in reduced glutathione (GSH), antioxidant enzymes (glutathione peroxidase [GPx] and glutathione reductase [GR]) and adenosine triphosphate (ATP) in the hippocampus and cerebral cortex and choline acetyltransferase (ChAT) in hippocampus were observed in ICV-STZ rats. Se supplementation significantly ameliorated all alterations induced by ICV-STZ in rats. Our study reveals that Se, as a powerful antioxidant, prevents cognitive deficits, oxidative damage and morphological changes in the ICV-STZ rats. Thus, it may have a therapeutic value for the treatment of SDAT.

  15. Biocompatible films with tailored spectral response for prevention of DNA damage in skin cells.

    PubMed

    Núñez-Lozano, Rebeca; Pimentel, Belén; Castro-Smirnov, José R; Calvo, Mauricio E; Míguez, Hernán; de la Cueva-Méndez, Guillermo

    2015-09-16

    A hybrid nanostructured organic-in-organic biocompatible film capable of efficiently blocking a preselected range of ultraviolet light is designed to match the genotoxic action spectrum of human epithelial cells. This stack protects cultured human skin cells from UV-induced DNA lesions. As the shielding mechanism relies exclusively on reflection, the secondary effects due to absorption harmful radiation are prevented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Metformin Prevents Cisplatin-Induced Cognitive Impairment and Brain Damage in Mice.

    PubMed

    Zhou, Wenjun; Kavelaars, Annemieke; Heijnen, Cobi J

    2016-01-01

    Chemotherapy-induced cognitive impairment, also known as 'chemobrain', is now widely recognized as a frequent adverse side effect of cancer treatment that often persists into survivorship. There are no drugs available to prevent or treat chemotherapy-induced cognitive deficits. The aim of this study was to establish a mouse model of cisplatin-induced cognitive deficits and to determine the potential preventive effects of the anti-diabetic drug metformin. Treatment of C57/BL6J mice with cisplatin (cumulative dose 34.5 mg/kg) impaired performance in the novel object and place recognition task as well as in the social discrimination task indicating cognitive deficits. Co-administration of metformin prevented these cisplatin-induced cognitive impairments. At the structural level, we demonstrate that cisplatin reduces coherency of white matter fibers in the cingulate cortex. Moreover, the number of dendritic spines and neuronal arborizations as quantified on Golgi-stained brains was reduced after cisplatin treatment. Co-administration of metformin prevented all of these structural abnormalities in cisplatin-treated mice. In contrast to what has been reported in other models of chemobrain, we do not have evidence for persistent microglial or astrocyte activation in the brains of cisplatin-treated mice. Finally, we show that co-administration of metformin also protects against cisplatin-induced peripheral neuropathy. In summary, we show here for the first time that treatment of mice with cisplatin induces cognitive deficits that are associated with structural abnormalities in the brain. Moreover, we present the first evidence that the widely used and safe anti-diabetic drug metformin protects against these deleterious effects of cancer treatment. In view of the ongoing clinical trials to examine the potential efficacy of metformin as add-on therapy in patients treated for cancer, these findings should allow rapid clinical translation.

  17. Metformin Prevents Cisplatin-Induced Cognitive Impairment and Brain Damage in Mice

    PubMed Central

    Zhou, Wenjun; Kavelaars, Annemieke; Heijnen, Cobi J.

    2016-01-01

    Rationale Chemotherapy-induced cognitive impairment, also known as ‘chemobrain’, is now widely recognized as a frequent adverse side effect of cancer treatment that often persists into survivorship. There are no drugs available to prevent or treat chemotherapy-induced cognitive deficits. The aim of this study was to establish a mouse model of cisplatin-induced cognitive deficits and to determine the potential preventive effects of the anti-diabetic drug metformin. Results Treatment of C57/BL6J mice with cisplatin (cumulative dose 34.5mg/kg) impaired performance in the novel object and place recognition task as well as in the social discrimination task indicating cognitive deficits. Co-administration of metformin prevented these cisplatin-induced cognitive impairments. At the structural level, we demonstrate that cisplatin reduces coherency of white matter fibers in the cingulate cortex. Moreover, the number of dendritic spines and neuronal arborizations as quantified on Golgi-stained brains was reduced after cisplatin treatment. Co-administration of metformin prevented all of these structural abnormalities in cisplatin-treated mice. In contrast to what has been reported in other models of chemobrain, we do not have evidence for persistent microglial or astrocyte activation in the brains of cisplatin-treated mice. Finally, we show that co-administration of metformin also protects against cisplatin-induced peripheral neuropathy. Conclusion In summary, we show here for the first time that treatment of mice with cisplatin induces cognitive deficits that are associated with structural abnormalities in the brain. Moreover, we present the first evidence that the widely used and safe anti-diabetic drug metformin protects against these deleterious effects of cancer treatment. In view of the ongoing clinical trials to examine the potential efficacy of metformin as add-on therapy in patients treated for cancer, these findings should allow rapid clinical translation. PMID

  18. Indirect assessment of economic damages from the Prestige oil spill: consequences for liability and risk prevention.

    PubMed

    Garza, María Dolores; Prada, Albino; Varela, Manuel; Rodríguez, María Xosé Vázquez

    2009-03-01

    The social losses arising from the Prestige oil spill exceed the compensation granted under the IOPC (International Oil Pollution Compensation) system, with losses estimated at 15 times more than the applicable limit of compensations. This is far above the level of costs for which those responsible for hydrocarbons spills are liable. The highest market losses correspond to sectors of extraction, elaboration and commercialisation of seafood. However, damages to non-commercial natural resources could constitute an outstanding group of losses for which further primary data are needed: these losses would only be compensable under the current system by means of a refund for cleaning and restoration costs. Results show that, in Europe, the responsibility for oil spills in maritime transport is limited and unclear. The consequence of this is net social losses from recurrent oil spills and internationally accepted incentives for risky strategies in the marine transport of hydrocarbons.

  19. Prevention of peroxynitrite-dependent damage by carnosine and related sulphonamido pseudodipeptides.

    PubMed

    Fontana, M; Pinnen, F; Lucente, G; Pecci, L

    2002-03-01

    The naturally occurring dipeptides carnosine and anserine have been proposed to act as antioxidants in vivo. We investigated whether these compounds can act as protective agents able to counteract peroxynitrite-dependent reactions. The results showed that the dipeptides efficiently protect tyrosine against nitration, alpha1-antiproteinase against inactivation and human low-density lipoprotein against modification by peroxynitrite. Carnosine exerts its protective effect at concentrations similar to those found in human tissues. In addition, some synthetic pseudodipeptides, stucturally related to carnosine but stable to hydrolytic enzymes, possess protective properties against peroxynitrite-dependent damage similar to the natural dipeptides. These pseudodipeptides may represent stable mimics of the biologically active carnosine suitable for pharmacological applications.

  20. On the inlet vortex system. [preventing jet engine damage caused by debris pick-up

    NASA Technical Reports Server (NTRS)

    Bissinger, N. C.; Braun, G. W.

    1974-01-01

    The flow field of a jet engine with an inlet vortex, which can pick up heavy debris from the ground and damage the engine, was simulated in a small water tunnel by means of the hydrogen bubble technique. It was found that the known engine inlet vortex is accompained by a vortex system, consisting of two inlet vortices (the ground based and the trailing one), secondary vortices, and ground vortices. Simulation of the ground effect by an inlet image proved that the inlet vortex feeds on free stream vorticity and can exist without the presence of a ground boundary layer. The structural form of the inlet vortex system was explained by a simple potential flow model, which showed the number, location, and the importance of the stagnation points. A retractable horizontal screen or an up-tilt of the engine is suggested as countermeasure against debris ingestion.

  1. Causes of binder damage in porous battery electrodes and strategies to prevent it

    NASA Astrophysics Data System (ADS)

    Foster, J. M.; Huang, X.; Jiang, M.; Chapman, S. J.; Protas, B.; Richardson, G.

    2017-05-01

    The mechanisms for binder delamination from electrode particles in porous lithium-ion electrodes are considered. The problem is analysed using a model that makes use of a multiscale continuum description of the battery electrode and specifically accounts for the viscoelastic properties of the binder [9]. This model predicts the evolution of the stress fields in the binder in response to: (i) binder swelling due to electrolyte absorption during cell assembly, and; (ii) shrinkage and growth of the electrode particles during cell cycling. The model predictions provide a cogent explanation for morphological damage seen in microscopy images of real cathodes. The effects of altering electrode particle shape, binder rheology and cycling rates on binder delamination are all investigated and used to make suggestions on how electrode lifetimes could be extended.

  2. Sulforaphane prevents microcystin-LR-induced oxidative damage and apoptosis in BALB/c mice

    SciTech Connect

    Sun Xiaoyun; Mi Lixin; Liu Jin; Song Lirong; Chung Funglung; Gan Nanqin

    2011-08-15

    Microcystins (MCs), the products of blooming algae Microcystis, are waterborne environmental toxins that have been implicated in the development of liver cancer, necrosis, and even fatal intrahepatic bleeding. Alternative protective approaches in addition to complete removal of MCs in drinking water are urgently needed. In our previous work, we found that sulforaphane (SFN) protects against microcystin-LR (MC-LR)-induced cytotoxicity by activating the NF-E2-related factor 2 (Nrf2)-mediated defensive response in human hepatoma (HepG2) and NIH 3T3 cells. The purpose of this study was to investigate and confirm efficacy the SFN-induced multi-mechanistic defense system against MC-induced hepatotoxicity in an animal model. We report that SFN protected against MC-LR-induced liver damage and animal death at a nontoxic and physiologically relevant dose in BALB/c mice. The protection by SFN included activities of anti-cytochrome P450 induction, anti-oxidation, anti-inflammation, and anti-apoptosis. Our results suggest that SFN may protect mice against MC-induced hepatotoxicity. This raises the possibility of a similar protective effect in human populations, particularly in developing countries where freshwaters are polluted by blooming algae. - Graphical abstract: Display Omitted Research Highlights: > SFN protected against MC-LR-induced liver damage and animal death in BALB/c mice. > The dose of SFN is at a nontoxic and physiologically relevant dose. > The protection included activities of anti-oxidation, anti-inflammation, and anti-apoptosis. > SFN may protect mice against MC-induced hepatotoxicity.

  3. GVS-111 prevents oxidative damage and apoptosis in normal and Down's syndrome human cortical neurons.

    PubMed

    Pelsman, Alejandra; Hoyo-Vadillo, Carlos; Gudasheva, Tatiana A; Seredenin, Sergei B; Ostrovskaya, Rita U; Busciglio, Jorge

    2003-05-01

    The neuroprotective activity of a novel N-acylprolyl-containing dipeptide analog of the nootropic 2-oxo-1-pyrrolidine acetamide (Piracetam) designated as GVS-111 (DVD-111/Noopept) was tested in two in vitro models of neuronal degeneration mediated by oxidative stress: normal human cortical neurons treated with H(2)O(2), and Down's syndrome (DS) cortical neurons. Incubation of normal cortical neurons with 50 microM H(2)O(2) for 1h resulted in morphological and structural changes consistent with neuronal apoptosis and in the degeneration of more than 60% of the neurons present in the culture. GVS-111 significantly increased neuronal survival after H(2)O(2)-treatment displaying a dose-dependent neuroprotective activity from 10nM to 100 microM, and an IC(50) value of 1.21+/-0.07 microM. GVS-111 inhibited the accumulation of intracellular free radicals and lipid peroxidation damage in neurons treated with H(2)O(2) or FeSO(4), suggesting an antioxidant mechanism of action. GVS-111 exhibited significantly higher neuroprotection compared to the standard cognition enhancer Piracetam, or to the antioxidants Vitamin E, propyl gallate and N-tert-butyl-2-sulpho-phenylnitrone (s-PBN). In DS cortical cultures, chronic treatment with GVS-111 significantly reduced the appearance of degenerative changes and enhanced neuronal survival. The results suggest that the neuroprotective effect of GVS-111 against oxidative damage and its potential nootropic activity may present a valuable therapeutic combination for the treatment of mental retardation and chronic neurodegenerative disorders.

  4. Lithium prevents long-term neural and behavioral pathology induced by early alcohol exposure.

    PubMed

    Sadrian, B; Subbanna, S; Wilson, D A; Basavarajappa, B S; Saito, M

    2012-03-29

    Fetal alcohol exposure can cause developmental defects in offspring known as fetal alcohol spectrum disorder (FASD). FASD symptoms range from obvious facial deformities to changes in neuroanatomy and neurophysiology that disrupt normal brain function and behavior. Ethanol exposure at postnatal day 7 in C57BL/6 mice induces neuronal cell death and long-lasting neurobehavioral dysfunction. Previous work has demonstrated that early ethanol exposure impairs spatial memory task performance into adulthood and perturbs local and interregional brain circuit integrity in the olfacto-hippocampal pathway. Here we pursue these findings to examine whether lithium prevents anatomical, neurophysiological, and behavioral pathologies that result from early ethanol exposure. Lithium has neuroprotective properties that have been shown to prevent ethanol-induced apoptosis. Here we show that mice co-treated with lithium on the same day as ethanol exposure exhibit dramatically reduced acute neurodegeneration in the hippocampus and retain hippocampal-dependent spatial memory as adults. Lithium co-treatment also blocked ethanol-induced disruption in synaptic plasticity in slice recordings of hippocampal CA1 in the adult mouse brain. Moreover, long-lasting dysfunctions caused by ethanol in olfacto-hippocampal networks, including sensory-evoked oscillations and resting state coherence, were prevented in mice co-treated with lithium. Together, these results provide behavioral and physiological evidence that lithium is capable of preventing or reducing immediate and long-term deleterious consequences of early ethanol exposure on brain function. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Not all cases of neural-tube defect can be prevented by increasing the intake of folic acid.

    PubMed

    Heseker, Helmut B; Mason, Joel B; Selhub, Jacob; Rosenberg, Irwin H; Jacques, Paul F

    2009-07-01

    Some countries have introduced mandatory folic acid fortification, whereas others support periconceptional supplementation of women in childbearing age. Several European countries are considering whether to adopt a fortification policy. Projections of the possible beneficial effects of increased folic acid intake assume that the measure will result in a considerable reduction in neural-tube defects (NTD) in the target population. Therefore, the objective of the present study is to evaluate the beneficial effects of different levels of folic acid administration on the prevalence of NTD. Countries with mandatory fortification achieved a significant increase in folate intake and a significant decline in the prevalence of NTD. This was also true for supplementation trials. However, the prevalence of NTD at birth declined to approximately five cases at birth per 10 000 births and seven to eight cases at birth or abortion per 10 000 births. This decline was independent of the amount of folic acid administered and apparently reveals a 'floor effect' for folic acid-preventable NTD. This clearly shows that not all cases of NTD are preventable by increasing the folate intake. The relative decline depends on the initial NTD rate. Countries with NTD prevalence close to the observed floor may have much smaller reductions in NTD rates with folic acid fortification. Additionally, potential adverse effects of fortification on other vulnerable population groups have to be seriously considered. Policy decisions concerning national mandatory fortification programmes must take into account realistically projected benefits as well as the evidence of risks to all vulnerable groups.

  6. Ferulic acid promotes survival and differentiation of neural stem cells to prevent gentamicin-induced neuronal hearing loss.

    PubMed

    Gu, Lintao; Cui, Xinhua; Wei, Wei; Yang, Jia; Li, Xuezhong

    2017-09-12

    Neural stem cells (NSCs) have exhibited promising potential in therapies against neuronal hearing loss. Ferulic acid (FA) has been widely reported to enhance neurogenic differentiation of different stem cells. We investigated the role of FA in promoting NSC transplant therapy to prevent gentamicin-induced neuronal hearing loss. NSCs were isolated from mouse cochlear tissues to establish in vitro culture, which were then treated with FA. The survival and differentiation of NSCs were evaluated. Subsequently, neurite outgrowth and excitability of the in vitro neuronal network were assessed. Gentamicin was used to induce neuronal hearing loss in mice, in the presence and absence of FA, followed by assessments of auditory brainstem response (ABR) and distortion product optoacoustic emissions (DPOAE) amplitude. FA promoted survival, neurosphere formation and differentiation of NSCs, as well as neurite outgrowth and excitability of in vitro neuronal network. Furthermore, FA restored ABR threshold shifts and DPOAE in gentamicin-induced neuronal hearing loss mouse model in vivo. Our data, for the first time, support potential therapeutic efficacy of FA in promoting survival and differentiation of NSCs to prevent gentamicin-induced neuronal hearing loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Ozone Prevents Cochlear Damage From Ischemia-Reperfusion Injury in Guinea Pigs.

    PubMed

    Onal, Merih; Elsurer, Cagdas; Selimoglu, Nebil; Yilmaz, Mustafa; Erdogan, Ender; Bengi Celik, Jale; Kal, Oznur; Onal, Ozkan

    2017-08-01

    The cochlea is an end organ, which is metabolically dependent on a nutrient and oxygen supply to maintain its normal physiological function. Cochlear ischemia and reperfusion (IR) injury is considered one of the most important causes of human idiopathic sudden sensorineural hearing loss. The aim of the present study was to study the efficacy of ozone therapy against cochlear damage caused by IR injury and to investigate the potential clinical use of this treatment for sudden deafness. Twenty-eight guinea pigs were randomized into four groups. The sham group (S) (n = 7) was administered physiological saline intraperitoneally (i.p.) for 7 days. The ozone group (O) (n = 7) was administered 1 mg/kg of ozone i.p. for 7 days. In the IR + O group (n = 7), 1 mg/kg of ozone was administered i.p. for 7 days before IR injury. On the eighth day, the IR + O group was subjected to cochlear ischemia for 15 min by occluding the bilateral vertebral artery and vein with a nontraumatic clamp and then reperfusion for 2 h. The IR group was subjected to cochlear IR injury. After the IR procedure, the guinea pigs were sacrificed on the same day. In a general histological evaluation, cochlear and spiral ganglionic tissues were examined with a light microscope, and apoptotic cells were counted by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The apoptotic index (AI) was then calculated. Blood samples were sent for analyses of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase, malondialdehyde (MDA), the total oxidant score (TOS), and total antioxidant capacity (TAC). Data were evaluated statistically using the Kruskal-Wallis test. The AI was highest in the IR group. The AI of the IR + O group was lower than that of the IR group. The biochemical antioxidant parameters SOD and GSH-Px and the TAC values were highest in the O group and lowest in the IR group. The MDA level and TOS were highest in the IR group and lowest

  8. Elucidation of mechanism of blood-brain barrier damage for prevention and treatment of vascular dementia.

    PubMed

    Ueno, Masaki

    2017-03-28

    . These clearance pathways may play a role in maintenance of the barrier in the entire brain. Obstruction of the passage of fluids through the perivascular drainage and glymphatic pathways as well as damage of the BBB and BCSFB may induce several kinds of brain disorders, such as vascular dementia. In this review, we focus on the relationship between damage of the barriers and the pathogenesis of vascular dementia and introduce recent findings including our experimental data using animal models.

  9. Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning.

    PubMed

    Nokia, Miriam S; Mikkonen, Jarno E; Penttonen, Markku; Wikgren, Jan

    2012-01-01

    Oscillations in hippocampal local-field potentials (LFPs) reflect the crucial involvement of the hippocampus in memory trace formation: theta (4-8 Hz) oscillations and ripples (~200 Hz) occurring during sharp waves are thought to mediate encoding and consolidation, respectively. During sharp wave-ripple complexes (SPW-Rs), hippocampal cell firing closely follows the pattern that took place during the initial experience, most likely reflecting replay of that event. Disrupting hippocampal ripples using electrical stimulation either during training in awake animals or during sleep after training retards spatial learning. Here, adult rabbits were trained in trace eyeblink conditioning, a hippocampus-dependent associative learning task. A bright light was presented to the animals during the inter-trial interval (ITI), when awake, either during SPW-Rs or irrespective of their neural state. Learning was particularly poor when the light was presented following SPW-Rs. While the light did not disrupt the ripple itself, it elicited a theta-band oscillation, a state that does not usually coincide with SPW-Rs. Thus, it seems that consolidation depends on neuronal activity within and beyond the hippocampus taking place immediately after, but by no means limited to, hippocampal SPW-Rs.

