Science.gov

Sample records for preventive hormon theraphy

  1. Weight control, endocrine hormones and cancer prevention.

    PubMed

    King, Brenee; Jiang, Yu; Su, Xiaoyu; Xu, Jianteng; Xie, Linglin; Standard, Joseph; Wang, Weiqun

    2013-05-01

    The prevalence of obesity is increasing which becomes worrisome due to its association with several diseases and certain types of cancers. While weight control through dietary caloric restriction and/or physical activity protects against cancer in animal models, the underlying mechanisms are not fully defined. Weight loss due to negative energy balance is associated with alterations of multiple growth factors and endocrine hormones. The altered hormones and hormone-related functions appear to be responsible for anti-cancer mechanisms. In this review, we summarize the recent studies related to weight loss and the altered endocrine hormones, focusing on the reduced levels of the mitogenic insulin-like growth factor 1 (IGF-1) and adipokine leptin as well as the raised levels of adiponectin and glucocorticoids. The potential molecular targets of these hormone-dependent signalling pathways are also discussed. Considering the increasing trends of obesity throughout the world, a better understanding of the underlying mechanisms between body weight, endocrine hormones and cancer risk may lead to novel approaches to cancer prevention and treatment.

  2. Menopausal Hormone Therapy for the Primary Prevention of Chronic Conditions

    MedlinePlus

    ... recommendations summarize what the Task Force learned: The harms of hormone therapy, when used to prevent chronic ... Primary Prevention of Chronic Conditions Potential Benefits and Harms The Task Force found that taking both estrogen ...

  3. Preventing leaf identity theft with hormones.

    PubMed

    Lumba, Shelley; McCourt, Peter

    2005-10-01

    Genetic analysis of plant development has begun to demonstrate the importance of hormone synthesis and transport in regulating morphogenesis. In the case of leaf development, for example, auxin pooling determines where a primordium will emerge and leads to the activation of transcription factors, which determine leaf identities by modulating abscisic acid (ABA) and gibberellic acid (GA) concentrations. Signal transduction studies suggest that negative regulation of transcription factors through protein turnover is commonly used as a mechanism of hormone action. Together, these findings suggest that auxin might degrade a repressor that allows the activation of genes that modulate ABA/GA ratios in emerging leaves. With our increased understanding of the molecular basis of hormone signaling, it is becoming possible to overlay important regulators onto signaling modules that determine morphological outputs.

  4. D-hormones for prevention of bone loss after organ transplant.

    PubMed

    Sambrook, Philip N

    2005-09-01

    In addition to bisphosphonates, D-hormones appear to be effective agents in the prevention of post-transplant osteoporosis. In this article studies on D-hormone agents for prevention of post-transplant bone loss are reviewed. Potential reduction in immunosuppressive requirements with D-hormone is an additional consideration. Based upon available evidence, prophylaxis should involve a bisphosphonate, with D-hormone considered as adjunctive or alternative therapy.

  5. Hormone replacement therapy and the prevention of postmenopausal osteoporosis.

    PubMed

    Gambacciani, Marco; Levancini, Marco

    2014-09-01

    Fracture prevention is one of the public health priorities worldwide. Estrogen deficiency is the major factor in the pathogenesis of postmenopausal osteoporosis, the most common metabolic bone disease. Different effective treatments for osteoporosis are available. Hormone replacement therapy (HRT) at different doses rapidly normalizes turnover, preserves bone mineral density (BMD) at all skeletal sites, leading to a significant, reduction in vertebral and non-vertebral fractures. Tibolone, a selective tissue estrogenic activity regulator (STEAR), is effective in the treatment of vasomotor symptoms, vaginal atrophy and prevention/treatment of osteoporosis with a clinical efficacy similar to that of conventional HRT. Selective estrogen receptor modulators (SERMs) such as raloxifene and bazedoxifene reduce turnover and maintain or increase vertebral and femoral BMD and reduce the risk of osteoporotic fractures. The combination of bazedoxifene and conjugated estrogens, defined as tissue selective estrogen complex (TSEC), is able to reduce climacteric symptoms, reduce bone turnover and preserve BMD. In conclusion, osteoporosis prevention can actually be considered as a major additional benefit in climacteric women who use HRT for treatment of climacteric symptoms. The use of a standard dose of HRT for osteoporosis prevention is based on biology, epidemiology, animal and preclinical data, observational studies and randomized, clinical trials. The antifracture effect of a lower dose HRT or TSEC is supported by the data on BMD and turnover, with compelling scientific evidence.

  6. Preventing Growth Hormone Abuse: An Emerging Health Concern.

    ERIC Educational Resources Information Center

    White, George L.; And Others

    1989-01-01

    Facts about growth hormone abuse should be incorporated into substance abuse components of health education curriculums. Sources, uses, and dangers associated with human growth hormones are discussed. A sample lesson plan is included. (IAH)

  7. The Hormone Ghrelin Prevents Traumatic Brain Injury Induced Intestinal Dysfunction

    PubMed Central

    Bansal, Vishal; Ryu, Seok Yong; Blow, Chelsea; Costantini, Todd; Loomis, William; Eliceiri, Brian; Baird, Andrew; Wolf, Paul

    2010-01-01

    Abstract Intestinal barrier breakdown following traumatic brain injury (TBI) is characterized by increased intestinal permeability, leading to bacterial translocation, and inflammation. The hormone ghrelin may prevent intestinal injury and have anti-inflammatory properties. We hypothesized that exogenous ghrelin prevents intestinal injury following TBI. A weight-drop model created severe TBI in three groups of anesthetized Balb/c mice. Group TBI: animals underwent TBI only; Group TBI/ghrelin: animals were given 10 μg of ghrelin intraperitoneally prior and 1 h following TBI; Group sham: no TBI or ghrelin injection. Intestinal permeability was measured 6 h following TBI by detecting serum levels of FITC-Dextran after injection into the intact ileum. The terminal ileum was harvested for histology, expression of the tight junction protein MLCK and inflammatory cytokine TNF-α. Permeability increased in the TBI group compared to the sham group (109.7 ± 21.8 μg/mL vs. 32.2 ± 10.1 μg/mL; p < 0.002). Ghrelin prevented TBI-induced permeability (28.3 ± 4.2 μg/mL vs. 109.7 ± 21.8 μg/mL; p < 0.001). The intestines of the TBI group showed blunting and necrosis of villi compared to the sham group, while ghrelin injection preserved intestinal architecture. Intestinal MLCK increased 73% compared to the sham group (p < 0.03). Ghrelin prevented TBI-induced MLCK expression to sham levels. Intestinal TNF-α increased following TBI compared to the sham group (46.2 ± 7.1 pg/mL vs. 24.4 ± 2.2 pg/mL p < 0.001). Ghrelin reduced TNF-α to sham levels (29.2 ± 5.0 pg/mL; p = NS). We therefore conclude that ghrelin prevents TBI-induced injury, as determined by intestinal permeability, histology, and intestinal levels of TNF-α. The mechanism for ghrelin mediating intestinal protection is likely multifactorial, and further studies are needed to delineate these possibilities. PMID:20858122

  8. Superficially, longer, intermittent ozone theraphy in the treatment of the chronic, infected wounds.

    PubMed

    Białoszewski, Dariusz; Kowalewski, Michał

    2003-10-30

    Background. Ozone therapy - i.e. the treatment of patients by a mixture of oxygen and ozone - has been used for many years as a method ancillary to basic treatment, especially in those cases in which traditional treatment methods do not give satisfactory results, e.g. skin loss in non-healing wounds, ulcers, pressure sores, fistulae, etc. Material and methods. In the Department of Phisiotherapy of the Medical Faculty and the Department of the Orthopedics and Traumatology of the Locomotor System at the Medical University of Warsaw in the period from January 2001 until November 2002, 23 patients with heavy,chronic, antibiotic resistants septic complications after trauma, surgical procedures and secundary skin infetions were treated with ozone. The ozone therapy was administered using an authorial technique of superficially, longer, intermittent ozone application. Results. In the wounds of the all experienced patients the inhibition of septic processes and wound healing was much faster than normal. Conclusions. Our data confirm the advantages wich result from the technique of superficially, longer, intermittent ozone theraphy in combined treatment for septic complications in the soft tissue, especially in the locomotor system. These technique makes posttraumatic infections and promotes quicker healing of post-surgical and post-traumal complications - chronic septic infections. This method also lowers the cost of antibiotic therapy and is sometimes the only available auxiliary technique to support surgical procedures.

  9. Growth hormone prevents neuronal loss in the aged rat hippocampus.

    PubMed

    Azcoitia, Iñigo; Perez-Martin, Margarita; Salazar, Veronica; Castillo, Carmen; Ariznavarreta, Carmen; Garcia-Segura, Luis M; Tresguerres, Jesus A F

    2005-05-01

    Decline of growth hormone (GH) with aging is associated to memory and cognitive alterations. In this study, the number of neurons in the hilus of the dentate gyrus has been assessed in male and female Wistar rats at 3, 6, 12, 14, 18, 22 and 24 months of age, using the optical fractionator method. Male rats had more neurons than females at all the ages studied. Significant neuronal loss was observed in both sexes between 22 and 24 months of age. In a second experiment, 22 month-old male and female rats were treated for 10 weeks with 2 mg/kg/day of GH or saline. At 24 months of age, animals treated with GH had more neurons in the hilus than animals treated with saline. These findings indicate that GH is neuroprotective in old animals and that its administration may ameliorate neuronal alterations associated to aging.

  10. [Hormone replacement therapy in the management of postmenopausal osteoporosis and prevention of fracture risk].

    PubMed

    Ribot, Claude; Trémollières, Florence

    2006-10-01

    The consequences to the bone of estrogen deficiency are early and irreversible. Effective prevention of postmenopausal osteoporosis at the individual level requires early screening of women at risk of fractures and their early treatment. Hormone treatment prevents bone loss and has been proven effective in preventing fractures, even in situations of low risk. The benefit/risk ratio of hormone treatment can be optimized by the choice of the 'right moment' and the 'right treatment'. HRT, administered early and for a limited period, must be integrated into a strategy of long-term osteoporosis prevention that includes using the (drug and nondrug) means most appropriate to the patient's age and clinical condition and choosing the 'right moment' and 'right treatment.'

  11. Growth hormone prevents the development of autoimmune diabetes

    PubMed Central

    Villares, Ricardo; Kakabadse, Dimitri; Juarranz, Yasmina; Gomariz, Rosa P.; Martínez-A, Carlos; Mellado, Mario

    2013-01-01

    Evidence supports a relationship between the neuroendocrine and the immune systems. Data from mice that overexpress or are deficient in growth hormone (GH) indicate that GH stimulates T and B-cell proliferation and Ig synthesis, and enhances maturation of myeloid progenitor cells. The effect of GH on autoimmune pathologies has nonetheless been little studied. Using a murine model of type 1 diabetes, a T-cell–mediated autoimmune disease characterized by immune cell infiltration of pancreatic islets and destruction of insulin-producing β-cells, we observed that sustained GH expression reduced prodromal disease symptoms and eliminated progression to overt diabetes. The effect involves several GH-mediated mechanisms; GH altered the cytokine environment, triggered anti-inflammatory macrophage (M2) polarization, maintained activity of the suppressor T-cell population, and limited Th17 cell plasticity. In addition, GH reduced apoptosis and/or increased the proliferative rate of β-cells. These results support a role for GH in immune response regulation and identify a unique target for therapeutic intervention in type 1 diabetes. PMID:24218587

  12. Hormones

    MedlinePlus

    ... affect many different processes, including Growth and development Metabolism - how your body gets energy from the foods you eat Sexual function Reproduction Mood Endocrine glands, which are special groups of cells, make hormones. The major endocrine glands are the ...

  13. Is radiation-induced ovarian failure in rhesus monkeys preventable by luteinizing hormone-releasing hormone agonists?: Preliminary observations

    SciTech Connect

    Ataya, K.; Pydyn, E.; Ramahi-Ataya

    1995-03-01

    With the advent of cancer therapy, increasing numbers of cancer patients are achieving long term survival. Impaired ovarian function after radiation therapy has been reported in several studies. Some investigators have suggested that luteinizing hormone-releasing hormone agonists (LHRHa) can prevent radiation-induced ovarian injury in rodents. Adult female rhesus monkeys were given either vehicle or Leuprolide acetate before, during, and after radiation. Radiation was given in a dose of 200 rads/day for a total of 4000 rads to the ovaries. Frequent serum samples were assayed for estradiol (E{sub 2}) and FSH. Ovariectomy was performed later. Ovaries were processed and serially sectioned. Follicle count and size distribution were determined. Shortly after radiation started, E{sub 2} dropped to low levels, at which it remained, whereas serum FSH level, which was low before radiation, rose soon after starting radiation. In monkeys treated with a combination of LHRHa and radiation, FSH started rising soon after the LHRHa-loaded minipump was removed (after the end of radiation). Serum E{sub 2} increased after the end of LHRHa treatment in the non-irradiated monkey, but not in the irradiated monkey. Follicle counts were not preserved in the LHRHa-treated monkeys that received radiation. The data demonstrated no protective effect of LHRHa treatment against radiation-induced ovarian injury in this rhesus monkey model. 58 refs., 2 figs., 1 tab.

  14. Prevention of Preharvest Sprouting through Hormone Engineering and Germination Recovery by Chemical Biology

    PubMed Central

    Nonogaki, Mariko; Nonogaki, Hiroyuki

    2017-01-01

    Vivipary, germination of seeds on the maternal plant, is observed in nature and provides ecological advantages in certain wild species, such as mangroves. However, precocious seed germination in agricultural species, such as preharvest sprouting (PHS) in cereals, is a serious issue for food security. PHS reduces grain quality and causes economical losses to farmers. PHS can be prevented by translating the basic knowledge of hormone biology in seeds into technologies. Biosynthesis of abscisic acid (ABA), which is an essential hormone for seed dormancy, can be engineered to enhance dormancy and prevent PHS. Enhancing nine-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting enzyme of ABA biosynthesis, through a chemically induced gene expression system, has successfully been used to suppress germination of Arabidopsis seeds. The more advanced system NCED positive-feedback system, which amplifies ABA biosynthesis in a seed-specific manner without chemical induction, has also been developed. The proofs of concept established in the model species are now ready to be applied to crops. A potential problem is recovery of germination from hyperdormant crop grains. Hyperdormancy induced by the NCED systems can be reversed by inducing counteracting genes, such as NCED RNA interference or gibberellin (GA) biosynthesis genes. Alternatively, seed sensitivity to ABA can be modified to rescue germination using the knowledge of chemical biology. ABA antagonists, which were developed recently, have great potential to recover germination from the hyperdormant seeds. Combination of the dormancy-imposing and -releasing approaches will establish a comprehensive technology for PHS prevention and germination recovery. PMID:28197165

  15. Prevention of Preharvest Sprouting through Hormone Engineering and Germination Recovery by Chemical Biology.

    PubMed

    Nonogaki, Mariko; Nonogaki, Hiroyuki

    2017-01-01

    Vivipary, germination of seeds on the maternal plant, is observed in nature and provides ecological advantages in certain wild species, such as mangroves. However, precocious seed germination in agricultural species, such as preharvest sprouting (PHS) in cereals, is a serious issue for food security. PHS reduces grain quality and causes economical losses to farmers. PHS can be prevented by translating the basic knowledge of hormone biology in seeds into technologies. Biosynthesis of abscisic acid (ABA), which is an essential hormone for seed dormancy, can be engineered to enhance dormancy and prevent PHS. Enhancing nine-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting enzyme of ABA biosynthesis, through a chemically induced gene expression system, has successfully been used to suppress germination of Arabidopsis seeds. The more advanced system NCED positive-feedback system, which amplifies ABA biosynthesis in a seed-specific manner without chemical induction, has also been developed. The proofs of concept established in the model species are now ready to be applied to crops. A potential problem is recovery of germination from hyperdormant crop grains. Hyperdormancy induced by the NCED systems can be reversed by inducing counteracting genes, such as NCED RNA interference or gibberellin (GA) biosynthesis genes. Alternatively, seed sensitivity to ABA can be modified to rescue germination using the knowledge of chemical biology. ABA antagonists, which were developed recently, have great potential to recover germination from the hyperdormant seeds. Combination of the dormancy-imposing and -releasing approaches will establish a comprehensive technology for PHS prevention and germination recovery.

  16. Human growth hormone prevents the protein catabolic side effects of prednisone in humans.

    PubMed Central

    Horber, F F; Haymond, M W

    1990-01-01

    Prednisone treatment causes protein wasting and adds additional risks to a patient, whereas human growth hormone (hGH) treatment causes positive nitrogen balance. To determine whether concomitant administration of hGH prevents the protein catabolic effects of prednisone, four groups of eight healthy volunteers each were studied using isotope dilution and nitrogen balance techniques after 7 d of placebo, hGH alone (0.1 mg.kg-1.d-1), prednisone alone (0.8 mg.kg-1.d-1), or prednisone plus hGH (n = 8 in each group). Whether protein balance was calculated from the leucine kinetic data or nitrogen balance values, prednisone alone induced protein wasting (P less than 0.001), whereas hGH alone resulted in positive (P less than 0.001) protein balance, when compared to the placebo-treated subjects. When hGH was added to prednisone therapy, the glucocorticoid-induced protein catabolism was prevented. Using leucine kinetic data, negative protein balance during prednisone was due to increased (P less than 0.05) proteolysis, whereas hGH had no effect on proteolysis and increased (P less than 0.01) whole body protein synthesis. During combined treatment, estimates of proteolysis and protein synthesis were similar to those observed in the placebo treated control group. In conclusion, human growth hormone may have a distinct role in preventing the protein losses associated with the administration of pharmacologic doses of glucocorticosteroids in humans. PMID:2195062

  17. Naringenin and 17beta-estradiol coadministration prevents hormone-induced human cancer cell growth.

    PubMed

    Bulzomi, Pamela; Bolli, Alessandro; Galluzzo, Paola; Leone, Stefano; Acconcia, Filippo; Marino, Maria

    2010-01-01

    Flavonoids have been described as health-promoting, disease-preventing dietary components. In vivo and in vitro experiments also support a protective effect of flavonoids to reduce the incidence of certain hormone-responsive cancers. In particular, our previous results indicate that the flavanone naringenin (Nar), decoupling estrogen receptor alpha (ERalpha) action mechanisms, drives cancer cells to apoptosis. Because these studies were conducted in the absence of the endogenous hormone 17beta-estradiol (E2), the physiological relevance of these findings is not clear. We investigate whether the antiproliferative Nar effect persists in the presence of physiological E2 concentration (i.e. 10 nM), using both ERalpha-transfected (HeLa cells) and ERalpha-containing (HepG2 cells) cancer cell lines. Ligand saturation experiments indicate that Nar decreases the binding of E2 to ERalpha without impairing the estrogen response element (ERE)-driven reporter plasmid activity. In contrast, Nar stimulation prevents E2-induced extracellular regulated kinases (ERK1/2) and AKT activation and still induces the activation of p38, the proapoptotic member of mitogen-activating protein kinase (MAPK) family. As a consequence, Nar stimulation impedes the E2-induced transcription of cyclin D1 promoter and reverts the E2-induced cell proliferation, driving cancer cell to apoptosis. Thus, these results suggest that coexposure to this low-affinity, low-potency ligand for ERalpha specifically antagonizes the E2-induced ERalpha-dependent rapid signals by reducing the effect of the endogenous hormone in promoting cellular proliferation. As a whole, these data indicate that Nar is an excellent candidate as a chemopreventive agent in E2-dependent cancers.

  18. Protein synthesis inhibitors prevent both spontaneous and hormone-dependent maturation of isolated mouse oocytes

    SciTech Connect

    Downs, S.M. )

    1990-11-01

    The present study was carried out to examine the role of protein synthesis in mouse oocyte maturation in vitro. In the first part of this study, the effects of cycloheximide (CX) were tested on spontaneous meiotic maturation when oocytes were cultured in inhibitor-free medium. CX reversibly suppressed maturation of oocytes as long as maturation was either initially prevented by the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine (IBMX), or delayed by follicle-stimulating hormone (FSH). In the second part of this study, the actions of protein synthesis inhibitors were tested on hormone-induced maturation. CEO were maintained in meiotic arrest for 21-22 h with hypoxanthine, and germinal vesicle breakdown (GVB) was induced with follicle-stimulating hormone (FSH). Three different protein synthesis inhibitors (CX, emetine (EM), and puromycin (PUR)) each prevented the stimulatory action of FSH on GVB in a dose-dependent fashion. This was accompanied by a dose-dependent suppression of 3H-leucine incorporation by oocyte-cumulus cell complexes. The action of these inhibitors on FSH- and epidermal growth factor (EGF)-induced GVB was next compared. All three drugs lowered the frequency of GVB in the FSH-treated groups, below even that of the controls (drug + hypoxanthine); the drugs maintained meiotic arrest at the control frequencies in the EGF-treated groups. Puromycin aminonucleoside, an analog of PUR with no inhibitory action on protein synthesis, had no effect. The three inhibitors also suppressed the stimulatory action of FSH on oocyte maturation when meiotic arrest was maintained with the cAMP analog, dbcAMP.

  19. [The role of thyroid hormones in prevention of disorders of myocardial contractile function and antioxidant activity during heat stress].

    PubMed

    Bozhko, A P; Gorodetskaia, I V

    1998-03-01

    The stress of heat under conditions of immobilisation induced an obvious depression of the cardiodynamic parameters. This correlated well with intensification of lipoperoxydation and a drop in the myocardial antioxydant activity. Small doses of thyroid hormones prevented the decline of the parameters, normalisied myocardial free-radical homeostasis in result of activation of superoxyddysmutase, catalase, and general antioxydant activity.

  20. Does hormone therapy affect blood pressure changes in the Diabetes Prevention Program?

    PubMed Central

    Kim, Catherine; Golden, Sherita H.; Kong, Shengchun; Nan, Bin; Mather, Kieren J.; Barrett-Connor, Elizabeth

    2013-01-01

    Objectives To examine whether blood pressure reductions differ by estrogen use among overweight glucose-intolerant women. Methods We conducted a secondary analysis of postmenopausal Diabetes Prevention Program participants who used oral estrogen with or without progestogen at baseline and at 1-year follow-up (n=324) vs. those who did not use at either time point (n=382). Systolic (SBP) and diastolic blood pressure (DBP) changes were examined by randomization arm (intensive lifestyle change (ILS), metformin 850 mg twice daily, or placebo). Associations between changes in blood pressure with changes in sex hormone binding globulin, estradiol, testosterone, and dehydroepiandrosterone were also examined. Results Estrogen users and non-users had similar prevalences of baseline hypertension (33% vs. 34%, p=0.82) and use of blood pressure medications at baseline (p=0.25) and follow-up (p=0.10). Estrogen users and non-users randomized to ILS had similar decreases in SBP (-3.3 vs. -4.7 mmHg, p=0.45) and DBP (-3.1 vs. -4.7 mmHg, p=0.16). Among estrogen users, women randomized to ILS had significant declines in SBP (p=0.016) and DBP (p=0.009) vs. placebo. Among non-users, women randomized to ILS had significant declines in DBP (p=0.001) vs. placebo, but declines in SBP were not significant (p=0.11). Metformin was not associated with blood pressure reductions vs. placebo regardless of estrogen therapy. Blood pressure changes were not associated with changes in sex hormones regardless of estrogen therapy. Conclusions Among overweight women with dysglycemia, the magnitude of blood pressure reductions after ILS was unrelated to postmenopausal estrogen use. PMID:23942251

  1. Choristoneura fumiferana entomopoxvirus prevents metamorphosis and modulates juvenile hormone and ecdysteroid titers.

    PubMed

    Palli, S R; Ladd, T R; Tomkins, W L; Shu, S; Ramaswamy, S B; Tanaka, Y; Arif, B; Retnakaran, A

    2000-01-01

    Larvae of the spruce budworm, Choristoneura fumiferana, infected with C. fumiferana entomopoxvirus (CfEPV) continue to feed and grow without undergoing metamorphosis and die as moribund larvae. The lethal dose (LD(50)) and lethal time (LT(50)) values for fourth instar larvae are 2.4 spheroids and 25.2 days, respectively. One hundred percent of the control fourth instar larvae, which were fed water instead of virus, pupated by 18 days post feeding (PF). Only 30% of the larvae that were fed the LD(50) dose and none of the larvae that were fed the LD(95) dose pupated by 18 days PF. Of the control larvae, 95% became adults by 24 days PF, whereas in the treated group only 2% of larvae that were fed the LD(50) dose and none of the larvae that were fed the LD(95) dose became adults by 24 days PF. Some of the virus-treated larvae died as either larval/pupal or pupal/adult intermediates. These phenotypic effects were similar to the larval/pupal and pupal/adult intermediates, resulting from treating larvae with juvenile hormone (JH) or its analogs, which suggests that EPV may cause such abnormalities by modulating JH and/or ecdysteroid titers. In untreated sixth instar larvae the JH titer decreased to low levels by 24 h after ecdysis and remained low throughout larval life. EPV-fed sixth instar larvae had 2112 pg/ml on day 0, 477 pg/ml on day 1 and 875 pg/ml on day 8 of the sixth instar. Control larvae contained 860 ng of ecdysteroids per ml hemolymph on day 8 of the sixth instar, whereas EPV-treated larvae of the same age (30 days PF) had only 107 ng of ecdysteroids per ml of hemolymph. Thus, EPV infection results in increased JH titer and decreased ecdysteroid titer. Northern hybridization analysis was performed using RNA isolated from control and EPV-fed larvae and cDNA probes for (i) juvenile hormone esterase (JHE), which is JH inducible, (ii) Choristoneura hormone receptor 3 (CHR3), which is ecdysteroid inducible, and (iii) larval specific diapause associated protein 1

  2. Hormone replacement therapy for preventing cardiovascular disease in post-menopausal women

    PubMed Central

    Sanchez, Rafael Gabriel; Sanchez Gomez, Luis Maria; Carmona, Loreto; Figuls, Marta Roqué i; Cosp, Xavier Bonfill

    2014-01-01

    Background There is apparently compelling evidence, from observational studies, that hormone replacement therapy (HRT) may have benefits in reducing cardiovascular events in post-menopausal women. However, these observational data are subject to biases and confounding and require support from formally designed randomised controlled trials of the effects of HRT on cardiovascular disease risk. Objectives To assess the effects of HRT for the primary and secondary prevention of cardiovascular diseases in post-menopausal women. Search methods We searched MEDLINE (1998 to December 2002)), EMBASE (1998 to December 2002), the Cochrane Controlled Trials Register (CCTR) (Issue 4 2002), the National Research Register (1998 to present), ClinicalTrials.gov (1998 to present), and the database of Spanish Clinical Trials (1998 to present) and reference lists of articles. Selection criteria Randomised controlled trials comparing HRT with controls (placebo or no treatment) with a minimum follow up of 6 months for treating or preventing cardiovascular disease in postmenopausal women with or without cardiovascular disease. Data collection and analysis Three independent reviewers extracted information from the articles, solving discrepancies by consensus. All outcomes studied were dichotomous. Risk ratios and 95% confidence intervals (CI) were calculated for each study and plotted. Random effects meta-analysis was used in efficacy outcomes (cardiovascular events) and fixed-effects meta-analysis in variables regarding side effects (deep venous thrombosis). Main results No protective effect of HRT was seen for any of the cardiovascular outcomes assessed: all cause mortality, cardiovascular death, non-fatal MI, venous thromboemboli or stroke. Higher risks of venous thromboembolic events (Relative risk (RR) 2.15, 95% CI 1.61 to 2.86), pulmonary embolus (RR 2.15, 95% CI 1.41 to 3.28), and stroke (RR 1.44, 95% CI 1.10 to 1.89) was found in those randomised to HRT compared with placebo. No

  3. GABAergic agents prevent alpha-melanocyte stimulating hormone induced anxiety and anorexia in rats.

    PubMed

    Rao, T Lakshmi; Kokare, Dadasaheb M; Sarkar, Sumit; Khisti, Rahul T; Chopde, Chandrabhan T; Subhedar, Nishikant

    2003-12-01

    Alpha-melanocyte stimulating hormone (alpha-MSH) is a hypothalamic peptide believed to play a tonic inhibitory role in feeding and energy homeostasis. Systemic administration of alpha-MSH is known to produce anorexia and anxiety. Since synaptic contacts between gamma-aminobutyric acid (GABA)ergic terminals and alpha-MSH neurons in the hypothalamus have been reported, the present work was undertaken to refine our knowledge on the role of GABAergic systems in anxiety and anorexia induced by intracerebroventricular (icv) administration of alpha-MSH in rats. The anxiety was assessed by elevated plus maze, and spontaneous food consumption was monitored during dark cycle. Prior administration of diazepam and muscimol that promote the function of GABA(A) receptors reversed the anxiogenic response and decreased food intake elicited by alpha-MSH. In contrast, bicuculline, the GABA(A) receptor antagonist, not only enhanced the effects of alpha-MSH but also prevented the influence of GABAergic drugs on alpha-MSH-induced anorexia and anxiety. These findings suggest that alpha-MSH-induced anxiety and anorexia are due to its negative influence on GABAergic system.

  4. Preventive effects of chronic exogenous growth hormone levels on diet-induced hepatic steatosis in rats

    PubMed Central

    2010-01-01

    Background Non-alcoholic fatty liver disease (NAFLD), which is characterized by hepatic steatosis, can be reversed by early treatment. Several case reports have indicated that the administration of recombinant growth hormone (GH) could improve fatty liver in GH-deficient patients. Here, we investigated whether chronic exogenous GH levels could improve hepatic steatosis induced by a high-fat diet in rats, and explored the underlying mechanisms. Results High-fat diet-fed rats developed abdominal obesity, fatty liver and insulin resistance. Chronic exogenous GH improved fatty liver, by reversing dyslipidaemia, fat accumulation and insulin resistance. Exogenous GH also reduced serum tumour necrosis factor-alpha (TNF-alpha) levels, and ameliorated hepatic lipid peroxidation and oxidative stress. Hepatic fat deposition was also reduced by exogenous GH levels, as was the expression of adipocyte-derived adipokines (adiponectin, leptin and resistin), which might improve lipid metabolism and hepatic steatosis. Exogenous GH seems to improve fatty liver by reducing fat weight, improving insulin sensitivity and correcting oxidative stress, which may be achieved through phosphorylation or dephosphorylation of a group of signal transducers and activators of hepatic signal transduction pathways. Conclusions Chronic exogenous GH has positive effects on fatty liver and may be a potential clinical application in the prevention or reversal of fatty liver. However, chronic secretion of exogenous GH, even at a low level, may increase serum glucose and insulin levels in rats fed a standard diet, and thus increase the risk of insulin resistance. PMID:20653983

  5. Colorectal cancer incidence and postmenopausal hormone use by type, recency, and duration in cancer prevention study II.

    PubMed

    Hildebrand, Janet S; Jacobs, Eric J; Campbell, Peter T; McCullough, Marjorie L; Teras, Lauren R; Thun, Michael J; Gapstur, Susan M

    2009-11-01

    The Women's Health Initiative randomized trials showed a reduction in colorectal cancer risk with the use of estrogen plus progesterone (E + P), but not with estrogen alone (E-only), after intervention periods <7 years. Using data from the Cancer Prevention Study II Nutrition Cohort, we examined associations of colorectal cancer risk with E-only and E + P, including analyses by recency and duration of hormone use. During 13.2 years of follow-up, 776 cases of invasive colorectal cancer occurred among 67,412 postmenopausal women participants. Cox proportional hazards models were used to estimate multivariate-adjusted relative risks (RR) and 95% confidence intervals (95% CI) of colorectal cancer for current and former hormone users according to hormone type and duration of use. Relative to women who never used postmenopausal hormones, current, but not former, use of E-only was associated with a reduced risk of colorectal cancer (RR 0.76; 95% CI, 0.59-0.97). Among current E-only users, duration of use was inversely and linearly associated with risk (P(trend) = 0.01). Use of E-only for <5 years was not associated with reduced risk, whereas use for >or=20 years was associated with a 45% reduction in risk (RR, 0.55; 95% CI, 0.36-0.86). There were no statistically significant associations between E + P and colorectal cancer risk. Our results suggest a strong inverse association of long-term use of E-only with colorectal cancer risk, underscoring the importance of collecting data on duration of hormone use in epidemiologic studies of postmenopausal hormones and risk of disease.

  6. Postoperative hormonal therapy prevents recovery of neurological damage after surgery in patients with breast cancer

    PubMed Central

    Sekiguchi, Atsushi; Sato, Chiho; Matsudaira, Izumi; Kotozaki, Yuka; Nouchi, Rui; Takeuchi, Hikaru; Kawai, Masaaki; Tada, Hiroshi; Ishida, Takanori; Taki, Yasuyuki; Ohuchi, Noriaki; Kawashima, Ryuta

    2016-01-01

    Cancer survivors are exposed to several risk factors for cognitive dysfunction, such as general anesthesia, surgical trauma, and adjuvant therapies. In our recent study we showed that thalamic volume reduction and attentional dysfunction occurred shortly after surgery. Here, we examined the 6-month prognosis of the 20 patients with breast cancer who underwent surgery. Seven patients did not receive any adjuvant therapy after the surgery and 13 patients received a hormonal therapy after the surgery. We assessed their attentional functions, and thalamic volumes shortly after and 6 months after surgery. We found a significant group x time interaction in the attentional functions (p = 0.033) and the right thalamus (p <  0.05, small volume correction), suggesting the thalamic volume reduction and attentional dysfunction recovered in patients without adjuvant therapy. Our findings provide a better understanding of the potential role of hormonal therapy in relation to the cognitive dysfunction of cancer survivors. PMID:27708377

  7. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein.

    PubMed

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-09-19

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7.

  8. Experiences of a long-term randomized controlled prevention trial in a maiden environment: Estonian Postmenopausal Hormone Therapy trial

    PubMed Central

    Hovi, Sirpa-Liisa; Veerus, Piret; Rahu, Mati; Hemminki, Elina

    2008-01-01

    Background Preventive drugs require long-term trials to show their effectiveness or harms and often a lot of changes occur during post-marketing studies. The purpose of this article is to describe the research process in a long-term randomized controlled trial and discuss the impact and consequences of changes in the research environment. Methods The Estonian Postmenopausal Hormone Therapy trial (EPHT), originally planned to continue for five years, was planned in co-operation with the Women's International Study of Long-Duration Oestrogen after Menopause (WISDOM) in the UK. In addition to health outcomes, EPHT was specifically designed to study the impact of postmenopausal hormone therapy (HT) on health services utilization. Results After EPHT recruited in 1999–2001 the Women's Health Initiative (WHI) in the USA decided to stop the estrogen-progestin trial after a mean of 5.2 years in July 2002 because of increased risk of breast cancer and later in 2004 the estrogen-only trial because HT increased the risk of stroke, decreased the risk of hip fracture, and did not affect coronary heart disease incidence. WISDOM was halted in autumn 2002. These decisions had a major influence on EPHT. Conclusion Changes in Estonian society challenged EPHT to find a balance between the needs of achieving responses to the trial aims with a limited budget and simultaneously maintaining the safety of trial participants. Flexibility was the main key for success. Rapid changes are not limited only to transiting societies but are true also in developed countries and the risk must be included in planning all long-term trials. The role of ethical and data monitoring committees in situations with emerging new data from other studies needs specification. Longer funding for preventive trials and more flexibility in budgeting are mandatory. Who should prove the effectiveness of an (old) drug for a new preventive indication? In preventive drug trials companies may donate drugs but they take a

  9. Testosterone Replacement Therapy Prevents Alterations of Coronary Vascular Reactivity Caused by Hormone Deficiency Induced by Castration.

    PubMed

    Rouver, Wender Nascimento; Delgado, Nathalie Tristão Banhos; Menezes, Jussara Bezerra; Santos, Roger Lyrio; Moyses, Margareth Ribeiro

    2015-01-01

    The present study aimed to determine the effects of chronic treatment with different doses of testosterone on endothelium-dependent coronary vascular reactivity in male rats. Adult male rats were divided into four experimental groups: control (SHAM), castrated (CAST), castrated and immediately treated subcutaneously with a physiological dose (0.5 mg/kg/day, PHYSIO group) or supraphysiological dose (2.5 mg/kg/day, SUPRA group) of testosterone for 15 days. Systolic blood pressure (SBP) was assessed at the end of treatment through tail plethysmography. After euthanasia, the heart was removed and coronary vascular reactivity was assessed using the Langendorff retrograde perfusion technique. A dose-response curve for bradykinin (BK) was constructed, followed by inhibition with 100 μM L-NAME, 2.8 μM indomethacin (INDO), L-NAME + INDO, or L-NAME + INDO + 0.75 μM clotrimazole (CLOT). We observed significant endothelium-dependent, BK-induced coronary vasodilation, which was abolished in the castrated group and restored in the PHYSIO and SUPRA groups. Furthermore, castration modulated the lipid and hormonal profiles and decreased body weight, and testosterone therapy restored all of these parameters. Our results revealed an increase in SBP in the SUPRA group. In addition, our data led us to conclude that physiological concentrations of testosterone may play a beneficial role in the cardiovascular system by maintaining an environment that is favourable for the activity of an endothelium-dependent vasodilator without increasing SBP.

  10. Cardiac-specific elevations in thyroid hormone enhance contractility and prevent pressure overload-induced cardiac dysfunction

    PubMed Central

    Trivieri, Maria Giovanna; Oudit, Gavin Y.; Sah, Rajan; Kerfant, Benoit-Gilles; Sun, Hui; Gramolini, Anthony O.; Pan, Yan; Wickenden, Alan D.; Croteau, Walburga; Morreale de Escobar, Gabriella; Pekhletski, Roman; St. Germain, Donald; MacLennan, David H.; Backx, Peter H.

    2006-01-01

    Thyroid hormone (TH) is critical for cardiac development and heart function. In heart disease, TH metabolism is abnormal, and many biochemical and functional alterations mirror hypothyroidism. Although TH therapy has been advocated for treating heart disease, a clear benefit of TH has yet to be established, possibly because of peripheral actions of TH. To assess the potential efficacy of TH in treating heart disease, type 2 deiodinase (D2), which converts the prohormone thyroxine to active triiodothyronine (T3), was expressed transiently in mouse hearts by using the tetracycline transactivator system. Increased cardiac D2 activity led to elevated cardiac T3 levels and to enhanced myocardial contractility, accompanied by increased Ca2+ transients and sarcoplasmic reticulum (SR) Ca2+ uptake. These phenotypic changes were associated with up-regulation of sarco(endo)plasmic reticulum calcium ATPase (SERCA) 2a expression as well as decreased Na+/Ca2+ exchanger, β-myosin heavy chain, and sarcolipin (SLN) expression. In pressure overload, targeted increases in D2 activity could not block hypertrophy but could completely prevent impaired contractility and SR Ca2+ cycling as well as altered expression patterns of SERCA2a, SLN, and other markers of pathological hypertrophy. Our results establish that elevated D2 activity in the heart increases T3 levels and enhances cardiac contractile function while preventing deterioration of cardiac function and altered gene expression after pressure overload. PMID:16595628

  11. Disruption of Growth Hormone Receptor Prevents Calorie Restriction from Improving Insulin Action and Longevity

    PubMed Central

    Bonkowski, Michael S.; Dominici, Fernando P.; Arum, Oge; Rocha, Juliana S.; Al Regaiey, Khalid A.; Westbrook, Reyhan; Spong, Adam; Panici, Jacob; Masternak, Michal M.; Kopchick, John J.; Bartke, Andrzej

    2009-01-01

    Most mutations that delay aging and prolong lifespan in the mouse are related to somatotropic and/or insulin signaling. Calorie restriction (CR) is the only intervention that reliably increases mouse longevity. There is considerable phenotypic overlap between long-lived mutant mice and normal mice on chronic CR. Therefore, we investigated the interactive effects of CR and targeted disruption or knock out of the growth hormone receptor (GHRKO) in mice on longevity and the insulin signaling cascade. Every other day feeding corresponds to a mild (i.e. 15%) CR which increased median lifespan in normal mice but not in GHRKO mice corroborating our previous findings on the effects of moderate (30%) CR on the longevity of these animals. To determine why insulin sensitivity improves in normal but not GHRKO mice in response to 30% CR, we conducted insulin stimulation experiments after one year of CR. In normal mice, CR increased the insulin stimulated activation of the insulin signaling cascade (IR/IRS/PI3K/AKT) in liver and muscle. Livers of GHRKO mice responded to insulin by increased activation of the early steps of insulin signaling, which was dissipated by altered PI3K subunit abundance which putatively inhibited AKT activation. In the muscle of GHRKO mice, there was elevated downstream activation of the insulin signaling cascade (IRS/PI3K/AKT) in the absence of elevated IR activation. Further, we found a major reduction of inhibitory Ser phosphorylation of IRS-1 seen exclusively in GHRKO muscle which may underpin their elevated insulin sensitivity. Chronic CR failed to further modify the alterations in insulin signaling in GHRKO mice as compared to normal mice, likely explaining or contributing to the absence of CR effects on insulin sensitivity and longevity in these long-lived mice. PMID:19234595

  12. The Association of Elective Hormone Therapy with Changes in Lipids Among Glucose Intolerant Postmenopausal Women in the Diabetes Prevention Program

    PubMed Central

    Golden, Sherita H.; Kim, Catherine; Barrett-Connor, Elizabeth; Nan, Bin; Kong, Shengchun; Goldberg, Ronald

    2013-01-01

    Objective It is unclear how lipids change in response to lifestyle modification or metformin among postmenopausal glucose intolerant women using and not using hormone therapy (HT). We examined the one-year changes in lipids among postmenopausal, prediabetic women in the Diabetes Prevention Program (DPP), and whether changes were mediated by sex hormones. Materials/Methods We performed a secondary analysis of a randomized controlled trial of 342 women who used HT at baseline and year 1 and 382 women who did not use HT at either time point. Interventions included intensive lifestyle (ILS) with goals of weight reduction of at least 7% of initial weight and 150 minutes per week of moderate intensity exercise, or metformin or placebo administered 850 mg up to twice a day. Women were not randomized to HT. Main outcome measures were changes between baseline and study year 1 in low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides. Results Compared to placebo, both ILS and metformin significantly reduced LDL-C and raised HDL-C among HT users, changes partially explained by change in estradiol and testosterone but independent of changes in waist circumference and 1/fasting insulin. In contrast, DPP interventions had no effect on LDL-C and HDL-C among non-HT users. ILS significantly lowered triglycerides among non-users but did not significantly change triglycerides among HT users. Metformin did not significantly change triglycerides among non-users but increased triglycerides among HT users. Conclusions The beneficial effects of ILS and metformin on lowering LDL-C and raising HDL-C differ depending upon concurrent HT use. PMID:23660512

  13. Physical activity in the prevention and amelioration of osteoporosis in women : interaction of mechanical, hormonal and dietary factors.

    PubMed

    Borer, Katarina T

    2005-01-01

    Osteoporosis is a serious health problem that diminishes quality of life and levies a financial burden on those who fear and experience bone fractures. Physical activity as a way to prevent osteoporosis is based on evidence that it can regulate bone maintenance and stimulate bone formation including the accumulation of mineral, in addition to strengthening muscles, improving balance, and thus reducing the overall risk of falls and fractures. Currently, our understanding of how to use exercise effectively in the prevention of osteoporosis is incomplete. It is uncertain whether exercise will help accumulate more overall peak bone mass during childhood, adolescence and young adulthood. Also, the consistent effectiveness of exercise to increase bone mass, or at least arrest the loss of bone mass after menopause, is also in question. Within this framework, section 1 introduces mechanical characteristics of bones to assist the reader in understanding their responses to physical activity. Section 2 reviews hormonal, nutritional and mechanical factors necessary for the growth of bones in length, width and mineral content that produce peak bone mass in the course of childhood and adolescence using a large sample of healthy Caucasian girls and female adolescents for reference. Effectiveness of exercise is evaluated throughout using absolute changes in bone with the underlying assumption that useful exercise should produce changes that approximate or exceed the absolute magnitude of bone parameters in a healthy reference population. Physical activity increases growth in width and mineral content of bones in girls and adolescent females, particularly when it is initiated before puberty, carried out in volumes and at intensities seen in athletes, and accompanied by adequate caloric and calcium intakes. Similar increases are seen in young women following the termination of statural growth in response to athletic training, but not to more limited levels of physical activity

  14. Sex Hormone Binding Globulin and Sex Steroids Among Premenopausal Women in the Diabetes Prevention Program

    PubMed Central

    Pi-Sunyer, Xavier; Barrett-Connor, Elizabeth; Stentz, Frankie B.; Murphy, Mary Beth; Kong, Shengchun; Nan, Bin; Kitabchi, Abbas E.

    2013-01-01

    Context: It is unknown whether intensive lifestyle modification (ILS) or metformin changes sex steroids among premenopausal women without a history of polycystic ovarian syndrome (PCOS). Objectives: We examined 1-year intervention impact on sex steroids (estradiol, testosterone, dehydroepiandrosterone, and androstenedione [A4]) and SHBG and differences by race/ethnicity. Participants: A subgroup of Diabetes Prevention Program participants who were premenopausal, not using estrogen, without a history of PCOS or irregular menses, and who reported non-Hispanic white (NHW), Hispanic, or African-American race/ethnicity (n = 301). Interventions: Randomization arms were 1) ILS with the goals of weight reduction of 7% of initial weight and 150 minutes per week of moderate intensity exercise, 2) metformin 850 mg twice a day, or 3) placebo. Results: Neither intervention changed sex steroids compared to placebo. ILS, but not metformin, increased median SHBG by 3.1 nmol/L (∼11%) compared to decreases of 1.1 nmol/L in the placebo arm (P < .05). This comparison remained significant after adjustment for changes in covariates including waist circumference. However, associations with glucose were not significant. Median baseline A4 was lower in Hispanics compared to NHWs (5.7 nmol/L vs 6.5 nmol/L, P < .05) and increases in A4 were greater in Hispanics compared to NHWs (3.0 nmol/ vs 1.2 nmol/L, P < .05), and these differences did not differ significantly by intervention arm. No other racial/ethnic differences were significant. Conclusions: Among premenopausal glucose-intolerant women, no intervention changed sex steroids. ILS increased SHBG, although associations with glucose were not significant. SHBG and sex steroids were similar by race/ethnicity, with the possible exception of lower baseline A4 levels in Hispanics compared to NHWs. PMID:23709655

  15. Intermittent Administration of Parathyroid Hormone [1–34] Prevents Particle-Induced Periprosthetic Osteolysis in a Rat Model

    PubMed Central

    Bi, Fanggang; Shi, Zhongli; Zhou, Chenhe; Liu, An; Shen, Yue; Yan, Shigui

    2015-01-01

    We examined whether intermittent administration of parathyroid hormone [1–34] (PTH[1–34]; 60 μg/kg/day) can prevent the negative effects of titanium (Ti) particles on implant fixation and periprosthetic osteolysis in a rat model. Eighteen adult male rats (12 weeks old, bones still growing) received intramedullary Ti implants in their bilateral femurs; 6 rats from the blank group received vehicle injections, and 12 rats from the control group and PTH treatment group received Ti particle injections at the time of operation and intra-articular injections 2 and 4 weeks postoperatively. Six of the rats that received Ti particles from the PTH group also received PTH[1–34] treatment. Six weeks postoperatively, all specimens were collected for assessment by X-ray, micro-CT, biomechanical, scanning electron microscopy (SEM), and dynamic histomorphometry. A lower BMD, BV/TV, Tb.N, maximal fixation strength, and mineral apposition rate were observed in the control group compared to the blank group, demonstrating that a periprosthetic osteolysis model had been successfully established. Administration of PTH[1–34] significantly increased the bone mineral density of the distal femur, BV/TV, Tb.N, Tb.Th, Tb.Sp, Con.D, SMI, and maximal fixation strength in the PTH group compared to that in the control group. SEM revealed higher bone–implant contact, thicker lamellar bone, and larger trabecular bone area in the PTH group than in the control group. A higher mineral apposition rate was observed in the PTH group compared to both the blank and control groups. These findings imply that intermittent administration of PTH[1–34] prevents periprosthetic osteolysis by promoting bone formation. The effects of PTH[1–34] were evaluated at a suprapharmacological dosage to the human equivalent in rats; therefore, additional studies are required to demonstrate its therapeutic potential in periprosthetic osteolysis. PMID:26441073

  16. Intermittent Administration of Parathyroid Hormone [1-34] Prevents Particle-Induced Periprosthetic Osteolysis in a Rat Model.

    PubMed

    Bi, Fanggang; Shi, Zhongli; Zhou, Chenhe; Liu, An; Shen, Yue; Yan, Shigui

    2015-01-01

    We examined whether intermittent administration of parathyroid hormone [1-34] (PTH[1-34]; 60 μg/kg/day) can prevent the negative effects of titanium (Ti) particles on implant fixation and periprosthetic osteolysis in a rat model. Eighteen adult male rats (12 weeks old, bones still growing) received intramedullary Ti implants in their bilateral femurs; 6 rats from the blank group received vehicle injections, and 12 rats from the control group and PTH treatment group received Ti particle injections at the time of operation and intra-articular injections 2 and 4 weeks postoperatively. Six of the rats that received Ti particles from the PTH group also received PTH[1-34] treatment. Six weeks postoperatively, all specimens were collected for assessment by X-ray, micro-CT, biomechanical, scanning electron microscopy (SEM), and dynamic histomorphometry. A lower BMD, BV/TV, Tb.N, maximal fixation strength, and mineral apposition rate were observed in the control group compared to the blank group, demonstrating that a periprosthetic osteolysis model had been successfully established. Administration of PTH[1-34] significantly increased the bone mineral density of the distal femur, BV/TV, Tb.N, Tb.Th, Tb.Sp, Con.D, SMI, and maximal fixation strength in the PTH group compared to that in the control group. SEM revealed higher bone-implant contact, thicker lamellar bone, and larger trabecular bone area in the PTH group than in the control group. A higher mineral apposition rate was observed in the PTH group compared to both the blank and control groups. These findings imply that intermittent administration of PTH[1-34] prevents periprosthetic osteolysis by promoting bone formation. The effects of PTH[1-34] were evaluated at a suprapharmacological dosage to the human equivalent in rats; therefore, additional studies are required to demonstrate its therapeutic potential in periprosthetic osteolysis.

  17. Prevention and treatment of bone loss in patients with nonmetastatic breast or prostate cancer who receive hormonal ablation therapy.

    PubMed

    Limburg, Connie; Maxwell, Cathy; Mautner, Beatrice

    2014-04-01

    Hormone ablation therapy is a mainstay in the treatment of breast and prostate cancers. However, aromatase inhibitors (AIs) used in postmenopausal women with breast cancer and androgen-deprivation therapy (ADT) used in men with prostate cancer contribute to substantial bone loss, thereby increasing the risk of osteoporotic fractures. Evidence-based guidelines, therefore, urge oncology practices to screen these patients for bone loss and, if needed, provide treatment to maintain bone health. In addition to lifestyle modification and calcium or vitamin D supplementation, bone protection strategies include treatment with bisphosphonates and denosumab, a monoclonal antibody against RANK ligand. Identification of patients at greater risk for bone loss and fracture and proper interventions can reduce fracture rates. Oncology nurses can play an important role in screening these patients. The purpose of this article is to inform oncology nurses about the effects of cancer treatment on bone health, review current prevention and treatment options for cancer treatment-induced bone loss, and discuss recommendations for identifying high-risk individuals.

  18. Molecular mechanisms involved in the hormonal prevention of aging in the rat.

    PubMed

    Tresguerres, Jesús A F; Kireev, Roman; Tresguerres, Ana F; Borras, Consuelo; Vara, Elena; Ariznavarreta, Carmen

    2008-02-01

    Previous data from our group have provided support for the role of GH, melatonin and estrogens in the prevention of aging of several physiological parameters from bone, liver metabolism, vascular activity, the central nervous system (CNS), the immune system and the skin. In the present work data on the molecular mechanisms involved are presented. A total of 140 male and female rats have been submitted to different treatments over 10 weeks, between 22 and 24 months of age. Males have been treated with GH and melatonin. Females were divided in two groups: intact and castrated at 12 months of age. The first group was treated with GH and melatonin and the second with the two latter compounds and additionally with estradiol and Phytosoya. Aging was associated with a reduction in the number of neurons of the hylus of the dentate gyrus of the hippocampus and with a reduction of neurogenesis. GH treatment increased the number of neurons but did not increase neurogenesis thus suggesting a reduction of apoptosis. This was supported by the reduction in nucleosomes and the increase in Bcl2 observed in cerebral homogenates together with an increase in sirtuin2 and a reduction of caspases 9 and 3. Melatonin, estrogen and Phytosoya treatments increased neurogenesis but did not enhance the total number of neurons. Aging induced a significant increase in mitochondrial nitric oxide in the hepatocytes, together with a reduction in the mitochondrial fraction content in cytochrome C and an increase of this compound in the cytosolic fraction. Reductions of glutathione peroxidase and glutathione S-transferase were also detected, thus indicating oxidative stress and possibly apoptosis. Treatment for 2.5 months of old rats with GH and melatonin were able to significantly and favourably affect age-induced deteriorations, thus reducing oxidative damage. Keratinocytes obtained from old rats in primary culture showed an increase in lipoperoxides, caspases 8 and 3 as well as a reduction in Bcl2

  19. Use of growth-hormone-releasing peptide-6 (GHRP-6) for the prevention of multiple organ failure.

    PubMed

    Cibrián, Danay; Ajamieh, Hussam; Berlanga, Jorge; León, Olga S; Alba, Jose S; Kim, Micheal J-T; Marchbank, Tania; Boyle, Joseph J; Freyre, Freya; Garcia Del Barco, Diana; Lopez-Saura, Pedro; Guillen, Gerardo; Ghosh, Subrata; Goodlad, Robert A; Playford, Raymond J

    2006-05-01

    Novel therapies for the treatment of MOF (multiple organ failure) are required. In the present study, we examined the effect of synthetic GHRP-6 (growth hormone-releasing peptide-6) on cell migration and proliferation using rat intestinal epithelial (IEC-6) and human colonic cancer (HT29) cells as in vitro models of injury. In addition, we examined its efficacy when given alone and in combination with the potent protective factor EGF (epidermal growth factor) in an in vivo model of MOF (using two hepatic vessel ischaemia/reperfusion protocols; 45 min of ischaemia and 45 min of reperfusion or 90 min of ischaemia and 120 min of reperfusion). In vitro studies showed that GHRP-6 directly influenced gut epithelial function as its addition caused a 3-fold increase in the rate of cell migration of IEC-6 and HT29 cells (P<0.01), but did not increase proliferation ([3H]thymidine incorporation). In vivo studies showed that, compared with baseline values, ischaemia/reperfusion caused marked hepatic and intestinal damage (histological scoring), neutrophilic infiltration (myeloperoxidase assay; 5-fold increase) and lipid peroxidation (malondialdehyde assay; 4-fold increase). Pre-treatment with GHRP-6 (120 microg/kg of body weight, intraperitoneally) alone truncated these effects by 50-85% (all P<0.05) and an additional benefit was seen when GHRP-6 was used in combination with EGF (1 mg/kg of body weight, intraperitoneally). Lung and renal injuries were also reduced by these pre-treatments. In conclusion, administration of GHRP-6, given alone or in combination with EGF to enhance its effects, may provide a novel simple approach for the prevention and treatment of MOF and other injuries of the gastrointestinal tract. In view of these findings, further studies appear justified.

  20. Hormone levels

    MedlinePlus

    Blood or urine tests can determine the levels of various hormones in the body. This includes reproductive hormones, thyroid hormones, adrenal hormones, pituitary hormones, and many others. For more information, see: ...

  1. Dietary prevention of hormone refractory prostate cancer in Lobund-Wistar rats: a review of studies in a relevant animal model.

    PubMed

    Pollard, Morris; Suckow, Mark A

    2006-12-01

    Lobund-Wistar (LW) rats, which have high testosterone levels, are predisposed to develop hormone-refractory prostate cancer (HRPC) spontaneously and by methylnitrosourea (MNU) induction, and the development of HRPC progresses through 2 stages. This paper reviews several studies in which LW rats were placed on soy-containing diets and were evaluated for development of either spontaneous or MNU-induced prostate cancer. The premalignant, testosterone-dependent stage is inhibited by testosterone deprivation. In the absence of testosterone deprivation, tumorigenesis progresses spontaneously to the testosterone-independent refractory stage. In LW rats: moderate caloric restriction prevented development of spontaneous prostate cancer; dietary 4-hydroxyphenylretinamide prevented MNU-induced prostate cancer; and dietary supplementation with soy protein isolate with high isoflavones prevented spontaneous and induced tumors and led to moderate reduction of serum testosterone. In rats 12 mo of age and younger, changing from the control diet to the soy+isoflavone diet significantly prevented progression of spontaneous tumors to the refractory stage of disease. Tumors that developed spontaneously and after MNU induction showed similar developmental stages and morphology, but MNU-induced tumors had shorter latency periods before development. The accumulated data indicate that soy-based diets are effective in the prevention of prostate cancer.

  2. Gonadotrophin-releasing hormone agonist trigger and freeze-all strategy does not prevent severe ovarian hyperstimulation syndrome: a report of three cases.

    PubMed

    Gurbuz, Ali Sami; Gode, Funda; Ozcimen, Necati; Isik, Ahmet Zeki

    2014-11-01

    Ovarian hyperstimulation syndrome (OHSS) is the most serious iatrogenic complication of IVF cycles. Although the development of effective treatment strategies for this syndrome is important, preventing OHSS is more crucial. Triggering ovulation with a gonadotrophin-releasing hormone (GnRH) agonist is one method used to avoid OHSS. In this paper, three patients who developed severe OHSS after undergoing GnRH agonist triggering and freezing of all embryos in a GnRH antagonist protocol are described. A review of the literature is also provided. This report highlights the ongoing risk of severe OHSS even after GnRH agonist triggering combined with freezing all embryos in GnRH antagonist cycles. Other prevention strategies might be considered for extreme hyper-responders.

  3. Failure of thyroid hormone treatment to prevent inflammation-induced white matter injury in the immature brain

    PubMed Central

    Schang, Anne-Laure; Van Steenwinckel, Juliette; Chevenne, Didier; Alkmark, Marten; Hagberg, Henrik; Gressens, Pierre; Fleiss, Bobbi

    2014-01-01

    Preterm birth is very strongly associated with maternal/foetal inflammation and leads to permanent neurological deficits. These deficits correlate with the severity of white matter injury, including maturational arrest of oligodendrocytes and hypomyelination. Preterm birth and exposure to inflammation causes hypothyroxinemia. As such, supplementation with thyroxine (T4) seems a good candidate therapy for reducing white matter damage in preterm infants as oligodendrocyte maturation and myelination is regulated by thyroid hormones. We report on a model of preterm inflammation-induced white matter damage, in which induction of systemic inflammation by exposure from P1 to P5 to interleukin-1β (IL-1β) causes oligodendrocyte maturational arrest and hypomyelination. This model identified transient hypothyroidism and wide-ranging dysfunction in thyroid hormone signalling pathways. To test whether a clinically relevant dose of T4 could reduce inflammation-induced white matter damage we concurrently treated mice exposed to IL-1β from P1 to P5 with T4 (20 μg/kg/day). At P10, we isolated O4-positive pre-oligodendrocytes and gene expression analysis revealed that T4 treatment did not recover the IL-1β-induced blockade of oligodendrocyte maturation. Moreover, at P10 and P30 immunohistochemistry for markers of oligodendrocyte lineage (NG2, PDGFRα and APC) and myelin (MBP) similarly indicated that T4 treatment did not recover IL-1β-induced deficits in the white matter. In summary, in this model of preterm inflammation-induced white matter injury, a clinical dose of T4 had no therapeutic efficacy. We suggest that additional pre-clinical trials with T4 covering the breadth and scope of causes and outcomes of perinatal brain injury are required before we can correctly evaluate clinical trials data and understand the potential for thyroid hormone as a widely implementable clinical therapy. PMID:24240022

  4. Prevention

    MedlinePlus

    ... our e-newsletter! Aging & Health A to Z Prevention Basic Facts & Information Some factors that affect your ... control of the things that you can change. Preventive Recommendations for Adults Aged 65 and Older The ...

  5. Prevention

    MedlinePlus

    ... Is Strong Error processing SSI file About Heart Disease & Stroke Prevention Heart disease and stroke are an epidemic in ... to avoid secondhand smoke. Barriers to Effective Heart Disease & Stroke Prevention Many people with key risk factors for heart ...

  6. Juvenile hormone counteracts the bHLH-PAS transcription factors MET and GCE to prevent caspase-dependent programmed cell death in Drosophila.

    PubMed

    Liu, Ying; Sheng, Zhentao; Liu, Hanhan; Wen, Di; He, Qianyu; Wang, Sheng; Shao, Wei; Jiang, Rong-Jing; An, Shiheng; Sun, Yaning; Bendena, William G; Wang, Jian; Gilbert, Lawrence I; Wilson, Thomas G; Song, Qisheng; Li, Sheng

    2009-06-01

    Juvenile hormone (JH) regulates many developmental and physiological events in insects, but its molecular mechanism remains conjectural. Here we report that genetic ablation of the corpus allatum cells of the Drosophila ring gland (the JH source) resulted in JH deficiency, pupal lethality and precocious and enhanced programmed cell death (PCD) of the larval fat body. In the fat body of the JH-deficient animals, Dronc and Drice, two caspase genes that are crucial for PCD induced by the molting hormone 20-hydroxyecdysone (20E), were significantly upregulated. These results demonstrated that JH antagonizes 20E-induced PCD by restricting the mRNA levels of Dronc and Drice. The antagonizing effect of JH on 20E-induced PCD in the fat body was further confirmed in the JH-deficient animals by 20E treatment and RNA interference of the 20E receptor EcR. Moreover, MET and GCE, the bHLH-PAS transcription factors involved in JH action, were shown to induce PCD by upregulating Dronc and Drice. In the Met- and gce-deficient animals, Dronc and Drice were downregulated, whereas in the Met-overexpression fat body, Dronc and Drice were significantly upregulated leading to precocious and enhanced PCD, and this upregulation could be suppressed by application of the JH agonist methoprene. For the first time, we demonstrate that JH counteracts MET and GCE to prevent caspase-dependent PCD in controlling fat body remodeling and larval-pupal metamorphosis in Drosophila.

