Science.gov

Sample records for prevents apoptosis induced

  1. Quercetin-induced apoptosis prevents EBV infection

    PubMed Central

    Lee, Minjung; Son, Myoungki; Ryu, Eunhyun; Shin, Yu Su; Kim, Jong Gwang; Kang, Byung Woog; Sung, Gi-Ho; Cho, Hyosun; Kang, Hyojeung

    2015-01-01

    Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma

  2. Quercetin-induced apoptosis prevents EBV infection.

    PubMed

    Lee, Minjung; Son, Myoungki; Ryu, Eunhyun; Shin, Yu Su; Kim, Jong Gwang; Kang, Byung Woog; Cho, Hyosun; Kang, Hyojeung

    2015-05-20

    Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma.

  3. Taurine prevents ultraviolet B induced apoptosis in retinal ganglion cells.

    PubMed

    Dayang, Wu; Dongbo, Pang

    2017-06-07

    Compatible osmolytes accumulation is an active resistance response in retina under ultraviolet radiation and hypertonicity conditions. The purpose of this research is to investigate the protective role of taurine on retina under ultraviolet B radiation. Osmolytes transporters was measured by quantitative realtime PCR. Osmolytes uptake was estimated by radioimmunoassay. Cell viability was caculated by MTT assay. Cell apoptosis was measured by flow cytometry analysis. Hypertonicity accelerated osmolytes uptake into retinal ganglion cells including taurine, betaine and myoinositol. Ultraviolet B radiation increased osmolytes transporter expression and osmolytes uptake. In addition, osmolyte taurine remarkably prevented ultraviolet B radiation induced cell apoptosis in retinal ganglion cells. The effect of compatible osmolyte taurine on cell survival rate may play an important role in cell resistance and adaption to UVB exposure.

  4. Metformin prevents methylglyoxal-induced apoptosis of mouse Schwann cells

    SciTech Connect

    Ota, Kimiko; Nakamura, Jiro; Li, Weiguo; Kozakae, Mika; Watarai, Atsuko; Nakamura, Nobuhisa; Yasuda, Yutaka; Nakashima, Eirtaro; Naruse, Keiko; Watabe, Kazuhiko; Kato, Koichi; Oiso, Yutaka; Hamada, Yoji . E-mail: yhama@med.nagoya-u.ac.jp

    2007-05-25

    Methylglyoxal (MG) is involved in the pathogenesis of diabetic complications via the formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS). To clarify whether the antidiabetic drug metformin prevents Schwann cell damage induced by MG, we cultured mouse Schwann cells in the presence of MG and metformin. Cell apoptosis was evaluated using Hoechst 33342 nuclear staining, caspase-3 activity, and c-Jun-N-terminal kinase (JNK) phosphorylation. Intracellular ROS formation was determined by flow cytometry, and AMP-activated kinase (AMPK) phosphorylation was also examined. MG treatment resulted in blunted cell proliferation, an increase in the number of apoptotic cells, and the activation of caspase-3 and JNK along with enhanced intracellular ROS formation. All of these changes were significantly inhibited by metformin. No significant activation of AMPK by MG or metformin was observed. Taken together, metformin likely prevents MG-induced apoptotic signals in mouse Schwann cells by inhibiting the formation of AGEs and ROS.

  5. Preventive effects of bicarbonate on cerivastatin-induced apoptosis.

    PubMed

    Kobayashi, Masaki; Kaido, Fumie; Kagawa, Toshiki; Itagaki, Shirou; Hirano, Takeshi; Iseki, Ken

    2007-08-16

    Although HMG-CoA reductase inhibitors such as statins are the most widely used cholesterol-lowering agents, there is a risk of myopathy or rhabdmyolysis occurring in patients taking these drugs. It has been reported that a number of lipophilic statins cause apoptosis in various cells, but it is still not clear whether intracellular acidification is involved in statin-induced apoptosis. There have been few studies aimed at identifying compounds that suppress statin-induced myotoxicity. In the present study, we examined the relationship between cerivastatin-induced apoptosis and intracellular acidification and the effect of bicarbonate on cerivastatin-induced apoptosis using an RD cell line as a model of in vitro skeletal muscle. Cerivastatin reduced the number of viable cells and caused dramatic morphological changes and DNA fragmentation in a concentration-dependent manner. Moreover, cerivastatin-induced apoptosis was associated with intracellular acidification and caspase-9 and -3/7 activation. On the other hand, bicarbonate suppressed cerivastatin-induced pH alteration, caspase activation, morphological change and reduction of cell viability. Accordingly, bicarbonate suppressed statin-induced apoptosis. The strategy to combine statins with bicarbonate can lead to reduction in the chance of the severe adverse events including myopathy or rhabdmyolysis.

  6. Autophagy prevents doxorubicin‑induced apoptosis in osteosarcoma.

    PubMed

    Zhao, Dongxu; Yuan, Hongping; Yi, Fei; Meng, Chunyang; Zhu, Qingsan

    2014-05-01

    Autophagy is a process of selective degradation of cellular components. Autophagy is an adaptive process in the majority of tumor cells; it provides sufficient nutrients by degrading cellular components to enhance the survival of tumors. Osteosarcoma is the most common type of primary malignant bone tumor in children and adolescents. Identification of an improved therapeutic strategy for the treatment of osteosarcoma is urgently required. Osteosarcoma has been primarily treated by chemotherapy and the phenomena of resistance to the therapy has become increasingly common. Doxorubicin (Dox) is a classic chemotherapeutic drug for the treatment of osteosarcoma, and certain studies have suggested that Dox induces autophagy. On the basis of the protective effect of autophagy for tumors, the present study investigated whether U2OS and Saos-2 osteosarcoma cells activate autophagy to reduce Dox-induced apoptosis. Dox was observed to inhibit the growth of U2OS and Saos-2 osteosarcoma cells in a concentration-dependent manner. The results of the western blot analysis demonstrated that Dox induced increased expression levels of the apoptosis-related proteins cleaved caspase-3 and cytochrome c and loss of mitochondrial membrane potential (MMP) in the U2OS and Saos-2 osteosarcoma cells. Furthermore, the results of the western blot analysis also revealed that Dox increased the expression levels of the autophagy-related protein microtubule-associated protein 1 light chain 3 and reduced those of p62 in the U2OS and Saos-2 osteosarcoma cells. In order to determine the effect of autophagy on the apoptosis induced by Dox in the U2OS and Saos-2 osteosarcoma cells, autophagy-related protein (Atg)7 small interfering (si) RNA or the autophagy inhibitor 3-methyladenine (3-MA) alone or combined with Dox was used in U2OS and Saos-2 osteosarcoma cells. The results identified that Atg7 siRNA and the autophagy inhibitor 3-MA significantly elevated the levels of growth inhibition by Dox and

  7. Mecamylamine prevents neuronal apoptosis induced by glutamate and low potassium via differential anticholinergic-independent mechanisms.

    PubMed

    Fu, Hongjun; Dou, Juan; Li, Wenming; Luo, Jialie; Li, Kenny C; Lam, Colin S C; Lee, Nelson T K; Li, Mingtao; Han, Yifan

    2008-03-01

    Neuronal loss via apoptosis caused by various stimuli may be the fundamental mechanism underlying chronic and acute neurodegenerative diseases. A drug inhibiting neuronal apoptosis may lead to a practical treatment for these diseases. In this study, treatment with mecamylamine, a classical antagonist of nicotinic acetylcholine receptors (nAChRs), prevented neuronal apoptosis induced by 75 microM glutamate and by low potassium (LK) in cerebellar granule neurons (CGNs) with EC(50)s of 35 and 293 microM, respectively. Two other antagonists of nAChRs, dihydro-beta-erythroidine and tubocurarine, failed to inhibit these two kinds of apoptosis. Mecamylamine inhibited the NMDA (30 microM)-evoked current and competed with [(3)H]MK-801. Furthermore, two inhibiters of the c-Jun N-terminal kinase (JNK) pathway prevented LK-induced apoptosis. Mecamylamine reversed the phosphorylation levels of JNK and c-Jun as well as the expression of c-Jun caused by LK in a Western blot assay. In addition, the JNK/c-Jun pathway was not involved in glutamate-induced cell death of CGNs. Our results suggest that mecamylamine prevents glutamate-induced apoptosis by blocking NMDA receptors at the MK-801 site and LK-induced apoptosis by inhibiting the activation of the JNK/c-Jun pathway.

  8. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner

    PubMed Central

    Pellegrini, Gretel G.; Morales, Cynthya C.; Wallace, Taylor C.; Plotkin, Lilian I.; Bellido, Teresita

    2016-01-01

    Oats contain unique bioactive compounds known as avenanthramides (AVAs) with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin) in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT) and Nrf2 Knockout (KO) osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast apoptosis; further

  9. Myc Prevents Apoptosis and Enhances Endoreduplication Induced by Paclitaxel

    PubMed Central

    Gatti, Giuliana; Maresca, Giovanna; Natoli, Manuela; Florenzano, Fulvio; Nicolin, Angelo; Felsani, Armando; D'Agnano, Igea

    2009-01-01

    Background The role of the MYC oncogene in the apoptotic pathways is not fully understood. MYC has been reported to protect cells from apoptosis activation but also to sensitize cells to apoptotic stimuli. We have previously demonstrated that the down-regulation of Myc protein activates apoptosis in melanoma cells and increases the susceptibility of cells to various antitumoral treatments. Beyond the well-known role in the G1→S transition, MYC is also involved in the G2-M cell cycle phases regulation. Methodology/Principal Findings In this study we have investigated how MYC could influence cell survival signalling during G2 and M phases. We used the microtubules damaging agent paclitaxel (PTX), to arrest the cells in the M phase, in a p53 mutated melanoma cell line with modulated Myc level and activity. An overexpression of Myc protein is able to increase endoreduplication favoring the survival of cells exposed to antimitotic poisoning. The PTX-induced endoreduplication is associated in Myc overexpressing cells with a reduced expression of MAD2, essential component of the molecular core of the spindle assembly checkpoint (SAC), indicating an impairment of this checkpoint. In addition, for the first time we have localized Myc protein at the spindle poles (centrosomes) during pro-metaphase in different cell lines. Conclusions The presence of Myc at the poles during the prometaphase could be necessary for the Myc-mediated attenuation of the SAC and the subsequent induction of endoreduplication. In addition, our data strongly suggest that the use of taxane in antitumor therapeutic strategies should be rationally based on the molecular profile of the individual tumor by specifically analyzing Myc expression levels. PMID:19421315

  10. LR-90 prevents methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells.

    PubMed

    Figarola, James L; Singhal, Jyotsana; Rahbar, Samuel; Awasthi, Sanjay; Singhal, Sharad S

    2014-05-01

    Methylglyoxal (MGO) is a highly reactive dicarbonyl compound known to induce cellular injury and cytoxicity, including apoptosis in vascular cells. Vascular endothelial cell apoptosis has been implicated in the pathophysiology and progression of atherosclerosis. We investigated whether the advanced glycation end-product inhibitor LR-90 could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). HUVECs were pre-treated with LR-90 and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, MTT assay, and Annexin V-FITC and propidium iodide double staining, respectively. Levels of Bax, Bcl-2, cytochrome c, mitogen-activated protein kinases (MAPKs) and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. LR-90 dose-dependently prevented MGO-associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, increased Bax/Bcl-2 protein ratio, mitochondrial cytochrome c release and activation of caspase-3 and 9. Additionally, LR-90 blocked intracellular ROS formation and MAPK (p44/p42, p38, JNK) activation, though the latter seem to be not directly involved in MGO-induced HUVEC apoptosis. LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis.

  11. LR-90 prevents methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells

    PubMed Central

    Figarola, James L.; Singhal, Jyotsana; Rahbar, Samuel; Awasthi, Sanjay

    2014-01-01

    Methylglyoxal (MGO) is a highly reactive dicarbonyl compound known to induce cellular injury and cytoxicity, including apoptosis in vascular cells. Vascular endothelial cell apoptosis has been implicated in the pathophysiology and progression of atherosclerosis. We investigated whether the advanced glycation end-product inhibitor LR-90 could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). HUVECs were pre-treated with LR-90 and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, MTT assay, and Annexin V-FITC and propidium iodide double staining, respectively. Levels of Bax, Bcl-2, cytochrome c, mitogen-activated protein kinases (MAPKs) and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. LR-90 dose-dependently prevented MGO-associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, increased Bax/Bcl-2 protein ratio, mitochondrial cytochrome c release and activation of caspase-3 and 9. Additionally, LR-90 blocked intracellular ROS formation and MAPK (p44/p42, p38, JNK) activation, though the latter seem to be not directly involved in MGO-induced HUVEC apoptosis. LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis. PMID:24615331

  12. Ammonia prevents glutamate-induced but not low K(+)-induced apoptosis in cerebellar neurons in culture.

    PubMed

    Llansola, M; Boscá, L; Felipo, V; Hortelano, S

    2003-01-01

    Cultured rat cerebellar granule neurons are widely used as a model system for studying neuronal apoptosis. Either low K(+) (5 mM) or low concentrations of glutamate (1-10 microM) induce apoptosis in cerebellar neurons in culture. However, the molecular mechanism(s) involved remain unclear. We show that long-term treatment with ammonia prevents glutamate-induced but not low K(+)-induced apoptosis in cerebellar neurons, as assessed by measuring DNA fragmentation and activation of caspase 3. Ammonia prevented glutamate-induced increase of intracellular calcium, depolarization of the inner mitochondrial membrane, release of cytochrome c to the cytosol, activation of caspase 3 and fragmentation of DNA. However, ammonia did not prevent low K(+)-induced activation of caspase 3 and fragmentation of DNA. These results indicate that the initial steps involved in the induction of apoptosis by low K(+) or by glutamate are different and that ammonia prevents glutamate-induced apoptosis by reducing glutamate-induced rise of intracellular Ca(2+), thus avoiding the activation of subsequent events of the apoptotic process.

  13. Glutathionylation of Adenine Nucleotide Translocase Induced by Carbon Monoxide Prevents Mitochondrial Membrane Permeabilization and Apoptosis*

    PubMed Central

    Queiroga, Cláudia S. F.; Almeida, Ana S.; Martel, Cécile; Brenner, Catherine; Alves, Paula M.; Vieira, Helena L. A.

    2010-01-01

    The present work demonstrates the ability of CO to prevent apoptosis in a primary culture of astrocytes. For the first time, the antiapoptotic behavior can be clearly attributed to the inhibition of mitochondrial membrane permeabilization (MMP), a key event in the intrinsic apoptotic pathway. In isolated non-synaptic mitochondria, CO partially inhibits (i) loss of potential, (ii) the opening of a nonspecific pore through the inner membrane, (iii) swelling, and (iv) cytochrome c release, which are induced by calcium, diamide, or atractyloside (a ligand of ANT). CO directly modulates ANT function by enhancing ADP/ATP exchange and prevents its pore-forming activity. Additionally, CO induces reactive oxygen species (ROS) generation, and its prevention by β-carotene decreases CO cytoprotection in intact cells as well as in isolated mitochondria, revealing the key role of ROS. On the other hand, CO induces a slight increase in mitochondrial oxidized glutathione, which is essential for apoptosis modulation by (i) delaying astrocytic apoptosis, (ii) decreasing MMP, and (iii) enhancing ADP/ATP translocation activity of ANT. Moreover, CO and GSSG trigger ANT glutathionylation, a post-translational process regulating protein function in response to redox cellular changes. In conclusion, CO protects astrocytes from apoptosis by preventing MMP, acting on ANT (glutathionylation and inhibition of its pore activity) via a preconditioning-like process mediated by ROS and GSSG. PMID:20348099

  14. K(ATP) channel block prevents proteasome inhibitor-induced apoptosis in differentiated PC12 cells.

    PubMed

    Nam, Yoon Jeong; Lee, Da Hee; Lee, Min Sung; Lee, Chung Soo

    2015-10-05

    Dysfunction of the proteasome system has been suggested to be implicated in neuronal degeneration. Modulation of KATP channels appears to affect the viability of neuronal cells exposed to toxic insults. However, the effect of KATP channel blockers on the neuronal cell death mediated by proteasome inhibition has not been studied. The present study investigated the effect of KATP channel blockers on proteasome inhibitor-induced apoptosis in differentiated PC12 cells and SH-SY5Y cells. 5-Hydroxydecanoate (a selective KATP channel blocker) and glibenclamide (a cell surface and mitochondrial KATP channel inhibitor) reduced the proteasome inhibitor-induced apoptosis. Addition of the KATP channel blockers attenuated the proteasome inhibitor-induced changes in the levels of apoptosis-related proteins, the loss of the mitochondrial transmembrane potential, the increase in the formation of reactive oxygen species and the depletion of glutathione in both cell lines. The results show that KATP channel blockers may attenuate proteasome inhibitor-induced apoptosis in PC12 cells by suppressing activation of the mitochondrial pathway and of the caspase-8- and Bid-dependent pathways. The preventive effect appears to be associated with the inhibition of the formation of reactive oxygen species and the depletion of glutathione. KATP channel blockade appears to prevent proteasome inhibition-induced neuronal cell death.

  15. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes.

    PubMed

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R

    2012-06-22

    Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF+ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF+ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.