  10. Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning

    PubMed Central

    Nokia, Miriam S.; Mikkonen, Jarno E.; Penttonen, Markku; Wikgren, Jan

    2012-01-01

    Oscillations in hippocampal local-field potentials (LFPs) reflect the crucial involvement of the hippocampus in memory trace formation: theta (4–8 Hz) oscillations and ripples (~200 Hz) occurring during sharp waves are thought to mediate encoding and consolidation, respectively. During sharp wave-ripple complexes (SPW-Rs), hippocampal cell firing closely follows the pattern that took place during the initial experience, most likely reflecting replay of that event. Disrupting hippocampal ripples using electrical stimulation either during training in awake animals or during sleep after training retards spatial learning. Here, adult rabbits were trained in trace eyeblink conditioning, a hippocampus-dependent associative learning task. A bright light was presented to the animals during the inter-trial interval (ITI), when awake, either during SPW-Rs or irrespective of their neural state. Learning was particularly poor when the light was presented following SPW-Rs. While the light did not disrupt the ripple itself, it elicited a theta-band oscillation, a state that does not usually coincide with SPW-Rs. Thus, it seems that consolidation depends on neuronal activity within and beyond the hippocampus taking place immediately after, but by no means limited to, hippocampal SPW-Rs. PMID:23316148

  11. Prevention of valproic acid-induced neural tube defects by sildenafil citrate.

    PubMed

    Tiboni, Gian Mario; Ponzano, Adalisa

    2015-08-15

    This study was undertaken to test the effects of sildenafil citrate (SC), a type 5 phosphodiesterase inhibitor, on valproic acid (VPA)-induced teratogenesis. On gestation day (GD) 8, ICR (CD-1) mice were treated by gastric intubation with SC at 0 (vehicle), 1.0, 2.5, 5.0 or 10mg/kg. One hour later, animals received a teratogenic dose of VPA (600mg/kg) or vehicle. Developmental endpoints were evaluated near the end of gestation. Twenty-eighth percent of fetuses exposed to VPA had neural tube defects (exencephaly). Pretreatment with SC at 2.5, 5.0 or 10mg/kg significantly reduced the rate of VPA-induced exencephaly to 15.9%, 13.7%, and 10.0%, respectively. Axial skeletal defects were observed in 75.8% of VPA-exposed fetuses. Pre-treatment with SC at 10mg/kg, but not at lower doses, significantly decreased the rate of skeletally affected fetuses to 61.6%. These results show that SC, which prolongs nitric oxide (NO) signaling action protects from VPA-induced teratogenesis.

  12. Hexavalent chromium damages chamomile plants by alteration of antioxidants and its uptake is prevented by calcium.

    PubMed

    Kováčik, Jozef; Babula, Petr; Hedbavny, Josef; Klejdus, Bořivoj

    2014-05-30

    Toxicity of low (3μM) and high (60 and 120μM) concentrations of hexavalent chromium/Cr(VI) in chamomile plants was studied. Fluorescence staining confirmed reduction of Cr(VI) to Cr(III). Cr was mainly accumulated in the roots with translocation factor <0.007. Notwithstanding this, both shoots and roots revealed increase in oxidative stress and depletion of glutathione, total thiols, ascorbic acid and activities of glutathione reductase and partially ascorbate peroxidase mainly at 120μM Cr. Though some protective mechanisms were detected (elevation of nitric oxide, enhancement of GPX activity and increase in phenols and lignin), this was not sufficient to counteract the oxidative damage. Consequently, soluble proteins, tissue water content and biomass production were considerably depleted. Surprising increase in some mineral nutrients in roots (Ca, Fe, Zn and Cu) was also detected. Subsequent experiment confirmed that exogenous calcium suppressed oxidative symptoms and Cr uptake but growth of chamomile seedlings was not improved. Alteration of naturally present reductants could be a reason for Cr(III) signal detected using specific fluorescence reagent: in vitro assay confirmed disappearance of ascorbic acid in equimolar mixture with dichromate (>96% at pH 4 and 7) while such response of glutathione was substantially less visible.

  13. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, J.D.; Cassulo, J.C.; Pedersen, D.R.; Baker, L. Jr.

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and can be discharged from the reactor core. The invention provides a porous bed of sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  14. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker Jr., Louis

    1986-07-01

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  15. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker, Jr., Louis

    1986-01-01

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  16. Combined metoprolol and ascorbic acid treatment prevents intrinsic damage to the heart during diabetic cardiomyopathy.

    PubMed

    Saran, Varun; Sharma, Vijay; Wambolt, Richard; Yuen, Violet G; Allard, Michael; McNeill, John Hugh

    2014-10-01

    Metabolic disturbances and oxidative stress have been highlighted as potential causative factors for the development of diabetic cardiomyopathy. The β-blocker metoprolol is known to improve function in the diabetic rat heart and ameliorates the sequelae associated with oxidative stress, without lowering oxidative stress. The antioxidant ascorbic acid is known to improve function in the diabetic rat heart. We tested whether a combination of ascorbic acid and metoprolol treatment would improve function further than each drug individually. Control and streptozotocin-induced diabetic Wistar rats were treated with metoprolol (15 mg·(kg body mass)(-1)·day(-1), via an osmotic pump) and (or) ascorbic acid (1000 mg·(kg body mass)(-1)·day(-1), via their drinking water). To study the effect of treatment on the development of dysfunction, we examined time points before (5 weeks diabetic) and after (7 weeks diabetic) development of overt systolic dysfunction. Echocardiography and working-heart-perfusion were used to assess cardiac function. Blood and tissue samples were collected to assess the severity of disease and oxidative stress. While both drugs improved function, only ascorbic acid had effects on oxidative damage. Combination treatment had a more pronounced improvement in function. Our β-blocker + antioxidant treatment strategy focused on oxidative stress, not diabetes specifically; therefore, it may prove useful in other diseases where oxidative stress contributes to the pathology.

  17. The flavanol (−)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway

    PubMed Central

    Shah, Zahoor A; Li, Rung-chi; Ahmad, Abdullah S; Kensler, Thomas W; Yamamoto, Masayuki; Biswal, Shyam; Doré, Sylvain

    2010-01-01

    Epidemiologic studies have shown that foods rich in polyphenols, such as flavanols, can lower the risk of ischemic heart disease; however, the mechanism of protection has not been clearly established. In this study, we investigated whether epicatechin (EC), a flavanol in cocoa and tea, is protective against brain ischemic damage in mice. Wild-type mice pretreated orally with 5, 15, or 30 mg/kg EC before middle cerebral artery occlusion (MCAO) had significantly smaller brain infarcts and decreased neurologic deficit scores (NDS) than did the vehicle-treated group. Mice that were posttreated with 30 mg/kg of EC at 3.5 hours after MCAO also had significantly smaller brain infarcts and decreased NDS. Similarly, WT mice pretreated with 30 mg/kg of EC and subjected to N-methyl-aspartate (NMDA)-induced excitotoxicity had significantly smaller lesion volumes. Cell viability assays with neuronal cultures further confirmed that EC could protect neurons against oxidative insults. Interestingly, the EC-associated neuroprotection was mostly abolished in mice lacking the enzyme heme oxygenase 1 (HO1) or the transcriptional factor Nrf2, and in neurons derived from these knockout mice. These results suggest that EC exerts part of its beneficial effect through activation of Nrf2 and an increase in the neuroprotective HO1 enzyme. PMID:20442725

  18. Propolis prevents aluminium-induced genetic and hepatic damages in rat liver.

    PubMed

    Türkez, Hasan; Yousef, Mokhtar I; Geyikoglu, Fatime

    2010-10-01

    Aluminium is present in several manufactured foods and medicines and is also used in water purification. Therefore, the present experiment was undertaken to determine the effectiveness of propolis in modulating the aluminium chloride (AlCl(3)) induced genotoxicity and hepatotoxicity in liver of rats. Animals were assigned to 1 of 4 groups: control; 34 mg AlCl(3)/kg bw; 50mg propolis/kg bw; AlCl(3) (34 mg/kg bw) plus propolis (50mg/kg bw), respectively. Rats were orally administered their respective doses daily for 30 days. At the end of the experiment, rats were anesthetized and hepatocytes (HEP) were isolated for counting the number of micronucleated hepatocytes (MNHEPs). In addition, the levels of serum enzymes and histological alterations in liver were investigated. AlCl(3) caused a significant increase in MNHEPs, alkaline phosphatase, transaminases (AST and ALT) and lactate dehydrogenase (LDH). Furthermore, severe pathological damages such as: sinusoidal dilatation, congestion of central vein, lipid accumulation and lymphocyte infiltration were established in liver. On the contrary, treatment with propolis alone did not cause any adverse effect on above parameters. Moreover, simultaneous treatments with propolis significantly modulated the toxic effects of AlCl(3). It can be concluded that propolis has beneficial influences and could be able to antagonize AlCl(3) toxicity. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. α-Linolenic Acid-Enriched Diet Prevents Myocardial Damage and Expands Longevity in Cardiomyopathic Hamsters

    PubMed Central

    Fiaccavento, Roberta; Carotenuto, Felicia; Minieri, Marilena; Masuelli, Laura; Vecchini, Alba; Bei, Roberto; Modesti, Andrea; Binaglia, Luciano; Fusco, Angelo; Bertoli, Aldo; Forte, Giancarlo; Carosella, Luciana; Di Nardo, Paolo

    2006-01-01

    Randomized clinical trials have demonstrated that the increased intake of ω-3 polyunsaturated fatty acids significantly reduces the risk of ischemic cardiovascular disease, but no investigations have been performed in hereditary cardiomyopathies with diffusely damaged myocardium. In the present study, δ-sarcoglycan-null cardiomyopathic hamsters were fed from weaning to death with an α-linolenic acid (ALA)-enriched versus standard diet. Results demonstrated a great accumulation of ALA and eicosapentaenoic acid and an increased eicosapentaenoic/arachidonic acid ratio in cardiomyopathic hamster hearts, correlating with the preservation of myocardial structure and function. In fact, ALA administration preserved plasmalemma and mitochondrial membrane integrity, thus maintaining proper cell/extracellular matrix contacts and signaling, as well as a normal gene expression profile (myosin heavy chain isoforms, atrial natriuretic peptide, transforming growth factor-β1) and a limited extension of fibrotic areas within ALA-fed cardiomyopathic hearts. Consequently, hemodynamic indexes were safeguarded, and more than 60% of ALA-fed animals were still alive (mean survival time, 293 ± 141.8 days) when all those fed with standard diet were deceased (mean survival time, 175.9 ± 56 days). Therefore, the clinically evident beneficial effects of ω-3 polyunsaturated fatty acids are mainly related to preservation of myocardium structure and function and the attenuation of myocardial fibrosis. PMID:17148657

  20. GST activity and membrane lipid saturation prevents mesotrione-induced cellular damage in Pantoea ananatis.

    PubMed

    Prione, Lilian P; Olchanheski, Luiz R; Tullio, Leandro D; Santo, Bruno C E; Reche, Péricles M; Martins, Paula F; Carvalho, Giselle; Demiate, Ivo M; Pileggi, Sônia A V; Dourado, Manuella N; Prestes, Rosilene A; Sadowsky, Michael J; Azevedo, Ricardo A; Pileggi, Marcos

    2016-12-01

    Callisto(®), containing the active ingredient mesotrione (2-[4-methylsulfonyl-2-nitrobenzoyl]1,3-cyclohenanedione), is a selective herbicide that controls weeds in corn crops and is a potential environmental contaminant. The objective of this work was to evaluate enzymatic and structural changes in Pantoea ananatis, a strain isolated from water, in response to exposure to this herbicide. Despite degradation of mesotrione, probably due a glutathione-S-transferase (GST) pathway in Pantoea ananatis, this herbicide induced oxidative stress by increasing hydrogen peroxide production. Thiol fragments, eventually produced after mesotrione degradation, could be involved in increased GST activity. Nevertheless, there was no peroxidation damage related to this production, as malondialdehyde (MDA) synthesis, which is due to lipid peroxidation, was highest in the controls, followed by the mesotrione- and Callisto(®)-treated cultures at log growth phase. Therefore, P. ananatis can tolerate and grow in the presence of the herbicide, probably due an efficient control of oxidative stress by a polymorphic catalase system. MDA rates depend on lipid saturation due to a pattern change to a higher level of saturation. These changes are likely related to the formation of GST-mesotrione conjugates and mesotrione degradation-specific metabolites and to the presence of cytotoxic adjuvants. These features may shift lipid membrane saturation, possibly providing a protective effect to bacteria through an increase in membrane impermeability. This response system in P. ananatis provides a novel model for bacterial herbicide tolerance and adaptation in the environment.

  1. Pumping bottom water to prevent Korean red tide damage caused by Cochlodinium polykrikoides Margalef.

    PubMed

    Cho, Eun Seob; Moon, Seong Yong; Shu, Young Sang; Hwang, Jae Dong; Youn, Seok Hyun

    2015-09-01

    Cochlodinium polykrikoides Margalef produces annual massive blooms in Korean coastal waters which cause great damage to aquaculture and fisheries. Although various methods have been developed to remove the red tide of C. polykrikoides, release of yellow loess has been regarded as the most desirable technique for mitigation for over 10 years. Each August, strong irradiation generates water column stratification separating warm surface from colder bottom waters. Water from a distance of 0 (St. 1), 5 (St. 2), 10 (St. 3), and 15 m (St. 4) was pumped by running a pump for 0, 10, 30 and 90 min and characterized water temperature, salinity collected, suspended solids, Chl-a, and phytoplankton including C. polykrikoides. After running for 30 min, was temperature and salinity in surface water was similar to those of bottom water, and water column stratification completely reversed after 90 min. Likewise, suspended solids, Chl-a, and total phytoplankton cell density decreased after 30 min, but C. polykrikoides did not show strong removal because of low cell density during sampling. However, the number of C. polykrikoides was significantly diluted (80%) after 90 min. These results suggested that pumping device was as an environmentally-friendly method convenient to be install in fish cages and effective to remove C. polykrikoides stratified water column conditions.

  2. Acrocomia aculeata prevents toxicogenetic damage caused by the antitumor agent cyclophosphamide.

    PubMed

    Magosso, M F; Carvalho, P C; Shneider, B U C; Pessatto, L R; Pesarini, J R; Silva, P V B; Correa, W A; Kassuya, C A L; Muzzi, R M; Oliveira, R J

    2016-05-06

    Acrocomia aculeata is a plant rich in antioxidant compounds. Studies suggest that this plant has anti-inflammatory, antidiabetic, and diuretic potential. We assessed the antigenotoxic, antimutagenic, immunomodulation, and apoptotic potentials of A. aculeata alone and in combination with an antitumor agent, cyclophosphamide. Swiss male mice (N = 140) were used. The animals were divided into 14 experimental groups as follows: a negative group, a positive group (100 mg/kg cyclophosphamide), groups that only received the oil extracted from the almond (AO) and from the pulp (PO) of A. aculeata at doses of 3, 15, and 30 mg/kg, and the associated treatment groups (oils combined with cyclophosphamide) involving pretreatment, simultaneous, and post-treatment protocols. Data suggest that both oils were chemopreventive at all doses, based on the tested protocols. The highest damage reduction percentages, observed for AO and PO were 88.19 and 90.03%, respectively, for the comet assay and 69.73 and 70.93%, respectively, for the micronucleus assay. Both AO and PO demonstrated immunomodulatory activity. The oils reduced the capacity of cyclophosphamide to trigger apoptosis in the liver, spleen, and kidney cells. These results suggest that A. aculeate AO and PO can be classified as a functional food and also enrich other functional foods and nutraceuticals with chemopreventive features. However, they are not appropriate sources for chemotherapeutic adjuvants, in particular for those used in combination with cyclophosphamide.

  3. Preventive effect of safranal against oxidative damage in aged male rat brain

    PubMed Central

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Samini, Fariborz

    2014-01-01

    An imbalance between production of reactive oxygen species (ROS) and its elimination by antioxidant defense system in the body has been implicated for causes of aging and neurodegenerative diseases. This study was design to assess the changes in activities of antioxidant enzymes (superoxide dismutase (SOD), glutathione-S-transferase (GST), catalase), lipid peroxidation and reduced glutathione (GSH) levels in the brain of 2, 10 and 20 month old rats, and to determine the effect of safranal on the status of selected oxidative stress indices in the 10 and 20 month old rats. The aged rats (10 and 20 months) were given intraperitoneal injections of safranal (0.5 mg/kg day) daily for one month. The results of this study demonstrated that aging caused significant increase in the level of lipid peroxidation as well decrease in the GSH level and activities of SOD and GST in the brain of aging rats. The results of this study showed that safranal ameliorated the increased lipid peroxidation level as well as decreased GSH content of the brain of 10 and 20 month old rats. In addition, safranal treatment to the 20 month old rats, which restored the SOD and GST activities. In conclusion, safranal can be effective to protect susceptible aged brain from oxidative damage by increasing antioxidant defenses. PMID:25312506

  4. Lovastatin prevents bleomycin-induced DNA damage to HepG2 cells

    PubMed Central

    Nasiri, Marjan; Etebari, Mahmoud; Jafarian-Dehkordi, Abbas; Moradi, Shahla

    2016-01-01

    Lovastatin as a member of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors is used as a lipid-lowering agent. It can also inhibit the formation of hydrogen peroxide and superoxide anion and finally leads to decline in oxidative stress processes. Here, we evaluated whether lovastatin can increase DNA damage resistance of HepG2 cells against genotoxicity of the anticancer drug bleomycin (BLM). HepG2 cells were incubated with different concentrations of lovastatin (0.1, 0.5, 1, 5 µM) before exposure to BLM (0.5 µg/mL for one h). The genotoxic dose of BLM and lovastatin was separately determined and comet assay was used to evaluate the genotoxicity. After trapping cells in agarose coated lames, they were lysed and the electrophoresis was done in alkaline pH, then colored and monitored by florescent microscope. The results of this study indicated that lovastatin in doses lower than 5 µM has genoprotective effect and in doses higher than 50 µM is genotoxic. In conclusion, lovastatin is able to protect genotoxic effects of BLM in HepG2 cells. Further studies are needed to elucidate the mechanism(s) involved in this process. PMID:28003840

  5. The approach of the PREFER project to wildfire prevention and damage assessment in the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Laneve, Giovanni; Fusilli, Lorenzo; Tampellini, Maria Lucia; Vimercati, Marco; Hirn, Barbara; Sebastian-Lopez, Ana; Diagourtas, Dimitri; Eftychidis, Georgios; Clandillon, Stephen; Caspard, Mathilde; Oliveira, Sandra; Lourenco, Luciano

    2015-04-01

    PREFER is a Copernicus Emergency project funded from the 2012 FP7 Space Work Programme, and it is aimed at developing products and services that will contribute to improve the European capacity to respond to the preparedness, prevention, and recovery management steps in the case of forest fire emergency cycle, with focus on the Mediterranean area. It is well known from the most recent reports on state of Europe's forests that the Mediterranean area is particularly affected by uncontrolled forest fires, with a number of negative consequences on ecosystems, such as desertification and soil erosion, and on the local economy. Most likely, the current risks of forest fires will be exacerbated by climate change. In particular, the climate of Southern Europe and the Mediterranean basin is projected to warm at a rate exceeding the global average. Wild fires will therefore remain the most serious threat to Southern European forests. In this situation, the need to collect better information and more knowledge concerning future risks of forest fires and fire prevention in the Mediterranean area is widely recognized to be a major urgent one. As part of the Copernicus programme (i.e. the European Earth Observation Programme), PREFER is based on advanced geo-information products using in particular the earth observation data acquired and developed in the frame of Copernicus. The objective of the PREFER project, started at the end of 2012, 8 partners (from Italy, Portugal, Spain, France and Greece) involved and three years schedule, is the design, development and demonstration of a pre-operational "end-to-end" information service, fully exploiting satellite sensors data and able to support prevention/ preparedness and recovery phases of the Forest Fires emergency cycle in the EU Mediterranean Region. The PREFER information is as general as to be usable in the different countries of the Mediterranean Region, and acts in full complement to already existing services, such as the EC

  6. Poly(Adp-ribose) synthetase inhibition prevents lipopolysaccharide-induced peroxynitrite mediated damage in diaphragm.

    PubMed

    Ozdülger, Ali; Cinel, Ismail; Unlü, Ali; Cinel, Leyla; Mavioglu, Ilhan; Tamer, Lülüfer; Atik, Ugur; Oral, Ugur

    2002-07-01

    Although the precise mechanism by which sepsis causes impairment of respiratory muscle contractility has not been fully elucidated, oxygen-derived free radicals are thought to play an important role. In our experimental study, the effects of poly(ADP-ribose) synthetase (PARS) inhibition on the diaphragmatic Ca(2+)-ATPase, malondialdehyde (MDA), and 3-nitrotyrosine (3-NT) levels and additionally histopathology of the diaphragm in lipopolysaccharide (LPS)-induced endotoxemia are investigated.Thirty-two male Wistar rats, weighing between 180-200 g were randomly divided into four groups. The first group (control; n=8) received saline solution and the second (LPS group; n=8) 10 mgkg(-1) LPS i.p. 3-Aminobenzamide (3-AB) as a PARS inhibitor; was given to the third group (C+3-AB, n=8) 20 min before administration of saline solution while the fourth group (LPS+3-AB, n=8) received 3-AB 20 min before LPS injection. Six hours later, under ketamin/xylasine anesthesia diapraghmatic specimens were obtained and the rats were decapitated. Diaphragmatic specimens were divided into four parts, three for biochemical analyses and one for histopathologic assessment. In the LPS group, tissue Ca(2+)-ATPase levels were found to be decreased and tissue MDA and 3-NT levels were found to be increased (P<0.05). In the LPS+3-AB group, 3-AB pretreatment inhibited the increase in MDA and 3-NT levels and Ca(2+)-ATPase activity remained similar to those in the control group (P<0.05). Histopathologic examination of diaphragm showed edema between muscle fibers only in LPS group. PARS inhibition with 3-AB prevented not only lipid peroxidation but also the decrease of Ca(2+)-ATPase activity in endotoxemia. These results highlights the importance of nitric oxide (NO)-peroxynitrite (ONOO(-))-PARS pathway in preventing free radical mediated injury. PARS inhibitors should further be investigated as a new thearapetic alternative in sepsis treatment.

  7. Folic acid usage and associated factors in the prevention of neural tube defects among pregnant women in Ethiopia: cross-sectional study.