  7. The Epidermal Growth Factor Receptor (EGFR) Inhibitor Gefitinib Reduces but Does Not Prevent Tumorigenesis in Chemical and Hormonal Induced Hepatocarcinogenesis Rat Models

    PubMed Central

    Ribback, Silvia; Sailer, Verena; Böhning, Enrico; Günther, Julia; Merz, Jaqueline; Steinmüller, Frauke; Utpatel, Kirsten; Cigliano, Antonio; Peters, Kristin; Pilo, Maria G.; Evert, Matthias; Calvisi, Diego F.; Dombrowski, Frank

    2016-01-01

    Activation of the epidermal growth factor receptor (EGFR) signaling pathway promotes the development of hepatocellular adenoma (HCA) and carcinoma (HCC). The selective EGFR inhibitor Gefitinib was found to prevent hepatocarcinogenesis in rat cirrhotic livers. Thus, Gefitinib might reduce progression of pre-neoplastic liver lesions to HCC. In short- and long-term experiments, administration of N-Nitrosomorpholine (NNM) or intrahepatic transplantation of pancreatic islets in diabetic (PTx), thyroid follicles in thyroidectomized (TTx) and ovarian fragments in ovariectomized (OTx) rats was conducted for the induction of foci of altered hepatocytes (FAH). Gefitinib was administered for two weeks (20 mg/kg) or three and nine months (10 mg/kg). In NNM-treated rats, Gefitinib administration decreased the amount of FAH when compared to controls. The amount of HCA and HCC was decreased, but development was not prevented. Upon all transplantation models, proliferative activity of FAH was lower after administration of Gefitinib in short-term experiments. Nevertheless, the burden of HCA and HCC was not changed in later stages. Thus, EGFR inhibition by Gefitinib diminishes chemical and hormonal also induced hepatocarcinogenesis in the initiation stage in the non-cirrhotic liver. However, progression to malignant hepatocellular tumors was not prevented, indicating only a limited relevance of the EGFR signaling cascade in later stages of hepatocarcinogenesis. PMID:27669229

  8. Growth hormone and melatonin prevent age-related alteration in apoptosis processes in the dentate gyrus of male rats.

    PubMed

    Kireev, R A; Vara, E; Tresguerres, J A F

    2013-08-01

    It has been suggested that the age-related decrease in the number of neurons in the hippocampus that leads to alterations in brain function, may be associated with an increase in apoptosis due to the reduced secretion of growth hormone (GH) and/or melatonin in old animals. In order to investigate this possibility, male Wistar rats of 22 months of age were divided into three groups. One group remained untreated and acted as the control group. The second was treated with growth hormone (hGH) for 10 weeks (2 mg/kg/d sc) and the third was subjected to melatonin treatment (1 mg/kg/d) in the drinking water for the same time. A group of 2-months-old male rats was used as young controls. All rats were killed by decapitation at more than 24 month of age and dentate gyri of the hippocampi were collected. Aging in the dentate gyrus was associated with an increase in apoptosis promoting markers (Bax, Bad and AIF) and with the reduction of some anti-apoptotic ones (XIAP, NIAP, Mcl-1). Expressions of sirtuin 1 and 2 (SIRT1 and 2) as well as levels of HSP 70 were decreased in the dentate gyrus of old rats. GH treatment was able to reduce the pro/anti-apoptotic ratio to levels observed in young animals and also to increase SIRT2. Melatonin reduced also expression of pro-apoptotic genes and proteins (Bax, Bad and AIF), and increased levels of myeloid cell leukemia-1 proteins and SIRT1. Both treatments were able to reduce apoptosis and to enhance survival markers in this part of the hippocampus.

  9. Prevention

    MedlinePlus

    ... Ban For Clinicians Clinical Recognition Specimen Collection Treatment Smallpox Vaccine Guidance Infection Control: Hospital Infection Control: Home ... Mouth Infection) Poxvirus and Rabies Branch Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections Poxvirus Prevention Recommend on ...

  10. Combined Hormonal Birth Control: Pill, Patch, and Ring

    MedlinePlus

    ... FREQUENTLY ASKED QUESTIONS FAQ185 CONTRACEPTION Combined Hormonal Birth Control: Pill, Patch, and Ring • What are combined hormonal birth control methods? • How do combined hormonal methods prevent pregnancy? • ...

  11. Treatment and prevention of chemotherapy-induced alopecia with PTH-CBD, a collagen-targeted parathyroid hormone analog, in a non-depilated mouse model.

    PubMed

    Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Matsushita, Osamu; Sakon, Joshua; Gensure, Robert

    2014-01-01

    Alopecia is a psychologically devastating complication of chemotherapy for which there is currently no effective therapy. PTH-CBD is a collagen-targeted parathyroid hormone analog that has shown promise as a therapy for alopecia disorders. This study compared the efficacy of prophylactic versus therapeutic administration of PTH-CBD in chemotherapy-induced alopecia using a mouse model that mimics the cyclic chemotherapy dosing used clinically. C57BL/6J mice were treated with a single subcutaneous injection of PTH-CBD (320 mcg/kg) or vehicle control before or after hair loss developing from three courses of cyclophosphamide chemotherapy (50-150 mg/kg/week). Mice receiving chemotherapy alone developed hair loss and depigmentation over 6-12 months. Mice pretreated with PTH-CBD did not develop these changes and maintained a normal-appearing coat. Mice treated with PTH-CBD after development of hair loss showed a partial recovery. Observations of hair loss were confirmed quantitatively by gray scale analysis. Histological examination showed that in mice receiving chemotherapy alone, there were small, dystrophic hair follicles mostly in the catagen phase. Mice receiving PTH-CBD before chemotherapy showed a mix of normal-appearing telogen and anagen hair follicles with no evidence of dystrophy. Mice receiving PTH-CBD therapy after chemotherapy showed intermediate histological features. PTH-CBD was effective in both the prevention and the treatment of chemotherapy-induced alopecia in mice, but pretreatment appears to result in a better cosmetic outcome. PTH-CBD shows promise as an agent in the prevention of this complication of chemotherapy and improving the quality of life for cancer patients.

  12. Treatment and prevention of chemotherapy-induced alopecia with PTH-CBD, a collagen-targeted parathyroid hormone analog, in a non-depilated mouse model

    PubMed Central

    Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Matsushita, Osamu; Sakon, Joshua; Gensure, Robert

    2014-01-01

    Alopecia is a psychologically devastating complication of chemotherapy for which there is currently no effective therapy. PTH-CBD is a collagen-targeted parathyroid hormone analog that has shown promise as a therapy for alopecia disorders. To compare the efficacy of prophylactic versus therapeutic administration of PTH-CBD in chemotherapy-induced alopecia using a mouse model that mimics the cyclic chemotherapy dosing used clinically. C57BL/6J mice were treated with a single subcutaneous injection of PTH-CBD (320 mcg/kg) or vehicle control before or after hair loss developing from three courses of cyclophosphamide chemotherapy (50–150 mg/kg/week). Mice receiving chemotherapy alone developed hair loss and depigmentation over 6–12 months. Mice pretreated with PTH-CBD did not develop these changes and maintained a normal-appearing coat. Mice treated with PTH-CBD after development of hair loss showed a partial recovery. Observations of hair loss were confirmed quantitatively by gray scale analysis. Histological examination showed that in mice receiving chemotherapy alone, there were small, dystrophic hair follicles mostly in the catagen phase. Mice receiving PTH-CBD before chemotherapy showed a mix of normal-appearing telogen and anagen hair follicles with no evidence of dystrophy. Mice receiving PTH-CBD therapy after chemotherapy showed intermediate histological features. PTH-CBD was effective in both the prevention and the treatment of chemotherapy-induced alopecia in mice, but pretreatment appears to result in a better cosmetic outcome. PTH-CBD shows promise as an agent in the prevention of this complication of chemotherapy and improving the quality of life for cancer patients. PMID:24025564

  13. Cost-effectiveness of hormone replacement therapy for fracture prevention in young postmenopausal women: an economic analysis based on a prospective cohort study.

    PubMed

    Fleurence, R; Torgerson, D J; Reid, D M

    2002-08-01

    A recent systematic review of randomized controlled trials has shown that hormone replacement therapy (HRT) prevents fractures when taken soon after the menopause. HRT for treatment of menopausal symptoms is relatively cost-effective, but whether its use for prevention of perimenopausal fractures is economically efficient is unknown. We undertook a 6-year follow-up of 3645 perimenopausal women who had a bone mineral density (BMD) measurement with recommendation to use HRT if low BMD was present. Data were collected on incident fractures and costs. After an average of 6.2 years of follow-up HRT use significantly reduced incident fractures by 52% (95% CI: 67% to 18%). However, costs were increased by an average of pounds sterling 275 (95% CI: pounds sterling 228 to pounds sterling 330) for the group as a whole; for hysterectomized women costs were increased less (pounds sterling 138), but this was still significantly greater than for non-HRT users (95% CI: pounds sterling 6 to pounds sterling 275). The cost per averted fracture was about pounds sterling 11 000 (95% CI: pounds sterling 8625 to pounds sterling 13 872) for the whole group and for hysterectomized women the corresponding figure was substantially less (pounds sterling 1784; 95% CI: pounds sterling 59 to pounds sterling 3532). HRT given to women at or shortly after the menopause is therefore associated with a halving of fracture incidence. Such a policy for hysterectomized women without menopausal symptoms may be cost-effective as such women are at elevated risk of fracture and need cheaper, unopposed, estrogens.

  14. Prevention of ovarian hyperstimulation syndrome in a rat model: comparison of the efficacy of tocilizumab with that of ranibizumab, cabergoline, and a gonadotropin-releasing hormone antagonist.

    PubMed

    Taskin, Mine Islimye; Topcu, Onur; Yay, Arzu; Erken, Gulten; Balcioğlu, Esra; Adali, Ertan; Hismiogulları, Adnan Adil

    2015-01-01

    The aim of the study is to investigate the effects of the interleukin-6 (IL-6) blocker tocilizumab in a hyperstimulated rat model and compare it with ranibizumab, a gonadotropin-releasing hormone antagonist (GnRHA), and cabergoline. Forty-seven rats were randomly divided into the following seven groups: Group 1: OHS; Group 2: OHS+ GnRHA; Group 3: OHS + ranibizumab; Group 4: OHS + cabergoline; Group 5: OHS + low-dose tocilizumab (TL); Group 6: OHS + high-dose tocilizumab (TH); Group 7: sham. Ovarian weight was significantly lower only in the ranibizumab group than in the OHS group. Estrogen levels were significantly lower in the GnRHA group than in the OHS and the treatment groups. Progesterone levels were significantly lower in the ranibizumab, cabergoline, and TL groups than in the OHS group. Among the treatment groups, corpus luteum counts were lower than in the OHS group. Corpus luteum counts were lowest in the tocilizumab groups. IL-6 intensity was lower in all treatment groups than in the OHS group. In the ranibizumab group IL-6 intensity was the lowest. The TL group did not significantly differ from the GnRHA and cabergoline groups regarding IL-6 expression. Ovarian VEGF expression was significantly lower in all treatment groups. For the TL, ranibizumab, and cabergoline groups VEGF intensity was similar. Tocilizumab may be a new strategy for preventing ovarian hyperstimulation syndrome by inhibition of IL-6.

  15. Hormone Therapy

    MedlinePlus

    ... estrogen , a hormone that helps control the menstrual cycle . Changing estrogen levels can bring on symptoms such ... two hormones—estrogen and progesterone —control your menstrual cycle. These hormones are made by the ovaries . Estrogen ...

  16. Hormones, Women and Breast Cancer

    MedlinePlus

    ... used therapy is a female hormone blocker called tamoxifen. A newer therapy uses a pill (anastrozole, letrozole, ... are at high risk for developing breast cancer, tamoxifen or raloxifene can also be taken to prevent ...

  17. Ovarian hyperstimulation syndrome prevention strategies: oral contraceptive pills-dual gonadotropin-releasing hormone agonist suppression with step-down gonadotropin protocols.

    PubMed

    Damario, Mark A

    2010-11-01

    The identification of patients at high risk for excessive responses to ovarian stimulation for in vitro fertilization and embryo transfer is essential in the tailoring of safe and effective treatment strategies. Known factors associated with increased sensitivity to gonadotropins include polycystic ovary syndrome, young age, prior ovarian hyperstimulation syndrome (OHSS), high baseline antral follicle count, and high baseline ovarian volume. Although several treatment strategies have been proposed for these patients, this report describes the experience using the dual suppression with gonadotropin step-down protocol. This protocol uses oral contraceptive pretreatment in combination with a long gonadotropin-releasing hormone agonist followed by a programmed step-down in gonadotropin dosing. Hormonal characteristics of dual suppression include an improved luteinizing hormone-to-follicle-stimulating hormone ratio and lower serum androgens, particularly dehydroepiandrosterone sulfate. Clinical characteristics of the protocol include a lower cancellation rate and favorable clinical and ongoing pregnancy rates per initiated cycle while mitigating the risk of OHSS.

  18. Original Research: Atorvastatin prevents rat cardiomyocyte hypertrophy induced by parathyroid hormone 1-34 associated with the Ras-ERK signaling.

    PubMed

    Liu, Xiaogang; Zou, Chunbo; Yu, Chengyuan; Xie, Rujuan; Sui, Manshu; Mu, Suhong; Li, Li; Zhao, Shilei

    2016-10-01

    We investigated the effects of atorvastatin (Ator) on cardiomyocyte hypertrophy (CMH) induced by rat parathyroid hormone 1-34 (PTH1-34) and Ras-extracellular signal regulated protein kinases 1/2 (ERK1/2) signaling. Rat cardiomyocytes were randomly divided into seven groups: normal controls (NC), PTH1-34 (10(-7) mol/L), Ator (10(-5) mol/L), farnesyl transferase inhibitors-276 (FTI-276, 4 × 10(-5) mol/L), PTH1-34 + Ator, PTH1-34 + FTI-276 and PTH1-34 + Ator + mevalonic acid (MVA, 10(-4) mol/L). After treatment, the hypertrophic responses of cardiomyocytes were assessed by measuring cell diameter, detecting protein synthesis, and single-cell protein content. The concentrations of hypertrophic markers such as atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were measured by ELISA. Protein expressions of ERK1/2, p-ERK1/2 and Ras were detected by western blotting. The results showed that compared with the PTH1-34 group, cellular diameter, 3H-leucine incorporation, single-cell protein content, ANP and BNP concentration decreased by 12.07 µm, 1622 cpm/well, 84.34 pg, 7.13 ng/L and 20.04 µg/L, respectively, and the expressions of Ras and p-ERK1/2 were downregulated in PTH1-34 + Ator group (P < 0.05). Compared to the PTH1-34 + Ator group, the corresponding hypertrophic responses and hypertrophic markers increased by 4.95 µm, 750 cpm/well, 49.08 pg, 3.12 ng/L and 9.35 µg/L, respectively, and the expressions of Ras and p-ERK1/2 were upregulated in the PTH1-34 + Ator + MVA group (P < 0.05). In conclusion, Ator prevents neonatal rat CMH induced by PTH1-34 and Ras-ERK signaling may be involved in this process.

  19. [Hormone replacement therapy--growth hormone, melatonin, DHEA and sex hormones].

    PubMed

    Fukai, Shiho; Akishita, Masahiro

    2009-07-01

    The ability to maintain active and independent living as long as possible is crucial for the healthy longevity. Hormones responsible for some of the manifestations associated with aging are growth hormone, insulin-like growth factor-1 (IGF-1), melatonin, dehydroepiandrosterone (DHEA), sex hormones and thyroid hormones. These hormonal changes are associated with changes in body composition, visceral obesity, muscle weakness, osteoporosis, urinary incontinence, loss of cognitive functioning, reduction in well being, depression, as well as sexual dysfunction. With the prolongation of life expectancy, both men and women today live the latter third life with endocrine deficiencies. Hormone replacement therapy may alleviate the debilitating conditions of secondary partial endocrine deficiencies by preventing or delaying some aspects of aging.

  20. Hormone impostors

    SciTech Connect

    Colborn, T.; Dumanoski, D.; Myers, J.P.

    1997-01-01

    This article discusses the accumulating evidence that some synthetic chemicals disrupt hormones in one way or another. Some mimic estrogen and others interfere with other parts of the body`s control or endocrine system such as testosterone and thyroid metabolism. Included are PCBs, dioxins, furans, atrazine, DDT. Several short sidebars highlight areas where there are or have been particular problems.

  1. Dronedarone administration prevents body weight gain and increases tolerance of the heart to ischemic stress: a possible involvement of thyroid hormone receptor alpha1.

    PubMed

    Pantos, Constantinos; Mourouzis, Iordanis; Malliopoulou, Vassiliki; Paizis, Ioannis; Tzeis, Stylianos; Moraitis, Panagiotis; Sfakianoudis, Konstantinos; Varonos, Dennis D; Cokkinos, Dennis V

    2005-01-01

    Hypothyroid heart displays a phenotype of cardioprotection against ischemia and this study investigated whether administration of dronedarone, an amiodarone-like compound that has been shown to preferentially antagonize thyroid hormone binding to thyroid hormone receptor alpha1 (TRalpha1), results in a similar effect. Dronedarone was given in Wistar rats (90 mg/kg, once daily (od) for 2 weeks) (DRON), while untreated animals served as controls (CONT). Hypothyroidism (HYPO) was induced by propylthiouracil administration. Isolated rat hearts were perfused in Langendorff mode and subjected to 20 minutes of zero-flow global ischemia (I) followed by 45 minutes of reperfusion (R). 3,5,3' Triiodothyronine remained unchanged while body weight and food intake were reduced. alpha-Myosin heavy chain (alpha-MHC) decreased in DRON while beta-myosin heavy chain (beta-MHC) and sarcoplasmic reticulum Ca2+ adenosine triphosphatase (ATPase) expression (SERCA) was similar to CONT. In HYPO, alpha-MHC and SERCA were decreased while beta-MHC was increased. Myocardial glycogen content was increased in both DRON and HYPO. In DRON, resting heart rate and contractility were reduced and ischemic contracture was significantly suppressed while postischemic left ventricular end-diastolic pressure and lactate dehydrogenase release (IU/L min) after I/R were significantly decreased. In conclusion, dronedarone treatment results in cardioprotection by selectively mimicking hypothyroidism. This is accompanied by a reduction in body weight because of the suppression of food intake. TRs might prove novel pharmacologic targets for the treatment of cardiovascular illnesses.

  2. Proliferation and ovarian hormone signaling are impaired in normal breast tissues from women with BRCA1 mutations: benefit of a progesterone receptor modulator treatment as a breast cancer preventive strategy in women with inherited BRCA1 mutations

    PubMed Central

    Communal, Laudine; Courtin, Aurélie; Mourra, Najat; Lahlou, Najiba; Le Guillou, Morwenna; de Jotemps, Muriel Perrault; Chauvet, Marie-Pierre; Chaouat, Marc; Pujol, Pascal; Feunteun, Jean; Delaloge, Suzette; Forgez, Patricia; Gompel, Anne

    2016-01-01

    Women with inherited BRCA1 mutations have an elevated risk (40-80%) for developing breast and ovarian cancers. Reproductive history has been reported to alter this risk, suggesting a relationship between ovarian hormone signaling and BRCA1-related tumor development. BRCA1 interactions with estrogen receptor (ER) and progesterone receptor (PR) signaling were previously described in human breast cancer cell lines and mouse models. However, few studies have examined the effect of ovarian hormone regulation in normal human breast tissues bearing a heterozygous BRCA1 mutation. This study compares the proliferation level (Ki67) and the expression of ER, PR, and of the PR target gene, fatty acid synthase (FASN), in histologically normal breast tissues from women with BRCA1 mutations (BRCA1+/mut, n=23) or without BRCA1 mutations (BRCA1+/+, n=28). BRCA1+/mut tissues showed an increased proliferation and impaired hormone receptor expression with a marked loss of the PR isoform, PR-B. Responses to estradiol and progesterone treatments in BRCA1+/mut and BRCA1+/+ breast tissues were studied in a mouse xenograft model, and showed that PR and FASN expression were deregulated in BRCA1+/mut breast tissues. Progesterone added to estradiol treatment increased the proliferation in a subset of BRCA1+/mut breast tissues. The PR inhibitor, ulipristal acetate (UPA), was able to reverse this aberrant progesterone-induced proliferation. This study suggests that a subset of women with BRCA1 mutations could be candidates for a UPA treatment as a preventive breast cancer strategy. PMID:27246982

  3. Specific involvement of gonadal hormones in the functional maturation of growth hormone releasing hormone (GHRH) neurons.

    PubMed

    Gouty-Colomer, Laurie-Anne; Méry, Pierre-François; Storme, Emilie; Gavois, Elodie; Robinson, Iain C; Guérineau, Nathalie C; Mollard, Patrice; Desarménien, Michel G

    2010-12-01

    Growth hormone (GH) is the key hormone involved in the regulation of growth and metabolism, two functions that are highly modulated during infancy. GH secretion, controlled mainly by GH releasing hormone (GHRH), has a characteristic pattern during postnatal development that results in peaks of blood concentration at birth and puberty. A detailed knowledge of the electrophysiology of the GHRH neurons is necessary to understand the mechanisms regulating postnatal GH secretion. Here, we describe the unique postnatal development of the electrophysiological properties of GHRH neurons and their regulation by gonadal hormones. Using GHRH-eGFP mice, we demonstrate that already at birth, GHRH neurons receive numerous synaptic inputs and fire large and fast action potentials (APs), consistent with effective GH secretion. Concomitant with the GH secretion peak occurring at puberty, these neurons display modifications of synaptic input properties, decrease in AP duration, and increase in a transient voltage-dependant potassium current. Furthermore, the modulation of both the AP duration and voltage-dependent potassium current are specifically controlled by gonadal hormones because gonadectomy prevented the maturation of these active properties and hormonal treatment restored it. Thus, GHRH neurons undergo specific developmental modulations of their electrical properties over the first six postnatal weeks, in accordance with hormonal demand. Our results highlight the importance of the interaction between the somatotrope and gonadotrope axes during the establishment of adapted neuroendocrine functions.

  4. Interleukin-1β-induced memory reconsolidation impairment is mediated by a reduction in glutamate release and zif268 expression and α-melanocyte-stimulating hormone prevented these effects.

    PubMed

    Machado, Ivana; Gonzalez, Patricia V; Vilcaes, Alejandro; Carniglia, Lila; Schiöth, Helgi B; Lasaga, Mercedes; Scimonelli, Teresa N

    2015-05-01

    The immune system is an important modulator of learning, memory and neural plasticity. Interleukin 1β (IL-1β), a pro-inflammatory cytokine, significantly affects several cognitive processes. Previous studies by our group have demonstrated that intrahippocampal administration of IL-1β impairs reconsolidation of contextual fear memory. This effect was reversed by the melanocortin alpha-melanocyte-stimulating hormone (α-MSH). The mechanisms underlying the effect of IL-1β on memory reconsolidation have not yet been established. Therefore, we examined the effect of IL-1β on glutamate release, ERK phosphorylation and the activation of the transcription factor zinc finger- 268 (zif268) during reconsolidation. Our results demonstrated that IL-1β induced a significant decrease of glutamate release after reactivation of the fear memory and this effect was related to calcium concentration in hippocampal synaptosomes. IL-1β also reduced ERK phosphorylation and zif268 expression in the hippocampus. Central administration of α-MSH prevented the decrease in glutamate release, ERK phosphorylation and zif268 expression induced by IL-1β. Our results establish possible mechanisms involved in the detrimental effect of IL-1β on memory reconsolidation and also indicate that α-MSH may exert a beneficial modulatory role in preventing IL-1β effects.

  5. Deciding about hormone therapy

    MedlinePlus

    HRT - deciding; Estrogen replacement therapy - deciding; ERT- deciding; Hormone replacement therapy - deciding; Menopause - deciding; HT - deciding; Menopausal hormone therapy - deciding; MHT - deciding

  6. GH-Releasing Hormone Promotes Survival and Prevents TNF-α-Induced Apoptosis and Atrophy in C2C12 Myotubes.

    PubMed

    Gallo, Davide; Gesmundo, Iacopo; Trovato, Letizia; Pera, Giulia; Gargantini, Eleonora; Minetto, Marco Alessandro; Ghigo, Ezio; Granata, Riccarda

    2015-09-01

    Skeletal muscle atrophy is a consequence of different chronic diseases, including cancer, heart failure, and diabetes, and also occurs in aging and genetic myopathies. It results from an imbalance between anabolic and catabolic processes, and inflammatory cytokines, such as TNF-α, have been found elevated in muscle atrophy and implicated in its pathogenesis. GHRH, in addition to stimulating GH secretion from the pituitary, exerts survival and antiapoptotic effects in different cell types. Moreover, we and others have recently shown that GHRH displays antiapoptotic effects in isolated cardiac myocytes and protects the isolated heart from ischemia/reperfusion injury and myocardial infarction in vivo. On these bases, we investigated the effects of GHRH on survival and apoptosis of TNF-α-treated C2C12 myotubes along with the underlying mechanisms. GHRH increased myotube survival and prevented TNF-α-induced apoptosis through GHRH receptor-mediated mechanisms. These effects involved activation of phosphoinositide 3-kinase/Akt pathway and inactivation of glycogen synthase kinase-3β, whereas mammalian target of rapamycin was unaffected. GHRH also increased the expression of myosin heavy chain and the myogenic transcription factor myogenin, which were both reduced by the cytokine. Furthermore, GHRH inhibited TNF-α-induced expression of nuclear factor-κB, calpain, and muscle ring finger1, which are all involved in muscle protein degradation. In summary, these results indicate that GHRH exerts survival and antiapoptotic effects in skeletal muscle cells through the activation of anabolic pathways and the inhibition of proteolytic routes. Overall, our findings suggest a novel therapeutic role for GHRH in the treatment of muscle atrophy-associated diseases.

  7. [Hormonal dysnatremia].

    PubMed

    Karaca, P; Desailloud, R

    2013-10-01

    Because of antidiuretic hormone (ADH) disorder on production or function we can observe dysnatremia. In the absence of production by posterior pituitary, central diabetes insipidus (DI) occurs with hypernatremia. There are hereditary autosomal dominant, autosomal recessive or X- linked forms. When ADH is secreted but there is an alteration on his receptor AVPR2, it is a nephrogenic diabetes insipidus in acquired or hereditary form. We can make difference on AVP levels and/or on desmopressine response which is negative in nephrogenic forms. Hyponatremia occurs when there is an excess of ADH production: it is a euvolemic hypoosmolar hyponatremia. The most frequent etiology is SIADH (syndrome of inappropriate secretion of ADH), a diagnostic of exclusion which is made after eliminating corticotropin deficiency and hypothyroidism. In case of brain injury the differential diagnosis of cerebral salt wasting (CSW) syndrome has to be discussed, because its treatment is perfusion of isotonic saline whereas in SIADH, the treatment consists in administration of hypertonic saline if hyponatremia is acute and/or severe. If not, fluid restriction demeclocycline or vaptans (antagonists of V2 receptors) can be used in some European countries. Four types of SIADH exist; 10 % of cases represent not SIADH but SIAD (syndrome of inappropriate antidiuresis) due to a constitutive activation of vasopressin receptor that produces water excess. c 2013 Published by Elsevier Masson SAS.

  8. Overview of the landscape of HIV prevention.

    PubMed

    Haase, Ashley T

    2014-06-01

    In this introductory essay on the landscape of HIV prevention, my intent is to provide context for the subsequent topics discussed at the Symposium on Hormone Regulation of the Mucosal Environment in the female reproductive tract (FRT) and the Prevention of HIV infection: FRT immunity, mucosal microenvironment and HIV prevention, and the risk and impact of hormonal contraceptives on HIV transmission.

  9. Hormone therapy in acne.

    PubMed

    Lakshmi, Chembolli

    2013-01-01

    Underlying hormone imbalances may render acne unresponsive to conventional therapy. Relevant investigations followed by initiation of hormonal therapy in combination with regular anti-acne therapy may be necessary if signs of hyperandrogenism are present. In addition to other factors, androgen-stimulated sebum production plays an important role in the pathophysiology of acne in women. Sebum production is also regulated by other hormones, including estrogens, growth hormone, insulin, insulin-like growth factor-1, glucocorticoids, adrenocorticotropic hormone, and melanocortins. Hormonal therapy may also be beneficial in female acne patients with normal serum androgen levels. An understanding of the sebaceous gland and the hormonal influences in the pathogenesis of acne would be essential for optimizing hormonal therapy. Sebocytes form the sebaceous gland. Human sebocytes express a multitude of receptors, including receptors for peptide hormones, neurotransmitters and the receptors for steroid and thyroid hormones. Various hormones and mediators acting through the sebocyte receptors play a role in the orchestration of pathogenetic lesions of acne. Thus, the goal of hormonal treatment is a reduction in sebum production. This review shall focus on hormonal influences in the elicitation of acne via the sebocyte receptors, pathways of cutaneous androgen metabolism, various clinical scenarios and syndromes associated with acne, and the available therapeutic armamentarium of hormones and drugs having hormone-like actions in the treatment of acne.

  10. [Hormonal contraception].

    PubMed

    Prilepskaia, V N

    1991-12-01

    Effective contraceptives contribute to the regulation of births, protect the health of women, reduce maternal and perinatal mortality and gynecological diseases, and prevent abortion-related complications. Complications after abortion average 30%, and among primigravidas the rate reaches 45%. Abortion can result in sterility and in the inability to carry out the pregnancy. Oral contraceptives (OCs) are used by 150 million globally. In new preparations ethinyl estradiol (EE) and levonorgestrel (LNG) are the most common components. In the 2-phase and 3-phase preparations Sequilar, Anteovin, and lipid profile safe Triquilar the gestagen component was reduced 40%. Continuin and Famulen are minipills, and Postinor is a postcoital contraceptive. Absolute contraindications of OCs include thromboembolytic diseases, severe cardiovascular system diseases, liver disorders, cirrhosis, cerebral vascular diseases, grave diabetes, jaundice, and malignant tumors of the mammae and sexual organs. Rigevidon, Triquilar, and Trisiston have high steroid content with minimal side effects. The protective effect of OCs are: 2-3 times lower risk of inflammation of the small pelvis, lower risk of malignant and benign ovarian tumors that lasts even after discontinuation, uterine cancer prevention (antiproliferation effect on the endometrium and inhibition of mitotic activity of the myometrium), and reduced risk of benign breast neoplasms. The finding that estrogen-induced risk of breast cancer increases with longterm contraceptive use in young nulliparas has not been persuasively proven. The optimal duration of uninterrupted OC use is 1-1.5 years. Monophasic estrogen-gestagen preparations include Bisecurin, Non-Ovlon, Ovidon, Rigevidon, Minisiston, and Demulen with low dosages of EE, LNG, norethisterone acetate, and diacetate ethonodiol. Norplant is a subdermal silastic capsule with effectiveness for up to 5 years.

  11. Standardization of hormone determinations.

    PubMed

    Stenman, Ulf-Håkan

    2013-12-01

    Standardization of hormone determinations is important because it simplifies interpretation of results and facilitates the use of common reference values for different assays. Progress in standardization has been achieved through the introduction of more homogeneous hormone standards for peptide and protein hormones. However, many automated methods for determinations of steroid hormones do not provide satisfactory result. Isotope dilution-mass spectrometry (ID-MS) has been used to establish reference methods for steroid hormone determinations and is now increasingly used for routine determinations of steroids and other low molecular weight compounds. Reference methods for protein hormones based on MS are being developed and these promise to improve standardization.

  12. Hormonal effects in newborns

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001911.htm Hormonal effects in newborns To use the sharing features on this page, please enable JavaScript. Hormonal effects in newborns occur because in the womb babies ...

  13. Hormone Health Network

    MedlinePlus

    ... y Cuidadores Hormones and Health Journey Through the Endocrine System Endocrine Disrupting Chemicals (EDCs) Endocrine Glands and Types ... to hormones! Download our Free App! Understand the endocrine system and its related conditions with our 3D Patient ...

  14. Growth hormone deficiency

    MedlinePlus

    ... dosage of the medicine. Serious side effects of growth hormone treatment are rare. Common side effects include: Headache Fluid ... years. The rate of growth then slowly decreases. Growth hormone therapy does not work for all children. Left untreated, ...

  15. Hormones and Obesity

    MedlinePlus

    ... Balance › Hormones and Obesity Fact Sheet Hormones and Obesity March, 2010 Download PDFs English Espanol Editors Caroline Apovian, MD Judith Korner, MD, PhD What is obesity? Obesity is a chronic (long-term) medical problem ...

  16. [Thyroid hormone resistance syndromes].

    PubMed

    Bernal, Juan

    2011-04-01

    Thyroid hormone resistance syndromes are a group of genetic conditions characterized by decreased tissue sensitivity to thyroid hormones. Three syndromes, in which resistance to hormone action is respectively due to mutations in the gene encoding for thyroid hormone receptor TRβ, impaired T4 and T3 transport, and impaired conversion of T4 to T3 mediated by deiodinases. An updated review of each of these forms of resistance is provided, and their pathogenetic mechanisms and clinical approaches are discussed.

  17. [Growth hormone treatment update].

    PubMed

    2014-02-01

    Short stature in children is a common cause for referral to pediatric endocrinologists, corresponding most times to normal variants of growth. Initially growth hormone therapy was circumscribed to children presenting growth hormone deficiency. Since the production of recombinant human hormone its use had spread to other pathologies.

  18. Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip bone mineral density induced by weight loss despite decline in bone-active hormones.

    PubMed

    Shah, Krupa; Armamento-Villareal, Reina; Parimi, Nehu; Chode, Suresh; Sinacore, David R; Hilton, Tiffany N; Napoli, Nicola; Qualls, Clifford; Villareal, Dennis T

    2011-12-01

    0.05). In conclusion, the addition of ET to weight loss therapy among obese older adults prevents weight loss-induced increase in bone turnover and attenuates weight loss-induced reduction in hip BMD despite weight loss-induced decrease in bone-active hormones.

  19. Renewal of the air-water interface as a critical system parameter of protein stability: aggregation of the human growth hormone and its prevention by surface-active compounds.

    PubMed

    Wiesbauer, Johanna; Prassl, Ruth; Nidetzky, Bernd

    2013-12-10

    Soluble proteins are often highly unstable under mixing conditions that involve dynamic contacting between the main liquid phase and a gas phase. The recombinant human growth hormone (rhGH) was recently shown to undergo aggregation into micrometer-sized solid particles composed of non-native (mis- or unfolded) protein, once its solutions were stirred or shaken to generate a continuously renewed air-water interface. To gain deepened understanding and improved quantification of the air-water interface effect on rhGH stability, we analyzed the protein's aggregation rate (r(agg)) at controlled specific air-water surface areas (a(G/L)) established by stirring or bubble aeration. We show that in spite of comparable time-averaged values for a(G/L) (≈ 100 m(2)/m(3)), aeration gave a 40-fold higher r(agg) than stirring. The enhanced r(agg) under aeration was ascribed to faster macroscopic regeneration of free a(G/L) during aeration as compared to stirring. We also show that r(agg) was independent of the rhGH concentration in the range 0.67 - 6.7 mg/mL, and that it increased linearly dependent on the available a(G/L). The nonionic surfactant Pluronic F-68, added in 1.6-fold molar excess over rhGH present, resulted in complete suppression of r(agg). Foam formation was not a factor influencing r(agg). Using analysis by circular dichroism spectroscopy and small-angle X-ray scattering, we show that in the presence of Pluronic F-68 under both stirring and aeration, the soluble protein retained its original fold, featuring native-like relative composition of secondary structural elements. We further provide evidence that the efficacy of Pluronic F-68 resulted from direct, probably hydrophobic protein-surfactant interactions that prevented rhGH from becoming attached to the air-water interface. Surface-induced aggregation of rhGH is suggested to involve desorption of non-native protein from the air-water interface as the key limiting step. Proteins or protein aggregates released

  20. Inappropriate secretion of antidiuretic hormone in infants with respiratory infections.

    PubMed Central

    Rivers, R P; Forsling, M L; Olver, R P

    1981-01-01

    Four infants in whom excessive secretion of antidiuretic hormone was associated with pulmonary infections are reported. Severe hyponatraemia was noted in 3 of them; in the fourth, fluid restriction may have prevented this complication. PMID:7259256

  1. Hormones and Cancer

    PubMed Central

    Blackstein, Martin Elliot

    1984-01-01

    Hormonal therapy is the first systemic therapy to have been used successfully in the treatment of cancer. Developments in steroid hormone receptor assays in the last decade have resulted in the first predictable assays for cancer therapy. The role of hormones, in both the development and treatment of breast, prostate and uterine cancer, is reviewed. Because hormonal therapy is generally a less toxic palliative treatment than other treatments (e.g., chemotherapy and radiation), it has been used for malignancies such as malignant melanoma, hypernephroma, and carcinoid. PMID:21278945

  2. Drug interactions between hormonal contraceptives and antiretrovirals

    PubMed Central

    Nanda, Kavita; Stuart, Gretchen S.; Robinson, Jennifer; Gray, Andrew L.; Tepper, Naomi K.; Gaffield, Mary E.

    2017-01-01

    Objective: To summarize published evidence on drug interactions between hormonal contraceptives and antiretrovirals. Design: Systematic review of the published literature. Methods: We searched PubMed, POPLINE, and EMBASE for peer-reviewed publications of studies (in any language) from inception to 21 September 2015. We included studies of women using hormonal contraceptives and antiretrovirals concurrently. Outcomes of interest were effectiveness of either therapy, toxicity, or pharmacokinetics. We used standard abstraction forms to summarize and assess strengths and weaknesses. Results: Fifty reports from 46 studies were included. Most antiretrovirals whether used for therapy or prevention, have limited interactions with hormonal contraceptive methods, with the exception of efavirenz. Although depot medroxyprogesterone acetate is not affected, limited data on implants and combined oral contraceptive pills suggest that efavirenz-containing combination antiretroviral therapy may compromise contraceptive effectiveness of these methods. However, implants remain very effective despite such drug interactions. Antiretroviral plasma concentrations and effectiveness are generally not affected by hormonal contraceptives. Conclusion: Women taking antiretrovirals, for treatment or prevention, should not be denied access to the full range of hormonal contraceptive options, but should be counseled on the expected rates of unplanned pregnancy associated with all contraceptive methods, in order to make their own informed choices. PMID:28060009

  3. Aging changes in hormone production

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/004000.htm Aging changes in hormone production To use the sharing ... that produce hormones are controlled by other hormones. Aging also changes this process. For example, an endocrine ...

  4. c-JUN Dimerization Protein 2 (JDP2) Is a Transcriptional Repressor of Follicle-stimulating Hormone β (FSHβ) and Is Required for Preventing Premature Reproductive Senescence in Female Mice.

    PubMed

    Jonak, Carrie R; Lainez, Nancy M; Roybal, Lacey L; Williamson, Alexa D; Coss, Djurdjica

    2017-02-17

    Follicle-stimulating hormone (FSH) regulates follicular growth and stimulates estrogen synthesis in the ovaries. FSH is a heterodimer consisting of an α subunit, also present in luteinizing hormone, and a unique β subunit, which is transcriptionally regulated by gonadotropin-releasing hormone 1 (GNRH). Because most FSH is constitutively secreted, tight transcriptional regulation is critical for maintaining FSH levels within a narrow physiological range. Previously, we reported that GNRH induces FSHβ (Fshb) transcription via induction of the AP-1 transcription factor, a heterodimer of c-FOS and c-JUN. Herein, we identify c-JUN-dimerization protein 2 (JDP2) as a novel repressor of GNRH-mediated Fshb induction. JDP2 exhibited high basal expression and bound the Fshb promoter at an AP-1-binding site in a complex with c-JUN. GNRH treatment induced c-FOS to replace JDP2 as a c-JUN binding partner, forming transcriptionally active AP-1. Subsequently, rapid c-FOS degradation enabled reformation of the JDP2 complex. In vivo studies revealed that JDP2 null male mice have normal reproductive function, as expected from a negative regulator of the FSH hormone. Female JDP2 null mice, however, exhibited early puberty, observed as early vaginal opening, larger litters, and early reproductive senescence. JDP2 null females had increased levels of circulating FSH and higher expression of the Fshb subunit in the pituitary, resulting in elevated serum estrogen and higher numbers of large ovarian follicles. Disruption of JDP2 function therefore appears to cause early cessation of reproductive function, a condition that has been associated with elevated FSH in women.

  5. [Hormonal treatment for menopause and arterial risk].

    PubMed

    Gueyffier, François; Cornu, Catherine

    2005-02-28

    Is hormonal atmosphere before menopause the cause of the lower risk of coronary heart disease in women? Big clinical trials do not validate this hypothesis, however simple and attractive: in 5 primary or secondary prevention trials, estrogens alone or in association with progestatives to near 32000 women after menopause, do not leave hope for a significant reduction of coronary risk, and show in contrast an 30% increase of stroke risk. These results highlight the crucial importance of clinical trials to validate therapeutic models. The remaining hypotheses on the nature of hormonal treatments and the administration route must follow the same validation process. The prescription of hormonal treatment for menopause illustrates the importance of informed decision including individualised estimate of the risk to benefit ratio.

  6. Role of hormones and neurosteroids in epileptogenesis

    PubMed Central

    Reddy, Doodipala Samba

    2013-01-01

    This article describes the emerging evidence of hormonal influence on epileptogenesis, which is a process whereby a brain becomes progressively epileptic due to an initial precipitating event of diverse origin such as brain injury, stroke, infection, or prolonged seizures. The molecular mechanisms underlying the development of epilepsy are poorly understood. Neuroinflammation and neurodegeneration appear to trigger epileptogenesis. There is an intense search for drugs that truly prevent the development of epilepsy in people at risk. Hormones play an important role in children and adults with epilepsy. Corticosteroids, progesterone, estrogens, and neurosteroids have been shown to affect seizure activity in animal models and in clinical studies. However, the impact of hormones on epileptogenesis has not been investigated widely. There is emerging new evidence that progesterone, neurosteroids, and endogenous hormones may play a role in regulating the epileptogenesis. Corticosterone has excitatory effects and triggers epileptogenesis in animal models. Progesterone has disease-modifying activity in epileptogenic models. The antiepileptogenic effect of progesterone has been attributed to its conversion to neurosteroids, which binds to GABA-A receptors and enhances phasic and tonic inhibition in the brain. Neurosteroids are robust anticonvulsants. There is pilot evidence that neurosteroids may have antiepileptogenic properties. Future studies may generate new insight on the disease-modifying potential of hormonal agents and neurosteroids in epileptogenesis. PMID:23914154

  7. Bioidentical Hormones and Menopause

    MedlinePlus

    ... made products. These are made in a compounding pharmacy(a pharmacy that mixes medications according to a doctor’s instructions). ... that bioidentical hormones, whether prepared by a compounding pharmacy or pharmaceutical company, are safer to use than ...

  8. Bioidentical Hormones and Menopause

    MedlinePlus

    ... made products. These are made in a compounding pharmacy (a pharmacy that mixes medications according to a doctor’s instructions). ... that bioidentical hormones, whether prepared by a compounding pharmacy or pharmaceutical company, are safer to use than ...

  9. Menopause and Hormones

    MedlinePlus

    ... the participating organizations that have assisted in its reproduction and distribution. Learn More about Menopause and Hormones ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products

  10. Vaginal bleeding - hormonal

    MedlinePlus

    ... abnormal uterine bleeding is caused by a hormone imbalance. DUB is more common in teenagers or in women who are approaching menopause. DUB is unpredictable. The bleeding may be very heavy or light and can occur often or randomly.

  11. Growth hormone test

    MedlinePlus

    ... under the skin) Infection (a slight risk any time the skin is broken) Alternative Names GH test Images Growth hormone stimulation test - series References Ali O. Hyperpituitarism, tall stature, and overgrowth ...

  12. Thyroid Stimulating Hormone Receptor.

    PubMed

    Tuncel, Murat

    2016-01-05

    Thyroid stimulating hormone receptor (TSHR) plays a pivotal role in thyroid hormone metabolism. It is a major controller of thyroid cell function and growth. Mutations in TSHR may lead to several thyroid diseases, most commonly hyperthyroidism. Although its genetic and epigenetic alterations do not directly lead to carcinogenesis, it has a crucial role in tumor growth, which is initiated by several oncogenes. This article will provide a brief review of TSHR and related diseases.

  13. Thyroid Stimulating Hormone Receptor

    PubMed Central

    Tuncel, Murat

    2017-01-01

    Thyroid stimulating hormone receptor (TSHR) plays a pivotal role in thyroid hormone metabolism. It is a major controller of thyroid cell function and growth. Mutations in TSHR may lead to several thyroid diseases, most commonly hyperthyroidism. Although its genetic and epigenetic alterations do not directly lead to carcinogenesis, it has a crucial role in tumor growth, which is initiated by several oncogenes. This article will provide a brief review of TSHR and related diseases. PMID:28117293

  14. Protein Hormones and Immunity‡

    PubMed Central

    Kelley, Keith W.; Weigent, Douglas A.; Kooijman, Ron

    2007-01-01

    A number of observations and discoveries over the past 20 years support the concept of important physiological interactions between the endocrine and immune systems. The best known pathway for transmission of information from the immune system to the neuroendocrine system is humoral in the form of cytokines, although neural transmission via the afferent vagus is well documented also. In the other direction, efferent signals from the nervous system to the immune system are conveyed by both the neuroendocrine and autonomic nervous systems. Communication is possible because the nervous and immune systems share a common biochemical language involving shared ligands and receptors, including neurotransmitters, neuropeptides, growth factors, neuroendocrine hormones and cytokines. This means that the brain functions as an immune-regulating organ participating in immune responses. A great deal of evidence has accumulated and confirmed that hormones secreted by the neuroendocrine system play an important role in communication and regulation of the cells of the immune system. Among protein hormones, this has been most clearly documented for prolactin (PRL), growth hormone (GH), and insulin-like growth factor-1 (IGF-I), but significant influences on immunity by thyroid stimulating hormone (TSH) have also been demonstrated. Here we review evidence obtained during the past 20 years to clearly demonstrate that neuroendocrine protein hormones influence immunity and that immune processes affect the neuroendocrine system. New findings highlight a previously undiscovered route of communication between the immune and endocrine systems that is now known to occur at the cellular level. This communication system is activated when inflammatory processes induced by proinflammatory cytokines antagonize the function of a variety of hormones, which then causes endocrine resistance in both the periphery and brain. Homeostasis during inflammation is achieved by a balance between cytokines and

  15. Growth Hormone-Releasing Hormone in Diabetes

    PubMed Central

    Fridlyand, Leonid E.; Tamarina, Natalia A.; Schally, Andrew V.; Philipson, Louis H.

    2016-01-01

    Growth hormone-releasing hormone (GHRH) is produced by the hypothalamus and stimulates growth hormone synthesis and release in the anterior pituitary gland. In addition, GHRH is an important regulator of cellular functions in many cells and organs. Expression of GHRH G-Protein Coupled Receptor (GHRHR) has been demonstrated in different peripheral tissues and cell types, including pancreatic islets. Among the peripheral activities, recent studies demonstrate a novel ability of GHRH analogs to increase and preserve insulin secretion by beta-cells in isolated pancreatic islets, which makes them potentially useful for diabetes treatment. This review considers the role of GHRHR in the beta-cell and addresses the unique engineered GHRH agonists and antagonists for treatment of type 2 diabetes mellitus. We discuss the similarity of signaling pathways activated by GHRHR in pituitary somatotrophs and in pancreatic beta-cells and possible ways as to how the GHRHR pathway can interact with glucose and other secretagogues to stimulate insulin secretion. We also consider the hypothesis that novel GHRHR agonists can improve glucose metabolism in Type 2 diabetes by preserving the function and survival of pancreatic beta-cells. Wound healing and cardioprotective action with new GHRH agonists suggest that they may prove useful in ameliorating certain diabetic complications. These findings highlight the future potential therapeutic effectiveness of modulators of GHRHR activity for the development of new therapeutic approaches in diabetes and its complications. PMID:27777568

  16. Exogenous Hormone Use: Oral Contraceptives, Postmenopausal Hormone Therapy, and Health Outcomes in the Nurses’ Health Study

    PubMed Central

    Grodstein, Francine; Stampfer, Meir J.; Willett, Walter C.; Hu, Frank B.; Manson, JoAnn E.

    2016-01-01

    Objectives. To review the contribution of the Nurses’ Health Study (NHS) to our understanding of the complex relationship between exogenous hormones and health outcomes in women. Methods. We performed a narrative review of the publications of the NHS and NHS II from 1976 to 2016. Results. Oral contraceptive and postmenopausal hormone use were studied in relation to major health outcomes, including cardiovascular disease and cancer. Current or recent oral contraceptive use is associated with a higher risk of cardiovascular disease (mainly among smokers), melanoma, and breast cancer, and a lower risk of colorectal and ovarian cancer. Although hormone therapy is not indicated primarily for chronic disease prevention, findings from the NHS and a recent analysis of the Women’s Health Initiative indicate that younger women who are closer to menopause onset have a more favorable risk–benefit profile than do older women from use of hormone therapy for relief of vasomotor symptoms. Conclusions. With updated information on hormone use, lifestyle factors, and other variables, the NHS and NHS II continue to contribute to our understanding of the complex relationship between exogenous hormones and health outcomes in women. PMID:27459451

  17. Postmenopausal hormone therapy and cognition.

    PubMed

    McCarrey, Anna C; Resnick, Susan M

    2015-08-01

    This article is part of a Special Issue "Estradiol and cognition". Prior to the publication of findings from the Women's Health Initiative (WHI) in 2002, estrogen-containing hormone therapy (HT) was used to prevent age-related disease, especially cardiovascular disease, and to treat menopausal symptoms such as hot flushes and sleep disruptions. Some observational studies of HT in midlife and aging women suggested that HT might also benefit cognitive function, but randomized clinical trials have produced mixed findings in terms of health and cognitive outcomes. This review focuses on hormone effects on cognition and risk for dementia in naturally menopausal women as well as surgically induced menopause, and highlights findings from the large-scale WHI Memory Study (WHIMS) which, contrary to expectation, showed increased dementia risk and poorer cognitive outcomes in older postmenopausal women randomized to HT versus placebo. We consider the 'critical window hypothesis', which suggests that a window of opportunity may exist shortly after menopause during which estrogen treatments are most effective. In addition, we highlight emerging evidence that potential adverse effects of HT on cognition are most pronounced in women who have other health risks, such as lower global cognition or diabetes. Lastly, we point towards implications for future research and clinical treatments.

  18. The Endocannabinoid System and Sex Steroid Hormone-Dependent Cancers

    PubMed Central

    Taylor, Anthony H.; Marczylo, Timothy H.; Willets, Jonathon M.; Konje, Justin C.

    2013-01-01

    The “endocannabinoid system (ECS)” comprises the endocannabinoids, the enzymes that regulate their synthesis and degradation, the prototypical cannabinoid receptors (CB1 and CB2), some noncannabinoid receptors, and an, as yet, uncharacterised transport system. Recent evidence suggests that both cannabinoid receptors are present in sex steroid hormone-dependent cancer tissues and potentially play an important role in those malignancies. Sex steroid hormones regulate the endocannabinoid system and the endocannabinoids prevent tumour development through putative protective mechanisms that prevent cell growth and migration, suggesting an important role for endocannabinoids in the regulation of sex hormone-dependent tumours and metastasis. Here, the role of the endocannabinoid system in sex steroid hormone-dependent cancers is described and the potential for novel therapies assessed. PMID:24369462

  19. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.

  20. Hormonal control of euryhalinity

    USGS Publications Warehouse

    Takei, Yoshio; McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    Hormones play a critical role in maintaining body fluid balance in euryhaline fishes during changes in environmental salinity. The neuroendocrine axis senses osmotic and ionic changes, then signals and coordinates tissue-specific responses to regulate water and ion fluxes. Rapid-acting hormones, e.g. angiotensins, cope with immediate challenges by controlling drinking rate and the activity of ion transporters in the gill, gut, and kidney. Slow-acting hormones, e.g. prolactin and growth hormone/insulin-like growth factor-1, reorganize the body for long-term acclimation by altering the abundance of ion transporters and through cell proliferation and differentiation of ionocytes and other osmoregulatory cells. Euryhaline species exist in all groups of fish, including cyclostomes, and cartilaginous and teleost fishes. The diverse strategies for responding to changes in salinity have led to differential regulation and tissue-specific effects of hormones. Combining traditional physiological approaches with genomic, transcriptomic, and proteomic analyses will elucidate the patterns and diversity of the endocrine control of euryhalinity.

  1. Thyroid hormone transporter defects.

    PubMed

    Grüters, Annette

    2007-01-01

    In in vitro experiments, active transport of thyroid hormones had been repeatedly demonstrated. The membrane transporters for thyroid hormones which have been identified include the organic anion transporting polypeptide, heterodimeric amino acid transporters and the monocarboxylate transporters (MCT) which are the focus of this chapter. The gene encoding MCT8 which was identified as a specific thyroid hormone transporter is located on chromosome Xq13.2. The expression pattern of MCT8 indicates that MCT8 plays an important role in the development of the central nervous system by transporting thyroid hormone into neurons as its main target cells. Mutational analysis of the MCT8 gene revealed mutations or deletions in the MCT8 gene in unrelated male patients with severe psychomotor retardation and biochemical findings consistent with thyroid hormone resistance. Indeed, thyroid function tests in patients with MCT8 mutations demonstrated marked elevations of serum T3 (in the thyrotoxic range), a significant decrease in serum T4 or fT4 and normal to elevated TSH levels.

  2. Male hormonal contraceptives.

    PubMed

    Amory, J K

    2006-06-01

    Efforts are underway to develop additional forms of contraception for men. The most promising approach to male contraceptive development involves the administration of exogenous testosterone (T). When administered to a man, T functions as a contraceptive by suppressing the secretion of luteinizing hormone and follicle-stimulating hormone from the pituitary, thereby depriving the testes of the signals required for spermatogenesis. After 2-3 months of treatment, low levels of these gonadotropins lead to markedly decreased sperm counts and effective contraception in a majority of men. Hormonal contraception with exogenous T has proven to be free from serious adverse effects and is well tolerated by men. In addition, sperm counts uniformly normalize when the exogenous T is discontinued. Thus, male hormonal is safe, effective and reversible; however, spermatogenesis is not suppressed to zero in all men, meaning that some diminished potential for fertility persists. Because of this recent studies have combined T with progestogens and/or gonadotropin-releasing antagonists to further suppress pituitary gonadotropins and optimize contraceptive efficacy. Current combinations of T and progestogens completely suppress spermatogenesis without severe side effects in 80-90% of men, with significant suppression in the remainder of individuals. Recent trials with newer, long-acting forms of injectable T, which can be administered every 8 weeks, combined with progestogens, administered either orally or by long-acting implant, have yielded promising results and may soon result in the marketing of a safe, reversible and effective hormonal contraceptive for men.

  3. [Growth hormone signaling pathways].

    PubMed

    Zych, Sławomir; Szatkowska, Iwona; Czerniawska-Piatkowska, Ewa

    2006-01-01

    The substantial improvement in the studies on a very complicated mechanism-- growth hormone signaling in a cell, has been noted in last decade. GH-induced signaling is characterized by activation of several pathways, including extracellular signal-regulated kinase (ERK), the signal transducer and activator of transcription and phosphatidylinositol-3 kinase (PI3) pathways. This review shows a current model of the growth hormone receptor dimerization, rotation of subunits and JAK2 kinase activation as the initial steps in the cascade of events. In the next stages of the signaling process, the GH-(GHR)2-(JAK2)2 complex may activate signaling molecules such as Stat, IRS-1 and IRS-2, and particularly all cascade proteins that activate MAP kinase. These pathways regulate basal cellular functions including target gene transcription, enzymatic activity and metabolite transport. Therefore growth hormone is considered as a major regulator of postnatal growth and metabolism, probably for mammary gland growth and development too.

  4. [Hormonal perturbations in fibromyalgia].

    PubMed

    Schlienger, J L; Perrin, A E; Grunenberger, F; Goichot, B

    2001-12-01

    Fibromyalgia is a syndrome characterized by chronic musculoskeletal pain and fatigue without biological detectable disturbances. The mechanisms of this disease are unknown. It has been postulated that it can be the consequence of a chronic stress mediated mainly through the hypothalamo-pituitary-adrenal axis and the sympathetic nervous system. These fields have been extensively studied. Results were scattered and non convincing. A reduction of growth hormone and IGF-1 levels described in a third of patients has led to a double blind random clinical trial with biogenetic growth hormone. Results were equivocal . Other hormonal systems are grossly normals and circadian rhythms are unaltered. Despite some arguments in favour of a CRH neurons hyperactivity, these results are not able to consolide a particular physiopathological mechanism and to argument for a new therapeutic approach. Many of the abnormalities may be the consequence of psychological disturbances.

  5. Genetics Home Reference: isolated growth hormone deficiency

    MedlinePlus

    ... Isolated growth hormone deficiency Educational Resources (10 links) Boston Children's Hospital CLIMB: Growth Hormone Deficiency Information Sheet (PDF) Disease InfoSearch: Isolated growth hormone deficiency ...

  6. The potential use of hormone-based therapeutics for the treatment of Alzheimer's disease.

    PubMed

    Carroll, Jenna C; Rosario, Emily R

    2012-01-01

    In both men and women, age-related loss of sex steroid hormones has been linked to an increased risk for Alzheimer's disease (AD). The primary female hormone estrogen, and the primary male hormone testosterone have numerous protective effects in the brain relevant to the prevention of AD such as the promotion of neuron viability, reduction of β- amyloid accumulation and alleviation of tau hyperphosphorylation. Therefore it has been hypothesized that the precipitous loss of these hormones either through menopause or normal aging, can increase susceptibility to AD pathogenesis. This review will discuss the basic science research and epidemiological evidence largely supporting this hypothesis, as well as the estrogen-based hormone therapy clinical findings that have recently shed doubt on this theory. The complications associated with estrogen-based hormone therapy such as the inclusion of a progestogen, hormone responsiveness with age, and natural vs. synthetic hormones will be discussed. Further, we will outline the cancer risks facing both estrogen and testosterone-based hormone therapy. Most importantly, this review will discuss the present and future strategies to translate the neuroprotective properties of sex steroid hormones into safe and efficacious treatments for AD. One of the most promising translational tools thus far may be the development of selective estrogen and androgen receptor modulators. However, additional research is needed to optimize these and other translational tools towards the successful use of hormone therapies in both men and women to delay, prevent, and or treat AD.

  7. Growth Hormone Deficiency in Adults

    MedlinePlus

    ... y Cuidadores Hormones and Health Journey Through the Endocrine System Endocrine Disrupting Chemicals (EDCs) Endocrine Glands and Types ... Clinical Trials Hormones and Health Journey Through the Endocrine System Endocrine Disrupting Chemicals (EDCs) Endocrine Glands and Types ...

  8. Luteinizing hormone (LH) blood test

    MedlinePlus

    ICSH - blood test; Luteinizing hormone - blood test; Interstitial cell stimulating hormone - blood test ... to temporarily stop medicines that may affect the test results. Be sure to tell your provider about ...

  9. SHBG (Sex Hormone Binding Globulin)

    MedlinePlus

    ... as: Testosterone-estrogen Binding Globulin; TeBG Formal name: Sex Hormone Binding Globulin Related tests: Testosterone , Free Testosterone, ... I should know? How is it used? The sex hormone binding globulin (SHBG) test may be used ...

  10. Hormone Profiling in Plant Tissues.

    PubMed

    Müller, Maren; Munné-Bosch, Sergi

    2017-01-01

    Plant hormones are for a long time known to act as chemical messengers in the regulation of physiological processes during a plant's life cycle, from germination to senescence. Furthermore, plant hormones simultaneously coordinate physiological responses to biotic and abiotic stresses. To study the hormonal regulation of physiological processes, three main approaches have been used (1) exogenous application of hormones, (2) correlative studies through measurements of endogenous hormone levels, and (3) use of transgenic and/or mutant plants altered in hormone metabolism or signaling. A plant hormone profiling method is useful to unravel cross talk between hormones and help unravel the hormonal regulation of physiological processes in studies using any of the aforementioned approaches. However, hormone profiling is still particularly challenging due to their very low abundance in plant tissues. In this chapter, a sensitive, rapid, and accurate method to quantify all the five "classic" classes of plant hormones plus other plant growth regulators, such as jasmonates, salicylic acid, melatonin, and brassinosteroids is described. The method includes a fast and simple extraction procedure without time consuming steps as purification or derivatization, followed by optimized ultrahigh-performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (UHPLC-MS/MS) analysis. This protocol facilitates the high-throughput analysis of hormone profiling and is applicable to different plant tissues.

  11. Hormonal Control of Fetal Growth.

    ERIC Educational Resources Information Center

    Cooke, Paul S.; Nicoll, Charles S.

    1983-01-01

    Summarizes recent research on hormonal control of fetal growth, presenting data obtained using a new method for studying the area. Effects of endocrine ablations and congenital deficiencies, studies of hormone/receptor levels, in-vitro techniques, hormones implicated in promoting fetal growth, problems with existing methodologies, and growth of…

  12. [Rational hormonal diagnosis of oligomenorrhea].

    PubMed

    Weise, H C; Moltz, L; Bispink, G; Leidenberger, F

    1989-08-01

    In a study, conducted by two clinics in Berlin and Hamburg, specializing in reproductive endocrinology, the anamnestic, clinical, and laboratory data of 170 oligomenorrheic patients (menstrual intervals between 35 and 90 days) were evaluated in order to determine the frequency of possible causes of oligomenorrhea. Pathological hormone levels were found in two thirds of all patients. The order of frequency of abnormal hormone levels was as follows: hyperandrogenemia (testosterone and/or DHEA-sulfate) in 41.8%, hyperprolactinemia in 25.9%, abnormal thyroid function (TSH and/or TRH-induced TSH) in 21.7%, and hypergonadotropic FSH levels in 3.5% of all patients. There was an overlap of between two or more pathological conditions in one third of all patients. This study confirms results of a previous study in amenorrheic patients (Moltz et al., 1987 - see reference list), documenting hyperandrogenemia as the most frequent abnormality found in this group, followed by hyperprolactinemia. As can be expected, the percentage of women with no discernible abnormality was higher in oligomenorrheic patients when compared with the amenorrheic group (32.3% vs 7.7%). Furthermore, overweight patients were overrepresented in the oligomenorrheic group, while underweight patients were seen more frequently in the amenorrheic group. In view of these results of our study we recommend a detailed diagnostic follow-up in all younger patients with ovarian disorders who need to preserve their reproductive potential. This follow-up should include hyperprolactinemia, hypo-/hyperthyroidism, hyperandrogenemic and hypoestrogenemic states and exclusion of primary ovarian failure. In contrast to recommendations of WHO, issued in 1976, such diagnostic work allows an etiology oriented therapy decision and a therapy risk assessment in subgroups of patients, such as hyperandrogenemic patients, who receive clomiphene or gonadotropin treatment. Furthermore, it permits prophylactic considerations, for

  13. Soy milk intake in relation to serum sex hormone levels in British men.

    PubMed

    Allen, N E; Appleby, P N; Davey, G K; Key, T J

    2001-01-01

    Soy beans contain high levels of the isoflavones genistein and daidzein and their glycosides and have been implicated in the prevention of prostate cancer, possibly via their effects on sex hormone metabolism. The aim of this study was to assess the relation between dietary soy intake and sex hormone levels in a cross-sectional analysis of 696 men with a wide range of soy intakes. Soy milk intake was measured using a validated semiquantitative food frequency questionnaire, and serum hormone concentrations were measured by immunoassay. Multiple regression was used to investigate the association between soy milk intake, an index of isoflavone intake, and hormone levels after adjustment for pertinent confounders. Soy milk intake was not associated with serum concentrations of testosterone, free testosterone, androstanediol glucuronide, sex hormone-binding globulin, or luteinizing hormone. These results suggest that soy milk intake, as a marker of isoflavone intake, is not associated with serum sex hormone concentrations among free-living Western men.

  14. Selected hormonal and neurotransmitter mechanisms regulating feed intake in sheep.

    PubMed

    Sartin, J L; Daniel, J A; Whitlock, B K; Wilborn, R R

    2010-11-01

    Appetite control is a major issue in normal growth and in suboptimal growth performance settings. A number of hormones, in particular leptin, activate or inhibit orexigenic or anorexigenic neurotransmitters within the arcuate nucleus of the hypothalamus, where feed intake regulation is integrated. Examples of appetite regulatory neurotransmitters are the stimulatory neurotransmitters neuropeptide Y (NPY), agouti-related protein (AgRP), orexin and melanin-concentrating hormone and the inhibitory neurotransmitter, melanocyte-stimulating hormone (MSH). Examination of messenger RNA (using in situ hybridization and real-time PCR) and proteins (using immunohistochemistry) for these neurotransmitters in ruminants has indicated that physiological regulation occurs in response to fasting for several of these critical genes and proteins, especially AgRP and NPY. Moreover, intracerebroventricular injection of each of the four stimulatory neurotransmitters can increase feed intake in sheep and may also regulate either growth hormone, luteinizing hormone, cortisol or other hormones. In contrast, both leptin and MSH are inhibitory to feed intake in ruminants. Interestingly, the natural melanocortin-4 receptor (MC4R) antagonist, AgRP, as well as NPY can prevent the inhibition of feed intake after injection of endotoxin (to model disease suppression of appetite). Thus, knowledge of the mechanisms regulating feed intake in the hypothalamus may lead to mechanisms to increase feed intake in normal growing animals and prevent the wasting effects of severe disease in animals.