  16. NAD(+) treatment prevents rotenone-induced apoptosis and necrosis of differentiated PC12 cells.

    PubMed

    Hong, Yunyi; Nie, Hui; Wu, Danhong; Wei, Xunbin; Ding, Xianting; Ying, Weihai

    2014-02-07

    Nicotinamide adenine dinucleotide (NAD(+)) plays critical roles in not only energy metabolism and mitochondrial functions, but also calcium homeostasis and immunological functions. It has been reported that NAD(+) administration can reduce ischemic brain damage. However, the mechanisms underlying the protective effects remain unclear. Because mitochondrial impairments play a key role in the cell death in cerebral ischemia, in this study we tested our hypothesis that NAD(+) can decrease mitochondrial damage-induced cell death using differentiated PC12 cells as a cellular model. We found that NAD(+) can decrease both early-stage and late-stage apoptosis, as well as necrosis of rotenone-treated PC12 cells, as assessed by FACS-based Annexin V/AAD assay. We also found that NAD(+) treatment can restore the intracellular NAD(+) levels of the rotenone-treated cells. Moreover, NAD(+) treatment can prevent rotenone-induced mitochondria depolarization. In summary, our study has provided first direct evidence that NAD(+) treatment can prevent rotenone-induced apoptosis and necrosis. Our study has also indicated that NAD(+) treatment can prevent mitochondrial damage-induced cell death, which may at least partially result from its protective effects on rotenone-induced mitochondrial depolarization. Because both mitochondrial damage and apoptosis play key roles in multiple neurological disorders, our study has highlighted the therapeutic potential of NAD(+) for brain ischemia and other neurological diseases. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Phycocyanin prevents methylglyoxal-induced mitochondrial-dependent apoptosis in INS-1 cells by Nrf2.

    PubMed

    Gao, Yingnv; Liu, Chen; Wan, Guoqing; Wang, Xinshuo; Cheng, Xiaodong; Ou, Yu

    2016-02-01

    Methylglyoxal (MG) is a reactive dicarbonyl compound, whose abnormal accumulation in diabetic patients exerts deleterious effects on cells and tissues. The β-cell is the main target cell of Type 2 diabetes, and its insulin secretion injury and cell apoptosis can be due to mitochondrial dysfunction. Previous studies have demonstrated MG induced β-cell apoptosis. However, little is known about the effect of MG on β-cell mitochondrial dysfunction. Phycocyanin (PC) has been demonstrated to possess various biological activities including the effects on diabetic models in vivo. The aim of this study was to determine the protective effect of PC against methylglyoxal (MG)-induced dysfunction in pancreatic β-cell INS-1 and also the mechanism. We demonstrated that MG induced mitochondrial dysfunction by the decline in ATP levels, and the increase of the level of intracellular reactive oxygen species (ROS). Furthermore, MG released cytochrome c and apoptosis-inducing factor (AIF) from the mitochondrion, induced changes in the expression of Bcl-2 family members, activated caspases and increased PARP cleavage. Interestingly, PC activated nuclear erythroid-related factor 2 (Nrf2), and Nrf2 activation as well as antioxidant enzymes HO-1 and glyoxalase 1 (Glo-1) were confirmed to be involved in the mechanisms underlying the protection of PC by RNA interference. Altogether, these results demonstrated that PC prevented mitochondrial-dependent apoptosis in MG-induced INS-1 cells and the effect was associated with Nrf2 activation.

  18. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway

    SciTech Connect

    Li, Fengbo; Sun, Xiaolei; Ma, Jianxiong; Ma, Xinlong; Zhao, Bin; Zhang, Yang; Tian, Peng; Li, Yanjun; Han, Zhe

    2014-09-26

    Highlights: • Naringin possesses many pharmacological activities, promotes the proliferation of osteoblast. • Undecalcified histological obtain dynamic parameters of callus formation and remodeling. • Naringin regulate osteoclast apoptosis by mitochondrial pathway. - Abstract: Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats.

  19. Astragaloside IV, a Novel Antioxidant, Prevents Glucose-Induced Podocyte Apoptosis In Vitro and In Vivo

    PubMed Central

    Liu, Wei; Chen, Jianguo; Chen, Yifang; Huang, Jianhua; Wang, Niansong

    2012-01-01

    Glucose-induced reactive oxygen species (ROS) production initiates podocyte apoptosis, which represents a novel early mechanism leading to diabetic nephropathy (DN). Here, we tested the hypothesis that Astragaloside IV(AS-IV) exerts antioxidant and antiapoptotic effects on podocytes under diabetic conditions. Apoptosis, albuminuria, ROS generation, caspase-3 activity and cleavage, as well as Bax and Bcl-2 mRNA and protein expression were measured in vitro and in vivo. Cultured podocytes were exposed to high glucose (HG) with 50, 100 and 200 µg/ml of AS-IV for 24 h. AS-IV significantly attenuated HG-induced podocyte apoptosis and ROS production. This antiapoptotic effect was associated with restoration of Bax and Bcl-2 expression, as well as inhibition of caspase-3 activation and overexpression. In streptozotocin (STZ)-induced diabetic rats, severe hyperglycemia and albuminuria were developed. Increased apoptosis, Bax expression, caspase-3 activity and cleavage while decreased Bcl-2 expression were detected in diabetic rats. However, pretreatment with AS-IV (2.5, 5, 10 mg·kg−1·d−1) for 14 weeks ameliorated podocyte apoptosis, caspase-3 activation, renal histopathology, podocyte foot process effacement, albuminuria and oxidative stress. Expression of Bax and Bcl-2 mRNA and protein in kidney cortex was partially restored by AS-IV pretreatment. These findings suggested AS-IV, a novel antioxidant, to prevent Glucose-Induced podocyte apoptosis partly through restoring the balance of Bax and Bcl-2 expression and inhibiting caspase-3 activation. PMID:22745830

  20. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    SciTech Connect

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying

    2012-06-22

    that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF + ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.

  1. Apigenin prevents TNF-α induced apoptosis of primary rat retinal ganglion cells.

    PubMed

    Fu, M-S; Zhu, B-J; Luo, D-W

    2014-11-25

    TNF-α has recently been identified to be a mediator of retinal ganglion cell (RGC) death, while glial cells are relatively protected against this death stimulus. Exposure of RGCs to TNF-α is thought to contribute to RGC apoptosis. Apigenin is a flavone with powerful anti-inflammatory properties that exists naturally in various plants and Chinese medicine. In our study, MTT assays showed that apigenin significantly inhibited the decrease of RGC viability induced by TNF-α in a dose-dependent manner. Pretreatment with apigenin prevented TNF-α-induced apoptosis in a dose-dependent manner as shown by flow cytometry. The production of ATP and the total oxygen uptake were also promoted after apigenin administration. TNF-α stimulation led to a significant reduction of bcl-2 and enhancement of bax, which was reversed by apigenin treatment. Apigenin treatment also alleviated the increased caspase-3 activity induced by TNF-α. Moreover, luciferase reporter assay indicated that apigenin dose-dependently decreased NF-κB activation induced by TNF-α, but had no significant effect on activation of AP-1. Collectively, these data demonstrated that apigenin alleviated TNF-α-induced apoptosis through inhibition of caspase-dependent apoptotic pathway and activation of nuclear factor-kappaB. Therefore, apigenin may be developed as an anti-apoptotic drug to treat retinopathy.

  2. Nicotine prevents the apoptosis induced by menadione in human lung cancer cells

    SciTech Connect

    Zhang Tao; Lu Heng; Shang Xuan; Tian Yihao; Zheng Congyi; Wang Shiwen; Cheng Hanhua . E-mail: hhcheng@whu.edu.cn; Zhou Rongjia . E-mail: rjzhou@whu.edu.cn

    2006-04-14

    Approximately 50% of long-term cigarette smokers die prematurely from the adverse effects of smoking, including on lung cancer and other illnesses. Nicotine is a main component in tobacco and has been implicated as a potential factor in the pathogenesis of human lung cancer. However, the mechanism of nicotine action in the development of lung cancer remains largely unknown. In the present study, we designed a nicotine-apoptosis system, by pre-treatment of nicotine making lung cancer cell A549 to be in a physiological nicotine environment, and observed that nicotine promoted cell proliferation and prevented the menadione-induced apoptosis, and exerts its role of anti-apoptosis by shift of apoptotic stage induced by menadione from late apoptotic stage to early apoptotic stage, in which NF-{kappa}B was up-regulated. Interference analysis of NF-{kappa}B in A549 cells showed that knock down of NF-{kappa}B resulted in apoptosis promotion and counteracted the protective effect of nicotine. The findings suggest that nicotine has potential effect in lung cancer genesis, especially in patients with undetectable early tumor development and development of specific NF-{kappa}B inhibitors would represent a potentially exciting new pharmacotherapy for tobacco-related lung cancer.

  3. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro.

    PubMed

    Spallarossa, Paolo; Garibaldi, Silvano; Altieri, Paola; Fabbi, Patrizia; Manca, Valeria; Nasti, Sabina; Rossettin, Pierfranco; Ghigliotti, Giorgio; Ballestrero, Alberto; Patrone, Franco; Barsotti, Antonio; Brunelli, Claudio

    2004-10-01

    The clinical use of doxorubicin, a highly active anticancer drug, is limited by its severe cardiotoxic side effects. Increased oxidative stress and apoptosis have been implicated in the cardiotoxicity of doxorubicin. Carvedilol is an adrenergic blocking agent with potent anti-oxidant activity. In this study we investigated whether carvedilol has protective effects against doxorubicin-induced free radical production and apoptosis in cultured cardiac muscle cells, and we compared the effects of carvedilol to atenolol, a beta-blocker with no anti-oxidant activity. Reactive oxygen species (ROS) generation in cultured cardiac muscle cells (H9c2 cells) was evaluated by flow cytometry using dichlorofluorescein (DCF) and hydroethidine (HE). Apoptosis was assessed by measuring annexin V-FITC/propidium iodide double staining, DNA laddering, levels of expression of the pro-apoptotic protein Bax-alpha and the anti-apoptotic protein Bcl-2, and caspase-3 activity. Pre-treatment with carvedilol significantly attenuated the doxorubicin-induced increases in DCF (P < 0.001 compared to cells not pre-treated with carvedilol) and HE (P < 0.01) fluorescence. Doxorubicin increased the fraction of annexin V-FITC-positive fluorescent cells, while pre-treatment with carvedilol reduced the number of positive fluorescent cells (P < 0.01). Doxorubicin-induced DNA fragmentation to a clear ladder pattern, while carvedilol prevented DNA fragmentation. Doxorubicin-induced a fall in mRNA expression of the anti-apoptotic Bcl-2 and an increase in the expression of the pro-apoptotic Bax-alpha. Carvedilol pre-treatment blunted both the decrease of Bcl-2 (P < 0.01) and the increase of Bax-alpha mRNA expression (P < 0.01). Caspase-3 activity significantly increased after the addition of doxorubicin. Concurrently, carvedilol partially inhibited the doxorubicin-induced activation of caspase-3 (P < 0.01). Atenolol did not produce any effect in preventing doxorubicin-induced ROS generation and cardiac

  4. Curcumin prevents methylglyoxal-induced oxidative stress and apoptosis in mouse embryonic stem cells and blastocysts.

    PubMed

    Hsuuw, Yan-Der; Chang, Chen-Kang; Chan, Wen-Hsiung; Yu, Jau-Song

    2005-12-01

    Methylglyoxal (MG) is a reactive dicarbonyl compound endogenously produced mainly from glycolytic intermediates. Elevated MG levels in diabetes patients are believed to contribute to diabetic complications. MG is cytotoxic through induction of apoptosis. Curcumin, the yellow pigment of Curcuma longa, is known to have antioxidant and anti-inflammatory properties. In the present study, we examined the effect of curcumin on apoptotic biochemical events caused by incubation of ESC-B5 cells with MG. Curcumin inhibited the MG-induced DNA fragmentation, caspase-3 activation, cleavage of PARP, mitochondrial cytochrome c release, and JNK activation. Importantly, curcumin also inhibited the MG-stimulated increase of reactive oxygen species (ROS) in these cells. In addition, we demonstrated that curcumin prevented the MG-induced apoptosis of mouse blastocysts isolated from pregnant mice. Moreover, curcumin significantly reduced the MG-mediated impairment of blastocyst development from mouse morulas. The results support the hypothesis that curcumin inhibits MG-induced apoptosis in mouse ESC-B5 cells and blastocysts by blocking ROS formation and subsequent apoptotic biochemical events.

  5. LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse

    PubMed Central

    Rossi, Valerio; Lispi, Monica; Longobardi, Salvatore; Mattei, Maurizio; Rella, Francesca Di; Salustri, Antonietta; De Felici, Massimo; Klinger, Francesca G

    2017-01-01

    Premature ovarian failure and female infertility are frequent side effects of anticancer therapies, owing to the extreme sensitivity of the ovarian reserve oocytes to the damaging effects of irradiation and chemotherapy on DNA. We report here a robust protective effect of luteinizing hormone (LH) on the primordial follicle pool of prepubertal ovaries against the cisplatin (Cs)-induced apoptosis. In vitro LH treatment of prepubertal ovarian fragments generated anti-apoptotic signals by a subset of ovarian somatic cells expressing LH receptor (LHR) through cAMP/PKA and Akt pathways. Such signals, reducing the oocyte level of pro-apoptotic TAp63 protein and favoring the repair of the Cs-damaged DNA in the oocytes, prevented their apoptosis. Noteworthy, in vivo administration to prepubertal female mice of a single dose of LH together with Cs inhibited the depletion of the primordial follicle reserve caused by the drug and preserved their fertility in reproductive age, preventing significant alteration in the number of pregnancy and of delivered pups. In conclusion, these findings establish a novel ovoprotective role for LH and further support the very attracting prospective to use physiological 'fertoprotective' approaches for preventing premature infertility and risks linked to precocious menopause in young patients who survived cancer after chemotherapy. PMID:27689876

  6. Angiotensin-converting enzyme inhibitor captopril prevents activation-induced apoptosis by interfering with T cell activation signals

    PubMed Central

    Odaka, C; Mizuochi, T

    2000-01-01

    Captopril is an orally active inhibitor of angiotensin-converting enzyme (ACE) which is widely used as an anti-hypertensive agent. In addition to its ability to reduce blood pressure, captopril has a number of other biological activities. Recently the drug was shown to inhibit Fas-induced apoptosis in human activated peripheral T cells and human lung epithelial cells. In this study, we investigated whether captopril blocks activation-induced apoptosis in murine T cell hybridomas, and found that captopril inhibited IL-2 synthesis and apoptotic cell death upon activation with anti-CD3 antibody. In addition, captopril inhibited an inducible caspase-3-like activity during activation-induced apoptosis. On the other hand, captopril did not interfere with Fas signalling, since anti-Fas antibody-induced apoptosis in Fas+ Jurkat cells was unaffected by the drug. Furthermore, we examined whether captopril blocks activation-induced apoptosis by interfering with expression of Fas, Fas ligand (FasL), or both on T cell hybridomas. FasL expression on activated T cells was significantly inhibited by captopril, whereas up-expression of Fas was partially inhibited, as assessed by cell surface staining. Taking all data together, we conclude that captopril prevents activation-induced apoptosis in T cell hybridomas by interfering with T cell activation signals. Captopril has been reported to induce systemic lupus erythematosus syndrome, and our findings may be useful for elucidating the mechanism of captopril-induced autoimmunity. PMID:10971519

  7. Evodiamine Prevents Glioma Growth, Induces Glioblastoma Cell Apoptosis and Cell Cycle Arrest through JNK Activation.

    PubMed

    Wu, Wen-Shin; Chien, Chih-Chiang; Liu, Kao-Hui; Chen, Yen-Chou; Chiu, Wen-Ta

    2017-01-01

    Evodiamine (EVO) is an active medicinal compound derived from the traditional herbal medicine Evodia rutaecarpa. It has been reported that evodiamine has several beneficial biological properties, including anticancer and anti-inflammatory activities. However, the in vitro and in vivo anticancer activities of EVO against the growth of glioblastoma cells remain undefined. EVO induced significant decreases in the viability of U87 and C6 glioma cells, but not of primary astrocytes, according with the occurrence of apoptotic characteristics including DNA ladders, caspase-3 and poly(ADP ribose) polymerase (PARP) protein cleavage, and hypodiploid cells. The disruption of the mitochondrial membrane potential (MMP) was detected, and it was found that the peptidyl caspase-9 inhibitor, Z-LEHD-FMK, significantly prevented glioma cells from EVO-induced apoptosis. Increased c-Jun N-terminal kinase (JNK) protein phosphorylation by EVO was observed, and the addition of JNK inhibitors, SP600125 and JNKI inhibited the EVO-induced apoptosis was inhibited. Additionally, EVO treatment induced G2/M arrest with increased polymerized tubulin protein expression in U87 and C6 cells. Elevated expressions of the cyclin B1, p53, and phosphorylated (p)-p53 proteins were detected in EVO-treated glioma cells, and these were inhibited by JNK inhibitors. An in vivo study showed that EVO significantly reduced the growth of gliomas elicited by the subcutaneous injection of U87 cells with increases in cyclin B1, p53, and p-p53 protein expressions in tumors. An analysis of eight EVO-related chemicals showed that alkyl groups at position 14 in EVO are important for its anti-glioma effects which involve both apoptosis and G2/M arrest. Evidence is provided that supports EVO induction of apoptosis and G2/M arrest via the activation of JNK-mediated gene expression and disruption of MMP in glioblastoma cells. EVO was shown to penetrate the blood-brain barrier; EVO is therefore predicted to be a promising

  8. Flos Puerariae extract prevents myocardial apoptosis via attenuation oxidative stress in streptozotocin-induced diabetic mice.