    PubMed

    Dessie, Meselech Ambaw; Zeleke, Ejigu Gebeye; Workie, Shimelash Bitew; Berihun, Ayanaw Worku

    2017-09-21

    Neural tube defects are among the most common birth defects, contributing to miscarriage, infant mortality, severe congenital abnormalities and serious disabilities. It is burdensome to patients, caregivers, healthcare systems and society. It could be reduced if women consume a folic acid supplement before and during the early weeks of pregnancy. This study assesses folic acid usage and associated factors for the prevention of neural tube defects among pregnant women in Ethiopia. Institution based cross-sectional study was conducted on 417 systematically sampled, consented pregnant women that visited Adama hospital medical college for antenatal care during August to November 2014. Pretested interviewer administered questionnaire was used to collect socio-demographic, obstetric characteristics and folic acid usage of women. About 48.4% of women took a folic acid supplement at different period of pregnancy; but, only 1.92% of women took the supplement at a protective period against neural tube defects. Age, the early timing of antenatal registration, was a preconception consulted, previous unsuccessful pregnancies and level of folic acid awareness were significantly associated with folic acid usage for prevention of neural tube defects. Folic acid usage during the protective period against neural tube defects among women in Ethiopia is very low, so healthcare plan to improve intake of folic acid is required.

  8. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    NASA Astrophysics Data System (ADS)

    Caputo, Fanny; de Nicola, Milena; Sienkiewicz, Andrzej; Giovanetti, Anna; Bejarano, Ignacio; Licoccia, Silvia; Traversa, Enrico; Ghibelli, Lina

    2015-09-01

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields.

  9. THEOS-2 Orbit Design: Formation Flying in Equatorial Orbit and Damage Prevention Technique for the South Atlantic Magnetic Anomaly (SAMA)

    NASA Astrophysics Data System (ADS)

    Pimnoo, Ammarin

    2016-07-01

    Geo-Informatics and Space Technology Development Agency (GISTDA) has initiative THEOS-2 project after the THEOS-1 has been operated for more than 7 years which is over the lifetime already. THEOS-2 project requires not only the development of earth observation satellite(s), but also the development of the area-based decision making solution platform comprising of data, application systems, data processing and production system, IT infrastructure improvement and capacity building through development of satellites, engineering model, and infrastructures capable of supporting research in related fields. The developing satellites in THEOS-2 project are THAICHOTE-2 and THAICHOTE-3. This paper focuses the orbit design of THAICHOTE-2 & 3. It discusses the satellite orbit design for the second and third EOS of Thailand. In this paper, both THAICHOTE will be simulated in an equatorial orbit as a formation flying which will be compared the productive to THAICHOTE-1 (THEOS-1). We also consider a serious issue in equatorial orbit design, namely the issue of the geomagnetic field in the area of the eastern coast of South America, called the South Atlantic Magnetic Anomaly (SAMA). The high-energy particles of SAMA comprise a radiation environment which can travel through THAICHOTE-2 & 3 material and deposit kinetic energy. This process causes atomic displacement or leaves a stream of charged atoms in the incident particles' wake. It can cause damage to the satellite including reduction of power generated by solar arrays, failure of sensitive electronics, increased background noise in sensors, and exposure of the satellite devices to radiation. This paper demonstrates the loss of ionizing radiation damage and presents a technique to prevent damage from high-energy particles in the SAMA.

  10. Subchronic treatment with acai frozen pulp prevents the brain oxidative damage in rats with acute liver failure.

    PubMed

    de Souza Machado, Fernanda; Kuo, Jonnsin; Wohlenberg, Mariane Farias; da Rocha Frusciante, Marina; Freitas, Márcia; Oliveira, Alice S; Andrade, Rodrigo B; Wannmacher, Clovis M D; Dani, Caroline; Funchal, Claudia

    2016-12-01

    Acai has been used by the population due to its high nutritional value and its benefits to health, such as its antioxidant properties. The aim of this study was to evaluate the protective effect of acai frozen pulp on oxidative stress parameters in cerebral cortex, hippocampus and cerebellum of Wistar rats treated with carbon tetrachloride (CCl4). Thirty male Wistar rats (90-day-old) were orally treated with water or acai frozen pulp for 14 days (7 μL/g). On the 15th day, half of the animals received treatment with mineral oil and the other half with CCl4 (3.0 mL/kg). The cerebral cortex, hippocampus and cerebellum were dissected and used for analysis of creatine kinase activity (CK), thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, and the activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). Statistical analysis was performed by ANOVA followed by Tukey's post-test. CCl4 was able to inhibit CK activity in all tissues tested and to provoke lipid damage in cerebral cortex and cerebellum, and protein damage in the three tissues tested. CCl4 enhanced CAT activity in the cerebral cortex, and inhibited CAT activity in the hippocampus and cerebellum and reduced SOD activity in all tissues studied. Acai frozen pulp prevented the inhibition of CK, TBARS, carbonyl and CAT activity in all brain structures and only in hippocampus for SOD activity. Therefore, acai frozen pulp has antioxidant properties and maybe could be useful in the treatment of some diseases that affect the central nervous system that are associated with oxidative damage.

  11. Prevention of γ-Radiation-Induced DNA Damage in Human Lymphocytes Using a Serine-Magnesium Sulfate Mixture.

    PubMed

    Changizi, Vahid; Bahrami, Mona; Esfahani, Mahbod; Shetab-Boushehri, Seyed V

    2017-05-01

    Ionising radiation has deleterious effects on human cells. N-acetylcysteine (NAC) and cysteine, the active metabolite of NAC, are well-known radioprotective agents. Recently, a serine-magnesium sulfate combination was proposed as an antidote for organophosphate toxicity. This study aimed to investigate the use of a serine-magnesium sulfate mixture in the prevention of γ-radiation-induced DNA damage in human lymphocytes as compared to NAC and cysteine. This study was carried out at the Iran University of Medical Sciences, Tehran, Iran, between April and September 2016. Citrated blood samples of 7 mL each were taken from 22 healthy subjects. Each sample was divided into 1 mL aliquots, with the first aliquot acting as the control while the second was exposed to 2 Gy of γ-radiation at a dose rate of 102.7 cGy/minute. The remaining aliquots were separately incubated with 600 μM concentrations each of serine, magnesium sulfate, serine-magnesium sulfate, NAC and cysteine before being exposed to 2 Gy of γ-radiation. Lymphocytes were isolated using a separation medium and methyl-thiazole-tetrazolium and comet assays were used to evaluate cell viability and DNA damage, respectively. The serine-magnesium sulfate mixture significantly increased lymphocyte viability and reduced DNA damage in comparison to serine, magnesium sulfate, NAC or cysteine alone (P <0.01 each). The findings of the present study support the use of a serine-magnesium sulfate mixture as a new, non-toxic, potent and efficient radioprotective agent.

  12. Surgical anatomy of the 10th and 11th intercostal, and subcostal nerves: prevention of damage during lumbotomy.

    PubMed

    van der Graaf, Teunette; Verhagen, Paul C M S; Kerver, Anton L A; Kleinrensink, Gert-Jan

    2011-08-01

    In a descriptive, inventorial anatomical study we mapped the course of the 10th and 11th intercostal nerves, and the subcostal nerve in the abdominal wall to determine a safe zone for lumbotomy. We dissected 11 embalmed cadavers, of which 10 were analyzed. The 10th and 11th intercostal nerves, and the subcostal nerve were dissected from the intercostal space to the rectus sheath. Analysis was done using computer assisted surgical anatomy mapping. A safe zone and an incision line with a minimum of nerve crossings were determined. The 10th and 11th intercostal nerves were invariably positioned subcostally. The subcostal nerve lay subcostally but caudal to the rib in 4 specimens. The main branches were located between the internal oblique and transverse abdominal muscles. The nerves branched and extensively varied in the abdominal wall. A straight line extended from the superior surface of the 11th and 12th ribs indicated a zone with lower nerve density. In 5 specimens the 10th and 11th intercostal nerves crossed this line from the superior surface of the 11th rib. In 5 specimens neither the 11th intercostal nerve nor the subcostal nerve crossed this extended line from the superior surface of the 12th rib up to 15 cm from the tip of the rib. Damage is inevitable to branches of the 10th or 11th intercostal nerve, or the subcostal nerve during lumbotomy. However, an incision extending from the superior surface of the 11th or 12th rib is less prone to damage these nerves. Closing the abdominal wall in 3 layers with the transverse abdominal muscle separately might prevent damage to neighboring nerves. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. The role of ketotifen in the prevention of testicular damage in rats with experimental unilateral undescended testes

    PubMed Central

    Acikgoz, Abdullah; Asci, Ramazan; Aydin, Oguz; Çavuş, Hikmet; Donmez, Gamze; Buyukalpelli, Recep

    2014-01-01

    The aims of this study conducted on rats were to determine mast cell (MC) proliferation on undescended testes (UDTs); whether there is a correlation between MC proliferation and testicular damage; and whether testicular damage can be prevented with administration of an MC blocker. Sixty-five newborn male rats were divided into three groups. During the neonatal period, unilateral UDTs were experimentally induced in Group 2 and Group 3. The rats in Group 3 were given 1 mg/kg/day ketotifen orally until the end of the study. Groups 2 (n=30) and 3 (n=15) were divided into groups of ten and five rats, respectively, each of which underwent bilateral orchiectomy in either the prepubertal, pubertal, or adult period. Group 1 (n=15) underwent a sham operation followed by bilateral orchiectomy, with five rats in each of the prepubertal, pubertal, and adult periods. Testicular MCs in the interstitial and subtubular areas, biopsy scores, interstitial connective tissue, seminiferous tubule (ST) diameters, and the basement membrane thickness of STs were evaluated. In Group 2 the ST diameters in the UDTs decreased, the number of MCs in the interstitial and subtubular areas increased, ST basement membranes thickened, and spermatogenesis decreased. The number of MCs in the interstitial and subtubular areas of the descended testes increased and spermatogenesis decreased. In Group 3, the number of MCs in the interstitial and subtubular areas decreased. In unilateral UDTs, the number of MCs in the interstitial and subtubular areas increased in both testes. Fibrosis developed in the ST basement membranes and interstitial areas, and spermatogenesis deteriorated. Testicular fibrosis may be prevented with administration of an MC blocker. PMID:25364234

  14. Dose dependent effect of resveratrol in preventing cisplatin-induced ovarian damage in rats: An experimental study.

    PubMed

    Atli, Mine; Engin-Ustun, Yaprak; Tokmak, Aytekin; Caydere, Muzaffer; Hucumenoglu, Sema; Topcuoglu, Canan

    2017-09-01

    This study aimed to evaluate the effect of resveratrol in preventing cisplatin (CP) induced ovarian damage in rats. Twenty-eight female Wistar albino rats were separated into four groups. No medication was given to group 1. Over the 21-day study period, low-dose resveratrol was given to group 2, high-dose resveratrol was given to group 3, and saline was administered to group 4. On the 15th day of medication, all groups except for group 1 were treated with a single dose of CP. Serum levels of anti-Mullerian hormone (AMH) were tested at baseline and on the 15th and 21st days. All rats underwent oophorectomy one week after CP application. Primordial, primary, secondary, and tertiary follicles were counted microscopically. No significant difference was observed among the groups in mean AMH levels according to follow-up time. The numbers of primary and primordial follicles were statistically significantly higher in group 2 than in group 4 (p<0.05). The number of tertiary follicles was statistically significantly higher in group 1 than in groups 3 and 4 (p<0.05), but it was not statistically significantly different than in group 2. Resveratrol, particularly at low-doses, can prevent CP induced ovarian damage by maintaining the numbers of primordial and primary follicles. Further studies are needed to study the effect of resveratrol on human ovaries. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. Antioxidant properties of xanthones from Calophyllum brasiliense: prevention of oxidative damage induced by FeSO4

    PubMed Central

    2013-01-01

    Background Reactive oxygen species (ROS) are important mediators in a number of degenerative diseases. Oxidative stress refers to the imbalance between the production of ROS and the ability to scavenge these species through endogenous antioxidant systems. Since antioxidants can inhibit oxidative processes, it becomes relevant to describe natural compounds with antioxidant properties which may be designed as therapies to decrease oxidative damage and stimulate endogenous cytoprotective systems. The present study tested the protective effect of two xanthones isolated from the heartwood of Calophyllum brasilienses against FeSO4-induced toxicity. Methods Through combinatory chemistry assays, we evaluated the superoxide (O2●—), hydroxyl radical (OH●), hydrogen peroxide (H2O2) and peroxynitrite (ONOO—) scavenging capacity of jacareubin (xanthone III) and 2-(3,3-dimethylallyl)-1,3,5,6-tetrahydroxyxanthone (xanthone V). The effect of these xanthones on murine DNA and bovine serum albumin degradation induced by an OH• generator system was also evaluated. Additionally, we investigated the effect of these xanthones on ROS production, lipid peroxidation and glutathione reductase (GR) activity in FeSO4-exposed brain, liver and lung rat homogenates. Results Xanthone V exhibited a better scavenging capacity for O2●—, ONOO- and OH● than xanthone III, although both xanthones were unable to trap H2O2. Additionally, xanthones III and V prevented the albumin and DNA degradation induced by the OH● generator system. Lipid peroxidation and ROS production evoked by FeSO4 were decreased by both xanthones in all tissues tested. Xanthones III and V also prevented the GR activity depletion induced by pro-oxidant activity only in the brain. Conclusions Altogether, the collected evidence suggests that xanthones can play a role as potential agents to attenuate the oxidative damage produced by different pro-oxidants. PMID:24119308

  16. Role of Bacillus subtilis Error Prevention Oxidized Guanine System in Counteracting Hexavalent Chromium-Promoted Oxidative DNA Damage

    PubMed Central

    Santos-Escobar, Fernando; Gutiérrez-Corona, J. Félix

    2014-01-01

    Chromium pollution is potentially detrimental to bacterial soil communities, compromising carbon and nitrogen cycles that are essential for life on earth. It has been proposed that intracellular reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] may cause bacterial death by a mechanism that involves reactive oxygen species (ROS)-induced DNA damage; the molecular basis of the phenomenon was investigated in this work. Here, we report that Bacillus subtilis cells lacking a functional error prevention oxidized guanine (GO) system were significantly more sensitive to Cr(VI) treatment than cells of the wild-type (WT) strain, suggesting that oxidative damage to DNA is involved in the deleterious effects of the oxyanion. In agreement with this suggestion, Cr(VI) dramatically increased the ROS concentration and induced mutagenesis in a GO-deficient B. subtilis strain. Alkaline gel electrophoresis (AGE) analysis of chromosomal DNA of WT and ΔGO mutant strains subjected to Cr(VI) treatment revealed that the DNA of the ΔGO strain was more susceptible to DNA glycosylase Fpg attack, suggesting that chromium genotoxicity is associated with 7,8-dihydro-8-oxodeoxyguanosine (8-oxo-G) lesions. In support of this notion, specific monoclonal antibodies detected the accumulation of 8-oxo-G lesions in the chromosomes of B. subtilis cells subjected to Cr(VI) treatment. We conclude that Cr(VI) promotes mutagenesis and cell death in B. subtilis by a mechanism that involves radical oxygen attack of DNA, generating 8-oxo-G, and that such effects are counteracted by the prevention and repair GO system. PMID:24973075

  17. Diverse strategies of O2 usage for preventing photo-oxidative damage under CO2 limitation during algal photosynthesis

    PubMed Central

    Shimakawa, Ginga; Matsuda, Yusuke; Nakajima, Kensuke; Tamoi, Masahiro; Shigeoka, Shigeru; Miyake, Chikahiro

    2017-01-01

    Photosynthesis produces chemical energy from photon energy in the photosynthetic electron transport and assimilates CO2 using the chemical energy. Thus, CO2 limitation causes an accumulation of excess energy, resulting in reactive oxygen species (ROS) which can cause oxidative damage to cells. O2 can be used as an alternative energy sink when oxygenic phototrophs are exposed to high light. Here, we examined the responses to CO2 limitation and O2 dependency of two secondary algae, Euglena gracilis and Phaeodactylum tricornutum. In E. gracilis, approximately half of the relative electron transport rate (ETR) of CO2-saturated photosynthesis was maintained and was uncoupled from photosynthesis under CO2 limitation. The ETR showed biphasic dependencies on O2 at high and low O2 concentrations. Conversely, in P. tricornutum, most relative ETR decreased in parallel with the photosynthetic O2 evolution rate in response to CO2 limitation. Instead, non-photochemical quenching was strongly activated under CO2 limitation in P. tricornutum. The results indicate that these secondary algae adopt different strategies to acclimatize to CO2 limitation, and that both strategies differ from those utilized by cyanobacteria and green algae. We summarize the diversity of strategies for prevention of photo-oxidative damage under CO2 limitation in cyanobacterial and algal photosynthesis. PMID:28106164

  18. Catuaba (Trichilia catigua) prevents against oxidative damage induced by in vitro ischemia-reperfusion in rat hippocampal slices.

    PubMed

    Kamdem, Jean Paul; Waczuk, Emily Pansera; Kade, Ige Joseph; Wagner, Caroline; Boligon, Aline Augusti; Athayde, Margareth Linde; Souza, Diogo Onofre; Rocha, João Batista Teixeira

    2012-12-01

    Oxidative stress is implicated in brain damage associated with ischemia-reperfusion. Natural antioxidants found in some plants used in folk medicine have been indicated as potential neuroprotective agents. Here we investigated whether Trichilia catigua, a traditional Brazilian herbal medicine alleged to exhibit a variety of neuropharmacological properties (antidepressant, anti-neurasthenic, anti-inflammatory etc.), could have neuroprotective properties in rat hippocampal slices subjected to 2 h oxygen and glucose deprivation (OGD) followed by 1 h reperfusion. Ischemia-reperfusion (I/R) significantly decreased mitochondrial viability, increased dichlorofluorescein oxidation above control both in the incubation medium and slices homogenates, increased lactate dehydrogenase into the incubation medium and decreased non-protein thiols. T. catigua (40-100 μg/mL) protected slices from the deleterious effects of OGD when present before OGD and during the reperfusion periods. Oxidative stress in the medium was also determined under different conditions and the results demonstrated that T. catigua could not protect slices from I/R when it was added to the medium after ischemic insult. Although the translation to a real in vivo situation of I/R is difficult to be done, the results indicated that T. catigua should be used as preventive and not as a curative agent against brain damage.

  19. Diverse strategies of O2 usage for preventing photo-oxidative damage under CO2 limitation during algal photosynthesis.

    PubMed

    Shimakawa, Ginga; Matsuda, Yusuke; Nakajima, Kensuke; Tamoi, Masahiro; Shigeoka, Shigeru; Miyake, Chikahiro

    2017-01-20

    Photosynthesis produces chemical energy from photon energy in the photosynthetic electron transport and assimilates CO2 using the chemical energy. Thus, CO2 limitation causes an accumulation of excess energy, resulting in reactive oxygen species (ROS) which can cause oxidative damage to cells. O2 can be used as an alternative energy sink when oxygenic phototrophs are exposed to high light. Here, we examined the responses to CO2 limitation and O2 dependency of two secondary algae, Euglena gracilis and Phaeodactylum tricornutum. In E. gracilis, approximately half of the relative electron transport rate (ETR) of CO2-saturated photosynthesis was maintained and was uncoupled from photosynthesis under CO2 limitation. The ETR showed biphasic dependencies on O2 at high and low O2 concentrations. Conversely, in P. tricornutum, most relative ETR decreased in parallel with the photosynthetic O2 evolution rate in response to CO2 limitation. Instead, non-photochemical quenching was strongly activated under CO2 limitation in P. tricornutum. The results indicate that these secondary algae adopt different strategies to acclimatize to CO2 limitation, and that both strategies differ from those utilized by cyanobacteria and green algae. We summarize the diversity of strategies for prevention of photo-oxidative damage under CO2 limitation in cyanobacterial and algal photosynthesis.

  20. Spirulina prevents memory dysfunction, reduces oxidative stress damage and augments antioxidant activity in senescence-accelerated mice.

    PubMed

    Hwang, Juen-Haur; Lee, I-Te; Jeng, Kee-Ching; Wang, Ming-Fu; Hou, Rolis Chien-Wei; Wu, Su-Mei; Chan, Yin-Ching

    2011-01-01

    Spirulina has proven to be effective in treating certain cancers, hyperlipidemia, immunodeficiency, and inflammatory processes. In this study, we aimed to investigate the effects of Spirulina on memory dysfunction, oxidative stress damage and antioxidant enzyme activity. Three-month-old male senescence-accelerated prone-8 (SAMP8) mice were randomly assigned to either a control group or to one of two experimental groups (one receiving daily dietary supplementation with 50 mg/kg BW and one with 200 mg/kg BW of Spirulina platensis water extract). Senescence-accelerated-resistant (SAMR1) mice were used as the external control. Results showed that the Spirulina-treated groups had better passive and avoidance scores than the control group. The amyloid β-protein (Aβ) deposition was significantly reduced at the hippocampus and whole brain in both Spirulina groups. The levels of lipid peroxidation were significantly reduced at the hippocampus, striatum, and cortex in both Spirulina groups, while catalase activity was significantly higher only in the 200 mg/kg BW Spirulina group than in the control group. Glutathione peroxidase activity was significantly higher only in the cortex of the 200 mg/kg group than in that of the SAMP8 control group. However, superoxide dismutase activity in all parts of the brain did not significantly differ among all groups. In conclusion, Spirulina platensis may prevent the loss of memory possibly by lessening Aβ protein accumulation, reducing oxidative damage and mainly augmenting the catalase activity.