  15. Hormone replacement therapy: the need for reconsideration.

    PubMed

    Rosenberg, L

    1993-12-01

    Millions of menopausal women are taking hormone supplements. Observational studies suggest that unopposed estrogens reduce the risk of cardiovascular disease and fractures and increase the risk of endometrial cancer and, possibly, breast cancer. In the absence of information from randomized trials, how much of the apparent beneficial effect on heart disease is due to the tendency of healthier women to use these drugs is unknown. The effect on the cardiovascular system of estrogen taken with a progestin is unknown, and this regimen may increase the risk of breast cancer. An approach to health and illness that focuses on a single cause or preventive and on single organ systems is severely limited. Alternative ways to improve cardiovascular and skeletal health that do not increase the risk of cancer are available. A reconsideration of the appropriate use of hormone supplements is needed.

  16. The wound hormone jasmonate

    PubMed Central

    Koo, Abraham J.K.; Howe, Gregg A.

    2009-01-01

    Plant tissues are highly vulnerable to injury by herbivores, pathogens, mechanical stress, and other environmental insults. Optimal plant fitness in the face of these threats relies on complex signal transduction networks that link damage-associated signals to appropriate changes in metabolism, growth, and development. Many of these wound-induced adaptive responses are triggered by de novo synthesis of the plant hormone jasmonate (JA). Recent studies provide evidence that JA mediates systemic wound responses through distinct cell autonomous and nonautonomous pathways. In both pathways, bioactive JAs are recognized by an F-box protein-based receptor system that couples hormone binding to ubiquitin-dependent degradation of transcriptional repressor proteins. These results provide a new framework for understanding how plants recognize and respond to tissue injury. PMID:19695649

  17. Sex hormones and acne.

    PubMed

    Ju, Qiang; Tao, Tao; Hu, Tingting; Karadağ, Ayşe Serap; Al-Khuzaei, Safaa; Chen, WenChieh

    The skin is an endocrine organ with the expression of metabolizing enzymes and hormone receptors for diverse hormones. The sebaceous gland is the main site of hormone biosynthesis, especially for androgens, and acne is the classical androgen-mediated dermatosis. In sebocytes, conversion of 17-hydroxyprogesterone directly to dihydrotestosterone bypassing testosterone has been demonstrated, while type II 17β-hydroxysteroid dehydrogenase can inactivate the action of testosterone and dihydrotestosterone. The androgen receptor-dependent genomic effect of dihydrotestosterone on sebocytes is confirmed. Further evidence supports the PI3 K/Akt/FoxO1/mTOR signaling in the involvement of the interplay between androgens, insulin, insulin-like growth factor, and hyperglycemic diet in acne. Androgens not only regulate embryology and lipogenesis/sebum synthesis in sebocytes but also influence inflammation in acne. Genetic studies indicate that regulation of the androgen receptor is an important factor in severe acne. Further studies are required to understand the effect of estrogen and progesterone on sebaceous gland and comedogenesis, considering the change of acne in pregnancy and postmenopausal acne. Special attention should be paid to nonobese patients with polycystic ovarian syndrome and hyperandrogenism-insulin resistance-acanthosis nigricans syndrome. In spite of extensive gynecologic experience in the use of combined oral contraceptives for acne, evidence based on dermatologic observation should be intensified.

  18. [Acne and hormones].

    PubMed

    Faure, Michel

    2002-04-15

    Androgens stimulate sebum production which is necessary for the development of acne. Acne in women may thus be considered as a manifestation of cutaneous androgenization. Most of acnes may be related to an idiopathic skin hyperandrogenism due to in situ enzyme activity and androgen receptor hypersensitivity, as also noted in idiopathic hirsutism. Some acne may correspond to elevated ovarian or adrenal androgen secretion. The presence of acne in women may lead to a diagnosis of functional hyperandrogenism, either polycysticovary syndrome or nonclassical 21-hydroxylase deficiency. Plasma level assays for testosterone, delta 4 androstenedione and 17-OH progesterone and ovarian echography are necessary to determine the possibility for an ovarian or adrenal hyperandrogenism, but not to better treat acne. The goal of hormonal therapy in acne is to oppose the effects of androgens on the sebaceous gland. Hormones may be used in female acne in the absence of endocrine abnormalities. Antiandrogens (cyproterone acetate or aldactone) may be useful in severe acne, hormonal contraceptives with cyproterone acetate or non androgenic progestins in mild or common acne often in association with other anti-acneic drugs. Glucocorticoids have to be administered in acne fulminans and other forms of acute, severe, inflammatory acne, for their anti-inflammatory properties.

  19. Prevention of Alzheimer disease

    PubMed Central

    Scalco, Monica Zavaloni; van Reekum, Robert

    2006-01-01

    OBJECTIVE To review the evidence regarding prevention of Alzheimer disease (AD) in order to highlight the role of family medicine. QUALITY OF EVIDENCE Most of the evidence relating to prevention of AD is derived from observational (cross-sectional, case-control, or longitudinal) studies. Evidence from randomized controlled trials (RCTs) is available only for blood pressure control and for hormone replacement therapy for menopausal women. MAIN MESSAGE Many preventive approaches to AD have been identified, but no RCTs support their efficacy. Evidence from RCTs supports the effectiveness of blood pressure control in reducing incidence of AD, but demonstrates that postmenopausal women’s use of estrogen is ineffective in reducing it. Observational studies suggest that some preventive approaches, such as healthy lifestyle, ongoing education, regular physical activity, and cholesterol control, play a role in prevention of AD. These approaches can and should be used for every patient because they carry no significant risk. Currently, no effective pharmacologic interventions have been researched enough to support their use in prevention of AD. CONCLUSION Health professionals should educate patients, especially patients at higher risk of AD, about preventive strategies and potentially modifiable risk factors. PMID:16529393

  20. Drug insight: Recent advances in male hormonal contraception.

    PubMed

    Amory, John K; Page, Stephanie T; Bremner, William J

    2006-01-01

    As there are limitations to current methods of male contraception, research has been undertaken to develop hormonal contraceptives for men, analogous to the methods for women based on estrogen and progestogens. When testosterone is administered to a man, it functions as a contraceptive by suppressing the secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary gland. Since these hormones are the main stimulatory signals for spermatogenesis, low levels of LH and FSH markedly impair sperm production. After 3-4 months of testosterone treatment, 60-70% of men no longer have sperm in their ejaculate, and most other men exhibit markedly diminished sperm counts. Male hormonal contraception is well tolerated, free of serious adverse side effects, and 95% effective in the prevention of pregnancy. Importantly, male hormonal contraception is reversible, with sperm counts usually recovering within 4 months of the discontinuation of hormone treatment. Because exogenous testosterone administration alone does not completely suppress sperm production in all men, researchers have combined testosterone with second agents, such as progestogens or gonadotropin-releasing-hormone antagonists, to further suppress secretion of LH and FSH and improve suppression of spermatogenesis. Recent trials have used combinations of long-acting injectable or implantable forms of testosterone with progestogens, which can be administered orally, by injection or by a long-acting implant. Such combinations suppress spermatogenesis to zero without severe side effects in 80-90% of men, with near-complete suppression in the remainder of individuals. One of these testosterone and progestogen combination regimens might soon bring the promise of male hormonal contraception to fruition.

  1. Perspectives in hormone replacement therapy.

    PubMed

    Kenemans, P; van Unnik, G A; Mijatovic, V; van der Mooren, M J

    2001-06-15

    Estrogens have been convincingly shown to be highly effective in preventing and reversing menopause-related conditions, such as hot flushes, urogenital complaints, and postmenopausal bone loss. Observational studies report that long-term, estrogen-containing, postmenopausal hormone replacement therapy (HRT) leads to a substantial reduction in hip fractures, myocardial infarction, and possibly colonic cancer, with important consequences for health and quality of life. Estrogen replacement may postpone the onset of Alzheimer's disease and extend life. While many of these effects are biologically plausible, with a variety of cellular mechanisms being involved, only ongoing and future large-scale randomized clinical trials can and should define the effects of HRT more precisely. Long-term compliance is a key issue for long-term benefits, and offering women a choice of administration routes and regimens can only be beneficial in this respect. Pills, patches, gels, and implants are all widely prescribed. Intravaginal or intranasal forms of administration, which are very easy to use and adaptable on an individual level, are among the new options which could improve long-term continuation of HRT use. Fear of breast cancer and recurrence of vaginal bleeding are real concerns for many women considering HRT. This has led to research into lower-dose, estrogen-containing regimens, into continuous combined regimens, and into the potential of estrogen receptor alpha or beta binding molecules that may help to prevent such problems from arising. The prospects for safe and effective postmenopausal HRT with either estrogens or estrogen-like drugs are very promising when these drugs are used in a patient-tailored, risk profile-based manner.

  2. Parathyroid hormone and bone healing.

    PubMed

    Ellegaard, M; Jørgensen, N R; Schwarz, P

    2010-07-01

    Fracture healing is a complex process, and a significant number of fractures are complicated by impaired healing and non-union. Impaired healing is prevalent in certain risk groups, such as the elderly, osteoporotics, people with malnutrition, and women after menopause. Currently, no pharmacological treatments are available. There is therefore an unmet need for medications that can stimulate bone healing. Parathyroid hormone (PTH) is the first bone anabolic drug approved for the treatment of osteoporosis, and intriguingly a number of animal studies suggest that PTH could be beneficial in the treatment of fractures and could thus be a potentially new treatment option for induction of fracture healing in humans. Furthermore, fractures in animals with experimental conditions of impaired healing such as aging, estrogen withdrawal, and malnutrition can heal in an expedited manner after PTH treatment. Interestingly, fractures occurring at both cancellous and cortical sites can be treated successfully, indicating that both osteoporotic and nonosteoporotic fractures can be the target of PTH-induced healing. Finally, the data suggest that PTH partly prevents the delay in fracture healing caused by aging. Recently, the first randomized, controlled clinical trial investigating the effect of PTH on fracture healing was published, indicating a possible clinical benefit of PTH treatment in inducing fracture healing. The aim of this article is therefore to review the evidence for the potential of PTH in bone healing, including the underlying mechanisms for this, and to provide recommendations for the clinical testing and use of PTH in the treatment of impaired fracture healing in humans.

  3. Hormonal regulation of energy partitioning.

    PubMed

    Rohner-Jeanrenaud, F

    2000-06-01

    A loop system exists between hypothalamic neuropeptide Y (NPY) and peripheral adipose tissue leptin to maintain normal body homeostasis. When hypothalamic NPY levels are increased by fasting or by intracerebroventricular (i.c.v.) infusion, food intake and body weight increase. NPY has genuine hormono-metabolic effects. It increases insulin and corticosterone secretion relative to controls. These hormonal changes, acting singly or combined, favor adipose tissue lipogenic activity, while producing muscle insulin resistance. They also promote leptin release from adipose tissue. When infused i.c.v. to normal rats to mimic its central effects, leptin decreases NPY levels, thus food intake and body weight. Leptin i.c.v. has also genuine hormono-metabolic effects. It decreases insulinemia and adipose tissue storage ability, enhancing glucose disposal. Leptin increases the expression of uncoupling proteins (UCP-1, -2, -3) and thus energy dissipation. Leptin-induced changes favor oxidation at the expense of storage. Circadian fluctuations of NPY and leptin levels maintain normal body homeostasis. In animal obesity, defective hypothalamic leptin receptor activation prevent leptin from acting, with resulting obesity, insulin and leptin resistance.

  4. Thyroid Hormones and Methylmercury Toxicity

    PubMed Central

    O’Mara, Daniel M.; Aschner, Michael

    2013-01-01

    Thyroid hormones are essential for cellular metabolism, growth, and development. In particular, an adequate supply of thyroid hormones is critical for fetal neurodevelopment. Thyroid hormone tissue activation and inactivation in brain, liver, and other tissues is controlled by the deiodinases through the removal of iodine atoms. Selenium, an essential element critical for deiodinase activity, is sensitive to mercury and, therefore, when its availability is reduced, brain development might be altered. This review addresses the possibility that high exposures to the organometal, methylmercury (MeHg), may perturb neurodevelopmental processes by selectively affecting thyroid hormone homeostasis and function. PMID:18716716

  5. [How corticoids, growth hormone and oestrogens influence lipids and atherosclerosis].

    PubMed

    Marek, J; Hána, V; Krsek, M

    2007-04-01

    The hormones with a strong influence on the lipid spectrum and the development of atherosclerosis include cortisol, growth hormone and oestrogens. Cortisol accelerates atherosclerosis both through dyslipidemia and through an increase in visceral fat, hypertension, increased insulin resistance and the development of reduced glucose tolerance which may result in diabetes mellitus. Even when a cortisol excess disappears, as is the case of patients cured of Cushing syndrome, arterial walls remain permanently vulnerable to the atherosclerotic process. In conditions involving a lack of growth hormone, dyslipidemia develops and increases the burden on the cardiovascular system if not treated in a timely manner by the substitution of growth hormone. Oestrogens have a double effect: they have an anti-atherogenic effect on artery walls that are not yet damaged by an atherosclerotic process, but where atherosclerosis has already developed they have a prothrombotic effect and destabilise the atheromatous plaques. If oestrogen is to be used as protection against the onset of atherogenesis, it is necessary to start in a period when the atherosclerotic process has not yet begun to damage the woman's arterial walls and it is best to use natural hormones (estradiol) and to prevent endometriosis it should be combined with crystalline progesterone applied locally--inravaginally. Oestrogens should be given in small doses, preferably parenterally. Even this will not prevent genetic oestrogen effects though.

  6. Individualized Hormone Adjustment in the Treatment of Recurrent Spontaneous Abortions.

    PubMed

    Shang, Wei; Wang, Aiming; Lv, Libo; Zhang, Lei; Shu, Mingming; Zhao, Yong; Hui, Shang

    2015-07-01

    Our goal was to develop a safe, efficient, and practical clinical plan for successful pregnancies for patients with recurrent spontaneous miscarriages by adjustment of their hormone levels after ovulation. We treated 61 patients with recurrent miscarriages and 110 patients with two miscarriages. All patients had miscarriages before or during the 12th week of pregnancy, and unsuccessfully underwent progesterone therapy. We measured their hormone levels and administered appropriate doses of estrogen, progesterone, and luteinizing hormones to attain normal levels (respectively, 150 pg/ml, 16 ng/ml, and 6 mIU/ml). The hormone doses were reduced upon detection of fetal heart beating, and the treatment continued until the 12th week of pregnancy. The patients were followed up by phone after the child birth. In patients with recurrent miscarriages, these were prevented in 57/61 (93.44 %). In patients with two miscarriages, successful pregnancies were in 106/110 (96.4 %) patients. The vast majority of patients in both groups gave birth to healthy babies. There was only one case per each group of induced labor due to trisomy 21 (patient with a history of recurrent miscarriages) or trisomy 17 (patient with two previous miscarriages). Individualized adjustment of hormone levels after ovulation prevents miscarriages and improves the pregnancy success rates.

  7. Changes in serum growth hormone and prolactin levels, and in hypothalamic growth hormone-releasing hormone, thyrotropin-releasing hormone and somatostatin content, after superior cervical sympathectomy in rats.

    PubMed

    Cardinalí, D P; Esquifino, A I; Arce, A; Vara, E; Ariznavarreta, C; Tresguerres, J A

    1994-01-01

    After bilateral superior cervical ganglionectomy (SCGx) of adult male rats, norepinephrine (NE) content of the medial basal hypothalamus (MBH) decreased significantly by 39-47% from 16 h to 7 days after surgery. During this time the levels of serum growth hormone (GH) and prolactin (PRL) and of MBH GH-releasing hormone (GRH), thyrotropin-releasing hormone (TRH) and somatostatin were measured by RIA. In sham-operated controls, serum PRL increased and serum GH decreased 16-24 h after surgery, attaining pre-surgical levels later on. In SCGx rats, significantly lower serum GH and PRL and higher MBH GRH and TRH content as compared to controls was observed 16-24 h after surgery, during the wallerian degeneration phase after SCGx. MBH somatostatin concentration decreased in SCGx rats 20 h after surgery. Two injections of the alpha 1-adrenoceptor blocker prazosin 45 and 90 min before sacrifice, alone or together with the beta-blocker propranolol, prevented the changes in MBH hypophysiotropic hormone content, as well as in serum GH and PRL levels, found in SCGx rats 20 h after surgery. Propranolol treatment did not affect hormone levels. Neither drug modified the decrease in MBH NE content observed after SCGx. The results argue in favor of the existence of physiologically relevant projections from superior cervical ganglion neurons to the MBH controlling hypophysiotropic hormone release.

  8. Rape prevention

    MedlinePlus

    Date rape - prevention; Sexual assault - prevention ... Centers for Disease Control and Prevention. Sexual assault and abuse and STDs. In: 2015 sexually transmitted diseases treatment guidelines 2015. Updated June 4, 2015. www.cdc.gov/ ...

  9. Triiodothyronine stimulates specifically growth hormone mRNA in rat pituitary tumor cells.

    PubMed

    Seo, H; Vassart, G; Brocas, H; Refetoff, S

    1977-05-01

    In a cell-free protein-synthesizing system from a rabbit reticulocyte lysate, total RNA extracted from cultured rat pituitary tumor (GH3) cells directed, in a dose-related manner, the synthesis of proteins that were precipitated by antisera specific to rat growth hormone (somatotropin) and rat prolactin. A marked decrease in growth hormone secretion and growth hormone mRNA activity was observed when cells were grown in a medium deficient in thyroid hormone. Addition of triiodothyronine in physiologic amounts both prevented and completely reversed this effect within 48 hr. Thyroid hormone had no effect on prolactin secretion or prolactin mRNA activity. These data suggest that thyroid hormone may stimulate synthesis of growth hormone through induction of transcriptional activity. The possibility of an additional effect at the posttranscriptional level has not been excluded. Although thyroid hormone is believed to have a general effect on a variety of metabolic processes, some effects, at the molecular level, may be quite selective, as indicated by the observed changes in growth hormone but not prolactin mRNA activity. The GH3 cell model is useful in the study of triiodothyronine action because of independence from secondary hormonal effects caused by hypothyroidism and because simultaneous measurement of prolactin mRNA activity serves as a unique internal control.

  10. Hormonal Programming Across the Lifespan

    PubMed Central

    Tobet, Stuart A; Lara, Hernan E; Lucion, Aldo B; Wilson, Melinda E; Recabarren, Sergio E; Paredes, Alfonso H

    2013-01-01

    Hormones influence countless biological processes across the lifespan, and during developmental sensitive periods hormones have the potential to cause permanent tissue-specific alterations in anatomy and physiology. There are numerous critical periods in development wherein different targets are affected. This review outlines the proceedings of the Hormonal Programming in Development session at the US-South American Workshop in Neuroendocrinology in August 2011. Here we discuss how gonadal hormones impact various biological processes within the brain and gonads during early development and describe the changes that take place in the aging female ovary. At the cellular level, hormonal targets in the brain include neurons, glia, or vasculature. On a genomic/epigenomic level, transcription factor signaling and epigenetic changes alter the expression of hormone receptor genes across development and following ischemic brain insult. In addition, organizational hormone exposure alters epigenetic processes in specific brain nuclei and may be a mediator of sexual differentiation of the neonatal brain. During development of the ovary, exposure to excess gonadal hormones leads to polycystic ovarian syndrome (PCOS). Exposure to excess androgens during fetal development also has a profound effect on the development of the male reproductive system. In addition, increased sympathetic nerve activity and stress during early life have been linked to PCOS symptomology in adulthood. Finally, we describe how age-related decreases in fertility are linked to high levels of nerve growth factor (NGF), which enhances sympathetic nerve activity and alters ovarian function. PMID:22700441

  11. Types of Cancer Treatment: Hormone Therapy

    Cancer.gov

    Describes how hormone therapy slows or stops the growth of breast and prostate cancers that use hormones to grow. Includes information about the types of hormone therapy and side effects that may happen.

  12. Growth hormone stimulation test - series (image)

    MedlinePlus

    The growth hormone (GH) is a protein hormone released from the anterior pituitary gland under the control of the hypothalamus. ... performed on infants and children to identify human growth hormone (hGH) deficiency as a cause of growth retardation. ...

  13. Quo vadis plant hormone analysis?

    PubMed

    Tarkowská, Danuše; Novák, Ondřej; Floková, Kristýna; Tarkowski, Petr; Turečková, Veronika; Grúz, Jiří; Rolčík, Jakub; Strnad, Miroslav

    2014-07-01

    Plant hormones act as chemical messengers in the regulation of myriads of physiological processes that occur in plants. To date, nine groups of plant hormones have been identified and more will probably be discovered. Furthermore, members of each group may participate in the regulation of physiological responses in planta both alone and in concert with members of either the same group or other groups. The ideal way to study biochemical processes involving these signalling molecules is 'hormone profiling', i.e. quantification of not only the hormones themselves, but also their biosynthetic precursors and metabolites in plant tissues. However, this is highly challenging since trace amounts of all of these substances are present in highly complex plant matrices. Here, we review advances, current trends and future perspectives in the analysis of all currently known plant hormones and the associated problems of extracting them from plant tissues and separating them from the numerous potentially interfering compounds.

  14. Hormone therapy for transgender patients

    PubMed Central

    2016-01-01

    Many transgender men and women seek hormone therapy as part of the transition process. Exogenous testosterone is used in transgender men to induce virilization and suppress feminizing characteristics. In transgender women, exogenous estrogen is used to help feminize patients, and anti-androgens are used as adjuncts to help suppress masculinizing features. Guidelines exist to help providers choose appropriate candidates for hormone therapy, and act as a framework for choosing treatment regimens and managing surveillance in these patients. Cross-sex hormone therapy has been shown to have positive physical and psychological effects on the transitioning individual and is considered a mainstay treatment for many patients. Bone and cardiovascular health are important considerations in transgender patients on long-term hormones, and care should be taken to monitor certain metabolic indices while patients are on cross-sex hormone therapy. PMID:28078219

  15. Autoinduction of nuclear hormone receptors during metamorphosis and its significance.

    PubMed

    Tata, J R

    2000-01-01

    Metamorphosis is a most dramatic example of hormonally regulated genetic reprogramming during postembryonic development. The initiation and sustenance of the process are under the control of ecdysteroids in invertebrates and thyroid hormone, 3,3', 5-triiodothyronine, in oviparous vertebrates. Their actions are inhibited or potentiated by other endogenous or exogenous hormones - juvenile hormone in invertebrates and prolactin and glucocorticoids in vertebrates. The nuclear receptors for ecdysteroids and thyroid hormone are the most closely related members of the steroid/retinoid/thyroid hormone receptor supergene family. In many pre-metamorphic amphibia and insects, the onset of natural metamorphosis and the administration of the exogenous hormones to the early larvae are characterized by a substantial and rapid autoinduction of the respective nuclear receptors. This review will largely deal with the phenomenon of receptor autoinduction during amphibian metamorphosis, although many of its features resemble those in insect metamorphosis. In the frog Xenopus, thyroid hormone receptor autoinduction has been shown to be brought about by the direct interaction between the receptor protein and the thyroid-responsive elements in the promoter of its own gene. Three lines of evidence point towards the involvement of receptor autoinduction in the process of initiation of amphibian metamorphosis: (1) a close association between the extent of inhibition or potentiation by prolactin and glucocorticoid, respectively, and metamorphic response in whole tadpoles and in organ and cell cultures; (2) thyroid hormone fails to upregulate the expression of its own receptor in obligatorily neotenic amphibia but does so in facultatively neotenic amphibia; and (3) dominant-negative receptors known to block hormonal response prevent the autoinduction of wild-type Xenopus receptors in vivo and in cell lines. Autoinduction is not restricted to insect and amphibian metamorphic hormones but is

  16. Postmenopausal hormone replacement and cardiovascular disease: incorporating research into practice.

    PubMed

    Chase, Susan K; Youngkin, Ellis Quinn

    2004-01-01

    The long-standing practice of prescribing hormones to postmenopausal women was based in part on the observation that following menopause, women's incidence of cardiovascular diseases such as atherosclerosis, myocardial infarction, and cerebral vascular accident increased. Recent large-scale research has shown an increase in cardiovascular events for postmenopausal women receiving estrogen replacement in oral form. This article examines research on positive effects of hormone replacement therapy, discusses what is known about the development of cardiovascular disease in women, and evaluates recent research that has shown increased cardiovascular risk in women receiving hormone replacement. It concludes with recommendations for preventing cardiovascular disease in women. This is essential information for nurses, who need to be informed of ways to maintain their own health while serving as sources of health information for the public at large.

  17. Plant hormone signaling lightens up: integrators of light and hormones.

    PubMed

    Lau, On Sun; Deng, Xing Wang

    2010-10-01

    Light is an important environmental signal that regulates diverse growth and developmental processes in plants. In these light-regulated processes, multiple hormonal pathways are often modulated by light to mediate the developmental changes. Conversely, hormone levels in plants also serve as endogenous cues in influencing light responsiveness. Although interactions between light and hormone signaling pathways have long been observed, recent studies have advanced our understanding by identifying signaling integrators that connect the pathways. These integrators, namely PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), PIF4, PIF3-LIKE 5 (PIL5)/PIF1 and LONG HYPOCOTYL 5 (HY5), are key light signaling components and they link light signals to the signaling of phytohormones, such as gibberellin (GA), abscisic acid (ABA), auxin and cytokinin, in regulating seedling photomorphogenesis and seed germination. This review focuses on these integrators in illustrating how light and hormone interact.

  18. Hormone signaling in plant development.

    PubMed

    Durbak, Amanda; Yao, Hong; McSteen, Paula

    2012-02-01

    Hormone signaling plays diverse and critical roles during plant development. In particular, hormone interactions regulate meristem function and therefore control formation of all organs in the plant. Recent advances have dissected commonalities and differences in the interaction of auxin and cytokinin in the regulation of shoot and root apical meristem function. In addition, brassinosteroid hormones have recently been discovered to regulate root apical meristem size. Further insights have also been made into our understanding of the mechanism of crosstalk among auxin, cytokinin, and strigolactone in axillary meristems.

  19. Hormone replacement therapy and longevity.

    PubMed

    Comhaire, F

    2016-02-01

    To assess whether hormone replacement therapy influences longevity, an analysis was made of published life tables allowing for the calculation of the relative benefit of hormone replacement therapy on longevity in men with late onset hypogonadism and in post-menopausal women. It was found that testosterone replacement therapy of men suffering from late onset hypogonadism increased survival rate by 9-10% in 5 years, similar to that of eugonadal, non-LOH men with normal endogenous testosterone secretion. Oestrogen replacement therapy resulted in increased survival by 2.6% in 5 years. It is concluded that hormone replacement therapy increases longevity.

  20. A rapid interference between glucocorticoids and cAMP-activated signalling in hypothalamic neurones prevents binding of phosphorylated cAMP response element binding protein and glucocorticoid receptor at the CRE-Like and composite GRE sites of thyrotrophin-releasing hormone gene promoter.

    PubMed

    Díaz-Gallardo, M Y; Cote-Vélez, A; Charli, J L; Joseph-Bravo, P

    2010-04-01

    Glucocorticoids or cAMP increase, within minutes, thyrotrophin-releasing hormone (TRH) transcription in hypothalamic primary cultures, although this effect is prevented if cells are simultaneously incubated with both drugs. Rat TRH promoter contains a CRE site at -101/-94 bp and a composite GRE element (cGRE) at -218/-197 bp. Nuclear extracts of hypothalamic cells incubated with 8Br-cAMP or dexamethasone, and not their combination, bind to oligonucleotides containing the CRE or cGRE sequences. Adjacent to CRE are Sp/Krüppel response elements, and flanking the GRE half site, two AP1 binding sites. The present study aimed to identify the hypothalamic transcription factors that bind to these sites. We verified that the effects of glucocorticoid were not mimicked by corticosterone-bovine serum albumin. Footprinting and chromatin immunoprecipitation (ChIP) assays were used to examine the interaction of cAMP- and glucocorticoid-mediated regulation of TRH transcription at the CRE and cGRE regions of the TRH promoter. Nuclear extracts from hypothalamic cells incubated for 1 h with cAMP or glucocorticoids protected CRE. The GRE half site was recognised by nuclear proteins from cells stimulated with glucocorticoids and, for the adjacent AP-1 sites, by nuclear proteins from cells stimulated with cAMP or phorbol esters. Protection of CRE or cGRE was lost if cells were coincubated with dexamethasone and 8Br-cAMP. ChIP assays revealed phospho-CREB, c-Jun, Sp1, c-Fos and GR antibodies bound the TRH promoter of cells treated with cAMP or glucocorticoids; anti:RNA-polymerase II immunoprecipitated TRH promoter in a similar proportion as anti:pCREB or anti:GR. Recruitment of pCREB, SP1 or GR was lost when cells were exposed simultaneously to 8Br-cAMP and glucocorticoids. The data show that while pCREB and Sp1 bind to CRE-2, or GR to cGRE of the TRH promoter, the mutual antagonism between cAMP and glucocorticoid signalling, which prevent their binding to TRH promoter, could serve as

  1. Steroid hormones and BDNF.

    PubMed

    Pluchino, N; Russo, M; Santoro, A N; Litta, P; Cela, V; Genazzani, A R

    2013-06-03

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin abundantly expressed in several areas of the central nervous system (CNS) and is known to induce a lasting potentiation of synaptic efficacy, to enhance specific learning and memory processes. BDNF is one of the key molecules modulating brain plasticity and it affects cognitive deficit associated with aging and neurodegenerative disease. Several studies have shown an altered BDNF production and secretion in a variety of neurodegenerative diseases like Alzheimer's and Parkinson's diseases but also in mood disorders like depression, eating disorders and schizophrenia. Plasma BDNF is also a biomarker of impaired memory and general cognitive function in aging women. Gonadal steroids are involved in the regulation of several CNS processes, specifically mood, affective and cognitive functions during fertile life and reproductive aging. These observations lead many scientists to investigate a putative co-regulation between BDNF and gonadal and/or adrenal steroids and their relationship with gender difference in the incidence of mental diseases. This overview aims to summarize the current knowledge on the correlation between BDNF expression/function and both gonadal (progesterone, estrogens, and testosterone) and adrenal hormones (mainly cortisol and dehydroepiandrosterone (DHEA)) with relevance in clinical application.

  2. Calciotropic hormones during reproduction.

    PubMed

    Verhaeghe, J; Bouillon, R

    1992-03-01

    This review summarizes the reported effects of the menstrual cycle, pregnancy and lactation on serum concentration of the calciotropic hormones PTH and 1,25(OH)2D. A midcycle rise in PTH and 1,25(OH)2D has been observed, but in the majority of studies there was no change in PTH and 1,25(OH)2D concentrations throughout the menstrual cycle. Both total and free 1,25(OH)2D levels are increased during pregnancy. The renal 1,25(OH)2D production is stimulated, and there is some evidence of 1,25(OH)2D production by decidua/placenta and fetal kidney in vitro; the decidual/placental production should not be overestimated in vivo. The increased renal 1 alpha-hydroxylase activity is possibly mediated by estrogens and PTH, although the effect of pregnancy on PTH remains uncertain. Increased serum 1,25(OH)2D concentrations probably result in a rise of intestinal calcium absorption during pregnancy. There is a postdelivery drop in PTH and 1,25(OH)2D levels, but they are increased when lactation is prolonged, or in mothers nursing twins. The l alpha-hydroxylase activity during lactation may be stimulated by PTH, but also by prolactin.

  3. Artificially Increased Yolk Hormone Levels and Neophobia in Domestic Chicks

    PubMed Central

    Bertin, Aline; Arnould, Cécile; Moussu, Chantal; Meurisse, Maryse; Constantin, Paul; Leterrier, Christine; Calandreau, Ludovic

    2015-01-01

    In birds there is compelling evidence that the development and expression of behavior is affected by maternal factors, particularly via variation in yolk hormone concentrations of maternal origin. In the present study we tested whether variation in yolk hormone levels lead to variation in the expression of neophobia in young domestic chicks. Understanding how the prenatal environment could predispose chicks to express fear-related behaviors is essential in order to propose preventive actions and improve animal welfare. We simulated the consequences of a maternal stress by experimentally enhancing yolk progesterone, testosterone and estradiol concentrations in hen eggs prior to incubation. The chicks from these hormone-treated eggs (H) and from sham embryos (C) that received the vehicle-only were exposed to novel food, novel object and novel environment tests. H chicks approached a novel object significantly faster and were significantly more active in a novel environment than controls, suggesting less fearfulness. Conversely, no effect of the treatment was found in food neophobia tests. Our study highlights a developmental influence of yolk hormones on a specific aspect of neophobia. The results suggest that increased yolk hormone levels modulate specifically the probability of exploring novel environments or novel objects in the environment. PMID:26633522

  4. Thyroid hormone receptors in brain development and function.

    PubMed

    Bernal, Juan

    2007-03-01

    Thyroid hormones are important during development of the mammalian brain, acting on migration and differentiation of neural cells, synaptogenesis, and myelination. The actions of thyroid hormones are mediated through nuclear thyroid hormone receptors (TRs) and regulation of gene expression. The purpose of this article is to review the role of TRs in brain maturation. In developing humans maternal and fetal thyroid glands provide thyroid hormones to the fetal brain, but the timing of receptor ontogeny agrees with clinical data on the importance of the maternal thyroid gland before midgestation. Several TR isoforms, which are encoded by the THRA and THRB genes, are expressed in the brain, with the most common being TRalpha1. Deletion of TRalpha1 in rodents is not, however, equivalent to hormone deprivation and, paradoxically, even prevents the effects of hypothyroidism. Unliganded receptor activity is, therefore, probably an important factor in causing the harmful effects of hypothyroidism. Accordingly, expression of a mutant receptor with impaired triiodothyronine (T(3)) binding and dominant negative activity affected cerebellar development and motor performance. TRs are also involved in adult brain function. TRalpha1 deletion, or expression of a dominant negative mutant receptor, induces consistent behavioral changes in adult mice, leading to severe anxiety and morphological changes in the hippocampus.

  5. Thyroid hormone transporters--functions and clinical implications.

    PubMed

    Bernal, Juan; Guadaño-Ferraz, Ana; Morte, Beatriz

    2015-07-01

    The cellular influx and efflux of thyroid hormones are facilitated by transmembrane protein transporters. Of these transporters, monocarboxylate transporter 8 (MCT8) is the only one specific for the transport of thyroid hormones and some of their derivatives. Mutations in SLC16A2, the gene that encodes MCT8, lead to an X-linked syndrome with severe neurological impairment and altered concentrations of thyroid hormones. Histopathological analysis of brain tissue from patients who have impaired MCT8 function indicates that brain lesions start prenatally, and are most probably the result of cerebral hypothyroidism. A Slc16a2 knockout mouse model has revealed that Mct8 is an important mediator of thyroid hormone transport, especially T3, through the blood-brain barrier. However, unlike humans with an MCT8 deficiency, these mice do not have neurological impairment. One explanation for this discrepancy could be differences in expression of the T4 transporter OATP1C1 in the blood-brain barrier; OATP1C1 is more abundant in rodents than in primates and permits the passage of T4 in the absence of T3 transport, thus preventing full cerebral hypothyroidism. In this Review, we discuss the relevance of thyroid hormone transporters in health and disease, with a particular focus on the pathophysiology of MCT8 mutations.

  6. Sex hormone activity in alcohol addiction: integrating organizational and activational effects.

    PubMed

    Lenz, Bernd; Müller, Christian P; Stoessel, Christina; Sperling, Wolfgang; Biermann, Teresa; Hillemacher, Thomas; Bleich, Stefan; Kornhuber, Johannes

    2012-01-01

    There are well-known sex differences in the epidemiology and etiopathology of alcohol dependence. Male gender is a crucial risk factor for the onset of alcohol addiction. A directly modifying role of testosterone in alcohol addiction-related behavior is well established. Sex hormones exert both permanent (organizational) and transient (activational) effects on the human brain. The sensitive period for these effects lasts throughout life. In this article, we present a novel early sex hormone activity model of alcohol addiction. We propose that early exposure to sex hormones triggers structural (organizational) neuroadaptations. These neuroadaptations affect cellular and behavioral responses to adult sex hormones, sensitize the brain's reward system to the reinforcing properties of alcohol and modulate alcohol addictive behavior later in life. This review outlines clinical findings related to the early sex hormone activity model of alcohol addiction (handedness, the second-to-fourth-finger length ratio, and the androgen receptor and aromatase) and includes clinical and preclinical literature regarding the activational effects of sex hormones in alcohol drinking behavior. Furthermore, we discuss the role of the hypothalamic-pituitary-adrenal and -gonadal axes and the opioid system in mediating the relationship between sex hormone activity and alcohol dependence. We conclude that a combination of exposure to sex hormones in utero and during early development contributes to the risk of alcohol addiction later in life. The early sex hormone activity model of alcohol addiction may prove to be a valuable tool in the development of preventive and therapeutic strategies.

  7. Hormone Abuse Prevention and What You Need to Know

    MedlinePlus

    ... high school students in the United States used anabolic steroid pills or shots without a prescription. Young people ... and sports-training centers, and on the Internet. Anabolic steroids have been found in over-the-counter supplements, ...

  8. Risk Assessment of Growth Hormones and Antimicrobial Residues in Meat

    PubMed Central

    Jeong, Sang-Hee; Kang, Daejin; Lim, Myung-Woon; Kang, Chang Soo

    2010-01-01

    Growth promoters including hormonal substances and antibiotics are used legally and illegally in food producing animals for the growth promotion of livestock animals. Hormonal substances still under debate in terms of their human health impacts are estradiol-17β, progesterone, testosterone, zeranol, trenbolone, and melengestrol acetate (MGA) . Many of the risk assessment results of natural steroid hormones have presented negligible impacts when they are used under good veterinary practices. For synthetic hormonelike substances, ADIs and MRLs have been established for food safety along with the approval of animal treatment. Small amounts of antibiotics added to feedstuff present growth promotion effects via the prevention of infectious diseases at doses lower than therapeutic dose. The induction of antimicrobial resistant bacteria and the disruption of normal human intestinal flora are major concerns in terms of human health impact. Regulatory guidance such as ADIs and MRLs fully reflect the impact on human gastrointestinal microflora. However, before deciding on any risk management options, risk assessments of antimicrobial resistance require large-scale evidence regarding the relationship between antimicrobial use in food-producing animals and the occurrence of antimicrobial resistance in human pathogens. In this article, the risk profiles of hormonal and antibacterial growth promoters are provided based on recent toxicity and human exposure information, and recommendations for risk management to prevent human health impacts by the use of growth promoters are also presented. PMID:24278538

  9. Network Identification of Hormonal Regulation

    PubMed Central

    Vis, Daniel J.; Westerhuis, Johan A.; Hoefsloot, Huub C. J.; Roelfsema, Ferdinand; van der Greef, Jan

    2014-01-01

    Relations among hormone serum concentrations are complex and depend on various factors, including gender, age, body mass index, diurnal rhythms and secretion stochastics. Therefore, endocrine deviations from healthy homeostasis are not easily detected or understood. A generic method is presented for detecting regulatory relations between hormones. This is demonstrated with a cohort of obese women, who underwent blood sampling at 10 minute intervals for 24-hours. The cohort was treated with bromocriptine in an attempt to clarify how hormone relations change by treatment. The detected regulatory relations are summarized in a network graph and treatment-induced changes in the relations are determined. The proposed method identifies many relations, including well-known ones. Ultimately, the method provides ways to improve the description and understanding of normal hormonal relations and deviations caused by disease or treatment. PMID:24852517

  10. Hormone therapy for breast cancer

    MedlinePlus

    ... Mood swings Depression Loss of interest in sex Drug Side Effects The side effects of hormone therapy depend on the drug. Common side effects include hot flashes, night sweats, and vaginal dryness . ...

  11. Side Effects of Hormone Therapy

    MedlinePlus

    ... FAQs Why Give to PCF? Featured Blue Jacket Fashion Show Featured Donate Contact Us Menu Close Donate ... Featured Why Give to PCF? Featured Blue Jacket Fashion Show Contact Us Side Effects of Hormone Therapy ...

  12. Ghrelin: much more than a hunger hormone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin is a multifaceted gut hormone that activates its receptor, growth hormone secretagogue receptor (GHS-R). Ghrelin's hallmark functions are its stimulatory effects on growth hormone release, food intake and fat deposition. Ghrelin is famously known as the 'hunger hormone'. However, ample recen...

  13. The evolution of peptide hormones.

    PubMed

    Niall, H D

    1982-01-01

    Despite limitations in our present knowledge it is already possible to discern the main features of peptide hormone evolution, since the same mechanisms (and indeed the same hormone molecules) function in many different ways. This underlying unity of organization has its basis in the tendency of biochemical networks, once established, to survive and diversify. The most surprising recent findings in endocrinology have been the discovery of vertebrate peptide hormones in multiple sites within the same organism, and the reports, persuasive but requiring confirmation, of vertebrate hormones in primitive unicellular organisms (20, 20a). Perhaps the major challenge for the future is to define the roles and interactions of the many peptide hormones identified in brain (18). The most primitive bacteria and the human brain, though an enormous evolutionary distance apart, may have more in common than we have recognized until now. As Axelrod & Hamilton have pointed out in a recent provocative article, "The Evolution of Cooperation" (1), bacteria, though lacking a brain, are capable of adaptive behavior that can be analysed in terms of game theory. It is clear that we can learn a great deal about the whole evolutionary process from a study of the versatile and durable peptide hormones molecules.

  14. Prevention of diseases after menopause.

    PubMed

    Lobo, R A; Davis, S R; De Villiers, T J; Gompel, A; Henderson, V W; Hodis, H N; Lumsden, M A; Mack, W J; Shapiro, S; Baber, R J

    2014-10-01

    Women may expect to spend more than a third of their lives after menopause. Beginning in the sixth decade, many chronic diseases will begin to emerge, which will affect both the quality and quantity of a woman's life. Thus, the onset of menopause heralds an opportunity for prevention strategies to improve the quality of life and enhance longevity. Obesity, metabolic syndrome and diabetes, cardiovascular disease, osteoporosis and osteoarthritis, cognitive decline, dementia and depression, and cancer are the major diseases of concern. Prevention strategies at menopause have to begin with screening and careful assessment for risk factors, which should also include molecular and genetic diagnostics, as these become available. Identification of certain risks will then allow directed therapy. Evidence-based prevention for the diseases noted above include lifestyle management, cessation of smoking, curtailing excessive alcohol consumption, a healthy diet and moderate exercise, as well as mentally stimulating activities. Although the most recent publications from the follow-up studies of the Women's Health Initiative do not recommend menopause hormonal therapy as a prevention strategy, these conclusions may not be fully valid for midlife women, on the basis of the existing data. For healthy women aged 50-59 years, estrogen therapy decreases coronary heart disease and all-cause mortality; this interpretation is entirely consistent with results from other randomized, controlled trials and observational studies. Thus. as part of a comprehensive strategy to prevent chronic disease after menopause, menopausal hormone therapy, particularly estrogen therapy may be considered as part of the armamentarium.

  15. Poison Prevention

    MedlinePlus

    ... the Word Shop AAP Find a Pediatrician Safety & Prevention Immunizations All Around At Home At Play On ... Listen Español Text Size Email Print Share Poison Prevention Page Content Article Body Post the Poison Help ...

  16. Growth hormone signaling pathways.

    PubMed

    Carter-Su, Christin; Schwartz, Jessica; Argetsinger, Lawrence S

    2016-06-01

    Over 20years ago, our laboratory showed that growth hormone (GH) signals through the GH receptor-associated tyrosine kinase JAK2. We showed that GH binding to its membrane-bound receptor enhances binding of JAK2 to the GHR, activates JAK2, and stimulates tyrosyl phosphorylation of both JAK2 and GHR. The activated JAK2/GHR complex recruits a variety of signaling proteins, thereby initiating multiple signaling pathways and cellular responses. These proteins and pathways include: 1) Stat transcription factors implicated in the expression of multiple genes, including the gene encoding insulin-like growth factor 1; 2) Shc adapter proteins that lead to activation of the grb2-SOS-Ras-Raf-MEK-ERK1,2 pathway; 3) insulin receptor substrate proteins implicated in the phosphatidylinositol-3-kinase and Akt pathway; 4) signal regulatory protein α, a transmembrane scaffold protein that recruits proteins including the tyrosine phosphatase SHP2; and 5) SH2B1, a scaffold protein that can activate JAK2 and enhance GH regulation of the actin cytoskeleton. Our recent work has focused on the function of SH2B1. We have shown that SH2B1β is recruited to and phosphorylated by JAK2 in response to GH. SH2B1 localizes to the plasma membrane, cytoplasm and focal adhesions; it also cycles through the nucleus. SH2B1 regulates the actin cytoskeleton and promotes GH-dependent motility of RAW264.7 macrophages. Mutations in SH2B1 have been found in humans exhibiting severe early-onset childhood obesity and insulin resistance. These mutations impair SH2B1 enhancement of GH-induced macrophage motility. As SH2B1 is expressed ubiquitously and is also recruited to a variety of receptor tyrosine kinases, our results raise the possibility that effects of SH2B1 on the actin cytoskeleton in various cell types, including neurons, may play a role in regulating body weight.

  17. Physical and hormonal evaluation of transsexual patients during hormonal therapy.

    PubMed

    Meyer, W J; Finkelstein, J W; Stuart, C A; Webb, A; Smith, E R; Payer, A F; Walker, P A

    1981-08-01

    The optimal hormonal therapy for transsexual patients is not known. The physical and hormonal characteristics of 38 noncastrate male-to-female transsexuals and 14 noncastrate female-to-male transsexuals have been measured before and/or during therapy with various forms and dosages of hormonal therapy. All patients were hormonally and physically normal prior to therapy. Ethinyl estradiol was superior to conjugated estrogen in suppression of testosterone and gonadotropins but equal in effecting breast growth. The changes in physical and hormonal characteristics were the same for 0.1 mg/d and 0.5 mg/d of ethinyl estradiol. The female-to-male transsexuals were well managed with a dose of intramuscular testosterone cypionate of 400 mg/month, usually given 200 mg every two weeks. The maximal clitoral length reached was usually 4 cm. Higher doses of testosterone did not further increase clitoral length or suppression of gonadotropins; lower doses did not suppress the gonadotropins. Based on the information found in this study, we recommend 0.1 mg/d of ethinyl estradiol for the noncastrate male-to-female transsexual and 200 mg of intramuscular testosterone cypionate every two weeks for the noncastrate female-to-male transsexual.

  18. Thyroid Hormone Deiodinases and Cancer

    PubMed Central

    Casula, Sabina; Bianco, Antonio C.

    2012-01-01

    Deiodinases constitute a group of thioredoxin fold-containing selenoenzymes that play an important function in thyroid hormone homeostasis and control of thyroid hormone action. There are three known deiodinases: D1 and D2 activate the pro-hormone thyroxine (T4) to T3, the most active form of thyroid hormone, while D3 inactivates thyroid hormone and terminates T3 action. A number of studies indicate that deiodinase expression is altered in several types of cancers, suggesting that (i) they may represent a useful cancer marker and/or (ii) could play a role in modulating cell proliferation – in different settings thyroid hormone modulates cell proliferation. For example, although D2 is minimally expressed in human and rodent skeletal muscle, its expression level in rhabdomyosarcoma (RMS)-13 cells is threefold to fourfold higher. In basal cell carcinoma (BCC) cells, sonic hedgehog (Shh)-induced cell proliferation is accompanied by induction of D3 and inactivation of D2. Interestingly a fivefold reduction in the growth of BCC in nude mice was observed if D3 expression was knocked down. A decrease in D1 activity has been described in renal clear cell carcinoma, primary liver cancer, lung cancer, and some pituitary tumors, while in breast cancer cells and tissue there is an increase in D1 activity. Furthermore D1 mRNA and activity were found to be decreased in papillary thyroid cancer while D1 and D2 activities were significantly higher in follicular thyroid cancer tissue, in follicular adenoma, and in anaplastic thyroid cancer. It is conceivable that understanding how deiodinase dysregulation in tumor cells affect thyroid hormone signaling and possibly interfere with tumor progression could lead to new antineoplastic approaches. PMID:22675319

  19. Disorders of antidiuretic hormone.

    PubMed

    Vokes, T J; Robertson, G L

    1988-06-01

    Disorders of thirst and vasopressin secretion present clinically in one of three ways: as hypotonic polyuria (DI), as hypodipsic hyponatremia, and as hyponatremia. In evaluating a patient with DI, the major challenge is to differentiate between primary polydipsia and neurogenic and nephrogenic DI. This is best accomplished through a series of steps that start with simple clinical observation, and progress, as necessary, to more complicated diagnostic procedures (Fig. 1). If the diagnosis is not clear from the clinical setting and the patient's history, the first step is to measure plasma osmolality and sodium under conditions of ad libitum fluid intake. If the results are clearly above the upper limit of normal range, primary polydipsia is excluded and the work-up can proceed directly to administration of vasopressin or DDAVP and/or a measurement of plasma vasopressin levels to differentiate between neurogenic and nephrogenic DI. If basal plasma osmolality and sodium fall within normal range, the standard dehydration test should be performed. If urine osmolality does not increase above that of plasma despite evident dehydration, primary polydipsia is excluded and the effect of vasopressin or DDAVP on urine osmolality should be examined to differentiate between neurogenic and nephrogenic DI. If administration of antidiuretic hormone increases urine osmolality by more than 50 per cent, the patient has severe neurogenic DI. If the increase in urine osmolality is less than 50 per cent, the patient has nephrogenic DI. In patients who do not concentrate urine above that of plasma in response to dehydration, the best approach is to measure plasma vasopressin, osmolality, and sodium after the latter have been increased above normal range by dehydration and/or infusion of hypertonic saline. When these results are plotted on a suitable nomogram (Fig. 2), neurogenic DI can be clearly diagnosed from the relative deficiency of vasopressin. In patients with normal vasopressin

  20. Hormonal therapies for individuals with intersex conditions: protocol for use.

    PubMed

    Warne, Garry L; Grover, Sonia; Zajac, Jeffrey D

    2005-01-01

    Hormonal therapy forms part of the treatment of every intersex condition. For some conditions, such as salt-wasting congenital adrenal hyperplasia, hormonal replacement therapy is life saving because hormones necessary for survival (cortisol and aldosterone) are replaced. In contrast, other hormones such as androgens or mineralocorticoids are secreted in excessive amounts in congenital adrenal hyperplasia due to an enzyme imbalance, and the role of hormonal therapy is to suppress the unwanted hormone excess by exerting negative feedback. For patients with one of the many causes of hypogonadism, sex hormone replacement therapy may be prescribed to stimulate sexual development: growth of a hypoplastic penis in a young boy, pubertal changes (male or female), psychosexual development, and adult sexual behavior. It has equally important and highly beneficial effects on bone mineral density. Hormonal therapy is also used to treat the unborn child. For the last 20 years, prenatal dexamethasone treatment administered to the pregnant woman has been used to prevent the development of ambiguous genitalia in females with 21-hydroxylase deficiency. Outcome studies show this treatment to be well tolerated and, in general, efficacious. Intersex conditions are, however, difficult to treat because they may intrinsically perturb complex aspects of the person's gender identity, gender-role behavior, sexual orientation, sexual functioning, and psychologic adjustment. Furthermore, decisions made about the sex of an infant by doctors and parents do not always turn out to be correct; the person may grow up feeling uncertain about his or her gender identity, or worse still, harbor a sense of outrage about their life and treatment experiences. Such a person will have definite views about hormonal therapy when the time comes and skillful counseling will be needed. A vigorous debate about ethical aspects of current medical practices relating to intersex conditions has been waged for the last

  1. Luteinizing hormone-releasing hormone agonists in premenopausal hormone receptor-positive breast cancer.

    PubMed

    Tan, Sing-Huang; Wolff, Antonio C

    2007-02-01

    Ovarian function suppression for the treatment of premenopausal breast cancer was first used in the late 19th century. Traditionally, ovarian function suppression had been accomplished irreversibly via irradiation or surgery, but analogues of the luteinizing hormone-releasing hormone (LH-RH) have emerged as reliable and reversible agents for this purpose, especially the LH-RH agonists. Luteinizing hormone-releasing hormone antagonists are in earlier stages of development in breast cancer and are not currently in clinical use. Luteinizing hormonereleasing hormone agonists act by pituitary desensitization and receptor downregulation, thereby suppressing gonadotrophin release. Limited information is available comparing the efficacies of the depot preparations of various agonists, but pharmacodynamic studies have shown comparable suppressive capabilities on estradiol and luteinizing hormone. At present, only monthly goserelin is Food and Drug Administration-approved for the treatment of estrogen receptor-positive, premenopausal metastatic breast cancer in the United States. Luteinizing hormone-releasing hormone agonists have proven to be as effective as surgical oophorectomy in premenopausal advanced breast cancer. They offer similar outcomes compared with tamoxifen, but the endocrine combination appears to be more effective than LH-RH agonists alone. In the adjuvant setting, LH-RH agonists versus no therapy reduce the annual odds of recurrence and death in women aged>50 years with estrogen receptor-positive tumors. Luteinizing hormone-releasing hormone agonists alone or in combination with tamoxifen have shown disease-free survival rates similar to chemotherapy with CMF (cyclophosphamide/methotrexate/5-fluorouracil). Outcomes of chemotherapy with or without LH-RH agonists are comparable, though a few trials favor the combination in young premenopausal women (aged<40 years). Adjuvant LH-RH agonists with or without tamoxifen might be as efficacious as tamoxifen alone

  2. Hormonal effects of soy in premenopausal women and men.

    PubMed

    Kurzer, Mindy S

    2002-03-01

    Over the past few years, there has been increasing interest in the possible hormonal effects of soy and soy isoflavone consumption in both women and men. Soy consumption has been suggested to exert potentially cancer-preventive effects in premenopausal women, such as increased menstrual cycle length and sex hormone-binding globulin levels and decreased estrogen levels. There has been some concern that consumption of phytoestrogens might exert adverse effects on men's fertility, such as lowered testosterone levels and semen quality. The studies in women have provided modest support for beneficial effects. One cross-sectional study showed serum estrogens to be inversely associated with soy intake. Seven soy intervention studies controlled for phase of menstrual cycle. These studies provided 32-200 mg/d of isoflavones and generally showed decreased midcycle plasma gonadotropins and trends toward increased menstrual cycle length and decreased blood concentrations of estradiol, progesterone and sex hormone-binding globulin. A few studies also showed decreased urinary estrogens and increased ratios of urinary 2-(OH) to 16alpha-(OH) and 2-(OH) to 4-(OH) estrogens. Soy and isoflavone consumption does not seem to affect the endometrium in premenopausal women, although there have been weak estrogenic effects reported in the breast. Thus, studies in women have mostly been consistent with beneficial effects, although the magnitude of the effects is quite small and of uncertain significance. Only three intervention studies reported hormonal effects of soy isoflavones in men. These recent studies in men consuming soyfoods or supplements containing 40--70 mg/d of soy isoflavones showed few effects on plasma hormones or semen quality. These data do not support concerns about effects on reproductive hormones and semen quality.

  3. Action of luteinizing hormone-releasing hormone: involvement of novel arachidonic acid metabolites.

    PubMed Central

    Snyder, G D; Capdevila, J; Chacos, N; Manna, S; Falck, J R

    1983-01-01

    Anterior pituitary cells were incubated in the presence of luteinizing hormone-releasing hormone and one of three inhibitors of arachidonic acid metabolism:indomethacin, an inhibitor of the cyclooxygenase system; nordihydroguaiaretic acid, an antioxidant that inhibits lipoxygenase; and icosatetraynoic acid, an acetylenic analogue of arachidonic acid that blocks all known pathways of arachidonic acid metabolism. Indomethacin was ineffective in blocking luteinizing hormone-releasing hormone-stimulated luteinizing hormone secretion. Nordihydroguaiaretic acid was only marginally capable of inhibiting luteinizing hormone-releasing hormone-stimulated luteinizing hormone secretion. Icosatetraynoic acid at 10 microM completely inhibited stimulated luteinizing hormone secretion. Addition of several epoxygenated arachidonic acid metabolites to cells in vitro resulted in secretion of luteinizing hormone equal to or greater than that induced by 10 nM luteinizing hormone-releasing hormone. The half-maximal effective dose for these compounds was approximately 50 nM. The 5,6-epoxyicosatrienoic acid was the most potent of the compounds tested. These studies suggest that luteinizing hormone-releasing hormone-stimulated luteinizing hormone release is closely coupled with the production of oxidized arachidonic acid metabolites. Moreover, one or more of the epoxygenated arachidonic acid metabolites might be a component of the cascade of reactions initiated by luteinizing hormone-releasing hormone that ultimately results in secretion of luteinizing hormone. PMID:6344087

  4. Electrochemical biosensors for hormone analyses.

    PubMed

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed.

  5. Hormones and prostate cancer: what's next?

    PubMed

    Hsing, A W

    2001-01-01

    In summary, the hormonal hypothesis remains one of the most important hypotheses in prostate cancer etiology. Although epidemiologic data regarding the role of hormones are still inconclusive, there are many intriguing leads. Armed with more complete methodological data, state-of-the-art hormone assays, sound epidemiologic design, and a more thorough analytical approach, a new generation of studies should yield critical data and insights to help clarify further the role of hormones in prostate cancer. These new studies may determine ultimately whether racial/ethnic differences in hormonal levels and in genetic susceptibility to hormone-metabolizing genes can help explain the very large racial/ethnic differences in prostate cancer risk.

  6. [Premenstrual asthma: relation to hormones].

    PubMed

    Hernández Colin, D; Zárate Treviño, A; Martínez Cairo Cueto, S

    1997-01-01

    Exacerbation of asthmatic symptoms just before or at the time of menstruation documented in some women with asthma has been called "premenstrual asthma" (PMA). The effect of sex hormones on airway function has not been well studied in spite of much evidence to suggest, therefore about relationships between the sex hormones and airway. The investigations of (PMA) have been based on studies of asthmatics already aware of a deterioration of asthma premenstrually. Little is known, therefore, about relationships between the menstrual cycle with asthma and (PMA) subjects. Although the mechanism of PMA remains unclear.

  7. Principles and pitfalls of free hormone measurements.

    PubMed

    Faix, James D

    2013-10-01

    The free hormone hypothesis states that a hormone's physiological effects depend on the free hormone concentration, not the total hormone concentration. Although the in vivo relationship between free hormone and protein-bound hormone is complex, most experts have applied this view to the design of assays used to assess the free hormone concentration in the blood sampled for testing in vitro. The history of the measurement of free thyroxine, probably the most frequently requested free hormone determination, offers a good example of the approaches that have been taken. Methods that require physical separation of the free hormone from the protein-bound hormone must address both the potential disturbance in the equilibrium between the two, as well as the challenge of quantifying small levels of hormone accurately and precisely. The implementation of mass spectrometry in the clinical laboratory has helped to develop proposed reference measurement procedures. These must be utilized to standardize the variety of immunoassay approaches that currently represent options commercially available to the routine clinical laboratory. Practicing endocrinologists should discuss the details of the free hormone assays offered by the clinical laboratory they utilize for patient result reporting, and clinical laboratories should implement the recommendations of published guidelines to ensure that free hormone results using commercially available immunoassays are as accurate and precise as possible.

  8. Preventative Maintenance.

    ERIC Educational Resources Information Center

    Migliorino, James

    Boards of education must be convinced that spending money up front for preventive maintenance will, in the long run, save districts' tax dollars. A good program of preventive maintenance can minimize disruption of service; reduce repair costs, energy consumption, and overtime; improve labor productivity and system equipment reliability; handle…

  9. 'Love Hormone' Helps Dads and Babies Bond

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_163657.html 'Love Hormone' Helps Dads and Babies Bond Brain scans ... 2017 FRIDAY, Feb. 17, 2017 (HealthDay News) -- The "love hormone" oxytocin may program fathers to bond with ...

  10. Parathyroid hormone-related protein blood test

    MedlinePlus

    ... gov/ency/article/003691.htm Parathyroid hormone-related protein blood test To use the sharing features on ... page, please enable JavaScript. The parathyroid hormone-related protein (PTH-RP) test measures the level of a ...

  11. The concept of multiple hormonal dysregulation.

    PubMed

    Maggio, Marcello; Cattabiani, Chiara; Lauretani, Fulvio; Ferrucci, Luigi; Luci, Michele; Valenti, Giorgio; Ceda, Gianpaolo

    2010-01-01

    Aging process is accompanied by hormonal changes characterized by an imbalance between catabolic hormones that remain stable and anabolic hormones (testosterone, insulin like growth factor-1 (IGF-1) and dehydroepiandrosterone sulphate (DHEAS), that decrease with age. Despite the multiple hormonal dysregulation occurring with age, the prevalent line of research in the last decades has tried to explain many age-related phenomena as consequence of one single hormonal derangement with disappointing results. In this review we will list the relationship between hormonal anabolic deficiency and frailty and mortality in older population, providing evidence to the notion that multiple hormonal dysregulation rather than change in single anabolic hormone is a powerful marker of poor health status and mortality.

  12. Anabolic steroids and growth hormone.

    PubMed

    Haupt, H A

    1993-01-01

    Athletes are generally well educated regarding substances that they may use as ergogenic aids. This includes anabolic steroids and growth hormone. Fortunately, the abuse of growth hormone is limited by its cost and the fact that anabolic steroids are simply more enticing to the athlete. There are, however, significant potential adverse effects regarding its use that can be best understood by studying known growth hormone excess, as demonstrated in the acromegalic syndrome. Many athletes are unfamiliar with this syndrome and education of the potential consequences of growth hormone excess is important in counseling athletes considering its use. While athletes contemplating the use of anabolic steroids may correctly perceive their risks for significant physiologic effects to be small if they use the steroids for brief periods of time, many of these same athletes are unaware of the potential for habituation to the use of anabolic steroids. The result may be incessant use of steroids by an athlete who previously considered only short-term use. As we see athletes taking anabolic steroids for more prolonged periods, we are likely to see more severe medical consequences. Those who eventually do discontinue the steroids are dismayed to find that the improvements made with the steroids generally disappear and they have little to show for hours or even years of intense training beyond the psychological scars inherent with steroid use. Counseling of these athletes should focus on the potential adverse psychological consequences of anabolic steroid use and the significant risk for habituation.

  13. Role of chemotherapy in combination with hormonal therapy in first-line treatment of metastatic hormone-sensitive prostate cancer.

    PubMed

    Ceresoli, G L; De Vincenzo, F; Sauta, M G; Bonomi, M; Zucali, P A

    2015-12-01

    Prostate cancer (PC) is a heterogeneous disease, whose growth is driven by androgens and androgen receptors. Androgen deprivation therapy (ADT) is the standard treatment of hormone-naïve metastatic disease. The majority of patients are treated with medical castration with GnRH agonists or antagonists, which usually determines a profound PSA decline and a radiological and clinical benefit. However, essentially all patients experience progression to castration-resistant prostate cancer (CRPC), and overall prognosis remains disappointing. Early targeting of cells that survive hormonal therapy may potentially prevent the development of CRPC. Several trials have explored the use of combination therapy with ADT and chemotherapy, targeting both the androgen dependent and independent cells simultaneously. Docetaxel was administered in combination with ADT to men with hormone-naïve metastatic prostate cancer, in the attempt to improve the duration and quality of patient survival. Three large randomized trials (the GETUG-15, CHAARTED and more recently the STAMPEDE study) have assessed these endpoints, with partially conflicting results. Overall, the results from these trials seem to support the use of early docetaxel combined with ADT in selected hormone-naïve metastatic PC patients. Full publication of the results of all studies, with longer follow-up, and the results of other ongoing trials in this setting will hopefully further define the role and the indications of this therapeutic strategy.