    PubMed

    Yu, Wei; Zha, Wenliang; Guo, Shuang; Cheng, Hongke; Wu, Jiliang; Liu, Chao

    2014-01-01

    Diabetic cardiomyopathy (DCM) suggests a direct cellular insult to myocardium. Apoptosis is considered as one of the hallmarks of DCM. Oxidative stress plays a key role in the pathogenesis of DCM. In this study, we explored the prevention of myocardial apoptosis by crude extract from Flos Puerariae (FPE) in experimental diabetic mice. Experimental diabetic model was induced by intraperitoneally injection of streptozotocin (STZ, 50 mg/kg/day) for five consecutive days in C57BL/6J mice. FPE (100, 200 mg/kg) was orally administrated once a day for ten weeks. Cardiac structure changes, apoptosis, superoxide production, NADPH oxidase subunits expression (gp91phox, p47phox, and p67phox), and related regulatory factors were assessed in the heart of mice. Diabetic mice were characterized by high blood glucose (≥11.1 mmol/L) and reduced body weight. In the end of the experiment, aberrant myofilament structure, as well as TUNEL positive cardiac cells coupled with increased Bax/Bcl-2 ratio and Caspase-3 expression was found in diabetic mice. Moreover, ROS formation, the ratio of NADP+/NADPH and NADPH oxidase subunits expression of gp91phox and p47phox, lipid peroxidation level was significantly increased, while antioxidant enzyme SOD and GSH-Px activity were reduced in the myocardial tissue of diabetic mice. In contrast, treatment with FPE resulted in a normalized glucose and weight profile. FPE administration also preserved myocardial structure and reduced apoptotic cardiac cell death in diabetic mice. The elevated markers of oxidative stress were significantly reversed by FPE supplementation. Further, FPE treatment markedly inhibited the increased Bax/Bcl-2 ratio and Caspase-3 expression, as well as suppressed JNK and P38 MAPK activation in the heart of diabetic mice. Our data demonstrate for the first time that FPE may have therapeutic potential for STZ-induced diabetic cardiomyopathy through preventing myocardial apoptosis via attenuation oxidative stress. And this

  9. Thymoquinone and curcumin prevent gentamicin-induced liver injury by attenuating oxidative stress, inflammation and apoptosis.

    PubMed

    Galaly, S R; Ahmed, O M; Mahmoud, A M

    2014-12-01

    This study was conducted to assess the preventive effect of two plant constituents, thymoquinone and curcumin, on gentamicin-induced deleterious effect on liver function, integrity and histological architecture. The gentamicin was intraperitoneally injected to rats at dose level of 100 mg/kg b.w. (every other day) for 21 days. The thymoquinone and curcumin were concurrently and orally administered at dose level of 20 mg/kg b.w. (every other day) to gentamicin-injected rats. The present data indicated that thymoquinone and curcumin significantly prevented the gentamicin-induced elevations of serum AST, ALT and LDH activities as well as tumor necrosis factor alpha (TNF-α) and total bilirubin levels. On the other hand, both agents markedly ameliorated the gentamicin-induced decrease in serum total protein, albumin and albumin/globulin ratio. In addition, the gentamicin-induced liver histological alterations including hydropic degeneration of hepatocytes, fatty changes, inflammatory cell infiltration and congestion of portal vein were successfully amended by thymoquinone and curcumin. The elevated proapoptotic proteins caspase 3 and Bax expression in cytoplasm and nucleus of hepatocytes of gentamicin-injected rats were reduced to normal value as a result of thymoquinone and curcumin administration while the lowered expression of antiapoptotic protein Bcl-2 was increased. Based on the previous findings, it can be concluded that thymoquinone and curcumin successfully prevents the deleterious effects on liver function and histological integrity to more or less the same degree by enhancing anti-oxidant defense system, suppression of oxidative stress and attenuation of inflammation and apoptosis.

  10. Hydroxycamptothecin induces apoptosis of fibroblasts and prevents intraarticular scar adhesion in rabbits by activating the IRE-1 signal pathway.

    PubMed

    Li, Xiaolei; Sun, Yu; Chen, Hui; Zhu, Gengyao; Liang, Yuan; Wang, Qiang; Wang, Jingcheng; Yan, Lianqi

    2016-06-15

    Hydroxycamptothecin (HCPT) has been proven to prevent intraarticular scar adhesion, but the mechanism is still unclear. ER stress is known to participate in many diseases, and the IRE-1 signal pathway has been reported in fibrotic diseases. The aim of this study was to illustrate the mechanism of HCPT-induced apoptosis in fibroblasts and the prevention of intraarticular scar adhesion. The effects of HCPT on fibroblasts were determined by CCK-8 assay, Hoechst staining and Western blot. The effect of HCPT on intraarticular scar adhesion was detected by macroscopic evaluation, hydroxyproline content, histological evaluation, fibroblast counting and immunohistochemical analysis. HCPT induced apoptosis of fibroblasts, according to CCK-8 assays, Hoechst staining and Western blot analysis. As the concentration of HCPT increased, the expressions of glucose-regulated protein 78 (GRP78), inositol-requiring kinase1 (IRE-1), C/EBP homologous protein (CHOP) and Bax were all increased, but the expression of Bcl-2 was decreased. Knockdown of IRE-1 alleviated the HCPT-induced apoptosis in our fibroblast model. HCPT could prevent intraarticular scar adhesion, according to the results of macroscopic evaluation, hydroxyproline content, histological evaluation and fibroblast counting in a rabbit model. Immunohistochemical analysis showed that IRE-1 expression increased as the concentration increased. The present study showed that the IRE-1 signal pathway might be involved in HCPT-induced apoptosis of fibroblast and might play a role in preventing intraarticular scar adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Marine Hydroquinone Zonarol Prevents Inflammation and Apoptosis in Dextran Sulfate Sodium-Induced Mice Ulcerative Colitis

    PubMed Central

    Noguchi, Hirotsugu; Ueda, Yuki; Kitsuyama, Ryo; Shimizu, Hiroya; Tanimoto, Akihide; Wang, Ke-Yong; Nawata, Aya; Nakayama, Toshiyuki; Sasaguri, Yasuyuki; Satoh, Takumi

    2014-01-01

    Background and Aim We previously identified an anti-inflammatory compound, zonarol, a hydroquinone isolated from the brown algae Dictyopteris undulata as a marine natural product. To ascertain the in vivo functions of zonarol, we examined the pharmacological effects of zonarol administration on dextran sulfate sodium (DSS)-induced inflammation in a mouse model of ulcerative colitis (UC). Our goal is to establish a safe and effective cure for inflammatory bowel disease (IBD) using zonarol. Methods and Results We subjected Slc:ICR mice to the administration of 2% DSS in drinking water for 14 days. At the same time, 5-aminosalicylic acid (5-ASA) at a dose of 50 mg/kg (positive control) and zonarol at doses of 10 and 20 mg/kg, were given orally once a day. DSS-treated animals developed symptoms similar to those of human UC, such as severe bloody diarrhea, which were evaluated by the disease activity index (DAI). Treatment with 20 mg/kg of zonarol, as well as 5-ASA, significantly suppressed the DAI score, and also led to a reduced colonic ulcer length and/or mucosal inflammatory infiltration by various immune cells, especially macrophages. Zonarol treatment significantly reduced the expression of pro-inflammatory signaling molecules, and prevented the apoptosis of intestinal epithelial cells. Finally, zonarol protected against in vitro lipopolysaccharide (LPS)-induced activation in the RAW264.7 mouse macrophage cell line. Conclusions This is the first report that a marine bioproduct protects against experimental UC via the inhibition of both inflammation and apoptosis, very similar to the standard-of-care sulfasalazine, a well-known prodrug that releases 5-ASA. We believe that the oral administration of zonarol might offer a better treatment for human IBDs than 5-ASA, or may be useful as an alternative/additive therapeutic strategy against UC, without any evidence of side effects. PMID:25409433

  12. Folic Acid Protected Neural Cells Against Aluminum-Maltolate-Induced Apoptosis by Preventing miR-19 Downregulation.

    PubMed

    Zhu, Mingming; Li, Bingfei; Ma, Xiao; Huang, Cong; Wu, Rui; Zhu, Weiwei; Li, Xiaoting; Liang, Zhaofeng; Deng, Feifei; Zhu, Jianyun; Xie, Wei; Yang, Xue; Jiang, Ye; Wang, Shijia; Wu, Jieshu; Geng, Shanshan; Xie, Chunfeng; Zhong, Caiyun; Liu, Haiyan

    2016-08-01

    Aluminum (Al)-induced apoptosis is considered as the major cause of its neurotoxicity. Folic acid possesses neuroprotective function by preventing neural cell apoptosis. microRNAs (miRNAs) are important regulators of gene expression participating in cellular processes. As a key component of the miR-17-92 cluster, miR-19 is implicated in regulating apoptotic process, while its role in the neuroprotective effect of folic acid has not been investigated. The present study aimed to investigate the potential involvement and function of miR-19 in the protective action of folic acid against Al-induced neural cell apoptosis. Human SH-SY5Y cells were treated with Al-maltolate (Al-malt) in the presence or absence of folic acid. Results showed that Al-malt-induced apoptosis of SH-SY5Y cells was effectively prevented by folic acid. Al-malt suppressed the expression of miR-19a/19b, along with alterations of miR-19 related apoptotic proteins including PTEN, p-AKT, p53, Bax, Bcl-2, caspase 9 and caspase 3; and these effects were ameliorated by folic acid. miR-19 inhibitor alone induced apoptosis of SH-SY5Y cells. Combination treatment of folic acid and miR-19 inhibitor diminished the neuroprotective effect of folic acid. These findings demonstrated that folic acid protected neuronal cells against Al-malt-induced apoptosis by preventing the downregulation of miR-19 and modulation of miR-19 related downstream PTEN/AKT/p53 pathway.

  13. Comprehensive Suppression of All Apoptosis-Induced Proliferation Pathways as a Proposed Approach to Colorectal Cancer Prevention and Therapy

    PubMed Central

    Bordonaro, Michael; Drago, Eric; Atamna, Wafa; Lazarova, Darina L.

    2014-01-01

    Mutations in the WNT/beta-catenin pathway are present in the majority of all sporadic colorectal cancers (CRCs), and histone deacetylase inhibitors induce apoptosis in CRC cells with such mutations. This apoptosis is counteracted by (1) the signaling heterogeneity of CRC cell populations, and (2) the survival pathways induced by mitogens secreted from apoptotic cells. The phenomena of signaling heterogeneity and apoptosis-induced survival constitute the immediate mechanisms of resistance to histone deacetylase inhibitors, and probably other chemotherapeutic agents. We explored the strategy of augmenting CRC cell death by inhibiting all survival pathways induced by the pro-apoptotic agent LBH589, a histone deacetylase inhibitor: AKT, JAK/STAT, and ERK signaling. The apoptosis-enhancing ability of a cocktail of synthetic inhibitors of proliferation was compared to the effects of the natural product propolis. We utilized colorectal adenoma, drug-sensitive and drug-resistant colorectal carcinoma cells to evaluate the apoptotic potential of the combination treatments. The results suggest that an effective approach to CRC combination therapy is to combine apoptosis-inducing drugs (e.g., histone deacetylase inhibitors, such as LBH589) with agents that suppress all compensatory survival pathways induced during apoptosis (such as the cocktail of inhibitors of apoptosis-associated proliferation). The same paradigm can be applied to a CRC prevention approach, as the apoptotic effect of butyrate, a diet-derived histone deacetylase inhibitor, is augmented by other dietary agents that modulate survival pathways (e.g., propolis and coffee extract). Thus, dietary supplements composed by fermentable fiber, propolis, and coffee extract may effectively counteract neoplastic growth in the colon. PMID:25500581

  14. CHOP deficiency prevents methylglyoxal-induced myocyte apoptosis and cardiac dysfunction.

    PubMed

    Nam, Dae-Hwan; Han, Jung-Hwa; Lee, Tae-Jin; Shishido, Tetsuro; Lim, Jae Hyang; Kim, Geun-Young; Woo, Chang-Hoon

    2015-08-01

    Epidemiological studies indicate that methylglyoxal (MGO) plasma levels are closely linked to diabetes and the exacerbation of diabetic cardiovascular complications. Recently, it was established that endoplasmic reticulum (ER) stress importantly contributes to the pathogenesis of diabetes and its cardiovascular complications. The objective of this study was to explore the mechanism by which diabetes instigates cardiomyocyte apoptosis and cardiac dysfunction via MGO-mediated myocyte apoptosis. Intriguingly, the MGO activated unfolded protein response pathway accompanying apoptotic events, such as cleavages of PARP-1 and caspase-3. In addition, Western blot analysis revealed that MGO-induced myocyte apoptosis was inhibited by depletion of CHOP with siRNA against Ddit3, the gene name for rat CHOP. To investigate the physiologic roles of CHOP in vivo, glucose tolerance and cardiac dysfunction were assessed in CHOP-deficient mice. No significant difference was observed between CHOP KO and littermate naïve controls in terms of the MGO-induced impairment of glucose tolerance. In contrast, myocyte apoptosis, inflammation, and cardiac dysfunction were significantly diminished in CHOP KO compared with littermate naïve controls. These results showed that CHOP is the key signal for myocyte apoptosis and cardiac dysfunction induced by MGO. These findings suggest a therapeutic potential of CHOP inhibition in the management of diabetic cardiovascular complications including diabetic cardiomyopathy.

  15. Resveratrol prevents rapamycin-induced upregulation of autophagy and selectively induces apoptosis in TSC2-deficient cells.

    PubMed

    Alayev, Anya; Sun, Yang; Snyder, Rose B; Berger, Sara Malka; Yu, Jane J; Holz, Marina K

    2014-01-01

    The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway is hyperactivated in a variety of cancers and disorders, including lymphangioleiomyomatosis (LAM) and tuberous sclerosis complex (TSC), which are characterized by mutations in tumor suppressors TSC1 or TSC2. The concern with the use of mTORC1 inhibitors, such as rapamycin or its analogs (rapalogs), is that they cause upregulation of autophagy and suppress the negative feedback loop to Akt, which promotes cell survival, causing the therapy to be only partially effective, and relapse occurs upon cessation of treatment. In this study, we investigate the use of rapamycin in combination with resveratrol, a naturally occurring polyphenol, in TSC2-deficient cells. We tested whether such combination would prevent rapamycin-induced upregulation of autophagy and shift the cell fate toward apoptosis. We found that this combination treatment blocked rapamycin-induced upregulation of autophagy and restored inhibition of Akt. Interestingly, the combination of rapamycin and resveratrol selectively promoted apoptosis of TSC2-deficient cells. Thus, the addition of resveratrol to rapamycin treatment may be a promising option for selective and targeted therapy for diseases with TSC loss and mTORC1 hyperactivation.

  16. Activation of liver X receptors and retinoid X receptors prevents bacterial-induced macrophage apoptosis.

    PubMed

    Valledor, Annabel F; Hsu, Li-Chung; Ogawa, Sumito; Sawka-Verhelle, Dominique; Karin, Michael; Glass, Christopher K

    2004-12-21

    Microbe-macrophage interactions play a central role in the pathogenesis of many infections. The ability of some bacterial pathogens to induce macrophage apoptosis has been suggested to contribute to their ability to elude innate immune responses and successfully colonize the host. Here, we provide evidence that activation of liver X receptors (LXRs) and retinoid X receptors (RXRs) inhibits apoptotic responses of macrophages to macrophage colony-stimulating factor (M-CSF) withdrawal and several inducers of apoptosis. In addition, combined activation of LXR and RXR protected macrophages from apoptosis caused by infection with Bacillus anthracis, Escherichia coli, and Salmonella typhimurium. Expression-profiling studies demonstrated that LXR and RXR agonists induced the expression of antiapoptotic regulators, including AIM/CT2, Bcl-X(L), and Birc1a. Conversely, LXR and RXR agonists inhibited expression of proapoptotic regulators and effectors, including caspases 1, 4/11, 7, and 12; Fas ligand; and Dnase1l3. The combination of LXR and RXR agonists was more effective than either agonist alone at inhibiting apoptosis in response to various inducers of apoptosis, and it acted synergistically to induce expression of AIM/CT2. Inhibition of AIM/CT2 expression in response to LXR/RXR agonists partially reversed their antiapoptotic effects. These findings reveal unexpected roles of LXRs and RXRs in the control of macrophage survival and raise the possibility that LXR/RXR agonists may be exploited to enhance innate immunity to bacterial pathogens that induce apoptotic programs as a strategy for evading host responses.