  1. Caloric restriction protects livers from ischemia/reperfusion damage by preventing Ca(2+)-induced mitochondrial permeability transition.

    PubMed

    Menezes-Filho, Sergio L; Amigo, Ignacio; Prado, Fernanda M; Ferreira, Natalie C; Koike, Marcia K; Pinto, Isabella F D; Miyamoto, Sayuri; Montero, Edna F S; Medeiros, Marisa H G; Kowaltowski, Alicia J

    2017-09-01

    Caloric restriction (CR) promotes lifespan extension and protects against many pathological conditions, including ischemia/reperfusion injury to the brain, heart and kidney. In the liver, ischemia/reperfusion damage is related to excessive mitochondrial Ca(2+) accumulation, leading to the mitochondrial permeability transition. Indeed, liver mitochondria isolated from animals maintained on CR for 4 months were protected against permeability transition and capable of taking up Ca(2+) at faster rates and in larger quantities. These changes were not related to modifications in mitochondrial respiratory activity, but rather to a higher proportion of ATP relative to ADP in CR liver mitochondria. Accordingly, both depletion of mitochondrial adenine nucleotides and loading mitochondria with exogenous ATP abolished the differences between CR and ad libitum (AL) fed groups. The prevention against permeability transition promoted by CR strongly protected against in vivo liver damage induced by ischemia/reperfusion. Overall, our results show that CR strongly protects the liver against ischemia/reperfusion and uncover a mechanism for this protection, through a yet undescribed diet-induced change in liver mitochondrial Ca(2+) handling related to elevated intramitochondrial ATP. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Eugenia jambolana Pretreatment Prevents Isoproterenol-Induced Myocardial Damage in Rats: Evidence from Biochemical, Molecular, and Histopathological Studies

    PubMed Central

    Shukla, Santosh Kumar; Singh, Usha Rani; Ahmad, Sayeed; Maheshwari, Ankur; Misro, Manmohan; Dwivedi, Shridhar

    2014-01-01

    Abstract Preventive effects of hydroalcoholic extract of fruit pulp of Eugenia jambolana (HEEJ) on isoproterenol (ISP)-induced myocardial damage in rats were evaluated. Rats were pre-treated with HEEJ (100, 200, and 400 mg/kg) daily for 30 days. ISP (85 mg/kg bw) was administered on the 28th and 29th days at an interval of 24 h. Ischemic control group exhibited significant increases in oxidative stress parameters, markers of inflammation, cardiac damage markers, and apoptotic markers. Oral pre-treatment with HEEJ (100, 200, and 400 mg/kg bw) provided cardioprotective activity by decreasing levels of malondialdehyde, cardiac markers (serum glutamate oxaloacetate transaminase, creatine kinase-myocardial band, cardiac troponin I), and markers of inflammation (interleukin-6, C-reactive protein, and tumor necrosis factor alpha); and increased levels of superoxide dismutase and reduced glutathione. HEEJ (400 mg/kg bw) was found to exert significantly greater effects in comparison to HEEJ (100 and 200 mg/kg bw). Apoptotic marker Bcl-2 was increased, while Bax was decreased in pre-treated rats, which was further confirmed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The present study provides evidence that pre-treatment with HEEJ attenuates oxidative stress, apoptosis and improves cardiac architecture in ISP-induced rats and, hence, is cardioprotective. PMID:24325453

  3. Sulforaphane Prevents Testicular Damage in Kunming Mice Exposed to Cadmium via Activation of Nrf2/ARE Signaling Pathways.

    PubMed

    Yang, Shu-Hua; Long, Miao; Yu, Li-Hui; Li, Lin; Li, Peng; Zhang, Yi; Guo, Yang; Gao, Feng; Liu, Ming-Da; He, Jian-Bin

    2016-10-11

    Sulforaphane (SFN) is a natural and highly effective antioxidant. Studies suggest that SFN protects cells and tissues against cadmium (Cd) toxicity. This study investigated the protective effect of SFN against oxidative damage in the testes of Kunming mice exposed to cadmium, and explored the possible molecular mechanisms involved. Cadmium greatly reduced the serum testosterone levels in mice, reduced sperm motility, total sperm count, and increased the sperm deformity rate. Cadmium also reduces superoxide dismutase (T-SOD) and glutathione (GSH) levels and increases malondialdehyde (MDA) concentrations. SFN intervention improved sperm quality, serum testosterone, and antioxidant levels. Both mRNA and protein expression of mouse testicular nuclear factor-erythroid 2-related factor 2 (Nrf2) was reduced in cadmium-treated group. Furthermore, the downstream genes of Nrf2, glutathione peroxidase (GSH-Px), γ-glutamyl cysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), and NAD(P)H:quinone oxidoreductase-1 (NQO1) were also decreased in cadmium-treated group. SFN intervention increases the expression of these genes. Sulforaphane prevents cadmium-induced testicular damage, probably via activation of Nrf2/ARE signaling.

  4. Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia.

    PubMed

    Schuch, Clarissa Pedrini; Diaz, Ramiro; Deckmann, Iohanna; Rojas, Joseane Jiménez; Deniz, Bruna Ferrary; Pereira, Lenir Orlandi

    2016-03-23

    Our previous results demonstrated improved cognition in adolescent rats housed in environmental enrichment (EE) that underwent neonatal hypoxia-ischemia (HI). The aim of this study was to investigate the effects of early EE on neurobehavioral development and brain damage in rats submitted to neonatal HI. Wistar rats were submitted to the HI procedure on the 7th postnatal day (PND) and housed in an enriched environment (8th-20th PND). The maturation of physical characteristics and the neurological reflexes were evaluated and the volume of striatum, corpus callosum and neocortex was measured. Data analysis demonstrated a clear effect of EE on neurobehavioral development; also, daily performance was improved in enriched rats on righting, negative geotaxis and cliff aversion reflex. HI caused a transient motor deficit on gait latency. Brain atrophy was found in HI animals and this damage was partially prevented by the EE. In conclusion, early EE stimulated neurobehavioral development in neonate rats and also protects the neocortex and the corpus callosum from atrophy following HI. These findings reinforce the potential of EE as a strategy for rehabilitation following neonatal HI and provide scientific support to the use of this therapeutic strategy in the treatment of neonatal brain injuries in humans. Copyright © 2016. Published by Elsevier Ireland Ltd.

  5. Sulforaphane Prevents Testicular Damage in Kunming Mice Exposed to Cadmium via Activation of Nrf2/ARE Signaling Pathways

    PubMed Central

    Yang, Shu-Hua; Long, Miao; Yu, Li-Hui; Li, Lin; Li, Peng; Zhang, Yi; Guo, Yang; Gao, Feng; Liu, Ming-Da; He, Jian-Bin

    2016-01-01

    Sulforaphane (SFN) is a natural and highly effective antioxidant. Studies suggest that SFN protects cells and tissues against cadmium (Cd) toxicity. This study investigated the protective effect of SFN against oxidative damage in the testes of Kunming mice exposed to cadmium, and explored the possible molecular mechanisms involved. Cadmium greatly reduced the serum testosterone levels in mice, reduced sperm motility, total sperm count, and increased the sperm deformity rate. Cadmium also reduces superoxide dismutase (T-SOD) and glutathione (GSH) levels and increases malondialdehyde (MDA) concentrations. SFN intervention improved sperm quality, serum testosterone, and antioxidant levels. Both mRNA and protein expression of mouse testicular nuclear factor-erythroid 2-related factor 2 (Nrf2) was reduced in cadmium-treated group. Furthermore, the downstream genes of Nrf2, glutathione peroxidase (GSH-Px), γ-glutamyl cysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), and NAD(P)H:quinone oxidoreductase-1 (NQO1) were also decreased in cadmium-treated group. SFN intervention increases the expression of these genes. Sulforaphane prevents cadmium-induced testicular damage, probably via activation of Nrf2/ARE signaling. PMID:27727176

  6. Estimate of the potential impact of folic acid fortification of corn masa flour on the prevention of neural tube defects.

    PubMed

    Tinker, Sarah C; Devine, Owen; Mai, Cara; Hamner, Heather C; Reefhuis, Jennita; Gilboa, Suzanne M; Dowling, Nicole F; Honein, Margaret A

    2013-10-01

    Hispanics in the US have a higher prevalence of neural tube defect (NTD) -affected pregnancies than non-Hispanic whites, and lower median total folic acid (FA) intake. FA fortification of corn masa flour (CMF) is a policy-level intervention for NTD prevention; however, the impact on NTD prevalence has not been estimated. We developed a model to estimate the percentage reduction in prevalence of spina bifida and anencephaly (NTDs) that could occur with FA fortification of CMF. Model inputs included estimates of the percentage reduction in United States NTD prevalence attributed to FA fortification of enriched cereal grain products (1995-1996 vs. 1998-2002), the increase in median FA intake after enriched cereal grain product fortification, and the estimated increase in median FA intake that could occur with CMF fortification at the same level as enriched cereal grain products (140 μg/100 g). We used Monte Carlo simulation to quantify uncertainty. We stratified analyses by racial/ethnic group and rounded results to the nearest 10. We estimated CMF fortification could prevent 30 Hispanic infants from having spina bifida (95% uncertainty interval: 0, 80) and 10 infants from having anencephaly (95% uncertainty interval: 0, 40) annually. The estimated impact among non-Hispanic whites and blacks was smaller. CMF fortification with FA could prevent from 0 to 120 infants, with the most likely value of approximately 40, from having spina bifida or anencephaly among Hispanics, the population most likely to benefit from the proposed intervention. While this estimated reduction is unlikely to be discernible using current birth defect surveillance methods, it still suggests an important benefit to the target population. Copyright © 2013 Wiley Periodicals, Inc.

  7. Periodic Estrogen Receptor-Beta Activation: A Novel Approach to Prevent Ischemic Brain Damage.

    PubMed

    Cue, Lauren; Diaz, Francisca; Briegel, Karoline J; Patel, Hersila H; Raval, Ami P

    2015-10-01

    In women, the risk for cerebral ischemia climbs rapidly after menopause. At menopause, production of ovarian hormones; i.e., progesterone and estrogen, slowly diminishes. Estrogen has been suggested to confer natural protection to premenopausal women from ischemic stroke and some of its debilitating consequences. This notion is also strongly supported by laboratory studies showing that a continuous chronic 17β-estradiol (E2; a potent estrogen) regimen protects brain from ischemic injury. However, concerns regarding the safety of the continuous intake of E2 were raised by the failed translation to the clinic. Recent studies demonstrated that repetitive periodic E2 pretreatments, in contrast to continuous E2 treatment, provided neuroprotection against cerebral ischemia in ovariectomized rats. Periodic E2 pretreatment protects hippocampal neurons through activation of estrogen receptor subtype beta (ER-β). Apart from neuroprotection, periodic activation of ER-β in ovariectomized rats significantly improves hippocampus-dependent learning and memory. Difficulties in learning and memory loss are the major consequence of ischemic brain damage. Periodic ER-β agonist pretreatment may provide pharmacological access to a protective state against ischemic stroke and its debilitating consequences. The use of ER-β-selective agonists constitutes a safer target for future research than ER-α agonist or E2, inasmuch as it lacks the ability to stimulate the proliferation of breast or endometrial tissue. In this review, we highlight ER-β signaling as a guide for future translational research to reduce cognitive decline and cerebral ischemia incidents/impact in post-menopausal women, while avoiding the side effects produced by chronic E2 treatment.

  8. Preventive Effect of Carvacrol Against Oxidative Damage in Aged Rat Liver.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Farkhondeh, Tahereh

    2016-11-21

    The present study was designed to investigate the changes in activities of antioxidant enzymes and lipid peroxidation level in the liver of 2, 10 and 20 months old rats, and to see whether these changes are restored to those of the two month old rats after carvacrol treatment. Male rats of 2, 10, and 20 months (n = 10 for each group) were used for all the experiments. The aged rats (10 and 20 months old) were given carvacrol (15 mg/day per body weight) for 30 days. Control animals received an equal volume of vehicle. After the treatment, livers were removed for estimation of superoxide dismutase-SOD, glutathione-S-transferase-GST, catalase-CAT activities and lipid peroxidation level. The present findings determined that normal aging was associated with a significant decrease in the activities of antioxidant enzymes (SOD; 11.87 ± 0.6 (2 months old) vs 7.56 ± 0.1 (20 months old); P < 0.001) in liver, as well as an increase in lipid peroxidation level (MDA; 0.15 ± 0.01 (2 months old) vs 0.41 ± 0.01 (20 months old); P < 0.001) in aged rats. Also, the results of this study indicated that carvacrol treatment increased the activities of the antioxidant enzymes in 20 months old animals versus the aged matched control group (SOD; 9.87 ± 0.4; P < 0.01). Furthermore, carvacrol decreased lipid peroxidation content in 10 and 20 months old animals compared with the aged matched control (MDA; 9.87 ± 0.4; P < 0.001). Our data shows that carvacrol could be a candidate to inhibit the development of age-induced liver damage through inhibition of oxidative stress and also increasing antioxidant defenses.

  9. Diazoxide prevents reactive oxygen species and mitochondrial damage, leading to anti-hypertrophic effects.

    PubMed

    Lucas, Aline M; Caldas, Francisco R; da Silva, Amanda P; Ventura, Maximiano M; Leite, Iago M; Filgueiras, Ana B; Silva, Claúdio G L; Kowaltowski, Alicia J; Facundo, Heberty T

    2017-01-05

    Pathological cardiac hypertrophy is characterized by wall thickening or chamber enlargement of the heart in response to pressure or volume overload, respectively. This condition will, initially, improve the organ contractile function, but if sustained will render dysfunctional mitochondria and oxidative stress. Mitochondrial ATP-sensitive K(+) channels (mitoKATP) modulate the redox status of the cell and protect against several cardiac insults. Here, we tested the hypothesis that mitoKATP opening (using diazoxide) will avoid isoproterenol-induced cardiac hypertrophy in vivo by decreasing reactive oxygen species (ROS) production and mitochondrial Ca(2+)-induced swelling. To induce cardiac hypertrophy, Swiss mice were treated intraperitoneally with isoproterenol (30 mg/kg/day) for 8 days. Diazoxide (5 mg/kg/day) was used to open mitoKATP and 5-hydroxydecanoate (5 mg/kg/day) was administrated as a mitoKATP blocker. Isoproterenol-treated mice had elevated heart weight/tibia length ratios and increased myocyte cross-sectional areas. Additionally, hypertrophic hearts produced higher levels of H2O2 and had lower glutathione peroxidase activity. In contrast, mitoKATP opening with diazoxide blocked all isoproterenol effects in a manner reversed by 5-hydroxydecanoate. Isolated mitochondria from Isoproterenol-induced hypertrophic hearts had increased susceptibility to Ca(2+)-induced swelling secondary to mitochondrial permeability transition pore opening. MitokATP opening was accompanied by lower Ca(2+)-induced mitochondrial swelling, an effect blocked by 5-hydroxydecanoate. Our results suggest that mitoKATP opening negatively regulates cardiac hypertrophy by avoiding oxidative impairment and mitochondrial damage.

  10. Combination Therapy for Ulcerative Colitis: Orally Targeted Nanoparticles Prevent Mucosal Damage and Relieve Inflammation

    PubMed Central

    Xiao, Bo; Zhang, Zhan; Viennois, Emilie; Kang, Yuejun; Zhang, Mingzhen; Han, Moon Kwon; Chen, Jiucun; Merlin, Didier

    2016-01-01

    Combination therapy is an emerging strategy that is under intensive preclinical investigation for the treatment of various diseases. CD98 is highly overexpressed on the surfaces of epithelial cells and macrophages in the colon tissue with ulcerative colitis (UC), which is usually associated with mucosal damage and inflammation. We previously proved that CD98 siRNA (siCD98)-induced down-regulation of CD98 in colitis tissue decreased the severity of UC to a certain extent. In an effort to further improve the therapeutic efficacy, we aim to simultaneously deliver siCD98 in combination with a potent anti-inflammatory agent, curcumin (CUR), using hyaluronic acid (HA)-functionalized polymeric nanoparticles (NPs). The resultant spherical HA-siCD98/CUR-NPs are featured by a desirable particle size (∼246 nm) and slightly negative zeta potential (∼-14 mV). The NPs functionalized with HA are able to guide the co-delivery of drugs to the targeted cells related to UC therapy (colonic epithelial cells and macrophages). Compared to either siCD98- or CUR-based monotherapy, co-delivery of siCD98 and CUR by HA-functionalized NPs can exert combinational effects against UC by protecting the mucosal layer and alleviating inflammation both in vitro and in vivo. This study shows the promising capability of the co-delivered siCD98 and CUR for boosting the conventional monotherapy via this novel nanotherapeutic agent, which offers a structurally simple platform for orally administered delivery of drugs to target cells in UC therapy. PMID:27924161

  11. Folic acid fortification prevents neural tube defects and may also reduce cancer risks.

    PubMed

    Jägerstad, Margaretha

    2012-10-01

    The prevalence of neural tube defect (NTD)-affected pregnancies ranges between 0.4 and 2/1000 pregnancies in EU. NTDs result in severe malformations and sometimes miscarriages. Children born with NTD suffer for the rest of their life of disability and chronic healthcare issues, and many women therefore choose termination of pregnancy if NTD is diagnosed prenatally. Women planning for pregnancy are recommended to eat 400 μg folic acid/d, whereas average figures across Europe indicate intakes of ∼250 μg/d for women of fertile age, a gap that could be bridged by implementation of folic acid fortification. The results of mandatory folic acid fortifications introduced in USA and Canada are a decrease between 25 and 45% of NTD pregnancies.   Evidence-based NTD prophylaxis is now practised in more than 60 countries worldwide. EU countries worry over possible cancer risks, but ignore a wealth of studies reporting decreasing cancer risks with folate intakes at recommended levels. Currently, there are indications of a U-shaped relationship, that is, higher cancer risks at low folate intakes (<150 μg/day) and highly elevated folate intakes (>1 mg/day), respectively. However neither the global World Cancer Research review nor EU's European Food Safety Authority report present data on increased cancer risk at physiological folate intake levels. Therefore, EU should act to implement folic acid fortification as NTD prophylaxis as soon as possible. © 2012 The Author/Acta Paediatrica © 2012 Foundation Acta Paediatrica.

  12. White tea consumption restores sperm quality in prediabetic rats preventing testicular oxidative damage.

    PubMed

    Oliveira, Pedro F; Tomás, Gonçalo D; Dias, Tânia R; Martins, Ana D; Rato, Luís; Alves, Marco G; Silva, Branca M

    2015-10-01

    Prediabetes represents a major risk factor for the development of type 2 diabetes mellitus (T2DM). It encompasses some, but not all, T2DM diagnostic criteria. Prediabetes has been recently associated with altered testicular function and increased testicular oxidative stress (OS). Tea is widely consumed and its anti-hyperglycaemic/antioxidant properties are known. This study aimed to evaluate whether white tea (WTEA) consumption by prediabetic rats could prevent testicular OS, preserving sperm quality. For that purpose, WTEA (presenting a high catechin content) was given to 30-day-old streptozotocin-induced prediabetic rats for 2 months. Testicular antioxidant potential and OS were evaluated, as well as sperm parameters, by standard techniques. WTEA consumption improved glucose tolerance and insulin sensitivity in prediabetic rats. Testicular antioxidant potential was increased by WTEA consumption, restoring protein oxidation and lipid peroxidation, although glutathione content and redox state were not altered. WTEA consumption improved sperm concentration and sperm quality (motility, viability and abnormality) was restored. Overall, WTEA consumption improved reproductive health of male prediabetic rats. Based on the study results, WTEA consumption appears to be a natural, economical and effective strategy to counteract the deleterious effects of prediabetes on male reproductive health, but further studies will be needed before a definitive recommendation is made. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  13. Ligusticum chuanxiong prevents ovariectomy-induced liver and vascular damage in rats.

    PubMed

    Li, Chun-Mei; Wu, Jian-Hong; Yang, Ri-Fu; Dong, Xiao-Li; He, Zhen-Yu; Tian, Xue-Lian; Guo, De-Jian; Wong, Man-Sau; Qiu, Tai-Qiu; Chan, Shun-Wan

    2013-01-01

    Post-menopause, there is an increase in body weight, visceral adiposity, and risk of developing non-alcoholic fatty liver disease (NAFLD), which leads to various cardiovascular diseases (CVDs). Some natural products have proven useful for counteracting the detrimental effects of menopause. The rhizome of Ligusticum chuanxiong Hort. (LC) is a well-known medicinal herb widely used in Chinese communities for the treatment of CVDs. The hepatic and vascular protective effects of LC ethanolic extract under postmenopausal conditions were investigated on ovariectomized (OVX) rats supplemented with or without LC ethanolic extract (600 mg/kg body weight/day, p.o.) or 17β-estradiol (1 mg/kg body weight/day, p.o.) for 12 weeks. The current findings demonstrated that consumption of LC ethanolic extract could reduce the body weight gain, improve serum lipid profile (lowering low density lipoprotein cholesterol but raising high density lipoprotein cholesterol), combat NAFLD, and protect vascular endothelium in the OVX rats. The beneficial effects of LC may be associated with its antioxidant or vasorelaxant compounds, which enhance the levels of hepatic antioxidant enzymes and up-regulate endothelial nitric oxide synthase mRNA expression, respectively. Taken together, LC may be a promising natural supplement for postmenopausal women to prevent NAFLD and CVDs.