  14. Thyroid Hormones as Renal Cell Cancer Regulators

    PubMed Central

    Matak, Damian; Bartnik, Ewa; Szczylik, Cezary; Czarnecka, Anna M.

    2016-01-01

    It is known that thyroid hormone is an important regulator of cancer development and metastasis. What is more, changes across the genome, as well as alternative splicing, may affect the activity of the thyroid hormone receptors. Mechanism of action of the thyroid hormone is different in every cancer; therefore in this review thyroid hormone and its receptor are presented as a regulator of renal cell carcinoma. PMID:27034829

  15. Hormone Therapy for Prostate Cancer

    MedlinePlus

    ... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...

  16. Hormone Therapy for Breast Cancer

    MedlinePlus

    ... outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P–2 trial. JAMA 2006; 295(23):2727– ... and Bowel Project Study of Tamoxifen and Raloxifene (STAR) P-2 Trial: Preventing breast cancer. Cancer Prevention ...

  17. Ecdysis triggering hormone ensures proper timing of juvenile hormone biosynthesis in pharate adult mosquitoes.

    PubMed

    Areiza, Maria; Nouzova, Marcela; Rivera-Perez, Crisalejandra; Noriega, Fernando G

    2014-11-01

    Juvenile hormones (JHs) are synthesized by the corpora allata (CA) and play a key role in insect development. A decrease of JH titer in the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again "competent" to synthesize JH, which would play an essential role orchestrating reproductive maturation. In the present study, we provide evidence that ecdysis triggering hormone (ETH), a key endocrine factor involved in ecdysis control, acts as an allatotropic regulator of JH biosynthesis, controlling the exact timing of CA activation in the pharate adult mosquito. Analysis of the expression of Aedes aegypti ETH receptors (AeaETHRs) revealed that they are present in the CA and the corpora cardiaca (CC), and their expression peaks 4 h before eclosion. In vitro stimulation of the pupal CA glands with ETH resulted in an increase in JH synthesis. Consistent with this finding, silencing AeaETHRs by RNA interference (RNAi) in pupa resulted in reduced JH synthesis by the CA of one day-old adult females. Stimulation with ETH resulted in increases in the activity of juvenile hormone acid methyltransferase (JHAMT), a key JH biosynthetic enzyme. Furthermore, inhibition of IP3R-operated mobilization of endoplasmic reticulum Ca(2+) stores prevented the ETH-dependent increases of JH biosynthesis and JHAMT activity. All together these findings provide compelling evidence that ETH acts as a regulatory peptide that ensures proper developmental timing of JH synthesis in pharate adult mosquitoes.

  18. "Sex Hormones" in Secondary School Biology Textbooks

    ERIC Educational Resources Information Center

    Nehm, Ross H.; Young, Rebecca

    2008-01-01

    This study explores the extent to which the term "sex hormone" is used in science textbooks, and whether the use of the term "sex hormone" is associated with pre-empirical concepts of sex dualism, in particular the misconceptions that these so-called "sex hormones" are sex specific and restricted to sex-related physiological functioning. We found…

  19. Metastatic Pancreatic Neuroendocrine Tumor that Progressed to Ectopic Adrenocorticotropic Hormone (ACTH) Syndrome with Growth Hormone-releasing Hormone (GHRH) Production

    PubMed Central

    Tadokoro, Rie; Sato, Shotaro; Otsuka, Fumiko; Ueno, Makoto; Ohkawa, Shinichi; Katakami, Hideki; Taniyama, Matsuo; Nagasaka, Shoichiro

    2016-01-01

    The patient was a 61-year-old woman who had a well-differentiated pancreatic neuroendocrine tumor (PNET) with lymph node metastasis. After 15 months of octreotide treatment, glucose control deteriorated and pigmentation of the tongue and moon face developed, leading to the diagnosis of ectopic adrenocorticotropic hormone (ACTH) syndrome. An abnormal secretion of growth hormone (GH) was identified, and the plasma growth hormone-releasing hormone (GHRH) level was elevated. A tumor biopsy specimen positively immunostained for ACTH and GHRH. Ectopic hormone secretion seems to have evolved along with the progression of the PNET. PMID:27746436

  20. Metastatic Pancreatic Neuroendocrine Tumor that Progressed to Ectopic Adrenocorticotropic Hormone (ACTH) Syndrome with Growth Hormone-releasing Hormone (GHRH) Production.

    PubMed

    Tadokoro, Rie; Sato, Shotaro; Otsuka, Fumiko; Ueno, Makoto; Ohkawa, Shinichi; Katakami, Hideki; Taniyama, Matsuo; Nagasaka, Shoichiro

    The patient was a 61-year-old woman who had a well-differentiated pancreatic neuroendocrine tumor (PNET) with lymph node metastasis. After 15 months of octreotide treatment, glucose control deteriorated and pigmentation of the tongue and moon face developed, leading to the diagnosis of ectopic adrenocorticotropic hormone (ACTH) syndrome. An abnormal secretion of growth hormone (GH) was identified, and the plasma growth hormone-releasing hormone (GHRH) level was elevated. A tumor biopsy specimen positively immunostained for ACTH and GHRH. Ectopic hormone secretion seems to have evolved along with the progression of the PNET.

  1. Postmenopausal hormone therapy is not associated with risk of all-cause dementia and Alzheimer's disease.

    PubMed

    O'Brien, Jacqueline; Jackson, John W; Grodstein, Francine; Blacker, Deborah; Weuve, Jennifer

    2014-01-01

    The relationship of postmenopausal hormone therapy with all-cause dementia and Alzheimer's disease dementia has been controversial. Given continued interest in the role of hormone therapy in chronic disease prevention and the emergence of more prospective studies, we conducted a systematic review to identify all epidemiologic studies meeting prespecified criteria reporting on postmenopausal hormone therapy use and risk of Alzheimer's disease or dementia. A systematic search of Medline and Embase through December 31, 2012, returned 15 articles meeting our criteria. Our meta-analysis of any versus never use did not support the hypothesis that hormone therapy reduces risk of Alzheimer's disease (summary estimate = 0.88, 95% confidence interval: 0.66, 1.16). Exclusion of trial findings did not change this estimate. There were not enough all-cause dementia results for a separate meta-analysis, but when we combined all-cause dementia results (n = 3) with Alzheimer's disease results (n = 7), the summary estimate remained null (summary estimate = 0.94, 95% confidence interval: 0.71, 1.26). The limited explorations of timing of use-both duration and early initiation-did not yield consistent findings. Our findings support current recommendations that hormone therapy should not be used for dementia prevention. We discuss trends in hormone therapy research that could explain our novel findings and highlight areas where additional data are needed.

  2. Highly potent metallopeptide analogues of luteinizing hormone-releasing hormone

    SciTech Connect

    Bajusz, S.; Janaky, T.; Csernus, V.J.; Bokser, L.; Fekete, M.; Srkalovic, G.; Redding, T.W.; Schally, A.V. )

    1989-08-01

    Metal complexes related to the cytotoxic complexes cisplatin (cis-diamminedichloroplatinum(II)) and transbis(salicylaldoximato)copper(II) were incorporated into suitably modified luteinizing hormone-releasing hormone (LH-RH) analogues containing D-lysine at position 6. Some of the metallopeptides thus obtained proved to be highly active LH-RH agonists or antagonists. Most metallopeptide analogues of LH-RH showed high affinities for the membrane receptors of rat pituitary and human breast cancer cells. Some of these metallopeptides had cytotoxic activity against human breast cancer and prostate cancer and prostate cancer cell lines in vitro. Such cytostatic metallopeptides could be envisioned as targeted chemotherapeutic agents in cancers that contain receptors for LH-RH-like peptides.

  3. [Effects of growth hormone replacement therapy on bone metabolism].

    PubMed

    Yamamoto, Masahiro; Sugimoto, Toshitsugu

    2014-06-01

    Growth hormone (GH) as well as insulin like growth factor-1 (IGF-1) are essential hormones to maintain homeostasis of bone turnover by activating osteoblastogenesis and osteoclastogenesis. Results from GH replacement therapy for primary osteoporosis and adult-onset GH deficiency (AGHD) suggest that one year or more treatment period by this agent is required to gain bone mineral density (BMD) over the basal level after compensating BMD loss caused by dominant increase in bone resorption which was observed at early phase of GH treatment. A recent meta-analysis demonstrates the efficacy of GH replacement therapy on increases in BMD in male patients with AGHD. Additional analyses are needed to draw firm conclusions in female patients with AGHD, because insufficient amounts of GH might be administrated to them without considerations of influence of estrogen replacement therapy on IGF-1 production. Further observational studies are needed to clarify whether GH replacement therapy prevent fracture risk in these patients.

  4. Stroke in women - oral contraception, pregnancy, and hormone replacement therapy.

    PubMed

    Rantanen, Kirsi; Tatlisumak, Turgut

    2013-01-01

    Stroke is a devastating disease affecting millions of people worldwide every year. Female stroke victims have higher mortality rates and they do not re-cover as well as men. Women's longevity and different vascular risk factor burden like a larger prevalence of atrial fibrillation play a role. Women also have unique risk factors such as oral contraception, pregnancy, estrogen decrease after the menopause and hormone replacement therapy, which should all be evaluated and taken into consideration in treatment decisions both in the acute phase of stroke and in secondary prevention. In this review, the evidence regarding these hormonal aspects and the risk of stroke in women are evaluated. The relevant guidelines are studied and research gaps identified. Future topics for research are recommended and current treatment possibilities and their risks discussed.

  5. Human stanniocalcin: a possible hormonal regulator of mineral metabolism.

    PubMed Central

    Olsen, H S; Cepeda, M A; Zhang, Q Q; Rosen, C A; Vozzolo, B L

    1996-01-01

    We have isolated a human cDNA clone encoding the mammalian homolog of stanniocalcin (STC), a calcium- and phosphate-regulating hormone that was first described in fishes where it functions in preventing hypercalcemia. STC has a unique amino acid sequence and, until now, has remained one of the few polypeptide hormones never described in higher vertebrates. Human STC (hSTC) was found to be 247 amino acids long and to share 73% amino acid sequence similarity with fish STC. Polyclonal antibodies to recombinant hSTC localized to a distinct cell type in the nephron tubule, suggesting kidney as a possible site of synthesis. Recombinant hSTC inhibited the gill transport of calcium when administered to fish and stimulated renal phosphate reabsorption in the rat. The evidence suggests that mammalian STC, like its piscine counterpart, is a regulator of mineral homeostasis. Images Fig. 5 Fig. 6 PMID:8700837

  6. Prevent Cyberbullying

    MedlinePlus

    ... Policies & Laws | Español Search Stopbullying.gov WHAT IS BULLYING Definition The Roles Kids Play Other Types of Aggressive Behavior CYBER BULLYING What is Cyberbullying? Prevent Cyberbullying Report Cyberbullying WHO ...

  7. Preventing Influenza

    MedlinePlus

    ... spread in respiratory droplets distributed by coughing and sneezing, they readily spread from person to person. Additionally, ... and nose with a tissue when coughing or sneezing, you may help prevent those around you from ...

  8. Hormonal Treatment Effects on the Cross-sectional Area of Pubococcygeus Muscle Fibers After Denervation and Castration in Male Rats.

    PubMed

    Lara-García, Miguel; Alvarado, Mayvi; Cuevas, Estela; Lara-García, Omar; Sengelaub, Dale R; Pacheco, Pablo

    2017-02-08

    We explore the interaction of muscle innervation and gonadal hormone action in the pubococcygeus muscle (Pcm) after castration and hormone replacement. Male Wistar rats were castrated and the Pcm was unilaterally denervated; after 2 or 6 weeks, the cross-sectional area (CSA) of Pcm fibers was assessed. Additional groups of castrated rats were used to examine the effects of hormone replacement. At 2 weeks post surgeries, rats were implanted with Silastic capsules containing either dihydrotestosterone (DHT), estradiol benzoate (EB) or both hormones, and the CSA of Pcm fibers was assessed after 4 weeks of hormone treatment. At 2 weeks post surgeries, gonadectomy without hormone replacement resulted in reductions in the CSA of Pcm fibers, and denervation combined with castration increased the magnitude of this effect; further reductions in CSA were present at 6 weeks post surgeries, but again denervation combined with castration increased the magnitude of this effect. Hormone replacement with DHT resulted in hypertrophy in the CSA of nondenervated muscles compared to those of intact normal males, but this effect was attenuated in denervated muscles. Hormone replacement with EB treatment prevented further castration-induced reductions in CSA of nondenervated muscles, but denervation prevented this effect. Similar to that seen with treatment with EB alone, combined treatment with both DHT and EB prevented further reductions in CSA of Pcm fibers in nondenervated muscles, but again denervation attenuated this effect. Thus, while hormone replacement can reverse or prevent further castration-induced atrophy of Pcm fibers, these effects are dependent on muscle innervation. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc.

  9. [Benefits and risks of growth hormone in adults with growth hormone deficiency].

    PubMed

    Díez, Juan J; Cordido, Fernando

    2014-10-21

    Adult growth hormone (GH) deficiency is a well-recognized clinical syndrome with adverse health consequences. Many of these may improve after replacement therapy with recombinant GH. This treatment induces an increase in lean body mass and a decrease in fat mass. In long-term studies, bone mineral density increases and muscle strength improves. Health-related quality of life tends to increase after treatment with GH. Lipid profile and markers of cardiovascular risk also improve with therapy. Nevertheless, GH replacement therapy is not without risk. According to some studies, GH increases blood glucose, body mass index and waist circumference and may promote long-term development of diabetes and metabolic syndrome. Risk of neoplasia does not appear to be increased in adults treated with GH, but there are some high-risk subgroups. Methodological shortcomings and difficulties inherent to long-term studies prevent definitive conclusions about the relationship between GH and survival. Therefore, research in this field should remain active.

  10. Parathyroid hormone - Secretion and metabolism in vivo.

    NASA Technical Reports Server (NTRS)

    Habener, J. F.; Powell, D.; Murray, T. M.; Mayer, G. P.; Potts, J. T., Jr.

    1971-01-01

    Gel filtration and radioimmunoassay were used to determine the molecular size and immunochemical reactivity of parathyroid hormone present in gland extracts, in the general peripheral circulation, and in parathyroid effluent blood from patients with hyperparathyroidism, as well as from calves and from cattle. It was found that parathyroid hormone secreted from the parathyroids in man and cattle is at least as large as the molecule extracted from normal bovine glands. However, once secreted into the circulation the hormone is cleaved, and one or more fragments, immunologically, dissimilar to the originally secreted hormone, constitute the dominant form of circulating immunoreactive hormone.

  11. Hormonal treatment of acne vulgaris: an update

    PubMed Central

    Elsaie, Mohamed L

    2016-01-01

    Acne vulgaris is a common skin condition associated with multiple factors. Although mostly presenting alone, it can likewise present with features of hyperandrogenism and hormonal discrepancies. Of note, hormonal therapies are indicated in severe, resistant-to-treatment cases and in those with monthly flare-ups and when standard therapeutic options are inappropriate. This article serves as an update to hormonal pathogenesis of acne, discusses the basics of endocrinal evaluation for patients with suspected hormonal acne, and provides an overview of the current hormonal treatment options in women. PMID:27621661

  12. Effects of ovarian hormones on manifestation of purulent endometritis in rat uteruses infected with Escherichia coli.

    PubMed

    Nishikawa, Y; Baba, T

    1985-01-01

    To assess the influence of hormones on uterine infections, Escherichia coli was infused into uterine lumens of ovariectomized or adrenoovariectomized rats receiving exogenous administration of various doses of ovarian hormones. Large numbers of E. coli were recovered from the rat uterine lumens, irrespective of hormonal influences. The number of leukocytes in the uterine flushings, representing the magnitude of purulent inflammation, differed significantly depending upon the hormonal regimen given to each host. Purulent endometritis was induced by E. coli in ovariectomized rats receiving progesterone or corn oil (hormone vehicle). Infections were asymptomatic in rats receiving estradiol, but promethazine-treated uterine horns were susceptible to infection. When progesterone was administered along with estradiol, purulent inflammation was caused by E. coli, but the number of leukocytes in the uterine lumens was significantly less than that obtained from the rats treated with progesterone or corn oil. These effects of ovarian hormones on uterine infections were observed in adrenoovariectomized rats as well as in ovariectomized rats. It is suggested that estradiol alters the nature of endometrial epithelium and prevent manifestation of purulent endometritis; progesterone antagonizes estradiol. Adrenal hormones appear not to participate in the pathogenesis of endometritis induced by E. coli.

  13. What is the role of metabolic hormones in taste buds of the tongue.

    PubMed

    Cai, Huan; Maudsley, Stuart; Martin, Bronwen

    2014-01-01

    Gustation is one of the important chemical senses that guides the organism to identify nutrition while avoiding toxic chemicals. An increasing number of metabolic hormones and/or hormone receptors have been identified in the taste buds of the tongue and are involved in modulating taste perception. The gustatory system constitutes an additional endocrine regulatory locus that affects food intake, and in turn whole-body energy homeostasis. Here we provide an overview of the main metabolic hormones known to be present in the taste buds of the tongue; discuss their potential functional roles in taste perception and energy homeostasis and how their functional integrity is altered in the metabolic imbalance status (obesity and diabetes) and aging process. Better understanding of the functional roles of metabolic hormones in flavor perception as well as the link between taste perception and peripheral metabolism may be vital for developing strategies to promote healthier eating and prevent obesity or lifestyle-related disorders.

  14. Synthesis and chemical reactions of the steroidal hormone 17α-methyltestosterone.

    PubMed

    El-Desoky, El-Sayed Ibrahim; Reyad, Mahmoud; Afsah, Elsayed Mohammed; Dawidar, Abdel-Aziz Mahmoud

    2016-01-01

    Structural modifications of natural products with complex structures like steroids require great synthetic effort. A review of literature is presented on the chemistry of the steroidal hormone 17α-methyltestosterone that is approved by Food and Drug Administration (FDA) in the United States as an androgen for estrogen-androgen hormone replacement therapy treatment. The analog also offers special possibilities for the prevention/treatment of hormone-sensitive cancers. The testosterone skeleton has important functionalities in the molecule that can act as a carbonyl component, an active methylene compound, α,β-unsaturated enone and tertiary hydroxyl group in various chemical reactions to access stereoisomeric steroidal compounds with potent activity. In addition, microbiological methods of synthesis and transformation of this hormone are presented.

  15. Using the failure mode and effects analysis model to improve parathyroid hormone and adrenocorticotropic hormone testing

    PubMed Central

    Magnezi, Racheli; Hemi, Asaf; Hemi, Rina

    2016-01-01

    Background Risk management in health care systems applies to all hospital employees and directors as they deal with human life and emergency routines. There is a constant need to decrease risk and increase patient safety in the hospital environment. The purpose of this article is to review the laboratory testing procedures for parathyroid hormone and adrenocorticotropic hormone (which are characterized by short half-lives) and to track failure modes and risks, and offer solutions to prevent them. During a routine quality improvement review at the Endocrine Laboratory in Tel Hashomer Hospital, we discovered these tests are frequently repeated unnecessarily due to multiple failures. The repetition of the tests inconveniences patients and leads to extra work for the laboratory and logistics personnel as well as the nurses and doctors who have to perform many tasks with limited resources. Methods A team of eight staff members accompanied by the Head of the Endocrine Laboratory formed the team for analysis. The failure mode and effects analysis model (FMEA) was used to analyze the laboratory testing procedure and was designed to simplify the process steps and indicate and rank possible failures. Results A total of 23 failure modes were found within the process, 19 of which were ranked by level of severity. The FMEA model prioritizes failures by their risk priority number (RPN). For example, the most serious failure was the delay after the samples were collected from the department (RPN =226.1). Conclusion This model helped us to visualize the process in a simple way. After analyzing the information, solutions were proposed to prevent failures, and a method to completely avoid the top four problems was also developed. PMID:27980440

  16. Effects of ionizing radiation and pretreatment with (D-Leu6,des-Gly10) luteinizing hormone-releasing hormone ethylamide on developing rat ovarian follicles

    SciTech Connect

    Jarrell, J.; YoungLai, E.V.; McMahon, A.; Barr, R.; O'Connell, G.; Belbeck, L.

    1987-10-01

    To assess the effects of a gonadotropin-releasing hormone agonist, (D-Leu6,des-Gly10) luteinizing hormone-releasing hormone ethylamide, in ameliorating the damage caused by ionizing radiation, gonadotropin-releasing hormone agonist was administered to rats from day 22 to 37 of age in doses of 0.1, 0.4, and 1.0 microgram/day or vehicle and the rats were sacrificed on day 44 of age. There were no effects on estradiol, progesterone, luteinizing, or follicle-stimulating hormone, nor an effect on ovarian follicle numbers or development. In separate experiments, rats treated with gonadotropin-releasing hormone agonist in doses of 0.04, 0.1, 0.4, or 1.0 microgram/day were either irradiated or sham irradiated on day 30 and all groups sacrificed on day 44 of age. Irradiation produced a reduction in ovarian weight and an increase in ovarian follicular atresia. Pretreatment with the agonist prevented the reduction in ovarian weight and numbers of primordial and preantral follicles but not healthy or atretic antral follicles. Such putative radioprotection should be tested on actual reproductive performance.

  17. How do sex hormones modify arrhythmogenesis in long QT syndrome? Sex hormone effects on arrhythmogenic substrate and triggered activity.

    PubMed

    Odening, Katja E; Koren, Gideon

    2014-11-01

    Gender differences in cardiac repolarization and the arrhythmogenic risk of patients with inherited and acquired long QT syndromes are well appreciated clinically. Enhancing our knowledge of the mechanisms underlying these differences is critical to improve our therapeutic strategies for preventing sudden cardiac death in such patients. This review summarizes the effects of sex hormones on the expression and function of ion channels that control cardiac cell excitation and repolarization as well as key proteins that regulate Ca(2+) dynamics at the cellular level. Moreover, it examines the role of sex hormones in modifying the dynamic spatiotemporal (regional and transmural) heterogeneities in action potential duration (eg, the arrhythmogenic substrate) and the susceptibility to (sympathetic) triggered activity at the tissue, organ, and whole animal levels. Finally, it explores the implications of these effects on the management of patients with LQTS.

  18. Thyroid hormone and dehydroepiandrosterone permit gluconeogenic hormone responses in hepatocytes.

    PubMed

    Kneer, N; Lardy, H

    2000-03-01

    The importance of the sn-glycerol- 3-phosphate (G-3-P) electron transfer shuttle in hormonal regulation of gluconeogenesis was examined in hepatocytes from rats with decreased mitochondrial G-3-P dehydrogenase activity (thyroidectomized) or increased G-3-P dehydrogenase activity [triiodothyronine (T(3)) or dehydroepiandrosterone (DHEA) treated]. Rates of glucose formation from 10 mM lactate, 10 mM pyruvate, or 2.5 mM dihydroxyacetone were somewhat less in hypothyroid cells than in cells from normal rats but gluconeogenic responses to calcium addition and to norepinephrine (NE), glucagon (G), or vasopressin (VP) were similar to the responses observed in cells from normal rats. However, with 2. 5 mM glycerol or 2.5 mM sorbitol, substrates that must be oxidized in the cytosol before conversion to glucose, basal gluconeogenesis was not appreciably altered by hypothyroidism but responses to calcium and to the calcium-mobilizing hormones were abolished. Injecting thyroidectomized rats with T(3) 2 days before preparing the hepatocytes greatly enhanced gluconeogenesis from glyc erol and restored the response to Ca(2+) and gluconeogenic hormones. Feeding dehydroepiandrosterone for 6 days depressed gluconeogenesis from lactate or pyruvate but substantially increased glucose production from glycerol in euthyroid cells and restored responses to Ca(2+) in hypothyroid cells metabolizing glycerol. Euthyroid cells metabolizing glycerol or sorbitol use the G-3-P and malate/aspartate shuttles to oxidize excess NADH generated in the cytosol. The transaminase inhibitor aminooxyacetate (AOA) decreased gluconeogenesis from glycerol 40%, but had little effect on responses to Ca(2+) and NE. However, in hypothyroid cells, with minimal G-3-P dehydrogenase, AOA decreased gluconeogenesis from glycerol more than 90%. Thus, the basal rate of gluconeogenesis from glycerol in the euthyroid cells is only partly dependent on electron transport from cytosol to mitochondria via the malate

  19. [Hormones and hair growth in man].

    PubMed

    Moretti, G; Rampini, E; Rebora, A

    1977-12-01

    A literature review tries to diminish the ambiguity between hormones and hairs. Therefore the hormonal action in general (regulation of the protein synthesis indirectly by enzymatical regulation of the AMP-system or directly by hormones as active metabolites) and the methods to explore hormones-hair-interaction are discussed. Hormones pertaining to the pituitary-adrenal-gonadal axis are regarded as the paramount hormones; therefore the results of research in testosterone, 5-alpha-dihydrotestosterone, estrogens, progesterone, glucocorticoids, the hypophysis and its tropins are recapitulated. The main disorders of hair-growth, pattern baldness and "idiopathic" hirsutism, which would be dependent on a similar disturbance of androgen metabolism, are discussed. Pathology in hair-growth may arise in any point of the cascade of hormone action.

  20. Hormone interactions during lateral root formation.

    PubMed

    Fukaki, Hidehiro; Tasaka, Masao

    2009-03-01

    Lateral root (LR) formation, the production of new roots from parent roots, is a hormone- and environmentally-regulated developmental process in higher plants. Physiological and genetic studies using Arabidopsis thaliana and other plant species have revealed the roles of several plant hormones in LR formation, particularly the role of auxin in LR initiation and primordium development, resulting in much progress toward understanding the mechanisms of auxin-mediated LR formation. However, hormone interactions during LR formation have been relatively underexamined. Recent studies have shown that the plant hormones, cytokinin and abscisic acid negatively regulate LR formation whereas brassinosteroids positively regulate LR formation. On the other hand, ethylene has positive and negative roles during LR formation. This review summarizes recent findings on hormone-regulated LR formation in higher plants, focusing on auxin as a trigger and on the other hormones in LR formation, and discusses the possible interactions among plant hormones in this developmental process.

  1. Progestogens in menopausal hormone therapy

    PubMed Central

    Woroń, Jarosław

    2015-01-01

    Progestogens share one common effect: the ability to convert proliferative endometrium to its secretory form. In contrast, their biological activity is varied, depending on the chemical structure, pharmacokinetics, receptor affinity and different potency of action. Progestogens are widely used in the treatment of menstrual cycle disturbances, various gynaecological conditions, contraception and menopausal hormone therapy. The administration of progestogen in menopausal hormone therapy is essential in women with an intact uterus to protect against endometrial hyperplasia and cancer. Progestogen selection should be based on the characteristics available for each progestogen type, relying on the assessment of relative potency of action in experimental models and animal models, and on the indirect knowledge brought by studies of the clinical use of different progestogen formulations. The choice of progestogen should involve the conscious use of knowledge of its benefits, with a focus on minimizing potential side effects. Unfortunately, there are no direct clinical studies comparing the metabolic effects of different progestogens. PMID:26327902

  2. Obesity and hormonal contraceptive efficacy.

    PubMed

    Robinson, Jennifer A; Burke, Anne E

    2013-09-01

    Obesity is a major public health concern affecting an increasing proportion of reproductive-aged women. Avoiding unintended pregnancy is of major importance, given the increased risks associated with pregnancy, but obesity may affect the efficacy of hormonal contraceptives by altering how these drugs are absorbed, distributed, metabolized or eliminated. Limited data suggest that long-acting, reversible contraceptives maintain excellent efficacy in obese women. Some studies demonstrating altered pharmacokinetic parameters and increased failure rates with combined oral contraceptives, the contraceptive patch and emergency contraceptive pills suggest decreased efficacy of these methods. It is unclear whether bariatric surgery affects hormonal contraceptive efficacy. Obese women should be offered the full range of contraceptive options, with counseling that balances the risks and benefits of each method, including the risk of unintended pregnancy.

  3. Modelling hormonal response and development.

    PubMed

    Voß, Ute; Bishopp, Anthony; Farcot, Etienne; Bennett, Malcolm J

    2014-05-01

    As our knowledge of the complexity of hormone homeostasis, transport, perception, and response increases, and their outputs become less intuitive, modelling is set to become more important. Initial modelling efforts have focused on hormone transport and response pathways. However, we now need to move beyond the network scales and use multicellular and multiscale modelling approaches to predict emergent properties at different scales. Here we review some examples where such approaches have been successful, for example, auxin-cytokinin crosstalk regulating root vascular development or a study of lateral root emergence where an iterative cycle of modelling and experiments lead to the identification of an overlooked role for PIN3. Finally, we discuss some of the remaining biological and technical challenges.

  4. Ovarian hormones and drug abuse.

    PubMed

    Moran-Santa Maria, Megan M; Flanagan, Julianne; Brady, Kathleen

    2014-11-01

    There are significant gender differences in course, symptomology, and treatment of substance use disorders. In general data from clinical and preclinical studies of substance use disorders suggest that women are more vulnerable than men to the deleterious consequences of drug use at every phase of the addiction process. In addition data from epidemiologic studies suggest that the gender gap in the prevalence of substance use is narrowing particularly among adolescence. Therefore, understanding the role of estrogen and progesterone in mediating responses to drugs of abuse is of critical importance to women's health. In this review we will discuss findings from clinical and preclinical studies of (1) reproductive cycle phase; (2) endogenous ovarian hormones; and (3) hormone replacement on responses to stimulants, nicotine, alcohol, opioids, and marijuana. In addition, we discuss data from recent studies that have advanced our understanding of the neurobiologic mechanisms that interact with estrogen and progesterone to mediate drug-seeking behavior.

  5. A Simulated Growth Hormone Analysis

    NASA Astrophysics Data System (ADS)

    Harris, Mary

    1996-08-01

    Growth hormone is a drug that is sometimes abused by amateur or professional athletes for performance-enhancement. This laboratory is a semimicroscale simulation analysis of a sample of "urine" to detect proteins of two very different molecular weights. Gel filtration uses a 10 mL disposable pipette packed with Sephadex. Students analyze the fractions from the filtration by comparing colors of the Brilliant Blue Coomassie Dye as it interacts with the proteins in the sample to a standard set of known concentration of protein with the dye. The simulated analysis of growth hormone is intended to be included in a unit on organic chemistry or in the second year of high school chemistry.

  6. [Thyroid hormone action beyond classical concepts. The priority programme "Thyroid Trans Act" (SPP 1629) of the German Research Foundation].

    PubMed

    Führer, D; Brix, K; Biebermann, H

    2014-03-01

    Thyroid hormones are of crucial importance for the function of nearly all organ systems. In case of dysfunction of thyroid hormone production and function many organ systems may be affected. The estimation of normal thyroid function is based on determination of TSH and the thyroid hormones T3 and T4. However, international conventions about the normal TSH range are still lacking which bears consequences for patient`s treatment. Hence not unexpected, many patients complain although their thyroid hormone status is in the normal range by clinical estimation. Here, more precise parameters are needed for a better definition of the healthy thyroid status of an individual. Recently, new key players in the system of thyroid hormone action were detected, like specific transporters for uptake of thyroid hormones and thyroid hormone derivatives. DFG, the German Research Foundation supports the priority program Thyroid Trans Act to find answers to the main question: what defines the healthy thyroid status of an individual. The overall aim of this interdisciplinary research consortium is to specify physiological and pathophysiological functions of thyroid hormone transporters and thyroid hormone derivative as new players in thyroid regulation in order to better evaluate, treat, and prevent thyroid-related disease.

  7. Growth hormone ameliorates adipose dysfunction during oxidative stress and inflammation and improves glucose tolerance in obese mice.

    PubMed

    Fukushima, M; Okamoto, Y; Katsumata, H; Ishikawa, M; Ishii, S; Okamoto, M; Minami, S

    2014-08-01

    Patients with adult growth hormone deficiency exhibit visceral fat accumulation, which gives rise to a cluster of metabolic disorders such as impaired glucose tolerance and dyslipidemia. Plasma growth hormone levels are lower in obese patients with metabolic syndrome than in healthy subjects. Here we examined the hypothesis that exogenous growth hormone administration regulates function of adipose tissue to improve glucose tolerance in diet-induced obese mice. Twelve-week-old obese male C57BL/6 J mice received bovine growth hormone daily for 6 weeks. In epididymal fat, growth hormone treatment antagonized diet-induced changes in the gene expression of adiponectin, leptin, and monocyte chemoattractant protein-1, and significantly increased the gene expression of interleukin-10 and CD206. Growth hormone also suppressed the accumulation of oxidative stress marker, thiobarbituric acid-reactive substances, in the epididymal fat and enhanced the gene expression of anti-oxidant enzymes. Moreover, growth hormone significantly restored glucose tolerance in obese mice. In cultured 3T3-L1 adipocytes, growth hormone prevented the decline in adiponectin gene expression in the presence of hydrogen peroxide. These results suggest that growth hormone administration ameliorates glucose intolerance in obese mice presumably by decreasing adipose mass, oxidative stress, and chronic inflammation in the visceral fat.

  8. Hormone therapy and cognitive function

    PubMed Central

    Maki, Pauline M.; Sundermann, Erin

    2009-01-01

    BACKGROUND Clinical trials yield discrepant information about the impact of hormone therapy on verbal memory and executive function. This issue is clinically relevant because declines in verbal memory are the earliest predictor of Alzheimer's disease and declines in executive function are central to some theories of normal, age-related changes in cognition. METHODS We conducted a systematic review of randomized clinical trials of hormone therapy (i.e. oral, transdermal, i.m.) and verbal memory, distinguishing studies in younger (i.e. ≤65 years of age; n = 9) versus older (i.e. >65 years; n = 7) women and studies involving estrogen alone versus estrogen plus progestogen. Out of 32 placebo-controlled trials, 17 were included (13 had no verbal memory measures and 2 involved cholinergic manipulations). We also provide a narrative review of 25 studies of executive function (two trials), since there are insufficient clinical trial data for systematic review. RESULTS There is some evidence for a beneficial effect of estrogen alone on verbal memory in younger naturally post-menopausal women and more consistent evidence from small-n studies of surgically post-menopausal women. There is stronger evidence of a detrimental effect of conjugated equine estrogen plus medroxyprogesterone acetate on verbal memory in younger and older post-menopausal women. Observational studies and pharmacological models of menopause provide initial evidence of improvements in executive function with hormone therapy. CONCLUSIONS Future studies should include measures of executive function and should address pressing clinical questions; including what formulation of combination hormone therapy is cognitively neutral/beneficial, yet effective in treating hot flashes in the early post-menopause. PMID:19468050

  9. Ghrelin and obestatin modulate growth hormone-releasing hormone release and synaptic inputs onto growth hormone-releasing hormone neurons.

    PubMed

    Feng, Dan D; Yang, Seung-Kwon; Loudes, Catherine; Simon, Axelle; Al-Sarraf, Tamara; Culler, Michael; Alvear-Perez, Rodrigo; Llorens-Cortes, Catherine; Chen, Chen; Epelbaum, Jacques; Gardette, Robert

    2011-09-01

    Ghrelin, a natural ligand of the growth hormone secretagogue receptor (GHS-R), is synthesized in the stomach but may also be expressed in lesser quantity in the hypothalamus where the GHS-R is located on growth hormone-releasing hormone (GHRH) neurons. Obestatin, a peptide derived from the same precursor as ghrelin, is able to antagonize the ghrelin-induced increase of growth hormone (GH) secretion in vivo but not from pituitary explants in vitro. Thus, the blockade of ghrelin-induced GH release by obestatin could be mediated at the hypothalamic level by the neuronal network that controls pituitary GH secretion. Ghrelin increased GHRH and decreased somatostatin (somatotropin-releasing inhibitory factor) release from hypothalamic explants, whereas obestatin only reduced the ghrelin-induced increase of GHRH release, thus indicating that the effect of ghrelin and obestatin is targeted to GHRH neurons. Patch-clamp recordings on mouse GHRH-enhanced green fluorescent protein neurons indicated that ghrelin and obestatin had no significant effects on glutamatergic synaptic transmission. Ghrelin decreased GABAergic synaptic transmission in 44% of the recorded neurons, an effect blocked in the presence of the GHS-R antagonist BIM28163, and stimulated the firing rate of 78% of GHRH neurons. Obestatin blocked the effects of ghrelin by acting on a receptor different from the GHS-R. These data suggest that: (i) ghrelin increases GHRH neuron excitability by increasing their action potential firing rate and decreasing the strength of GABA inhibitory inputs, thereby leading to an enhanced GHRH release; and (ii) obestatin counteracts ghrelin actions. Such interactions on GHRH neurons probably participate in the control of GH secretion.

  10. Thyroid Hormone Regulation of Metabolism

    PubMed Central

    Mullur, Rashmi; Liu, Yan-Yun

    2014-01-01

    Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5′-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets. PMID:24692351

  11. Parathyroid Hormone Levels and Cognition

    NASA Technical Reports Server (NTRS)

    Burnett, J.; Smith, S.M.; Aung, K.; Dyer, C.

    2009-01-01

    Hyperparathyroidism is a well-recognized cause of impaired cognition due to hypercalcemia. However, recent studies have suggested that perhaps parathyroid hormone itself plays a role in cognition, especially executive dysfunction. The purpose of this study was to explore the relationship of parathyroid hormone levels in a study cohort of elders with impaied cognition. Methods: Sixty community-living adults, 65 years of age and older, reported to Adult Protective Services for self-neglect and 55 controls matched (on age, ethnicity, gender and socio-economic status) consented and participated in this study. The research team conducted in-home comprehensive geriatric assessments which included the Mini-mental state exam (MMSE), the 15-item geriatric depression scale (GDS) , the Wolf-Klein clock test and a comprehensive nutritional panel, which included parathyroid hormone and ionized calcium. Students t tests and linear regression analyses were performed to assess for bivariate associations. Results: Self-neglecters (M = 73.73, sd=48.4) had significantly higher PTH levels compared to controls (M =47.59, sd=28.7; t=3.59, df=98.94, p<.01). There was no significant group difference in ionized calcium levels. Overall, PTH was correlated with the MMSE (r=-.323, p=.001). Individual regression analyses revealed a statistically significant correlation between PTH and MMSE in the self-neglect group (r=-.298, p=.024) and this remained significant after controlling for ionized calcium levels in the regression. No significant associations were revealed in the control group or among any of the other cognitive measures. Conclusion: Parathyroid hormone may be associated with cognitive performance.

  12. Are female sex hormones teratogenic?

    PubMed

    Wilson, J G; Brent, R L

    1981-11-01

    An analysis of available epidemiologic data leads the present reviewers to conclude that the use of exogenous hormones during human pregnancy has not been proved to cause developmental abnormality in nongenital organs and tissues. This conclusion is further supported by the animal laboratory data. The preponderance of evidence at this writing indicates a lack of causal association between hormonal use during pregnancy and nongenital malformation of the offspring. The quality of the epidemiologic data does not, at this time, permit a definitive conclusion that sex hormones during pregnancy may not, under as yet to be defined conditions, have some adverse effect on human prenatal development. If there are increased risks of nongenital malformations associated with the administration of certain sex steroids, the risks are very small, may not be causal, and are substantially below the spontaneous risk of malformations. In spite of the present degree of uncertainty, the clinical, epidemiologic, and laboratory data do permit the formulation of a rational approach to handling problems related to sex steroid usage and exposure in pregnant women.

  13. Sex Hormones and Macronutrient Metabolism

    PubMed Central

    Comitato, Raffaella; Saba, Anna; Turrini, Aida; Arganini, Claudia; Virgili, Fabio

    2015-01-01

    The biological differences between males and females are determined by a different set of genes and by a different reactivity to environmental stimuli, including the diet, in general. These differences are further emphasized and driven by the exposure to a different hormone flux throughout the life. These differences have not been taken into appropriate consideration by the scientific community. Nutritional sciences are not immune from this “bias” and when nutritional needs are concerned, females are considered only when pregnant, lactating or when their hormonal profile is returning back to “normal,” i.e., to the male-like profile. The authors highlight some of the most evident differences in aspects of biology that are associated with nutrition. This review presents and describes available data addressing differences and similarities of the “reference man” vs. the “reference woman” in term of metabolic activity and nutritional needs. According to this assumption, available evidences of sex-associated differences of specific biochemical pathways involved in substrate metabolism are reported and discussed. The modulation by sexual hormones affecting glucose, amino acid and protein metabolism and the metabolization of nutritional fats and the distribution of fat depots, is considered targeting a tentative starting up background for a gender concerned nutritional science. PMID:24915409

  14. Dietary regulation of adiponectin by direct and indirect lipid activators of nuclear hormone receptors.

    PubMed

    Rühl, R; Landrier, J F

    2016-01-01

    Adiponectin is an adipokine mainly secreted by adipocytes that presents antidiabetic, anti-inflammatory, and antiatherogenic functions. Therefore, modulation of adiponectin expression represents a promising target for prevention or treatment of several diseases including insulin resistance and type II diabetes. Pharmacological agents such as the nuclear hormone receptor synthetic agonists like peroxisome proliferator activated receptor γ agonists are of particular interest in therapeutic strategies due to their ability to increase the plasma adiponectin concentration. Nutritional approaches are also of particular interest, especially in primary prevention, since some active compounds of our diet (notably vitamins, carotenoids, or other essential nutrients) are direct or indirect lipid-activators of nuclear hormone receptors and are modifiers of adiponectin expression and secretion. The aim of the present review is to summarize current knowledge about the nutritional regulation of adiponectin by derivatives of active compounds naturally present in the diet acting as indirect or direct activators of nuclear hormone receptors.

  15. Hormonal and lactational responses to growth hormone-releasing hormone treatment in lactating Japanese Black cows.

    PubMed

    Shingu, H; Hodate, K; Kushibiki, S; Ueda, Y; Touno, E; Shinoda, M; Ohashi, S

    2004-06-01

    Ten multiparous lactating Japanese Black cows (beef breed) were used to evaluate the effects of bovine growth hormone-releasing hormone (GHRH) analog on milk yield and profiles of plasma hormones and metabolites. The cows received 2 consecutive 21-d treatments (a daily s.c. injection of 3-mg GHRH analog or saline) in a 2 (group) x 2 (period) Latin square crossover design. The 5 cows in group A received GHRH analog during period 1 (from d 22 to 42 postpartum) and saline during period 2 (from d 57 to 77 postpartum), and those in group B received saline and GHRH analog during periods 1 and 2, respectively. Mean milk yield decreased in saline treated compared with that during the 1-wk period before treatment 7.4 and 19.1% during periods 1 (group B) and 2 (group A), respectively. Treatment with GHRH analog increased milk yield 17.4% (period 1, group A) and 6.3% (period 2, group B). Treatment with GHRH analog induced higher basal plasma concentrations of growth hormone (GH), insulin-like growth factor-1 (IGF-1), insulin, and glucose compared with saline-treated cows. In glucose challenge, the GHRH analog-treated beef cows had greater insulin secretion than the saline-treated beef cows. In insulin challenge, however, there were no significant differences in the areas surrounded by hypothetical lines of basal glucose concentrations and glucose response curves between GHRH analog- and saline-treated cows. These results demonstrate that GHRH analog treatment facilitates endogenous GH secretion in lactating Japanese Black cows, leading to increases in milk yield and plasma concentrations of IGF-1, insulin, and glucose.

  16. Sex steroid hormone levels in breast adipose tissue and serum in postmenopausal women.

    PubMed

    Falk, Roni T; Gentzschein, Elisabet; Stanczyk, Frank Z; Garcia-Closas, Montserrat; Figueroa, Jonine D; Ioffe, Olga B; Lissowska, Jolanta; Brinton, Louise A; Sherman, Mark E

    2012-01-01

    Elevated levels of circulating estrogens and androgens are linked to higher breast cancer risk among postmenopausal women; however, little is known about hormone levels within the breast. Hormone concentrations within the breast may not be reflected in the blood and are likely important contributors to breast carcinogenesis. We used a previously validated method to measure levels of estrone, estradiol, androstenedione, and testosterone in adipose tissue removed as part of breast excisions performed for cancer in 100 postmenopausal women (69 ER/PR +/+ and 31 ER/PR -/-) participating in a breast cancer case-control study. We also measured the same steroid hormones, as well as estrone sulfate, and sex hormone-binding globulin (SHBG) in serum from these patients and 100 controls matched on ages at blood collection and on menopause. Overall, concentrations of serum hormones did not vary significantly between controls and cases. However, women with ER-/PR- breast cancers had lower circulating levels of all measured sex steroid hormones and higher SHBG levels than women with ER+/PR+ breast cancers and controls. Similarly, hormone concentrations in breast adipose tissue were higher among women with ER+/PR+ compared to ER-/PR- breast cancer, although differences were only significant for testosterone. These data demonstrate that high sex steroid concentrations in both serum and adipose tissues are more strongly related to ER+/PR+ than ER-/PR- breast cancers. Measurement of sex hormones in serum and in the microenvironment may help in understanding the hormonal etiology of breast cancer, suggest methods for prevention, and have value in gauging treatment response and prognosis.

  17. Hormone symphony during root growth and development.

    PubMed

    Garay-Arroyo, Adriana; De La Paz Sánchez, María; García-Ponce, Berenice; Azpeitia, Eugenio; Alvarez-Buylla, Elena R

    2012-12-01

    Hormones regulate plant growth and development in response to external environmental stimuli via complex signal transduction pathways, which in turn form complex networks of interaction. Several classes of hormones have been reported, and their activity depends on their biosynthesis, transport, conjugation, accumulation in the vacuole, and degradation. However, the activity of a given hormone is also dependent on its interaction with other hormones. Indeed, there is a complex crosstalk between hormones that regulates their biosynthesis, transport, and/or signaling functionality, although some hormones have overlapping or opposite functions. The plant root is a particularly useful system in which to study the complex role of plant hormones in the plastic control of plant development. Physiological, cellular, and molecular genetic approaches have been used to study the role of plant hormones in root meristem homeostasis. In this review, we discuss recent findings on the synthesis, signaling, transport of hormones and role during root development and examine the role of hormone crosstalk in maintaining homeostasis in the apical root meristem.

  18. Gastrointestinal hormone research - with a Scandinavian annotation.

    PubMed

    Rehfeld, Jens F

    2015-06-01

    Gastrointestinal hormones are peptides released from neuroendocrine cells in the digestive tract. More than 30 hormone genes are currently known to be expressed in the gut, which makes it the largest hormone-producing organ in the body. Modern biology makes it feasible to conceive the hormones under five headings: The structural homology groups a majority of the hormones into nine families, each of which is assumed to originate from one ancestral gene. The individual hormone gene often has multiple phenotypes due to alternative splicing, tandem organization or differentiated posttranslational maturation of the prohormone. By a combination of these mechanisms, more than 100 different hormonally active peptides are released from the gut. Gut hormone genes are also widely expressed outside the gut, some only in extraintestinal endocrine cells and cerebral or peripheral neurons but others also in other cell types. The extraintestinal cells may release different bioactive fragments of the same prohormone due to cell-specific processing pathways. Moreover, endocrine cells, neurons, cancer cells and, for instance, spermatozoa secrete gut peptides in different ways, so the same peptide may act as a blood-borne hormone, a neurotransmitter, a local growth factor or a fertility factor. The targets of gastrointestinal hormones are specific G-protein-coupled receptors that are expressed in the cell membranes also outside the digestive tract. Thus, gut hormones not only regulate digestive functions, but also constitute regulatory systems operating in the whole organism. This overview of gut hormone biology is supplemented with an annotation on some Scandinavian contributions to gastrointestinal hormone research.

  19. Postmenopausal hormone therapy and Alzheimer disease

    PubMed Central

    Tuppurainen, Marjo; Rikkonen, Toni; Kivipelto, Miia; Soininen, Hilkka; Kröger, Heikki; Tolppanen, Anna-Maija

    2017-01-01

    Objective: To explore the association between postmenopausal hormone therapy (HT) and Alzheimer disease (AD). Methods: Twenty-year follow-up data from the Kuopio Osteoporosis Risk Factor and Prevention study cohort were used. Self-administered questionnaires were sent to all women aged 47–56 years, residing in Kuopio Province starting in 1989 until 2009, every 5th year. Register-based information on HT prescriptions was available since 1995. Probable AD cases, based on DSM-IV and National Institute of Neurological and Communicative Disorders and Stroke–Alzheimer's Disease and Related Disorders Association criteria, were identified from the special reimbursement register (1999–2009). The study population included 8,195 women (227 cases of incident AD). Results: Postmenopausal estrogen use was not associated with AD risk in register-based or self-reported data (hazard ratio/95% confidence interval 0.92/0.68–1.2, 0.99/0.75–1.3, respectively). Long-term self-reported postmenopausal HT was associated with reduced AD risk (0.53/0.31–0.91). Similar results were obtained with any dementia diagnosis in the hospital discharge register as an outcome. Conclusions: Our results do not provide strong evidence for a protective association between postmenopausal HT use and AD or dementia, although we observed a reduced AD risk among those with long-term self-reported HT use. PMID:28202700

  20. Preventing Tragedy.

    ERIC Educational Resources Information Center

    One Feather, Sandra

    2003-01-01

    The Navajo supervisor in the Office of Environmental Health in New Mexico identifies diseases and their risk factors, administers an injury prevention program, and ensures compliance with various health-related codes. She assists in the planning and direction of environmental health programs and public health education for local Navajo…

  1. Bullying Prevention

    ERIC Educational Resources Information Center

    Kemp, Patrice

    2016-01-01

    The focus of the milestone project is to focus on bridging the gap of bullying and classroom instruction methods. There has to be a defined expectations and level of accountability that has to be defined when supporting and implementing a plan linked to bullying prevention. All individuals involved in the student's learning have to be aware of…

  2. Shoplifting Prevention.

    ERIC Educational Resources Information Center

    Everhardt, Richard M.

    The retailers' concern about shoplifting and shoplifting losses provided impetus for the development of this programed text. The self-instructional booklet is designed for all retail employees as an aid to preventing financial losses to the store caused by shoplifting. The common characteristics of shoplifters, methods used by shoplifters, and a…

  3. Expression of growth hormone and growth hormone receptor in fibroadenomas of the breast.

    PubMed

    Lenicek, Tanja; Kasumović, Dino; Stajduhar, Emil; Dzombeta, Tihana; Jukić, Zoran; Kruslin, Bozo

    2013-06-01

    Fibroadenoma is the most prevalent benign breast tumor. It consists of epithelial and stromal components. In general, breast tumors are highly hormonally dependent and growth hormone by its physiology may have a possible oncogenic potential. Therefore, the aim of this study was to determine the expression of growth hormone and growth hormone receptor in epithelial and stromal components of fibroadenomas. Study group included 30 randomly chosen fibroadenomas from female patients aged between 18 and 69 years. The expression of growth hormone and growth hormone receptor was defined in both histologic components of fibroadenomas. Growth hormone was expressed in 96.7% of both epithelial and stromal components of fibroadenomas, with stronger expression in the stromal component. The same percentage of positive reaction (96.7%) was obtained in the epithelial component of fibroadenomas for growth hormone receptor expression. Only 6.7% of stromal components tested for growth hormone receptor were positive. The high expression of growth hormone and growth hormone receptor in fibroadenoma tissue indicates their possible role in the pathogenesis of this tumor. Follow up of patients with high expression of growth hormone and growth hormone receptor may be suggested.

  4. [Effect of combined hormonal oral contraception on the somatic and psychic status of women of reproductive age].

    PubMed

    Vertkin, A L; Nosova, A V

    2012-01-01

    The paper is devoted to the topical problem of maintaining somatic and psychic health of the women of reproductive age by rational pregnancy planning and prevention of abortions by modern methods of contraception including combined oral hormonal contraception. Unfortunately, this approach is rarely employed in this country (5-6%). Results of retrospective analysis of medical documentation, clinical efficacy and safety of modern combined oral hormonal contraception are presented.

  5. Do hormones influence melanoma? Facts and controversies.

    PubMed

    Gupta, Amie; Driscoll, Marcia S

    2010-01-01

    The issue of whether hormones influence malignant melanoma (MM) has been controversial for many years. Although early case reports demonstrated a negative effect of hormones, recent evidence has not supported a potential role for hormones in MM. We address whether exogenous and endogenous hormones influence a woman's risk for MM or affect her prognosis if diagnosed with MM. Multiple epidemiologic studies show the use of oral contraceptives or hormone replacement therapy does not appear to increase a woman's risk for MM. Pregnancy does not appear to influence a woman's risk of MM, nor does pregnancy appear to affect prognosis in the woman diagnosed with MM. When counseling the woman who is diagnosed with MM during pregnancy or during the childbearing years, future use of oral contraceptives or hormone replacement therapy is not contraindicated; counseling concerning future pregnancies should be done on a case-by-case basis, with emphasis placed on established prognostic factors for MM.

  6. Hormones and sexual orientation: a questionable link.

    PubMed

    Banks, A; Gartrell, N K

    1995-01-01

    This paper critically reviews the studies which explore a possible causal relationship between sex hormones and the development of sexual orientation. Early studies focused on hormone measurements in adult men and women. While definitive interpretations are hindered by methodological problems, the studies as a whole do not support a causal relationship between postnatal hormone levels and sexual orientation. More recently, a theory that prenatal hormone levels produce varying degrees of brain androgenization and subsequent dimorphic sex role behavior has consistently been supported by studies in lower mammals. Attempts to generalize the causes of sexual orientation from animals to humans have been controversial. Efforts to measure the estrogen feedback as an indication of brain androgenization have produced inconsistent results. Studies of men and women who experienced defect in hormone metabolism (i.e., CAH and testicular feminization) have not found a concurrent increase in homosexual behavior. Overall, the data do not support a causal connection between hormones and human sexual orientation.

  7. Thyroid hormone resistance and its management

    PubMed Central

    Lado-Abeal, Joaquin

    2016-01-01

    The syndrome of impaired sensitivity to thyroid hormone, also known as syndrome of thyroid hormone resistance, is an inherited condition that occurs in 1 of 40,000 live births characterized by a reduced responsiveness of target tissues to thyroid hormone due to mutations on the thyroid hormone receptor. Patients can present with symptoms of hyperthyroidism or hypothyroidism. They usually have elevated thyroid hormones and a normal or elevated thyroid-stimulating hormone level. Due to their nonspecific symptomatic presentation, these patients can be misdiagnosed if the primary care physician is not familiar with the condition. This can result in frustration for the patient and sometimes unnecessary invasive treatment such as radioactive iodine ablation, as in the case presented herein. PMID:27034574

  8. Sex steroids and growth hormone interactions.

    PubMed

    Fernández-Pérez, Leandro; de Mirecki-Garrido, Mercedes; Guerra, Borja; Díaz, Mario; Díaz-Chico, Juan Carlos

    2016-04-01

    GH and sex hormones are critical regulators of body growth and composition, somatic development, intermediate metabolism, and sexual dimorphism. Deficiencies in GH- or sex hormone-dependent signaling and the influence of sex hormones on GH biology may have a dramatic impact on liver physiology during somatic development and in adulthood. Effects of sex hormones on the liver may be direct, through hepatic receptors, or indirect by modulating endocrine, metabolic, and gender-differentiated functions of GH. Sex hormones can modulate GH actions by acting centrally, regulating pituitary GH secretion, and peripherally, by modulating GH signaling pathways. The endocrine and/or metabolic consequences of long-term exposure to sex hormone-related compounds and their influence on the GH-liver axis are largely unknown. A better understanding of these interactions in physiological and pathological states will contribute to preserve health and to improve clinical management of patients with growth, developmental, and metabolic disorders.

  9. Endocrine disruptors and thyroid hormone physiology.

    PubMed

    Jugan, Mary-Line; Levi, Yves; Blondeau, Jean-Paul

    2010-04-01

    Endocrine disruptors are man-made chemicals that can disrupt the synthesis, circulating levels, and peripheral action of hormones. The disruption of sex hormones was subject of intensive research, but thyroid hormone synthesis and signaling are now also recognized as important targets of endocrine disruptors. The neurological development of mammals is largely dependent on normal thyroid hormone homeostasis, and it is likely to be particularly sensitive to disruption of the thyroid axis. Here, we survey the main thyroid-disrupting chemicals, such as polychlorinated biphenyls, perchlorates, and brominated flame-retardants, that are characteristic disruptors of thyroid hormone homeostasis, and look at their suspected relationships to impaired development of the human central nervous system. The review then focuses on disrupting mechanisms known to be directly or indirectly related to the transcriptional activity of the thyroid hormone receptors.

  10. Basic understanding of gonadotropin-releasing hormone-agonist triggering.

    PubMed

    Casper, Robert F

    2015-04-01

    A single bolus of human chorionic gonadotropin (hCG) at midcycle has been the gold standard for triggering final oocyte maturation and ovulation in assisted reproductive technology cycles. More recently, gonadotropin-releasing hormone (GnRH)-agonist (GnRH-a) triggering has been introduced. The GnRH-a trigger may allow a more physiologic surge of both luteinizing hormone (LH) and follicle-stimulating hormone, although whether the combined surge will result in improved oocyte and embryo quality remains to be seen. However, the short duration of the LH surge with the GnRH-a trigger (approximately 34 hours) has been shown to be beneficial for preventing ovarian hyperstimulation syndrome in GnRH antagonist in vitro fertilization (IVF) cycles when compared with the prolonged elevation of hCG (≥6 days) after exposure to an hCG bolus. This review discusses the physiologic basis for the use of a GnRH-a trigger in IVF cycles.

  11. Isolated growth hormone deficiency type 2: from gene to therapy.

    PubMed

    Miletta, Maria Consolata; Lochmatter, Didier; Pektovic, Vibor; Mullis, Primus-E

    2012-01-01

    Isolated growth hormone deficiency type-2 (IGHD-2), the autosomal-dominant form of GH deficiency, is mainly caused by specific splicing mutations in the human growth hormone (hGH) gene (GH-1). These mutations, occurring in and around exon 3, cause complete exon 3 skipping and produce a dominant-negative 17.5 kD GH isoform that reduces the accumulation and secretion of wild type-GH (wt-GH). At present, patients suffering from IGHD-2 are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent toxic effects of the 17.5-kD mutant on the pituitary gland, which can eventually lead to other hormonal deficiencies. Considering a well-known correlation between the clinical severity observed in IGHD-2 patients and the increased expression of the 17.5-kD isoform, therapies that specifically target this isoform may be useful in patients with GH-1 splicing defects. This chapter focuses on molecular strategies that could represent future directions for IGHD-2 treatment.

  12. Juvenile hormone regulation of longevity in the migratory monarch butterfly.

    PubMed

    Herman, W S; Tatar, M

    2001-12-22

    Monarch butterflies (Danaus plexippus) of eastern North America are well known for their long-range migration to overwintering roosts in south-central Mexico. An essential feature of this migration involves the exceptional longevity of the migrant adults; individuals persist from August/September to March while their summer counterparts are likely to live less than two months as adults. Migrant adults persist during a state of reproductive diapause in which both male and female reproductive development is arrested as a consequence of suppressed synthesis of juvenile hormone. Here, we describe survival in monarch butterflies as a function of the migrant syndrome. We show that migrant adults are longer lived than summer adults when each are maintained under standard laboratory conditions, that the longevity of migrant adults is curtailed by treatment with juvenile hormone and that the longevity of summer adults is increased by 100% when juvenile hormone synthesis is prevented by surgical removal of its source, the corpora allatum. Thus, monarch butterfly persistence through a long winter season is ensured in part by reduced ageing that is under endocrine regulation, as well as by the unique environmental properties of their winter roost sites. Phenotypic plasticity for ageing is an integral component of the monarch butterflies' migration-diapause syndrome.

  13. The effect of hormones on the lower urinary tract.

    PubMed

    Robinson, Dudley; Toozs-Hobson, Philip; Cardozo, Linda

    2013-12-01

    The female genital and lower urinary tracts share a common embryological origin, arising from the urogenital sinus and both are sensitive to the effects of the female sex steroid hormones throughout life. Estrogen is known to have an important role in the function of the lower urinary tract and estrogen and progesterone receptors have been demonstrated in the vagina, urethra, bladder and pelvic floor musculature. In addition estrogen deficiency occurring following the menopause is known to cause atrophic change and may be associated with lower urinary tract symptoms such as frequency, urgency, nocturia, urgency incontinence and recurrent infection. These may also co-exist with symptoms of urogenital atrophy such as dyspareunia, itching, vaginal burning and dryness. Epidemiological studies have implicated estrogen deficiency in the aetiology of lower urinary tract symptoms with 70% of women relating the onset of urinary incontinence to their final menstrual period. Whilst for many years systemic and vaginal estrogen therapy was felt to be beneficial in the treatment of lower urinary and genital tract symptoms this evidence has recently been challenged by large epidemiological studies investigating the use of systemic hormone replacement therapy as primary and secondary prevention of cardiovascular disease and osteoporosis. The aim of this paper is to examine the effect of the sex hormones, estrogen and progesterone, on the lower urinary tract and to review the current evidence regarding the role of systemic and vaginal estrogens in the management of lower urinary tract symptoms and urogenital atrophy.

  14. Hormonal regulation of fetal growth.

    PubMed

    Gicquel, C; Le Bouc, Y

    2006-01-01

    Fetal growth is a complex process depending on the genetics of the fetus, the availability of nutrients and oxygen to the fetus, maternal nutrition and various growth factors and hormones of maternal, fetal and placental origin. Hormones play a central role in regulating fetal growth and development. They act as maturational and nutritional signals in utero and control tissue development and differentiation according to the prevailing environmental conditions in the fetus. The insulin-like growth factor (IGF) system, and IGF-I and IGF-II in particular, plays a critical role in fetal and placental growth throughout gestation. Disruption of the IGF1, IGF2 or IGF1R gene retards fetal growth, whereas disruption of IGF2R or overexpression of IGF2 enhances fetal growth. IGF-I stimulates fetal growth when nutrients are available, thereby ensuring that fetal growth is appropriate for the nutrient supply. The production of IGF-I is particularly sensitive to undernutrition. IGF-II plays a key role in placental growth and nutrient transfer. Several key hormone genes involved in embryonic and fetal growth are imprinted. Disruption of this imprinting causes disorders involving growth defects, such as Beckwith-Wiedemann syndrome, which is associated with fetal overgrowth, or Silver-Russell syndrome, which is associated with intrauterine growth retardation. Optimal fetal growth is essential for perinatal survival and has long-term consequences extending into adulthood. Given the high incidence of intrauterine growth retardation and the high risk of metabolic and cardiovascular complications in later life, further clinical and basic research is needed to develop accurate early diagnosis of aberrant fetal growth and novel therapeutic strategies.

  15. Aluminum, parathyroid hormone, and osteomalacia

    SciTech Connect

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  16. Review of hormonal treatment of breast cancer.