  17. Glucagon-like peptide-1 prevents methylglyoxal-induced apoptosis of beta cells through improving mitochondrial function and suppressing prolonged AMPK activation

    PubMed Central

    Chang, Tien-Jyun; Tseng, Hsing-Chi; Liu, Meng-Wei; Chang, Yi-Cheng; Hsieh, Meng-Lun; Chuang, Lee-Ming

    2016-01-01

    Accumulation of methylglyoxal (MG) contributes to glucotoxicity and mediates beta cell apoptosis. The molecular mechanism by which GLP-1 protects MG-induced beta cell apoptosis remains unclear. Metformin is a first-line drug for treating type 2 diabetes associated with AMPK activation. However, whether metformin prevents MG-induced beta cell apoptosis is controversial. Here, we explored the signaling pathway involved in the anti-apoptotic effect of GLP-1, and investigated whether metformin had an anti-apoptotic effect on beta cells. MG treatment induced apoptosis of beta cells, impaired mitochondrial function, and prolonged activation of AMP-dependent protein kinase (AMPK). The MG-induced pro-apoptotic effects were abolished by an AMPK inhibitor. Pretreatment of GLP-1 reversed MG-induced apoptosis, and mitochondrial dysfunction, and suppressed prolonged AMPK activation. Pretreatment of GLP-1 reversed AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR)-induced apoptosis, and suppressed prolonged AMPK activation. However, metformin neither leads to beta cell apoptosis nor ameliorates MG-induced beta cell apoptosis. In parallel, GLP-1 also prevents MG-induced beta cell apoptosis through PKA and PI3K-dependent pathway. In conclusion, these data indicates GLP-1 but not metformin protects MG-induced beta cell apoptosis through improving mitochondrial function, and alleviating the prolonged AMPK activation. Whether adding GLP-1 to metformin provides better beta cell survival and delays disease progression remains to be validated. PMID:26997114

  18. Indigofera oblongifolia Prevents Lead Acetate-Induced Hepatotoxicity, Oxidative Stress, Fibrosis and Apoptosis in Rats

    PubMed Central

    Abdel Moneim, Ahmed E.

    2016-01-01

    The current study was aimed to evaluate the preventive effects of Indigofera oblongifolia leaf extract (IOLE) on lead acetate (PbAc)-induced hepatotoxicity in adult male Wistar rats. PbAc was intraperitoneally injected at a dose of 20 mg/kg body weight for 5 days alone or in combination with the IOLE (100 mg/kg). Liver lead concentration and oxidative stress markers such as lipid peroxidation, hydrogen peroxide, nitric oxide, and glutathione content were investigated in addition to the enzymatic antioxidant activities. PbAc injection caused a significant elevation in the liver function parameters, lead level, lipid peroxidation, hydrogen peroxide, and nitric oxide, with a concomitant decline in the glutathione content compared with the control, accompanied by a significant inhibition of antioxidant enzyme activities. The induction of oxidative stress, lead accumulation, and histological alterations in the liver were successfully minimized by pre-administration of IOLE. In addition, the PbAc group showed increase in the levels of Bax, caspase-3, and matrix metalloproteinase-9 proteins, while the expression of Bcl-2 protein was decreased. Prior administration of IOLE significantly mitigated apoptosis and fibrosis in the liver. Finally, the major components in I. oblongifolia extract were identified as polyphenols, flavonoids, and organic acids using liquid chromatography coupled mass spectroscopy. Thus, the findings of the current study revealed that I. oblongifolia had protective, anti-fibrotic, antioxidant, and anti-apoptotic activities on PbAc-induced hepatotoxicity. The beneficial effects of I. oblongifolia were in part mediated by Nrf2/HO-1 pathway. PMID:27391413

  19. Ferulic acid prevents methylglyoxal-induced protein glycation, DNA damage, and apoptosis in pancreatic β-cells.

    PubMed

    Sompong, Weerachat; Cheng, Henrique; Adisakwattana, Sirichai

    2017-02-01

    Methylglyoxal (MG) can react with amino acids of proteins to induce protein glycation and consequently the formation of advanced glycation end-products (AGEs). Previous studies reported that ferulic acid (FA) prevented glucose-, fructose-, and ribose-induced protein glycation. In this study, FA (0.1-1 mM) inhibited MG-induced protein glycation and oxidative protein damage in bovine serum albumin (BSA). Furthermore, FA (0.0125-0.2 mM) protected against lysine/MG-mediated oxidative DNA damage, thereby inhibiting superoxide anion and hydroxyl radical generation during lysine and MG reaction. In addition, FA did not have the ability to trap MG. Finally, FA (0.1 mM) pretreatment attenuated MG-induced decrease in cell viability and prevented MG-induced cell apoptosis in pancreatic β-cells. The results suggest that FA is capable of protecting β-cells from MG-induced cell damage during diabetes.

  20. The New Biology of Estrogen-induced Apoptosis Applied to Treat and Prevent Breast Cancer

    PubMed Central

    Jordan, V Craig

    2014-01-01

    The successful use of high dose synthetic estrogens to treat post-menopausal metastatic breast cancer, is the first effective “chemical therapy” proven in clinical trial to treat any cancer. This review documents the clinical use of estrogen for breast cancer treatment or estrogen replacement therapy (ERT) for postmenopausal hysterectomized women which can either result in breast cancer cell growth or breast cancer regression. This has remained a paradox since the 1950s until the discovery of the new biology of estrogen induced apoptosis at the end of the 20th century. The key to triggering apoptosis with estrogen is the selection of breast cancer cell populations that are resistant to long term estrogen deprivation. However, through trial and error estrogen independent growth occurs. At the cellular level, estrogen induced apoptosis is dependent upon the presence of the estrogen receptor (ER) which can be blocked by non-steroidal or steroidal anti-estrogens. The shape of an estrogenic ligand programs the conformation of the ER complex which in turn can modulate estrogen induced apoptosis: class I planar estrogens (eg: estradiol) trigger apoptosis after 24 hours whereas class II angular estrogens (eg: bisphenol triphenylethylene) delay the process until after 72 hours. This contrasts with paclitaxel that causes G2 blockade with immediate apoptosis. The process is complete within 24 hours. Estrogen induced apoptosis is modulated by glucocorticoids and cSrc inhibitors but the target mechanism for estrogen action is genomic and not through a non-genomic pathway. The process is step wise through the creation of endoplasmic reticulum stress and, inflammatory responses that then initiate an unfolded protein response. This in turn initiates apoptosis through the intrinsic pathway (mitochondrial) with subsequent recruitment of the extrinsic pathway (death receptor) to complete the process. The symmetry of the clinical and laboratory studies now permits the creation of

  1. Lovastatin induces platelet apoptosis.

    PubMed

    Zhao, Qing; Li, Ming; Chen, Mengxing; Zhou, Ling; Zhao, Lili; Hu, Renping; Yan, Rong; Dai, Kesheng

    2016-03-01

    Statins are widely used in the prevention of atherosclerosis and treatment of coronary artery disease because of pleiotropic effects on thrombosis. Thrombocytopenia and hemorrhage occurred in some statin-treated patients, but the reason remains unclear. In the current study, we show that lovastatin dose-dependently induces depolarization of mitochondrial inner transmembrane potential, leading to up-regulation of Bak, down-regulation of Bcl-XL, and activation of caspase-3/8/9. Lovastatin treatment did not increase the surface expression of P-selectin or PAC-1 binding but led to strongly reduced collagen- and thrombin-induced platelet aggregation. The integrin αIIbβ3 antagonist, RGDS, inhibited lovastatin-induced apoptosis in both human platelets and Chinese hamster ovary (CHO) cells stably expressing integrin αIIbβ3. The number of circulating platelets in mice was significantly reduced after intraperitoneal injections with lovastatin. Taken together, these data indicate that lovastatin induced caspase-dependent platelet apoptosis. Lovastatin does not incur platelet activation, whereas impairs platelet function and reduces circulating platelets in vivo, suggesting the possible pathogenesis of thrombocytopenia and hemorrhage in patients treated with statins. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Overexpression of SIRT1 prevents hypoxia‑induced apoptosis in osteoblast cells.

    PubMed

    Zhou, Lu; Wang, Sung Il; Moon, Young Jae; Kim, Kyoung Min; Lee, Kwang Bok; Park, Byung-Hyun; Jang, Kyu Yun; Kim, Jung Ryul

    2017-09-01

    Hypoxic‑ischemic injury of the bone results in osteonecrosis. Nicotinamide adenosine dinucleotide (NAD)‑dependent deacetylase sirtuin‑1 (SIRT1), a type of NAD‑dependent deacetylase, is involved in multiple biological functions, particularly in anti‑apoptosis. However, the effects of SIRT1 in osteoblasts remain unclear and whether SIRT1 protects osteoblasts in hypoxic conditions remains to be elucidated. In the present study, the role of SIRT1 in the osteoblast cells under hypoxia and the underlying mechanism of the anti‑apoptotic activity of SIRT1 were investigated. MC3T3‑E1 osteoblast cells were used for the present study and oxygen‑absorbing packs were used to induce cell hypoxia and apoptosis. MC3T3‑E1 cells were overexpressed SIRT1 by transfection with a SIRT1 adenovirus. The small interfering RNA of SIRT1 to was used to transfect cells to decrease the protein level. An MTT assay was used to estimate cell viability. Apoptosis was examined with the APOPercentage apoptosis assay kit and the activity of caspases was measured by a caspase 3 and 7 activity kit. Co‑immunoprecipitation was used to investigate protein binding ability. The mRNA and protein expression levels were quantified with reverse transcription‑quantitative polymerase chain reaction and immunoblotting. It was demonstrated that the expression of SIRT1 mRNA and protein were elevated, and peaked at 12 h under hypoxic conditions. The data demonstrated that SIRT1 overexpression in cells significantly increased cell viability and markedly decreased the percentage of apoptosis compared with the control and knockdown groups. Furthermore, overexpression of SIRT1 significantly activated anti‑apoptotic effects by deacetylating lysine residue binding to protein kinase B and decreasing the activity of caspases 3, 9 and subsequent pathways. The results from the present study suggested that SIRT1 may serve a protective function in hypoxia‑induced apoptosis in MC3T3‑E1 cells, and

  3. Ubiquitylation, phosphorylation and Orc2 modulate the subcellular location of Orc1 and prevent it from inducing apoptosis

    PubMed Central

    Saha, Tapas; Ghosh, Soma; Vassilev, Alex; DePamphilis, Melvin L.

    2009-01-01

    Summary Previous studies have suggested that the activity of the mammalian origin recognition complex (ORC) is regulated by cell-cycle-dependent changes in its Orc1 subunit. Here, we show that Orc1 modifications such as mono-ubiquitylation and hyperphosphorylation that occur normally during S and G2-M phases, respectively, can cause Orc1 to accumulate in the cytoplasm. This would suppress reassembly of pre-replication complexes until mitosis is complete. In the absence of these modifications, transient expression of Orc1 rapidly induced p53-independent apoptosis, and Orc1 accumulated perinuclearly rather than uniformly throughout the nucleus. This behavior mimicked the increased concentration and perinuclear accumulation of endogenous Orc1 in apoptotic cells that arise spontaneously in proliferating cell cultures. Remarkably, expression of Orc1 in the presence of an equivalent amount of Orc2, the only ORC subunit that did not induce apoptosis, prevented induction of apoptosis and restored uniform nuclear localization of Orc1. This would promote assembly of ORC-chromatin sites, such as occurs during the transition from M to G1 phase. These results provide direct evidence in support of the regulatory role proposed for Orc1, and suggest that aberrant DNA replication during mammalian development could result in apoptosis through the appearance of ‘unmodified’ Orc1. PMID:16537645

  4. Sulforaphane prevents microcystin-LR-induced oxidative damage and apoptosis in BALB/c mice

    SciTech Connect

    Sun Xiaoyun; Mi Lixin; Liu Jin; Song Lirong; Chung Funglung; Gan Nanqin

    2011-08-15

    Microcystins (MCs), the products of blooming algae Microcystis, are waterborne environmental toxins that have been implicated in the development of liver cancer, necrosis, and even fatal intrahepatic bleeding. Alternative protective approaches in addition to complete removal of MCs in drinking water are urgently needed. In our previous work, we found that sulforaphane (SFN) protects against microcystin-LR (MC-LR)-induced cytotoxicity by activating the NF-E2-related factor 2 (Nrf2)-mediated defensive response in human hepatoma (HepG2) and NIH 3T3 cells. The purpose of this study was to investigate and confirm efficacy the SFN-induced multi-mechanistic defense system against MC-induced hepatotoxicity in an animal model. We report that SFN protected against MC-LR-induced liver damage and animal death at a nontoxic and physiologically relevant dose in BALB/c mice. The protection by SFN included activities of anti-cytochrome P450 induction, anti-oxidation, anti-inflammation, and anti-apoptosis. Our results suggest that SFN may protect mice against MC-induced hepatotoxicity. This raises the possibility of a similar protective effect in human populations, particularly in developing countries where freshwaters are polluted by blooming algae. - Graphical abstract: Display Omitted Research Highlights: > SFN protected against MC-LR-induced liver damage and animal death in BALB/c mice. > The dose of SFN is at a nontoxic and physiologically relevant dose. > The protection included activities of anti-oxidation, anti-inflammation, and anti-apoptosis. > SFN may protect mice against MC-induced hepatotoxicity.

  5. FGF-23–Klotho signaling stimulates proliferation and prevents vitamin D–induced apoptosis

    PubMed Central

    Medici, Damian; Razzaque, Mohammed S.; DeLuca, Stephelynn; Rector, Trent L.; Hou, Bo; Kang, Kihwa; Goetz, Regina; Mohammadi, Moosa; Kuro-o, Makoto; Olsen, Bjorn R.; Lanske, Beate

    2008-01-01

    Fibroblast growth factor 23 (FGF-23) and Klotho are secretory proteins that regulate mineral-ion metabolism. Fgf-23−/− or Klotho−/− knockout mice exhibit several pathophysiological processes consistent with premature aging including severe atrophy of tissues. We show that the signal transduction pathways initiated by FGF-23–Klotho prevent tissue atrophy by stimulating proliferation and preventing apoptosis caused by excessive systemic vitamin D. Because serum levels of active vitamin D are greatly increased upon genetic ablation of Fgf-23 or Klotho, we find that these molecules have a dual role in suppression of apoptotic actions of vitamin D through both negative regulation of 1α-hydroxylase expression and phosphoinositide-3 kinase–dependent inhibition of caspase activity. These data provide new insights into the physiological roles of FGF-23 and Klotho. PMID:18678710

  6. Curcumin counteracts cisplatin-induced nephrotoxicity by preventing renal tubular cell apoptosis.

    PubMed

    Topcu-Tarladacalisir, Yeter; Sapmaz-Metin, Melike; Karaca, Turan

    2016-11-01

    Curcumin has several biological functions particularly antioxidant and anti-inflammatory. The aims of this study are determination of the protective effects of curcumin on cisplatin-induced renal tubular cell apoptosis and related pathways in kidney. Eighteen male Wistar albino rats were randomly divided into three groups (n = 6): the control, cisplatin (CP), and cisplatin + curcumin (CP + CUR). Acute renal damage was induced by single dose of cisplatin (7.5 mg/kg) injected by intraperitoneally (i.p). The animals of curcumin-treated group were received daily 200 mg/kg curcumin per os (po), starting from 2 days before the injection of cisplatin to the day of sacrifice. Forty-eight hours after cisplatin injection, samples of cardiac blood and kidneys were harvested from the animals. In this study, the major finding is that curcumin treatment ameliorates the following conditions associated with cisplatin-induced nephrotoxicity: (1) the development of kidney injury (histopathology), (2) inflammatory responses [myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, IL-10 levels], (3) the degree of lipid peroxidation [malondialdehyde (MDA) level], (4) renal tubular cell apoptosis (active caspase-3) and expression of related proteins [p53, Fas, and Fas ligand (Fas-L)] by immunohistochemistry, (5) renal dysfunction (serum urea and creatinine). In a conclusion, this study suggests that curcumin has antiapoptotic effect against cisplatin nephrotoxicity, in addition to anti-inflammatory and antioxidant properties.

  7. Sodium salicylate prevents paraquat-induced apoptosis in the rat lung.

    PubMed

    Dinis-Oliveira, R J; Sousa, C; Remião, F; Duarte, J A; Ferreira, R; Sánchez Navarro, A; Bastos, M L; Carvalho, F

    2007-07-01

    The nonselective contact herbicide, paraquat (PQ), is a strong pneumotoxicant, especially due to its accumulation in the lung through a polyamine uptake system and to its capacity to induce redox cycling, leading to oxidative stress-related damage. In the present study, we aimed to investigate the occurrence of apoptotic events in the lungs of male Wistar rats, 24, 48, and 96 h after PQ exposure (25 mg/kg ip) as well as the putative healing effects provided by sodium salicylate [(NaSAL), 200 mg/kg ip] when administered 2 h after PQ. PQ exposure resulted in marked lung apoptosis, in a time-dependent manner, characterized by the "ladder-like" pattern of DNA observed through electrophoresis and by the presence of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL)-positive cells (TPC) as revealed by immunohistochemistry. The two main caspase cascades (the extrinsic receptor-mediated and the intrinsic mitochondria-mediated) and the expressions of p53 and activator protein-1 (AP-1) were also evaluated, to obtain an insight into apoptotic cellular signaling. PQ-exposed rats suffered a time-dependent increase of caspase-3 and caspase-8 and a decrease of caspase-1 activities in lungs compared to the control group. A marked mitochondrial dysfunction evidenced by cytochrome c (Cyt c) release was also observed as a consequence of PQ exposure. In addition, fluorescence electrophoretic mobility shift assay (fEMSA) revealed a transcriptional induction of the p53 and AP-1 transcription factors in a time-dependent manner as a consequence of PQ exposure. NaSAL treatment resulted in the remission of the observed apoptotic signaling and consequently of lung apoptosis. Taken together, the present results showed that PQ activates several events involved in the apoptotic pathways, which might contribute to its lung toxicodynamics. NaSAL, a recently implemented antidote for PQ intoxications, proved to protect lungs from PQ-induced apoptosis.