  14. Oxidative DNA damage preventive activity and antioxidant potential of Stevia rebaudiana (Bertoni) Bertoni, a natural sweetener.

    PubMed

    Ghanta, Srijani; Banerjee, Anindita; Poddar, Avijit; Chattopadhyay, Sharmila

    2007-12-26

    At 0.1 mg/mL, the ethyl acetate extract (EAE) of the crude 85% methanolic extract (CAE) of Stevia rebaudiana leaves exhibited preventive activity against DNA strand scission by *OH generated in Fenton's reaction on pBluescript II SK (-) DNA. Its efficacy is better than that of quercetin. The radical scavenging capacity of CAE was evaluated by the DPPH test (IC50=47.66+/-1.04 microg/mL). EAE was derived from CAE scavenged DPPH (IC50=9.26+/-0.04 microg/mL), ABTS+ (IC50=3.04+/-0.22 microg/mL) and *OH (IC50=3.08+/-0.19 microg/mL). Additionally, inhibition of lipid peroxidation induced with 25 mM FeSO 4 on rat liver homogenate as a lipid source was noted with CAE (IC50=2.1+/-1.07 mg/mL). The total polyphenols and total flavonoids of EAE were 0.86 mg gallic acid equivalents/mg and 0.83 mg of quercetin equivalents/mg, respectively. Flavonoids, isolated from EAE, were characterized as quercetin-3-O-arabinoside, quercitrin, apigenin, apigenin-4-O-glucoside, luteolin, and kaempferol-3-O-rhamnoside by LC-MS and NMR analysis. These results indicate that Stevia rebaudiana may be useful as a potential source of natural antioxidants.

  15. Aliskiren improves blood pressure control and prevents cardiac damage in high-risk hypertensive subjects.

    PubMed

    Mazza, A; Montemurro, D; Zuin, M; Schiavon, L; Zorzan, S; Chondrogiannis, S; Ferretti, A; Ramazzina, E; Rubello, D

    2013-08-01

    Longitudinal study aimed to evaluate the antihypertensive efficacy, safety and the effect on cardiac damage of Aliskiren, administered to a group of high-risk hypertensive patients with mild impairment of renal function and uncontrolled blood pressure (BP) despite a two-drug antihypertensive treatment. One hundred and six patients (56 men and 50 females) aged 61.9±12.7 years, were assigned to receive Aliskiren 150-300 mg once-daily for 12 months. Clinic BP measurements were taken at every follow-up visit (1st, 6th and 12th month), while biochemical tests, estimated glomerular filtration rate (eGFR), 24-hours ambulatory BP measurements (ABMP) and echocardiography were evaluated at baseline and at the end of follow-up. Analysis of variance for repeated measures compared BP, left ventricular mass index (LVMI) and eGFR values changes. A significant reduction (all P<0.0001) of clinic systolic (-28.6 mmHg) and diastolic (-12.8 mmHg) BP values, mean 24h-systolic (-12.3 mmHg) and 24h-diastolic (-6.5 mmHg), day-time systolic (-11.5 mmHg) and diastolic (-6.4 mmHg), night-time systolic (-11.9 mmHg) and diastolic (-7 mmHg) ABPM values and in the use of antihypertensive drugs was observed (3.0±0.9 vs. 2.0±0.7, p=0.01). LVMI was significantly reduced (130.2±36.1 vs. 115.9±33.4 g/m2, P<0.0001); eGFR was steady (75.3±17.3 vs. 73.1±21.5 ml/min/1.73m2, P>0.05). Putative adverse events caused withdrawal of 7 subjects (6 for gastrointestinal disturbances, 1 for alopecia). Aliskiren was effective in decreasing both clinical and ABPM values and in reducing LVMI in both genders without any influence on eGFR. The treatment resulted safe, even in combination with ACE-inhibitors and angiotensin II receptor blockers. A significant reduction in the use of concomitant antihypertensive drugs was observed.

  16. Prevention of neurological complications using a neural monitoring system with a finger electrode in the extreme lateral interbody fusion approach.

    PubMed

    Narita, Wataru; Takatori, Ryota; Arai, Yuji; Nagae, Masateru; Tonomura, Hitoshi; Hayashida, Tatsuro; Ogura, Taku; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2016-10-01

    OBJECTIVE Extreme lateral interbody fusion (XLIF) is a minimally disruptive surgical procedure that uses a lateral approach. There is, however, concern about the development of neurological complications when this approach is used, particularly at the L4-5 level. The authors performed a prospective study of the effects of a new neural monitoring system using a finger electrode to prevent neurological complications in patients treated with XLIF and compared the results to results obtained in historical controls. METHODS The study group comprised 36 patients (12 male and 24 female) who underwent XLIF for lumbar spine degenerative spondylolisthesis or lumbar spine degenerative scoliosis at L4-5 or a lower level. Using preoperative axial MR images obtained at the mid-height of the disc at the treated level, we calculated the psoas position value (PP%) by dividing the distance from the posterior border of the vertebral disc to the posterior border of the psoas major muscle by the anteroposterior diameter of the vertebral disc. During the operation, the psoas major muscle was dissected using an index finger fitted with a finger electrode, and threshold values of the dilator were recorded before and after dissection. Eighteen cases in which patients had undergone the same procedure for the same indications but without use of the finger electrode served as historical controls. Baseline clinical and demographic characteristics, PP values, clinical results, and neurological complications were compared between the 2 groups. RESULTS The mean PP% values in the control and finger electrode groups were 17.5% and 20.1%, respectively (no significant difference). However, 6 patients in the finger electrode group had a rising psoas sign with PP% values of 50% or higher. The mean threshold value before dissection in the finger electrode group was 13.1 ± 5.9 mA, and this was significantly increased to 19.0 ± 1.5 mA after dissection (p < 0.001). A strong negative correlation was found

  17. Electrical coupling can prevent expression of adult-like properties in an embryonic neural circuit.

    PubMed

    Bem, Tiaza; Le Feuvre, Yves; Simmers, John; Meyrand, Pierre

    2002-01-01

    Electrical coupling is widespread in developing nervous systems and plays a major role in circuit formation and patterning of activity. In most reported cases, such coupling between rhythmogenic neurons tends to synchronize and enhance their oscillatory behavior, thereby producing monophasic rhythmic output. However, in many adult networks, such as those responsible for rhythmic motor behavior, oscillatory neurons are linked by synaptic inhibition to produce rhythmic output with multiple phases. The question then arises whether such networks are still able to generate multiphasic output in the early stage of development when electrical coupling is abundant. A suitable model for addressing this issue is the lobster stomatogastric nervous system (STNS). In the adult animal, the STNS consists of three discrete neural networks that are comprised of oscillatory neurons interconnected by reciprocal inhibition. These networks generate three distinct rhythmic motor patterns with large amplitude neuronal oscillations. By contrast, in the embryo the same neuronal population expresses a single multiphasic rhythm with small-amplitude oscillations. Recent findings have revealed that adult-like network properties are already present early in the embryonic system but are masked by an as yet unknown mechanism. Here we use computer simulation to test whether extensive electrical coupling may be involved in masking adult-like properties in the embryonic STNS. Our basic model consists of three different adult-like STNS networks that are built of relaxation oscillators interconnected by reciprocal synaptic inhibition. Individual model cells generate slow membrane potential oscillations without action potentials. The introduction of widespread electrical coupling between members of these networks dampens oscillation amplitudes and, at moderate coupling strengths, may coordinate neuronal activity into a single rhythm with different phases, which is strongly reminiscent of embryonic STNS

  18. Galectin-1 Prevents Infection and Damage Induced by Trypanosoma cruzi on Cardiac Cells

    PubMed Central

    Benatar, Alejandro F.; García, Gabriela A.; Bua, Jacqeline; Cerliani, Juan P.; Postan, Miriam; Tasso, Laura M.; Scaglione, Jorge; Stupirski, Juan C.; Toscano, Marta A.

    2015-01-01

    Background Chronic Chagas cardiomyopathy caused by Trypanosoma cruzi is the result of a pathologic process starting during the acute phase of parasite infection. Among different factors, the specific recognition of glycan structures by glycan-binding proteins from the parasite or from the mammalian host cells may play a critical role in the evolution of the infection. Methodology and Principal Findings Here we investigated the contribution of galectin–1 (Gal–1), an endogenous glycan-binding protein abundantly expressed in human and mouse heart, to the pathophysiology of T. cruzi infection, particularly in the context of cardiac pathology. We found that exposure of HL–1 cardiac cells to Gal–1 reduced the percentage of infection by two different T. cruzi strains, Tulahuén (TcVI) and Brazil (TcI). In addition, Gal–1 prevented exposure of phosphatidylserine and early events in the apoptotic program by parasite infection on HL–1 cells. These effects were not mediated by direct interaction with the parasite surface, suggesting that Gal–1 may act through binding to host cells. Moreover, we also observed that T. cruzi infection altered the glycophenotype of cardiac cells, reducing binding of exogenous Gal–1 to the cell surface. Consistent with these data, Gal–1 deficient (Lgals1-/-) mice showed increased parasitemia, reduced signs of inflammation in heart and skeletal muscle tissues, and lower survival rates as compared to wild-type (WT) mice in response to intraperitoneal infection with T. cruzi Tulahuén strain. Conclusion/Significance Our results indicate that Gal–1 modulates T. cruzi infection of cardiac cells, highlighting the relevance of galectins and their ligands as regulators of host-parasite interactions. PMID:26451839

  19. Galectin-1 Prevents Infection and Damage Induced by Trypanosoma cruzi on Cardiac Cells.

    PubMed

    Benatar, Alejandro F; García, Gabriela A; Bua, Jacqeline; Cerliani, Juan P; Postan, Miriam; Tasso, Laura M; Scaglione, Jorge; Stupirski, Juan C; Toscano, Marta A; Rabinovich, Gabriel A; Gómez, Karina A

    2015-01-01

    Chronic Chagas cardiomyopathy caused by Trypanosoma cruzi is the result of a pathologic process starting during the acute phase of parasite infection. Among different factors, the specific recognition of glycan structures by glycan-binding proteins from the parasite or from the mammalian host cells may play a critical role in the evolution of the infection. Here we investigated the contribution of galectin-1 (Gal-1), an endogenous glycan-binding protein abundantly expressed in human and mouse heart, to the pathophysiology of T. cruzi infection, particularly in the context of cardiac pathology. We found that exposure of HL-1 cardiac cells to Gal-1 reduced the percentage of infection by two different T. cruzi strains, Tulahuén (TcVI) and Brazil (TcI). In addition, Gal-1 prevented exposure of phosphatidylserine and early events in the apoptotic program by parasite infection on HL-1 cells. These effects were not mediated by direct interaction with the parasite surface, suggesting that Gal-1 may act through binding to host cells. Moreover, we also observed that T. cruzi infection altered the glycophenotype of cardiac cells, reducing binding of exogenous Gal-1 to the cell surface. Consistent with these data, Gal-1 deficient (Lgals1-/-) mice showed increased parasitemia, reduced signs of inflammation in heart and skeletal muscle tissues, and lower survival rates as compared to wild-type (WT) mice in response to intraperitoneal infection with T. cruzi Tulahuén strain. Our results indicate that Gal-1 modulates T. cruzi infection of cardiac cells, highlighting the relevance of galectins and their ligands as regulators of host-parasite interactions.

  20. Prevention of chemotherapy-induced ovarian damage: possible roles for hormonal and non-hormonal attenuating agents.

    PubMed

    Roness, Hadassa; Kalich-Philosoph, Lital; Meirow, Dror

    2014-01-01

    Current options for female fertility preservation in the face of cytotoxic treatments include embryo, oocyte and ovarian tissue cryopreservation. However these methods are limited by the patient age, status or available timeframe before treatment and they necessitate invasive procedures. Agents which can prevent or attenuate the ovotoxic effects of treatment would provide significant advantages over the existing fertility preservation techniques, and would allow patients to retain their natural fertility without the necessity for costly, invasive and risky procedures. Recent studies have contributed to our understanding of the mechanisms involved in cytotoxicity-induced ovarian follicle loss and highlight a number of agents that may be able to prevent or reduce this loss. This paper reviews the relevant literature (research articles published in English up to December 2013) on the mechanisms of cytotoxic-induced ovarian damage and the implications for fertility preservation. We present a comprehensive discussion of the potential agents that have been shown to preserve the ovarian follicle reserve in the face of cytotoxic treatments, including an analysis of their respective advantages and risks, and mechanisms of action. Multiple molecular pathways are involved in the cellular response to cytotoxic treatments, and specific cellular reactions depend on variables including the drug class and dose, cell type, and cell stage. A number of agents acting on different elements of these pathways have demonstrated potential for preventing or reducing ovarian follicle loss, although in most cases, the studies are still very preliminary. Advances in our understanding of the mechanisms and pathways involved in both cytotoxic ovarian damage and follicle growth and development have opened up new directions for fertility preservation. In order to bring these agents from the lab to the clinic, it will be vital to accurately evaluate the efficacy of each agent and additionally to

  1. Contralaterally transplanted human embryonic stem cell-derived neural precursor cells (ENStem-A) migrate and improve brain functions in stroke-damaged rats.

    PubMed

    Chang, Da-Jeong; Oh, Seung-Hun; Lee, Nayeon; Choi, Chunggab; Jeon, Iksoo; Kim, Hyun Sook; Shin, Dong Ah; Lee, Seo Eun; Kim, Daehong; Song, Jihwan

    2013-11-15

    The transplantation of neural precursor cells (NPCs) is known to be a promising approach to ameliorating behavioral deficits after stroke in a rodent model of middle cerebral artery occlusion (MCAo). Previous studies have shown that transplanted NPCs migrate toward the infarct region, survive and differentiate into mature neurons to some extent. However, the spatiotemporal dynamics of NPC migration following transplantation into stroke animals have yet to be elucidated. In this study, we investigated the fates of human embryonic stem cell (hESC)-derived NPCs (ENStem-A) for 8 weeks following transplantation into the side contralateral to the infarct region using 7.0T animal magnetic resonance imaging (MRI). T2- and T2*-weighted MRI analyses indicated that the migrating cells were clearly detectable at the infarct boundary zone by 1 week, and the intensity of the MRI signals robustly increased within 4 weeks after transplantation. Afterwards, the signals were slightly increased or unchanged. At 8 weeks, we performed Prussian blue staining and immunohistochemical staining using human-specific markers, and found that high percentages of transplanted cells migrated to the infarct boundary. Most of these cells were CXCR4-positive. We also observed that the migrating cells expressed markers for various stages of neural differentiation, including Nestin, Tuj1, NeuN, TH, DARPP-32 and SV38, indicating that the transplanted cells may partially contribute to the reconstruction of the damaged neural tissues after stroke. Interestingly, we found that the extent of gliosis (glial fibrillary acidic protein-positive cells) and apoptosis (TUNEL-positive cells) were significantly decreased in the cell-transplanted group, suggesting that hESC-NPCs have a positive role in reducing glia scar formation and cell death after stroke. No tumors formed in our study. We also performed various behavioral tests, including rotarod, stepping and modified neurological severity score tests, and

  2. Cholesterol-loaded cyclodextrins prevent cryocapacitation damages in buffalo (Bubalus bubalis) cryopreserved sperm.

    PubMed

    Longobardi, Valentina; Albero, Giuseppe; De Canditiis, Carolina; Salzano, Angela; Natale, Antonio; Balestrieri, Anna; Neglia, Gianluca; Campanile, Giuseppe; Gasparrini, Bianca

    2017-02-01

    control, 1.5- and 3-mg/mL CLC groups (59.7%, 65.6%, and 56.9%, respectively). In conclusion, CLC treatment of buffalo sperm strongly decreases sperm cryocapacitation damages, without affecting the in vivo fertilizing capability. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries.

    PubMed

    Karimi, Alireza; Rahmati, Seyed Mohammadali; Sera, Toshihiro; Kudo, Susumu; Navidbakhsh, Mahdi

    2017-02-02

    It has been indicated that the content and structure of the elastin and collagen of the arterial wall can subject to a significant alteration due to the atherosclerosis. Consequently, a high tissue stiffness, stress, and even damage/rupture are triggered in the arterial wall. Although many studies so far have been conducted to quantify the mechanical properties of the coronary arteries, none of them consider the role of collagen damage of the healthy and atherosclerotic human coronary arterial walls. Recently, a fiber family-based constitutive equation was proposed to capture the anisotropic mechanical response of the healthy and atherosclerotic human coronary arteries via both the histostructural and uniaxial data. In this study, experimental mechanical measurements along with histological data of the healthy and atherosclerotic arterial walls were employed to determine the constitutive damage parameters and remodeling of the collagen fibers. To do this, the preconditioned arterial tissues were excised from human cadavers within 5-h postmortem, and the mean angle of their collagen fibers was precisely determined. Thereafter, a group of quasistatic axial and circumferential loadings were applied to the arterial walls, and the constrained nonlinear minimization method was employed to identify the arterial parameters according to the axial and circumferential extension data. The remodeling of the collagen fibers during the tensile test was also predicted via Artificial Neural Networks algorithm. Regardless of loading direction, the results presented a noteworthy load-bearing capability and stiffness of the atherosclerotic arteries compared to the healthy ones (P < 0.005). Theoretical fiber angles were found to be consistent with the experimental histological data with less than 2 and 5° difference for the healthy and atherosclerotic arterial walls, respectively. The pseudoelastic damage model data were also compared with that of the experimental data, and

  4. Awareness and intake of folic acid for the prevention of neural tube defects among Lebanese women of childbearing age.

    PubMed

    Nasr Hage, Claudine; Jalloul, Maya; Sabbah, Mohamad; Adib, Salim M

    2012-01-01

    Since the early 1990s, international recommendations have promoted folic acid supplementation during the periconception period as an effective way of preventing neural tube defects (NTDs). However, the adoption of this recommendation remains insufficient. To assess the awareness and actual intake of folic acid among married Lebanese women aged 18-45 years, a cross-sectional study was conducted among 600 women selected from all five administrative districts in Lebanon, using a multistage cluster sampling procedure. An anonymous questionnaire was completed which covered measures of knowledge and use of folate supplements, as well as demographic, socioeconomic and obstetrical factors. Sixty percent of surveyed women (60%; n = 360) had heard about folic acid. Doctors were the most frequent source of information (61.1%) but only 24.7% of women have been told of the correct period during which folic acid supplementation was useful. Overall, only 6.2% had taken folic acid tablets during the adequate period. Younger age, higher education level and stability/sufficiency of income appeared to be significant predictors of awareness among Lebanese women. Actual folic acid intake was significantly associated with younger age, higher number of pregnancies, planning the last pregnancy and having had that last one after 1990. In Lebanon, the level of folic acid awareness and adequate intake remain relatively low. Several approaches should be used to promote folic acid intake including awareness campaigns, and routine counseling by primary health care physicians on folic acid during preconception visits.

  5. [Attitudes of pregnant Japanese women and folic acid intake for the prevention of neural tube defects: a nationwide Internet survey].

    PubMed

    Sato, Yoko; Nakanishi, Tomoko; Chiba, Tsuyoshi; Umegaki, Keizo

    2014-01-01

    Folic acid intake is recommended for pregnant women because it significantly reduces the risk of neural tube defects (NTD) in the fetus. However, the risk of NTD remains medium in Japan. In this study, the attitudes of pregnant Japanese women and factors related to folic acid intake for the prevention of NTD were evaluated using a nationwide survey. An Internet-based questionnaire was conducted on 2,367 pregnant Japanese women who were registrants of a Japanese social research company in January 2012; 1,236 of these women responded. In the questionnaires, the knowledge regarding the folate intake (i.e., name of folic acid, the risk of NTD, recommended doses, and timing), actual intake of folic acid, demographic factors (i.e., age, geographical area, gestational age, and birth order), and intake of dietary supplements were surveyed. Eighty-five percent of respondents consumed folate, which was mostly obtained through dietary folic acid supplements during the first month of pregnancy or after. Factors associated with loss of folic acid intake until 3 months of pregnancy included lack of knowledge, failure to consume dietary supplements, younger age, and multigravida. Many pregnant women in Japan consumed folic acid. However, most of them started supplementation after pregnancy recognition, which is too late to reduce the risk of NTD. Alternative strategies to increase the efficacy of folic acid intake, such as recommending folic acid-enriched foods, promoting folic acid fortification efforts, and providing access to practical information, are necessary.

  6. Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress.