    PubMed

    Abdulkareem, I H; Zurmi, I B

    2012-01-01

    This critical review focuses on the role of steroid hormones and their receptors in the development and treatment of breast cancer, with special reference to estrogen receptors, as well as mechanisms of receptor-ligand interactions, response or resistance to hormonal therapy against breast cancer, in conjunction with other modalities like surgery and chemotherapy. Tamoxifen is used in hormonal treatment of breast cancer for up to five years, depending on the presentation. However, there have been recent developments in hormonal therapy of breast cancer in the last ten years, with the introduction of many different alternative therapies for this condition. A critical review of published articles in Pubmed/Medline, Athens, AJOL, NHS Evidence, Science Direct and Google, relating to hormonal treatment of breast cancer, was undertaken, in order to evaluate the mechanisms of estrogen receptor-ligand interactions, their involvement in the etio-pathogenesis of breast cancer, resistance of breast cancer cells to anti-hormonal agents, as well as ways of treating breast cancer using anti-hormone drugs like tamoxifen. Although tamoxifen is the established drug for hormonal treatment of breast cancer, cases of hormone resistance breast cancer have been described recently in the literature. This can happen from the beginning, or during treatment. Therefore, we aim to examine the causes of resistance to hormonal treatment with a view to understand the options of tackling this problem, and suggest other novel alternative hormonal therapies that can be tried, which may overtake tamoxifen in the future. We also seek to emphasize that hormonal therapy has a definite place in the treatment of breast cancer along with surgery, chemotherapy and radiotherapy, as the disease is often considered to be multi-systemic even from the beginning.

  17. Steroid Hormones in NF1 Tumorigenesis

    DTIC Science & Technology

    2005-08-01

    neurofibroma and MPNST Schwann cells. We found less than 2-fold difference in these transcripts in tumor versus normal Schwann cells (in those that changed...neurofibromin-negative) to steroid hormones, focusing on estrogen and progesterone. The hypothesis is that human neurofibroma (and MPNST , malignant...to determine steroid hormone receptor expression in human normal, NF1 neurofibroma, and NF1 MPNST Schwann cells, pre- and post-hormone treatment by

  18. Steroid Hormones in NF1 Tumorigenesis

    DTIC Science & Technology

    2002-08-01

    hypothesis is that human neurofibroma (and/or MPNST ) Schwann cells have increased hormone response compared to normal Schwann cells, leading to tumor...growth. Specific Aim 1 will determine steroid hormone receptor expression in human normal, NFl neurofibroma and MPNST Schwann cells. Real-time PCR has...and rat Schwann cells, as well as an MPNST line so far (which showed no proliferative response) Specific Aim 3 involves in vivo hormone response of

  19. Hormonal therapy of prostate cancer.

    PubMed

    Labrie, Fernand

    2010-01-01

    Of all cancers, prostate cancer is the most sensitive to hormones: it is thus very important to take advantage of this unique property and to always use optimal androgen blockade when hormone therapy is the appropriate treatment. A fundamental observation is that the serum testosterone concentration only reflects the amount of testosterone of testicular origin which is released in the blood from which it reaches all tissues. Recent data show, however, that an approximately equal amount of testosterone is made from dehydroepiandrosterone (DHEA) directly in the peripheral tissues, including the prostate, and does not appear in the blood. Consequently, after castration, the 95-97% fall in serum testosterone does not reflect the 40-50% testosterone (testo) and dihydrotestosterone (DHT) made locally in the prostate from DHEA of adrenal origin. In fact, while elimination of testicular androgens by castration alone has never been shown to prolong life in metastatic prostate cancer, combination of castration (surgical or medical with a gonadotropin-releasing hormone (GnRH) agonist) with a pure anti-androgen has been the first treatment shown to prolong life. Most importantly, when applied at the localized stage, the same combined androgen blockade (CAB) can provide long-term control or cure of the disease in more than 90% of cases. Obviously, since prostate cancer usually grows and metastasizes without signs or symptoms, screening with prostate-specific antigen (PSA) is absolutely needed to diagnose prostate cancer at an 'early' stage before metastasis occurs and the cancer becomes non-curable. While the role of androgens was believed to have become non-significant in cancer progressing under any form of androgen blockade, recent data have shown increased expression of the androgen receptor (AR) in treatment-resistant disease with a benefit of further androgen blockade. Since the available anti-androgens have low affinity for AR and cannot block androgen action completely

  20. [Hormonal therapy in breast cancer].

    PubMed

    Espinós, J; Reyna, C; de la Cruz, S; Oiler, C; Hernández, A; Fernández Hidalgo, O; Santisteban, M; García Foncillas, J

    2008-01-01

    Hormonal therapy has been the first systemic treatment against breast cancer. Up to now Tamoxifen and ovarian supression/ablation were the best optionts we had to treat early breast cancer as advancer disease. The advent of aromatase inhibitors, new SERMS and antistrogen Fulvestrant have supoused a great advance in the treatment of this disease and at the same time have complicated the election of the optimal drug for each patient. This article tries to review the aviable treatment options insiting on its indications.

  1. Sexual hormone fluctuation in chinchillas.

    PubMed

    Celiberti, Simone; Gloria, Alessia; Contri, Alberto; Carluccio, Augusto; Peric, Tanja; Melillo, Alessandro; Robbe, Domenico

    2013-01-01

    The data about chinchilla (Chinchilla laniger) reproduction are limited and in some cases discordant. The aim of this study was to monitor the sexual hormone fluctuation by fecal progesterone level and colpocytology analysis by vaginal smears in order to evaluate the different phases of the oestrus cycle. Twenty-four non pregnant chinchillas aged from 1 to 4 years old and subdivided in three groups were monitored. In contrast with findings reported in other study, the high values of progesterone recorded in autumn suggested the presence of a ciclicity also in this period. The data indicate that chinchilla presents a continuous cycle.

  2. Interrelationship between feeding level and the metabolic hormones leptin, ghrelin and obestatin in control of chicken egg laying and release of ovarian hormones.

    PubMed

    Sirotkin, Alexander V; Grossmann, Roland

    2015-06-01

    The aim of the present experiment is to examine the role of nutritional status, metabolic hormones and their interrelationships in the control of chicken ovarian ovulatory and secretory activity. For this purpose, we identified the effect of food restriction, administration of leptin, ghrelin 1-18, obestatin and combinations of food restriction with these hormones for 3days on chicken ovulation (egg laying) rate and ovarian hormone release. The release of progesterone (P), testosterone (T), estradiol (E) and arginine-vasotocin (AVT) by isolated and cultured ovarian fragments was determined by EIA. It was observed that food restriction significantly reduced the egg-laying rate, T, E and AVT release and promoted P output by ovarian fragments. Leptin, administrated to ad libitum-fed chickens, did not change these parameters besides promoting E release. Nevertheless, administration of leptin was able to prevent the effect of food restriction on ovulation, T and E (but not P or AVT) release. Ghrelin 1-18 administration to ad libitum-fed birds did not affect the measured parameters besides a reduction in P release. Ghrelin 1-18 administration prevented the food restriction-induced decrease in ovarian T, E and AVT, but it did not change P output or egg laying. Obestatin administrated to control chicken promoted their ovarian P, E and inhibited ovarian AVT release but did not affect egg laying. It was able to promote the effect of food restriction on P, T and AVT, but not E release or egg laying. Our results (1) confirm an inhibitory effect of food restriction on chicken ovulation rate; (2) shows that food restriction-induced reduction in egg laying is associated with a decrease in ovarian T, E and AVT and an increase in ovarian P release; (3) confirm the involvement of metabolic hormones leptin, ghrelin and obestatin in the control of chicken ovarian hormones output; and (4) the ability of metabolic hormones to mimic/antagonize or prevent/promote the effects of food

  3. Hormone cross-talk during seed germination.

    PubMed

    Gazzarrini, Sonia; Tsai, Allen Yi-Lun

    2015-01-01

    Hormones are chemical substances that can affect many cellular and developmental processes at low concentrations. Plant hormones co-ordinate growth and development at almost all stages of the plant's life cycle by integrating endogenous signals and environmental cues. Much debate in hormone biology revolves around specificity and redundancy of hormone signalling. Genetic and molecular studies have shown that these small molecules can affect a given process through a signalling pathway that is specific for each hormone. However, classical physiological and genetic studies have also demonstrated that the same biological process can be regulated by many hormones through independent pathways (co-regulation) or shared pathways (cross-talk or cross-regulation). Interactions between hormone pathways are spatiotemporally controlled and thus can vary depending on the stage of development or the organ being considered. In this chapter we discuss interactions between abscisic acid, gibberellic acid and ethylene in the regulation of seed germination as an example of hormone cross-talk. We also consider hormone interactions in response to environmental signals, in particular light and temperature. We focus our discussion on the model plant Arabidopsis thaliana.

  4. Growth Hormone and Craniofacial Tissues. An update

    PubMed Central

    Litsas, George

    2015-01-01

    Growth hormone is an important regulator of bone homeostasis. In childhood, it determines the longitudinal bone growth, skeletal maturation, and acquisition of bone mass. In adulthood, it is necessary to maintain bone mass throughout life. Although an association between craniofacial and somatic development has been clearly established, craniofacial growth involves complex interactions of genes, hormones and environment. Moreover, as an anabolic hormone seems to have an important role in the regulation of bone remodeling, muscle enhancement and tooth development. In this paper the influence of growth hormone on oral tissues is reviewed. PMID:25674165

  5. Hormones and the blood-brain barrier.

    PubMed

    Hampl, Richard; Bičíková, Marie; Sosvorová, Lucie

    2015-03-01

    Hormones exert many actions in the brain, and brain cells are also hormonally active. To reach their targets in brain structures, hormones must overcome the blood-brain barrier (BBB). The BBB is a unique device selecting desired/undesired molecules to reach or leave the brain, and it is composed of endothelial cells forming the brain vasculature. These cells differ from other endothelial cells in their almost impermeable tight junctions and in possessing several membrane structures such as receptors, transporters, and metabolically active molecules, ensuring their selection function. The main ways how compounds pass through the BBB are briefly outlined in this review. The main part concerns the transport of major classes of hormones: steroids, including neurosteroids, thyroid hormones, insulin, and other peptide hormones regulating energy homeostasis, growth hormone, and also various cytokines. Peptide transporters mediating the saturable transport of individual classes of hormones are reviewed. The last paragraph provides examples of how hormones affect the permeability and function of the BBB either at the level of tight junctions or by various transporters.

  6. Effects of hormones on platelet aggregation.

    PubMed

    Farré, Antonio López; Modrego, Javier; Zamorano-León, José J

    2014-04-01

    Platelets and their activation/inhibition mechanisms play a central role in haemostasis. It is well known agonists and antagonists of platelet activation; however, during the last years novel evidences of hormone effects on platelet activation have been reported. Platelet functionality may be modulated by the interaction between different hormones and their platelet receptors, contributing to sex differences in platelet function and even in platelet-mediated vascular damage. It has suggested aspects that apparently are well established should be reviewed. Hormones effects on platelet activity are included among them. This article tries to review knowledge about the involvement of hormones in platelet biology and activity.

  7. Thyroid hormone transporters in the brain.

    PubMed

    Suzuki, Takehiro; Abe, Takaaki

    2008-01-01

    Thyroid hormone plays an essential role in proper mammalian development of the central nervous system and peripheral tissues. Lack of sufficient thyroid hormone results in abnormal development of virtually all organ systems, a syndrome termed cretinism. In particular, hypothyroidism in the neonatal period causes serious damage to neural cells and leads to mental retardation. Although thyroxine is the major product secreted by the thyroid follicular cells, the action of thyroid hormone is mediated mainly through the deiodination of T(4) to the biologically active form 3,3', 5-triiodo-L-thyronine, followed by the binding of T(3) to a specific nuclear receptor. Before reaching the intracellular targets, thyroid hormone must cross the plasma membrane. Because of the lipophilic nature of thyroid hormone, it was thought that they traversed the plasma membrane by simple diffusion. However, in the past decade, a membrane transport system for thyroid hormone has been postulated to exist in various tissues. Several classes of transporters, organic anion transporter polypeptide (oatp) family, Na(+)/Taurocholate cotransporting polypeptide (ntcp) and amino acid transporters have been reported to transport thyroid hormones. Monocarboxylate transporter8 (MCT8) has recently been identified as an active and specific thyroid hormone transporter. Mutations in MCT8 are associated with severe X-linked psycomotor retardation and strongly elevated serum T3 levels in young male patients. Several other molecules should be contributed to exert the role of thyroid hormone in the central nervous system.

  8. Topographical localization of the receptors for luteinizing hormone- releasing hormone on the surface of dissociated pituitary cells

    PubMed Central

    1977-01-01

    A derivative of the hypothalamic peptide luteinizing hormone-releasing hormone (LHRH) has been coupled to ferritin and the conjugate purified by gel chromatography. In its ability to stimulate the secretion of luteinizing hormone from pituitary cells in vitro, the conjugate has the same potency and specificity as the native peptide. When dissociated pituitary cells maintained in short-term culture are lightly fixed with formaldehyde and then incubated with the conjugate, examination in the electron microscope shows an even distribution of ferritin particles over the free cell surface of the gonadotrophin cells. This binding appears to be specific for the LHRH receptor since it is prevented by a 10-fold excess of native peptide. In addition to the gonadotrophin cells, some somatotrophin and thyrotrophin cells bind conjugate on their free surfaces under similar conditions. If living cells are incubated with the conjugate for 15 min, the bound conjugate becomes aggregated and then concentrated in one localized area of the cell surface. In this area, which lies immediately above the juxtanuclear Golgi complex, the plasma membrane is frequently invaginated in a manner which suggests that the bound, aggregated conjugate is internalized by endocytosis. PMID:233747

  9. Preeclampsia prevention

    PubMed Central

    Herrera-Medina, Rodolfo; Pineda, Lucia M

    2015-01-01

    Background: Preeclampsia is the main complication of pregnancy in developing countries. Calcium starting at 14 weeks of pregnancy is indicated to prevent the disease. Recent advances in prevention of preeclampsia endorse the addition of conjugated linoleic acid. Objective: To estimate the protective effect from calcium alone, compared to calcium plus conjugated linoleic acid in nulliparous women at risk of preeclampsia. Methods: A case-control design nested in the cohort of nulliparous women attending antenatal care from 2010 to 2014. The clinical histories of 387 cases of preeclampsia were compared with 1,054 normotensive controls. The exposure was prescriptions for calcium alone, the first period, or calcium plus conjugated linoleic acid, the second period, from 12 to 16 weeks of gestational age to labor. Confounding variables were controlled, allowing only nulliparous women into the study and stratifying by age, education and ethnic group. Results: The average age was 26.4 yrs old (range= 13-45), 85% from mixed ethnic backgrounds and with high school education. There were no differences between women who received calcium carbonate and those who did not (OR= 0.96; 95% CI= 0.73-1.27). The group of adolescents (13 to 18 years old) in the calcium plus conjugated linoleic acid was protected for preeclampsia (OR= 0.00; 95% CI= 0.00-0.44) independent of the confounder variables. Conclusions: 1. Calcium supplementation during pregnancy did not have preventive effects on preeclampsia. 2. Calcium plus Conjugated Linoleic acid provided to adolescents was observed to have preventive effect on Preeclampsia. PMID:26848195

  10. Impact of postmenopausal hormone therapy on cardiovascular events and cancer: pooled data from clinical trials.

    PubMed Central

    Hemminki, E.; McPherson, K.

    1997-01-01

    OBJECTIVE: To examine the incidence of cardiovascular diseases and cancer from published clinical trials that studied other outcomes of postmenopausal hormone therapy as some surveys have suggested that it may decrease the incidence of cardiovascular diseases and increase the incidence of hormone dependent cancers. DESIGN: Trials that compared hormone therapy with placebo, no therapy, or vitamins and minerals in comparable groups of postmenopausal women and reported cardiovascular or cancer outcomes were searched from the literature. SUBJECTS: 22 trials with 4124 women were identified. In each group, the numbers of women with cardiovascular and cancer events were summed and divided by the numbers of women originally allocated to the groups. RESULTS: Data on cardiovascular events and cancer were usually given incidentally, either as a reason for dropping out of a study or in a list of adverse effects. The calculated odds ratios for women taking hormones versus those not taking hormones was 1.39 (95% confidence interval 0.48 to 3.95) for cardiovascular events without pulmonary embolus and deep vein thrombosis and 1.64 (0.55 to 4.18) with them. It is unlikely that such results would have occurred if the true odds ratio were 0.7 or less. For cancers, the numbers of reported events were too low for a useful conclusion. CONCLUSIONS: The results of these pooled data do not support the notion that postmenopausal hormone therapy prevents cardiovascular events. PMID:9251544

  11. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses.

    PubMed

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M; Currie, Suzanne

    2012-01-01

    Acute temperature stress in animals results in increases in heat shock proteins (HSPs) and stress hormones. There is evidence that stress hormones influence the magnitude of the heat shock response; however, their role is equivocal. To determine whether and how stress hormones may affect the heat shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout. We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response but provided insight into stress-coping styles and environmental stress. HR fish also had a significantly greater and faster heat shock response and less oxidative protein damage than LR fish. Despite these clear differences in the physiological and cellular responses to heat shock, there were no differences in the thermal tolerance of HR and LR fish. Our results support the hypothesis that responsiveness to environmental change underpins the physiological differences in stress-coping styles. Here, we demonstrate that the heat shock response is a distinguishing feature of the HR and LR lines and suggest that it may have been coselected with the hormonal responses to stress.

  12. Do steroid hormones play a role in the etiology of glioma?

    PubMed

    Kabat, Geoffrey C; Etgen, Anne M; Rohan, Thomas E

    2010-10-01

    Gliomas are the most common type of primary malignant brain tumor and have a very poor prognosis. Little is known, however, about the etiology of these tumors. Evidence from a number of sources suggests that endogenous steroid hormones may play a role in the development of gliomas. First, the descriptive epidemiology of glioma suggests a relative protection of females compared with males, particularly during the premenopausal years. Second, some gliomas and glioblastomas express estrogen receptors (ER), especially ERβ, as well as aromatase, the enzyme responsible for the conversion of testosterone to estradiol, and possibly other steroid hormone receptors. Third, experimental studies indicate that glioblastomas transplanted into animals grow at a slower rate in females compared with males. Finally, experimental studies show that estradiol, 2-methoxyestradiol, and a number of selective estrogen receptor modulators inhibit proliferation of gliomas and induce cell death. These hormonal agonists and antagonists may act either through classical steroid hormone receptors or independently of such receptors. In view of these findings, further clinical, experimental, and epidemiologic studies are needed to elucidate the role of steroid hormone agonists and antagonists in the development and proliferation of glioma. If hormonal pathways are involved in gliomagenesis, this could eventually lead to the design of preventive strategies.

  13. Cancer incidence attributable to the use of oral contraceptives and hormone therapy in Alberta in 2012

    PubMed Central

    Grevers, Xin; Grundy, Anne; Poirier, Abbey E.; Khandwala, Farah; Feldman, Matthew; Friedenreich, Christine M.; Brenner, Darren R.

    2016-01-01

    Background: Hormonal contraceptives and hormone replacement therapies are classified as carcinogenic to humans (group 1) by the International Agency for Research on Cancer. We sought to estimate the proportion and total number of cancers attributable to the use of oral contraceptives and hormone therapy in Alberta in 2012. Methods: Population attributable risks were used to estimate the proportion of attributable cases for each associated cancer site. Relative risk estimates were obtained from the most relevant and recent epidemiologic literature. Prevalences of the use of oral contraceptives and hormone therapy in Alberta were collected from Alberta's Tomorrow Project. Specific cancer incidence data were obtained from the Alberta Cancer Registry for the year 2012. Results: Overall, 6.3% of breast cancers (n = 135) diagnosed in Alberta in 2012 were estimated to be attributable to the use of oral contraceptives, and the exposure potentially prevented about 57.3% of endometrial cancers (n = 276) and 29.1% of ovarian cancers (n = 52). About 15.5% of breast cancers (n = 258) and 8.9% of ovarian cancers (n = 13) were estimated to be attributable to the use of hormone therapy, whereas 11.3% of endometrial cancers (n = 48) were possibly prevented by the exposure. Interpretation: Based on our estimates, oral contraceptive use resulted in a net protective effect among the cancer sites studied, thus reducing the cancer burden in Alberta in 2012. The use of hormone therapy was estimated to increase the cancer burden in the province, therefore the risk and benefit of hormone therapy should be carefully considered before use. PMID:28018891

  14. Calcitonin, the forgotten hormone: does it deserve to be forgotten?

    PubMed Central

    Felsenfeld, Arnold J.; Levine, Barton S.

    2015-01-01

    Calcitonin is a 32 amino acid hormone secreted by the C-cells of the thyroid gland. Calcitonin has been preserved during the transition from ocean-based life to land dwellers and is phylogenetically older than parathyroid hormone. Calcitonin secretion is stimulated by increases in the serum calcium concentration and calcitonin protects against the development of hypercalcemia. Calcitonin is also stimulated by gastrointestinal hormones such as gastrin. This has led to the unproven hypothesis that postprandial calcitonin stimulation could play a role in the deposition of calcium and phosphate in bone after feeding. However, no bone or other abnormalities have been described in states of calcitonin deficiency or excess except for diarrhea in a few patients with medullary thyroid carcinoma. Calcitonin is known to stimulate renal 1,25 (OH)2 vitamin D (1,25D) production at a site in the proximal tubule different from parathyroid hormone and hypophosphatemia. During pregnancy and lactation, both calcitonin and 1,25D are increased. The increases in calcitonin and 1,25D may be important in the transfer of maternal calcium to the fetus/infant and in the prevention and recovery of maternal bone loss. Calcitonin has an immediate effect on decreasing osteoclast activity and has been used for treatment of hypercalcemia. Recent studies in the calcitonin gene knockout mouse have shown increases in bone mass and bone formation. This last result together with the presence of calcitonin receptors on the osteocyte suggests that calcitonin could possibly affect osteocyte products which affect bone formation. In summary, a precise role for calcitonin remains elusive more than 50 years after its discovery. PMID:25815174

  15. Alligators, contaminants and steroid hormones.

    PubMed

    Guillette, Louis J; Edwards, Thea M; Moore, Brandon C

    2007-01-01

    Steroids are essential for successful reproduction in all vertebrate species. Over the last several decades, extensive research has indicated that exposure to various environmental pollutants can disrupt steroidogenesis and steroid signaling. Although steroidogenesis is regulated by the hypothalamic-pituitary axis, it is also modified by various paracrine and autocrine factors. Furthermore, the classical two-cell model of steroidogenesis in the developing ovarian follicle, involving the granulosa and theca cells in mammals, may not be universal. Instead, birds and probably reptiles use the two thecal compartments (theca interna and theca externa) as sites of steroid production. We have documented that embryonic or juvenile exposure to a complex mixture of contaminants from agricultural and storm water runoff leads to altered steroid hormone profiles in American alligators. Our observations suggest that alterations in plasma steroid hormone concentrations are due in part to altered gene expression, modified hepatic biotransformation and altered gonadal steroidogenesis. Future studies must examine the interplay between endocrine and paracrine regulation in the development and expression of gonadal steroidogenesis in individuals exposed to endocrine disrupting contaminants at various life stages if we are to fully understand potential detrimental outcomes.

  16. Thyroid hormone biosynthesis and release.

    PubMed

    Carvalho, Denise P; Dupuy, Corinne

    2017-01-31

    Thyroid hormones (TH) 3,5,3',5'- tetraiodothyronine or thyroxine (T4) and 3,5,3'- triiodothyronine (T3) contain iodine atoms as part of their structure, and their synthesis occur in the unique structures called thyroid follicles. Iodide reaches thyroid cells through the bloodstream that supplies the basolateral plasma membrane of thyrocytes, where it is avidly taken up through the sodium/iodide symporter (NIS). Thyrocytes are also specialized in the secretion of the high molecular weight protein thyroglobulin (TG) in the follicular lumen. The iodination of the tyrosyl residues of TG preceeds TH biosynthesis, which depends on the interaction of iodide, TG, hydrogen peroxide (H2O2) and thyroid peroxidase (TPO) at the apical plasma membrane of thyrocytes. Thyroid hormone biosynthesis is under the tonic control of thyrotropin (TSH), while the iodide recycling ability is very important for normal thyroid function. We discuss herein the biochemical aspects of TH biosynthesis and release, highlighting the novel molecules involved in the process.

  17. Hormonal mechanisms of cooperative behaviour

    PubMed Central

    Soares, Marta C.; Bshary, Redouan; Fusani, Leonida; Goymann, Wolfgang; Hau, Michaela; Hirschenhauser, Katharina; Oliveira, Rui F.

    2010-01-01

    Research on the diversity, evolution and stability of cooperative behaviour has generated a considerable body of work. As concepts simplify the real world, theoretical solutions are typically also simple. Real behaviour, in contrast, is often much more diverse. Such diversity, which is increasingly acknowledged to help in stabilizing cooperative outcomes, warrants detailed research about the proximate mechanisms underlying decision-making. Our aim here is to focus on the potential role of neuroendocrine mechanisms on the regulation of the expression of cooperative behaviour in vertebrates. We first provide a brief introduction into the neuroendocrine basis of social behaviour. We then evaluate how hormones may influence known cognitive modules that are involved in decision-making processes that may lead to cooperative behaviour. Based on this evaluation, we will discuss specific examples of how hormones may contribute to the variability of cooperative behaviour at three different levels: (i) within an individual; (ii) between individuals and (iii) between species. We hope that these ideas spur increased research on the behavioural endocrinology of cooperation. PMID:20679116

  18. Hormones as doping in sports.

    PubMed

    Duntas, Leonidas H; Popovic, Vera

    2013-04-01

    Though we may still sing today, as did Pindar in his eighth Olympian Victory Ode, "… of no contest greater than Olympia, Mother of Games, gold-wreathed Olympia…", we must sadly admit that today, besides blatant over-commercialization, there is no more ominous threat to the Olympic games than doping. Drug-use methods are steadily becoming more sophisticated and ever harder to detect, increasingly demanding the use of complex analytical procedures of biotechnology and molecular medicine. Special emphasis is thus given to anabolic androgenic steroids, recombinant growth hormone and erythropoietin as well as to gene doping, the newly developed mode of hormones abuse which, for its detection, necessitates high-tech methodology but also multidisciplinary individual measures incorporating educational and psychological methods. In this Olympic year, the present review offers an update on the current technologically advanced endocrine methods of doping while outlining the latest procedures applied-including both the successes and pitfalls of proteomics and metabolomics-to detect doping while contributing to combating this scourge.

  19. Growth Hormone Response after Administration of L-dopa, Clonidine, and Growth Hormone Releasing Hormone in Children with Down Syndrome.

    ERIC Educational Resources Information Center

    Pueschel, Seigfried M.

    1993-01-01

    This study of eight growth-retarded children with Down's syndrome (aged 1 to 6.5 years) found that administration of growth hormone was more effective than either L-dopa or clonidine. Results suggest that children with Down's syndrome have both anatomical and biochemical hypothalamic derangements resulting in decreased growth hormone secretion and…

  20. [Intracellular calcium channels, hormone receptors and intercellular calcium waves].

    PubMed

    Tordjmann, T; Tran, D; Berthon, B; Jacquemin, E; Guillon, G; Combettes, L; Claret, M

    1998-01-01

    The hormone-mediated intercellular Ca2+ waves were analyzed in multiplets of rat hepatocytes by video imaging of fura2 fluorescence. These multicellular systems are composed of groups of several cells (doublets to quintuplets) issued from the liver cell plate, a one cell-thick cord of about 20 hepatocytes long between portal and centrolobular veins. When the multiplets were homogeneously bathed with the glycogenolytic agonists vasopressin, noradrenaline, angiotensin II and ATP, they showed highly organized Ca2+ signals. Surprisingly, for a given agonist, the primary rises in intracellular Ca2+ concentration ([Ca2+]i) originated invariably in the same hepatocyte, then was propagated in a sequential manner to the nearest connected cells (cell 2, then 3, cell 4 in a quadruplet, for example). The sequential activation of the cells appeared to be an intrinsic property of multiplets of rat hepatocytes. The same sequence was observed at each train of oscillations occurring between cells. The order of [Ca2+]i responses was modified neither by repeated additions of hormones nor by the hormonal dose. The mechanical disruption of an intermediate cell did not prevent the activation of the next cell. These results suggest that each hepatocyte in the multiplet displays its own sensitivity to the hormone and that a gradient of sensitivity between each cell could be responsible for directing the intercellular Ca2+ wave. To test this hypothesis, we selectively isolated rat hepatocytes from periportal (PP) and perivenous (PV) areas of the liver cell plate. Periportal (PP) and perivenous (PV) rat hepatocyte suspensions were loaded with quin2/AM and hormonal responses were studied in a spectrofluorimeter. Noradrenaline, angiotensin II, and vasopressin-induced [Ca2+]i rises were greater in PV than in PP hepatocytes. In contrast, PP cells were more responsive than PV cells to ATP. The function of the InsP3 receptor (InsP3R) was also studied by measuring the InsP3-mediated 45Ca2+ release

  1. Building a better hormone therapy? How understanding the rapid effects of sex steroid hormones could lead to new therapeutics for age-related memory decline.

    PubMed

    Frick, Karyn M

    2012-02-01

    A wealth of data collected in recent decades has demonstrated that ovarian sex-steroid hormones, particularly 17β-estradiol (E2), are important trophic factors that regulate the function of cognitive regions of the brain such as the hippocampus. The loss of hormone cycling at menopause is associated with cognitive decline and dementia in women, and the onset of memory decline in animal models. However, hormone therapy is not currently recommended to prevent or treat cognitive decline, in part because of its detrimental side effects. In this article, it is proposed that investigations of the rapid effects of E2 on hippocampal function be used to further the design of new drugs that mimic the beneficial effects of E2 on memory without the side effects of current therapies. A conceptual model is presented for elucidating the molecular and biochemical mechanisms through which sex-steroid hormones modulate memory, and a specific hypothesis is proposed to account for the rapid memory-enhancing effects of E2. Empirical support for this hypothesis is discussed as a means of stimulating the consideration of new directions for the development of hormone-based therapies to preserve memory function in menopausal women.

  2. Prevent and cure disuse bone loss

    NASA Technical Reports Server (NTRS)

    Jee, Webster S. S.

    1994-01-01

    Anabolic agents like parathyroid hormone and postagladin E-like substances were studied in dogs and rats to determine their effectiveness in the prevention and cure of bone loss due to immobilization. It was determined that postagladin E2 administration prevented immobilization while at the same time it added extra bone in a dose responsive manner. Although bone mass returns, poor trabecular architecture remains after normal ambulation recovery from immobilization. Disuse related bone loss and poor trabecular architecture were cured by post-immobilization postagladin E2 treatment.

  3. Growth hormone reduces mortality and bacterial translocation in irradiated rats.

    PubMed

    Gómez-de-Segura, I A; Prieto, I; Grande, A G; García, P; Guerra, A; Mendez, J; De Miguel, E

    1998-01-01

    Growth hormone stimulates the growth of intestinal mucosa and may reduce the severity of injury caused by radiation. Male Wistar rats underwent abdominal irradiation (12 Gy) and were treated with either human growth hormone (hGH) or saline, and sacrificed at day 4 or 7 post-irradiation. Bacterial translocation, and the ileal mucosal thickness, proliferation, and disaccharidase activity were assessed. Mortality was 65% in irradiated animals, whereas hGH caused a decrement (29%, p < 0.05). Bacterial translocation was also reduced by hGH (p < 0.05). Treating irradiated rats with hGH prevented body weight loss (p < 0.05). Mucosal thickness increased faster in irradiated hGH-treated animals. The proliferative index showed an increment in hGH-treated animals (p < 0.05). Giving hGH to irradiated rats prevented decrease in sucrose activity, and increment in lactase activity. In conclusion, giving hGH to irradiated rats promotes the adaptative process of the intestine and acute radiation-related negative effects, including mortality, bacterial translocation, and weight loss.

  4. Allergy prevention.

    PubMed

    Muche-Borowski, Cathleen; Kopp, Matthias; Reese, Imke; Sitter, Helmut; Werfel, Thomas; Schäfer, Torsten

    2010-09-01

    The further increase of allergies in industrialized countries demands evidence-based measures of primary prevention. The recommendations as published in the guideline of 2004 were updated and consented on the basis of a systematic literature search. Evidence from the period February 2003-May 2008 was searched in the electronic databases Cochrane and MEDLINE as well as in reference lists of recent reviews and by contacting experts. The retrieved citations were screened for relevance first by title and abstract and in a second step as full paper. Levels of evidence were assigned to each included study and the methodological quality of the studies was assessed as high or low. Finally the revised recommendations were formally consented (nominal group process) by representatives of relevant societies and organizations including a self-help group. Of originally 4556 hits, 217 studies (4 Cochrane Reviews, 14 meta-analyses, 19 randomized controlled trials, 135 cohort and 45 case-control studies) were included and critically appraised. Grossly unchanged remained the recommendations on avoiding environmental tobacco smoke, breast-feeding over 4 months (alternatively hypoallergenic formulas for children at risk), avoiding a mold-promoting indoor climate, vaccination according to current recommendations, and avoidance of furry pets (especially cats) in children at risk. The recommendation on reducing the house dust mite allergen exposure as a measure of primary prevention was omitted and the impact of a delayed introduction of supplementary food was reduced. New recommendations were adopted concerning fish consumption (during pregnancy / breast-feeding and as supplementary food in the first year), avoidance of overweight, and reducing the exposure to indoor and outdoor air pollutants. The revision of this guideline on a profound evidence basis led to (1) a confirmation of existing recommendations, (2) substantial revisions, and (3) new recommendations. Thereby it is possible

  5. Nutrient Sensing Overrides Somatostatin and Growth Hormone-Releasing Hormone to Control Pulsatile Growth Hormone Release.

    PubMed

    Steyn, F J

    2015-07-01

    Pharmacological studies reveal that interactions between hypothalamic inhibitory somatostatin and stimulatory growth hormone-releasing hormone (GHRH) govern pulsatile GH release. However, in vivo analysis of somatostatin and GHRH release into the pituitary portal vasculature and peripheral GH output demonstrates that the withdrawal of somatostatin or the appearance of GHRH into pituitary portal blood does not reliably dictate GH release. Consequently, additional intermediates acting at the level of the hypothalamus and within the anterior pituitary gland are likely to contribute to the release of GH, entraining GH secretory patterns to meet physiological demand. The identification and validation of the actions of such intermediates is particularly important, given that the pattern of GH release defines several of the physiological actions of GH. This review highlights the actions of neuropeptide Y in regulating GH release. It is acknowledged that pulsatile GH release may not occur selectively in response to hypothalamic control of pituitary function. As such, interactions between somatotroph networks, the median eminence and pituitary microvasculature and blood flow, and the emerging role of tanycytes and pericytes as critical regulators of pulsatility are considered. It is argued that collective interactions between the hypothalamus, the median eminence and pituitary vasculature, and structural components within the pituitary gland dictate somatotroph function and thereby pulsatile GH release. These interactions may override hypothalamic somatostatin and GHRH-mediated GH release, and modify pulsatile GH release relative to the peripheral glucose supply, and thereby physiological demand.

  6. Collective hormonal profiles predict group performance

    PubMed Central

    Akinola, Modupe; Page-Gould, Elizabeth; Mehta, Pranjal H.; Lu, Jackson G.

    2016-01-01

    Prior research has shown that an individual’s hormonal profile can influence the individual’s social standing within a group. We introduce a different construct—a collective hormonal profile—which describes a group’s hormonal make-up. We test whether a group’s collective hormonal profile is related to its performance. Analysis of 370 individuals randomly assigned to work in 74 groups of three to six individuals revealed that group-level concentrations of testosterone and cortisol interact to predict a group’s standing across groups. Groups with a collective hormonal profile characterized by high testosterone and low cortisol exhibited the highest performance. These collective hormonal level results remained reliable when controlling for personality traits and group-level variability in hormones. These findings support the hypothesis that groups with a biological propensity toward status pursuit (high testosterone) coupled with reduced stress-axis activity (low cortisol) engage in profit-maximizing decision-making. The current work extends the dual-hormone hypothesis to the collective level and provides a neurobiological perspective on the factors that determine who rises to the top across, not just within, social hierarchies. PMID:27528679

  7. Menstrual cycle hormones, food intake, and cravings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Food craving and intake are affected by steroid hormones during the menstrual cycle, especially in the luteal phase, when craving for certain foods has been reported to increase. However, satiety hormones such as leptin have also been shown to affect taste sensitivity, and therefore food ...

  8. Insect Control (II): Hormones and Viruses

    ERIC Educational Resources Information Center

    Marx, Jean L.

    1973-01-01

    Discusses research in the use of hormones and viruses to control insect populations. Although entomologists do not think that pheromones, hormones, and viruses will completely replace more conventional chemical insecticides, they will become increasingly important and will reduce our dependence on traditional insecticides. (JR)

  9. Hormonal and Local Regulation of Bone Formation.

    ERIC Educational Resources Information Center

    Canalis, Ernesto

    1985-01-01

    Reviews effects of hormones, systemic factors, and local regulators on bone formation. Identifies and explains the impact on bone growth of several hormones as well as the components of systemic and local systems. Concentrates on bone collagen and DNA synthesis. (Physicians may earn continuing education credit by completing an appended test). (ML)

  10. The barrier within: endothelial transport of hormones.

    PubMed

    Kolka, Cathryn M; Bergman, Richard N

    2012-08-01

    Hormones are involved in a plethora of processes including development and growth, metabolism, mood, and immune responses. These essential functions are dependent on the ability of the hormone to access its target tissue. In the case of endocrine hormones that are transported through the blood, this often means that the endothelium must be crossed. Many studies have shown that the concentrations of hormones and nutrients in blood can be very different from those surrounding the cells on the tissue side of the blood vessel endothelium, suggesting that transport across this barrier can be rate limiting for hormone action. This transport can be regulated by altering the surface area of the blood vessel available for diffusion through to the underlying tissue or by the permeability of the endothelium. Many hormones are known to directly or indirectly affect the endothelial barrier, thus affecting their own distribution to their target tissues. Dysfunction of the endothelial barrier is found in many diseases, particularly those associated with the metabolic syndrome. The interrelatedness of hormones may help to explain why the cluster of diseases in the metabolic syndrome occur together so frequently and suggests that treating the endothelium may ameliorate defects in more than one disease. Here, we review the structure and function of the endothelium, its contribution to the function of hormones, and its involvement in disease.

  11. Thyroid Hormone Function in the Rat Testis

    PubMed Central

    Gao, Ying; Lee, Will M.; Cheng, C. Yan

    2014-01-01

    Thyroid hormones are emerging regulators of testicular function since Sertoli, germ, and Leydig cells are found to express thyroid hormone receptors (TRs). These testicular cells also express deiodinases, which are capable of converting the pro-hormone T4 to the active thyroid hormone T3, or inactivating T3 or T4 to a non-biologically active form. Furthermore, thyroid hormone transporters are also found in the testis. Thus, the testis is equipped with the transporters and the enzymes necessary to maintain the optimal level of thyroid hormone in the seminiferous epithelium, as well as the specific TRs to execute thyroid hormone action in response to different stages of the epithelial cycle of spermatogenesis. Studies using genetic models and/or goitrogens (e.g., propylthiouracil) have illustrated a tight physiological relationship between thyroid hormone and testicular function, in particular, Sertoli cell differentiation status, mitotic activity, gap junction function, and blood–testis barrier assembly. These findings are briefly summarized and discussed herein. PMID:25414694

  12. Minireview: Pathophysiological importance of thyroid hormone transporters.

    PubMed

    Heuer, Heike; Visser, Theo J

    2009-03-01

    Thyroid hormone metabolism and action are largely intracellular events that require transport of iodothyronines across the plasma membrane. It has been assumed for a long time that this occurs by passive diffusion, but it has become increasingly clear that cellular uptake and efflux of thyroid hormone is mediated by transporter proteins. Recently, several active and specific thyroid hormone transporters have been identified, including monocarboxylate transporter 8 (MCT8), MCT10, and organic anion transporting polypeptide 1C1 (OATP1C1). The latter is expressed predominantly in brain capillaries and transports preferentially T(4), whereas MCT8 and MCT10 are expressed in multiple tissues and are capable of transporting different iodothyronines. The pathophysiological importance of thyroid hormone transporters has been established by the demonstration of MCT8 mutations in patients with severe psychomotor retardation and elevated serum T(3) levels. MCT8 appears to play an important role in the transport of thyroid hormone in the brain, which is essential for the crucial action of the hormone during brain development. It is expected that more specific thyroid hormone transporters will be discovered in the near future, which will lead to a better understanding of the tissue-specific regulation of thyroid hormone bioavailability.

  13. Recombinant Bovine Growth Hormone Criticism Grows.

    ERIC Educational Resources Information Center

    Gaard, Greta

    1995-01-01

    Discusses concerns related to the use of recombinant bovine growth hormone in the United States and other countries. Analyses the issue from the perspectives of animal rights, human health, world hunger, concerns of small and organic farmers, costs to the taxpayer, and environmental questions. A sidebar discusses Canadian review of the hormone.…

  14. Ubiquitin, Hormones and Biotic Stress in Plants

    PubMed Central

    Dreher, Kate; Callis, Judy

    2007-01-01

    Background The covalent attachment of ubiquitin to a substrate protein changes its fate. Notably, proteins typically tagged with a lysine48-linked polyubiquitin chain become substrates for degradation by the 26S proteasome. In recent years many experiments have been performed to characterize the proteins involved in the ubiquitylation process and to identify their substrates, in order to understand better the mechanisms that link specific protein degradation events to regulation of plant growth and development. Scope This review focuses on the role that ubiquitin plays in hormone synthesis, hormonal signalling cascades and plant defence mechanisms. Several examples are given of how targeted degradation of proteins affects downstream transcriptional regulation of hormone-responsive genes in the auxin, gibberellin, abscisic acid, ethylene and jasmonate signalling pathways. Additional experiments suggest that ubiquitin-mediated proteolysis may also act upstream of the hormonal signalling cascades by regulating hormone biosynthesis, transport and perception. Moreover, several experiments demonstrate that hormonal cross-talk can occur at the level of proteolysis. The more recently established role of the ubiquitin/proteasome system (UPS) in defence against biotic threats is also reviewed. Conclusions The UPS has been implicated in the regulation of almost every developmental process in plants, from embryogenesis to floral organ production probably through its central role in many hormone pathways. More recent evidence provides molecular mechanisms for hormonal cross-talk and links the UPS system to biotic defence responses. PMID:17220175

  15. Juvenile hormone regulation of Drosophila aging

    PubMed Central

    2013-01-01

    Background Juvenile hormone (JH) has been demonstrated to control adult lifespan in a number of non-model insects where surgical removal of the corpora allata eliminates the hormone’s source. In contrast, little is known about how juvenile hormone affects adult Drosophila melanogaster. Previous work suggests that insulin signaling may modulate Drosophila aging in part through its impact on juvenile hormone titer, but no data yet address whether reduction of juvenile hormone is sufficient to control Drosophila life span. Here we adapt a genetic approach to knock out the corpora allata in adult Drosophila melanogaster and characterize adult life history phenotypes produced by reduction of juvenile hormone. With this system we test potential explanations for how juvenile hormone modulates aging. Results A tissue specific driver inducing an inhibitor of a protein phosphatase was used to ablate the corpora allata while permitting normal development of adult flies. Corpora allata knockout adults had greatly reduced fecundity, inhibited oogenesis, impaired adult fat body development and extended lifespan. Treating these adults with the juvenile hormone analog methoprene restored all traits toward wildtype. Knockout females remained relatively long-lived even when crossed into a genotype that blocked all egg production. Dietary restriction further extended the lifespan of knockout females. In an analysis of expression profiles of knockout females in fertile and sterile backgrounds, about 100 genes changed in response to loss of juvenile hormone independent of reproductive state. Conclusions Reduced juvenile hormone alone is sufficient to extend the lifespan of Drosophila melanogaster. Reduced juvenile hormone limits reproduction by inhibiting the production of yolked eggs, and this may arise because juvenile hormone is required for the post-eclosion development of the vitellogenin-producing adult fat body. Our data do not support a mechanism for juvenile hormone control

  16. Hormones and pheromones in regulation of insect behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both pheromones and hormones are well recognized regulators of insect biology. However, the interactions between hormones and pheromones in coordinating insect biology are less well understood. We have studied the interactions between juvenile hormone, its precursor methyl farnesoate, and pheromon...

  17. Thyroid hormone and the growth plate.

    PubMed

    Shao, Yvonne Y; Wang, Lai; Ballock, R Tracy

    2006-12-01

    Thyroid hormone was first identified as a potent regulator of skeletal maturation at the growth plate more than forty years ago. Since that time, many in vitro and in vivo studies have confirmed that thyroid hormone regulates the critical transition between cell proliferation and terminal differentiation in the growth plate, specifically the maturation of growth plate chondrocytes into hypertrophic cells. However these studies have neither identified the molecular mechanisms involved in the regulation of skeletal maturation by thyroid hormone, nor demonstrated how the systemic actions of thyroid hormone interface with the local regulatory milieu of the growth plate. This article will review our current understanding of the role of thyroid hormone in regulating the process of endochondral ossification at the growth plate, as well as what is currently known about the molecular mechanisms involved in this regulation.

  18. Parathyroid Hormone, Calcitonin, and Vitamin D

    NASA Technical Reports Server (NTRS)

    Potts, J. T.

    1972-01-01

    Analyses of secretion of parathyroid hormone during tests of stimulation and suppression of hormone-secretory activity using infusions of EDTA and calcium, respectively, have established that, in contrast to previous views, secretion of the hormone is not autonomous in many patients that have adenomatous hyperparathyroidism, but is responsive to changes in blood-calcium concentration. These findings have led to a new understanding of the pathophysiology of hormone production in hyperparathy-roidism. A related application of the diagnostic use of the radioimmunoassay is the preoperative localization of parathyroid tumors and the distinction between adenomas and chief-cell hyperplasia. Work involving catheterization and radioimmunoassay of blood samples obtained from the subclavin and innominate veins and the venae cavae, led to localization in a high percentage of patients. However, this procedure has been adopted recently to detect hormone concentration in the small veins directly draining the parathyroid glands.

  19. Hormone activation induces nucleosome positioning in vivo

    PubMed Central

    Belikov, Sergey; Gelius, Birgitta; Almouzni, Geneviève; Wrange, Örjan

    2000-01-01

    The mouse mammary tumor virus (MMTV) promoter is induced by glucocorticoid hormone. A robust hormone- and receptor-dependent activation could be reproduced in Xenopus laevis oocytes. The homogeneous response in this system allowed a detailed analysis of the transition in chromatin structure following hormone activation. This revealed two novel findings: hormone activation led to the establishment of specific translational positioning of nucleosomes despite the lack of significant positioning in the inactive state; and, in the active promoter, a subnucleosomal particle encompassing the glucocorticoid receptor (GR)-binding region was detected. The presence of only a single GR-binding site was sufficient for the structural transition to occur. Both basal promoter elements and ongoing transcription were dispensable. These data reveal a stepwise process in the transcriptional activation by glucocorticoid hormone. PMID:10698943

  20. [Plant hormones, plant growth regulators].

    PubMed

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.

  1. Hormonal changes in antiorthostatic rats

    NASA Technical Reports Server (NTRS)

    Popovic, V.; Popovic, P.; Honeycutt, C.

    1982-01-01

    Hypokinesia, especially hypokinesia with negative tilt ('antiorthostatic hypokinesia'), mimics some of the effects of weightlessness. It is shown that cardiac output is increased during early exposure of rats to antiorthostatic hypokinesia. The increase of the stroke volume and of the cardiac output observed in the antiorthostatic hypokinetic rats is probably the consequence of a blood volume shift toward the chest brought forth by head-down positioning of the animals. It is also possible that struggling of the animals to escape from the harness and an increased metabolism contribute to the elevation of cardiac output. In order to study this hypothesis 'stress hormones' were measured in the antiorthostatic rats. Plasma levels of ACTH, corticosterone and prolactin were measured in the arterial blood (0.3 ml) sampled before, during and after hypokinesia from chronic aortic cannulas of the rats.

  2. Growth hormone and physical performance.

    PubMed

    Birzniece, Vita; Nelson, Anne E; Ho, Ken K Y

    2011-05-01

    There has been limited research and evidence that GH enhances physical performance in healthy adults or in trained athletes. Even so, human growth hormone (GH) is widely abused by athletes. In healthy adults, GH increases lean body mass, although it is possible that fluid retention contributes to this effect. The most recent data indicate that GH does not enhance muscle strength, power, or aerobic exercise capacity, but improves anaerobic exercise capacity. In fact, there are adverse effects of long-term GH excess such that sustained abuse of GH can lead to a state mimicking acromegaly, a condition with increased morbidity and mortality. This review will examine GH effects on body composition and physical performance in health and disease.

  3. Nuclear hormone receptors in chordates.

    PubMed

    Bertrand, Stéphanie; Belgacem, Mohamed R; Escriva, Hector

    2011-03-01

    In order to understand evolution of the endocrine systems in chordates, study of the evolution of the nuclear receptors (NRs), which mediate the cellular responses to several key hormones, is of major interest. Thanks to the sequencing of several complete genomes of different species in the three chordate phyla, we now have a global view of the evolution of the nuclear receptors gene content in this lineage. The challenge is now to understand how the function of the different receptors evolved during the invertebrate-chordate to vertebrate transition by studying the functional properties of the NRs using comparative approaches in different species. The best available model system to answer this question is the cephalochordate amphioxus which has a NR gene complement close to that of the chordate ancestor. Here we review the available data concerning the function of the amphioxus NRs, and we discuss some evolutionary scenarios that can be drawn from these results.

  4. Hormonal contraception in the male.

    PubMed

    Anderson, R A

    2000-01-01

    The hormonal approach to male contraception is based on the suppression of gonadotrophin secretion with secondary suppression of spermatogenesis. This can be achieved by administration of testosterone or other androgen alone, but combined administration with a progestogen or GnRH analogue allows the dose of testosterone to be reduced to physiological replacement doses. This approach has been investigated for many years but without identification of a regimen which results in sufficient suppression of spermatogenesis to provide ensured contraception in all men, safely and conveniently. The reasons for this are discussed, and recent developments towards a regimen that fulfills all these criteria are described. Crucial to development of any new product is that it will be used: surveys of both men and women indicate firmly positive attitudes towards a 'male pill'. There are, therefore, grounds for cautious optimism that the next decade may see the introduction of the first novel male contraceptive for several hundred years.

  5. Thyroid hormones and heart failure.

    PubMed

    Martinez, Felipe

    2016-07-01

    Heart failure is a major health problem and its relationship to thyroid dysfunction has been increasingly investigated in recent years. Since it has been demonstrated that thyroid hormones (TH) and mainly T3 have cardioprotective effects, it is easy to understand that in the scenario of thyroid disorder, cardiac function may be damaged, and inversely in cardiac dysfunction thyroid dysregulation may be seen. The increase in plasma TH produces a clear neurohormonal activation which impacts negatively on cardiac function. In hypothyroidism, and in addition to extracardiac dysfunction, myocardial and vascular remodelling is altered and they contribute to cardiac failure. Abnormal low plasma TSH has also been shown to be a risk factor for developing HF in several recent studies, and they suggest that TSH is an independent predictor of clinical outcome including death and cardiac hospitalizations. Therefore, physicians should consider all these concepts when managing a patient with heart failure, not only for a clear diagnosis, but also for better and accurate treatment.

  6. Adipose tissues and thyroid hormones

    PubMed Central

    Obregon, Maria-Jesus

    2014-01-01

    The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. “Brite” or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT

  7. Sexual Desire and Hormonal Contraception

    PubMed Central

    Boozalis, Amanda; Tutlam, Nhial T.; Robbins, Camaryn Chrisman; Peipert, Jeffrey F.

    2015-01-01

    Objective To examine the effect of hormonal contraception on sexual desire. Materials and Methods We performed a cross-sectional analysis of 1,938 of the 9,256 participants enrolled in the Contraceptive CHOICE Project. This subset included participants enrolled between April and September 2011 who completed a baseline and six-month telephone survey. Multivariable logistic regression was used to assess the association between contraceptive method and report of lacking interest in sex, controlling for potential confounding variables. Results More than one in five participants (23.9%) reported lacking interest in sex at 6 months after initiating a new contraceptive method. Of 262 copper IUD users (referent group), 18.3% reported lacking interest in sex. Our primary outcome was more prevalent in women who are young (<18 years: adjusted odds ratio (ORadj)=2.04), black (ORadj=1.78), and married or living with a partner (ORadj=1.82). Compared to copper IUD users, participants using depot medroxyprogesterone (ORadj=2.61, 95% confidence interval (CI)=1.47-4.61), the vaginal ring (ORadj=2.53, 95% CI=1.37-4.69), and the implant (ORadj=1.60, 95% CI=1.03-2.49) more commonly reported lack of interest in sex. We found no association between use of the hormonal IUD, oral contraceptive pill, and patch and lack of interest in sex. Conclusion CHOICE participants using depot medroxyprogesterone acetate, the contraceptive ring, and implant were more likely to report a lack of interest in sex compared to copper IUD users. Future research should confirm these findings and their possible physiological basis. Clinicians should be reassured that most women do not experience reduced sex drive with the use of most contraceptive methods. PMID:26855094

  8. [Extended voriconazole theraphy and long term survival of a patient with invasive central aspergillosis causing stroke].

    PubMed

    Okazaki, Tomoko; Shiraishi, Shoichi; Iwasa, Naoki; Kitamura, Emi; Mizutani, Tetsu; Hanada, Yukiko; Yanagihara, Takehiko

    2015-01-01

    Central nervous system (CNS) aspergillosis with stroke has a high mortality and poor prognosis generally. We report a 78-years-old woman with diabetes mellitus, who developed invasive paranasal sinus aspergillosis with the orbital apex syndrome on the right side and cerebral infarction caused by intracranial occlusion of the right internal carotid artery. Based on the presence of a mass lesion in the ethmoid sinus extending to the orbital apex on the right side with cranial CT, the mass lesion was surgically removed and the pathological examination of the surgical specimen revealed aspergillus mold. Immediately after surgery, we initiated treatment with voriconazole 200 mg × 2/day intravenously for 38 days, and then via feeding tube for 86 days until the galactomannan-aspergillus antigen level in the cerebrospinal fluid became negative at 132 days. She is alive now for almost two years without relapse of aspergillosis. There is no definitive guideline for management of patients with CNS aspergillosis concerning the length of drug treatment and the method for monitoring the response for treatment. We believe that measurement of the galactomannan-aspergillus antigen level in the cerebrospinal fluid might be a useful way of monitoring the efficacy of treatment for CNS aspergillosis.

  9. Effects of hormone therapy on brain structure

    PubMed Central

    Tosakulwong, Nirubol; Lesnick, Timothy G.; Zuk, Samantha M.; Gunter, Jeffrey L.; Gleason, Carey E.; Wharton, Whitney; Dowling, N. Maritza; Vemuri, Prashanthi; Senjem, Matthew L.; Shuster, Lynne T.; Bailey, Kent R.; Rocca, Walter A.; Jack, Clifford R.; Asthana, Sanjay; Miller, Virginia M.

    2016-01-01

    Objective: To investigate the effects of hormone therapy on brain structure in a randomized, double-blinded, placebo-controlled trial in recently postmenopausal women. Methods: Participants (aged 42–56 years, within 5–36 months past menopause) in the Kronos Early Estrogen Prevention Study were randomized to (1) 0.45 mg/d oral conjugated equine estrogens (CEE), (2) 50 μg/d transdermal 17β-estradiol, or (3) placebo pills and patch for 48 months. Oral progesterone (200 mg/d) was given to active treatment groups for 12 days each month. MRI and cognitive testing were performed in a subset of participants at baseline, and at 18, 36, and 48 months of randomization (n = 95). Changes in whole brain, ventricular, and white matter hyperintensity volumes, and in global cognitive function, were measured. Results: Higher rates of ventricular expansion were observed in both the CEE and the 17β-estradiol groups compared to placebo; however, the difference was significant only in the CEE group (p = 0.01). Rates of ventricular expansion correlated with rates of decrease in brain volume (r = −0.58; p ≤ 0.001) and with rates of increase in white matter hyperintensity volume (r = 0.27; p = 0.01) after adjusting for age. The changes were not different between the CEE and 17β-estradiol groups for any of the MRI measures. The change in global cognitive function was not different across the groups. Conclusions: Ventricular volumes increased to a greater extent in recently menopausal women who received CEE compared to placebo but without changes in cognitive performance. Because the sample size was small and the follow-up limited to 4 years, the findings should be interpreted with caution and need confirmation. Classification of evidence: This study provides Class I evidence that brain ventricular volume increased to a greater extent in recently menopausal women who received oral CEE compared to placebo. PMID:27473135

  10. Thyroid hormone and the developing hypothalamus

    PubMed Central

    Alkemade, Anneke

    2015-01-01

    Thyroid hormone (TH) plays an essential role in normal brain development and function. Both TH excess and insufficiency during development lead to structural brain abnormalities. Proper TH signaling is dependent on active transport of the prohormone thyroxine (T4) across the blood-brain-barrier and into brain cells. In the brain T4 undergoes local deiodination into the more active 3,3′,5-triiodothyronine (T3), which binds to nuclear TH receptors (TRs). TRs are already expressed during the first trimester of pregnancy, even before the fetal thyroid becomes functional. Throughout pregnancy, the fetus is largely dependent on the maternal TH supply. Recent studies in mice have shown that normal hypothalamic development requires intact TH signaling. In addition, the development of the human lateral hypothalamic zone coincides with a strong increase in T3 and TR mRNA concentrations in the brain. During this time the fetal hypothalamus already shows evidence for TH signaling. Expression of components crucial for central TH signaling show a specific developmental timing in the human hypothalamus. A coordinated expression of deiodinases in combination with TH transporters suggests that TH concentrations are regulated to prevent untimely maturation of brain cells. Even though the fetus depends on the maternal TH supply, there is evidence suggesting a role for the fetal hypothalamus in the regulation of TH serum concentrations. A decrease in expression of proteins involved in TH signaling towards the end of pregnancy may indicate a lower fetal TH demand. This may be relevant for the thyrotropin (TSH) surge that is usually observed after birth, and supports a role for the hypothalamus in the regulation of TH concentrations during the fetal period anticipating birth. PMID:25750617

  11. The revolution in insect neuropeptides illustrated by the adipokinetic hormone/red pigment-concentrating hormone family of peptides.

    PubMed

    Gäde, G

    1996-01-01

    The last decade has seen a surge in the knowledge on primary structures of insect neuropeptides. Particularly successful were isolations and sequence determinations of more than 30 members of the adipokinetic hormone/red pigment-concentrating hormone (AKH/RPCH) family of peptides. This brief overview describes the techniques used to obtain data on purification and structure such as high performance liquid chromatography, Edman sequencing and mass spectrometry. Moreover, a short account on the precursors and on the multiple functions of the peptides of the AKH/RPCH family in various crustacean and insect species is given.

  12. Effects of different fixatives on demonstrating epinephrine and ACTH hormones in Tetrahymena.

    PubMed

    Csaba, G; Kovács, P; Pállinger, E

    2009-12-01

    The unicellular Tetrahymena produces, contains, and secretes many hormones characteristic of higher animals. We tested three fixatives, formaldehyde, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDAC), and glutaraldehyde for suitability for immunocytochemical demonstration of epinephrine and adrenocorticotropic harmone (ACTH) in Tetrahymena. Using flow cytometric immunocytochemistry, staining of ACTH was highest after EDAC fixation and that of epinephrine after glutaraldehyde fixation. Using laser scanning confocal microscopy, formaldehyde fixation prevented staining. Glutaraldehyde fixation produced high autofluorescence, which obscured specific staining. After EDAC fixation, ACTH was localized in the ciliary row; however, demonstration of epinephrine was not improved. Our results show that there is no "fixative for any hormone." Different fixatives are needed to demonstrate different hormones in Tetrahymena.

  13. Informing women about hormone replacement therapy: the consensus conference statement

    PubMed Central

    Mosconi, Paola; Donati, Serena; Colombo, Cinzia; Mele, Alfonso; Liberati, Alessandro; Satolli, Roberto

    2009-01-01

    Background The risks/benefits balance of hormone replacement therapy is controversial. Information can influence consumers' knowledge and behavior; research findings about hormone replacement therapy are uncertain and the messages provided by the media are of poor quality and incomplete, preventing a fully informed decision making process. We therefore felt that an explicit, rigorous and structured assessment of the information needs on this issue was urgent and we opted for the organisation of a national consensus conference (CC) to assess the current status of the quality of information on hormone replacement therapy (HRT) and re-visit recent research findings on its risks/benefits. Methods We chose a structured approach based on the traditional CC method combined with a structured preparatory work supervised by an organising committee (OC) and a scientific board (SB). The OC and SB chose the members of the CC's jury and appointed three multidisciplinary working groups (MWG) which were asked to review clinical issues and different aspects of the quality of information. Before the CC, the three MWGs carried out: a literature review on the risk/benefit profile of HRT and two surveys on the quality of information on lay press and booklets targeted to women. A population survey on women's knowledge, attitude and practice was also carried out. The jury received the documents in advance, listened the presentations during the two-day meeting of the CCs, met immediately after in a closed-door meeting and prepared the final document. Participants were researchers, clinicians, journalists as well as consumers' representatives. Results Key messages in the CC's deliberation were: a) women need to be fully informed about the transient nature of menopausal symptoms, about HRT risks and benefits and about the availability of non-pharmacological interventions; b) HRT is not recommended to prevent menopausal symptoms; c) the term "HRT" is misleading and "post menopausal hormone

  14. Effects of hormones on lipids and lipoproteins

    SciTech Connect

    Krauss, R.M.

    1991-12-01

    Levels of plasma lipids and lipoproteins are strong predictors for the development of atherosclerotic cardiovascular disease in postmenopausal women. In women, as in men, numerous factors contribute to variations in plasma lipoproteins that may affect cardiovascular disease risk. These include age, dietary components, adiposity, genetic traits, and hormonal changes. Each of these factors may operate to varying degrees in determining changes in plasma lipoprotein profiles accompanying menopause- Cross-sectional and longitudinal studies have suggested increases in levels of cholesterol, low density lipoproteins (LDL) and triglyceride-rich lipoproteins associated with menopause. High density lipoproteins (HDL), which are higher in women than men and are thought to contribute to relative protection of premenopausal women from cardiovascular disease, remain relatively constant in the years following menopause, although small, and perhaps transient reductions in the HDL{sub 2} subfraction have been reported in relation to reduced estradiol level following menopause. Despite these associations, it has been difficult to determine the role of endogenous hormones in influencing the plasma lipoproteins of postmenopausal women. In principle, the effects of hormone replacement should act to reverse any alterations in lipoprotein metabolism that are due to postmenopausal hormone changes. While there may be beneficial effects on lipoproteins, hormone treatment does not restore a premenopausal lipoprotein profile. Furthermore, it is not dear to what extent exogenous hormone-induced lipoprotein changes contribute to the reduced incidence of cardiovascular disease with hormone replacement therapy.

  15. Hormonal modulation of endothelial NO production.

    PubMed

    Duckles, Sue P; Miller, Virginia M

    2010-05-01

    Since the discovery of endothelium-derived relaxing factor and the subsequent identification of nitric oxide (NO) as the primary mediator of endothelium-dependent relaxations, research has focused on chemical and physical stimuli that modulate NO levels. Hormones represent a class of soluble, widely circulating chemical factors that impact production of NO both by rapid effects on the activity of endothelial nitric oxide synthase (eNOS) through phosphorylation of the enzyme and longer term modulation through changes in amount of eNOS protein. Hormones that increase NO production including estrogen, progesterone, insulin, and growth hormone do so through both of these common mechanisms. In contrast, some hormones, including glucocorticoids, progesterone, and prolactin, decrease NO bioavailability. Mechanisms involved include binding to repressor response elements on the eNOS gene, competing for co-regulators common to hormones with positive genomic actions, regulating eNOS co-factors, decreasing substrate for eNOS, and increasing production of oxygen-derived free radicals. Feedback regulation by the hormones themselves as well as the ability of NO to regulate hormonal release provides a second level of complexity that can also contribute to changes in NO levels. These effects on eNOS and changes in NO production may contribute to variability in risk factors, presentation of and treatment for cardiovascular disease associated with aging, pregnancy, stress, and metabolic disorders in men and women.