  8. Adrenergic Receptor Stimulation Prevents Radiation-Induced DNA Strand Breaks, Apoptosis and Gene Expression in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Moreno-Villanueva, Maria; Krieger, Stephanie; Feiveson, Alan; Kovach, Annie Marie; Buerkle, Alexander; Wu, Honglu

    2017-01-01

    Under Earth gravity conditions cellular damage can be counteracted by activation of the physiological defense mechanisms or through medical interventions. The mode of action of both, physiological response and medical interventions can be affected by microgravity leading to failure in repairing the damage. There are many studies reporting the effects of microgravity and/or radiation on cellular functions. However, little is known about the synergistic effects on cellular response to radiation when other endogenous cellular stress-response pathways are previously activated. Here, we investigated whether previous stimulation of the adrenergic receptor, which modulates immune response, affects radiation-induced apoptosis in immune cells under simulated microgravity conditions. Peripheral blood mononuclear cells (PBMCs) were stimulated with isoproterenol (a sympathomimetic drug) and exposed to 0.8 or 2Gy gamma-radiation in simulated microgravity versus Earth gravity. Expression of genes involved in adrenergic receptor pathways, DNA repair and apoptosis as well as the number of apoptotic cells and DNA strand breaks were determined. Our results showed that, under simulated microgravity conditions, previous treatment with isoproterenol prevented radiation-induced i) gene down regulation, ii) DNA strand breaks formation and iii) apoptosis induction. Interestedly, we found a radiation-induced increase of adrenergic receptor gene expression, which was also abolished in simulated microgravity. Understanding the mechanisms of isoproterenol-mediated radioprotection in simulated microgravity can help to develop countermeasures for space-associated health risks as well as radio-sensitizers for cancer therapy.

  9. ClC-3 deficiency prevents apoptosis induced by angiotensin II in endothelial progenitor cells via inhibition of NADPH oxidase.

    PubMed

    Liu, Jing; Zhang, Fei-Fei; Li, Lei; Yang, Jing; Liu, Jie; Guan, Yong-Yuan; Du, Yan-Hua

    2013-10-01

    Endothelial progenitor cells (EPCs) play an important role in postnatal neovascularization and re-endothelialization in response to tissue ischemia and endothelial injury. It is reported that the circulating EPCs number is decreased during hypertension. However, the detailed mechanism is still unclear. Our previous studies have shown that ClC-3 chloride channel is up-regulated with the development of hypertension. This study aims to test whether ClC-3 participates in EPC apoptosis under the condition of increased oxidative stress in angiotensin II (Ang II)-induced hypertension. The results showed that stimulation with 10(-6)mol/L Ang II significantly up-regulated the endogenous ClC-3 expression and increased intracellular reactive oxygen species (ROS) generation in EPCs of wild type mice, accompanied by an enhanced NADPH oxidase activity and the expression of gp91(phox) (NOX-2), a key catalytic subunit of NADPH oxidase. However, these effects of Ang II were significantly reduced in EPCs of ClC-3(-/-) mice. Compared with control, treatment with Ang II induced EPCs apoptosis in wild type mice, concomitantly with declined Bcl-2/Bax ratio, depressed mitochondrial membrane potential and activation of poly(ADP-ribose) polymerase, which was remarkably prevented by both ClC-3 knockout and NADPH oxidase inhibitor apocynin. In addition, the role of ClC-3 deficiency in protecting EPCs against Ang II-induced oxidative stress and apoptosis was further confirmed in Ang II-infused hypertensive mice in vivo. In conclusion, ClC-3 deficiency inhibited Ang II-induced EPC apoptosis via suppressing ROS generation derived from NADPH oxidase.

  10. Protocatechuic Acid Prevents oxLDL-Induced Apoptosis by Activating JNK/Nrf2 Survival Signals in Macrophages

    PubMed Central

    Varì, Rosaria; Scazzocchio, Beatrice; Santangelo, Carmela; Filesi, Carmelina; Galvano, Fabio; D'Archivio, Massimo; Masella, Roberta; Giovannini, Claudio

    2015-01-01

    Protocatechuic acid (PCA), one of the main metabolites of complex polyphenols, exerts numerous biological activities including antiapoptotic, anti-inflammatory, and antiatherosclerotic effects. Oxidised LDL have atherogenic properties by damaging arterial wall cells and inducing p53-dependent apoptosis in macrophages. This study was aimed at defining the molecular mechanism responsible for the protective effects of PCA against oxidative and proapoptotic damage exerted by oxLDL in J774 A.1 macrophages. We found that the presence of PCA in cells treated with oxLDL completely inhibited the p53-dependent apoptosis induced by oxLDL. PCA decreased oxLDL-induced ROS overproduction and in particular prevented the early increase of ROS. This decrease seemed to be the main signal responsible for maintaining the intracellular redox homeostasis hindering the activation of p53 induced by ROS, p38MAPK, and PKCδ. Consequently the overexpression of the proapoptotic p53-target genes such as p66Shc protein did not occur. Finally, we demonstrated that PCA induced the activation of JNK, which, in turn, determined the increase of nuclear Nrf2, leading to inhibition of the early ROS overproduction. We concluded that the antiapoptotic mechanism of PCA was most likely related to the activation of the JNK-mediated survival signals that strengthen the cellular antioxidant defences rather than to the PCA antioxidant power. PMID:26180584

  11. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells.

    PubMed

    Tian, Lin-Lin; Wang, Xue-Jun; Sun, Yu-Ning; Li, Chun-Rong; Xing, Ya-Ling; Zhao, Hai-Bao; Duan, Ming; Zhou, Zhe; Wang, Sheng-Qi

    2008-01-01

    Oxidative stress caused by dopamine may play an important role in the pathogenesis of Parkinson's disease. Salvianolic acid B is an antioxidant derived from the Chinese herb, Salvia miltiorrhiza. In this study, we investigated the neuroprotective effect of salvianolic acid B against 6-hydroxydopamine-induced cell death in human neuroblastoma SH-SY5Y cells. Pretreatment of SH-SY5Y cells with salvianolic acid B significantly reduced 6-hydroxydopamine-induced generation of reactive oxygen species, and prevented 6-hydroxydopamine-induced increases in intracellular calcium. Our data demonstrated that 6-hydroxydopamine-induced apoptosis was reversed by salvianolic acid B treatment. Salvianolic acid B reduced the 6-hydroxydopamine-induced increase of caspase-3 activity, and reduced cytochrome C translocation into the cytosol from mitochondria. The 6-hydroxydopamine-induced decrease in the Bcl-x/Bax ratio was prevented by salvianolic acid B. Additionally, salvianolic acid B decreased the activation of extracellular signal-regulated kinase and induced the activation of 6-hydroxydopamine-suppressed protein kinase C. These results indicate that the protective function of salvianolic acid B is dependent upon its antioxidative potential. Our results strongly suggest that salvianolic acid B may be effective in treating neurodegenerative diseases associated with oxidative stress.

  12. Alpha-lipoic acid and alpha-lipoamide prevent oxidant-induced lysosomal rupture and apoptosis.

    PubMed

    Persson, H L; Svensson, A I; Brunk, U T

    2001-01-01

    Alpha-lipoic acid (LA) and its corresponding derivative, alpha-lipoamide (LM), have been described as antioxidants, but the mechanisms of their putative antioxidant effects remain largely uncharacterised. The vicinal thiols present in the reduced forms of these compounds suggest that they might possess metal chelating properties. We have shown previously that cell death caused by oxidants may be initiated by lysosomal rupture and that this latter event may involve intralysosomal iron which catalyzes Fenton-type chemistry and resultant peroxidative damage to lysosomal membranes. Here, using cultured J774 cells as a model, we show that both LA and LM stabilize lysosomes against oxidative stress, probably by chelating intralysosomal iron and, consequently, preventing intralysosomal Fenton reactions. In preventing oxidant-mediated apoptosis, LM is significantly more effective than LA, as would be expected from their differing capacities to enter cells and concentrate within the acidic lysosomal compartment. As previously reported, the powerful iron-chelator, desferrioxamine (Des) (which also locates within the lysosomal compartment), also provides protection against oxidant-mediated cell death. Interestingly, although Des enhances the partial protection afforded by LA, it confers no additional protection when added with LM. Therefore, the antioxidant actions of LA and LM may arise from intralysosomal iron chelation, with LM being more effective in this regard.

  13. Steroid receptor coactivator-interacting protein (SIP) inhibits caspase-independent apoptosis by preventing apoptosis-inducing factor (AIF) from being released from mitochondria.

    PubMed

    Wang, Dandan; Liang, Jing; Zhang, Yu; Gui, Bin; Wang, Feng; Yi, Xia; Sun, Luyang; Yao, Zhi; Shang, Yongfeng

    2012-04-13

    Apoptosis-inducing factor (AIF) is a caspase-independent death effector. Normally residing in the mitochondrial intermembrane space, AIF is released and translocated to the nucleus in response to proapoptotic stimuli. Nuclear AIF binds to DNA and induces chromatin condensation and DNA fragmentation, characteristics of apoptosis. Until now, it remained to be clarified how the mitochondrial-nuclear translocation of AIF is regulated. Here we report that steroid receptor coactivator-interacting protein (SIP) interacts directly with AIF in mitochondria and specifically inhibits caspase-independent and AIF-dependent apoptosis. Challenging cells with apoptotic stimuli leads to rapid degradation of SIP, and subsequently AIF is liberated from mitochondria and translocated to the nucleus to induce apoptosis. Together, our data demonstrate that SIP is a novel regulator in caspase-independent and AIF-mediated apoptosis.

  14. Active subfractions of Abelmoschus esculentus substantially prevent free fatty acid-induced β cell apoptosis via inhibiting dipeptidyl peptidase-4.

    PubMed

    Huang, Chien-Ning; Wang, Chau-Jong; Lee, Yi-Ju; Peng, Chiung-Huei

    2017-01-01

    Lipotoxicity plays an important role in exacerbating type 2 diabetes mellitus (T2DM) and leads to apoptosis of β cells. Recently dipeptidyl peptidase-4 (DPP-4) inhibitors have emerged as a useful tool in the treatment of T2DM. DPP-4 degrades type 1 glucagon-like peptide (GLP-1), and GLP-1 receptor (GLP-1R) signaling has been shown to protect β cells by modulating AMPK/mTOR, PI3K, and Bax. The anti-hyperglycemic effect of Abelmoschus esculentus (AE) is well known, however its mucilage makes it difficult to further examine this effect. In our recent report, a sequence of extraction steps was used to obtain a series of subfractions from AE, each with its own composition and property. Among them F1 (rich in quercetin glucosides and pentacyclic triterpene ester) and F2 (containing large amounts of carbohydrates and polysaccharides) were found to be especially effective in attenuating DPP-4 signaling, and to have the potential to counter diabetic nephropathy. Hence, the aim of the present study was to investigate whether AE subfractions can prevent the palmitate-induced apoptosis of β cells, and the putative signals involved. We demonstrated that AE, and especially 1 μg/mL of F2, decreased palmitate-induced apoptosis analyzed by flow cytometry. The result of western blot revealed that palmitate-induced decrease in GLP-1R and increase in DPP-4 were restored by F1 and F2. The DPP-4 inhibitor linagliptin decreased the expression of caspase 3, suggesting that DPP-4 is critically involved in apoptotic signaling. Analysis of enzyme activity revealed that palmitate increased the activity of DPP4 nearly 2 folds, while F2 especially inhibited the activation. In addition, AMPK/mTOR, PI3K and mitochondrial pathways were regulated by AE, and this attenuated the palmitate-induced signaling cascades. In conclusion, AE is useful to prevent the exacerbation of β cell apoptosis, and it could potentially be used as adjuvant or nutraceutical therapy for diabetes.

  15. Astrocytes Prevent Ethanol Induced Apoptosis of Nrf2 Depleted Neurons by Maintaining GSH Homeostasis

    PubMed Central

    Narasimhan, Madhusudhanan; Rathinam, Marylatha; Patel, Dhyanesh; Henderson, George; Mahimainathan, Lenin

    2013-01-01

    Glutathione (GSH), a major cellular antioxidant protects cells against oxidative stress injury. Nuclear factor erythroid 2-related factor 2 (NFE2L2/Nrf2) is a redox sensitive master regulator of battery of antioxidant enzymes including those involved in GSH antioxidant machinery. Earlier we reported that ethanol (ETOH) elicits apoptotic death of primary cortical neurons (PCNs) which in partly due to depletion of intracellular GSH levels. Further a recent report from our laboratory illustrated that ETOH exacerbated the dysregulation of GSH and caspase mediated cell death of cortical neurons that are compromised in Nrf2 machinery (Narasimhan et al., 2011). In various experimental models of neurodegeneration, neuronal antioxidant defenses mainly GSH has been shown to be supported by astrocytes. We therefore sought to determine whether astrocytes can render protection to neurons against ETOH toxicity, particularly when the function of Nrf2 is compromised in neurons. The experimental model consisted of co-culturing primary cortical astrocytes (PCA) with Nrf2 downregulated PCNs that were exposed with 4 mg/mL ETOH for 24 h. Monochlorobimane (MCB) staining followed by FACS analysis showed that astrocytes blocked ETOH induced GSH decrement in Nrf2-silenced neurons as opposed to exaggerated GSH depletion in Nrf2 downregulated PCNs alone. Similarly, the heightened activation of caspase 3/7 observed in Nrf2-compromised neurons was attenuated when co-cultured with astrocytes as measured by luminescence based caspase Glo assay. Furthermore, annexin-V-FITC staining followed by FACS analysis revealed that Nrf2 depleted neurons showed resistance to ETOH induced neuronal apoptosis when co-cultured with astrocytes. Thus, the current study identifies ETOH induced dysregulation of GSH and associated apoptotic events observed in Nrf2-depleted neurons can be blocked by astrocytes. Further our results suggest that this neuroprotective effect of astrocyte despite dysfunctional Nrf2 system

  16. Astrocytes Prevent Ethanol Induced Apoptosis of Nrf2 Depleted Neurons by Maintaining GSH Homeostasis.

    PubMed

    Narasimhan, Madhusudhanan; Rathinam, Marylatha; Patel, Dhyanesh; Henderson, George; Mahimainathan, Lenin

    2012-07-01

    Glutathione (GSH), a major cellular antioxidant protects cells against oxidative stress injury. Nuclear factor erythroid 2-related factor 2 (NFE2L2/Nrf2) is a redox sensitive master regulator of battery of antioxidant enzymes including those involved in GSH antioxidant machinery. Earlier we reported that ethanol (ETOH) elicits apoptotic death of primary cortical neurons (PCNs) which in partly due to depletion of intracellular GSH levels. Further a recent report from our laboratory illustrated that ETOH exacerbated the dysregulation of GSH and caspase mediated cell death of cortical neurons that are compromised in Nrf2 machinery (Narasimhan et al., 2011). In various experimental models of neurodegeneration, neuronal antioxidant defenses mainly GSH has been shown to be supported by astrocytes. We therefore sought to determine whether astrocytes can render protection to neurons against ETOH toxicity, particularly when the function of Nrf2 is compromised in neurons. The experimental model consisted of co-culturing primary cortical astrocytes (PCA) with Nrf2 downregulated PCNs that were exposed with 4 mg/mL ETOH for 24 h. Monochlorobimane (MCB) staining followed by FACS analysis showed that astrocytes blocked ETOH induced GSH decrement in Nrf2-silenced neurons as opposed to exaggerated GSH depletion in Nrf2 downregulated PCNs alone. Similarly, the heightened activation of caspase 3/7 observed in Nrf2-compromised neurons was attenuated when co-cultured with astrocytes as measured by luminescence based caspase Glo assay. Furthermore, annexin-V-FITC staining followed by FACS analysis revealed that Nrf2 depleted neurons showed resistance to ETOH induced neuronal apoptosis when co-cultured with astrocytes. Thus, the current study identifies ETOH induced dysregulation of GSH and associated apoptotic events observed in Nrf2-depleted neurons can be blocked by astrocytes. Further our results suggest that this neuroprotective effect of astrocyte despite dysfunctional Nrf2 system

  17. Exogenous cardiolipin localizes to mitochondria and prevents TAZ knockdown-induced apoptosis in myeloid progenitor cells.