    PubMed

    Mahmoud, Ayman M; Wilkinson, Fiona L; McCarthy, Eoghan M; Moreno-Martinez, Daniel; Langford-Smith, Alexander; Romero, Miguel; Duarte, Juan; Alexander, M Yvonne

    2017-10-01

    Endothelial microparticles (EMPs) are endothelium-derived submicron vesicles that are released in response to diverse stimuli and are elevated in cardiovascular disease, which is correlated with risk factors. This study investigates the effect of EMPs on endothelial cell function and dysfunction in a model of free fatty acid (FFA) palmitate-induced oxidative stress. EMPs were generated from TNF-α-stimulated HUVECs and quantified by using flow cytometry. HUVECs were treated with and without palmitate in the presence or absence of EMPs. EMPs were found to carry functional eNOS and to protect against oxidative stress by positively regulating eNOS/Akt signaling, which restored NO production, increased superoxide dismutase and catalase, and suppressed NADPH oxidase and reactive oxygen species (ROS) production, with the involvement of NF-erythroid 2-related factor 2 and heme oxygenase-1. Conversely, under normal conditions, EMPs reduced NO release and increased ROS and redox-sensitive marker expression. In addition, functional assays using EMP-treated mouse aortic rings that were performed under homeostatic conditions demonstrated a decline in endothelium-dependent vasodilatation, but restored the functional response under lipid-induced oxidative stress. These data indicate that EMPs harbor functional eNOS and potentially play a role in the feedback loop of damage and repair during homeostasis, but are also effective in protecting against FFA-induced oxidative stress; thus, EMP function is reflected by the microenvironment.-Mahmoud, A. M., Wilkinson, F. L., McCarthy, E. M., Moreno-Martinez, D., Langford-Smith, A., Romero, M., Duarte, J., Alexander, M. Y. Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress. © FASEB.

  7. Neuroprotective effect of buyang huanwu decoction on rat ischemic/reperfusion brain damage by promoting migration of neural precursor cells.

    PubMed

    Kong, Xiangying; Su, Xiaohui; Zhu, Jia; Wang, Jianzhu; Wan, Hongye; Zhong, Micun; Li, Li; Lin, Na

    2014-06-01

    Buyang Huanwu Decoction (BYHWD) is a classic formula widely used for treating stroke-induced disability, the highest morbidity of neurological disorders in China. However, the mechanism of its neuroprotection has not been fully clarified. Previous reports indicated that BYHWD may promote growth and differentiation of neural precursor cells (NPCs). The present study focused on the effects of BYHWD on migration of NPCs in rats with middle cerebral artery occlusion (MCAO). Rats were treated with different doses of BYHWD (12 and 24 grams/kg) from day 1 to day 21 after model building. BYHWD could increase the survival rate and decrease neurological scores and infarct volume as compared with the vehicle-treated MCAO rats. Moreover, BYHWD treatment significantly increased 5-bromo-2-deoxyuridine (BrdU)-positive cells in the subventricular zone (SVZ), subgranular zone (SGZ), and corpus striatum (CS) of the infarct brain. Interestingly, BYHWD could markedly enhance BrdU(+)/doublecortin(+) cells not only in the SVZ and SGZ but also in CS, by up-regulating the protein expression of migration activators, including stromal cell derived factor-1, CXC chemokine receptor 4, vascular endothelial growth factor, Reelin, and brain-derived neurotrophic factor in the ipsilateral infarct area after MCAO. In addition, BYHWD treatment was able to promote the neuronal differentiation, which was closely related to the migratory process of NPCs in MCAO rats. These findings offer evidence for the first time that BYHWD may exert its neuroprotective effects partially by promotion of NPCs migration to ischemic brain areas.

  8. Electroshocks delay seizures and subsequent epileptogenesis but do not prevent neuronal damage in the lithium-pilocarpine model of epilepsy.

    PubMed

    André, V; Ferrandon, A; Marescaux, C; Nehlig, A

    2000-11-01

    Electroconvulsive therapy, which is used to treat refractory major depression in humans increases seizure threshold and decreases seizure duration. Moreover, the expression of brain derived neurotrophic factor induced by electroshocks (ECS) might protect hippocampal cells from death in patients suffering from depression. As temporal lobe epilepsy is linked to neuronal damage in the hippocampus, we tested the effect of repeated ECS on subsequent status epilepticus (SE) induced by lithium-pilocarpine and leading to cell death and temporal epilepsy in the rat. Eleven maximal ECS were applied via ear-clips to adult rats. The last one was applied 2 days before the induction of SE by lithium-pilocarpine. The rats were electroencephalographically recorded to study the SE characteristics. The rats treated with ECS before pilocarpine (ECS-pilo) developed partial limbic (score 2) and propagated seizures (score 5) with a longer latency than the rats that underwent SE alone (sham-pilo). Despite this delay in the initiation and propagation of the seizures, the same number of ECS- and sham-pilo rats developed SE with a similar characteristic pattern. The expression of c-Fos protein was down-regulated by repeated ECS in the amygdala and the cortex. In ECS-pilo rats, c-Fos expression was decreased in the piriform and entorhinal cortex and increased in the hilus of the dentate gyrus. Neuronal damage was identical in the forebrain areas of both groups, while it was worsened by ECS treatment in the substantia nigra pars reticulata, entorhinal and perirhinal cortices compared to sham-pilo rats. Finally, while 11 out of the 12 sham-pilo rats developed spontaneous recurrent seizures after a silent period of 40+/-27 days, only two out of the 10 ECS-pilo rats became epileptic, but after a prolonged latency of 106 and 151 days. One ECS-pilo rat developed electrographic infraclinical seizures and seven did not exhibit any seizures. Thus, the extensive neuronal damage occurring in the

  9. The synthetic cannabinoid HU-210 attenuates neural damage in diabetic mice and hyperglycemic pheochromocytoma PC12 cells.

    PubMed

    Dagon, Yossi; Avraham, Yosefa; Link, Gabriela; Zolotarev, Olga; Mechoulam, Raphael; Berry, Elliot M

    2007-08-01

    Diabetic neuropathy (DN) is a common complication of diabetes mellitus resulting in cognitive dysfunction and synaptic plasticity impairment. Hyperglycemia plays a critical role in the development and progression of DN, through a number of mechanisms including increased oxidative stress. Cannabinoids are a diverse family of compounds which can act as antioxidative agents and exhibit neuroprotective properties. We investigated the effect of the synthetic cannabinoid HU-210 on brain function of streptozotocin (STZ)-induced diabetic mice. These animals exhibit hyperglycemia, increased cerebral oxidative stress and impaired brain function. HU-210, through a receptor independent pathway, alleviates the oxidative damage and cognitive impairment without affecting glycemic control. To study the neuroprotective mechanism(s) involved, we cultured PC12 cells under hyperglycemic conditions. Hyperglycemia enhanced oxidative stress and cellular injuries were all counteracted by HU-210-in a dose dependent manner. These results suggest cannabinoids might have a therapeutic role in the management of the neurological complications of diabetes.

  10. The Extent of Tissue Damage in the Epidural Space by Ho / YAG Laser During Epiduroscopic Laser Neural Decompression.

    PubMed

    Jo, Daehyun; Lee, Dong Joo

    2016-01-01

    Lasers have recently become very useful for epiduroscopy. As the use of lasers increases, the potential for unwanted complications with direct application of laser energy to nerve tissue has also increased. Even using the lowest laser power to test for nerve stimulation, there are still risks of laser ablation. However, there are no studies investigating tissue damage from laser procedures in the epidural space. This is a study on the risks of Ho/YAG laser usage during epiduroscopy. Observatory cadaver study. Department of anatomy and clinical research institute at the University Hospital. We used 5 cadavers for this study. After removing the dura and nerve root from the spinal column, laser energy from a Ho/YAG laser was applied directly to the dura and nerve root as well as in the virtual epidural space, which mimicked the conditions of epiduroscopy with the dura folded. Tissue destruction at all laser ablation sites was observed with the naked eye as well as with a microscope. Specimens were collected from each site of laser exposure, fixed in 10% neutral formalin, and dyed with H/E staining. Tissue destruction was observed in all laser ablation sites, regardless of the length of exposure and the power of the laser beam. A cadaver is not exactly the same as a living human because dura characteristics change and tissue damage can be influenced by dura thickness according to the spinal level. Even with low power and short duration, a laser can destroy tissue if the laser beam makes direct contact with the tissue.

  11. Evaluation of the protective effect of Ilex paraguariensis and Camellia sinensis extracts on the prevention of oxidative damage caused by ultraviolet radiation.

    PubMed

    Barg, Marlon; Rezin, Gislaine T; Leffa, Daniela D; Balbinot, Fernanda; Gomes, Lara M; Carvalho-Silva, Milena; Vuolo, Francieli; Petronilho, Fabricia; Dal-Pizzol, Felipe; Streck, Emilio L; Andrade, Vanessa M

    2014-01-01

    We evaluated the effects green and mate teas on oxidative and DNA damages in rats exposed to ultraviolet radiation. Were utilized 70 adult male Wistar rats that received daily oral or topic green or mate tea treatment during exposed to radiation by seven days. After, animals were killed by decapitation. Thiobarbituric acid-reactive species levels, protein oxidative damage were evaluated in skin and DNA damage in blood. Our results show that the rats exposed to ultraviolet radiation presented DNA damage in blood and increased protein carbonylation and lipid peroxidation in skin. Oral and topic treatment with green tea and mate tea prevented lipid peroxidation, both treatments with mate tea also prevented DNA damage. However, only topic treatment with green tea and mate tea prevented increases in protein carbonylation. Our findings contribute to elucidate the beneficial effects of green tea and mate tea, here in demonstrated by the antioxidant and antigenotoxic properties presented by these teas. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Mutant SOD1 microglia-generated nitroxidative stress promotes toxicity to human fetal neural stem cell-derived motor neurons through direct damage and noxious interactions with astrocytes

    PubMed Central

    Thonhoff, Jason R; Gao, Junling; Dunn, Tiffany J; Ojeda, Luis; Wu, Ping

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease. Human neural stem cells (hNSCs) may have the potential to replace lost motor neurons. The therapeutic efficacy of stem cell therapy depends greatly on the survival of grafted stem cell-derived motor neurons in the microenvironment of the spinal cord in ALS. After transplantation of hNSCs into the spinal cords of transgenic ALS rats, morphological analysis reveals that grafted hNSCs differentiate into motor neurons. However, hNSCs degenerate and show signs of nitroxidative damage at the disease end-stage. Using an in vitro coculture system, we systematically assess interactions between microglia and astroglia derived from both nontransgenic rats and transgenic rats expressing human mutant SOD1G93A before and after symptomatic disease onset, and determine the effects of such microglia-astroglia interactions on the survival of hNSC-derived motor neurons. We found that ALS microglia, specifically isolated after symptomatic disease onset, are directly toxic to hNSC-derived motor neurons. Furthermore, nontransgenic astrocytes not only lose their protective role in hNSC-derived motor neuron survival in vitro, but also exhibit toxic features when cocultured with mutant SOD1G93A microglia. Using inhibitors of inducible nitric oxide synthase and NADPH oxidase, we show that microglia-generated nitric oxide and superoxide partially contribute to motor neuron loss and astrocyte dysfunction in this coculture paradigm. In summary, reactive oxygen/nitrogen species released from overactivated microglia in ALS directly eliminate human neural stem cell-derived motor neurons and reduce the neuroprotective capacities of astrocytes PMID:23671793

  13. α-Lipoic acid prevents the intestinal epithelial monolayer damage under heat stress conditions: model experiments in Caco-2 cells.

    PubMed

    Varasteh, Soheil; Fink-Gremmels, Johanna; Garssen, Johan; Braber, Saskia

    2017-03-27

    Under conditions of high ambient temperatures and/or strenuous exercise, humans and animals experience considerable heat stress (HS) leading among others to intestinal epithelial damage through induction of cellular oxidative stress. The aim of this study was to characterize the effects of α-Lipoic Acid (ALA) on HS-induced intestinal epithelial injury using an in vitro Caco-2 cell model. A confluent monolayer of Caco-2 cells was pre-incubated with ALA (24 h) prior to control (37 °C) or HS conditions (42 °C) for 6 or 24 h and the expression of heat shock protein 70 (HSP70), heat shock factor-1 (HSF1), and the antioxidant Nrf2 were investigated. Intestinal integrity was determined by measuring transepithelial resistance, paracellular permeability, junctional complex reassembly, and E-cadherin expression and localization. Furthermore, cell proliferation was measured in an epithelial wound healing assay and the expression of the inflammatory markers cyclooxygenase-2 (COX-2) and transforming growth Factor-β (TGF-β) was evaluated. ALA pretreatment increased the HSP70 mRNA and protein expression under HS conditions, but did not significantly modulate the HS-induced activation of HSF1. The HS-induced increase in Nrf2 gene expression as well as the Nrf2 nuclear translocation was impeded by ALA. Moreover, ALA prevented the HS-induced impairment of intestinal integrity. Cell proliferation under HS conditions was improved by ALA supplementation as demonstrated in an epithelial wound healing assay and ALA was able to affect the HS-induced inflammatory response by decreasing the COX-2 and TGF-β mRNA expression. ALA supplementation could prevent the disruption of intestinal epithelial integrity by enhancing epithelial cell proliferation, and reducing the inflammatory response under HS conditions in an in vitro Caco-2 cell model.

  14. Induction of an antiinflammatory effect and prevention of cartilage damage in rat knee osteoarthritis by CF101 treatment.

    PubMed

    Bar-Yehuda, S; Rath-Wolfson, L; Del Valle, L; Ochaion, A; Cohen, S; Patoka, R; Zozulya, G; Barer, F; Atar, E; Piña-Oviedo, S; Perez-Liz, G; Castel, D; Fishman, P

    2009-10-01

    Studies have suggested that rheumatoid arthritis (RA) and osteoarthritis (OA) share common characteristics. The highly selective A(3) adenosine receptor agonist CF101 was recently defined as a potent antiinflammatory agent for the treatment of RA. The purpose of this study was to examine the effects of CF101 on the clinical and pathologic manifestations of OA in an experimental animal model. OA was induced in rats by monosodium iodoacetate, and upon disease onset, oral treatment with CF101 (100 microg/kg given twice daily) was initiated. The A(3) adenosine receptor antagonist MRS1220 (100 microg/kg given twice daily) was administered orally, 30 minutes before CF101 treatment. The OA clinical score was monitored by knee diameter measurements and by radiographic analyses. Histologic analyses were performed following staining with hematoxylin and eosin, Safranin O-fast green, or toluidine blue, and histologic changes were scored according to a modified Mankin system. Signaling proteins were assayed by Western blotting; apoptosis was detected via immunohistochemistry and TUNEL analyses. CF101 induced a marked decrease in knee diameter and improved the changes noted on radiographs. Administration of MRS1220 counteracted the effects of CF101. CF101 prevented cartilage damage, osteoclast/osteophyte formation, and bone destruction. In addition, CF101 markedly reduced pannus formation and lymphocyte infiltration. Mechanistically, CF101 induced deregulation of the NF-kappaB signaling pathway, resulting in down-regulation of tumor necrosis factor alpha. Consequently, CF101 induced apoptosis of inflammatory cells that had infiltrated the knee joints; however, it prevented apoptosis of chondrocytes. CF101 deregulated the NF-kappaB signaling pathway involved in the pathogenesis of OA. CF101 induced apoptosis of inflammatory cells and acted as a cartilage protective agent, which suggests that it would be a suitable candidate drug for the treatment of OA.

  15. A novel eye drop of alpha tocopherol to prevent ocular oxidant damage: improve the stability and ocular efficacy.

    PubMed

    Xin, Jiayu; Tang, Jingling; Bu, Meng; Sun, Yanhui; Wang, Xinyu; Wu, Linhua; Liu, Hongzhuo

    2016-01-01

    The aim of this study was to design novel mixed micelles as an ophthalmic delivery system for alpha-tocopherol (TOC) to prevent its degradation and improve ocular efficacy. The nonionic polymers, Polyoxyl 15 Hydroxystearate (Solutol® HS15) and Pluronic® F127, were discovered to be the most effective agents for retaining the activity and solubilization of TOC, respectively. Prepared by a thin-film hydration method, HS15/Pluronic® F127 yielded good encapsulation percentages of TOC, with a 27.7% drug loading efficiency. Incorporation of cetalkonium chloride (CKC) into HS15/Pluronic® F127 mixed micelles made the zeta potential of the micelles +17 mV, potentially prolonging the residence time of formulations on ocular surfaces. The optimized micelle preparation remained stable when diluted in a synthetic tear solution. It is known that the antioxidant ability of TOC in typical formulations reduces to around 85% of its initial value after 1 month when stored at 4 or 25 °C under an air atmosphere, which limits ophthalmic applications to less than 1 month. However, encapsulated TOC in investigated micelles remained stable for at least 6 months when sealed with N2. Finally, the cationic micelles were well tolerated after multiple administrations in rabbits, and they improved ocular accumulation of TOC. Taken together, these data suggest that the optimized micelle preparations described in this study may be suitable drug carriers for the treatment of ocular oxidant damage.

  16. Gene transfection mediated by polyethyleneimine-polyethylene glycol nanocarrier prevents cisplatin-induced spiral ganglion cell damage

    PubMed Central

    Chen, Guan-gui; Mao, Min; Qiu, Li-zi; Liu, Qi-ming

    2015-01-01

    Polyethyleneimine-polyethylene glycol (PEI-PEG), a novel nanocarrier, has been used for transfection and gene therapy in a variety of cells. In our previous study, we successfully carried out PEI-PEG-mediated gene transfer in spiral ganglion cells. It remains unclear whether PEI-PEG could be used for gene therapy with X-linked inhibitor of apoptosis protein (XIAP) in the inner ear. In the present study, we performed PEI-PEG-mediated XIAP gene transfection in the cochlea of Sprague-Dawley rats, via scala tympani fenestration, before daily cisplatin injections. Auditory brainstem reflex tests demonstrated the protective effects of XIAP gene therapy on auditory function. Immunohistochemical staining revealed XIAP protein expression in the cytoplasm of cells in the spiral ganglion, the organ of Corti and the stria vascularis. Reverse transcription-PCR detected high levels of XIAP mRNA expression in the cochlea. The present findings suggest that PEI-PEG nanocarrier-mediated XIAP gene transfection results in XIAP expression in the cochlea, prevents damage to cochlear spiral ganglion cells, and protects hearing. PMID:25878591

  17. K-134, a Phosphodiesterase 3 Inhibitor, Prevents Brain Damage by Inhibiting Thrombus Formation in a Rat Cerebral Infarction Model

    PubMed Central

    Yoshida, Hideo; Ashikawa, Yuka; Itoh, Shinsuke; Nakagawa, Takashi; Asanuma, Akimune; Tanabe, Sohei; Inoue, Yoshihiro; Hidaka, Hiroyoshi

    2012-01-01

    Background K-134 is a more potent antiplatelet drug with a selective inhibitory effect on phosphodiesterase 3 (PDE3) compared with its analogue, cilostazol. Objectives This study was performed to compare the ameliorating effects of K-134 and cilostazol on brain damage in an experimental photothrombotic cerebral infarction model. Methods and Results We investigated the effects of oral preadministration of PDE3 inhibitors in a rat stroke model established by photothrombotic middle cerebral artery (MCA) occlusion. K-134 significantly prolonged MCA occlusion time at doses >10 mg/kg, and reduced cerebral infarct size at 30 mg/kg in the stroke model (n = 12, 87.5±5.6 vs. 126.8±7.5 mm3, P<0.01), indicating its potent antithrombotic effect. On the other hand, the effects of cilostazol on MCA occlusion time and cerebral infarct size are relatively weak even at the high dosage of 300 mg/kg. Furthermore, K-134 blocked rat platelet aggregation more potently than cilostazol in vitro. Also in an arteriovenous shunt thrombosis model, K-134 showed an antithrombotic effect greater than cilostazol. Conclusions These findings suggest that K-134, which has strong antithrombotic activity, is a promising drug for prevention of cerebral infarction associated with platelet hyperaggregability. PMID:23110051

  18. K-134, a phosphodiesterase 3 inhibitor, prevents brain damage by inhibiting thrombus formation in a rat cerebral infarction model.

    PubMed

    Yoshida, Hideo; Ashikawa, Yuka; Itoh, Shinsuke; Nakagawa, Takashi; Asanuma, Akimune; Tanabe, Sohei; Inoue, Yoshihiro; Hidaka, Hiroyoshi

    2012-01-01

    K-134 is a more potent antiplatelet drug with a selective inhibitory effect on phosphodiesterase 3 (PDE3) compared with its analogue, cilostazol. This study was performed to compare the ameliorating effects of K-134 and cilostazol on brain damage in an experimental photothrombotic cerebral infarction model. We investigated the effects of oral preadministration of PDE3 inhibitors in a rat stroke model established by photothrombotic middle cerebral artery (MCA) occlusion. K-134 significantly prolonged MCA occlusion time at doses >10 mg/kg, and reduced cerebral infarct size at 30 mg/kg in the stroke model (n = 12, 87.5±5.6 vs. 126.8±7.5 mm(3), P<0.01), indicating its potent antithrombotic effect. On the other hand, the effects of cilostazol on MCA occlusion time and cerebral infarct size are relatively weak even at the high dosage of 300 mg/kg. Furthermore, K-134 blocked rat platelet aggregation more potently than cilostazol in vitro. Also in an arteriovenous shunt thrombosis model, K-134 showed an antithrombotic effect greater than cilostazol. These findings suggest that K-134, which has strong antithrombotic activity, is a promising drug for prevention of cerebral infarction associated with platelet hyperaggregability.

  19. Ammonia-induced oxidative damage in neurons is prevented by resveratrol and lipoic acid with participation of heme oxygenase 1.