  16. Hormonal Factors and Disturbances in Eating Disorders.

    PubMed

    Culbert, Kristen M; Racine, Sarah E; Klump, Kelly L

    2016-07-01

    This review summarizes the current state of the literature regarding hormonal correlates of, and etiologic influences on, eating pathology. Several hormones (e.g., ghrelin, CCK, GLP-1, PYY, leptin, oxytocin, cortisol) are disrupted during the ill state of eating disorders and likely contribute to the maintenance of core symptoms (e.g., dietary restriction, binge eating) and/or co-occurring features (e.g., mood symptoms, attentional biases). Some of these hormones (e.g., ghrelin, cortisol) may also be related to eating pathology via links with psychological stress. Despite these effects, the role of hormonal factors in the etiology of eating disorders remains unknown. The strongest evidence for etiologic effects has emerged for ovarian hormones, as changes in ovarian hormones predict changes in phenotypic and genetic influences on disordered eating. Future studies would benefit from utilizing etiologically informative designs (e.g., high risk, behavioral genetic) and continuing to explore factors (e.g., psychological, neural responsivity) that may impact hormonal influences on eating pathology.

  17. Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis.

    PubMed

    Peng, Zhi-yu; Zhou, Xin; Li, Linchuan; Yu, Xiangchun; Li, Hongjiang; Jiang, Zhiqiang; Cao, Guangyu; Bai, Mingyi; Wang, Xingchun; Jiang, Caifu; Lu, Haibin; Hou, Xianhui; Qu, Lijia; Wang, Zhiyong; Zuo, Jianru; Fu, Xiangdong; Su, Zhen; Li, Songgang; Guo, Hongwei

    2009-01-01

    Plant hormones are small organic molecules that influence almost every aspect of plant growth and development. Genetic and molecular studies have revealed a large number of genes that are involved in responses to numerous plant hormones, including auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Here, we develop an Arabidopsis hormone database, which aims to provide a systematic and comprehensive view of genes participating in plant hormonal regulation, as well as morphological phenotypes controlled by plant hormones. Based on data from mutant studies, transgenic analysis and gene ontology (GO) annotation, we have identified a total of 1026 genes in the Arabidopsis genome that participate in plant hormone functions. Meanwhile, a phenotype ontology is developed to precisely describe myriad hormone-regulated morphological processes with standardized vocabularies. A web interface (http://ahd.cbi.pku.edu.cn) would allow users to quickly get access to information about these hormone-related genes, including sequences, functional category, mutant information, phenotypic description, microarray data and linked publications. Several applications of this database in studying plant hormonal regulation and hormone cross-talk will be presented and discussed.

  18. Antioxidant Prophylaxis in the Prevention of Prostatic Epithelial Neoplasia

    DTIC Science & Technology

    2009-02-01

    haptoglobin polymorphisms with diabetic nephropathy , hypertension and proetinuria. We measured serum levels of Preprohaptoglobin using ELISA based...for intervention to prevent the initial disease from becoming cancerous. Since treatment options for prostate cancer are very limited for initial...daily for signs of illne were sacrificed at 16 weeks after initiation of hormone treatment . Animals wer sacrificed by CO2 asphyxiation followed by

  19. Obtaining growth hormone from calf blood

    NASA Technical Reports Server (NTRS)

    Kalchev, L. A.; Ralchev, K. K.; Nikolov, I. T.

    1979-01-01

    The preparation of a growth hormone from human serum was used for the isolation of the hormone from calf serum. The preparation was biologically active - it increased the quantity of the free fatty acids released in rat plasma by 36.4 percent. Electrophoresis in Veronal buffer, ph 8.6, showed the presence of a single fraction having mobility intermediate between that of alpha and beta globulins. Gel filtration through Sephadex G 100 showed an elutriation curve identical to that obtained by the growth hormone prepared from pituitary glands.

  20. Hormonal component of tumor photodynamic therapy response

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Merchant, Soroush

    2008-02-01

    The involvement of adrenal glucocorticoid hormones in the response of the treatment of solid tumors by photodynamic therapy (PDT) comes from the induction of acute phase response by this modality. This adrenal gland activity is orchestrated through the engagement of the hypothalamic-pituitary-adrenal hormonal axis incited by stress signals emanating from the PDT-treated tumor. Glucocorticoid hormone activity engendered within the context of PDT-induced acute phase response performs multiple important functions; among other involvements they beget acute phase reactant production, systemic neutrophil mobilization, and control the production of inflammation-modulating and immunoregulatory proteins.

  1. A Hormonally Active Malignant Struma Ovarii

    PubMed Central

    Lara, Carolina; Salame, Latife; Padilla-Longoria, Rafael

    2016-01-01

    Struma ovarii is a rare monodermal variant of ovarian teratoma that contains at least 50% thyroid tissue. Less than 8% of struma ovarii cases present with clinical and biochemical evidence of thyrotoxicosis due to ectopic production of thyroid hormone and only 5% undergo malignant transformation into a papillary thyroid carcinoma. Only isolated cases of hormonally active papillary thyroid carcinoma developing within a struma ovarii have been reported in the literature. We report the case of a 36-year-old woman who presented with clinical signs and symptoms of hyperthyroidism as well as a left adnexal mass, which proved to be a thyroid hormone-producing, malignant struma ovarii. PMID:27882257

  2. The Radioimmunoassay of Fluid and Electrolyte Hormones

    NASA Technical Reports Server (NTRS)

    Keil, Lanny C.

    1985-01-01

    The subject of the paper will be the assay of fluid/electrolyte hormones. ADH (antidiuretic hormone also referred to as vasopressin) reduces fluid loss by increasing water reabsorption by the kidney. The stimuli for its release from the pituitary are loss of blood, dehydration, or increased salt intake. Angiotensin II is the next hormone of interest. It is "generated" from a blood protein by the release of renin from the kidney. One of its functions is to stimulate the secretion of aldosterone from the adrenal gland. Release of renin is also stimulated by volume and sodium loss.

  3. Sleep and hormonal changes in aging.

    PubMed

    Copinschi, Georges; Caufriez, Anne

    2013-06-01

    Age-related sleep and endocrinometabolic alterations frequently interact with each other. For many hormones, sleep curtailment in young healthy subjects results in alterations strikingly similar to those observed in healthy old subjects not submitted to sleep restriction. Thus, recurrent sleep restriction, which is currently experienced by a substantial and rapidly growing proportion of children and young adults, might contribute to accelerate the senescence of endocrine and metabolic function. The mechanisms of sleep-hormonal interactions, and therefore the endocrinometabolic consequences of age-related sleep alterations, which markedly differ from one hormone to another, are reviewed in this article.

  4. Effects of ghrelin, growth hormone-releasing peptide-6, and growth hormone-releasing hormone on growth hormone, adrenocorticotropic hormone, and cortisol release in type 1 diabetes mellitus.

    PubMed

    de Sá, Larissa Bianca Paiva Cunha; Nascif, Sergio Oliva; Correa-Silva, Silvia Regina; Molica, Patricia; Vieira, José Gilberto Henriques; Dib, Sergio Atala; Lengyel, Ana-Maria Judith

    2010-10-01

    In type 1 diabetes mellitus (T1DM), growth hormone (GH) responses to provocative stimuli are normal or exaggerated, whereas the hypothalamic-pituitary-adrenal axis has been less studied. Ghrelin is a GH secretagogue that also increases adrenocorticotropic hormone (ACTH) and cortisol levels, similarly to GH-releasing peptide-6 (GHRP-6). Ghrelin's effects in patients with T1DM have not been evaluated. We therefore studied GH, ACTH, and cortisol responses to ghrelin and GHRP-6 in 9 patients with T1DM and 9 control subjects. The GH-releasing hormone (GHRH)-induced GH release was also evaluated. Mean fasting GH levels (micrograms per liter) were higher in T1DM (3.5 ± 1.2) than in controls (0.6 ± 0.3). In both groups, ghrelin-induced GH release was higher than that after GHRP-6 and GHRH. When analyzing Δ area under the curve (ΔAUC) GH values after ghrelin, GHRP-6, and GHRH, no significant differences were observed in T1DM compared with controls. There was a trend (P = .055) to higher mean basal cortisol values (micrograms per deciliter) in T1DM (11.7 ± 1.5) compared with controls (8.2 ± 0.8). No significant differences were seen in ΔAUC cortisol values in both groups after ghrelin and GHRP-6. Mean fasting ACTH values were similar in T1DM and controls. No differences were seen in ΔAUC ACTH levels in both groups after ghrelin and GHRP-6. In summary, patients with T1DM have normal GH responsiveness to ghrelin, GHRP-6, and GHRH. The ACTH and cortisol release after ghrelin and GHRP-6 is also similar to controls. Our results suggest that chronic hyperglycemia of T1DM does not interfere with GH-, ACTH-, and cortisol-releasing mechanisms stimulated by these peptides.

  5. History of growth hormone therapy.

    PubMed

    Blizzard, Robert M

    2012-01-01

    The first human to receive GH therapy was in 1956; it was of bovine origin and was given for 3 wk for metabolic balance studies revealing no effects. By 1958, three separate laboratories utilizing different extraction methods retrieved hGH from human pituitaries, purified it and used for clinical investigation. By 1959 presumed GHD patients were being given native hGH collected and extracted by various methods. Since 1 mg of hGH was needed to treat one patient per day, >360 human pituitaries were needed per patient per year. Thus, the availability of hGH was limited and was awarded on the basis of clinical research protocols approved by the National Pituitary Agency (NPA) established in 1961. hGH was dispensed and injected on a milligram weight basis with varied concentrations between batches from 0.5 units/mg to 2.0 units/mg of hGH. By 1977 a centralized laboratory was established to extract all human pituitaries in the US, this markedly improved the yield of hGH obtained and most remarkably, hGH of this laboratory was never associated with Creutzfeld-Jacob disease (CJD) resulting from the injection of apparently prior- contaminated hGH produced years earlier. However, widespread rhGH use was not possible even if a pituitary from each autopsy performed in the US was collected, this would only permit therapy for about 4,000 patients. Thus, the mass production of rhGH required the identification of the gene structure of the hormone, methodology that began in 1976 to make insulin by recombinant technology. Serendipity was manifest in 1985 when patients who had received hGH years previously were reported to have died of CJD. This led to the discontinuation of the distribution and use of hGH, at a time when a synthetic rhGH became available for clinical use. The creation of a synthetic rhGH was accompanied by unlimited supplies of hGH for investigation and therapy. However, the appropriate use and the potential abuse of this hormone are to be dealt with. The

  6. Isolated Adrenocorticotropic Hormone or Thyrotropin Deficiency Following Mild Traumatic Brain Injury: Three Cases with Long-Term Follow-Up

    PubMed Central

    Baek, Cho-Ok; Kim, Yu Ji; Kim, Ji Hye

    2015-01-01

    Few studies have examined the clinical features and long-term outcomes of isolated pituitary hormone deficiencies after traumatic brain injury (TBI). Such deficiencies typically present at time intervals after TBI, especially after mild injuries such as concussions, which makes their diagnosis difficult without careful history taking. It is necessary to improve diagnosis and prevent life threatening or morbid conditions such as those that may occur in deficiencies of adrenocorticotropic hormone (ACTH) or thyroid-stimulating hormone (as known as thyrotropin, TSH), the two most important pituitary hormones in hypopituitarism treatment. Here, we report two cases of isolated ACTH deficiency and one case of isolated TSH deficiency. These patients presented at different time points after concussion and underwent long-term follow-ups. PMID:27169080

  7. Isolated Adrenocorticotropic Hormone or Thyrotropin Deficiency Following Mild Traumatic Brain Injury: Three Cases with Long-Term Follow-Up.

    PubMed

    Baek, Cho-Ok; Kim, Yu Ji; Kim, Ji Hye; Park, Ji Hyun

    2015-10-01

    Few studies have examined the clinical features and long-term outcomes of isolated pituitary hormone deficiencies after traumatic brain injury (TBI). Such deficiencies typically present at time intervals after TBI, especially after mild injuries such as concussions, which makes their diagnosis difficult without careful history taking. It is necessary to improve diagnosis and prevent life threatening or morbid conditions such as those that may occur in deficiencies of adrenocorticotropic hormone (ACTH) or thyroid-stimulating hormone (as known as thyrotropin, TSH), the two most important pituitary hormones in hypopituitarism treatment. Here, we report two cases of isolated ACTH deficiency and one case of isolated TSH deficiency. These patients presented at different time points after concussion and underwent long-term follow-ups.

  8. Quo vadis neurohypophysial hormone research?

    PubMed

    Douglas, A J; Ludwig, M

    2000-03-01

    Here we highlight just a few of the outstanding questions in the field of neurohypophysial hormones that we envisage will be addressed successfully in the new millennium. To begin, we focus on the regulation of receptors. Despite intensive investigation with new drugs, molecular modelling and transgenic models, the determinants of receptor selectivity remain elusive; there may even be more vasopressin or oxytocin receptor subtypes to be discovered. We discuss the controversy over the interesting studies that indicate modulation of oxytocin receptor-binding by steroids. Oxytocin and vasopressin release and action in the brain are discussed from several aspects. Dendritically released oxytocin acting locally is important for the milk ejection reflex, and similarly released vasopressin is important in regulating patterning of vasopressin neurone activity. Such dendritically released oxytocin and vasopressin is likely to be important in paracrine modulation of neural circuitry involved in neuroendocrine control, and for a range of behaviours. Is it possible that the whole range of behaviours that comprise 'social' (or 'anti-social') or 'maternal' behaviour can be engineered by modifying the expression of just these one or two peptides and their receptors? However, whether gene expression and knockout approaches will answer all the open questions about the real functions of oxytocin and vasopressin remains to be shown.

  9. Neuroendocrine hormone amylin in diabetes

    PubMed Central

    Zhang, Xiao-Xi; Pan, Yan-Hong; Huang, Yan-Mei; Zhao, Hai-Lu

    2016-01-01

    The neuroendocrine hormone amylin, also known as islet amyloid polypeptide, is co-localized, co-packaged and co-secreted with insulin from adult pancreatic islet β cells to maintain glucose homeostasis. Specifically, amylin reduces secretion of nutrient-stimulated glucagon, regulates blood pressure with an effect on renin-angiotensin system, and delays gastric emptying. The physiological actions of human amylin attribute to the conformational α-helix monomers whereas the misfolding instable oligomers may be detrimental to the islet β cells and further transform to β-sheet fibrils as amyloid deposits. No direct evidence proves that the amylin fibrils in amyloid deposits cause diabetes. Here we also have performed a systematic review of human amylin gene changes and reported the S20G mutation is minor in the development of diabetes. In addition to the metabolic effects, human amylin may modulate autoimmunity and innate inflammation through regulatory T cells to impact on both human type 1 and type 2 diabetes. PMID:27162583

  10. Thyroid Hormone and Seasonal Rhythmicity

    PubMed Central

    Dardente, Hugues; Hazlerigg, David G.; Ebling, Francis J. P.

    2014-01-01

    Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of TH signaling within the medio-basal hypothalamus (MBH) through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, TH might also be involved in longer-term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal rhythmicity. PMID:24616714

  11. Extrapituitary growth hormone and growth?

    PubMed

    Harvey, Steve; Baudet, Marie-Laure

    2014-09-01

    While growth hormone (GH) is obligatory for postnatal growth, it is not required for a number of growth-without-GH syndromes, such as early embryonic or fetal growth. Instead, these syndromes are thought to be dependent upon local growth factors, rather than pituitary GH. The GH gene is, however, also expressed in many extrapituitary tissues, particularly during early development and extrapituitary GH may be one of the local growth factors responsible for embryonic or fetal growth. Moreover, as the expression of the GH receptor (GHR) gene mirrors that of GH in extrapituitary tissues the actions of GH in early development are likely to be mediated by local autocrine or paracrine mechanisms, especially as extrapituitary GH expression occurs prior to the ontogeny of pituitary somatotrophs or the appearance of GH in the circulation. The extrapituitary expression of pituitary somatotrophs or the appearance of GH in the circulation. The extrapituitary expression of GH in embryos has also been shown to be of functional relevance in a number of species, since the immunoneutralization of endogenous GH or the blockade of GH production is accompanied by growth impairment or cellular apoptosis. The extrapituitary expression of the GH gene also persists in some central and peripheral tissues postnatally, which may reflect its continued functional importance and physiological or pathophysiological significance. The expression and functional relevance of extrapituitary GH, particularly during embryonic growth, is the focus of this brief review.

  12. Chemosignals, hormones, and amphibian reproduction.

    PubMed

    Woodley, Sarah

    2015-02-01

    This article is part of a Special Issue "Chemosignals and Reproduction". Amphibians are often thought of as relatively simple animals especially when compared to mammals. Yet the chemosignaling systems used by amphibians are varied and complex. Amphibian chemosignals are particularly important in reproduction, in both aquatic and terrestrial environments. Chemosignaling is most evident in salamanders and newts, but increasing evidence indicates that chemical communication facilitates reproduction in frogs and toads as well. Reproductive hormones shape the production, dissemination, detection, and responsiveness to chemosignals. A large variety of chemosignals have been identified, ranging from simple, invariant chemosignals to complex, variable blends of chemosignals. Although some chemosignals elicit straightforward responses, others have relatively subtle effects. Review of amphibian chemosignaling reveals a number of issues to be resolved, including: 1) the significance of the complex, individually variable blends of courtship chemosignals found in some salamanders, 2) the behavioral and/or physiological functions of chemosignals found in anuran "breeding glands", 3) the ligands for amphibian V2Rs, especially V2Rs expressed in the main olfactory epithelium, and 4) the mechanism whereby transdermal delivery of chemosignals influences behavior. To date, only a handful of the more than 7000 species of amphibians has been examined. Further study of amphibians should provide additional insight to the role of chemosignals in reproduction.

  13. Thyroid hormones and renin secretion.

    PubMed

    Ganong, W F

    Circulating angiotensin is produced by the action of renin from the kidneys on circulating angiotensinogen. There are other renin-angiotensin systems in various organs in the body, and recent observations raise the intriguing possibility that angiotensin II is produced by a totally intracellular pathway in the juxtaglomerular cells, the gonadotrops of the anterior pituitary, neurons, in the brain, salivary duct cells, and neuroblastoma cells. Circulating angiotensin II levels depend in large part on the plasma concentration of angiotensinogen, which is hormonally regulated, and on the rate of renin secretion. Renin secretion is regulated by an intrarenal baroreceptor mechanism, a macula densa mechanism, angiotensin II, vasopressin, and the sympathetic nervous system. The increase in renin secretion produced by sympathetic discharge is mediated for the most part by beta-adrenergic receptors, which are probably located on the juxtaglomerular cells. Hyperthyroidism would be expected to be associated with increased renin secretion in view of the increased beta-adrenergic activity in this condition, and hypothyroidism would be associated with decreased plasma renin activity due to decreased beta-adrenergic activity. Our recent research on serotonin-mediated increases in renin secretion that depend on the integrity of the dorsal raphe nucleus and the mediobasal hypothalamus has led us to investigate the effect of the pituitary on the renin response to p-chloroamphetamine. The response is potentiated immediately after hypophysectomy, but 22 days after the operation, it is abolished. This slowly developing decrease in responsiveness may be due to decreased thyroid function.

  14. Unsulfated cholecystokinin: An overlooked hormone?

    PubMed

    Rehfeld, Jens F; Agersnap, Mikkel

    2012-01-10

    Tyrosyl O-sulfation is a common posttranslational derivatization of proteins that may also modify regulatory peptides. Among these are members of the cholecystokinin (CCK)/gastrin family. While sulfation of gastrin peptides is without effect on the bioactivity, O-sulfation is crucial for the cholecystokinetic activity (i.e. gallbladder emptying) of CCK peptides. Accordingly, the purification of CCK as a sulfated peptide was originally monitored by its gallbladder emptying effect. Since then, the dogma has prevailed that CCK peptides are always sulfated. The dogma is correct in a semantic context since the gallbladder expresses only the CCK-A receptor that requires sulfation of the ligand. CCK peptides, however, are also ligands for the CCK-B receptors that do not require ligand sulfation. Consequently, unsulfated CCK peptides may act via CCK-B receptors. Since in vivo occurrence of unsulfated products of proCCK with an intact α-amidated C-terminal tetrapeptide sequence (-Trp-Met-Asp-PheNH(2)) has been reported, it is likely that unsulfated CCK peptides constitute a separate hormone system that acts via CCK-B receptors. This review discusses the occurrence, molecular forms, and possible physiological as well as pathophysiological significance of unsulfated CCK peptides.

  15. The Thyroid Hormone Receptors Inhibit Hepatic Interleukin-6 Signaling During Endotoxemia

    PubMed Central

    Contreras-Jurado, Constanza; Alonso-Merino, Elvira; Saiz-Ladera, Cristina; Valiño, Arturo José; Regadera, Javier; Alemany, Susana; Aranda, Ana

    2016-01-01

    Decreased thyroidal hormone production is found during lipopolysaccharide (LPS)-induced endotoxic shock in animals as well as in critically ill patients. Here we studied the role of the thyroid hormone receptors (TRs) in activation of STAT3, NF-κB and ERK, which play a key role in the response to inflammatory cytokines during sepsis. TR knockout mice showed down-regulation of hepatic inflammatory mediators, including interleukin 6 (IL-6) in response to LPS. Paradoxically, STAT3 and ERK activity were higher, suggesting that TRs could act as endogenous repressors of these pathways. Furthermore, hyperthyroidism increased cytokine production and mortality in response to LPS, despite decreasing hepatic STAT3 and ERK activity. This suggested that TRs could directly repress the response of the cells to inflammatory mediators. Indeed, we found that the thyroid hormone T3 suppresses IL-6 signalling in macrophages and hepatocarcinoma cells, inhibiting STAT3 activation. Consequently, the hormone strongly antagonizes IL-6-stimulated gene transcription, reducing STAT3 recruitment and histone acetylation at IL-6 target promoters. In conclusion, TRs are potent regulators of inflammatory responses and immune homeostasis during sepsis. Reduced responses to IL-6 should serve as a negative feedback mechanism for preventing deleterious effects of excessive hormone signaling during infections. PMID:27484112

  16. Hormonal responses to acute exercise, training and overtraining. A review with emphasis on the horse.

    PubMed

    de Graaf-Roelfsema, E; Keizer, H A; van Breda, E; Wijnberg, I D; van der Kolk, J H

    2007-09-01

    Overtraining is an imbalance between training and recovery leading to symptoms associated with a neuroendocrine dysbalance called the overtraining syndrome, a disease characterized by behavioral, emotional and physical symptoms similar with depression. Although the prevalence of overtraining is high in human and equine athletes, at present no sensitive and specific test is available to prevent or diagnose overtraining. Nowadays, it is believed that combination of different (hormonal) parameters appear to be the best indicators of overtraining. Therefore, this review provides a summary of previous literature examining the response of the hypothalamic-pituitary-adrenal (HPA) axis and the growth hormone-insulin-like growth factor-I (GH-IGF-I) axis to acute and chronic exercise as well as overtraining in humans and horses. The exercise induced hormonal responses seem to be equal for the equine as well as the human athlete, which makes comparisons possible. Repeated bouts of exercise are suggested to provide a way to detect subtle changes in hormonal responses in the individual athlete, which may make them an important tool in detecting early overtraining. This should be combined with corticotropin releasing hormone (CRH) stimulation tests and basal ACTH and GH pulsatility determination. Further research is needed to establish the correct training intensity and rest period for the exercise test in equines.

  17. Design of a dual-hormone model predictive control for artificial pancreas with exercise model.

    PubMed

    Resalat, Navid; El Youssef, Joseph; Reddy, Ravi; Jacobs, Peter G

    2016-08-01

    The Artificial Pancreas (AP) is a new technology for helping people with type 1 diabetes to better control their glucose levels through automated delivery of insulin and optionally glucagon in response to sensed glucose levels. In a dual hormone AP, insulin and glucagon are delivered automatically to the body based on glucose sensor measurements using a control algorithm that calculates the amount of hormones to be infused. A dual-hormone MPC may deliver insulin continuously; however, it must avoid continuous delivery of glucagon because nausea can occur from too much glucagon. In this paper, we propose a novel dual-hormone (DH) switching model predictive control and compare it with a single-hormone (SH) MPC. We extended both MPCs by integrating an exercise model and compared performance with and without the exercise model included. Results were obtained on a virtual patient population undergoing a simulated exercise event using a mathematical glucoregulatory model that includes exercise. Time spent in hypoglycemia is significantly less with the DH-MPC than the SH-MPC (p=0.0022). Additionally, including the exercise model in the DH-MPC can help prevent hypoglycemia (p <; 0.001).

  18. The Thyroid Hormone Receptors Inhibit Hepatic Interleukin-6 Signaling During Endotoxemia.

    PubMed

    Contreras-Jurado, Constanza; Alonso-Merino, Elvira; Saiz-Ladera, Cristina; Valiño, Arturo José; Regadera, Javier; Alemany, Susana; Aranda, Ana

    2016-08-03

    Decreased thyroidal hormone production is found during lipopolysaccharide (LPS)-induced endotoxic shock in animals as well as in critically ill patients. Here we studied the role of the thyroid hormone receptors (TRs) in activation of STAT3, NF-κB and ERK, which play a key role in the response to inflammatory cytokines during sepsis. TR knockout mice showed down-regulation of hepatic inflammatory mediators, including interleukin 6 (IL-6) in response to LPS. Paradoxically, STAT3 and ERK activity were higher, suggesting that TRs could act as endogenous repressors of these pathways. Furthermore, hyperthyroidism increased cytokine production and mortality in response to LPS, despite decreasing hepatic STAT3 and ERK activity. This suggested that TRs could directly repress the response of the cells to inflammatory mediators. Indeed, we found that the thyroid hormone T3 suppresses IL-6 signalling in macrophages and hepatocarcinoma cells, inhibiting STAT3 activation. Consequently, the hormone strongly antagonizes IL-6-stimulated gene transcription, reducing STAT3 recruitment and histone acetylation at IL-6 target promoters. In conclusion, TRs are potent regulators of inflammatory responses and immune homeostasis during sepsis. Reduced responses to IL-6 should serve as a negative feedback mechanism for preventing deleterious effects of excessive hormone signaling during infections.

  19. Management of Hormone Deprivation Symptoms After Cancer.

    PubMed

    Faubion, Stephanie S; Loprinzi, Charles L; Ruddy, Kathryn J

    2016-08-01

    Cancer survivors often experience symptoms related to hormone deprivation, including vasomotor symptoms, genitourinary symptoms, and sexual health concerns. These symptoms can occur due to natural menopause in midlife women, or they can be brought on by oncologic therapies in younger women or men. We searched PubMed for English-language studies from January 1990 through January 2016 to identify relevant articles on the management of hormone deprivation symptoms, including vasomotor, genitourinary, and sexual symptoms in patients with cancer. The search terms used included hormone deprivation, vasomotor symptoms, hot flash, vaginal dryness, sexual dysfunction, and breast cancer. This manuscript provides a comprehensive description of data supporting the treatment of symptoms associated with hormone deprivation.

  20. Strategies for the Determination of Plant Hormones.

    ERIC Educational Resources Information Center

    Davis, Gregory C.; And Others

    1985-01-01

    Describes methods for isolating, purifying, and analyzing plant hormones (molecules involved in plant growth regulation and development). The presentation reflects the historical development of analyses, beginning with bioassays and ending with novel immunochemical assays. (JN)

  1. [Hormonal stimulation of reproductive function in swine].

    PubMed

    Hladkova, A I

    1993-01-01

    Industrial conditions, gynaecological disorders, ovarian deficiency being unfavourable factors for pigs reproduction, as well as the necessity in rapid sex maturation require thorough knowledge on physiology of reproduction processes. The importance belongs to the hormonal treatment in development of special biotechnological methods. Efficiency of the latter is determined by the kind of hormone used, its dose, injection time in sex cycle and the knowledge of species specificity of physiological regulation of reproductive processes in pigs of great value. The achievements in this country and abroad, devoted to the technology of oestrogens, gestagens, androgens and their combinations as well as gonadotropins (PMS, CG), gonadotropin-releasing hormone applications have been reviewed. The most often used schemes of hormonal treatment and drugs, as well as the results obtained have been described. The data presented can be used for needs of practical cattle-breeding.

  2. Gut hormones: the future of obesity treatment?

    PubMed Central

    McGavigan, Anne K; Murphy, Kevin G

    2012-01-01

    Obesity is a major worldwide health problem. The treatment options are severely limited. The development of novel anti-obesity drugs is fraught with efficacy and safety issues. Consequently, several investigational anti-obesity drugs have failed to gain marketing approval in recent years. Anorectic gut hormones offer a potentially safe and viable option for the treatment of obesity. The prospective utility of gut hormones has improved drastically in recent years with the development of longer acting analogues. Additionally, specific combinations of gut hormones have been demonstrated to have additive anorectic effects. This article reviews the current stage of anti-obesity drugs in development, focusing on gut hormone-based therapies. PMID:22452339

  3. [Lysosomal system in hormonal mechanisms. Review].

    PubMed

    Duran Reyes, G; González Macías, G; Hicks, J J

    1995-02-01

    The role of lysosomes in the intracellular mechanism of action of several steroid an proteic hormones has been demonstrated. In presence of the specific hormone the target cell induce membranal changes and the lysosomes are moved toward the nucleus; after this the lysosomal enzymes are released in the perinuclear space. For the moment it is not possible to know the biochemical role of this enzymatic activities upon the nucleic acids function and des-repretion process of specific genes, but the inhibition of lysosomes movement utilizing hormone antagonist or dexamethasone inhibits some reproductive process like the implantation of the mammalian egg. We present herein a review related with the mode action of some hormones through the lysosomes in reproductive processes.

  4. IODIDE DEFICIENCY, THYROID HORMONES, AND NEURODEVELOPMENT

    EPA Science Inventory

    ABSTRACT BODY: Iodide is an essential nutrient for thyroid hormone synthesis. Severe iodide insufficiency during early development is associated with cognitive deficits. Environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under conditio...

  5. Growth hormone replacement therapy in Costello syndrome.

    PubMed

    Triantafyllou, Panagiota; Christoforidis, Athanasios; Vargiami, Euthymia; Zafeiriou, Dimitrios I

    2014-12-01

    Costello syndrome (CS) is considered an overgrowth disorder given the macrosomia that is present at birth .However, shortly after birth the weight drops dramatically and the patients are usually referred for failure to thrive. Subsequently, affected patients develop the distinctive coarse facial appearance and are at risk for cardiac anomalies and solid tumor malignancies. Various endocrine disorders, although not very often, have been reported in patients with CS, including growth hormone deficiency, hypoglycemia, ACTH deficiency, cryptorchidism and hypothyroidism. We report a case of Costello syndrome with hypothyroidism, cryptorchidism and growth hormone deficiency and we evaluate the long-term safety and efficacy of growth hormone replacement therapy. The index patient is a paradigm of successful and safe treatment with growth hormone for almost 7 years. Since patients with CS are at increased risk for cardiac myopathy and tumor development they deserve close monitoring during treatment.

  6. Hormonal and biochemical responses to transcendental meditation.

    PubMed Central

    Cooper, R.; Joffe, B. I.; Lamprey, J. M.; Botha, A.; Shires, R.; Baker, S. G.; Seftel, H. C.

    1985-01-01

    This study was designed to assess whether transcendental meditation (TM) could influence various endocrine responses in 10 experienced male meditators. Nine matched subjects, uninformed of the TM procedure, acted as controls. Meditators successfully practised their technique for 40 min in the morning while controls relaxed for this period. No significant differences emerged between these 2 groups with respect to carbohydrate metabolism (plasma glucose, insulin and pancreatic glucagon concentrations), pituitary hormones (growth hormone and prolactin) or the 'stress' hormones, cortisol and total catecholamines-although meditators tended to have higher mean catecholamine levels. Plasma free fatty acids were significantly elevated in meditators 40 min after completing the period of TM. No clear evidence was thus obtained that any of the stress, or stress-related, hormones were suppressed during or after meditation in the particular setting examined. PMID:3895206

  7. Innovations in classical hormonal targets for endometriosis.

    PubMed

    Pluchino, Nicola; Freschi, Letizia; Wenger, Jean-Marie; Streuli, Isabelle

    2016-01-01

    Endometriosis is a chronic disease of unknown etiology that affects approximately 10% of women in reproductive age. Several evidences show that endometriosis lesions are associated to hormonal imbalance, including estrogen synthesis, metabolism and responsiveness and progesterone resistance. These hormonal alterations influence the ability of endometrial cells to proliferate, migrate and to infiltrate the mesothelium, causing inflammation, pain and infertility. Hormonal imbalance in endometriosis represents also a target for treatment. We provide an overview on therapeutic strategies based on innovations of classical hormonal mechanisms involved in the development of endometriosis lesions. The development phase of new molecules targeting these pathways is also discussed. Endometriosis is a chronic disease involving young women and additional biological targets of estrogen and progesterone pharmacological manipulation (brain, bone and cardiovascular tissue) need to be carefully considered in order to improve and overcome current limits of long-term medical management of endometriosis.

  8. Sex hormones and the elderly male voice.

    PubMed

    Gugatschka, Markus; Kiesler, Karl; Obermayer-Pietsch, Barbara; Schoekler, Bernadette; Schmid, Christoph; Groselj-Strele, Andrea; Friedrich, Gerhard

    2010-05-01

    The objective was to describe influences of sex hormones on the male voice in an elderly cohort. Sixty-three elderly males were recruited to undergo assessment of voice parameters, stroboscopy, voice-related questionnaires, a blood draw, and an ultrasound examination of the laryngeal skeleton. The group was divided into men with normal hormonal status and men with lowered levels of sex hormones, called hypogonades. Depending on the level of androgens, voice parameters did not differ. In subjects with decreased levels of estrogens, a significant increase in mean fundamental frequency, as well as changes of highest and lowest frequency plus a shift of the frequency range could be detected. We could detect significant changes of voice parameters depending on status of estrogens in elderly males. Androgens appear to have no impact on the elderly male voice. To our knowledge, this is the first prospective study that correlates sex hormones with voice parameters in elderly men.

  9. Hormone signaling pathways under stress combinations.

    PubMed

    Suzuki, Nobuhiro

    2016-11-01

    As sessile organisms, plants are continuously exposed to various environmental stresses. In contrast to the controlled conditions employed in many researches, more than one or more abiotic and/or biotic stresses simultaneously occur and highly impact growth of plants and crops in the field environments. Therefore, an urgent need to generate crops with enhanced tolerance to stress combinations exists. Researchers, however, focused on the mechanisms underlying acclimation of plants to combined stresses only in recent studies. Plant hormones might be a key regulator of the tailored responses of plants to different stress combinations. Co-ordination between different hormone signaling, or hormone signaling and other pathways such as ROS regulatory mechanisms could be flexible, being altered by timing and types of stresses, and could be different depending on plant species under the stress combinations. In this review, update on recent studies focusing on complex-mode of hormone signaling under stress combinations will be provided.

  10. Genetics Home Reference: combined pituitary hormone deficiency

    MedlinePlus

    ... People with combined pituitary hormone deficiency may have hypothyroidism, which is underactivity of the butterfly-shaped thyroid gland in the lower neck. Hypothyroidism can cause many symptoms, including weight gain and ...

  11. Aging-Related Hormone Changes in Men

    MedlinePlus

    Healthy Lifestyle Men's health Aging-related hormone changes in men — sometimes called male menopause — are different from those ... to erectile dysfunction and other sexual issues. Make healthy lifestyle choices. Eat a healthy diet and include physical ...

  12. [Dehydroepiandrosterone [DHEA(S)]: anabolic hormone?].

    PubMed

    Luci, Michele; Valenti, Giorgio; Maggio, Marcello

    2010-09-01

    The role of dehydroepiandrosterone (DHEA) and its sulphated form (DHEAS) as anabolic hormones is still debated in the literature. In this review we describe the fundamental steps of DHEA physiological secretion and its peripheral metabolism. Moreover we will list all the observational and intervention studies conducted in humans. Many observational studies have tested the relationship between low DHEA levels and age-related changes in skeletal muscle and bone, while intervention studies underline the positive and significant effects of DHEA treatment on several parameters of body composition. Surprisingly, observational studies are not consistent with different effects in men and women. There is recent evidence of a significant role of DHEA in frailty syndrome and as predictor of mortality. However a more complete approach of the problem suggests the opportunity to not focus only on one single hormonal derangement but to analyze the parallel dysregulation of anabolic hormones including sex steroids, GH-IGF-1 system and other catabolic hormones.

  13. Thyroid hormone, brain development, and the environment.

    PubMed Central

    Zoeller, Thomas R; Dowling, Amy L S; Herzig, Carolyn T A; Iannacone, Eric A; Gauger, Kelly J; Bansal, Ruby

    2002-01-01

    Thyroid hormone is essential for normal brain development. Therefore, it is a genuine concern that thyroid function can be altered by a very large number of chemicals routinely found in the environment and in samples of human and wildlife tissues. These chemicals range from natural to manufactured compounds. They can produce thyroid dysfunction when they are absent from the diet, as in the case of iodine, or when they are present in the diet, as in the case of thionamides. Recent clinical evidence strongly suggests that brain development is much more sensitive to thyroid hormone excess or deficit than previously believed. In addition, recent experimental research provides new insight into the developmental processes affected by thyroid hormone. Based on the authors' research focusing on the ability of polychlorinated biphenyls to alter the expression of thyroid hormone-responsive genes in the developing brain, this review provides background information supporting a new way of approaching risk analysis of thyroid disruptors. PMID:12060829

  14. Amative orientation: the hormonal hypothesis examined.

    PubMed

    Money, John

    2002-01-01

    The hypothesis that human male and female amative orientation, arousal and courtship are sex-hormone dependent had as its precursor John Hunter's recorded but unpublished 18th century experiments of cross-sexed gonadal transplants in chicks. The hypothesis gained momentum in the 20th century after the discovery and eventual marketing of the sex hormones, and after the experimental demonstration by William C. Young that, in guinea-pigs, cross-sexed hormone administered prenatally influenced their subsequent male/female courtship and mating behavior. Comparatively and in review, human clinical syndromes of hypermasculinization and hypomasculinization do not disconfirm the hormonal hypothesis, but they do not adequately confirm it, either. They are compatible with the idea of a cofactor that governs whether amative orientation in practice, ideation and imagery is homosexual, heterosexual or bisexual.

  15. Characteristics associated with fasting appetite hormones (obestatin, ghrelin, and leptin).

    PubMed

    Beasley, Jeannette M; Ange, Brett A; Anderson, Cheryl A M; Miller Iii, Edgar R; Holbrook, Janet T; Appel, Lawrence J

    2009-02-01

    Obestatin, derived from the same gene as the hunger hormone ghrelin, may reduce food intake in animals. The role of obestatin in human physiology is unclear. We evaluated cross-sectional associations between participant characteristics and fasting levels of obestatin as well two other hormones associated with energy balance, ghrelin and leptin. Data are from the baseline visit of the Optimal Macronutrient Intake Trial to Prevent Heart Disease (OMNI-Heart) Trial that enrolled adults with elevated blood pressure (systolic 120-159 mm Hg or a diastolic of 80-99 mm Hg) but who were otherwise healthy. Partial Spearman's correlations and linear regression models estimated the association between age, gender, BMI, physical activity, and smoking with fasting hormones. Obestatin was directly associated with ghrelin (r = 0.45, P < 0.05). On average, overweight (BMI 25-30) and obese (BMI > 30) individuals had obestatin concentrations that were 12.6 (s.d. 8.8) and 25.4 (s.d. 8.4) pg/ml lower compared to normal weight (BMI < 25) individuals, respectively (P for trend = 0.002). Overweight (BMI 25-30) and obese (BMI > 30) individuals had ghrelin concentrations that were 161.7 (s.d. 69.6) and 284.7 (s.d. 66.5) pg/ml lower compared to normal weight (BMI < 25) individuals, respectively (P for trend <0.0001). A 5 unit increase in BMI was associated with 41.3% (s.d. 4.3%) (P < 0.0001) higher leptin. Obestatin and ghrelin are directly correlated and share the same patterns of association with participant characteristics. Modifiable risk factors for chronic diseases, such as BMI, are associated with fasting levels of leptin, obestatin, and ghrelin.

  16. Hormone Therapy and Other Treatments for Symptoms of Menopause.

    PubMed

    Hill, D Ashley; Crider, Mark; Hill, Susan R

    2016-12-01

    The results of large clinical trials have led physicians and patients to question the safety of hormone therapy for menopause. In the past, physicians prescribed hormone therapy to improve overall health and prevent cardiac disease, as well as for symptoms of menopause. Combined estrogen/progestogen therapy, but not estrogen alone, increases the risk of breast cancer when used for more than three to five years. Therefore, in women with a uterus, it is recommended that physicians prescribe combination therapy only to treat menopausal symptoms such as vasomotor symptoms (hot flashes) and vaginal atrophy, using the smallest effective dosage for the shortest possible duration. Although estrogen is the most effective treatment for hot flashes, nonhormonal alternatives such as low-dose paroxetine, venlafaxine, and gabapentin are effective alternatives. Women with a uterus who are using estrogen should also take a progestogen to reduce the risk of endometrial cancer. Women who cannot tolerate adverse effects of progestogens may benefit from a combined formulation of estrogen and the selective estrogen receptor modulator bazedoxifene. There is no highquality, consistent evidence that yoga, paced respiration, acupuncture, exercise, stress reduction, relaxation therapy, and alternative therapies such as black cohosh, botanical products, omega-3 fatty acid supplements, and dietary Chinese herbs benefit patients more than placebo. One systematic review suggests modest improvement in hot flashes and vaginal dryness with soy products, and small studies suggest that clinical hypnosis significantly reduces hot flashes. Patients with genitourinary syndrome of menopause may benefit from vaginal estrogen, nonhormonal vaginal moisturizers, or ospemifene (the only nonhormonal treatment approved by the U.S. Food and Drug Administration for dyspareunia due to menopausal atrophy). The decision to use hormone therapy depends on clinical presentation, a thorough evaluation of the risks and

  17. Maternal thyroid hormones early in pregnancy and fetal brain development.

    PubMed

    de Escobar, Gabriella Morreale; Obregón, María Jesús; del Rey, Francisco Escobar

    2004-06-01

    During the last few decades our understanding of the possible role of thyroid hormones during brain development has increased and contributed to resolve previously discordant hypotheses, although much remains to be clarified. Thyroid hormones of maternal origin are present in the fetal compartment, despite the very efficient uterine-placental 'barrier', necessary to avoid potentially toxic concentrations of free T4 and T3 from reaching fetal tissues before they are required for development. T3 remains low throughout pregnancy, whereas FT4 in fetal fluids increases rapidly to adult levels, and is determined by the maternal availability of T4. It is present in embryonic fluids 4 weeks after conception, with FT4 steadily increasing to biologically relevant values. T3, generated from T4 in the cerebral cortex, reaches adult values by mid-gestation and is partly bound to specific nuclear receptor isoforms. Iodothyronine deioidinases are important for the spatial and temporal regulation of T3 bioavailability, tailored to the differing and changing requirements of thyroid hormone-sensitive genes in different brain structures, but other regulatory mechanism(s) are likely to be involved. Maternal transfer constitutes a major fraction of fetal serum T4, even after onset of fetal thyroid secretion, and continues to have an important protective role in fetal neurodevelopment until birth. Prompt treatment of maternal hypothyroidism, identified by increased TSH, is being advocated to mitigate a negative effect on the woman and her child. However, even a moderate transient period of maternal hypothyroxinemia at the beginning of rat neurogenesis disrupts neuronal migration into cortical layers. These findings reinforce the epidemiological evidence that early maternal hypothyroxinemia-when neuronal migratory waves are starting-is potentially damaging for the child. Detection of an inappropiate first trimester FT4 surge that may not result in increased TSH, may be crucial for the

  18. Marihuana smoking suppresses luteinizing hormone in women.

    PubMed

    Mendelson, J H; Mello, N K; Ellingboe, J; Skupny, A S; Lex, B W; Griffin, M

    1986-06-01

    Smoking a single 1-g marihuana cigarette containing 1.8% delta 9-tetrahydrocannabinol induced a 30% suppression of plasma luteinizing hormone levels (P less than .02) in women during the luteal phase of the menstrual cycle. After marihuana placebo cigarette smoking, no luteinizing hormone suppression was observed in the same women under double-blind conditions. Marihuana may have adverse effects upon reproductive function during the luteal phase of the menstrual cycle as a consequence of gonadotropin inhibition.

  19. Climacteric in untreated isolated growth hormone deficiency

    PubMed Central

    Menezes, Menilson; Salvatori, Roberto; Oliveira, Carla R.P.; Pereira, Rossana M.C.; Souza, Anita H.O.; Nobrega, Luciana M.A.; Cruz, Edla do A.C.; Menezes, Marcos; Alves, Érica O.; Aguiar-Oliveira, Manuel H.

    2008-01-01

    Objective To study the time, intensity of symptoms, hormonal profile, and related morbidity of climacteric in women with untreated isolated growth hormone (GH) deficiency (IGHD). Design Women belonging to a large Brazilian kindred with IGHD due to a homozygous mutation in the GH-releasing hormone receptor gene were studied. None of them had ever received GH replacement therapy. A two-step protocol was performed. In the first case-control experiment, aimed to determine the age at climacteric, we compared eight women with IGHD and 32 normal women between 37 and 55 years of age. In the second cross-sectional experiment, aimed to determine the severity of climacteric symptoms, seven women with IGHD (aged 47-65 y) were compared with 13 controls (aged 44-65 y). The Kupperman Index scores, serum follicle-stimulating hormone, luteinizing hormone, prolactin, and estradiol levels were determined, and pelvic and mammary ultrasonography, mammography, and colpocytology were performed. Results The number of women with follicle-stimulating hormone above 20 mIU/mL was higher in women with IGHD than controls. Kupperman’s Index was not different between the two groups. Menarche had been delayed and parity was lower in women with IGHD. Hormonal profile was similar, but prolactin was lower in women with IGHD. Uterine volume was smaller in women with IGHD, and endometrial thickness and ovarian volume were similar in the two groups. No difference in breast images or in colpocytology was observed between the two groups. Conclusions Menarche was delayed and the beginning of climacteric is anticipated in untreated lifetime IGHD, but menopausal symptoms and hormonal profile resemble the normal climacteric. PMID:18223507

  20. Young addicted men hormone profile detection

    NASA Astrophysics Data System (ADS)

    Zieliński, Paweł; Wasiewicz, Piotr; Leszczyńska, Bożena; Gromadzka-Ostrowska, Joanna

    2010-09-01

    Hormone parameters were determined in the serum of young addicted men in order to compare them with those obtained from the group of healthy subjects. Three groups were investigated which were named opiates, mixed and control group. Statistical and data mining methods were applied to obtain significant differences. R package was used for all computation. The determination of hormones parameters provide important information relative to impact of addiction.

  1. Steroid Hormones in NF1 Tumorigenesis

    DTIC Science & Technology

    2003-08-01

    NFl is characterized by benign Schwann cell tumors called neurofibromas; complex forms can become malignant ( MPNST ). Little is known about...neurofibroma (and/or MPNST ) Schwann cells have increased growth or decreased apoptosis related to steroid hormones. Specific Aim 1 is examining steroid...hormone receptor expression in human normal, NFl neurofibroma and MPNST Schwann cells. Real-time PCR shows very low levels of these receptor

  2. Steroid Hormones in NF1 Tumorigenesis

    DTIC Science & Technology

    2004-08-01

    This work is testing the hypothesis that human NF1 neurofibroma (and/or MPNST ) Schwann cells have increased growth or decreased apoptosis in response...to estrogen and progesterone. Specific Aim 1 measured steroid hormone receptor expression in human normal, NF1 neurofibroma and MPNST Schwann cells...responses of the neurofibroma/ MPNST Schwann cell cultures to hormones or antagonists, but no global patterns, indicating tumors behave individually as

  3. Sexual Functioning During Menopause: Schemas, Hormones, and Race

    DTIC Science & Technology

    2010-10-08

    Follicle Stimulating Hormone FSH Hormone Replacement Therapies HRT Human Performance Laboratory HPL Hypoactive Sexual Desire Disorder HSDD...in reproductive status based on changes in reproductive hormones including estradiol (i.e., estrogen), progesterone, follicle stimulating hormone...Self-Schemas & Menopause 79 (i.e., complications). Blood samples of 20mL from each participant were collected in two test tubes containing a

  4. 21 CFR 862.1485 - Luteinizing hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Luteinizing hormone test system. 862.1485 Section... Systems § 862.1485 Luteinizing hormone test system. (a) Identification. A luteinizing hormone test system is a device intended to measure luteinizing hormone in serum and urine. Luteinizing...

  5. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  6. 21 CFR 862.1545 - Parathyroid hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Parathyroid hormone test system. 862.1545 Section... Systems § 862.1545 Parathyroid hormone test system. (a) Identification. A parathyroid hormone test system is a device intended to measure the levels of parathyroid hormone in serum and plasma....

  7. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  8. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Human growth hormone test system. 862.1370 Section... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test system is a device intended to measure the levels of human growth hormone in plasma. Human growth...

  9. 21 CFR 862.1545 - Parathyroid hormone test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Parathyroid hormone test system. 862.1545 Section... Systems § 862.1545 Parathyroid hormone test system. (a) Identification. A parathyroid hormone test system is a device intended to measure the levels of parathyroid hormone in serum and plasma....

  10. 21 CFR 862.1485 - Luteinizing hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Luteinizing hormone test system. 862.1485 Section... Systems § 862.1485 Luteinizing hormone test system. (a) Identification. A luteinizing hormone test system is a device intended to measure luteinizing hormone in serum and urine. Luteinizing...

  11. 21 CFR 862.1485 - Luteinizing hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Luteinizing hormone test system. 862.1485 Section... Systems § 862.1485 Luteinizing hormone test system. (a) Identification. A luteinizing hormone test system is a device intended to measure luteinizing hormone in serum and urine. Luteinizing...

  12. 21 CFR 862.1545 - Parathyroid hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Parathyroid hormone test system. 862.1545 Section... Systems § 862.1545 Parathyroid hormone test system. (a) Identification. A parathyroid hormone test system is a device intended to measure the levels of parathyroid hormone in serum and plasma....

  13. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Human growth hormone test system. 862.1370 Section... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test system is a device intended to measure the levels of human growth hormone in plasma. Human growth...

  14. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  15. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  16. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  17. 21 CFR 862.1485 - Luteinizing hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Luteinizing hormone test system. 862.1485 Section... Systems § 862.1485 Luteinizing hormone test system. (a) Identification. A luteinizing hormone test system is a device intended to measure luteinizing hormone in serum and urine. Luteinizing...

  18. 21 CFR 862.1545 - Parathyroid hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Parathyroid hormone test system. 862.1545 Section... Systems § 862.1545 Parathyroid hormone test system. (a) Identification. A parathyroid hormone test system is a device intended to measure the levels of parathyroid hormone in serum and plasma....

  19. 21 CFR 862.1485 - Luteinizing hormone test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Luteinizing hormone test system. 862.1485 Section... Systems § 862.1485 Luteinizing hormone test system. (a) Identification. A luteinizing hormone test system is a device intended to measure luteinizing hormone in serum and urine. Luteinizing...

  20. Stress Hormones and their Regulation in a Captive Dolphin Population

    DTIC Science & Technology

    2013-09-30

    stimulation experiments, an animal’s hormonal and physiological response to a simulated stressor can be evaluated. Adrenocorticotropic hormone (ACTH) is...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Stress Hormones and Their Regulation in a Captive...will determine baseline levels of putative stress hormones and evaluate the functional consequences of increased stress in the bottlenose dolphin

  1. Hormonal Perturbations in Occupationally Exposed Nickel Workers

    PubMed Central

    Beshir, Safia; Ibrahim, Khadiga Salah; Shaheen, Weam; Shahy, Eman M.

    2016-01-01

    BACKGROUND: Nickel exposure is recognized as an endocrine disruptor because of its adverse effects on reproduction. AIM: This study was designed to investigate the possible testiculo-hormonal perturbations on workers occupationally exposed to nickel and to assess its effects on human male sexual function. METHODS: Cross-sectional comparative study, comprising 105 electroplating male non-smoker, non-alcoholic workers exposed to soluble nickel and 60 controls was done. Serum luteinizing hormone, follicle stimulating hormone, testosterone levels and urinary nickel concentrations were determined for the studied groups. RESULTS: Serum luteinizing hormone, follicle stimulating hormone, urinary nickel and the simultaneous incidence of more than one sexual disorder were significantly higher in the exposed workers compared to controls. The occurrence of various types of sexual disorders (decreased libido, impotence and premature ejaculation) in the exposed workers was 9.5, 5.1 and 4.4 folds respectively than the controls. CONCLUSIONS: Exposure to nickel produces possible testiculo-hormonal perturbations in those exposed workers. PMID:27335607

  2. Relation between sex hormones and hepatocellular carcinoma.

    PubMed

    El Mahdy Korah, T; Abd Elfatah Badr, E; Mohamed Emara, M; Ahmed Samy Kohla, M; Gamal Saad Michael, G

    2016-11-01

    Males have higher incidence of hepatocellular carcinoma (HCC) than females. Sex hormones may be a risk factor. The aim was to determine the levels of sex hormones in male and female patients with HCC and cirrhosis versus controls and its possible relationship with HCC. This study was conducted on 90 subjects divided into 40 patients with HCC, 30 patients with liver cirrhosis and 20 apparently healthy subjects complete blood picture, liver function tests. Determination of AFP levels and hormonal assay of oestrogen, progesterone, total testosterone, prolactin, FSH and LH were performed on all subjects. Total testosterone levels were significantly decreased in the two patients groups compared with controls. While oestrogen levels were significantly decreased in the HCC group in comparison with other two groups, prolactin levels were significantly decreased in the HCC group compared with the liver cirrhosis group and increased in the liver cirrhosis group when compared to controls. FSH and LH levels were significantly increased in the HCC group when compared to controls. There is no significant correlation between sex hormones assay and both the size of HCC and degree of cirrhosis in both patient groups. It is concluded that there is no strong relation between sex hormones and HCC when the study was carried out on the levels of sex hormones in patients with HCC.

  3. Hormone-independent pathways of sexual differentiation.

    PubMed

    Renfree, Marilyn B; Chew, Keng Yih; Shaw, Geoffrey

    2014-01-01

    New observations over the last 25 years of hormone-independent sexual dimorphisms have gradually and unequivocally overturned the dogma, arising from Jost's elegant experiments in the mid-1900s, that all somatic sex dimorphisms in vertebrates arise from the action of gonadal hormones. Although we know that Sry, a Y-linked gene, is the primary gonadal sex determinant in mammals, more recent analysis in marsupials, mice, and finches has highlighted numerous sexual dimorphisms that are evident well before the differentiation of the testis and which cannot be explained by a sexually dimorphic hormonal environment. In marsupials, scrotal bulges and mammary primordia are visible before the testis has differentiated due to the expression of a gene(s) on the X chromosome. ZZ and ZW gynandromorph finches have brains that develop in a sexually dimorphic way dependent on their sex chromosome content. In genetically manipulated mice, it is the X chromosomes, not the gonads, that determine many characters including rate of early development, adiposity, and neural circuits. Even spotted hyenas have sexual dimorphisms that cannot be simply explained by hormonal exposure. This review discusses the recent findings that confirm that there are hormone-independent sexual dimorphisms well before the gonads begin to produce their hormones.

  4. Thyroid hormone, neural tissue and mood modulation.

    PubMed

    Bauer, M; Whybrow, P C

    2001-04-01

    The successful treatment of affective disorders with thyroid hormone exemplifies the suggested inter-relationship between endocrine and neuronal systems in these disorders. Thyroid hormones have a profound influence on behaviour and appear to be capable of modulating the phenotypic expression of major affective illness. Specifically, there is good evidence that triiodothyronine (T3) may accelerate the antidepressant response to tricylic antidepressants, and some studies suggest that T3 may augment the therapeutic response to antidepressants in refractory depressed patients. Open studies have also indicated that adjunctive supraphysiological doses of thyroxine (T4) can ameliorate depressive symptomatology and help stabilize the long-term course of illness in bipolar and unipolar patients, especially women refractory to standard medications. Despite acceptance of the essential role of thyroid hormone on brain maturation and differentiation, and the clinical and therapeutic observations in association with mood disorders, the molecular action that may underlie the mood-modulating properties of thyroid hormone in the adult brain has only recently become the focus of research. The identification of nuclear T3 receptors, the region-specific expression of deiodinase isoenzymes and the molecular analyses of thyroid-responsive genes in the adult brain have provided the biological bases for a better understanding of thyroid hormone action in mature neurons. Also the influence of thyroid hormones on the putative neurotransmitter systems that regulate mood and behaviour, serotonin and norepinephrine, may be helpful in explaining their mood-modulating effects.

  5. Improved response of growth hormone to growth hormone-releasing hormone and reversible chronic thyroiditis after hydrocortisone replacement in isolated adrenocorticotropic hormone deficiency.

    PubMed

    Inagaki, Miho; Sato, Haruhiro; Miyamoto, Yoshiyasu; Hirukawa, Takashi; Sawaya, Asako; Miyakogawa, Takayo; Tatsumi, Ryoko; Kakuta, Takatoshi

    2009-07-20

    We report a 44-year-old Japanese man who showed a reversible blunted response of growth hormone (GH) to GH-releasing hormone (GRH) stimulation test and reversible chronic thyroiditis accompanied by isolated ACTH deficiency. He was admitted to our hospital because of severe general malaise, hypotension, and hypoglycemia. He showed repeated attacks of hypoglycemia, and his serum sodium level gradually decreased. Finally, he was referred to the endocrinology division, where his adrenocorticotropic hormone (ACTH) and cortisol values were found to be low, and his GH level was slightly elevated. An increased value of thyroid stimulating hormone (TSH) and decreased values of free triidothyronine and free thyroxine were observed along with anti-thyroglobulin antibody, suggesting chronic thyroiditis. Pituitary stimulation tests revealed a blunted response of ACTH and cortisol to corticotropin-releasing hormone, and a blunted response of GH to GRH. Hydrocortisone replacement was then started, and this improved the patient's general condition. His hypothyroid state gradually ameliorated and his titer of anti-thyroglobulin antibody decreased to the normal range. Pituitary function was re-evaluated with GRH stimulation test under a maintenance dose of 20 mg/day hydrocortisone and showed a normal response of GH to GRH. It is suggested that re-evaluation of pituitary and thyroid function is useful for diagnosing isolated ACTH deficiency after starting a maintenance dose of hydrocortisone in order to avoid unnecessary replacement of thyroid hormone.

  6. Hormonal and systemic regulation of sclerostin.

    PubMed

    Drake, Matthew T; Khosla, Sundeep

    2017-03-01

    The Wnt/β-catenin signaling pathway plays an essential role in osteoblast biology. Sclerostin is a soluble antagonist of Wnt/β-catenin signaling secreted primarily by osteocytes. Current evidence indicates that sclerostin likely functions as a local/paracrine regulator of bone metabolism rather than as an endocrine hormone. Nonetheless, circulating sclerostin levels in humans often reflect changes in the bone microenvironment, although there may be exceptions to this observation. Using existing assays, circulating sclerostin levels have been shown to be altered in response to both hormonal stimuli and across a variety of normal physiological and pathophysiological conditions. In both rodents and humans, parathyroid hormone provided either intermittently or continuously suppresses sclerostin levels. Likewise, most evidence from both human and animal studies supports a suppressive effect of estrogen on sclerostin levels. Efforts to examine non-hormonal/systemic regulation of sclerostin have in general shown less consistent findings or have provided associations rather than direct interventional information, with the exception of mechanosensory studies which have consistently demonstrated increased sclerostin levels with skeletal unloading, and conversely decreases in sclerostin with enhanced skeletal loading. Herein, we will review the existent literature on both hormonal and non-hormonal/systemic factors which have been studied for their impact on sclerostin regulation.

  7. Diagnostic Dilemma in Discordant Thyroid Function Tests Due to Thyroid Hormone Autoantibodies

    PubMed Central

    Srichomkwun, Panudda; Scherberg, Neal H.; Jakšić, Jasminka; Refetoff, Samuel

    2016-01-01

    Objective Assay interference could be the cause of abnormal thyroid function tests. Early recognition prevents inappropriate patient management. The objective of this report is to present a case with discordant thyroid function tests in different thyroid assay platforms due to thyroid autoantibodies. Methods We present a case her family, laboratory data and methods that investigate immunoassay interference. Results A 21-year-old woman with autoimmune thyroid disease was treated for hypothyroidism with levothyroxine and noted to have elevated total and free thyroxine, free triiodothyronine but normal thyroid-stimulating hormone. Repeat thyroid function tests using different platforms revealed discrepant results. Further investigation showed that the patient had positive thyroid hormone autoantibodies (THAAbs). Conclusion We demonstrates abnormal thyroid function tests caused by THAAbs. The latter were the cause of interference with assays resulting in discrepant test results inconsistent with the clinical presentation. Early recognition would prevent inappropriate patient management. PMID:28078322

  8. Neuro-hormonal effects of physical activity in the elderly.

    PubMed

    Femminella, Grazia D; de Lucia, Claudio; Iacotucci, Paola; Formisano, Roberto; Petraglia, Laura; Allocca, Elena; Ratto, Enza; D'Amico, Loreta; Rengo, Carlo; Pagano, Gennaro; Bonaduce, Domenico; Rengo, Giuseppe; Ferrara, Nicola

    2013-12-20

    Thanks to diagnostic and therapeutic advances, the elderly population is continuously increasing in the western countries. Accordingly, the prevalence of most chronic age-related diseases will increase considerably in the next decades, thus it will be necessary to implement effective preventive measures to face this epidemiological challenge. Among those, physical activity exerts a crucial role, since it has been proven to reduce the risk of cardiovascular diseases, diabetes, obesity, cognitive impairment and cancer. The favorable effects of exercise on cardiovascular homeostasis can be at least in part ascribed to the modulation of the neuro-hormonal systems implicated in cardiovascular pathophysiology. In the elderly, exercise has been shown to affect catecholamine secretion and biosynthesis, to positively modulate the renin-angiotensin-aldosterone system and to reduce the levels of plasma brain natriuretic peptides. Moreover, drugs modulating the neuro-hormonal systems may favorably affect physical capacity in the elderly. Thus, efforts should be made to actually make physical activity become part of the therapeutic tools in the elderly.