    PubMed

    Ikon, Nikita; Su, Betty; Hsu, Fong-Fu; Forte, Trudy M; Ryan, Robert O

    2015-08-21

    The concentration and composition of cardiolipin (CL) in mitochondria are altered in age-related heart disease, Barth Syndrome, and other rare genetic disorders, resulting in mitochondrial dysfunction. To explore whether exogenous CL can be delivered to cells, CL was combined with apolipoprotein A-I to generate water-soluble, nanoscale complexes termed nanodisks (ND). Mass spectrometry of HL60 myeloid progenitor cell extracts revealed a 30-fold increase in cellular CL content following incubation with CL-ND. When CL-ND containing a fluorescent CL analogue was employed, confocal microscopy revealed CL localization to mitochondria. The ability of CL-ND to elicit a physiological response was examined in an HL60 cell culture model of Barth Syndrome neutropenia. siRNA knockdown of the phospholipid transacylase, tafazzin (TAZ), induced apoptosis in these cells. When TAZ knockdown cells were incubated with CL-ND, the apoptotic response was attenuated. Thus, CL-ND represent a potential intervention strategy for replenishment of CL in Barth Syndrome, age-related heart disease, and other disorders characterized by depletion of this key mitochondrial phospholipid.

  18. Exogenous cardiolipin localizes to mitochondria and prevents TAZ knockdown-induced apoptosis in myeloid progenitor cells

    PubMed Central

    Ikon, Nikita; Su, Betty; Hsu, Fong-Fu; Forteand, Trudy M.; Ryan, Robert O.

    2015-01-01

    The concentration and composition of cardiolipin (CL) in mitochondria are altered in age-related heart disease, Barth Syndrome, and other rare genetic disorders, resulting in mitochondrial dysfunction. To explore whether exogenous CL can be delivered to cells, CL was combined with apolipoprotein A-I to generate water-soluble, nanoscale complexes termed nanodisks (ND). Mass spectrometry HL60 myeloid progenitor cell extracts revealed a 30-fold increase in cellular CL content following incubation with CL-ND. When CL-ND containing a fluorescent CL analogue was employed, confocal microscopy revealed CL localization to mitochondria. The ability of CL-ND to elicit a physiological response was examined in an HL60 cell culture model of Barth Syndrome neutropenia. siRNA knockdown of the phospholipid transacylase, tafazzin (TAZ), induced apoptosis in these cells. When TAZ knockdown cells were incubated with CL-ND, the apoptotic response was attenuated. Thus, CL-ND represent a potential intervention strategy for replenishment of CL in Barth Syndrome, age-related heart disease, and other disorders characterized by depletion of this key mitochondrial phospholipid. PMID:26164234

  19. The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth

    PubMed Central

    Cañibano, Carmen; Rodriguez, Noela L; Saez, Carmen; Tovar, Sulay; Garcia-Lavandeira, Montse; Borrello, Maria Grazia; Vidal, Anxo; Costantini, Frank; Japon, Miguel; Dieguez, Carlos; Alvarez, Clara V

    2007-01-01

    Somatotrophs are the only pituitary cells that express Ret, GFRα1 and GDNF. This study investigated the effects of Ret in a somatotroph cell line, in primary pituitary cultures and in Ret KO mice. Ret regulates somatotroph numbers by inducing Pit-1 overexpression, leading to increased p53 expression and apoptosis, both of which can be prevented with Ret or Pit-1 siRNA. The Pit-1 overexpression is mediated by sustained activation of PKCδ, JNK, c/EBPα and CREB induced by a complex of Ret, caspase 3 and PKCδ. In the presence of GDNF, Akt is activated, and the Pit-1 overexpression and resulting apoptosis are blocked. The adenopituitary of Ret KO mice is larger than normal, showing Pit-1 and somatotroph hyperplasia. In normal animals, activation of the Ret/Pit-1/p53 pathway by retroviral introduction of Ret blocked tumor growth in vivo. Thus, somatotrophs have an intrinsic mechanism for controlling Pit-1/GH production through an apoptotic/survival pathway. Ret might be of value for treatment of pituitary adenomas. PMID:17380130

  20. The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth.

    PubMed

    Cañibano, Carmen; Rodriguez, Noela L; Saez, Carmen; Tovar, Sulay; Garcia-Lavandeira, Montse; Borrello, Maria Grazia; Vidal, Anxo; Costantini, Frank; Japon, Miguel; Dieguez, Carlos; Alvarez, Clara V

    2007-04-18

    Somatotrophs are the only pituitary cells that express Ret, GFRalpha1 and GDNF. This study investigated the effects of Ret in a somatotroph cell line, in primary pituitary cultures and in Ret KO mice. Ret regulates somatotroph numbers by inducing Pit-1 overexpression, leading to increased p53 expression and apoptosis, both of which can be prevented with Ret or Pit-1 siRNA. The Pit-1 overexpression is mediated by sustained activation of PKCdelta, JNK, c/EBPalpha and CREB induced by a complex of Ret, caspase 3 and PKCdelta. In the presence of GDNF, Akt is activated, and the Pit-1 overexpression and resulting apoptosis are blocked. The adenopituitary of Ret KO mice is larger than normal, showing Pit-1 and somatotroph hyperplasia. In normal animals, activation of the Ret/Pit-1/p53 pathway by retroviral introduction of Ret blocked tumor growth in vivo. Thus, somatotrophs have an intrinsic mechanism for controlling Pit-1/GH production through an apoptotic/survival pathway. Ret might be of value for treatment of pituitary adenomas.

  1. NAD+ treatment can prevent rotenone-induced increases in DNA damage, Bax levels and nuclear translocation of apoptosis-inducing factor in differentiated PC12 cells.

    PubMed

    Hong, Yunyi; Nie, Hui; Wei, Xunbin; Fu, Shen; Ying, Weihai

    2015-04-01

    Nicotinamide adenine dinucleotide (NAD(+)) plays critical roles in energy metabolism, mitochondrial functions, calcium homeostasis and immunological functions. Our previous studies have found that NAD(+) administration can profoundly decrease ischemic brain injury and traumatic brain injury. Our recent study has also provided first direct evidence indicating that NAD(+) treatment can decrease cellular apoptosis, while the mechanisms underlying this protective effect remain unclear. In our current study, we determined the effects of NAD(+) treatment on several major factors in apoptosis and necrosis, including levels of Bax and nuclear translocation of apoptosis-inducing factor (AIF), as well as levels of DNA double-strand breaks (DSBs) and intracellular ATP in rotenone-treated differentiated PC12 cells. We found that NAD(+) treatment can markedly attenuate the rotenone-induced increases in the levels of Bax and nuclear translocation of AIF in the cells. We further found that NAD(+) treatment can significantly attenuate the rotenone-induced increase in the levels of DSBs and decrease in the intracellular ATP levels. Collectively, our study has suggested mechanisms underlying the preventive effects of NAD(+) on apoptosis, which has highlighted the therapeutic potential of NAD(+) for decreasing apoptotic changes in multiple major diseases.

  2. Carnosic acid promotes myocardial antioxidant response and prevents isoproterenol-induced myocardial oxidative stress and apoptosis in mice.

    PubMed

    Sahu, Bidya Dhar; Putcha, Uday Kumar; Kuncha, Madhusudana; Rachamalla, Shyam Sunder; Sistla, Ramakrishna

    2014-09-01

    Carnosic acid is a well-known antioxidant. Recently, it has been identified as modulator of nuclear factor erythroid 2-related factor 2 (Nrf2). The effect of carnosic acid in the context of cardiovascular disorders has not been studied. In the present study, we investigated the beneficial effect and the underlying cardioprotective mechanism of carnosic acid by using mouse model of isoproterenol (ISO)-induced myocardial stress. Elevated serum levels of Troponin I, CK-MB, LDH, SGOT and SGPT, and myofibrillar degeneration with necrotic damage, and the presence of epicardial inflammatory infiltrate (H & E staining) confirmed the ISO-induced myocardial stress. Myocardial content of vitamin C, reduced glutathione, glutathione peroxidase, glutathione reductase, glutathione S-transferase, quinine oxidoreductase 1, superoxide dismutase, catalase, nuclear translocation of Nrf2 and protein expression heme oxygenase-1 were evaluated. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and myocardial expression of cleaved caspase-3, caspase-9, p53, Bax, and Bcl-2 were investigated to assess the apoptotic cell death. Pretreatment with carnosic acid attenuated ISO-induced elevated serum levels of Troponin I, CK-MB, LDH, SGOT and SGPT, and histopathological alterations in heart. Moreover, carnosic acid enhanced the nuclear translocation of Nrf2 and up-regulated the phase II/antioxidant enzyme activities. Furthermore, TUNEL assay and apoptosis-related protein analysis indicated that carnosic acid prevented ISO-induced cardiomyocyte apoptosis. Isoproterenol-induced myocardial lipid peroxidation and protein oxidation were also significantly decreased by carnosic acid pretreatment. The overall results clearly indicate that therapeutic application of carnosic acid might be beneficial in treating cardiovascular disorders.

  3. Sex steroids do not prevent amylin-induced apoptosis in human cells.

    PubMed

    Schwingshackl, A; Blasko, I; Steiner, E; Pozzilli, P; Cavallo, M G; Berger, P; Grubeck-Loebenstein, B

    1998-05-25

    Formation of amylin-containing islet amyloid deposits may contribute to the progressive deterioration of beta cell function in non-insulin-dependent diabetes mellitus. As diabetes mellitus occurs in male, but rarely in female transgenic mice expressing human amylin in their pancreatic beta cells, it is of interest to study the influence of estradiol (E2) and testosterone (T) on amylin-induced cytotoxicity in human cells. The insulinoma cell line CM, thyroid epithelial cells (TEC) in primary culture, and nontransformed fibroblast lines were used. The occurrence of apoptotic cell death was assessed by nuclear labeling with propidium iodide. Amylin was cytotoxic on all cell types tested, but had the most pronounced effect on TEC and the weakest on the CM cell line. Although both E2 and T decreased the proportion of apoptotic cells in cultures kept in the absence of amylin, neither of the two hormones was able to counteract amylin-induced cytotoxicity. beta cell death and hyperglycemia can thus presumably not be prevented by the neutralization of amylin effects by sex steroids.

  4. Ganoderma lucidum total triterpenes prevent radiation-induced DNA damage and apoptosis in splenic lymphocytes in vitro.

    PubMed

    Smina, T P; De, Strayo; Devasagayam, T P A; Adhikari, S; Janardhanan, K K

    2011-12-24

    The development of radioprotective agents has been the subject of intense research, especially in the field of radiotherapy. In this study, we examined the radioprotective activity of the total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst in mouse splenic lymphocytes in vitro. Using the MTT assay, Ganoderma triterpenes were found to have no effect on cell viability, indicating that they are non-toxic to splenic lymphocytes. The effect of the total triterpenes on DNA damage and apoptosis induced by radiation was analyzed using the comet assay, DNA ladder assay and flow cytometric analysis. Total triterpenes were found to be highly effective in preventing DNA laddering, even at low concentrations (25μg/ml). The comet assay demonstrated that the G. triterpenes effectively prevented DNA damage, and flow cytometry revealed a reduction in apoptotic cells. The effect of the total triterpenes on intracellular reactive oxygen species (ROS) level and endogenous antioxidant enzyme activity in splenic lymphocytes were determined to elucidate possible radioprotective mechanisms. Total triterpenes successfully reduced the formation of intracellular ROS and enhanced endogenous antioxidant enzyme activity in splenic lymphocytes following irradiation. Thus, these findings indicate that the total triterpenes isolated from G. lucidum have a remarkable ability to protect normal cells from radiation-induced damage, which suggests therapeutic potential. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Blockade of the tumor necrosis factor-related apoptosis inducing ligand death receptor DR5 prevents beta-amyloid neurotoxicity.

    PubMed

    Uberti, Daniela; Ferrari-Toninelli, Giulia; Bonini, Sara Anna; Sarnico, Ilenia; Benarese, Marina; Pizzi, Marina; Benussi, Luisa; Ghidoni, Roberta; Binetti, Giuliano; Spano, PierFranco; Facchetti, Fabio; Memo, Maurizio

    2007-04-01

    We originally suggested that inhibition of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) death pathway could be taken into consideration as a potential therapeutic strategy for Alzheimer's disease (AD). However, because the critical role of TRAIL in immune surveillance, the neutralization of TRAIL protein by an antibody to prevent its binding to death receptors is definitely a risky approach. Here, we demonstrated that the blockade of the TRAIL death receptor DR5 with a specific antibody completely prevented amyloid beta peptide (A beta) neurotoxicity in both neuronal cell line and primary cortical neurons. DR5 was demonstrated to be a key factor in TRAIL death pathway. In fact, whereas TRAIL expression was enhanced dose-dependently by concentrations of beta amyloid ranging from 10 nM to 1 microM, only the highest toxic dose of A beta (25 microM) induced the increased expression of DR5 and neuronal cell death. In addition, the increased expression of DR5 receptor after beta amyloid treatment was sustained by p53 transcriptional activity, as demonstrated by the data showing that the p53 inhibitor Pifithrin alpha prevented both beta amyloid-induced DR5 induction and cell death. These data suggest a sequential activation of p53 and DR5 upon beta amyloid exposure. Further insight into the key role of DR5 in AD was suggested by data showing a significant increase of DR5 receptor in cortical slices of AD brain. Thus, these findings may give intracellular TRAIL pathway a role in AD pathophysiology, making DR5 receptor a possible candidate as a pharmacological target.

  6. Ilex latifolia Prevents Amyloid β Protein (25-35)-Induced Memory Impairment by Inhibiting Apoptosis and Tau Phosphorylation in Mice.

    PubMed

    Kim, Joo Youn; Lee, Hong Kyu; Jang, Ji Yeon; Yoo, Jae Kuk; Seong, Yeon Hee

    2015-12-01

    Ilex latifolia Thunb. (Aquifoliaceae), a Chinese bitter tea called "kudingcha," has been widely consumed as a health beverage and found to possess antioxidant, antidiabetic, antihypertensive, anti-inflammatory, and anti-ischemic activities. The aim of the present study was to investigate the neuroprotective effects of an ethanol extract of I. latifolia against amyloid β protein (Aβ)-induced memory impairment in mice and neurotoxicity in cultured rat cortical neurons. Memory impairment in mice was induced by intracerebroventricular injection of 15 nmol Aβ (25-35) and measured by the passive avoidance test and Morris water maze test. Chronic administration of I. latifolia (25-100 mg/kg, p.o.) significantly prevented Aβ (25-35)-induced memory loss. I. latifolia also prevented the decrease of glutathione concentrations, increased lipid peroxidation, expression of phosphorylated tau (p-tau), and changes in apoptosis-associated proteins in the memory-impaired mouse brain. Exposure of cultured cortical neurons to 10 μM Aβ (25-35) for 36 h induced neuronal apoptotic death. The neuronal cell death, elevation of intracellular Ca(2+) concentration, generation of reactive oxygen species, and expression of proapoptotic proteins caused by Aβ (25-35) in the cultured neurons were inhibited by treatment with I. latifolia (1-50 μg/mL). These results suggest that I. latifolia may have a possible therapeutic role in managing cognitive impairment associated with Alzheimer's disease. The underlying mechanism might involve the antiapoptotic effects mediated by antioxidant activity and inhibition of p-tau formation.

  7. Nicorandil prevents oxidative stress-induced apoptosis in neurons by activating mitochondrial ATP-sensitive potassium channels.

    PubMed

    Teshima, Yasushi; Akao, Masaharu; Baumgartner, William A; Marbán, Eduardo

    2003-11-14

    Nicorandil, a clinically useful drug for the treatment of ischemic heart disease, has an anti-apoptotic effect in cardiomyocytes, and activation of mitochondrial ATP-sensitive potassium (mitoKATP) channels underlies this effect. Recently, several studies showed that nicorandil reduced brain injury in animal models of brain ischemia. Based on these facts, we hypothesized that nicorandil may have anti-apoptotic effects in neurons mediated by mitoKATP channels. We investigated the effect of nicorandil on apoptosis induced by oxidative stress using cultured cerebellar granule neurons. Nicorandil (100 micromol/l) significantly suppressed the number of cells with TUNEL-positive nuclei and the increase in caspase-3 activity induced by 20 micromol/l H2O2. An indicator dye for mitochondrial inner membrane potential (DeltaPsim) revealed that nicorandil prevented the loss of DeltaPsim induced by H2O2 in a concentration-dependent manner. These effects were abolished by 5-hydroxydecanoate (5HD; 500 micromol/l), a mitoKATP channel blocker. The present results showed that nicorandil has anti-apoptotic effects in neurons, at least in part, by preserving DeltaPsim.

  8. Prevention of Trauma/Hemorrhagic Shock-Induced Mortality, Apoptosis, Inflammation and Mitochondrial Dysfunction

    DTIC Science & Technology

    2012-12-01

    inhibit Stat3 activation. PLoS ONE. 2009;4(3):e4783. 2. Meng ZH, Dyer K, Billiar TR, Tweardy DJ. Distinct effects of systemic infusion of G-CSF vs. IL-6...hemorrhagic shock 1. When 3 trauma with hemorrhagic shock (T/HS) is accompanied with resuscitation, the end effect 4 is essentially a systemic ischemia...we demonstrated: 1) 72% mortality at 48 hr, 2) hypovolemic circulatory collapse, 3) left ventricular contractile dysfunction, 4) apoptosis of

  9. Prevention of Trauma/Hemorrhagic Shock-Induced Mortality, Apoptosis, Inflammation and Mitochondrial Dysfunction

    DTIC Science & Technology

    2015-02-01

    Mehrian-Shai R, Chan C, Hsu Y-H, Kaplowitz N. Role of CHOP in hepatic apoptosis in the murine model of intragastric ethanol feeding. Alcoholism , Clinical...Loss of Muscle Mass, Cell Metabolism 18, 368- 379. 11. Moran, A., Thacker, S. A., Arikan, A. A., Mastrangelo, M. A., Wu, Y., Yu, B., and Tweardy, D. J...models of T/HS, has shown that parenchymal cells within organs such as the liver, a key metabolic and homeostatic organ, and heart, an organ whose

  10. Olmesartan Prevents Microalbuminuria in db/db Diabetic Mice Through Inhibition of Angiotensin II/p38/SIRT1-Induced Podocyte Apoptosis.