    PubMed

    Bobermin, Larissa Daniele; Wartchow, Krista Minéia; Flores, Marianne Pires; Leite, Marina Concli; Quincozes-Santos, André; Gonçalves, Carlos-Alberto

    2015-07-01

    Ammonia is a metabolite that, at high concentrations, is implicated in neurological disorders, such as hepatic encephalopathy (HE), which is associated with acute or chronic liver failure. Astrocytes are considered the primary target of ammonia toxicity in the central nervous system (CNS) because glutamine synthetase (GS), responsible for ammonia metabolism in CNS, is an astrocytic enzyme. Thus, neuronal dysfunction has been associated as secondary to astrocytic impairment. However, we demonstrated that ammonia can induce direct effects on neuronal cells. The cell viability was decreased by ammonia in SH-SY5Y cells and cerebellar granule neurons. In addition, ammonia induced increased reactive oxygen species (ROS) production and decreased GSH intracellular content, the main antioxidant in CNS. As ammonia neurotoxicity is strongly associated with oxidative stress, we also investigated the potential neuroprotective roles of the antioxidants, resveratrol (RSV) and lipoic acid (LA), against ammonia toxicity in cerebellar granule neurons. RSV and LA were able to prevent the oxidative damage induced by ammonia, maintaining the levels of ROS production and GSH close to basal values. Both antioxidants also decreased ROS production and increased GSH content under basal conditions (in the absence of ammonia). Moreover, we showed that heme oxygenase 1 (HO1), a protein associated with protection against stress conditions, is involved in the beneficial effects of RSV and LA in cerebellar granule neurons. Thus, this study reinforces the neuroprotective effects of RSV and LA. Although more studies in vivo are required, RSV and LA could represent interesting therapeutic strategies for the management of HE.

  20. Curcumin, a component of turmeric, efficiently prevents diclofenac sodium-induced gastroenteropathic damage in rats: A step towards translational medicine.

    PubMed

    Singh, Devendra Pratap; Borse, Swapnil P; Rana, Rita; Nivsarkar, Manish

    2017-10-01

    There is a need to find/discover novel leads to treat complex and/or multi-factorial disease(s). Curcumin (CUR) is one of the promising lead molecules which need its further evaluation against NSAID-induced gastroenteropathy. Hence, the aim of the present study was to explore the pharmaco-mechanistic efficacy of CUR against NSAID-induced gastroenteropathy. Rats were treated twice daily with CUR (25, 50 and 100 mg kg(-1) peroral) or vehicle for 10 days. In some experiments, diclofenac sodium (DIC; 9 mg kg(-1)) was administered orally twice daily for the final 5 days of CUR/vehicle administration. After the last dose on 9th day, rats were fasted. 12 h after the last dose on 10th day, rats were euthanized and their GI tracts were assessed for haemorrhagic lesions, lipid peroxidation, intestinal permeability and GI luminal pH alterations along with haemato-biochemical estimations. The macroscopic, biochemical, haematological and histological evidences suggested that co-administration of CUR resulted in dose dependent attenuation of the NSAID-induced gastroenteropathic damage and the mechanisms may be related to its ability to prevent the NSAID-induced alterations in the GI luminal pH, lipid peroxidation/oxidative stress, GI blood loss and intestinal permeability alteration. Based on these pharmaco-mechanistic results we propose it as a promising lead to treat NSAID-gastroenteropahty. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. High-Throughput Screening of Therapeutic Neural Stimulation Targets: Toward Principles of Preventing and Treating Post-Traumatic Stress Disorder

    DTIC Science & Technology

    2009-09-01

    including cortical areas and the amygdala. 15. SUBJECT TERMS Fear conditioning, optical neural control, channelrhodopsin, optogenetics , neuroscience... Optogenetic control of attention through prefrontal synchrony, 9/30/09-9/29/11. Employment/training supported: The grant supported the work of one...of such optical control on cortical circuits. This work demonstrates the feasibility of applying optogenetic methods to primate neural circuits, and

  2. Role of CCR5 and its ligands in the control of vascular inflammation and leukocyte recruitment required for acute excitotoxic seizure induction and neural damage

    PubMed Central

    Louboutin, Jean-Pierre; Chekmasova, Alena; Marusich, Elena; Agrawal, Lokesh; Strayer, David S.

    2011-01-01

    Chemokines may play a role in leukocyte migration across the blood-brain barrier (BBB) during neuroinflammation and other neuropathological processes, such as epilepsy. We investigated the role of the chemokine receptor CCR5 in seizures. We used a rat model based on intraperitoneal kainic acid (KA) administration. Four months before KA injection, adult rats were given femoral intramarrow inoculations of SV (RNAiR5-RevM10.AU1), which carries an interfering RNA (RNAi) against CCR5, plus a marker epitope (AU1), or its monofunctional RNAi-carrying homologue, SV(RNAiR5). This treatment lowered expression of CCR5 in circulating cells. In control rats, seizures induced elevated expression of CCR5 ligands MIP-1α and RANTES in the microvasculature, increased BBB leakage and CCR5+ cells, as well as neuronal loss, inflammation, and gliosis in the hippocampi. Animals given either the bifunctional or the monofunctional vector were largely protected from KA-induced seizures, neuroinflammation, BBB damage, and neuron loss. Brain CCR5 mRNA was reduced. Rats receiving RNAiR5-bearing vectors showed far greater repair responses: increased neuronal proliferation, and decreased production of MIP-1α and RANTES. Controls received unrelated SV(BUGT) vectors. Decrease in CCR5 in circulating cells strongly protected from excitotoxin-induced seizures, BBB leakage, CNS injury, and inflammation, and facilitated neurogenic repair.—Louboutin, J.-P., Chekmasova, A., Marusich, E., Agrawal, L., Strayer, D. S. Role of CCR5 and its ligands in the control of vascular inflammation and leukocyte recruitment required for acute excitotoxic seizure induction and neural damage. PMID:20940264

  3. Diabetes and obesity-related genes and the risk of neural tube defects in the national birth defects prevention study.

    PubMed

    Lupo, Philip J; Canfield, Mark A; Chapa, Claudia; Lu, Wei; Agopian, A J; Mitchell, Laura E; Shaw, Gary M; Waller, D Kim; Olshan, Andrew F; Finnell, Richard H; Zhu, Huiping

    2012-12-15

    Few studies have evaluated genetic susceptibility related to diabetes and obesity as a risk factor for neural tube defects (NTDs). The authors investigated 23 single nucleotide polymorphisms among 9 genes (ADRB3, ENPP1, FTO, LEP, PPARG, PPARGC1A, SLC2A2, TCF7L2, and UCP2) associated with type 2 diabetes or obesity. Samples were obtained from 737 NTD case-parent triads included in the National Birth Defects Prevention Study during 1999-2007. Log-linear models were used to evaluate maternal and offspring genetic effects. After application of the false discovery rate, there were 5 significant maternal genetic effects. The less common alleles at the 4 FTO single nucleotide polymorphisms showed a reduction of NTD risk (for rs1421085, relative risk (RR) = 0.73 (95% confidence interval (CI): 0.62, 0.87); for rs8050136, RR = 0.79 (95% CI: 0.67, 0.93); for rs9939609, RR = 0.79 (95% CI: 0.67, 0.94); and for rs17187449, RR = 0.80 (95% CI: 0.68, 0.95)). Additionally, maternal LEP rs2071045 (RR = 1.31, 95% CI: 1.08, 1.60) and offspring UCP2 rs660339 (RR = 1.32, 95% CI: 1.06, 1.64) were associated with NTD risk. Furthermore, the maternal genotype for TCF7L2 rs3814573 suggested an increased NTD risk among obese women. These findings indicate that maternal genetic variants associated with glucose homeostasis may modify the risk of having an NTD-affected pregnancy.

  4. Prevention of neural tube defects by the fortification of flour with folic acid: a population-based retrospective study in Brazil

    PubMed Central

    Lecca, Roberto Carlos Reyes; Cortez-Escalante, Juan Jose; Sanchez, Mauro Niskier; Rodrigues, Humberto Gabriel

    2016-01-01

    Abstract Objective To determine if the fortification of wheat and maize flours with iron and folic acid – which became mandatory in Brazil from June 2004 – is effective in the prevention of neural tube defects. Methods Using data from national information systems on births in central, south-eastern and southern Brazil, we determined the prevalence of neural tube defects among live births and stillbirths in a pre-fortification period – i.e. 2001–2004 – and in a post-fortification period – i.e. 2005–2014. We distinguished between anencephaly, encephalocele, meningocele, myelomeningocele and other forms of spina bifida. Findings There were 8554 neural tube defects for 17 925 729 live births notified between 2001 and 2014. For the same period, 2673 neural tube defects were reported for 194 858 stillbirths. The overall prevalence of neural tube defects fell from 0.79 per 1000 pre-fortification to 0.55 per 1000 post-fortification (prevalence ratio, PR: 1.43; 95% confidence interval, CI: 1.38–1.50). For stillbirths, prevalence fell from 17.74 per 1000 stillbirths pre-fortification to 11.70 per 1000 stillbirths post-fortification. The corresponding values among live births were 0.57 and 0.44, respectively. Conclusion The introduction of the mandatory fortification of flour with iron and folic acid in Brazil was followed by a significant reduction in the prevalence of neural tube defects in our study area. PMID:26769993

  5. The Role of the PI3K Pathway in the Regeneration of the Damaged Brain by Neural Stem Cells after Cerebral Infarction.

    PubMed

    Koh, Seong Ho; Lo, Eng H

    2015-10-01

    Neurologic deficits resulting from stroke remain largely intractable, which has prompted thousands of studies aimed at developing methods for treating these neurologic sequelae. Endogenous neurogenesis is also known to occur after brain damage, including that due to cerebral infarction. Focusing on this process may provide a solution for treating neurologic deficits caused by cerebral infarction. The phosphatidylinositol-3-kinase (PI3K) pathway is known to play important roles in cell survival, and many studies have focused on use of the PI3K pathway to treat brain injury after stroke. Furthermore, since the PI3K pathway may also play key roles in the physiology of neural stem cells (NSCs), eliciting the appropriate activation of the PI3K pathway in NSCs may help to improve the sequelae of cerebral infarction. This review describes the PI3K pathway, its roles in the brain and NSCs after cerebral infarction, and the therapeutic possibility of activating the pathway to improve neurologic deficits after cerebral infarction.

  6. DNA-damage response, survival and differentiation in vitro of a human neural stem cell line in relation to ATM expression.

    PubMed

    Carlessi, L; De Filippis, L; Lecis, D; Vescovi, A; Delia, D

    2009-06-01

    Ataxia-telangiectasia (A-T) is a neurodegenerative disorder caused by defects in the ATM kinase, a component of the DNA-damage response (DDR). Here, we employed an immortalized human neural stem-cell line (ihNSC) capable of differentiating in vitro into neurons, oligodendrocytes and astrocytes to assess the ATM-dependent response and outcome of ATM ablation. The time-dependent differentiation of ihNSC was accompanied by an upregulation of ATM and DNA-PK, sharp downregulation of ATR and Chk1, transient induction of p53 and by the onset of apoptosis in a fraction of cells. The response to ionizing radiation (IR)-induced DNA lesions was normal, as attested by the phosphorylation of ATM and some of its substrates (e.g., Nbs1, Smc1, Chk2 and p53), and by the kinetics of gamma-H2AX nuclear foci formation. Depletion in these cells of ATM by shRNA interference (shATM) attenuated the differentiation-associated apoptosis and response to IR, but left unaffected the growth, self-renewal and genomic stability. shATM cells generated a normal number of MAP2/beta-tubulin III+ neurons, but a reduced number of GalC+ oligodendrocytes, which were nevertheless more susceptible to oxidative stress. Altogether, these findings highlight the potential of ihNSCs as an in vitro model system to thoroughly assess, besides ATM, the role of DDR genes in neurogenesis and/or neurodegeneration.

  7. Reduced susceptibility to eccentric exercise-induced muscle damage in resistance-trained men is not linked to resistance training-related neural adaptations

    PubMed Central

    Beck, TW; Wages, NP

    2015-01-01

    The purpose of this study was to examine the acute effects of maximal concentric vs. eccentric exercise on the isometric strength of the elbow flexor, as well as the biceps brachii muscle electromyographic (EMG) responses in resistance-trained (RT) vs. untrained (UT) men. Thirteen RT men (age: 24 ± 4 years; height: 180.2 ± 7.7 cm; body weight: 92.2 ± 16.9 kg) and twelve UT men (age: 23 ± 4 years; height: 179.2 ± 5.0 cm; body weight: 81.5 ± 8.6 kg) performed six sets of ten maximal concentric isokinetic (CON) or eccentric isokinetic (ECC) elbow flexion exercise in two separate visits. Before and after the exercise interventions, maximal voluntary contractions (MVCs) were performed for testing isometric strength. In addition, bipolar surface EMG signals were detected from the biceps brachii muscle during the strength testing. Both CON and ECC caused isometric strength to decrease, regardless of the training status. However, ECC caused greater isometric strength decline than CON did for the UT group (p = 0.006), but not for the RT group. Both EMG amplitude and mean frequency significantly decreased and increased, respectively, regardless of the training status and exercise intervention. Resistance-trained men are less susceptible to eccentric exercise-induced muscle damage, but this advantage is not likely linked to the chronic resistance training-induced neural adaptations. PMID:26424922

  8. The Role of the PI3K Pathway in the Regeneration of the Damaged Brain by Neural Stem Cells after Cerebral Infarction

    PubMed Central

    Lo, Eng H.

    2015-01-01

    Neurologic deficits resulting from stroke remain largely intractable, which has prompted thousands of studies aimed at developing methods for treating these neurologic sequelae. Endogenous neurogenesis is also known to occur after brain damage, including that due to cerebral infarction. Focusing on this process may provide a solution for treating neurologic deficits caused by cerebral infarction. The phosphatidylinositol-3-kinase (PI3K) pathway is known to play important roles in cell survival, and many studies have focused on use of the PI3K pathway to treat brain injury after stroke. Furthermore, since the PI3K pathway may also play key roles in the physiology of neural stem cells (NSCs), eliciting the appropriate activation of the PI3K pathway in NSCs may help to improve the sequelae of cerebral infarction. This review describes the PI3K pathway, its roles in the brain and NSCs after cerebral infarction, and the therapeutic possibility of activating the pathway to improve neurologic deficits after cerebral infarction. PMID:26320845

  9. BDNF increases survival and neuronal differentiation of human neural precursor cells cotransplanted with a nanofiber gel to the auditory nerve in a rat model of neuronal damage.

    PubMed

    Jiao, Yu; Palmgren, Björn; Novozhilova, Ekaterina; Englund Johansson, Ulrica; Spieles-Engemann, Anne L; Kale, Ajay; Stupp, Samuel I; Olivius, Petri

    2014-01-01

    To study possible nerve regeneration of a damaged auditory nerve by the use of stem cell transplantation. We transplanted HNPCs to the rat AN trunk by the internal auditory meatus (IAM). Furthermore, we studied if addition of BDNF affects survival and phenotypic differentiation of the grafted HNPCs. A bioactive nanofiber gel (PA gel), in selected groups mixed with BDNF, was applied close to the implanted cells. Before transplantation, all rats had been deafened by a round window niche application of β-bungarotoxin. This neurotoxin causes a selective toxic destruction of the AN while keeping the hair cells intact. Overall, HNPCs survived well for up to six weeks in all groups. However, transplants receiving the BDNF-containing PA gel demonstrated significantly higher numbers of HNPCs and neuronal differentiation. At six weeks, a majority of the HNPCs had migrated into the brain stem and differentiated. Differentiated human cells as well as neurites were observed in the vicinity of the cochlear nucleus. Our results indicate that human neural precursor cells (HNPC) integration with host tissue benefits from additional brain derived neurotrophic factor (BDNF) treatment and that these cells appear to be good candidates for further regenerative studies on the auditory nerve (AN).

  10. Pycnogenol prevents potassium dichromate K2Cr2O7-induced oxidative damage and nephrotoxicity in rats.

    PubMed

    Parveen, Kehkashan; Khan, Mohd Rashid; Siddiqui, Waseem A

    2009-10-30

    Environmental and occupational exposure to chromium compounds, especially hexavalent chromium [Cr(VI)], is widely recognized as a potential nephrotoxic in humans and animals. Its toxicity is associated with overproduction of free radicals, which induces oxidative damage. Recent evidence indicates that Pycnogenol (PYC), French maritime pine bark extract, exhibits antioxidant potential and protects against various oxidative stressors. The aim of the present study was to examine the modulating impacts of PYC on potassium dichromate K2Cr2O7-induced oxidative damage and nephrotoxicity in rats. Male Wistar rats were divided into four groups. The first group was control, the second group was control plus pre-treated with PYC (10 mg/kg, body weight; in saline; intraperitoneally; once daily for 3 weeks) as drug control and the third group was saline pre-treated plus treated with a single injection of K2Cr2O7 (15 mg/kg, body weight; in saline; intraperitoneally) as toxicant group. The fourth group was PYC pre-treated plus K2Cr2O7 injected. Forty-eight hours after K2Cr2O7-treatment, blood was drawn for estimation of renal injury markers in serum. Rats were then sacrificed, and their kidneys were dissected for biochemical and histopathological assays. K2Cr2O7-treated rats showed significant increases in markers of renal injury in serum, including blood urea nitrogen (BUN), serum creatinine (Scr), and alkaline phosphatase (ALP), which were significantly (P < 0.05) decreased by PYC pre-treatment. Moreover, prophylactic pre-treatment of rats with PYC significantly (P < 0.05) ameliorated increased thiobarbituric reactive substances (TBARS), malonaldehyde (MDA) and protein carbonyl (PC), and decreased levels of glutathione (GSH) and catalase activity in the kidney homogenate of K2Cr2O7-treated rats. These results were also supported and confirmed with histopathological findings. The study suggests that PYC is effective in preventing K2Cr2O7-induced oxidative mediated nephrotoxicity

  11. The novel free radical scavenger, edaravone, increases neural stem cell number around the area of damage following rat traumatic brain injury.

    PubMed

    Itoh, Tatsuki; Satou, Takao; Nishida, Shozo; Tsubaki, Masahiro; Hashimoto, Shigeo; Ito, Hiroyuki

    2009-11-01

    Edaravone is a novel free radical scavenger that is clinically employed in patients with acute cerebral infarction, but has not previously been used to treat traumatic brain injury (TBI). In this study, we investigated the effect of edaravone administration on rat TBI. In particular, we used immunohistochemistry to monitor neural stem cell (NSC) proliferation around the area damaged by TBI. Two separate groups of rats were administered saline or edaravone (3 mg/kg) after TBI and then killed chronologically. We also used ex vivo techniques to isolate NSCs from the damaged region and observed nestin-positive cells at 1, 3, and 7 days following TBI in both saline- and edaravone-treated groups. At 3 days following TBI in both groups, there were many large cells that morphologically resembled astrocytes. At 1 and 7 days following TBI in the saline group, there were a few small nestin-positive cells. However, in the edaravone group, there were many large nestin-positive cells at 7 days following TBI. At 3 and 7 days following TBI, the number of nestin-positive cells in the edaravone group increased significantly compared with the saline group. There were many single-stranded DNA-, 8-hydroxy-2'-deoxyguanosine-, and 4-hydroxy-2-nonenal-positive cells in the saline group following TBI, but only a few such cells in the edaravone group following TBI. Furthermore, almost all ssDNA-positive cells in the saline group co-localized with Hu, nestin, and glial fibrillary acidic protein (GFAP) staining, but not in the edaravone group. In the ex vivo study, spheres could only be isolated from injured brain tissue in the saline group at 3 days following TBI. However, in the edaravone group, spheres could be isolated from injured brain tissue at both 3 and 7 days following TBI. The number of spheres isolated from injured brain tissue in the edaravone group showed a significant increase compared with the saline group. The spheres isolated from both saline and edaravone groups were

  12. Effects of the feeding of wild Yeso sika deer (Cervus nippon yesoensis) on the prevention of damage due to bark stripping and the use of feeding sites.

    PubMed

    Masuko, Takayoshi; Souma, Kousaku; Kudo, Hirofumi; Takasaki, Yukari; Fukui, Emi; Kitazawa, Reiko; Nishida, Rikihiro; Niida, Toshimitsu; Suzuki, Teiji; Nibe, Akio

    2011-08-01

    Feeding sites for wild Yeso sika deer around Lake Akan, Japan, were established. Effects on the number of deer using the feeding sites, the prevention of bark stripping damage, the amount of feeding, and eating time in a 5-year period (1999-2003) were evaluated. The number of deer using feeding sites increased with years during the feeding period. The damaged tree ratio after the initiation of feeding markedly decreased compared with 16.5% before the initiation of feeding. After the start of feeding, there were no trees with damage the entire circumference. According to tree species, the number of damaged trees of Ulmus laciniata Mayr as a percentage of all investigated trees was high (5.2%). The total amount of beet pulp feeding increased with the feeding year, showing 4.5-fold increase. At feeding sites in deer culling, eating behavior was observed during the night. The preventive effects on bark stripping damage continued during the 5-year feeding period. However, with the course of feeding years, the number of deer using feeding sites and the level of feeding increased. 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  13. Th17 cells mediate inflammation in a novel model of spontaneous experimental autoimmune lacrimal keratoconjunctivitis with neural damage.