  9. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis

    PubMed Central

    Shen, Minqian; Shi, Haifei

    2015-01-01

    The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis. PMID:26491440

  10. Sexual hormones in human skin.

    PubMed

    Zouboulis, C C; Chen, W-C; Thornton, M J; Qin, K; Rosenfield, R

    2007-02-01

    The skin locally synthesizes significant amounts of sexual hormones with intracrine or paracrine actions. The local level of each sexual steroid depends upon the expression of each of the androgen- and estrogen-synthesizing enzymes in each cell type, with sebaceous glands and sweat glands being the major contributors. Sebocytes express very little of the key enzyme, cytochrome P450c17, necessary for synthesis of the androgenic prohormones dehydroepiandrosterone and androstenedione, however, these prohormones can be converted by sebocytes and sweat glands, and probably also by dermal papilla cells, into more potent androgens like testosterone and dihydrotestosterone. Five major enzymes are involved in the activation and deactivation of androgens in skin. Androgens affect several functions of human skin, such as sebaceous gland growth and differentiation, hair growth, epidermal barrier homeostasis and wound healing. Their effects are mediated by binding to the nuclear androgen receptor. Changes of isoenzyme and/or androgen receptor levels may have important implications in the development of hyperandrogenism and the associated skin diseases such as acne, seborrhoea, hirsutism and androgenetic alopecia. On the other hand, estrogens have been implicated in skin aging, pigmentation, hair growth, sebum production and skin cancer. Estrogens exert their actions through intracellular receptors or via cell surface receptors, which activate specific second messenger signaling pathways. Recent studies suggest specific site-related distribution of ERalpha and ERbeta in human skin. In contrast, progestins play no role in the pathogenesis of skin disorders. However, they play a major role in the treatment of hirsutism and acne vulgaris, where they are prescribed as components of estrogen-progestin combination pills and as anti-androgens. These combinations enhance gonadotropin suppression of ovarian androgen production. Estrogen-progestin treatment can reduce the need for shaving

  11. Providing care to transgender persons: a clinical approach to primary care, hormones, and HIV management.

    PubMed

    Williamson, Catherine

    2010-01-01

    Transgender (TG) persons have had historically difficult interactions with health care providers, leading to limited care and risks for a broad spectrum of health problems. This is of particular concern for TG persons with or at risk for HIV infection. This article discusses care providers' roles in establishing TG-friendly clinical care sites; conducting appropriate and thorough physical examinations for TG patients; managing hormones, especially in conjunction with antiretroviral therapy; and engaging TG persons in education about prevention and treatment of HIV.

  12. Hormones and ethics: Understanding the biological basis of unethical conduct.

    PubMed

    Lee, Jooa Julia; Gino, Francesca; Jin, Ellie Shuo; Rice, Leslie K; Josephs, Robert A

    2015-10-01

    Globally, fraud has been rising sharply over the last decade, with current estimates placing financial losses at greater than $3.7 trillion annually. Unfortunately, fraud prevention has been stymied by lack of a clear and comprehensive understanding of its underlying causes and mechanisms. In this paper, we focus on an important but neglected topic--the biological antecedents and consequences of unethical conduct--using salivary collection of hormones (testosterone and cortisol). We hypothesized that preperformance cortisol levels would interact with preperformance levels of testosterone to regulate cheating behavior in 2 studies. Further, based on the previously untested cheating-as-stress-reduction hypothesis, we predicted a dose-response relationship between cheating and reductions in cortisol and negative affect. Taken together, this research marks the first foray into the possibility that endocrine-system activity plays an important role in the regulation of unethical behavior.

  13. Improvement of islet function in a bioartificial pancreas by enhanced oxygen supply and growth hormone releasing hormone agonist

    PubMed Central

    Ludwig, Barbara; Rotem, Avi; Schmid, Janine; Weir, Gordon C.; Colton, Clark K.; Brendel, Mathias D.; Neufeld, Tova; Block, Norman L.; Yavriyants, Karina; Steffen, Anja; Ludwig, Stefan; Chavakis, Triantafyllos; Reichel, Andreas; Azarov, Dimitri; Zimermann, Baruch; Maimon, Shiri; Balyura, Mariya; Rozenshtein, Tania; Shabtay, Noa; Vardi, Pnina; Bloch, Konstantin; de Vos, Paul; Schally, Andrew V.; Bornstein, Stefan R.; Barkai, Uriel

    2012-01-01

    Islet transplantation is a feasible therapeutic alternative for metabolically labile patients with type 1 diabetes. The primary therapeutic target is stable glycemic control and prevention of complications associated with diabetes by reconstitution of endogenous insulin secretion. However, critical shortage of donor organs, gradual loss in graft function over time, and chronic need for immunosuppression limit the indication for islet transplantation to a small group of patients. Here we present a promising approach to address these limitations by utilization of a macrochamber specially engineered for islet transplantation. The s.c. implantable device allows for controlled and adequate oxygen supply and provides immunological protection of donor islets against the host immune system. The minimally invasive implantable chamber normalized blood glucose in streptozotocin-induced diabetic rodents for up to 3 mo. Sufficient graft function depended on oxygen supply. Pretreatment with the growth hormone-releasing hormone (GHRH) agonist, JI-36, significantly enhanced graft function by improving glucose tolerance and increasing β-cell insulin reserve in rats thereby allowing for a reduction of the islet mass required for metabolic control. As a result of hypervascularization of the tissue surrounding the device, no relevant delay in insulin response to glucose changes has been observed. Consequently, this system opens up a fundamental strategy for therapy of diabetes and may provide a promising avenue for future approaches to xenotransplantation. PMID:22393012

  14. Vascular Effects of Estrogenic Menopausal Hormone Therapy

    PubMed Central

    Reslan, Ossama M.; Khalil, Raouf A.

    2011-01-01

    Cardiovascular disease (CVD) is more common in men and postmenopausal women (Post-MW) than premenopausal women (Pre-MW). Despite recent advances in preventive measures, the incidence of CVD in women has shown a rise that matched the increase in the Post-MW population. The increased incidence of CVD in Post-MW has been related to the decline in estrogen levels, and hence suggested vascular benefits of endogenous estrogen. Experimental studies have identified estrogen receptor ERα, ERβ and a novel estrogen binding membrane protein GPR30 (GPER) in blood vessels of humans and experimental animals. The interaction of estrogen with vascular ERs mediates both genomic and non-genomic effects. Estrogen promotes endothelium-dependent relaxation by increasing nitric oxide, prostacyclin, and hyperpolarizing factor. Estrogen also inhibits the mechanisms of vascular smooth muscle (VSM) contraction including [Ca2+]i, protein kinase C and Rho-kinase. Additional effects of estrogen on the vascular cytoskeleton, extracellular matrix, lipid profile and the vascular inflammatory response have been reported. In addition to the experimental evidence in animal models and vascular cells, initial observational studies in women using menopausal hormonal therapy (MHT) have suggested that estrogen may protect against CVD. However, randomized clinical trials (RCTs) such as the Heart and Estrogen/progestin Replacement Study (HERS) and the Women’s Health Initiative (WHI), which examined the effects of conjugated equine estrogens (CEE) in older women with established CVD (HERS) or without overt CVD (WHI), failed to demonstrate protective vascular effects of estrogen treatment. Despite the initial set-back from the results of MHT RCTs, growing evidence now supports the ‘timing hypothesis’, which suggests that MHT could increase the risk of CVD if started late after menopause, but may produce beneficial cardiovascular effects in younger women during the perimenopausal period. The choice of

  15. Central neurogenic diabetes insipidus, syndrome of inappropriate secretion of antidiuretic hormone, and cerebral salt-wasting syndrome in traumatic brain injury.

    PubMed

    John, Cynthia A; Day, Michael W

    2012-04-01

    Central neurogenic diabetes insipidus, syndrome of inappropriate secretion of antidiuretic hormone, and cerebral salt-wasting syndrome are secondary events that affect patients with traumatic brain injury. All 3 syndromes affect both sodium and water balance; however, they have differences in pathophysiology, diagnosis, and treatment. Differentiating between hypernatremia (central neurogenic diabetes insipidus) and the 2 hyponatremia syndromes (syndrome of inappropriate secretion of antidiuretic hormone, and cerebral salt-wasting syndrome) is critical for preventing worsening neurological outcomes in patients with head injuries.

  16. Control of Pituitary Thyroid-stimulating Hormone Synthesis and Secretion by Thyroid Hormones during Xenopus Metamorphosis

    EPA Science Inventory

    Serum thyroid hormone (TH) concentrations in anuran larvae rise rapidly during metamorphosis. Such a rise in an adult anuran would inevitably trigger a negative feedback response resulting in decreased synthesis and secretion of thyroid-stimulating hormone (TSH) by the pituitary....

  17. Growth Hormone Research Society perspective on the development of long-acting growth hormone preparations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Growth Hormone (GH) Research Society (GRS) convened a workshop to address important issues regarding trial design, efficacy, and safety of long-acting growth hormone preparations (LAGH). A closed meeting of 55 international scientists with expertise in GH, including pediatric and adult endocrino...

  18. Resistance to growth hormone releasing hormone and gonadotropins in Albright's hereditary osteodystrophy.

    PubMed

    Mantovani, Giovanna; Spada, Anna

    2006-05-01

    Heterozygous inactivating mutations in the Gs alpha gene cause Albright's hereditary osteo-dystrophy (AHO). Consistent with the observation that only maternally inherited mutations lead to resistance to hormone action (pseudohypoparathyroidism type Ia [PHP-Ia), recent studies have provided evidence for a predominant maternal origin of Gs alpha transcripts in endocrine organs, such as thyroid, gonad and pituitary. Accordingly, patients with PHP-Ia display variable degrees of resistance to parathyroid hormone (PTH), thyroid stimulating hormone (TSH), gonadotropins and growth hormone (GH) releasing hormone (GHRH). Although the incidence and the clinical and biochemical characteristics of PTH and TSH resistance have been widely investigated and described, the cause and significance of the reproductive dysfunction in AHO is still poorly understood. The clinical finding of alterations of GH secretion in these patients was described for the first time only 2 years ago. The present report briefly reviews the literature focusing on the actual knowledge about these last two subjects.

  19. Negative regulation of parathyroid hormone-related protein expression by steroid hormones.

    PubMed

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-04-15

    Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor α, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  20. Insulin Plant (Costus pictus) Extract Restores Thyroid Hormone Levels in Experimental Hypothyroidism

    PubMed Central

    Ashwini, S.; Bobby, Zachariah; Sridhar, M. G.; Cleetus, C. C.

    2017-01-01

    Background: The aim of the present study was to investigate the preventive effect of Costus pictus leaf extract in experimental hypothyroidism. Materials and Methods: Forty male Wistar rats were randomly divided into four groups with ten rats in each group: Control (C), hypothyroid (H), control+extract (C+E), and hypothyroid+extract (H+E). Rats in C group did not receive any intervention throughout the experimental period. The rats in the C+E and H+E groups received pretreatment with C. pictus leaf extract for 4 weeks. Subsequently, for the next 6 weeks, rats in the H group received 0.05% propylthiouracil in drinking water while C+E group received C. pictus leaf extract and H+E group received propyl thiouracil and C. pictus leaf extract. Results: Hypothyroid group rats exhibited dramatic increase in thyroid-stimulating hormone (TSH) levels with concomitant depletion in the levels of thyroid hormones. Treatment with the extract resulted in remarkable improvement in thyroid profile. Extract produced 10.59-fold increase in plasma free T3, 8.65-fold increase in free T4, and 3.59-fold decrease in TSH levels in H+E group in comparison with H group. Treatment with the extract ameliorated hypercholesterolemia, decreased levels of plasma C-reactive protein and tumor necrosis factor alpha, suppressed tissue oxidative stress and prevented hepatic and renal damage caused due to thyroid hormone depletion in the H+E group. Pentacyclic triterpenes alpha and beta amyrins were identified and quantified in the extract. Conclusions: This is the first study to reveal that C. pictus extract has therapeutic potential to restore thyroid hormone levels and prevent the biochemical complications due to thyroid hormone insufficiency in the animal model of experimental hypothyroidism. SUMMARY The preventive effect of Costus pictus leaf extract in experimental hypothyroidism was evaluated in the present study.Hypothyroidism was induced in the experimental animals by giving 0

  1. Hormonal Treatment of Metastases of Renal Carcinoma

    PubMed Central

    van der Werf-Messing, B.; van Gilse, H. A.

    1971-01-01

    A series of 33 patients with metastatic renal cancer and evidence of progression of the disease—apart from pulmonary metastases—was treated with hormones (progestogens in 31 cases, androgens in 2 cases) at the Rotterdamsch Radio-Therapeutisch Instituut. Complete or partial spontaneous regression (or non-progression of pulmonary metastases) before hormone treatment was observed in 8 patients (24%). A favourable subjective response to hormone treatment was obtained in 12 patients (36%), while a positive objective response was obtained in 2 (or 3) cases (6-9%). A favourable response was obtained slightly more frequently in men than in women. The hormonal effect was not demonstrably related to any of the following factors: age of the patient, type of progestogen used, the behaviour of concomitant pulmonary metastases, or the presence or absence of the primary growth. The prognosis was unaffected by hormone therapy, but the 2 year survival rate was significantly higher in patients that showed signs of spontaneous regression of pulmonary metastases, as compared with those without these signs. ImagesFig. 1 PMID:5144516

  2. Hormonal treatment of metastases of renal carcinoma.

    PubMed

    van der Werf-Messing, B; van Gilse, H A

    1971-09-01

    A series of 33 patients with metastatic renal cancer and evidence of progression of the disease-apart from pulmonary metastases-was treated with hormones (progestogens in 31 cases, androgens in 2 cases) at the Rotterdamsch Radio-Therapeutisch Instituut. Complete or partial spontaneous regression (or non-progression of pulmonary metastases) before hormone treatment was observed in 8 patients (24%). A favourable subjective response to hormone treatment was obtained in 12 patients (36%), while a positive objective response was obtained in 2 (or 3) cases (6-9%).A favourable response was obtained slightly more frequently in men than in women. The hormonal effect was not demonstrably related to any of the following factors: age of the patient, type of progestogen used, the behaviour of concomitant pulmonary metastases, or the presence or absence of the primary growth.The prognosis was unaffected by hormone therapy, but the 2 year survival rate was significantly higher in patients that showed signs of spontaneous regression of pulmonary metastases, as compared with those without these signs.

  3. Hypothalamic effects of thyroid hormones on metabolism.

    PubMed

    Martínez-Sánchez, Noelia; Alvarez, Clara V; Fernø, Johan; Nogueiras, Rubén; Diéguez, Carlos; López, Miguel

    2014-10-01

    Over the past few decades, obesity and its related metabolic disorders have increased at an epidemic rate in the developed and developing world. New signals and factors involved in the modulation of energy balance and metabolism are continuously being discovered, providing potential novel drug targets for the treatment of metabolic disease. A parallel strategy is to better understand how hormonal signals, with an already established role in energy metabolism, work, and how manipulation of the pathways involved may lead to amelioration of metabolic dysfunction. The thyroid hormones belong to the latter category, with dysregulation of the thyroid axis leading to marked alterations in energy balance. The potential of thyroid hormones in the treatment of obesity has been known for decades, but their therapeutic use has been hampered because of side-effects. Data gleaned over the past few years, however, have uncovered new features at the mechanisms of action involved in thyroid hormones. Sophisticated neurobiological approaches have allowed the identification of specific energy sensors, such as AMP-activated protein kinase and mechanistic target of rapamycin, acting in specific groups of hypothalamic neurons, mediating many of the effects of thyroid hormones on food intake, energy expenditure, glucose, lipid metabolism, and cardiovascular function. More extensive knowledge about these molecular mechanisms will be of great relevance for the treatment of obesity and metabolic syndrome.

  4. Hormonal control of sulfate uptake and assimilation.

    PubMed

    Koprivova, Anna; Kopriva, Stanislav

    2016-08-01

    Plant hormones have a plethora of functions in control of plant development, stress response, and primary metabolism, including nutrient homeostasis. In the plant nutrition, the interplay of hormones with responses to nitrate and phosphate deficiency is well described, but relatively little is known about the interaction between phytohormones and regulation of sulfur metabolism. As for other nutrients, sulfate deficiency results in modulation of root architecture, where hormones are expected to play an important role. Accordingly, sulfate deficiency induces genes involved in metabolism of tryptophane and auxin. Also jasmonate biosynthesis is induced, pointing to the need of increase the defense capabilities of the plants when sulfur is limiting. However, hormones affect also sulfate uptake and assimilation. The pathway is coordinately induced by jasmonate and the key enzyme, adenosine 5'-phosphosulfate reductase, is additionally regulated by ethylene, abscisic acid, nitric oxid, and other phytohormones. Perhaps the most intriguing link between hormones and sulfate assimilation is the fact that the main regulator of the response to sulfate starvation, SULFATE LIMITATION1 (SLIM1) belongs to the family of ethylene related transcription factors. We will review the current knowledge of interplay between phytohormones and control of sulfur metabolism and discuss the main open questions.

  5. Metabolic hormones in saliva: origins and functions

    PubMed Central

    Zolotukhin, S.

    2012-01-01

    The salivary proteome consists of thousands of proteins, which include, among others, hormonal modulators of energy intake and output. Although the functions of this prominent category of hormones in whole body energy metabolism are well characterized, their functions in the oral cavity, whether as a salivary component, or when expressed in taste cells, are less studied and poorly understood. The respective receptors for the majority of salivary metabolic hormones have been also shown to be expressed in salivary glands, taste cells, or other cells in the oral mucosa. This review provides a comprehensive account of the gastrointestinal hormones, adipokines, and neuropeptides identified in saliva, salivary glands, or lingual epithelium, as well as their respective cognate receptors expressed in the oral cavity. Surprisingly, few functions are assigned to salivary metabolic hormones, and these functions are mostly associated with the modulation of taste perception. Because of the well-characterized correlation between impaired oral nutrient sensing and increased energy intake and body mass index, a conceptually provocative point of view is introduced, whereupon it is argued that targeted changes in the composition of saliva could affect whole body metabolism in response to the activation of cognate receptors expressed locally in the oral mucosa. PMID:22994880

  6. How to use and interpret hormone ratios.

    PubMed

    Sollberger, Silja; Ehlert, Ulrike

    2016-01-01

    Hormone ratios have become increasingly popular throughout the neuroendocrine literature since they offer a straightforward way to simultaneously analyze the effects of two interdependent hormones. However, the analysis of ratios is associated with statistical and interpretational concerns which have not been sufficiently considered in the context of endocrine research. The aim of this article, therefore, is to demonstrate and discuss these issues, and to suggest suitable ways to address them. In a first step, we use exemplary testosterone and cortisol data to illustrate that one major concern of ratios lies in their distribution and inherent asymmetry. As a consequence, results of parametric statistical analyses are affected by the ultimately arbitrary decision of which way around the ratio is computed (i.e., A/B or B/A). We suggest the use of non-parametric methods as well as the log-transformation of hormone ratios as appropriate methods to deal with these statistical problems. However, in a second step, we also discuss the complicated interpretation of ratios, and propose moderation analysis as an alternative and oftentimes more insightful approach to ratio analysis. In conclusion, we suggest that researchers carefully consider which statistical approach is best suited to investigate reciprocal hormone effects. With regard to the hormone ratio method, further research is needed to specify what exactly this index reflects on the biological level and in which cases it is a meaningful variable to analyze.

  7. [Hormonal treatments for fertility disorders in cattle].

    PubMed

    Gundling, N; Feldmann, M; Hoedemaker, M

    2012-01-01

    In dairy cows, hormonal treatments are commonly implemented for acyclicity, silent heat and endometritis. Before treatment, causes of infertility need to be detected and severe failures in housing, feeding or other diseases must be eliminated. Without sustainable improvement of herd management, the use of intensive hormonal treatments will not improve reproductive performance. The most common cause of anoestrous is silent heat. In cows with a palpable corpus luteum, injection of prostaglandin F2α (PGF) reliably induces oestrous. A satisfactory treatment for acyclicity (ovarian dystrophy, ovarian cysts) does not exist. Combinations of different hormones have greater treatment success than a single use of gonadotrophin releasing hormone (GnRH) or human chorionic gonadotrophin (hCG). Strategic use of PGF during the early postpartum period cannot be recommended because positive effects on uterus involution and resumption of the oestrous cycle after calving have not been verified. In contrast, application of GnRH combined with PGF in the puerperal phase appeared to have positive effects on fertility of cows with endometritis. The same applies to PGF for cows with chronic endometritis. Cases of endometritis with fetid odour of vaginal mucus or isolation of Trueperella pyogenes should be treated with antibiotics. Treatment before the 27th day post partum is not advisable. In conclusion, hormonal treatments can be used to treat fertility disorders. Nevertheless, in order to enhance the reproductive performance at the herd level, a sustainable improvement of the general conditions (housing, feeding, animal health, management) is a prerequisite.

  8. Sex hormones in women with kidney disease.

    PubMed

    Ahmed, Sofia B; Ramesh, Sharanya

    2016-11-01

    Menstrual disorders, infertility and premature menopause are common but often underrecognized phenomena among women with chronic kidney disease. Hypothalamic, rather than ovarian dysfunction, may be the cause of the abnormal reproductive milieu, which can be at least partially reversed by kidney transplantation and increased intensity of hemodialysis. Endogenous sex hormones, and specifically estradiol, appear to be renoprotective in women, although the effects of exogenous estradiol (as an oral contraceptive and postmenopausal hormone therapy) on kidney function are more controversial. Treatment with postmenopausal hormone therapy in women with end-stage kidney disease (ESKD) has been associated with improved quality of life, bone health and markers of cardiovascular risk, as well as an increased risk of arteriovenous access thrombosis. The selective estrogen receptor modulator raloxifene has been associated with both a decreased fracture risk as well as renoprotection in women with kidney disease. Young women with ESKD are more likely to die from infection or develop malignancy, suggesting an immunomodulatory role of estrogen. Whether the premature menopause commonly observed in female patients with kidney disease results in increased cardiovascular morbidity and mortality is unknown, although preliminary studies have suggested a possible therapeutic role for manipulation of the sex hormone milieu to mitigate risk in this population. Large, prospective, randomized studies examining the role of sex hormones in women with kidney disease are required to address the question.

  9. Actions of Thyroid Hormone Analogues on Chemokines

    PubMed Central

    Glinsky, Gennadi V.

    2016-01-01

    The extracellular domain of plasma membrane integrin αvβ3 contains a receptor for thyroid hormone (L-thyroxine, T4; 3,5,3′-triiodo-L-thyronine, T3); this receptor also binds tetraiodothyroacetic acid (tetrac), a derivative of T4. Tetrac inhibits the binding of T4 and T3 to the integrin. Fractalkine (CX3CL1) is a chemokine relevant to inflammatory processes in the CNS that are microglia-dependent but also important to normal brain development. Expression of the CX3CL1 gene is downregulated by tetrac, suggesting that T4 and T3 may stimulate fractalkine expression. Independently of its specific receptor (CX3CR1), fractalkine binds to αvβ3 at a site proximal to the thyroid hormone-tetrac receptor and changes the physical state of the integrin. Tetrac also affects expression of the genes for other CNS-relevant chemokines, including CCL20, CCL26, CXCL2, CXCL3, and CXCL10. The chemokine products of these genes are important to vascularity of the brain, particularly of the choroid plexus, to inflammatory processes in the CNS and, in certain cases, to neuroprotection. Thyroid hormones are known to contribute to regulation of each of these CNS functions. We propose that actions of thyroid hormone and hormone analogues on chemokine gene expression contribute to regulation of inflammatory processes in brain and of brain blood vessel formation and maintenance. PMID:27493972

  10. The common molecular players in plant hormone crosstalk and signaling.

    PubMed

    Ohri, Puja; Bhardwaj, Renu; Bali, Shagun; Kaur, Ravinderjit; Jasrotia, Shivam; Khajuria, Anjali; Parihar, Ripu D

    2015-01-01

    Plant growth and development is under the control of mutual interactions among plant hormones. The five classical categories of plant hormones include auxins, cytokinins, gibberellins, abscisic acid and ethylene. Additionally, newer classes of plant hormones have been recognized like brassinosteroids, jasmonic acid, salicylic acid and polyamines. These hormones play significant roles in regulating the plant growth and development. Various receptors and key signaling components of these hormones have been studied and identified. At genetic level, crosstalk among the various plant hormones is found to be antagonistic or synergistic. In addition, components of signaling pathway of one plant hormone interact with the signaling components of other hormone. Thus, an attempt has been made to review the literature regarding the role of plant hormones in plant physiology and the common molecular players in their signaling and crosstalk.

  11. Thyroid hormone signaling in energy homeostasis and energy metabolism

    PubMed Central

    McAninch, Elizabeth A.; Bianco, Antonio C.

    2014-01-01

    The thyroid hormone plays a significant role in diverse processes related to growth, development, differentiation, and metabolism. Thyroid hormone signaling modulates energy expenditure through both central and peripheral pathways. At the cellular level, the thyroid hormone exerts its effects after concerted mechanisms facilitate binding to the thyroid hormone receptor. In the hypothalamus, signals from a range of metabolic pathways, including appetite, temperature, afferent stimuli via the autonomic nervous system, availability of energy substrates, hormones, and other biologically active molecules, converge to maintain plasma thyroid hormone at the appropriate level to preserve energy homeostasis. At the tissue level, thyroid hormone actions on metabolism are controlled by transmembrane transporters, deiodinases, and thyroid hormone receptors. In the modern environment, humans are susceptible to an energy surplus, which has resulted in an obesity epidemic and thus understanding the contribution of the thyroid hormone to cellular and organism metabolism is increasingly relevant. PMID:24697152

  12. Gonadotropin-releasing hormone, estradiol, and inhibin regulation of follicle-stimulating hormone and luteinizing hormone surges: implications for follicle emergence and selection in heifers.

    PubMed

    Haughian, James M; Ginther, O J; Diaz, Francisco J; Wiltbank, Milo C

    2013-06-01

    Mechanisms regulating gonadotropin surges and gonadotropin requirements for follicle emergence and selection were studied in heifers. Experiment 1 evaluated whether follicular inhibins regulate the preovulatory luteinizing hormone (LH)/follicle-stimulating hormone (FSH) surges elicited by gonadotropin-releasing hormone (GnRH) injection (Hour = 0) and the subsequent periovulatory FSH surge. Treatments included control (n = 6), steroid-depleted bovine follicular fluid (bFF) at Hour -4 (n = 6), and bFF at Hour 6 (n = 6). Gonadotropins in blood were assessed hourly from Hours -6 to 36, and follicle growth tracked by ultrasound. Consistent with inhibin independence, bFF at Hour -4 did not impact the GnRH-induced preovulatory FSH surge, whereas treatment at Hour 6 delayed onset of the periovulatory FSH surge and impeded growth of a new follicular wave. Experiment 2 examined GnRH and estradiol (E2) regulation of the periovulatory FSH surge. Treatment groups were control (n = 8), GnRH-receptor antagonist (GnRHr-ant, n = 8), and E2 + GnRHr-ant (n = 4). GnRHr-ant (acyline) did not reduce the concentrations of FSH during the periovulatory surge and early follicle development (<7.0 mm) was unaffected, although subsequent growth of a dominant follicle (>8.0 mm) was prevented by GnRHr-ant. Addition of E2 delayed both the onset of the periovulatory FSH surge and emergence of a follicular wave. Failure to select a dominant follicle in the GnRHr-ant group was associated with reduced concentrations of LH but not FSH. Maximum diameter of F1 in controls (13.3 ± 0.5 mm) was greater than in both GnRHr-ant (7.7 ± 0.3 mm) and E2 + GnRHr-ant (6.7 ± 0.8 mm) groups. Results indicated that the periovulatory FSH surge stems from removal of negative stimuli (follicular E2 and inhibin), but is independent of GnRH stimulation. Emergence and early growth of follicles (until about 8 mm) requires the periovulatory FSH surge but not LH pulses. However, follicular deviation and late-stage growth of

  13. Osteoporosis and its association with non-gonadal hormones involved in hypertension, adiposity and hyperglycaemia.

    PubMed

    Poudyal, Hemant; Brown, Lindsay

    2013-12-01

    Osteoporosis is a high-prevalence disease, particularly in developed countries, and results in high costs both to the individual and to society through associated fragility fractures. There is an urgent need for identification of novel drug targets and development of new anti-osteoporotic agents. Between 30 and 80% of osteoporotic fractures cannot be prevented despite current treatments achieving relative fracture risk reduction of up to 20%, 50%, and 70% for non-vertebral, hip and spine fractures, respectively. Traditionally, the decline in gonadal hormones has been studied as the sole hormonal determinant for the loss of bone mineral density in osteoporosis. However, recent studies have identified receptors for numerous non-gonadal hormones such as PTH, angiotensin II, leptin, adiponectin, insulin and insulin-like growth factor-1 on the osteoblast lineage cells that directly regulate bone turnover. These hormones are also involved in the pathogenesis of metabolic syndrome risk factors, particularly hypertension, type-II diabetes and obesity. By activating their respective receptors on osteoblastic lineage cells, these hormones appear to act through a common mechanism by down-regulating receptors for activation of nuclear factor kappa B ligand (RANKL) and up-regulating osteoprotegerin (OPG) with inverse responses for adiponectin. Receptors for amylin, gastric inhibitory polypeptide and ghrelin and have also been identified on the osteoblast lineage cells although the roles of these receptors in bone turnover are controversial or poorly studied. Moreover, bone turnover may be independently regulated by modulation of osteoclast-osteoblast function and bone marrow adiposity. Leptin appears to be the only hormone that is a known regulator of both bone mineralisation and bone adiposity.

  14. Targeted Therapy for Breast Cancer Prevention

    PubMed Central

    den Hollander, Petra; Savage, Michelle I.; Brown, Powel H.

    2013-01-01

    With a better understanding of the etiology of breast cancer, molecularly targeted drugs have been developed and are being testing for the treatment and prevention of breast cancer. Targeted drugs that inhibit the estrogen receptor (ER) or estrogen-activated pathways include the selective ER modulators (tamoxifen, raloxifene, and lasofoxifene) and aromatase inhibitors (AIs) (anastrozole, letrozole, and exemestane) have been tested in preclinical and clinical studies. Tamoxifen and raloxifene have been shown to reduce the risk of breast cancer and promising results of AIs in breast cancer trials, suggest that AIs might be even more effective in the prevention of ER-positive breast cancer. However, these agents only prevent ER-positive breast cancer. Therefore, current research is focused on identifying preventive therapies for other forms of breast cancer such as human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancer (TNBC, breast cancer that does express ER, progesterone receptor, or HER2). HER2-positive breast cancers are currently treated with anti-HER2 therapies including trastuzumab and lapatinib, and preclinical and clinical studies are now being conducted to test these drugs for the prevention of HER2-positive breast cancers. Several promising agents currently being tested in cancer prevention trials for the prevention of TNBC include poly(ADP-ribose) polymerase inhibitors, vitamin D, and rexinoids, both of which activate nuclear hormone receptors (the vitamin D and retinoid X receptors). This review discusses currently used breast cancer preventive drugs, and describes the progress of research striving to identify and develop more effective preventive agents for all forms of breast cancer. PMID:24069582

  15. Treating prolactinoma can prevent autoimmune diseases.

    PubMed

    Watad, Abdulla; Versini, Mathilde; Jeandel, Pierre-Yves; Amital, Howard; Shoenfeld, Yehuda

    2015-04-01

    Prolactin (PRL) is a pleiotropic hormone; in addition to a wide variety of endocrine effects, PRL also exhibits immunostimulating effects. Therefore, there is increasing evidence linking PRL with a large number of systemic and organ specific autoimmune diseases. Herein, we report the case of an adolescent girl diagnosed with multiple sclerosis (MS) occurring in the context of untreated prolactinoma evolving since childhood. This raises the exciting question of the involvement of PRL in the pathogenesis of MS. It is likely that early treatment of hyperprolactinemia in this case would have significantly reduced the risk of developing MS or even prevented its occurrence.

  16. Polio and Prevention

    MedlinePlus

    ... Essays Photo Collections Videos Polio Today → Polio + Prevention Polio + Prevention Polio and prevention Polio is a crippling ... for poliovirus within 48 hours of onset. Bulbar polio More extensive paralysis, involving the trunk and muscles ...

  17. Preventing Deep Vein Thrombosis

    MedlinePlus

    ... Education & Events Advocacy For Patients About ACOG Preventing Deep Vein Thrombosis Home For Patients Search FAQs Preventing ... Vein Thrombosis FAQ174, August 2011 PDF Format Preventing Deep Vein Thrombosis Women's Health What is deep vein ...

  18. National Suicide Prevention Lifeline

    MedlinePlus

    ... Best Practices Our Network Media Resources National Suicide Prevention Lifeline We can all help prevent suicide. The ... The Lifeline Everyone Plays A Role In Suicide Prevention Here are some helpful links: GET HELP NOW ...

  19. [Postmenopausal hormone replacement therapy and the cardiovascular system].

    PubMed

    Yildirir, Aylin

    2010-03-01

    Women suffer from cardiovascular diseases 10 years later than men, therefore female sex has been considered to be a 'protective factor'. However, the risk in women increases rapidly after menopause and the declining levels of endogenous estrogen is thought to be responsible. Postmenopausal hormone replacement therapy (HRT) decreases the severity and intensity of menopausal symptoms and improves women's quality of life. Until the last 10 years, based on the results of observational studies, postmenopausal HRT was thought to protect women against cardiovascular events and decrease the risk of coronary artery disease by 35-50%. However, recent randomized primary and secondary prevention trials did not support the cardioprotective effect of HRT. The different results of observational and randomized controlled trials are discussed to be related to the differences in the study population. The study population in observational and prospective cohort studies included relatively young women at the earlier stages of menopause, whereas studies showing neutral or negative effects of HRT included women older than 50 years old at least 10 years in menopause. Furthermore, the effects of estrogen depend on the state of vascular pathology. In relatively healthy vessels with no or early signs of atherosclerosis, estrogen prevent the development or progression of atherosclerotic lesions, whereas in the presence of established atherosclerotic lesions, estrogen promotes atherosclerosis or may even trigger acute events. Therefore, it is critically important to predict which women can safely receive HRT and which are at increased risk from HRT. Under the light of current knowledge, HRT should not be used for prevention from cardiovascular disease in postmenopausal women and the many other preventive strategies, (diet, exercise, blood pressure or cholesterol control) that are proven to be effective but underused, should be kept in mind.

  20. Gravitational effects on plant growth hormone concentration

    NASA Technical Reports Server (NTRS)

    Bandurski, R. S.; Schulze, A.

    1983-01-01

    Dolk's (1936) finding that more growth hormone diffuses from the lower side of a gravity-stimulated plant shoot than from the upper side is presently confirmed by means of both an isotope dilution assay and selected ion monitoring-gas chromatography-mass spectrometry, and it is established that the asymmetrically distributed hormone is indole-3-acetic acid (IAA). This is the first physicochemical demonstration that there is more IAA on the lower sides of a geostimulated plant shoot. It is also found that free IAA primarily occurs in the conductive vascular tissues of the shoot, while IAA esters predominate in the growing cortical cells. A highly sensitive gas chromatographic isotope dilution assay shows that the hormone asymmetry also occurs in the nonvascular tissue.

  1. Steroid hormone sulphation in lead workers.

    PubMed Central

    Apostoli, P; Romeo, L; Peroni, E; Ferioli, A; Ferrari, S; Pasini, F; Aprili, F

    1989-01-01

    The metabolism of steroid hormones has been investigated in 10 workers exposed to lead and in 10 non-exposed subjects to determine whether lead interferes with the first or second phase reactions of steroid hormone biotransformation, or both. In the exposed workers blood lead concentrations (PbB) ranged from 45 to 69 micrograms/100 ml; in the controls PbB was less than 25 micrograms/100 ml. No statistical differences were found for the total amount of the urinary hormone metabolites, but a drop of about 50% was observed for the sulphated portion. It is suggested that lead interferes with the mechanisms of sulphoconjugation through an effect on the cytosol enzymes sulphotransferase and sulphokinase. PMID:2930732

  2. Thyroid hormone and seasonal regulation of reproduction.

    PubMed

    Yoshimura, Takashi

    2013-08-01

    Organisms living outside the tropics use changes in photoperiod to adapt to seasonal changes in the environment. Several models have contributed to an understanding of this mechanism at the molecular and endocrine levels. Subtropical birds are excellent models for the study of these mechanisms because of their rapid and dramatic response to changes in photoperiod. Studies of birds have demonstrated that light is perceived by a deep brain photoreceptor and long day-induced thyrotropin (TSH) from the pars tuberalis (PT) of the pituitary gland causes local thyroid hormone activation within the mediobasal hypothalamus (MBH). The locally generated bioactive thyroid hormone, T₃, regulates seasonal gonadotropin-releasing hormone (GnRH) secretion, and hence gonadotropin secretion. In mammals, the eyes are the only photoreceptor involved in photoperiodic time perception and nocturnal melatonin secretion provides an endocrine signal of photoperiod to the PT to regulate TSH. Here, I review the current understanding of the hypothalamic mechanisms controlling seasonal reproduction in mammals and birds.

  3. Thyroid Hormones, Oxidative Stress, and Inflammation.

    PubMed

    Mancini, Antonio; Di Segni, Chantal; Raimondo, Sebastiano; Olivieri, Giulio; Silvestrini, Andrea; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases.

  4. Strigolactones: a new hormone with a past.

    PubMed

    Tsuchiya, Yuichiro; McCourt, Peter

    2009-10-01

    The recent discovery of an endogenous hormonal activity for strigolactones in shoot branching was surprising since these molecules were thought to mostly play roles as signaling molecules between organisms. Even in the context of plant hormones, strigolactones appear to be different in that their role in plant development is quite restricted. This most probably reflects early days and new hormonal functions will most probably be found for these compounds in the future. In this respect, the exogenous role of strigolactones in parasitic plant seed germination may hint to functions of this compound in seed development. However, showing new roles for strigolactones in the seed or any other aspect of plant development for that matter will require developing assays in model genetic systems such as Arabidopsis and rice where we can take full advantage of the experimental tools that are available.

  5. Thyroid Hormones, Oxidative Stress, and Inflammation

    PubMed Central

    Raimondo, Sebastiano; Olivieri, Giulio; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases. PMID:27051079

  6. The Gut Hormones in Appetite Regulation

    PubMed Central

    Suzuki, Keisuke; Jayasena, Channa N.; Bloom, Stephen R.

    2011-01-01

    Obesity has received much attention worldwide in association with an increased risk of cardiovascular diseases, diabetes, and cancer. At present, bariatric surgery is the only effective treatment for obesity in which long-term weight loss is achieved in patients. By contrast, pharmacological interventions for obesity are usually followed by weight regain. Although the exact mechanisms of long-term weight loss following bariatric surgery are yet to be fully elucidated, several gut hormones have been implicated. Gut hormones play a critical role in relaying signals of nutritional and energy status from the gut to the central nervous system, in order to regulate food intake. Cholecystokinin, peptide YY, pancreatic polypeptide, glucagon-like peptide-1, and oxyntomodulin act through distinct yet synergistic mechanisms to suppress appetite, whereas ghrelin stimulates food intake. Here, we discuss the role of gut hormones in the regulation of food intake and body weight. PMID:21949903

  7. Modification of Chromatin Structure by the Thyroid Hormone Receptor.

    PubMed

    Li; Sachs; Shi; Wolffe

    1999-05-01

    Pioneering experiments and recent observations have established the thyroid hormone receptor as a master manipulator of the chromosomal environment in targeting the activation and repression of transcription. Here we review how the thyroid hormone receptor is assembled into chromatin, where in the absence of thyroid hormone the receptor recruits histone deacetylase to silence transcription. On addition of hormone, the receptor undergoes a conformational change that leads to the release of deacetylase, while facilitating the recruitment of transcriptional coactivators that act as histone acetyltransferases. We discuss the biological importance of these observations for gene control by the thyroid hormone receptor and for oncogenic transformation by the mutated thyroid hormone receptor, v-ErbA.

  8. The role of sex hormones on fibromyalgia pain mediators.

    PubMed

    Bramwell, Bethany L

    2010-01-01

    Understanding the role of the sex hormones in the pain mechanisms and various effects on nociceptors is imperative to managing potential underlying hormone disruptions in chronic pain syndromes. The myriad of overlapping symptoms between mid-life hormone imbalances and mid-life onset of fibromyalgia syndrome in women indicates a role for sex hormones in the etiology of fibromyalgia syndrome, which is, as of yet, unsupported by the literature. However, fibromyalgia treatment should be tailored to the individual needs of the patient, and adrenal, thyroid, and ovarian hormone support can lessen the painful burden of fibromyalgia through the modulation of various hormone-regulated pain-production pathways.

  9. Minireview: Nuclear Receptor-Controlled Steroid Hormone Synthesis and Metabolism

    PubMed Central

    He, Jinhan; Cheng, Qiuqiong; Xie, Wen

    2010-01-01

    Steroid hormones are essential in normal physiology whereas disruptions in hormonal homeostasis represent an important etiological factor for many human diseases. Steroid hormones exert most of their functions through the binding and activation of nuclear hormone receptors (NRs or NHRs), a superfamily of DNA-binding and often ligand-dependent transcription factors. In recent years, accumulating evidence has suggested that NRs can also regulate the biosynthesis and metabolism of steroid hormones. This review will focus on the recent progress in our understanding of the regulatory role of NRs in hormonal homeostasis and the implications of this regulation in physiology and diseases. PMID:19762543

  10. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells.

    PubMed

    Maliza, Rita; Fujiwara, Ken; Tsukada, Takehiro; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2016-06-30

    Retinoic acid (RA) is an important signaling molecule in embryonic development and adult tissue. The actions of RA are mediated by the nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR), which regulate gene expression. RAR and RXR are widely expressed in the anterior pituitary gland. RA was reported to stimulate growth hormone (GH) gene expression in the anterior pituitary cells. However, current evidence is unclear on the role of RA in gene expression of growth hormone-releasing hormone receptor (Ghrh-r), growth hormone secretagogue receptor (Ghs-r) and somatostatin receptors (Sst-rs). Using isolated anterior pituitary cells of rats, we examined the effects of RA on gene expression of these receptors and GH release. Quantitative real-time PCR revealed that treatment with all-trans retinoic acid (ATRA; 10(-6) M) for 24 h increased gene expression levels of Ghrh-r and Ghs-r; however, expressions of Sst-r2 and Sst-r5 were unchanged. Combination treatment with the RAR-agonist Am80 and RXR-agonist PA024 mimicked the effects of ATRA on Ghrh-r and Ghs-r gene expressions. Exposure of isolated pituitary cells to ATRA had no effect on basal GH release. In contrast, ATRA increased growth hormone-releasing hormone (GHRH)- and ghrelin-stimulated GH release from cultured anterior pituitary cells. Our results suggest that expressions of Ghrh-r and Ghs-r are regulated by RA through the RAR-RXR receptor complex and that RA enhances the effects of GHRH and ghrelin on GH release from the anterior pituitary gland.

  11. Receptors for parathyroid hormone and parathyroid hormone-related peptide: from molecular cloning to definition of diseases.

    PubMed

    Jüppner, H; Schipani, E

    1996-07-01

    The parathyroid hormone/parathyroid hormone-related peptide receptor belongs to a distinct family of G protein-coupled receptors, the members of which usually signal through at least two second messenger systems, adenylate cyclase and phospholipase C. The parathyroid hormone/ parathyroid hormone-related peptide receptor is most abundantly expressed in bone, kidney and growth-plate chondrocytes, and, at lower levels, in a variety of fetal and adult tissues. To search for human diseases that are caused by parathyroid hormone/parathyroid hormone-related peptide receptor defects, genomic DNA of patients with pseudohypoparathyroidism type Ib and of patients with Jansen's metaphyseal chondrodysplasia was screened for mutations in all coding exons of the receptor gene. Inactivating parathyroid hormone/parathyroid hormone-related peptide receptor mutations were excluded in patients with pseudohypoparathyroidism type Ib. However, a receptor mutation that causes agonist-independent, constitutive cAMP accumulation was identified in a patient with Jansen's metaphyseal chondrodysplasia, a rare form of short-limbed dwarfism associated with hypercalcemia despite normal or low concentrations of parathyroid hormone and parathyroid hormone-related peptide. These findings allow the conclusion to be drawn that parathyroid hormone/parathyroid hormone-related peptide receptors mediate the endocrine actions of parathyroid hormone, which are required for the control of calcium homeostasis and the autocrine-paracrine actions of parathyroid hormone-related peptide, which are required for normal growth-plate development.

  12. Plant Biology. Hormones and the green revolution.

    PubMed

    Salamini, Francesco

    2003-10-03

    The success of the green revolution largely resulted from the creation of dwarf cultivars of wheat and rice, which had much higher yields than conventional crops. Characterization of these dwarf cultivars showed that the mutant genes were involved in either the synthesis or signaling of gibberellin, a plant growth hormone. In his Perspective, Salamini highlights new work (Multani et al.) that identifies the cause of dwarfism in agronomically important varieties of maize and sorghum. In these cases, dwarfism is caused by defective transport of another growth hormone called auxin.

  13. How sex hormones promote skeletal muscle regeneration.

    PubMed

    Velders, Martina; Diel, Patrick

    2013-11-01

    Skeletal muscle regeneration efficiency declines with age for both men and women. This decline impacts on functional capabilities in the elderly and limits their ability to engage in regular physical activity and to maintain independence. Aging is associated with a decline in sex hormone production. Therefore, elucidating the effects of sex hormone substitution on skeletal muscle homeostasis and regeneration after injury or disuse is highly relevant for the aging population, where sarcopenia affects more than 30 % of individuals over 60 years of age. While the anabolic effects of androgens are well known, the effects of estrogens on skeletal muscle anabolism have only been uncovered in recent times. Hence, the purpose of this review is to provide a mechanistic insight into the regulation of skeletal muscle regenerative processes by both androgens and estrogens. Animal studies using estrogen receptor (ER) antagonists and receptor subtype selective agonists have revealed that estrogens act through both genomic and non-genomic pathways to reduce leukocyte invasion and increase satellite cell numbers in regenerating skeletal muscle tissue. Although animal studies have been more conclusive than human studies in establishing a role for sex hormones in the attenuation of muscle damage, data from a number of recent well controlled human studies is presented to support the notion that hormonal therapies and exercise induce added positive effects on functional measures and lean tissue mass. Based on the fact that aging human skeletal muscle retains the ability to adapt to exercise with enhanced satellite cell activation, combining sex hormone therapies with exercise may induce additive effects on satellite cell accretion. There is evidence to suggest that there is a 'window of opportunity' after the onset of a hypogonadal state such as menopause, to initiate a hormonal therapy in order to achieve maximal benefits for skeletal muscle health. Novel receptor subtype selective

  14. New active series of growth hormone secretagogues.

    PubMed

    Guerlavais, Vincent; Boeglin, Damien; Mousseaux, Delphine; Oiry, Catherine; Heitz, Annie; Deghenghi, Romano; Locatelli, Vittorio; Torsello, Antonio; Ghé, Corrado; Catapano, Filomena; Muccioli, Giampiero; Galleyrand, Jean-Claude; Fehrentz, Jean-Alain; Martinez, Jean

    2003-03-27

    New growth hormone secretagogue (GHS) analogues were synthesized and evaluated for growth hormone releasing activity. This series derived from EP-51389 is based on a gem-diamino structure. Compounds that exhibited higher in vivo GH-releasing potency than hexarelin in rat (subcutaneous administration) were then tested per os in beagle dogs and for their binding affinity to human pituitary GHS receptors and to hGHS-R 1a. Compound 7 (JMV 1843, H-Aib-(d)-Trp-(d)-gTrp-formyl) showed high potency in these tests and was selected for clinical studies.(1)

  15. Calcitonin-like diuretic hormones in insects.

    PubMed

    Zandawala, Meet

    2012-10-01

    Insect neuropeptides control various biological processes including growth, development, homeostasis and reproduction. The calcitonin-like diuretic hormone (CT/DH) is one such neuropeptide that has been shown to affect salt and water transport by Malpighian tubules of several insects. With an increase in the number of sequenced insect genomes, CT/DHs have been predicted in several insect species, making it easier to characterize the gene encoding this hormone and determine its function in the species in question. This mini review summarizes the current knowledge on insect CT/DHs, focusing on mRNA and peptide structures, distribution patterns, physiological roles, and receptors in insects.

  16. Gut hormone GPCRs: structure, function, drug discovery.

    PubMed

    Cordomí, Arnau; Fourmy, Daniel; Tikhonova, Irina G

    2016-12-01

    Crystallization and determination of the high resolution three-dimensional structure of the β2-adrenergic receptor in 2007 was followed by structure elucidation of a number of other receptors, including those for neurotensin and glucagon. These major advances foster the understanding of structure-activity relationship of these receptors and structure-based rational design of new ligands having more predictable activity. At present, structure determination of gut hormone receptors in complex with their ligands (natural, synthetic) and interacting signalling proteins, for example, G-proteins, arrestins, represents a challenge which promises to revolutionize gut hormone endocrinonology.

  17. Hypopituitarism: growth hormone and corticotropin deficiency.

    PubMed

    Capatina, Cristina; Wass, John A H

    2015-03-01

    This article presents an overview of adult growth hormone deficiency (AGHD) and corticotropin deficiency (central adrenal failure, CAI). Both conditions can result from various ailments affecting the hypothalamus or pituitary gland (most frequently a tumor in the area or its treatment). Clinical manifestations are subtle in AGHD but potentially life-threatening in CAI. The diagnosis needs dynamic testing in most cases. Treatment of AGHD is recommended in patients with documented severe deficiency, and treatment of CAI is mandatory in all cases. Despite significant progress in replacement hormonal therapy, more physiologic treatments and more reliable indicators of treatment adequacy are still needed.

  18. Insulin sensitivity and counter-regulatory hormones in hypothyroidism and during thyroid hormone replacement therapy.

    PubMed

    Stanická, Sona; Vondra, Karel; Pelikánová, Terezie; Vlcek, Petr; Hill, Martin; Zamrazil, Václav

    2005-01-01

    We examined insulin sensitivity and secretion, together with the levels of selected glucoregulatory hormones, in 15 female patients with severe hypothyroidism (H) and during subsequent thyroid hormone replacement therapy (HRT) using the euglycaemic hyperinsulinaemic clamp technique. Insulin action, as evaluated by glucose disposal, the insulin sensitivity index, and fasting post-hepatic insulin delivery rate were established. The basal levels of insulin, C-peptide and counter-regulatory hormones were measured in basal condition. In H, glucose disposal (p<0.01), the insulin sensitivity index (p<0.01) and post-hepatic insulin delivery rate (p<0.05) were significantly lower than during HRT. No significant changes in the levels of fasting insulin and C-peptide were observed. The levels of counter-regulatory hormones in patients with H were significantly higher than during HRT (glucagon, p<0.05; epinephrine, p<0.01; cortisol, p<0.05; growth hormone, p<0.05). In H, an inverse correlation between insulin sensitivity and insulin secretion was observed (p<0.05). Cortisol was the most important factor affecting the variability of insulin sensitivity values, regardless of thyroid function (p=0.0012). In conclusion, H altered both insulin sensitivity and the levels of selected counter-regulatory hormones. The situation was restored by HRT, as manifested not only by normalisation of insulin sensitivity, secretion and levels of glucoregulatory hormones, but also by improvement of their relationships.

  19. Sex, hormones and neurogenesis in the hippocampus: hormonal modulation of neurogenesis and potential functional implications.

    PubMed

    Galea, L A M; Wainwright, S R; Roes, M M; Duarte-Guterman, P; Chow, C; Hamson, D K

    2013-11-01

    The hippocampus is an area of the brain that undergoes dramatic plasticity in response to experience and hormone exposure. The hippocampus retains the ability to produce new neurones in most mammalian species and is a structure that is targeted in a number of neurodegenerative and neuropsychiatric diseases, many of which are influenced by both sex and sex hormone exposure. Intriguingly, gonadal and adrenal hormones affect the structure and function of the hippocampus differently in males and females. Adult neurogenesis in the hippocampus is regulated by both gonadal and adrenal hormones in a sex- and experience-dependent way. Sex differences in the effects of steroid hormones to modulate hippocampal plasticity should not be completely unexpected because the physiology of males and females is different, with the most notable difference being that females gestate and nurse the offspring. Furthermore, reproductive experience (i.e. pregnancy and mothering) results in permanent changes to the maternal brain, including the hippocampus. This review outlines the ability of gonadal and stress hormones to modulate multiple aspects of neurogenesis (cell proliferation and cell survival) in both male and female rodents. The function of adult neurogenesis in the hippocampus is linked to spatial memory and depression, and the present review provides early evidence of the functional links between the hormonal modulation of neurogenesis that may contribute to the regulation of cognition and stress.

  20. Negative regulation of parathyroid hormone-related protein expression by steroid hormones

    SciTech Connect

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-04-15

    Highlights: {yields} Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. {yields} Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. {yields} Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor {alpha}, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  1. Bridging progestogens in pregnancy and pregnancy prevention

    PubMed Central

    Micks, Elizabeth; Raglan, Greta B; Schulkin, Jay

    2015-01-01

    Steroid hormones have been in use for more than a half a century as contraceptive agents, and only now are researchers elucidating the biochemical mechanisms of action and non-target effects. Progesterone and synthetic progestins, critical for women's health in the US and internationally, appear to have important effects on immune functioning and other diverse systems. Apart from the contraceptive world is a separate field that is devoted to understanding progesterone in other contexts. Based on research following a development timeline parallel to hormonal contraception, progesterone and 17-hydroxyprogesterone caproate are now administered to prevent preterm birth in high-risk pregnant women. Preterm birth researchers are similarly working to determine the precise biochemical actions and immunological effects of progesterone. Progesterone research in both areas could benefit from increased collaboration and bringing these two bodies of literature together. Progesterone, through actions on various hormone receptors, has lifelong importance in different organ systems and researchers have much to learn about this molecule from the combination of existing literatures, and from future studies that build on this combined knowledge base. PMID:26581227

  2. HORMONE STUDIES WITH THE ULTRACENTRIFUGE

    PubMed Central

    Chiles, James A.; Severinghaus, Aura E.

    1938-01-01

    1. An ultracentrifuge is described in which the rotor is driven by a compressed air turbine, and is spun in an evacuated chamber to minimize friction and heating. The rotating parts are supported by a cushion of air in an air bearing. 2. The centrifuge rotor holds 10 test tubes inclined at 45° to the axis, and has a capacity of 55 cc. It is operated at a maximum speed of 51,000 R.P.M., which develops at the top of the fluid column in the test tubes a centrifugal field of over 100,000 times gravity, and at the bottom of the fluid column a field of over 200,000 times gravity. 3. By means of a reverse turbine, the rotor can be brought to a stop from full speed in a relatively short time. 4. A precession damping device is described, which effectively damps the precession and wobbling of the rotor that usually occurs at certain speeds in machines of this type. 5. A relatively long section of shaft is used between the centrifuge rotor and lower bearings. This prevents vibrations from being appreciably transmitted through the shaft to the lower bearings and driving mechanism, and results in a negligible wear on the bearings. 6. The driving mechanism is designed so that the positions of its parts are adjustable, and so that the driving mechanism may be dismantled without disturbing these adjustments. PMID:19870769

  3. Effect of ethanolic extract of Lepidium meyenii Walp on serum hormone levels in ovariectomized rats

    PubMed Central

    Zhang, Yongzhong; Yu, Longjiang; Jin, Wenwen; Ao, Mingzhang

    2014-01-01

    Objective: To evaluate the effect of long-term ethanol extract of Lepidium meyenii (Maca) on serum hormone levels in ovariectomized (OVX) rats and compare them with the effect of diethylstilbestrol. Materials and Methods: Fifty female Sprague-Dawley rats were ovariectomized or sham operated. Both sham and OVX control groups (n = 10, respectively) received the vehicle. The remaining OVX rats were oral administrated with ethanol extract of Maca (0.096, or 0.24g/kg; n = 10, respectively) and diethylstilbestrol (0.05 mg/kg; n = 10). The treatment continued for 28 weeks. At week 12 and week 28, the blood of rats was collected and serum hormone levels, including estradiol (E2), testosterone (T) and follicle-stimulating hormone (FSH) were measured by radioimmunoassay. Results: At week 12, the levels of serum E2 were slightly higher in Maca groups than that in OVX group; T levels were significantly decreased; and FSH levels were advanced slightly in Maca groups than that in sham group. After 28 weeks administration, serum E2 levels in Maca-treated animals did not differ significantly from sham control, the low dose of Maca increased serum E2 levels, and Maca prevented increase in serum FSH levels compared with OVX group. Conclusions: Long-term Maca supply modulates endocrine hormone balance in OVX rats, especially it decreases enhanced FSH levels. It is proposed that Maca may become a potential choice for postmenopausal women. PMID:25097281

  4. Steroid hormone receptors in cancer development: a target for cancer therapeutics.

    PubMed

    Ahmad, Nihal; Kumar, Raj

    2011-01-01

    The steroid hormone receptors (SHRs) are ligand-dependent intracellular transcription factors that are known to influence the development and growth of many human cancers. SHRs pass signals from a steroid/hormone to the target genes by interacting with specific response element DNA sequences and various coregulatory proteins that consists of activators and/or corepressors. Disruptions in physiological functions of SHRs leads to several types of malignancies such as breast cancer, leukemia and lymphoma, prostate cancer, ovarian cancer, and lung cancer among others. Steroids/hormones/SHRs and their coregulators have opened up a unique window for novel steroid-based targeted therapies for cancer. Thus, dysregulation of SHR signaling in cancers compared with normal tissues can be exploited to target drugs that prevent and treat human cancers. In recent years, hormonal therapy has made a major contribution to the treatment of several cancers including reduced recurrence rates and longer survival rates. Development of various steroid receptor modulators and their potential therapeutic efficacies has provided us a great opportunity to effectively manage diseases like cancer in future. In this review article, we have summarized up-to-date knowledge of the role of SHRs in the development and progression of cancers, and potential endocrine-based therapeutic approaches to tackle these diseases.

  5. Controversy of hormone treatment and cardiovascular function: need for strengthened collaborations between preclinical and clinical scientists.

    PubMed

    Miller, Virginia M; Shuster, Lynne T; Hayes, Sharonne N

    2003-10-01

    Over the last five years, there have been several major randomized clinical trials assessing the use of hormone therapy as an adjunct treatment for primary and secondary prevention of cardiovascular disease. Results of these trials have called into question existing dogma from epidemiological and basic science studies that estrogen provides protection against development of cardiovascular disease. When studies are evaluated for design, type and duration of hormone treatment, and outcomes, directions for future research become apparent. Improved hormone formulations and selective estrogen receptor modulators that help to maintain vascular function and limit progression of cardiovascular occlusive disease need to be developed. This will depend upon improved understanding of: (i) the distribution and regulation of estrogen receptors in vascular tissue, (ii) genomic interactions of estrogens and progestins, (iii) association of the estrogen receptor and other genetic polymorphisms with particular vascular functions, and (iv) better definition of timing and dosing for therapeutic intervention. The mechanisms of interactions between coagulation proteins, inflammatory cytokines, platelets and the vessel wall should be defined so that the thrombotic risk for an individual woman can be identified and reduced, and progression of chronic disease processes associated with loss of ovarian hormones can be slowed.

  6. Ovarian hormones, menstrual cycle phase, and smoking: a review with recommendations for future studies

    PubMed Central

    Wetherill, Reagan R.; Franklin, Teresa R.; Allen, Sharon S.

    2016-01-01

    Cigarette smoking continues to be the leading cause of preventable morbidity and mortality. Similar to other addictive substances, the prevalence of cigarette smoking is greater among men than women, yet women are less successful at quitting smoking. Preclinical and clinical research suggests that ovarian hormones (i.e., estradiol and progesterone), which fluctuate over the course of the menstrual cycle, may contribute to these sex differences. Specifically, research suggests that progesterone may protect against cigarette smoking and nicotine addiction; whereas estradiol may underlie enhanced vulnerability. In this review, we discuss new research on ovarian hormone and menstrual cycle phase effects on smoking-related responses and behavior in women, including studies examining neural responses to smoking cues, hormonal influences on medication-assisted smoking cessation, and acute smoking abstinence. We highlight innovative studies with strong research methodology and provide suggestions for future research that may allow evidence-based knowledge for immediate translation to the clinic to guide novel, hormonally-informed treatment strategies. Thus, rigorous scientific study holds the potential to reduce relapse rates, thus improving the health and saving the lives of the many thousands of women who unfortunately do not respond to current treatments. PMID:27134810

  7. Independent contributions of alcohol and stress axis hormones to painful peripheral neuropathy.

    PubMed

    Ferrari, L F; Levine, E; Levine, J D

    2013-01-03

    Painful small-fiber peripheral neuropathy is a debilitating complication of chronic alcohol abuse. Evidence from previous studies suggests that neuroendocrine mechanisms, in combination with other, as yet unidentified actions of alcohol, are required to produce this neuropathic pain syndrome. In addition to neurotoxic effects of alcohol, in the setting of alcohol abuse neuroendocrine stress axes release glucocorticoids and catecholamines. Since receptors for these stress hormones are located on nociceptors, at which they can act to cause neuronal dysfunction, we tested the hypothesis that alcohol and stress hormones act on the nociceptor, independently, to produce neuropathic pain. We used a rat model, which allows the distinction of the effects of alcohol from those produced by neuroendocrine stress axis mediators. We now demonstrate that topical application of alcohol and exposure to unpredictable sound stress, each alone, has no effect on the nociceptive threshold. However, when animals that had previous exposure to alcohol were subsequently exposed to stress, they rapidly developed mechanical hyperalgesia. Conversely, sound stress followed by topical alcohol exposure also produced mechanical hyperalgesia. The contribution of stress hormones was prevented by spinal intrathecal administration of oligodeoxynucleotides antisense to β(2)-adrenergic or glucocorticoid receptor mRNA, which attenuates receptor level in nociceptors, as well as by adrenal medullectomy. These experiments establish an independent role of alcohol and stress hormones on the primary afferent nociceptor in the induction of painful peripheral neuropathy.

  8. Thyrotropin-releasing hormone (TRH) reverses hyperglycemia in rat

    SciTech Connect

    Luo Luguang Luo, John Z.Q. Jackson, Ivor M.D.

    2008-09-12

    Hyperglycemia in thyrotropin-releasing hormone (TRH) null mice indicates that TRH is involved in the regulation of glucose homeostasis. Further, TRH levels in the pancreas peak during the stages of late embryonic and early neonatal {beta} cell development. These observations are consistent in linking TRH to islet cell proliferation and differentiation. In this study, we examined the effect of TRH administration in damaged pancreatic rat (streptozotocin, STZ) to determine whether TRH could improve damaged pancreatic {beta} cells function. We hypothesize that TRH is able to reverse STZ-induced hyperglycemia by increasing pancreatic islet insulin content, preventing apoptosis, and potentially induce islet regeneration. It was found that following intra-peritoneal (ip) injection, TRH (10 {mu}g/kg body weight (bwt)) reverses STZ (65 mg/kg bwt)-induced hyperglycemia (TRH given 3 days after STZ injection). Increased circulating insulin levels and insulin content in extracted pancreas suggests that TRH reversed STZ-induced hyperglycemia through improving pancreatic islet {beta} cell function. Further studies show a significantly lower level of apoptosis in islets treated with TRH as well as the presence of proliferation marker nestin and Brdu, suggesting that the TRH has the potential to prevent apoptosis and stimulate islet proliferation.

  9. Plant hormone signaling during development: insights from computational models.

    PubMed

    Oliva, Marina; Farcot, Etienne; Vernoux, Teva

    2013-02-01

    Recent years have seen an impressive increase in our knowledge of the topology of plant hormone signaling networks. The complexity of these topologies has motivated the development of models for several hormones to aid understanding of how signaling networks process hormonal inputs. Such work has generated essential insights into the mechanisms of hormone perception and of regulation of cellular responses such as transcription in response to hormones. In addition, modeling approaches have contributed significantly to exploring how spatio-temporal regulation of hormone signaling contributes to plant growth and patterning. New tools have also been developed to obtain quantitative information on hormone distribution during development and to test model predictions, opening the way for quantitative understanding of the developmental roles of hormones.

  10. Effects of phenobarbital on thyroid hormone contabolism in rat hepatocytes

    EPA Science Inventory

    Hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations in rodents. PB induction of hepatic xenobiotic metabolizing enzymes increases thyroid hormones catabolism and biliary elimination. This study examines the catabolism and cl...

  11. Unlocking the Secrets of The Love Hormone Kisspeptin

    MedlinePlus

    ... fullstory_163223.html Unlocking the Secrets of the Love Hormone Kisspeptin Injections of the substance might boost ... boost the activity of a hormone linked to love and sex, British researchers report. The naturally occurring ...