    PubMed

    Gu, Junhui; Yang, Ming; Qi, Na; Mei, Shuqin; Chen, Jiejian; Song, Shuwei; Jing, Ying; Chen, Meihan; He, Liangliang; Sun, Lijun; Hu, Huimin; Li, Lin; Wüthrich, Rudolf P; Wu, Ming; Mei, Changlin

    2016-01-01

    Blockage of the renin-angiotensin II system (RAS) prevents or delays albuminuria in diabetic patients. The aim of this study was to investigate the inhibitory mechanism of the angiotensin receptor blocker olmesartan on albuminuria in a murine model of diabetic nephropathy. Male db/db diabetic mice were fed with placebo or 20 mg/kg olmesartan by daily gavage for 12 weeks. Conditionally immortalized mouse podocytes were treated with glucose, angiotensin II, olmesartan or p38 inhibitor s8307 in different experimental conditions after differentiation. Olmesartan reduced albuminuria in db/db mice without change in body weight and glycemia. The increase of apoptotic cells and decrease of podocytes in the diabetic glomerulus were prevented by olmesartan. Moreover, olmesartan restored silent mating type information regulation 1 (SIRT1) expression in diabetic glomeruli. Furthermore, olmesartan treatment suppressed p38 phosphorylation but did not restore adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation in the diabetic glomerulus. In vitro study revealed that olmesartan prevented angiotensin II/p38/SIRT1 induced podocyte apoptosis, but it only slightly prevented high glucose/AMPK/SIRT1 induced podocyte apoptosis. In addition, the p38 inhibitor s8307 reversed SIRT1 expression and angiotensin II induced podocyte apoptosis. Olmesartan reduced albuminuria in diabetic nephropathy through inhibiting angiotensin II/p38/SIRT1 triggered podocyte apoptosis. © 2016 The Author(s) Published by S. Karger AG, Basel.

  11. Crocin and quercetin prevent PAT-induced apoptosis in mammalian cells: Involvement of ROS-mediated ER stress pathway.

    PubMed

    Boussabbeh, Manel; Prola, Alexandre; Ben Salem, Intidhar; Guilbert, Arnaud; Bacha, Hassen; Lemaire, Christophe; Abis-Essefi, Salwa

    2015-08-27

    Patulin (PAT) is a secondary metabolite produced by several species of the genera of Penicillium, Aspergillus, and Byssochlamys that can be found in rotting fruits, especially in apples and apple-based products. Exposure to this mycotoxin has been reported to induce intestinal and kidney injuries. The mechanism underlying such toxicity has been linked to the induction of apoptosis which occurred with reactive oxygen species production and endoplasmic reticulum (ER) stress induction. This study aimed to evaluate the effect of the two common dietary compounds Quercetin (QUER), a natural flavonoid, and Crocin (CRO), a natural carotenoid, on PAT-induced toxicity in human colon carcinoma (HCT116) and embryonic kidney cells (HEK293). We showed that antioxidant properties of QUER and CRO help to prevent ER stress activation and lipid peroxidation as evidenced by the reduction in GRP78 and GADD34 expressions and the decrease in malondialdehyde production. Furthermore, we demonstrated their ability to re-establish the loss of the mitochondrial membrane potential to inhibit caspase 3 activation and DNA fragmentation. © 2015 Wiley Periodicals, Inc. Environ Toxicol, 2015.

  12. TNF-alpha-induced apoptosis is prevented by erythropoietin treatment on SH-SY5Y cells

    SciTech Connect

    Pregi, Nicolas Wenker, Shirley; Vittori, Daniela; Leiros, Claudia Perez; Nesse, Alcira

    2009-02-01

    The growth factor erythropoietin (Epo) has shown neuronal protective action in addition to its well known proerythroid activity. Furthermore, Epo has dealt with cellular inflammation by inhibiting the expression of several proinflammatory cytokines, such as IL-1 and TNF-{alpha}. The action of TNF can have both apoptotic and antiapoptotic consequences due to altered balance between different cell signalling pathways. This work has focused on the apoptotic effects of this cytokine and the potential protective action of Epo. The model we used was neuroblastoma SH-SY5Y cells cultured in the presence of 25 ng/ml TNF-{alpha} or pretreated with 25 U/ml Epo for 12 h before the addition of TNF-{alpha}. Apoptosis was evaluated by differential cell count after Hoechst staining, analysis of DNA ladder pattern, and measurement of caspase activity. Despite its ability to induce NF-{kappa}B nuclear translocation, TNF-{alpha} induced cell death, which was found to be associated to upregulation of TNF Receptor 1 expression. On the other hand, cells activated by Epo became resistant to cell death. Prevention of death receptor upregulation and caspase activation may explain this antiapoptotic effect of Epo, which may be also favoured by the induction of a higher expression of protective factors, such as Bcl-2 and NF-{kappa}B, through mechanisms involving Jak/STAT and PI3K signalling pathways.

  13. Induction of the Nrf2-driven antioxidant response by tert-butylhydroquinone prevents ethanol-induced apoptosis in cranial neural crest cells

    PubMed Central

    Yan, Dong; Dong, Jian; Sulik, Kathleen K.; Chen, Shao-yu

    2010-01-01

    Previous studies have shown that ethanol exposure causes apoptosis in cranial neural crest cells (NCCs), an ethanol-sensitive cell population implicated in Fetal Alcohol Spectrum Disorders (FASD). Additionally, induction of endogenous antioxidants through activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) has been shown to prevent oxidative stress and apoptosis in ethanol-exposed mouse embryos. The objective of this study was to test whether tert-butylhydroquinone (tBHQ), an Nrf2 inducer, can protect NCCs against ethanol-induced apoptosis. Ethanol exposure was shown to cause a moderate increase in the protein expression of Nrf2 and its downstream antioxidants in the NCCs. Treatment of NCCs with tBHQ alone significantly increased the protein expression of Nrf2 and its downstream antioxidants and also significantly increased the activities of the antioxidant enzymes. In NCCs exposed to ethanol, the tBHQ-mediated antioxidant response prevented oxidative stress and apoptosis. These results clearly demonstrate that activation of Nrf2 signaling confers protection against ethanol-induced apoptosis in NCCs. PMID:20223225

  14. Pretreatment with the Total Flavone Glycosides of Flos Abelmoschus manihot and Hyperoside Prevents Glomerular Podocyte Apoptosis in Streptozotocin-Induced Diabetic Nephropathy

    PubMed Central

    Zhou, Lei; Teng, Shi-Chao; Liu, Jing-Shun; Shang, Wen-Bin; Yuan, Yang-Gang; Yu, Jiang-Yi

    2012-01-01

    Abstract Diabetic nephropathy (DN) is an important diabetic complication, and podocyte apoptosis plays a critical role in the development of DN. In the present study, we examined the preventive effect of the total flavone glycosides of Flos Abelmoschus manihot (TFA) on urinary microalbumin and glomerular podocyte apoptosis in experimental DN rats. The preliminary oral administration of TFA (200 mg/kg/day) for 24 weeks significantly decreased the urinary microalbumin to creatinine ratio and 24-h urinary total protein in streptozotocin-induced DN rats. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay indicated glomerular cell apoptosis in DN rats was significantly improved by pretreatment with TFA. Furthermore, fluorescence-activated cell sorting and Hoechst 33342 staining suggested preincubation with hyperoside (50 and 200 μg/mL), the major active constituent of TFA, could significantly mitigate cultured podocyte apoptosis induced by the advanced glycation end-products (AGEs). Western blot analysis showed that increased caspase-3 and caspase-8 expressions induced by AGEs were also inhibited by pretreatment with hyperoside at both doses. Our results demonstrate that TFA pretreatment can decrease urinary albumin excretion in early-stage DN, which might be accomplished by preventing renal damage and podocyte apoptosis. PMID:22439874

  15. Glycyrrhizic acid pretreatment prevents sepsis-induced acute kidney injury via suppressing inflammation, apoptosis and oxidative stress.

    PubMed

    Zhao, Hongyu; Liu, Zhenning; Shen, Haitao; Jin, Shuai; Zhang, Shun

    2016-06-15

    Glycyrrhizic acid (GA), an active ingredient in licorice, has multiple pharmacological activities. The aim of our study was to investigate the molecular mechanism involved in the protective effects of GA in lipopolysaccharide (LPS) stimulated rat mesangial cells (HBZY-1) and septic rats. Sepsis model was established by injection of 5mg/kg LPS in rats or incubation with 1μg/ml LPS for 24h in HBZY-1 cells. A variety of molecular biological experiments were carried out to assess the effects of GA on inflammation, apoptosis, and oxidative stress. First we found that GA alleviated sepsis-induced kidney injury in vivo. Furthermore, GA suppressed inflammatory response in vivo and in vitro. Additionally, GA inhibited cell apoptosis and the changes in expressions of apoptosis related proteins induced by LPS. Moreover, GA markedly inhibited oxidative stress induced by LPS via activation of ERK signaling pathway. Finally GA could inhibit the activation of NF-κ B induced by LPS. Our present study indicates that GA has a protective effect against sepsis-induced inflammatory response, apoptosis, and oxidative stress damage, which provides a molecular basis for a new medical treatment of septic acute kidney injury.

  16. A novel polysaccharide from Sargassum integerrimum induces apoptosis in A549 cells and prevents angiogensis in vitro and in vivo

    PubMed Central

    Liu, Ge; Kuang, Shan; Wu, Shimei; Jin, Weihua; Sun, Chaomin

    2016-01-01

    Many polysaccharides isolated from plants have exhibited promising antitumor activities. The aim of this study is to investigate the antitumor activity of the novel polysaccharide named SPS from Sargassum integerrimum, elucidate the underlying anticancer mechanism in a human lung cancer cell line A549, and evaluate its anti-angiogenic activity both in vitro and in vivo. The results show that SPS significantly reduces A549 cells viability in a dose- and time-dependent manner via MTT method. Flow cytometry analysis indicates that SPS could induce cell apoptosis, the loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) and G2/M phase cell cycle arrest of A549 cells. Up-regulation of the expressions of P53 and Bax, down-regulation of the expression of Bcl-2, and activation of cleaved caspase-3, caspase-9 and PARP are also detected by western blotting after the treatment of SPS. In addition, SPS inhibits the proliferation, migration and cord formation of human umbilical vein endothelial cells (HUVECs) in vitro, and prevents the vascular development of zebrafish embryos in vivo. Altogether, our data prove the anticancer and anti-angiogenesis properties of SPS, and provide further insights into the potential pharmacological application of SPS as antitumor and anti-angiogenic agent against lung cancer. PMID:27216943

  17. Taurine Pretreatment Prevents Isoflurane-Induced Cognitive Impairment by Inhibiting ER Stress-Mediated Activation of Apoptosis Pathways in the Hippocampus in Aged Rats.

    PubMed

    Zhang, Yanan; Li, Dongliang; Li, Haiou; Hou, Dailiang; Hou, Jingdong

    2016-10-01

    Isoflurane, a commonly used inhalation anesthetic, may induce neurocognitive deficits, especially in elderly patients after surgery. Recent study demonstrated that isoflurane caused endoplasmic reticulum (ER) stress and subsequent neuronal apoptosis in the brain, contributing to cognitive deficits. Taurine, a major intracellular free amino acid, has been shown to inhibit ER stress and neuronal apoptosis in several neurological disorders. Here, we examined whether taurine can prevent isoflurane-induced ER stress and cognitive impairment in aged rats. Thirty minutes prior to a 4-h 1.3 % isoflurane exposure, aged rats were treated with vehicle or taurine at low, middle and high doses. Aged rats without any treatment served as control. The brains were harvested 6 h after isoflurane exposure for molecular measurements, and behavioral study was performed 2 weeks later. Compared with control, isoflurane increased expression of hippocampal ER stress biomarkers including glucose-regulated protein 78, phosphorylated (P-) inositol-requiring enzyme 1, P-eukaryotic initiation factor 2-α (EIF2α), activating transcription factor 4 (ATF-4), cleaved ATF-6 and C/EBP homologous protein, along with activation of apoptosis pathways as indicated by decreased B cell lymphoma 2 (BCL-2)/BCL2-associated X protein, increased expressions of cytochrome-c and cleaved caspase-3. Taurine pretreatment dose-dependently inhibited isoflurane-induced increase in expression of ER stress biomarkers except for P-EIF2α and ATF-4, and reversed isoflurane-induced changes in apoptosis-related proteins. Moreover, isoflurane caused spatial working memory deficits in aged rats, which were prevented by taurine pretreatment. The results indicate that taurine pretreatment prevents anesthetic isoflurane-induced cognitive impairment by inhibiting ER stress-mediated activation of apoptosis pathways in the hippocampus in aged rats.

  18. Mitochondria-dependent apoptosis of activated T lymphocytes induced by astin C, a plant cyclopeptide, for preventing murine experimental colitis.

    PubMed

    Shen, Yan; Luo, Qiong; Xu, Huimin; Gong, Fangyuan; Zhou, Xiaobin; Sun, Yang; Wu, Xuefeng; Liu, Wen; Zeng, Guangzhi; Tan, Ninghua; Xu, Qiang

    2011-08-01

    Facilitating T-cell apoptosis is implicated as an effective therapeutic strategy for treatment of T cell-mediated disease, including inflammatory bowel disease. Here, we report that astin C, a plant cyclopeptide isolated from the roots of Aster tataricus (Compositae), induced apoptosis of activated T cells in a mitochondria-dependent but Fas-independent manner in that such activity was still observed in T cells from Fas-mutated MRLlpr/lpr mice. Although caspase 8 was not activated, astin C treatment led to the cleavage of caspase 9 and caspase 3, the upregulation of Bad protein expression as well as release of cytochrome c in activated T cells. Astin C did not induce the expression of GRP78 and GADD153, excluding involvement of endoplasmic reticulum stress-mediated pathway. Moreover, oral administration of astin C protected mice against TNBS-induced colonic inflammation, as assessed by a reduced colonic weight/length ratio and histological scoring. Administering astin C significantly decreased serum levels of TNF-α, IL-4 and IL-17, accompanied with the induction of apoptosis in activated T cells in vivo. The results demonstrate, for the first time, the ability of astin C to induce apoptosis in activated T cells and its potential use in the treatment of colonic inflammation. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Isoliquiritigenin isolated from licorice Glycyrrhiza uralensis prevents 6-hydroxydopamine-induced apoptosis in dopaminergic neurons.

    PubMed

    Hwang, Cheol Kyu; Chun, Hong Sung

    2012-01-01

    Licorice (Glycyrrhiza uralensis) is a medicinal herb containing various bioactive components implicated in antioxidative, anti-inflammatory, antiviral, and neuroprotective effects, but the effects of licorice against Parkinson's disease (PD)-related dopaminergic cell death have not been studied. In this study, we investigated the protective effects of isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in a dopaminergic cell line, SN4741. ISL (1 µM) significantly attenuated 6-OHDA (50 µM)-induced reactive oxygen species (ROS) and nitric oxide (NO) generation and apoptotic cell death. ISL pretreatment effectively suppressed 6-OHDA-mediated upregulation of Bax, p-c-Jun N-terminal kinase (JNK), p-p38 mitogen-activated protein (MAP) kinase, cytochrome c release, and caspase 3 activation. In addition, ISL significantly attenuated 6-OHDA-induced Bcl-2, brain-derived neurotrophic factor (BDNF), and mitochondrial membrane potential (MMP) reduction. Pharmacological inhibitors of the phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) pathway reversed ISL-mediated neuroprotection against 6-OHDA toxicity in SN4741 cells. These results provide the first evidence that ISL can protect dopaminergic cells under oxidative stress conditions by regulating the apoptotic process.

  20. Cocoa-rich diet prevents azoxymethane-induced colonic preneoplastic lesions in rats by restraining oxidative stress and cell proliferation and inducing apoptosis.