    PubMed

    Seo, Kyoung Yul; Kitamura, Kazuya; Han, Soo Jung; Kelsall, Brian

    2017-09-25

    Dry eye disease (DED) affects one third of population worldwide. In prior studies, experimental autoimmune lacrimal keratoconjunctivitis (EALK) induced by desiccating stress in mice has been used as a model of DED. This model is complicated by a requirement for exogenous epithelial cell injury and the administration of anticholinergic agents that have broad immunological effects. We sought to develop a novel mouse model of EALK, and to demonstrate the responsible immunological pathogenic mechanisms. CD4+CD45RB(high) naïve T cells with and without CD4+CD45RB(lo)CD25+ regulatory T cells were adoptively transferred to C57BL/10 RAG2(-/-) mice. The eyes, draining lymph nodes, lacrimal glands and surrounding tissues of mice that spontaneously developed keratoconjuctivitis were evaluated for histopathological changes, cellular infiltration, and cytokine production in tissues and by isolated cells. Furthermore, the integrity of corneal nerves was evaluated by whole tissue immunofluorescence imaging. Gene-deficient naïve T cells or RAG2-hosts were evaluated to assess the roles of IFN-γ, IL-17A and IL-23 in disease pathogenesis. Finally, cytokine levels were determined in the tears of patients with DED. EALK spontaneously developed in C57BL/10 RAG2(-/-) mice following adoptive of CD4+CD45RB(high) naïve T cells characterized by the infiltration of CD4(+) T cells, macrophages, and neutrophils. In addition to lacrimal keratoconjunctivitis, mice also developed damage to the corneal nerve, which connects components of lacrimal functional unit (LFU). Pathogenic T cell differentiation was dependent on IL-23p40 and controlled by co-transferred CD4+CD45RB(lo)CD25(+) regulatory T cells (Tregs). Th17 rather than Th1 CD4+ cells were primarily responsible for EALK even though both IL-17 and IFN-γ were increased in inflammatory tissues likely due to their ability to drive the expression of CXC chemokines within the cornea, and the subsequent influx of myeloid cells. Consistent with

  14. Analysis of the Thermal Comfort and Impact Properties of the Neoprene-Spacer Fabric Structure for Preventing the Joint Damages

    PubMed Central

    Ghorbani, Ehsan; Hasani, Hossein; Rafeian, Homa; Hashemibeni, Batool

    2013-01-01

    Background: Frequent moves at the joint, plus external factors such as trauma, aging, and etc., are all reasons for joint damages. In order to protect and care of joints, the orthopedic textiles are used. To protect the joints, these textiles keep muscles warm to prevent shock. To produce orthopedic textiles, Neoprene foams have been traditionally used. These foams are flexible and resist impact, but are not comfortable enough and might cause problems for the consumer. This study introduces a new structure consisting of perforated Neoprene foam attached to the spacer fabric and also compares the properties of thermal and moisture comfort and impact properties of this structure in comparison with Neoprene foam. Methods: In order to measure the factors related to the samples lateral pressure behavior, a tensile tester was used. A uniform pressure is applied to the samples and a force – displacement curve is obtained. The test continues until the maximum compression force is reached to 50 N. The area under the curve is much greater; more energy is absorbed during the impact. In order to investigate the dynamic heat and moisture transfer of fabrics, an experimental apparatus was developed. This device made the simulation of sweating of human body possible and consisted of a controlled environmental chamber, sweating guarded hot plate, and data acquisition system. Results: The findings show that the Neoprene-spacer fabric structure represents higher toughness values compared to other samples (P ≤ 0.001). Neoprene-spacer fabric structure (A3) has higher rate of moisture transport than conventional Neoprene foam; because of undesirable comfort characteristics in Neoprene. Conclusions: Results of the tests indicate full advantage of the new structure compared with the Neoprene foam for use in orthopedic textiles (P ≤ 0.001). PMID:24049594

  15. Measurement of oxidative DNA damage by gas chromatography-mass spectrometry: ethanethiol prevents artifactual generation of oxidized DNA bases.

    PubMed

    Jenner, A; England, T G; Aruoma, O I; Halliwell, B

    1998-04-15

    Analysis of oxidative damage to DNA bases by GC-MS enables identification of a range of base oxidation products, but requires a derivatization procedure. However, derivatization at high temperature in the presence of air can cause 'artifactual' oxidation of some undamaged bases, leading to an overestimation of their oxidation products, including 8-hydroxyguanine. Therefore derivatization conditions that could minimize this problem were investigated. Decreasing derivatization temperature to 23 degrees C lowered levels of 8-hydroxyguanine, 8-hydroxyadenine, 5-hydroxycytosine and 5-(hydroxymethyl)uracil measured by GC-MS in hydrolysed calf thymus DNA. Addition of the reducing agent ethanethiol (5%, v/v) to DNA samples during trimethylsilylation at 90 degrees C also decreased levels of these four oxidized DNA bases as well as 5-hydroxyuracil. Removal of guanine from hydrolysed DNA samples by treatment with guanase, prior to derivatization, resulted in 8-hydroxyguanine levels (54-59 pmol/mg of DNA) that were significantly lower than samples not pretreated with guanase, independent of the derivatization conditions used. Only hydrolysed DNA samples that were derivatized at 23 degrees C in the presence of ethanethiol produced 8-hydroxyguanine levels (56+/-8 pmol/mg of DNA) that were as low as those of guanase-pretreated samples. Levels of other oxidized bases were similar to samples derivatized at 23 degrees C without ethanethiol, except for 5-hydroxycytosine and 5-hydroxyuracil, which were further decreased by ethanethiol. Levels of 8-hydroxyguanine, 8-hydroxyadenine and 5-hydroxycytosine measured in hydrolysed calf thymus DNA by the improved procedures described here were comparable with those reported previously by HPLC with electrochemical detection and by GC-MS with prepurification to remove undamaged base. We conclude that artifactual oxidation of DNA bases during derivatization can be prevented by decreasing the temperature to 23 degrees C, removing air from the

  16. Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL.

    PubMed

    Kapiotis, S; Hermann, M; Held, I; Seelos, C; Ehringer, H; Gmeiner, B M

    1997-11-01

    There is now growing evidence that the oxidative modification of LDL plays a potential role in atherosclerosis. In this study, genistein, a compound derived from a soy diet with a flavonoid chemical structure (4',5,7-trihydroxyisoflavone), which was found to inhibit angiogenesis, has been evaluated for its ability to act as an LDL antioxidant and a vascular cell protective agent against oxidized LDL. The results showed that genistein was able to inhibit the oxidation of LDL in the presence of copper ions or superoxide/nitric oxide radicals as measured by thiobarbituric acid-reactive substance formation, alteration in electrophoretic mobility, and lipid hydroperoxides. Bovine aortic endothelial cell- and human endothelial cell-mediated LDL oxidation was also inhibited in the presence of genistein. The 7-O-glucoside of genistein, genistin, was much less effective in inhibiting LDL oxidation in the cell-free and cell-mediated lipoprotein-oxidating systems. Incubating human endothelial cells in the absence or presence of genistein and challenging the cells with already oxidized lipoprotein revealed that in addition to its antioxidative potential during LDL oxidating processes, genistein effectively protected the vascular cells from damage by oxidized lipoproteins. The tyrosine kinase inhibitor genistein was found to block upregulation of two tyrosine-phosphorylated proteins of 132 and 69 kDa in endothelial cells induced by oxidized LDL. Parallel experiments with the inactive analogue daidzein, however, showed that the cytoprotective effect of the isoflavones seems not to be dependent on tyrosine phosphorylation. Our findings will support the suggested and documented beneficial action of a soy diet in preventing chronic vascular diseases and early atherogenic events.

  17. Acetyl-L-Carnitine Prevents Methamphetamine-Induced Structural Damage on Endothelial Cells via ILK-Related MMP-9 Activity.

    PubMed

    Fernandes, S; Salta, S; Bravo, J; Silva, A P; Summavielle, T

    2016-01-01

    Methamphetamine (METH) is a potent psychostimulant highly used worldwide. Recent studies evidenced the involvement of METH in the breakdown of the blood-brain-barrier (BBB) integrity leading to compromised function. The involvement of the matrix metalloproteinases (MMPs) in the degradation of the neurovascular matrix components and tight junctions (TJs) is one of the most recent findings in METH-induced toxicity. As BBB dysfunction is a pathological feature of many neurological conditions, unveiling new protective agents in this field is of major relevance. Acetyl-L-carnitine (ALC) has been described to protect the BBB function in different paradigms, but the mechanisms underling its action remain mostly unknown. Here, the immortalized bEnd.3 cell line was used to evaluate the neuroprotective features of ALC in METH-induced damage. Cells were exposed to ranging concentrations of METH, and the protective effect of ALC 1 mM was assessed 24 h after treatment. F-actin rearrangement, TJ expression and distribution, and MMPs activity were evaluated. Integrin-linked kinase (ILK) knockdown cells were used to assess role of ALC in ILK mediated METH-triggered MMPs' activity. Our results show that METH led to disruption of the actin filaments concomitant with claudin-5 translocation to the cytoplasm. These events were mediated by MMP-9 activation in association with ILK overexpression. Pretreatment with ALC prevented METH-induced activation of MMP-9, preserving claudin-5 location and the structural arrangement of the actin filaments. The present results support the potential of ALC in preserving BBB integrity, highlighting ILK as a new target for the ALC therapeutic use.

  18. Prevention

    MedlinePlus

    ... Error processing SSI file About Heart Disease & Stroke Prevention Heart disease and stroke are an epidemic in ... secondhand smoke. Barriers to Effective Heart Disease & Stroke Prevention Many people with key risk factors for heart ...

  19. Optimal serum and red blood cell folate concentrations in women of reproductive age for prevention of neural tube defects: World Health Organization guidelines.

    PubMed

    Cordero, Amy M; Crider, Krista S; Rogers, Lisa M; Cannon, Michael J; Berry, R J

    2015-04-24

    Neural tube defects (NTDs) such as spina bifida, anencephaly, and encephalocele are serious birth defects of the brain and spine that occur during the first month of pregnancy when the neural tube fails to close completely. Randomized controlled trials and observational studies have shown that adequate daily consumption of folic acid before and during early pregnancy considerably reduces the risk for NTDs. The U.S. Public Health Service recommends that women capable of becoming pregnant consume 400 µg of folic acid daily for NTD prevention. Furthermore, fortification of staple foods (e.g., wheat flour) with folic acid has decreased folate-sensitive NTD prevalence in multiple settings and is a highly cost-effective intervention.

  20. Luteolin attenuates interleukin-6-mediated astrogliosis in human iPSC-derived neural aggregates: A candidate preventive substance for maternal immune activation-induced abnormalities.

    PubMed

    Zuiki, Masashi; Chiyonobu, Tomohiro; Yoshida, Michiko; Maeda, Hiroshi; Yamashita, Satoshi; Kidowaki, Satoshi; Hasegawa, Tatsuji; Gotoh, Hitoshi; Nomura, Tadashi; Ono, Katsuhiko; Hosoi, Hajime; Morimoto, Masafumi

    2017-07-13

    Maternal infection during pregnancy increases the risk of neurodevelopmental conditions such as autism spectrum disorders and schizophrenia in offspring. Several previous animal studies have indicated that maternal immune activation (MIA), rather than a specific pathogen, alters fetal brain development. Among them, prenatal exposure to interleukin-6 (IL-6) has been associated with behavioral and neuropathological abnormalities, though such findings remain to be elucidated in humans. We developed a human cell-based model of MIA by exposing human induced pluripotent stem cells (hiPSCs)-derived neural aggregates to IL-6 and investigated whether luteolin-a naturally occurring flavonoid found in edible plants-could prevent MIA-induced abnormalities. We generated neural aggregates from hiPSCs using the serum-free floating culture of embryoid body-like aggregates with quick reaggregation (SFEBq) method, following which aggregates were cultured in suspension. We then exposed the aggregates to IL-6 (100ng/ml) for 24h at day 51. Transient IL-6 exposure significantly increased the area ratio of astrocytes (GFAP-positive area ratio) and decreased the area ratio of early-born neurons (TBR1-positive or CTIP2-positive area ratio) relative to controls. In addition, western blot analysis revealed that levels of phosphorylated STAT3 were significantly elevated in IL-6-exposed neural aggregates. Luteolin treatment inhibited STAT3 phosphorylation and counteracted IL-6-mediated increases of GFAP-positive cells and reductions of TBR1-positive and CTIP2-positive cells. Our observations suggest that the flavonoid luteolin may attenuate or prevent MIA-induced neural abnormalities. As we observed increased apoptosis at high concentrations of luteolin, further studies are required to determine the optimal intake dosage and duration for pregnant women. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Neural substrates underlying reconcentration for the preparation of an appropriate cognitive state to prevent future mistakes: a functional magnetic resonance imaging study.

    PubMed

    Miura, Naoki; Nozawa, Takayuki; Takahashi, Makoto; Yokoyama, Ryoichi; Sasaki, Yukako; Sakaki, Kohei; Kawashima, Ryuta

    2015-01-01

    The ability to reconcentrate on the present situation by recognizing one's own recent errors is a cognitive mechanism that is crucial for safe and appropriate behavior in a particular situation. However, an individual may not be able to adequately perform a subsequent task even if he/she recognize his/her own error; thus, it is hypothesized that the neural mechanisms underlying the reconcentration process are different from the neural substrates supporting error recognition. The present study performed a functional magnetic resonance imaging (fMRI) analysis to explore the neural substrates associated with reconcentration related to achieving an appropriate cognitive state, and to dissociate these brain regions from the neural substrates involved in recognizing one's own mistake. This study included 44 healthy volunteers who completed an experimental procedure that was based on the Eriksen flanker task and included feedback regarding the results of the current trial. The hemodynamic response induced by each instance of feedback was modeled using a combination of the successes and failures of the current and subsequent trials in order to identify the neural substrates underlying the ability to reconcentrate for the next situation and to dissociate them from those involved in recognizing current errors. The fMRI findings revealed significant and specific activation in the dorsal aspect of the medial prefrontal cortex (MFC) when participants successfully reconcentrated on the task after recognizing their own error based on feedback. Additionally, this specific activation was clearly dissociated from the activation foci that occurred during error recognition. These findings indicate that the dorsal aspect of the MFC may be a distinct functional region that specifically supports the reconcentration process and that is associated with the prevention of successive errors when a human subject recognizes his/her own mistake. Furthermore, it is likely that this

  2. The Aurora-B-dependent NoCut checkpoint prevents damage of anaphase bridges after DNA replication stress.

    PubMed

    Amaral, Nuno; Vendrell, Alexandre; Funaya, Charlotta; Idrissi, Fatima-Zahra; Maier, Michael; Kumar, Arun; Neurohr, Gabriel; Colomina, Neus; Torres-Rosell, Jordi; Geli, María-Isabel; Mendoza, Manuel

    2016-05-01

    Anaphase chromatin bridges can lead to chromosome breakage if not properly resolved before completion of cytokinesis. The NoCut checkpoint, which depends on Aurora B at the spindle midzone, delays abscission in response to chromosome segregation defects in yeast and animal cells. How chromatin bridges are detected, and whether abscission inhibition prevents their damage, remain key unresolved questions. We find that bridges induced by DNA replication stress and by condensation or decatenation defects, but not dicentric chromosomes, delay abscission in a NoCut-dependent manner. Decatenation and condensation defects lead to spindle stabilization during cytokinesis, allowing bridge detection by Aurora B. NoCut does not prevent DNA damage following condensin or topoisomerase II inactivation; however, it protects anaphase bridges and promotes cellular viability after replication stress. Therefore, the molecular origin of chromatin bridges is critical for activation of NoCut, which plays a key role in the maintenance of genome stability after replicative stress.

  3. Co-administration of quercetin with pantoprazole sodium prevents NSAID-induced severe gastroenteropathic damage efficiently: Evidence from a preclinical study in rats.

    PubMed

    Singh, Devendra Pratap; Borse, Swapnil P; Nivsarkar, Manish

    2017-01-01

    Management of Nonsteroidal anti-inflammatory drug (NSAID)-induced gastroenteropathy has emerged as a major medical and socioeconomic problem mainly because the highly efficacious gastroprotective drugs i.e. proton pump inhibitors (PPIs) like pantoprazole sodium (PTZ), worsen the NSAID-induced enteropathic damage and lack of approved therapeutic strategies/interventions to prevent this damage. Hence, the primary objective of the current study was to assess whether we can protect the GI mucosa against gastroenteropathic damage caused by diclofenac sodium (DIC) in rats by co-administration of PTZ and quercetin (QCT). Rats were treated twice daily with QCT (35, 50 and 100mgkg(-1) peroral) and/or PTZ (4mgkg(-1)) or vehicle for a total of 10 days. In some experiments, DIC (9mgkg(-1)) was administered orally twice daily for the final 5days of PTZ/QCT+PTZ/vehicle administration. Rats in all the groups were fasted after the last dose on 9th day, but, water was provided ad libitum. 12h after the last dose on 10th day, rats were euthanized and their GI tracts were assessed for haemorrhagic damage, lipid peroxidation, intestinal permeability and GI luminal pH alterations along with haematological and biochemical estimations. The experimental evidences suggested that co-administration of QCT with PTZ significantly attenuated the exacerbation of NSAID-induced enteropathic damage in a dose dependent manner. The combination of PTZ 4mgkg(-1) and QCT at the doses of 50 or 100mgkg(-1) was found to effective in preventing the DIC-induced gastroenteropathy. The present report focuses on the gastroenteroprotective ability of QCT and the mechanisms may be related to its ability to prevent GI blood loss, the lipid peroxidation, intestinal permeability alteration and alteration in GI luminal pH.

  4. Colony-stimulating factor-1 mediates macrophage-related neural damage in a model for Charcot-Marie-Tooth disease type 1X.

    PubMed

    Groh, Janos; Weis, Joachim; Zieger, Hanna; Stanley, E Richard; Heuer, Heike; Martini, Rudolf

    2012-01-01

    Previous studies in our laboratory have shown that in models for three distinct forms of the inherited and incurable nerve disorder, Charcot-Marie-Tooth neuropathy, low-grade inflammation implicating phagocytosing macrophages mediates demyelination and perturbation of axons. In the present study, we focus on colony-stimulating factor-1, a cytokine implicated in macrophage differentiation, activation and proliferation and fostering neural damage in a model for Charcot-Marie-Tooth neuropathy 1B. By crossbreeding a model for the X-linked form of Charcot-Marie-Tooth neuropathy with osteopetrotic mice, a spontaneous null mutant for colony-stimulating factor-1, we demonstrate a robust and persistent amelioration of demyelination and axon perturbation. Furthermore, functionally important domains of the peripheral nervous system, such as juxtaparanodes and presynaptic terminals, were preserved in the absence of colony-stimulating factor-1-dependent macrophage activation. As opposed to other Schwann cell-derived cytokines, colony-stimulating factor-1 is expressed by endoneurial fibroblasts, as revealed by in situ hybridization, immunocytochemistry and detection of β-galactosidase expression driven by the colony-stimulating factor-1 promoter. By both light and electron microscopic studies, we detected extended cell-cell contacts between the colony-stimulating factor-1-expressing fibroblasts and endoneurial macrophages as a putative prerequisite for the effective and constant activation of macrophages by fibroblasts in the chronically diseased nerve. Interestingly, in human biopsies from patients with Charcot-Marie-Tooth type 1, we also found frequent cell-cell contacts between macrophages and endoneurial fibroblasts and identified the latter as main source for colony-stimulating factor-1. Therefore, our study provides strong evidence for a similarly pathogenic role of colony-stimulating factor-1 in genetically mediated demyelination in mice and Charcot-Marie-Tooth type 1

  5. Colony-stimulating factor-1 mediates macrophage-related neural damage in a model for Charcot–Marie–Tooth disease type 1X

    PubMed Central

    Groh, Janos; Weis, Joachim; Zieger, Hanna; Stanley, E. Richard; Heuer, Heike

    2012-01-01

    Previous studies in our laboratory have shown that in models for three distinct forms of the inherited and incurable nerve disorder, Charcot–Marie–Tooth neuropathy, low-grade inflammation implicating phagocytosing macrophages mediates demyelination and perturbation of axons. In the present study, we focus on colony-stimulating factor-1, a cytokine implicated in macrophage differentiation, activation and proliferation and fostering neural damage in a model for Charcot–Marie–Tooth neuropathy 1B. By crossbreeding a model for the X-linked form of Charcot–Marie–Tooth neuropathy with osteopetrotic mice, a spontaneous null mutant for colony-stimulating factor-1, we demonstrate a robust and persistent amelioration of demyelination and axon perturbation. Furthermore, functionally important domains of the peripheral nervous system, such as juxtaparanodes and presynaptic terminals, were preserved in the absence of colony-stimulating factor-1-dependent macrophage activation. As opposed to other Schwann cell-derived cytokines, colony-stimulating factor-1 is expressed by endoneurial fibroblasts, as revealed by in situ hybridization, immunocytochemistry and detection of β-galactosidase expression driven by the colony-stimulating factor-1 promoter. By both light and electron microscopic studies, we detected extended cell–cell contacts between the colony-stimulating factor-1-expressing fibroblasts and endoneurial macrophages as a putative prerequisite for the effective and constant activation of macrophages by fibroblasts in the chronically diseased nerve. Interestingly, in human biopsies from patients with Charcot–Marie–Tooth type 1, we also found frequent cell–cell contacts between macrophages and endoneurial fibroblasts and identified the latter as main source for colony-stimulating factor-1. Therefore, our study provides strong evidence for a similarly pathogenic role of colony-stimulating factor-1 in genetically mediated demyelinatio