  12. Hormone Metabolism During Potato Tuber Dormancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At harvest and for an indeterminate period thereafter potato tubers will not sprout and are physiologically dormant. The length of tuber dormancy is dependent on cultivar and pre- and postharvest environmental conditions. Plant hormones have been shown to be involved in all phases of dormancy prog...

  13. Plant Hormones: How They Affect Root Formation.

    ERIC Educational Resources Information Center

    Reinhard, Diana Hereda

    This science study aid, produced by the U.S. Department of Agriculture, includes a series of plant rooting activities for secondary science classes. The material in the pamphlet is written for students and includes background information on plant hormones, a vocabulary list, and five learning activities. Objectives, needed materials, and…

  14. Effects of thyroid hormones on the heart.

    PubMed

    Vargas-Uricoechea, Hernando; Bonelo-Perdomo, Anilsa; Sierra-Torres, Carlos Hernán

    2014-01-01

    Thyroid hormones have a significant impact on heart function, mediated by genomic and non-genomic effects. Consequently, thyroid hormone deficiencies, as well as excesses, are expected to result in profound changes in cardiac function regulation and cardiovascular hemodynamics. Thyroid hormones upregulate the expression of the sarcoplasmic reticulum calcium-activated ATPase and downregulate the expression of phospholamban. Overall, hyperthyroidism is characterized by an increase in resting heart rate, blood volume, stroke volume, myocardial contractility, and ejection fraction. The development of "high-output heart failure" in hyperthyroidism may be due to "tachycardia-mediated cardiomyopathy". On the other hand, in a hypothyroid state, thyroid hormone deficiency results in lower heart rate and weakening of myocardial contraction and relaxation, with prolonged systolic and early diastolic times. Cardiac preload is decreased due to impaired diastolic function. Cardiac afterload is increased, and chronotropic and inotropic functions are reduced. Subclinical thyroid dysfunction is relatively common in patients over 65 years of age. In general, subclinical hypothyroidism increases the risk of coronary heart disease (CHD) mortality and CHD events, but not of total mortality. The risk of CHD mortality and atrial fibrillation (but not other outcomes) in subclinical hyperthyroidism is higher among patients with very low levels of thyrotropin. Finally, medications such as amiodarone may induce hypothyroidism (mediated by the Wolff-Chaikoff), as well as hyperthyroidism (mediated by the Jod-Basedow effect). In both instances, the underlying cause is the high concentration of iodine in this medication.

  15. Lymphocyte GH-axis hormones in immunity.

    PubMed

    Weigent, Douglas A

    2013-01-01

    The production and utilization of common ligands and their receptors by cells of the immune and neuroendocrine systems constitutes a biochemical information circuit between and within the immune and neuroendocrine systems. The sharing of ligands and receptors allows the immune system to serve as the sixth sense notifying the nervous system of the presence of foreign entities. Within this framework, it is also clear that immune cell functions can be altered by neuroendocrine hormones and that cells of the immune system have the ability to produce neuroendocrine hormones. This review summarizes a part of this knowledge with particular emphasis on growth hormone (GH). The past two decades have uncovered a lot of detail about the actions of GH, acting through its receptor, at the molecular and cellular level and its influence on the immune system. The production and action of immune cell-derived GH is less well developed although its important role in immunity is also slowly emerging. Here we discuss the production of GH, GH-releasing hormone (GHRH) and insulin-like growth factor-1 (IGF-1) and their cognate receptors on cells of the immune system and their influence via endocrine/autocrine/paracrine and intracrine pathways on immune function. The intracellular mechanisms of action of immune cell-derived GH are still largely unexplored, and it is anticipated that further work in this particular area will establish an important role for this source of GH in normal physiology and in pathologic situations.

  16. How Early Hormones Shape Gender Development

    PubMed Central

    Berenbaum, Sheri A.; Beltz, Adriene M.

    2015-01-01

    Many important psychological characteristics show sex differences, and are influenced by sex hormones at different developmental periods. We focus on the role of sex hormones in early development, particularly the differential effects of prenatal androgens on aspects of gender development. Increasing evidence confirms that prenatal androgens have facilitative effects on male-typed activity interests and engagement (including child toy preferences and adult careers), and spatial abilities, but relatively minimal effects on gender identity. Recent emphasis has been directed to the psychological mechanisms underlying these effects (including sex differences in propulsive movement, and androgen effects on interest in people versus things), and neural substrates of androgen effects (including regional brain volumes, and neural responses to mental rotation, sexually arousing stimuli, emotion, and reward). Ongoing and planned work is focused on understanding the ways in which hormones act jointly with the social environment across time to produce varying trajectories of gender development, and clarifying mechanisms by which androgens affect behaviors. Such work will be facilitated by applying lessons from other species, and by expanding methodology. Understanding hormonal influences on gender development enhances knowledge of psychological development generally, and has important implications for basic and applied questions, including sex differences in psychopathology, women’s underrepresentation in science and math, and clinical care of individuals with variations in gender expression. PMID:26688827

  17. Pharmaceuticals and Hormones in the Environment

    EPA Science Inventory

    Some of the earliest initial reports from Europe and the United States demonstrated that a variety of pharmaceuticals and hormones could be found in surface waters, source waters, drinking water, and influents and effluents from wastewater treatment plants (WWTPs). It is unknown...

  18. A short history of hormone measurement.

    PubMed

    Wheeler, Michael J

    2013-01-01

    Huge changes have occurred in the measurement of hormones over the last 50 years or so. Methods have become simplified, sensitivity has increased manyfold, and automation has allowed the analysis of large number of specimens in a single day. The most significant steps in the history of hormone measurement were the development of radioimmunoassay and later the production of monoclonal antibodies. There has also been increased commercialization, the technique has been applied to an ever-increasing range of substances, and radioactive measurement has been replaced with colorimetric, fluorescent, and chemiluminescent end-points. However, all these changes have not been without their problems. Collaboration between laboratories has seen standardization of reagents and methods, the development of reference methods, and the setting up of external quality assurance schemes. All these have led to improved sensitivity, precision, and reliability. More recently tandem mass spectrometry has brought further improvements in the measurement of certain hormones. Although many hormones are now measured by automated systems there is still a place for manual assays whether developed in-house or by using a commercial kit.

  19. Growth Hormone Deficiency, Brain Development, and Intelligence

    ERIC Educational Resources Information Center

    Meyer-Bahlburg, Heino F. L.; And Others

    1978-01-01

    Available from: American Medical Association, 535 N. Dearborn Street, Chicago, Illinois 60610. In order to determine what effect, if any, growth hormone (GH) has on human brain development, 29 patients (mean age 11.7 years) with GH deficiency were selected according to the following criteria: no evidence of reversible GH deficiency, onset of…

  20. Melatonin hormone profile in infertile males.

    PubMed

    Awad, Hosni; Halawa, Fawzy; Mostafa, Taymour; Atta, Hazem

    2006-06-01

    Melatonin is a hormone produced by the pineal gland. There is much controversy about its relationship to the male reproductive process. In this study, seminal plasma as well as the serum melatonin levels were studied in different infertile male groups and were correlated with their semen parameters and hormonal levels. One hundred twenty male cases subdivided into six equal groups were consecutively included; fertile normozoospermic men, oligoasthenozoospermia (OA), OA with leucocytospermia, OA with varicocele, non-obstructive azoospermia (NOA) with high serum follicle stimulating hormone (FSH) and NOA with normal FSH. Semen analysis, estimation of melatonin, FSH, testosterone (T) and prolactin (PRL) hormone was carried out. Mean level of serum melatonin was higher than its corresponding seminal concentrations in all investigated groups with a positive correlation between their levels (r = 0.532, p = 0.01). Serum and seminal plasma melatonin levels in all infertile groups were reduced significantly compared with their levels in the fertile group. The lowest concentrations were in OA with leucocytospermia group. Melatonin in both serum and semen demonstrated significant correlation with sperm motility (r = 607, 0.623 respectively, p = 0.01). Serum melatonin correlated positively with serum PRL (r = 0.611, p = 0.01). It may be concluded that melatonin may be involved in the modulation of reproductive neuroendocrine axis in male infertility. Also, low levels of melatonin in semen were observed in infertile groups having reduced sperm motility, leucocytospermia, varicocele and NOA.

  1. THYROID HORMONE DISRUPTION: FROM KINETICS TO DYNAMICS.

    EPA Science Inventory

    A wide range of chemicals with diverse structures act as thyroid disrupting chemicals (TDCs). Broadly defined, TDCs are chemicals that alter the structure or function of the thyroid gland, alter regulatory enzymes associated with thyroid hormones (THs), or change circulating or t...

  2. Prolactin and growth hormone in fish osmoregulation

    USGS Publications Warehouse

    Sakamoto, T.; McCormick, S.D.

    2006-01-01

    Prolactin is an important regulator of multiple biological functions in vertebrates, and has been viewed as essential to ion uptake as well as reduction in ion and water permeability of osmoregulatory surfaces in freshwater and euryhaline fish. Prolactin-releasing peptide seems to stimulate prolactin expression in the pituitary and peripheral organs during freshwater adaptation. Growth hormone, a member of the same family of hormones as prolactin, promotes acclimation to seawater in several teleost fish, at least in part through the action of insulin-like growth factor I. In branchial epithelia, development and differentiation of the seawater-type chloride cell (and their underlying biochemistry) is regulated by GH, IGF-I, and cortisol, whereas the freshwater-type chloride cell is regulated by prolactin and cortisol. In the epithelia of gastrointestinal tract, prolactin induces cell proliferation during freshwater adaptation, whereas cortisol stimulates both cell proliferation and apoptosis. We propose that control of salinity acclimation in teleosts by prolactin and growth hormone primarily involves regulation of cell proliferation, apoptosis, and differentiation (the latter including upregulation of specific ion transporters), and that there is an important interaction of these hormones with corticosteroids. ?? 2005 Elsevier Inc. All rights reserved.

  3. Growth hormone: health considerations beyond height gain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The therapeutic benefit of growth hormone (GH) therapy in improving height in short children is widely recognized; however, GH therapy is associated with other metabolic actions that may be of benefit in these children. Beneficial effects of GH on body composition have been documented in several dif...

  4. Hormones, nicotine, and cocaine: clinical studies.

    PubMed

    Mello, Nancy K

    2010-06-01

    Nicotine and cocaine each stimulate hypothalamic-pituitary-adrenal and -gonadal axis hormones, and there is increasing evidence that the hormonal milieu may modulate the abuse-related effects of these drugs. This review summarizes some clinical studies of the acute effects of cigarette smoking or IV cocaine on plasma drug and hormone levels and subjective effects ratings. The temporal covariance between these dependent measures was assessed with a rapid (2 min) sampling procedure in nicotine-dependent volunteers or current cocaine users. Cigarette smoking and IV cocaine each stimulated a rapid increase in LH and ACTH, followed by gradual increases in cortisol and DHEA. Positive subjective effects ratings increased immediately after initiation of cigarette smoking or IV cocaine administration. However, in contrast to cocaine's sustained positive effects (<20 min), ratings of "high" and "rush" began to decrease within one or two puffs of a high-nicotine cigarette while nicotine levels were increasing. Peak nicotine levels increased progressively after each of three successive cigarettes smoked at 60 min intervals, but the magnitude of the subjective effects ratings and peak ACTH and cortisol levels diminished. Only DHEA increased consistently after successive cigarettes. The possible influence of neuroactive hormones on nicotine dependence and cocaine abuse and the implications for treatment of these addictive disorders are discussed.

  5. Hormones, Nicotine and Cocaine: Clinical Studies

    PubMed Central

    Mello, Nancy K.

    2009-01-01

    Nicotine and cocaine each stimulate hypothalamic-pituitary-adrenal and -gonadal axis hormones, and there is increasing evidence that the hormonal milieu may modulate the abuse-related effects of these drugs. This review summarizes some clinical studies of the acute effects of cigarette smoking or IV cocaine on plasma drug and hormone levels, and subjective effects ratings. The temporal covariance between these dependent measures was assessed with a rapid (two min) sampling procedure in nicotine-dependent volunteers or current cocaine users. Cigarette smoking and IV cocaine each stimulated a rapid increase in LH and ACTH, followed by gradual increases in cortisol and DHEA. Positive subjective effects ratings increased immediately after initiation of cigarette smoking or IV cocaine administration. However, in contrast to cocaine’s sustained positive effects (< 20 min), ratings of “High” and “Rush” began to decrease within one or two puffs of a high nicotine cigarette while nicotine levels were increasing. Peak nicotine levels increased progressively after each of three successive cigarettes smoked at 60 min intervals, but the magnitude of the subjective effects ratings and peak ACTH and cortisol levels diminished. Only DHEA increased consistently after successive cigarettes. The possible influence of neuroactive hormones on nicotine dependence and cocaine abuse, and implications for treatment of these addictive disorders is discussed. PMID:19835877

  6. Plant hormones and ecophysiology of conifers

    SciTech Connect

    Davies, W.J.

    1995-07-01

    Over the past 30 years, there have been very substantial fluctuations in the interests of plant scientists in the involvement of plant growth regulators in the control of physiology, growth, and development of plants. In the years following the identification of the five major classes of growth regulators and identification of other groups of compounds of somewhat more restricted interest, an enormous number of papers reported the effects of hormones applied externally to a very wide range of plants. During this period, it became very fashionable to compare effects of hormones with the effects of the environment on developmental and physiological phenomena and to suggest a regulatory role for the hormone(s) in the processes under consideration. Ross et al. (1983) have published a very comprehensive survey of the effects of growth regulators applied externally to conifers, and even 10 years later, it is difficult to improve on what they have done. Nevertheless, in the light of recent changes in our understanding of how growth regulators may work, it is necessary to reexamine this field and ask what we really know about the involvement of growth regulators in the ecophysiology of conifers.

  7. Thyroid hormone transporters in health and disease.

    PubMed

    Jansen, Jurgen; Friesema, Edith C H; Milici, Carmelina; Visser, Theo J

    2005-08-01

    Cellular entry is required for conversion of thyroid hormone by the intracellular deiodinases and for binding of 3,3',5-triiodothyronine (T(3)) to its nuclear receptors. Recently, several transporters capable of thyroid hormone transport have been identified. Functional expression studies using Xenopus laevis oocytes have demonstrated that organic anion transporters (e.g., OATPs), and L-type amino acid transporters (LATs) facilitate thyroid hormone uptake. Among these, OATP1C1 has a high affinity and specificity for thyroxine (T(4)). OATP1C1 is expressed in capillaries throughout the brain, suggesting it is critical for transport of T(4) over the blood-brain barrier. We have also characterized a member of the monocarboxylate transporter family, MCT8, as a very active and specific thyroid hormone transporter. Human MCT8 shows preference for T(3) as the ligand. MCT8 is highly expressed in liver and brain but is also widely distributed in other tissues. The MCT8 gene is located on the X chromosome. Recently, mutations in MCT8 have been found to be associated with severe X-linked psychomotor retardation and strongly elevated serum T(3) levels.

  8. Fate and transport of reproductive hormone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An invited overview of the NSF funded projects 0730492 "Effects of Animal Manure Storage and Disposal on the Fate and Transport of Manure-Borne Hormones," and 0244169 "Fate and Transport of an Endocrine Disruptor in Soil-Water Systems." We will highlight the Research and Educational contributions by...

  9. Search for novel therapies for triple negative breast cancers (TNBC): analogs of luteinizing hormone-releasing hormone (LHRH) and growth hormone-releasing hormone (GHRH).

    PubMed

    Buchholz, Stefan; Seitz, Stephan; Engel, Jörg B; Montero, Alberto; Ortmann, Olaf; Perez, Roberto; Block, Norman L; Schally, Andrew V

    2012-04-01

    Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that is clinically negative for the expression of estrogen and progesterone receptors (ER/PR) and human epidermal growth factor receptor-2 (HER2). Patients with TNBC have a worse clinical outcome, as measured by time to metastasis and median overall survival. Chemotherapy has been the mainstay of treatment of TNBC but responses are disappointing. A substantial proportion of TNBC expresses luteinizing hormone-releasing hormone (LHRH), receptors for LHRH, in addition to receptors for growth hormone-releasing hormone (GHRH). These receptors represent potential therapeutic targets. Potent antagonists of GHRH and LHRH receptors have been developed in recent years and these antagonists inhibit the growth, tumorigenicity and metastatic potential of various human experimental malignancies. These antagonists could be utilized for the treatment of TNBC. The targeted cytotoxic analog of LHRH, AN-152 (AEZS-108) containing doxorubicin, must also be strongly considered for therapy of TNBC. Experimental studies suggest the merit of clinical trials with LHRH antagonists and AEZS-108 in TNBC patients.

  10. Human Growth Hormone: The Latest Ergogenic Aid?

    ERIC Educational Resources Information Center

    Cowart, Virginia S.

    1988-01-01

    Believing that synthetic human growth hormone (hGH) will lead to athletic prowess and fortune, some parents and young athletes wish to use the drug to enhance sports performance. Should hGH become widely available, its abuse could present many problems, from potential health risks to the ethics of drug-enhanced athletic performance. (JL)

  11. Prevention and treatment of postmenopausal osteoporosis

    PubMed Central

    Gallagher, J Christopher; Tella, Sri Harsha

    2014-01-01

    In the beginning, that is from the 1960's, when a link between menopause and osteoporosis was first identified; estrogen treatment was the standard for preventing bone loss, however there was no fracture data, even though it was thought to be effective. This continued until the Women's Health Initiative (WHI) study in 2001 that published data on 6 years of treatment with hormone therapy that showed an increase in heart attacks and breast cancer. Even though the risks were small, 1 per 1500 users annually, patients were worried and there was a large drop off in estrogen use. In later analyses the WHI study showed that estrogen reduced fractures and actually prevented heart attacks in the 50-60 year age group. Estrogen alone appeared to be safer to use than estrogen + the progestin medroxyprogesterone acetate and actually reduced breast cancer. PMID:24176761

  12. Prevention of Ovarian Hyperstimulation Syndrome: A Review

    PubMed Central

    Osianlis, Tiki; Vollenhoven, Beverley

    2015-01-01

    The following review aims to examine the available evidence to guide best practice in preventing ovarian hyperstimulation syndrome (OHSS). As it stands, there is no single method to completely prevent OHSS. There seems to be a benefit, however, in categorizing women based on their risk of OHSS and individualizing treatments to curtail their chances of developing the syndrome. At present, both Anti-Müllerian Hormone and the antral follicle count seem to be promising in this regard. Both available and upcoming therapies are also reviewed to give a broad perspective to clinicians with regard to management options. At present, we recommend the use of a “step-up” regimen for ovulation induction, adjunct metformin utilization, utilizing a GnRH agonist as an ovulation trigger, and cabergoline usage. A summary of recommendations is also made available for ease of clinical application. In addition, areas for potential research are also identified where relevant. PMID:26074966

  13. Guanylyl cyclase C signaling axis and colon cancer prevention

    PubMed Central

    Pattison, Amanda M; Merlino, Dante J; Blomain, Erik S; Waldman, Scott A

    2016-01-01

    Colorectal cancer (CRC) is a major cause of cancer-related mortality and morbidity worldwide. While improved treatments have enhanced overall patient outcome, disease burden encompassing quality of life, cost of care, and patient survival has seen little benefit. Consequently, additional advances in CRC treatments remain important, with an emphasis on preventative measures. Guanylyl cyclase C (GUCY2C), a transmembrane receptor expressed on intestinal epithelial cells, plays an important role in orchestrating intestinal homeostatic mechanisms. These effects are mediated by the endogenous hormones guanylin (GUCA2A) and uroguanylin (GUCA2B), which bind and activate GUCY2C to regulate proliferation, metabolism and barrier function in intestine. Recent studies have demonstrated a link between GUCY2C silencing and intestinal dysfunction, including tumorigenesis. Indeed, GUCY2C silencing by the near universal loss of its paracrine hormone ligands increases colon cancer susceptibility in animals and humans. GUCY2C’s role as a tumor suppressor has opened the door to a new paradigm for CRC prevention by hormone replacement therapy using synthetic hormone analogs, such as the FDA-approved oral GUCY2C ligand linaclotide (Linzess™). Here we review the known contributions of the GUCY2C signaling axis to CRC, and relate them to a novel clinical strategy targeting tumor chemoprevention. PMID:27688649

  14. Bifurcation analysis on a hybrid systems model of intermittent hormonal therapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Tanaka, Gouhei; Tsumoto, Kunichika; Tsuji, Shigeki; Aihara, Kazuyuki

    2008-10-01

    Hybrid systems are widely used to model dynamical phenomena that are characterized by interplay between continuous dynamics and discrete events. An example of biomedical application is modeling of disease progression of prostate cancer under intermittent hormonal therapy, where continuous tumor dynamics is switched by interruption and reinstitution of medication. In the present paper, we study a hybrid systems model representing intermittent androgen suppression (IAS) therapy for advanced prostate cancer. Intermittent medication with switching between on-treatment and off-treatment periods is intended to possibly prevent a prostatic tumor from developing into a hormone-refractory state and is anticipated as a possible strategy for delaying or hopefully averting a cancer relapse which most patients undergo as a result of long-term hormonal suppression. Clinical efficacy of IAS therapy for prostate cancer is still under investigation but at least worth considering in terms of reduction of side effects and economic costs during off-treatment periods. In the model of IAS therapy, it depends on some clinically controllable parameters whether a relapse of prostate cancer occurs or not. Therefore, we examine nonlinear dynamics and bifurcation structure of the model by exploiting a numerical method to clarify bifurcation sets in the hybrid system. Our results suggest that adjustment of the normal androgen level in combination with appropriate medication scheduling could enhance the possibility of relapse prevention. Moreover, a two-dimensional piecewise-linear system reduced from the original model highlights the origin of nonlinear phenomena specific to the hybrid system.

  15. Current status of hormone therapy in patients with hormone receptor positive (HR+) advanced breast cancer.

    PubMed

    Dalmau, Elsa; Armengol-Alonso, Alejandra; Muñoz, Montserrat; Seguí-Palmer, Miguel Ángel

    2014-12-01

    The natural history of HR+ breast cancer tends to be different from hormone receptor-negative disease in terms of time to recurrence, site of recurrence and overall aggressiveness of the disease. The developmental strategies of hormone therapy for the treatment of breast cancer have led to the classes of selective estrogen receptor modulators, selective estrogen receptor downregulators, and aromatase inhibitors. These therapeutic options have improved breast cancer outcomes in the metastatic setting, thereby delaying the need for chemotherapy. However, a subset of hormone receptor-positive breast cancers do not benefit from endocrine therapy (intrinsic resistance), and all HR+ metastatic breast cancers ultimately develop resistance to hormonal therapies (acquired resistance). Considering the multiple pathways involved in the HR network, targeting other components of pathologically activated intracellular signaling in breast cancer may prove to be a new direction in clinical research. This review focuses on current and emerging treatments for HR+ metastatic breast cancer.

  16. Suppression of androgen production by D-tryptophan-6-luteinizing hormone-releasing hormone in man.

    PubMed Central

    Tolis, G; Mehta, A; Comaru-Schally, A M; Schally, A V

    1981-01-01

    Four male transsexual subjects were given a superactive luteinizing hormone-releasing hormone (LHRH) analogue, D-tryptophan-6-LHRH at daily doses of 100 micrograms for 3--6 mo. A decrease in beard growth, acne, and erectile potency was noted; the latter was documented objectively with the recordings of nocturnal penile tumescence episodes. Plasma testosterone and dihydrotestosterone levels fell to castrate values; basal prolactin and luteinizing hormone levels showed a small decline, whereas the acutely releasable luteinizing hormone was significantly suppressed. A rise of plasma testosterone from castrate to normal levels was demonstrable with the use of human chorionic gonadotropin. Discontinuation of treatment led to a normalization of erectile potency and plasma testosterone. The suppression of Leydig cell function by D-tryptophan-6-LHRH might have wide application in reproductive biology and in endocrine-dependent neoplasia (where it could replace surgical castration). PMID:6456277

  17. Structure-activity relationship of crustacean peptide hormones.

    PubMed

    Katayama, Hidekazu

    2016-01-01

    In crustaceans, various physiological events, such as molting, vitellogenesis, and sex differentiation, are regulated by peptide hormones. To understanding the functional sites of these hormones, many structure-activity relationship (SAR) studies have been published. In this review, the author focuses the SAR of crustacean hyperglycemic hormone-family peptides and androgenic gland hormone and describes the detailed results of our and other research groups. The future perspectives will be also discussed.

  18. SnapShot: Hormones of the gastrointestinal tract.

    PubMed

    Coate, Katie C; Kliewer, Steven A; Mangelsdorf, David J

    2014-12-04

    Specialized endocrine cells secrete a variety of peptide hormones all along the gastrointestinal (GI) tract, making it one of the largest endocrine organs in the body. Nutrients and developmental and neural cues trigger the secretion of gastrointestinal (GI) hormones from specialized endocrine cells along the GI tract. These hormones act in target tissues to facilitate digestion and regulate energy homeostasis. This SnapShot summarizes the production and functions of GI hormones.

  19. Thyroid hormones states and brain development interactions.

    PubMed

    Ahmed, Osama M; El-Gareib, A W; El-Bakry, A M; Abd El-Tawab, S M; Ahmed, R G

    2008-04-01

    The action of thyroid hormones (THs) in the brain is strictly regulated, since these hormones play a crucial role in the development and physiological functioning of the central nervous system (CNS). Disorders of the thyroid gland are among the most common endocrine maladies. Therefore, the objective of this study was to identify in broad terms the interactions between thyroid hormone states or actions and brain development. THs regulate the neuronal cytoarchitecture, neuronal growth and synaptogenesis, and their receptors are widely distributed in the CNS. Any deficiency or increase of them (hypo- or hyperthyroidism) during these periods may result in an irreversible impairment, morphological and cytoarchitecture abnormalities, disorganization, maldevelopment and physical retardation. This includes abnormal neuronal proliferation, migration, decreased dendritic densities and dendritic arborizations. This drastic effect may be responsible for the loss of neurons vital functions and may lead, in turn, to the biochemical dysfunctions. This could explain the physiological and behavioral changes observed in the animals or human during thyroid dysfunction. It can be hypothesized that the sensitive to the thyroid hormones is not only remarked in the neonatal period but also prior to birth, and THs change during the development may lead to the brain damage if not corrected shortly after the birth. Thus, the hypothesis that neurodevelopmental abnormalities might be related to the thyroid hormones is plausible. Taken together, the alterations of neurotransmitters and disturbance in the GABA, adenosine and pro/antioxidant systems in CNS due to the thyroid dysfunction may retard the neurogenesis and CNS growth and the reverse is true. In general, THs disorder during early life may lead to distortions rather than synchronized shifts in the relative development of several central transmitter systems that leads to a multitude of irreversible morphological and biochemical

  20. Hormone Receptor Expression in Human Fascial Tissue

    PubMed Central

    Fede, C.; Albertin, G.; Petrelli, L.; Sfriso, M.M.; Biz, C.; De Caro, R.

    2016-01-01

    Many epidemiologic, clinical, and experimental findings point to sex differences in myofascial pain in view of the fact that adult women tend to have more myofascial problems with respect to men. It is possible that one of the stimuli to sensitization of fascial nociceptors could come from hormonal factors such as estrogen and relaxin, that are involved in extracellular matrix and collagen remodeling and thus contribute to functions of myofascial tissue. Immunohistochemical and molecular investigations (real-time PCR analysis) of relaxin receptor 1 (RXFP1) and estrogen receptor-alpha (ERα) localization were carried out on samples of human fascia collected from 8 volunteers patients during orthopedic surgery (all females, between 42 and 70 yrs, divided into pre- and post-menopausal groups), and in fibroblasts isolated from deep fascia, to examine both protein and RNA expression levels. We can assume that the two sex hormone receptors analyzed are expressed in all the human fascial districts examined and in fascial fibroblasts culture cells, to a lesser degree in the post-menopausal with respect to the pre-menopausal women. Hormone receptor expression was concentrated in the fibroblasts, and RXFP1 was also evident in blood vessels and nerves. Our results are the first demonstrating that the fibroblasts located within different districts of the muscular fasciae express sex hormone receptors and can help to explain the link between hormonal factors and myofascial pain. It is known, in fact, that estrogen and relaxin play a key role in extracellular matrix remodeling by inhibiting fibrosis and inflammatory activities, both important factors affecting fascial stiffness and sensitization of fascial nociceptors. PMID:28076930

  1. Anti-TNF and sex hormones.

    PubMed

    Cutolo, Maurizio; Sulli, Alberto; Capellino, Silvia; Villaggio, Barbara; Montagna, Paola; Pizzorni, Carmen; Paolino, Sabrina; Seriolo, Bruno; Felli, Lamberto; Straub, Rainer H

    2006-06-01

    Whenever serum estrogen concentrations are normal in rheumatoid arthritis (RA) patients, lower androgen concentrations (i.e., testosterone, androstenedione, and dehydroepiandrosterone sulfate [DHEAS]) are detected in the serum as well as in the synovial fluid of male and female RA patients. The presence in the RA synovial fluid of a significant altered sex hormone balance resulting in lower immunosuppressive androgens and higher immuno-enhancing estrogens, might determine a favorable condition for the development of the immunomediated RA synovitis. The inflammatory cytokines (i.e., TNF-alpha), particularly increased in RA synovitis, are able to markedly stimulate the aromatase activity in peripheral tissues and, therefore, induce the peripheral metabolism from androgens to estrogens. The effects of TNF blockers (and generally of anticytokine agents) on peripheral sex hormone levels seem exerted in a faster way at the level of the RA synovial tissue (before any influence on serum levels) where they seem to block the conversion from androgens (anti-inflammatory) to estrogens (proinflammatory) induced by aromatase. Therefore, the beneficial effects of restoring synovial androgens might be clinically more evident in male RA patients (as recently observed in ANTARES study) since they suffer more for the lack of androgens (anti-inflammatory) on account of the action of TNF-alpha on peripheral hormonal conversion. However, therapy (3 months) with anti-TNF did not change serum levels of typical sex hormones in patients with RA, although baseline values were largely different from controls. In patients with at least long-standing RA, this indicates that alterations of serum sex hormones and altered activity of respective converting enzymes are imprinted for a long-lasting period over at least 12 weeks.

  2. Linker histones in hormonal gene regulation.

    PubMed

    Vicent, G P; Wright, R H G; Beato, M

    2016-03-01

    In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms.

  3. Overlapping nongenomic and genomic actions of thyroid hormone and steroids

    PubMed Central

    Hammes, Stephen R.; Davis, Paul J.

    2016-01-01

    The genomic actions of thyroid hormone and steroids depend upon primary interactions of the hormones with their specific nuclear receptor proteins. Formation of nuclear co-activator or co-repressor complexes involving the liganded receptors subsequently result in transcriptional events—either activation or suppression—at genes that are specific targets of thyroid hormone or steroids. Nongenomic actions of thyroid hormone and steroids are in contrast initiated at binding sites on the plasma membrane or in cytoplasm or organelles and do not primarily require formation of intranuclear receptor protein-hormone complexes. Importantly, hormonal actions that begin nongenomically outside the nucleus often culminate in changes in nuclear transcriptional events that are regulated by both traditional intranuclear receptors as well as other nuclear transcription factors. In the case of thyroid hormone, the extranuclear receptor can be the classical “nuclear” thyroid receptor (TR), a TR isoform, or integrin αvβ3. In the case of steroid hormones, the membrane receptor is usually, but not always, the classical “nuclear” steroid receptor. This concept defines the paradigm of overlapping nongenomic and genomic hormone mechanisms of action. Here we review some examples of how extranuclear signaling by thyroid hormone and by estrogens and androgens modulates intranuclear hormone signaling to regulate a number of vital biological processes both in normal physiology and in cancer progression. We also point out that nongenomic actions of thyroid hormone may mimic effects of estrogen in certain tumors. PMID:26303085

  4. 21 CFR 522.1820 - Pituitary luteinizing hormone for injection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Pituitary luteinizing hormone for injection. 522... ANIMAL DRUGS § 522.1820 Pituitary luteinizing hormone for injection. (a) Specifications. The drug is a... standard pituitary luteinizing hormone and is reconstituted for use by addition of 5 milliliters of...

  5. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Human growth hormone test system. 862.1370 Section 862.1370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone...

  6. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Human growth hormone test system. 862.1370 Section 862.1370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone...

  7. 21 CFR 522.1820 - Pituitary luteinizing hormone for injection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Pituitary luteinizing hormone for injection. 522... ANIMAL DRUGS § 522.1820 Pituitary luteinizing hormone for injection. (a) Specifications. The drug is a... standard pituitary luteinizing hormone and is reconstituted for use by addition of 5 milliliters of...

  8. 21 CFR 522.1820 - Pituitary luteinizing hormone for injection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Pituitary luteinizing hormone for injection. 522... ANIMAL DRUGS § 522.1820 Pituitary luteinizing hormone for injection. (a) Specifications. The drug is a... standard pituitary luteinizing hormone and is reconstituted for use by addition of 5 milliliters of...

  9. 21 CFR 522.1820 - Pituitary luteinizing hormone for injection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Pituitary luteinizing hormone for injection. 522... ANIMAL DRUGS § 522.1820 Pituitary luteinizing hormone for injection. (a) Specifications. The drug is a... standard pituitary luteinizing hormone and is reconstituted for use by addition of 5 milliliters of...

  10. Active immunization to luteinizing hormone releasing hormone to inhibit the induction of mammary tumors in the rat

    SciTech Connect

    Ravdin, P.M.; Jordan, V.C.

    1988-01-01

    Immunization of female rats with a bovine serum albumin-luteinizing hormone releasing hormone conjugate results in suppression of dimethylbenzanthracene mammary tumor incidence. Tumor incidence was 1.3, and 1.29 tumors per rat in bovine serum albumin alone (n = 10) and unimmunized (n = 18) control groups, but no tumors were found in the bovine serum albumin-luteinizing hormone releasing hormone conjugate immunized animals (n = 10). In a second experiment immunization with bovine serum albumin-luteinizing hormone releasing hormone conjugates reduced tumor incidence to 0.3 tumors per rat (n = 10) from the 1.2 tumors per animal seen in the control animals (n = 10) immunized with bovine serum albumin alone. Bovine serum albumin-luteinizing hormone immunization caused the production of anti-LHRH antibodies, an interruption of estrous cycles, lowered serum estradiol and progesterone levels, and atrophy of the ovaries and uteri. Immunization BSA-hormone conjugates is a novel anti-tumor strategy.

  11. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods

    PubMed Central

    Barth, Claudia; Villringer, Arno; Sacher, Julia

    2015-01-01

    Sex hormones have been implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination and other important mechanisms of neural plasticity. Here we review the evidence from animal experiments and human studies reporting interactions between sex hormones and the dominant neurotransmitters, such as serotonin, dopamine, GABA and glutamate. We provide an overview of accumulating data during physiological and pathological conditions and discuss currently conceptualized theories on how sex hormones potentially trigger neuroplasticity changes through these four neurochemical systems. Many brain regions have been demonstrated to express high densities for estrogen- and progesterone receptors, such as the amygdala, the hypothalamus, and the hippocampus. As the hippocampus is of particular relevance in the context of mediating structural plasticity in the adult brain, we put particular emphasis on what evidence could be gathered thus far that links differences in behavior, neurochemical patterns and hippocampal structure to a changing hormonal environment. Finally, we discuss how physiologically occurring hormonal transition periods in humans can be used to model how changes in sex hormones influence functional connectivity, neurotransmission and brain structure in vivo. PMID:25750611

  12. Luteinizing Hormone-Releasing Hormone Distribution in the Anterior Hypothalamus of the Female Rats

    PubMed Central

    Castañeyra-Ruiz, Leandro; González-Marrero, Ibrahim; Castañeyra-Ruiz, Agustín; González-Toledo, Juan M.; Castañeyra-Ruiz, María; de Paz-Carmona, Héctor; Castañeyra-Perdomo, Agustín; Carmona-Calero, Emilia M.

    2013-01-01

    Luteinizing hormone-releasing hormone (LHRH) neurons and fibers are located in the anteroventral hypothalamus, specifically in the preoptic medial area and the organum vasculosum of the lamina terminalis. Most luteinizing hormone-releasing hormone neurons project to the median eminence where they are secreted in the pituitary portal system in order to control the release of gonadotropin. The aim of this study is to provide, using immunohistochemistry and female brain rats, a new description of the luteinizing hormone-releasing hormone fibers and neuron localization in the anterior hypothalamus. The greatest amount of the LHRH immunoreactive material was found in the organum vasculosum of the lamina terminalis that is located around the anterior region of the third ventricle. The intensity of the reaction of LHRH immunoreactive material decreases from cephalic to caudal localization; therefore, the greatest immunoreaction is in the organum vasculosum of the lamina terminalis, followed by the dorsomedial preoptic area, the ventromedial preoptic area, and finally the ventrolateral medial preoptic area, and in fibers surrounding the suprachiasmatic nucleus and subependymal layer on the floor of the third ventricle where the least amount immunoreactive material is found. PMID:25938107

  13. Modulation of angiogenesis by thyroid hormone and hormone analogues: implications for cancer management.

    PubMed

    Mousa, Shaker A; Lin, Hung-Yun; Tang, Heng Yuan; Hercbergs, Aleck; Luidens, Mary K; Davis, Paul J

    2014-07-01

    Acting via a cell surface receptor on integrin αvβ3, thyroid hormone is pro-angiogenic. Nongenomic mechanisms of actions of the hormone and hormone analogues at αvβ3 include modulation of activities of multiple vascular growth factor receptors and their ligands (vascular endothelial growth factor, basic fibroblast growth factor, platelet-derived growth factor, epidermal growth factor), as well as of angiogenic chemokines (CX3 family). Thyroid hormone also may increase activity of small molecules that support neovascularization (bradykinin, angiotensin II) and stimulate endothelial cell motility. Therapeutic angio-inhibition in the setting of cancer may be opposed by endogenous thyroid hormone, particularly when a single vascular growth factor is the treatment target. This may be a particular issue in management of aggressive or recurrent tumors. It is desirable to have access to chemotherapies that affect multiple steps in angiogenesis and to examine as alternatives in aggressive cancers the induction of subclinical hypothyroidism or use of antagonists of the αvβ3 thyroid hormone receptor that are under development.

  14. Enzyme immunoassay for rat growth hormone: applications to the study of growth hormone variants

    SciTech Connect

    Farrington, M.A.; Hymer, W.C.

    1987-06-29

    A sensitive and specific competitive enzyme immunoassay (EIA) for rat growth hormone was developed. In this assay soluble growth hormone and growth hormone adsorbed to a solid-phase support compete for monkey anti-growth hormone antibody binding sites. The immobilized antibody-growth hormone complex is detected and quantified using goat anti-monkey immunoglobin G covalently conjugated to horse radish peroxidase. Therefore, a high concentration of soluble growth hormone in the sample will result in low absorbance detection from the colored products of the enzyme reaction. Assay parameters were optimized by investigating the concentration of reagents and the reaction kinetics in each of the assay steps. The assay can be performed in 27 hours. A sensitivity range of 0.19 ng to 25 ng in the region of 10 to 90% binding was obtained. Near 50% binding (3 ng) the intraassay coefficient of variation (CV) was 5.54% and the interassay CV was 5.33%. The correlation coefficient (r/sup 2/) between radioimmunoassay and EIA was 0.956 and followed the curve Y = 0.78X + 1.0. 9 references, 6 figures.

  15. Structural Basis for Antibody Discrimination between Two Hormones That Recognize the Parathyroid Hormone Receptor

    SciTech Connect

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Ho, Patricia W.M.; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T.; Martin, T. John; Parker, Michael W.

    2009-08-18

    Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor. Such neutralizing antibodies against PTHrP are therapeutically effective in animal models of the humoral hypercalcemia of malignancy and of bone metastasis formation. We have determined the crystal structure of the complex between PTHrP (residues 1-108) and a neutralizing monoclonal anti-PTHrP antibody that reveals the only point of contact is an {alpha}-helical structure extending from residues 14-29. Another striking feature is that the same residues that interact with the antibody also interact with parathyroid hormone receptor 1, showing that the antibody and the receptor binding site on the hormone closely overlap. The structure explains how the antibody discriminates between the two hormones and provides information that could be used in the development of novel agonists and antagonists of their common receptor.

  16. AKT Regulates BRCA1 Stability in Response to Hormone Signaling

    PubMed Central

    Nelson, Andrew C.; Lyons, Traci R.; Young, Christian D.; Hansen, Kirk C.; Anderson, Steven M.; Holt, Jeffrey T.

    2015-01-01

    BRCA1, with its binding partner BARD1, regulates the cellular response to DNA damage in multiple tissues, yet inherited mutations within BRCA1 result specifically in breast and ovarian cancers. This observation, along with several other lines of evidence, suggests a functional relationship may exist between hormone signaling and BRCA1 function. Our data demonstrates that AKT activation promotes the expression of BRCA1 in response to estrogen and IGF-1 receptor signaling. Further, we have identified a novel AKT phosphorylation site in BRCA1 at S694 which is responsive to activation of these signaling pathways. This rapid increase in BRCA1 protein levels appears to occur independently of new protein synthesis and treatment with the clinically utilized proteasome inhibitor bortezomib similarly leads to a rapid increase in BRCA1 protein levels. Together, these data suggest that AKT phosphorylation of BRCA1 increases total protein expression by preventing proteasomal degradation. AKT activation also appears to support nuclear localization of BRCA1, and co-expression of activated AKT with BRCA1 decreases radiation sensitivity, suggesting this interaction has functional consequences for BRCA1's role in DNA repair. We conclude that AKT regulates BRCA1 protein stability and function through direct phosphorylation of BRCA1. Further, the responsiveness of the AKT-BRCA1 regulatory pathway to hormone signaling may, in part, underlie the tissue specificity of BRCA1 mutant cancers. Pharmacological targets within this pathway could provide strategies for modulation of BRCA1 protein, which may prove therapeutically beneficial for the treatment of breast and ovarian cancers. PMID:20085797

  17. Variations on hormone replacement therapy: an answer to the 'one dose fits all' Women's Health Initiative study.

    PubMed

    Studd, John

    2007-11-01

    The Women's Health Initiative study worked on the assumption that one dose would fit all asymptomatic postmenopausal women. The investigators therefore often used the wrong dose, of the wrong hormones, on the wrong patients and therefore came to many wrong conclusions. Different combinations of different hormones are necessary for different symptoms and different age groups. Hormone replacement therapy may be commenced in the perimenopausal phase, the early postmenopause, the late postmenopause or after hysterectomy and bilateral salpingo-oophorectomy or a premature menopause. These all require different treatments. Similarly, various indications such as vasomotor symptoms, sexual problems, depression or the treatment/prevention of osteoporosis all need different combinations of estradiol and possibly progestogen and testosterone, according to the specific requirements of the patient.

  18. Stories of experiences of care for growth hormone deficiency: the CRESCERE project

    PubMed Central

    Marini, Maria G; Chesi, Paola; Mazzanti, Laura; Guazzarotti, Laura; Toni, Teresa D; Salerno, Maria C; Officioso, Annunziata; Parpagnoli, Maria; Angeletti, Cristina; Faienza, Maria F; Iezzi, Maria L; Aversa, Tommaso; Sacchetti, Cinzia

    2016-01-01

    Aims: Growth hormone deficiency therapy is demanding for patients and caregivers. Teams engaged in the clinical management of growth hormone deficiency therapy need to know how families live with this condition, to provide an adequate support and prevent the risk of withdrawal from therapy. Methods: Using Narrative Medicine, testimonies from patients, their parents and providers of care were collected from 11 Italian centers. Narrations were analyzed throughout an elaboration of recurring words and expressions. Results: Although care management and outcomes were considered satisfying in the 182 collected narratives, recurring signals of intolerance among adolescents and the worry of not being well informed about side effects among parents are open issues. Conclusion: Narratives found that communication issues could decrease adherence and influence the physicians’ clinical practice. PMID:28031934

  19. Managing the menopause - British Menopause Society Council consensus statement on hormone replacement therapy.

    PubMed

    Pitkin, Joan; Rees, Margaret C P; Gray, Sarah; Lumsden, Mary Ann; Stevenson, John; Williamson, Jennifer

    2003-09-01

    The British Menopause Society Council aims to aid health professionals to inform and advise women about the menopause. The oestrogen plus progestogen arm of the Women's Health Initiative was stopped in July 2002. This guidance regarding hormone replacement therapy (HRT) use responds to the results and analysis that have been published since then. Because there are few effective alternatives to HRT for vasomotor and urogenital symptoms, oestrogen-based treatments still have a major role. HRT is also most effective for prevention of osteoporosis. Unopposed oestrogens are contraindicated in women with an intact uterus, and hence a range of oestrogen and progestogen combinations, with differing routes of delivery, now exists under the title of "HRT". Treatment choice should be based on up to date information and targeted to individual women's needs. Hormone replacement still offers the potential for benefit to outweigh harm, providing the appropriate regimen has been instigated in terms of dose, route and combination.

  20. The mechanism of action of hormonal contraceptives and intrauterine contraceptive devices.

    PubMed

    Rivera, R; Yacobson, I; Grimes, D

    1999-11-01

    Modern hormonal contraceptives and intrauterine contraceptive devices have multiple biologic effects. Some of them may be the primary mechanism of contraceptive action, whereas others are secondary. For combined oral contraceptives and progestin-only methods, the main mechanisms are ovulation inhibition and changes in the cervical mucus that inhibit sperm penetration. The hormonal methods, particularly the low-dose progestin-only products and emergency contraceptive pills, have effects on the endometrium that, theoretically, could affect implantation. However, no scientific evidence indicates that prevention of implantation actually results from the use of these methods. Once pregnancy begins, none of these methods has an abortifacient action. The precise mechanism of intrauterine contraceptive devices is unclear. Current evidence indicates they exert their primary effect before fertilization, reducing the opportunity of sperm to fertilize an ovum.

  1. Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers

    PubMed Central

    Cojocneanu Petric, Roxana; Braicu, Cornelia; Raduly, Lajos; Zanoaga, Oana; Dragos, Nicolae; Monroig, Paloma; Dumitrascu, Dan; Berindan-Neagoe, Ioana

    2015-01-01

    Over the years, nutrition and environmental factors have been demonstrated to influence human health, specifically cancer. Owing to the fact that cancer is a leading cause of death worldwide, efforts are being made to elucidate molecular mechanisms that trigger or delay carcinogenesis. Phytochemicals, in particular, have been shown to modulate oncogenic processes through their antioxidant and anti-inflammatory activities and their ability to mimic the chemical structure and activity of hormones. These compounds can act not only by influencing oncogenic proteins, but also by modulating noncoding RNAs such as microRNAs and long noncoding RNAs. Although we are only beginning to understand the complete effects of many natural compounds, such as phytochemicals, researchers are motivated to combine these agents with traditional, chemo-based, or hormone-based therapies to fight against cancer. Since ongoing studies continue to prove effective, herein we exalt the importance of improving dietary choices as a chemo-preventive strategy. PMID:26273208

  2. Sex hormone therapy and progression of cardiovascular disease in menopausal women

    PubMed Central

    Alhurani, Rabe E.; Chahal, C. Anwar A.; Ahmed, Ahmed T.; Mohamed, Essa A.; Miller, Virginia M.

    2017-01-01

    One of the most controversial health decisions facing women is deciding upon the use of hormonal treatments for symptoms of menopause. This brief review focuses on the historical context of use of menopausal hormone treatments (MHT), summarizes results of major observational, primary and secondary prevention studies of MHT and cardiovascular (CV) outcomes, provides evidence for how sex steroids modulate CV function and identifies challenges for future research. As medicine enters an era of personalization of treatment options, additional research into sex differences in the aetiology of CV diseases will lead to better risk identification for CV disease in women and identify whether a woman might receive CV benefit from specific formulations and doses of MHT. PMID:27215679

  3. Fit-for-Purpose Radio Receptor Assay for the Determination of Growth Hormone Secretagogues in Urine.

    PubMed

    Ferro, P; Gutiérrez-Gallego, R; Bosch, J; Farré, M; Segura, J

    2015-12-01

    The everlasting pharmacological development is continuously producing new substances with potential doping abuse. Among these, secretagogues are very prone to misuse by athletes for their properties to release growth hormone (GH) and some limitations in the actual analytical methods to detect them. In this paper, an in-depth study on the key variables of the radio receptor method previously developed by our group is performed and a fit-for-purpose protocol is established. Thus, this sensitive and robust screening method is proposed as an intelligent and preventive antidoping method to detect new growth hormone secretagogues (GHSs) in exceptional suspicious urine samples obtained from athletes and will support the current detection methods based on liquid chromatography-mass spectrometry (LC-MS).

  4. Luteinizing hormone release and androgen production of avian hybrids in response to luteinizing hormone releasing hormone injection.

    PubMed

    Mathis, G F; Burke, W H; McDougald, L R

    1983-04-01

    The levels of luteinizing hormone (LH) and androgens were measured in sterile avian hybrids. Guinea fowl-chicken and peafowl-guinea fowl hybrids were bled before and after injection with LH- releasing hormone (LHRH). The preinjection LH levels for the guinea fowl-chicken hybrids were below or at the very lower limit of the assay sensitivity and the peafowl-guinea fowl hybrids averaged 1.3 ng/ml. Within 10 min after LHRH injection, LH had increased dramatically in both hybrids and then began to slowly decline. Androgen levels in the guinea fowl-chicken hybrids increased from 16.2 pg/ml to 95.2 pg/ml and continued to increase, reaching 287 pg/ml at the last bleeding 60 min after injection.

  5. Thyroid Hormone Receptor Binds to a Site in the Rat Growth Hormone Promoter Required for Induction by Thyroid Hormone

    NASA Astrophysics Data System (ADS)

    Koenig, Ronald J.; Brent, Gregory A.; Warne, Robert L.; Reed Larsen, P.; Moore, David D.

    1987-08-01

    Transcription of the rat growth hormone (rGH) gene in pituitary cells is increased by addition of thyroid hormone (T3). This induction is dependent on the presence of specific sequences just upstream of the rGH promoter. We have partially purified T3 receptor from rat liver and examined its interaction with these rGH sequences. We show here that T3 receptor binds specifically to a site just upstream of the basal rGH promoter. This binding site includes two copies of a 7-base-pair direct repeat, the centers of which are separated by 10 base pairs. Deletions that specifically remove the T3 receptor binding site drastically reduce response to T3 in transient transfection experiments. These results demonstrate that T3 receptor can recognize specific DNA sequences and suggest that it can act directly as a positive transcriptional regulatory factor.

  6. Thyroid-stimulating Hormone (TSH): Measurement of Intracellular, Secreted, and Circulating Hormone in Xenopus laevis and Xenopus tropicalis.

    EPA Science Inventory

    Thyroid Stimulating Hormone (TSH) is a hormone produced in the pituitary that stimulates the thyroid gland to grow and produce thyroid hormone (TH). The concentration of TH controls developmental changes that take place in a wide variety of organisms. Many use the metaphoric ch...

  7. Sex hormones and the female voice.

    PubMed

    Abitbol, J; Abitbol, P; Abitbol, B

    1999-09-01

    In the following, the authors examine the relationship between hormonal climate and the female voice through discussion of hormonal biochemistry and physiology and informal reporting on a study of 197 women with either premenstrual or menopausal voice syndrome. These facts are placed in a larger historical and cultural context, which is inextricably bound to the understanding of the female voice. The female voice evolves from childhood to menopause, under the varied influences of estrogens, progesterone, and testosterone. These hormones are the dominant factor in determining voice changes throughout life. For example, a woman's voice always develops masculine characteristics after an injection of testosterone. Such a change is irreversible. Conversely, male castrati had feminine voices because they lacked the physiologic changes associated with testosterone. The vocal instrument is comprised of the vibratory body, the respiratory power source and the oropharyngeal resonating chambers. Voice is characterized by its intensity, frequency, and harmonics. The harmonics are hormonally dependent. This is illustrated by the changes that occur during male and female puberty: In the female, the impact of estrogens at puberty, in concert with progesterone, produces the characteristics of the female voice, with a fundamental frequency one third lower than that of a child. In the male, androgens released at puberty are responsible for the male vocal frequency, an octave lower than that of a child. Premenstrual vocal syndrome is characterized by vocal fatigue, decreased range, a loss of power and loss of certain harmonics. The syndrome usually starts some 4-5 days before menstruation in some 33% of women. Vocal professionals are particularly affected. Dynamic vocal exploration by televideoendoscopy shows congestion, microvarices, edema of the posterior third of the vocal folds and a loss of its vibratory amplitude. The authors studied 97 premenstrual women who were prescribed a

  8. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    PubMed

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD.

  9. Estrogen, Vascular Estrogen Receptor and Hormone Therapy in Postmenopausal Vascular Disease

    PubMed Central

    Khalil, Raouf A.

    2013-01-01

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women’s Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject’s age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  10. The behavior of renal-regulating hormones during hypogravic stress

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1985-01-01

    The regulation of fluid and electrolyte behavior during space flight is believed to be under control, in large part, of a group of hormones which have their major effects on renal excretion. The hormones studied include renin-angitensin, aldosterone, and antidiuretic hormone (ADH). The regulatory systems of these renal-regulating hormones as they act individually and in concert with each other are analyzed. The analysis is based on simulations of the mathematical model of Guyton. A generalized theory is described which accounts for both short-term and long-term behavior of this set of hormones.

  11. Cortistatin vaccination--a solution to growth hormone deficiency.

    PubMed

    Moaeen-ud-Din, M; Malik, Nosheen; Guo, Yang Li; Ali, Ahmad; Babar, Masroor Ellahi

    2009-12-01

    Cortistatin and somatostatin are neuropeptides which have inhibitory effects on growth hormone through common five receptors. Although, both have inhibitory effects but, only cortistatin has direct inhibitory effects on growth hormone secretagogue and is more potent inhibitor of growth hormone than somatostatin. This control of growth hormone can be manipulated through immunoneutralization of cortistatin through cortistatin DNA vaccine rather than antibodies application. A DNA vaccine of cortistatin can be produced using recombinant DNA technology in a eukaryotic expression system and will serve as a tool not to only alleviate the growth hormone deficiency problems in human but, can also be used to improve growth rate in farm animals.

  12. The role of hormones in the pathogenesis of psoriasis vulgaris

    PubMed Central

    ROMAN, IULIA IOANA; CONSTANTIN, ANNE-MARIE; MARINA, MIHAELA ELENA; ORASAN, REMUS IOAN

    2016-01-01

    Psoriasis vulgaris is a chronic, common skin disease, which affects the patient’s quality of life to the highest degree. Several exogenous factors and endogenous hormonal changes may act as triggers for psoriasis. The skin possesses a true endocrine system, which is very important in multiple systemic diseases. A number of conditions are associated with psoriasis, and its severity can also be influenced by hormones. Even though the sex hormones and prolactin have a major role in psoriasis pathogenicity, there are a lot of other hormones which can influence the psoriasis clinical manifestations: glucocorticoids, epinephrine, thyroid hormones, and insulin. PMID:27004020

  13. Antioxidant status and hormonal profile reflected by experimental feeding of probiotics.

    PubMed

    Ghoneim, Magdy A; Moselhy, Said S

    2016-04-01

    Excessive production of free radicals can result in tissue damage, which mainly involves generation of hydroxyl radical and other oxidants. Such free radical-induced cell damage appears to play a major role in the pathogenesis of many diseases. Probiotics have been used therapeutically to modulate immunity, improve digestive processes, lower cholesterol, treat rheumatoid arthritis, and prevent cancer. The proposed research was designed to evaluate the changes in oxidative and antioxidative profile in addition to metabolic-related hormones of living animal model, which may generally affect the health status. Two groups of rabbits (10 animals each) were allocated in hygienic cages of controlled animal house. Control group received standard diet, and the other group received the same diet containing one probiotic for 30 days. Lactate dehydrogenase (LDH) activity in leukocytes, blood glucose, reduced glutathione (GSH), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were estimated in different tissues. Malondialdehyde (MDA) and total proteins were also determined in different tissues. Certain hormones related to metabolism and growth were also evaluated. Leukocytic LDH activity was significantly increased along with nonsignificant increase of blood glucose in probiotics-fed animals. Results showed significant decreases in the levels of triiodothyronine and thyroid-stimulating hormone but showed significant elevations in thyroxine, insulin, growth hormone, and testosterone levels in animals fed with probiotics. Total proteins content was highly significantly elevated in liver, kidneys, and muscles of probiotic-administered animals. Microsomal GSH level was significantly decreased only in skeletal muscles of probiotic-treated animals. MDA was significantly lowered in animal tissues fed with probiotics. GSH-Px activity was elevated in hepatic and muscular microsomes of probiotic-supplemented animals while it was nonsignificantly increased in renal

  14. Hormone (ACTH, T3) content of immunophenotyped lymphocyte subpopulations.

    PubMed

    Pállinger, Éva; Kiss, Gergely Attila; Csaba, György

    2016-12-01

    Cells of the immune system synthesize, store, and secrete polypeptide and amino acid type hormones, which also influence their functions, having receptors for different hormones. In the present experiment immunophenotyped immune cells isolated from bone marrow, thymus, and peritoneal fluid of mice were used for demonstrating the adrenocorticotropic hormone (ACTH) and triiodothyronine (T3) hormone production of differentiating immune cells. Both hormones were found in each cell type, and in each maturation state, which means that all cells are participating in the hormonal function of the immune system. The lineage-independent presence of ACTH and T3 in differentiating hematopoietic cells denotes that their expression ubiquitous during lymphocyte development. Higher ACTH and T3 content of B cells shows that these cells are the most hormonally active and suggests that the hormones may have an autocrine regulatory role in B cell development. Developing T cells showed heterogeneous hormone production which was associated with their maturation state. Differences in the hormone contents of immune cells isolated from different organs indicate that their hormone production is defined by their differentiation or maturation state, however, possibly also by the local microenvironment.

  15. Neuronal control of breathing: sex and stress hormones.

    PubMed

    Behan, Mary; Kinkead, Richard

    2011-10-01

    There is a growing public awareness that hormones can have a significant impact on most biological systems, including the control of breathing. This review will focus on the actions of two broad classes of hormones on the neuronal control of breathing: sex hormones and stress hormones. The majority of these hormones are steroids; a striking feature is that both groups are derived from cholesterol. Stress hormones also include many peptides which are produced primarily within the paraventricular nucleus of the hypothalamus (PVN) and secreted into the brain or into the circulatory system. In this article we will first review and discuss the role of sex hormones in respiratory control throughout life, emphasizing how natural fluctuations in hormones are reflected in ventilatory metrics and how disruption of their endogenous cycle can predispose to respiratory disease. These effects may be mediated directly by sex hormone receptors or indirectly by neurotransmitter systems. Next, we will discuss the origins of hypothalamic stress hormones and their relationship with the respiratory control system. This relationship is 2-fold: (i) via direct anatomical connections to brainstem respiratory control centers, and (ii) via steroid hormones released from the adrenal gland in response to signals from the pituitary gland. Finally, the impact of stress on the development of neural circuits involved in breathing is evaluated in animal models, and the consequences of early stress on respiratory health and disease is discussed.

  16. Thyroid hormones and growth in health and disease.

    PubMed

    Tarım, Ömer

    2011-01-01

    Thyroid hormones regulate growth by several mechanisms. In addition to their negative feedback effect on the stimulatory hormones thyrotropin-releasing hormone (TRH) and thyrotropin (TSH), thyroid hormones also regulate their receptors in various physiological and pathological conditions. Up-regulation and down-regulation of the thyroid receptors fine-tune the biological effects exerted by the thyroid hormones. Interestingly, the deiodinase enzyme system is another intrinsic regulator of thyroid physiology that adjusts the availability of thyroid hormones to the tissues, which is essential for normal growth and development. Almost all chronic diseases of childhood impair growth and development. Every disease may have a unique mechanism to halt linear growth, but reduced serum concentration or diminished local availability of thyroid hormones seems to be a common pathway. Therefore, the effects of systemic diseases on thyroid physiology must be taken into consideration in the evaluation of growth retardation in affected children.

  17. Thyroid Hormones, Metabolic Syndrome and Its Components.

    PubMed

    Delitala, Alessandro P; Fanciulli, Giuseppe; Pes, Giovanni M; Maioli, Margherita; Delitala, Giuseppe

    2017-03-20

    Metabolic syndrome is a clustering of various metabolic parameters, which included diabetes, low high-density lipoprotein cholesterol, elevated triglycerides, abdominal obesity, and hypertension. It has merged as a worldwide epidemic and a major public health care concern. However, due to the different criteria used for the assessment, the frequency of metabolic syndrome in the general population is variable but it more common in the older people. Metabolic syndrome is closely linked to cardiovascular risk and increases cardiovascular outcomes and all-cause mortality. Recent evidences showed that alterations of the thyroid function could have an impact on the components of the metabolic syndrome, suggesting that thyroid hormones have a variety of effects on energy homeostasis, lipid and glucose metabolism, and blood pressure. In this review we summarize available data on the action of thyroid hormone on the components of metabolic syndrome.

  18. Metabolic hormones, dopamine circuits, and feeding

    PubMed Central

    Narayanan, Nandakumar S.; Guarnieri, Douglas J.; DiLeone, Ralph J.

    2009-01-01

    Recent evidence has emerged demonstrating that metabolic hormones such as ghrelin and leptin can act on ventral tegmental area (VTA) midbrain dopamine neurons to influence feeding. The VTA is the origin of mesolimbic dopamine neurons that project to the nucleus accumbens (NAc) to influence behavior. While blockade of dopamine via systemic antagonists or targeted gene delete can impair food intake, local NAc dopamine manipulations have little effect on food intake. Notably, non-dopaminergic manipulations in the VTA and NAc produce more consistent effects on feeding and food choice. More recent genetic evidence supports a role for the substantia nigra-striatal dopamine pathways in food intake, while the VTA-NAc circuit is more likely involved in higher-order aspects of food acquisition, such as motivation and cue associations. This rich and complex literature should be considered in models of how peripheral hormones influence feeding behavior via action on the midbrain circuits. PMID:19836414

  19. Gut hormone release after intestinal resection.

    PubMed Central

    Besterman, H S; Adrian, T E; Mallinson, C N; Christofides, N D; Sarson, D L; Pera, A; Lombardo, L; Modigliani, R; Bloom, S R

    1982-01-01

    To investigate the possible role of gut and pancreatic hormones in the adaptive responses to gut resection, plasma concentrations of the circulating hormones were measured, in response to a test breakfast, in patients with either small or large intestinal resection and in healthy control subjects. In 18 patients with partial ileal resection a significant threefold rise was found in basal and postprandial levels of pancreatic polypeptide, a fourfold increase in motilin, and more than a twofold increase in gastrin and enteroglucagon levels compared with healthy controls. In contrast, nine patients with colonic resection had a threefold rise in levels of pancreatic polypeptide only. One or more of these peptides may have a role in stimulating the adaptive changes found after gut resection. PMID:7117905

  20. Gut hormones and the control of appetite.

    PubMed

    Small, Caroline J; Bloom, Stephen R

    2004-08-01

    Obesity is the main cause of premature death in the UK. Worldwide its prevalence is accelerating. It has been hypothesized that a gut nutriment sensor signals to appetite centres in the brain to reduce food intake after meals. Gut hormones have been identified as an important mechanism for this. Ghrelin stimulates, and glucagon like peptide-1, oxyntomodulin, peptide YY (PYY), cholecystokinin and pancreatic polypeptide inhibit, appetite. At physiological postprandial concentrations they can alter food intake markedly in humans and rodents. In addition, in obese humans fasting levels of PYY are suppressed and postprandial release is reduced. Administration of gut hormones might provide a novel and physiological approach in anti-obesity therapy. Here, we summarize some of the recent advances in this field.