    PubMed

    Rodríguez-Ramiro, Ildefonso; Ramos, Sonia; López-Oliva, Elvira; Agis-Torres, Angel; Gómez-Juaristi, Miren; Mateos, Raquel; Bravo, Laura; Goya, Luis; Martín, María Ángeles

    2011-12-01

    Cocoa is a rich source of bioactive compounds with potential chemopreventive ability but up to date its effectiveness in animal models of colon carcinogenesis has not been addressed. Herein, we investigated the in vivo effect of a cocoa-rich diet in the prevention of azoxymethane (AOM)-induced colon cancer and the mechanisms involved. Our results showed that cocoa feeding significantly reduced AOM-induced colonic aberrant crypt foci formation and crypt multiplicity. Oxidative imbalance in colon tissues seems to be prevented by cocoa as indicated by reduced oxidation markers levels and increased enzymatic and non-enzymatic endogenous defences. Cocoa-rich diet also exhibited antiproliferative effects by decreasing the levels of extracellular regulated kinases, protein kinase B and cyclin D1 together with pro-apoptotic effects evidenced by reduced Bcl-x(L) levels and increased Bax levels and caspase-3 activity. Our findings provide the first in vivo evidence that a cocoa-rich diet may inhibit the early stage of colon carcinogenesis probably by preventing oxidative stress and cell proliferation and by inducing apoptosis.

  1. Prevention of Reg I-induced β-cell apoptosis by IL-6/dexamethasone through activation of HGF gene regulation.

    PubMed

    Nakagawa, Kei; Takasawa, Shin; Nata, Koji; Yamauchi, Akiyo; Itaya-Hironaka, Asako; Ota, Hiroyo; Yoshimoto, Kiyomi; Sakuramoto-Tsuchida, Sumiyo; Miyaoka, Tomoko; Takeda, Maiko; Unno, Michiaki; Okamoto, Hiroshi

    2013-12-01

    Reg (regenerating gene) product, Reg protein, is induced in pancreatic β-cells and acts as autocrine/paracrine growth factor for regeneration via the cell surface Reg receptor. However, high concentrations of Reg I protein induced β-cell apoptosis. In the present study, we found that hepatocyte growth factor (HGF) attenuated the β-cell apoptosis induced by the high concentrations of Reg I protein and that the combined stimulation of interleukin-6 (IL-6) and dexamethasone (Dx) induced the accumulation of HGF mRNA as well as Reg I mRNA in β-cells. The accumulation of the HGF mRNA was caused by the activation of the HGF promoter. Deletion analysis revealed that the region of -96 to -92 of the HGF gene was responsible for the promoter activation by IL-6+Dx. The promoters contain a consensus transcription factor binding sequence for signal transducer and activator of transcription (STAT). Site-directed mutations of STAT-binding motif in the region markedly attenuated the HGF promoter activity. Chromatin immunoprecipitation assay showed that STAT3 is located at the active HGF promoter in response to IL-6+Dx stimulation. These results strongly suggest that the combined stimulation of IL-6 and glucocorticoids induces the activation of both Reg and HGF genes and that the anti-apoptotic effects of HGF against the Reg I-induced apoptosis may help β-cell regeneration by Reg I protein.

  2. Copper sulfate pretreatment prevents mitochondrial electron transport chain damage and apoptosis against MPP(+)-induced neurotoxicity.

    PubMed

    Rubio-Osornio, Moisés; Orozco-Ibarra, Marisol; Díaz-Ruiz, Araceli; Brambila, Eduardo; Boll, Marie-Catherine; Monroy-Noyola, Antonio; Guevara, Jorge; Montes, Sergio; Ríos, Camilo

    2017-06-01

    Intrastriatal injection of 1-methyl-4-phenylpyridinium (MPP(+)) is considered a model to reproduce some biochemical alterations observed in Parkinson's disease (PD) patients. Among those alterations, inhibition of mitochondrial complex I activity, increased free radical production and reduced antioxidant responses have been reported. Copper (Cu) plays an important role in the metabolism and antioxidative responses through its participation as a cofactor in the cytochrome c oxidase enzyme (COX), Cu/Zn-superoxide dismutase (Cu/Zn-SOD), and metallothioneins. We tested the effect of copper sulfate (CuSO4) pretreatment on the mitochondrial electron transport chain (METC) in the striatum after MPP(+) toxicity in rats. The results showed that the MPP(+) intrastriatal injection reduced mitochondrial complex I, II, IV and V activities; while 10 μmol of CuSO4 pretreatment counteracted this damage. Activities of complexes I, II and IV, were coincident with ATP recovery. Moreover, Cu/Zn-SOD activity was reduced as a consequence of MPP(+) damage; however, copper pre-treatment kept the striatal Cu/Zn-SOD activity unchanged in MPP(+)-damaged animals. We observed that MPP(+) also reduced the metallothionein (MT) content and that CuSO4 pretreatment maintained baseline values. CuSO4 pretreatment also reduced the striatal caspase-3 and caspase-9 activities that were increased three days after MPP(+)-induced damage. The present study provided evidence that copper pretreatment reduced MPP(+)-induced apoptotic damage, probably through direct action on copper-dependent proteins or indirectly on proteins in the apoptotic pathway. Copyright © 2017. Published by Elsevier B.V.

  3. Overexpression of phospholipase D prevents actinomycin D-induced apoptosis through potentiation of phosphoinositide 3-kinase signalling pathways in Chinese-hamster ovary cells.

    PubMed Central

    Yamada, Momoko; Banno, Yoshiko; Takuwa, Yoh; Koda, Masahiro; Hara, Akira; Nozawa, Yoshinori

    2004-01-01

    To examine the roles of PLD (phospholipase D) in the regulation of the apoptotic process, PLD1 and PLD2 were stably overexpressed in S1P3-CHO cells [CHO (Chinese-hamster ovary) cells expressing the S1P (sphingosine 1-phosphate) receptor S1P3]. Treatment of S1P3-CHO cells with ActD (actinomycin D) induced apoptosis, as shown by the occurrence of nuclear fragmentation and the caspase-dependent proteolytic cleavage of PARP [poly(ADP-ribose) polymerase] and protein kinase Cd. Overexpression of either PLD1 or PLD2 protected S1P3-CHO cells from ActD-induced apoptosis, as demonstrated by an increased number of viable cells and inhibition of PARP and protein kinase Cd cleavage. However, in the early phase of apoptosis, ActD induced an increase in PLD activity and activation of key factors in the cell-survival signalling pathways, such as PI3K (phosphoinositide 3-kinase), Akt, p70S6K (p70 S6 kinase) and ERK (extracellular-signal-regulated kinase). Furthermore, the ActD-induced activation of these survival signalling enzymes was potentiated by overexpression of either PLD1 or PLD2. The PI3K inhibitor LY294002 inhibited the ActD-induced activation of Akt and p70S6K, and completely abolished the effects of PLD1 or PLD2, whereas inhibition of ERK activity by the MEK inhibitor U0126 had a milder effect. The ActD-induced activation of p70S6K and ERKs was blocked by 1-butanol, but not by t-butanol; similar to S1P, exogenous PLD suppressed the ActD-induced events in the apoptosis signalling pathways. These results show that, in S1P3-CHO cells, increased expression of PLDs prevents ActD-induced apoptosis by enhanced activation of the PI3K signalling pathways. PMID:14640974

  4. Goniothalamin prevents the development of chemically induced and spontaneous colitis in rodents and induces apoptosis in the HT-29 human colon tumor cell line.

    PubMed

    Vendramini-Costa, Débora Barbosa; Alcaide, Antonio; Pelizzaro-Rocha, Karin Juliane; Talero, Elena; Ávila-Román, Javier; Garcia-Mauriño, Sofia; Pilli, Ronaldo Aloise; de Carvalho, João Ernesto; Motilva, Virginia

    2016-06-01

    Colon cancer is the third most incident type of cancer worldwide. One of the most important risk factors for colon cancer development are inflammatory bowel diseases (IBD), thus therapies focusing on IBD treatment have great potential to be used in cancer prevention. Nature has been a source of new therapeutic and preventive agents and the racemic form of the styryl-lactone goniothalamin (GTN) has been shown to be a promising antiproliferative agent, with gastroprotective, antinociceptive and anti-inflammatory effects. As inflammation is a well-known tumor promoter, the major goal of this study was to evaluate the therapeutic and preventive potentials of GTN on chemically induced and spontaneous colitis, as well as the cytotoxic effects of GTN on a human colon tumor cell line (HT-29). GTN treatments inhibited TNBS-induced acute and chronic colitis development in Wistar rats, reducing myeloperoxidase levels and inflammatory cells infiltration in the mucosa. In spontaneous-colitis using IL-10 deficient mice (C57BL/6 background), GTN prevented colitis development through downregulation of TNF-α, upregulation of SIRT-1 and inhibition of proliferation (PCNA index), without signs of toxicity after three months of treatment. In HT-29 cells, treatment with 10μM of GTN induced apoptosis by increasing BAX/BCL2, p-JNK1/JNK1, p-P38/P38 ratios as well as through ROS generation. Caspase 8, 9 and 3 activation also occurred, suggesting caspase-dependent apoptotic pathway, culminating in PARP-1 cleavage. Together with previous data, these results show the importance of GTN as a pro-apoptotic, preventive and therapeutic agent for IBD and highlight its potential as a chemopreventive agent for colon cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The metabolites of glutamine prevent hydroxyl radical-induced apoptosis through inhibiting mitochondria and calcium ion involved pathways in fish erythrocytes.

    PubMed

    Li, Huatao; Jiang, Weidan; Liu, Yang; Jiang, Jun; Zhang, Yongan; Wu, Pei; Zhao, Juan; Duan, Xudong; Zhou, Xiaoqiu; Feng, Lin

    2016-03-01

    The present study explored the apoptosis pathways in hydroxyl radicals ((∙)OH)-induced carp erythrocytes. Carp erythrocytes were treated with the caspase inhibitors in physiological carp saline (PCS) or Ca(2+)-free PCS in the presence of 40μM FeSO4/20μM H2O2. The results showed that the generation of reactive oxygen species (ROS), the release of cytochrome c and DNA fragmentation were caspase-dependent, and Ca(2+) was involved in calpain activation and phosphatidylserine (PS) exposure in (∙)OH-induced carp erythrocytes. Moreover, the results suggested that caspases were involved in PS exposure, and Ca(2+) was involved in DNA fragmentation in (∙)OH-induced fish erythrocytes. These results demonstrated that there might be two apoptosis pathways in fish erythrocytes, one is the caspase and cytochrome c-dependent apoptosis that is similar to that in mammal nucleated cells, the other is the Ca(2+)-involved apoptosis that was similar to that in mammal non-nucleated erythrocytes. So, fish erythrocytes may be used as a model for studying oxidative stress and apoptosis in mammal cells. Furthermore, the present study investigated the effects of glutamine (Gln)'s metabolites [alanine (Ala), citrulline (Cit), proline (Pro) and their combination (Ala10Pro4Cit1)] on the pathways of apoptosis in fish erythrocytes. The results displayed that Ala, Cit, Pro and Ala10Pro4Cit1 effectively suppressed ROS generation, cytochrome c release, activation of caspase-3, caspase-8 and caspase-9 at the physiological concentrations, prevented Ca(2+) influx, calpain activation, PS exposure, DNA fragmentation and the degradation of the cytoskeleton and oxidation of membrane and hemoglobin (Hb) and increased activity of anti-hydroxyl radical (AHR) in (∙)OH-induced carp erythrocytes. Ala10Pro4Cit1 produced a synergistic effect of inhibited oxidative stress and apoptosis in fish erythrocytes. These results demonstrated that Ala, Cit, Pro and their combination can protect mammal erythrocytes

  6. Lycopene Protects against Hypoxia/Reoxygenation-Induced Apoptosis by Preventing Mitochondrial Dysfunction in Primary Neonatal Mouse Cardiomyocytes

    PubMed Central

    Yue, Rongchuan; Hu, Houxiang; Yiu, Kai Hang; Luo, Tao; Zhou, Zhou; Xu, Lei; Zhang, Shuang; Li, Ke; Yu, Zhengping

    2012-01-01

    Background Hypoxia/reoxygenation(H/R)-induced apoptosis of cardiomyocytes plays an important role in myocardial injury. Lycopene is a potent antioxidant carotenoid that has been shown to have protective properties on cardiovascular system. The aim of the present study is to investigate the potential for lycopene to protect the cardiomyocytes exposed to H/R. Moreover, the effect on mitochondrial function upon lycopene exposure was assessed. Methods and Findings Primary cardiomyocytes were isolated from neonatal mouse and established an in vitro model of H/R which resembles ischemia/reperfusion in vivo. The pretreatment of cardiomyocytes with 5 µM lycopene significantly reduced the extent of apoptosis detected by TUNEL assays. To further study the mechanism underlying the benefits of lycopene, interactions between lycopene and the process of mitochondria-mediated apoptosis were examined. Lycopene pretreatment of cardiomyocytes suppressed the activation of the mitochondrial permeability transition pore (mPTP) by reducing the intracellular reactive oxygen species (ROS) levels and inhibiting the increase of malondialdehyde (MDA) levels caused by H/R. Moreover, the loss of mitochondrial membrane potential, a decline in cellular ATP levels, a reduction in the amount of cytochrome c translocated to the cytoplasm and caspase-3 activation were observed in lycopene-treated cultures. Conclusion The present results suggested that lycopene possesses great pharmacological potential in protecting against H/R-induced apoptosis. Importantly, the protective effects of lycopene may be attributed to its roles in improving mitochondrial function in H/R-treated cardiomyocytes. PMID:23226382

  7. Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin

    SciTech Connect

    Xu, Demei; Hu, Lihua; Su, Chuanyang; Xia, Xiaomin; Zhang, Pu; Fu, Juanli; Wang, Wenchao; Xu, Duo; Du, Hong; Hu, Qiuling; Song, Erqun; Song, Yang

    2014-10-15

    This study investigated the protective effects of curcumin on tetrachloro-p-benzoquinone (TCBQ)-induced hepatotoxicity in mice. TCBQ-treatment causes significant liver injury (the elevation of serum AST and ALT activities, histopathological changes in liver section including centrilobular necrosis and inflammatory cells), oxidative stress (the elevation of TBAR level and the inhibition of SOD and catalase activities) and inflammation (up-regulation of iNOS, COX-2, IL-1β, IL-6, TNF-α and NF-κB). However, these changes were alleviated upon pretreatment with curcumin. Interestingly, TCBQ has no effect on caspase family genes or B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X (Bax) protein expressions, which implied that TCBQ-induced hepatotoxicity is independent of apoptosis. Moreover, curcumin was shown to induce phase II detoxifying/antioxidant enzymes HO-1 and NQO1 through the activation of nuclear factor erythroid-derived 2-like 2 (Nrf2). In summary, the protective mechanisms of curcumin against TCBQ-induced hepatoxicity may be related to the attenuation of oxidative stress, along with the inhibition of inflammatory response via the activation of Nrf2 signaling. - Highlights: • TCBQ-intoxication significantly increased AST and ALT activities. • TCBQ-intoxication induced oxidative stress in mice liver. • TCBQ-intoxication induced inflammatory response in mice liver. • TCBQ-intoxication induced hepatotoxicity is independent of apoptosis. • Curcumin relieved TCBQ-induced liver damage remarkably.

  8. A bisphosphonate that does not affect osteoclasts prevents osteoblast and osteocyte apoptosis and the loss of bone strength induced by glucocorticoids in mice.

    PubMed

    Plotkin, L I; Bivi, Nicoletta; Bellido, T

    2011-07-01

    Although a major effect of bisphosphonates on bone is inhibition of resorption resulting from their ability to interfere with osteoclast function, these agents also prevent osteoblast and osteocyte apoptosis in vitro and in vivo. However, the contribution of the latter property to the overall beneficial effects of the drugs on bone remains unknown. We compared herein the action on glucocorticoid-induced bone disease of the classical bisphosphonate alendronate with that of IG9402, a bisphosphonate analog that preserves osteoblast and osteocyte viability but does not induce osteoclast apoptosis in vitro. The bisphosphonates were injected daily (2.3 μmol/kg) to 5-month-old Swiss Webster mice (6-11 per group), starting 3 days before implantation of pellets releasing the glucocorticoid prednisolone (2.1 mg/kg/day). IG9402 did not affect levels of circulating C-telopeptide or osteocalcin, markers of resorption and formation, respectively, nor did it decrease mRNA levels of osteocalcin or collagen 1a1 in bone. On the other hand, alendronate decreased all these parameters. Moreover, IG9402 did not reduce cancellous mineralizing surface, mineral apposition rate, or bone formation rate, whereas alendronate induced a decrease in each of these bone formation measures. These findings demonstrate that, in contrast to alendronate, IG9402 does not inhibit bone turnover. Both alendronate and IG9402, on the other hand, activated survival kinase signaling in vivo, as evidenced by induction of ERK phosphorylation in bone. Furthermore, both bisphosphonates prevented the increase in osteoblast and osteocyte apoptosis as well as the decrease in vertebral bone mass and strength induced by glucocorticoids. We conclude that a bisphosphonate that does not affect osteoclasts prevents osteoblast and osteocyte apoptosis and the loss of bone strength induced by glucocorticoids in mice.

  9. Neuroglobin upregulation induced by 17β-estradiol sequesters cytocrome c in the mitochondria preventing H2O2-induced apoptosis of neuroblastoma cells

    PubMed Central

    De Marinis, E; Fiocchetti, M; Acconcia, F; Ascenzi, P; Marino, M

    2013-01-01

    The sex steroid hormone 17β-estradiol (E2) upregulates the levels of neuroglobin (NGB), a new neuroprotectant globin, to elicit its neuroprotective effect against H2O2-induced apoptosis. Several mechanisms could be proposed to justify the NGB involvement in E2 prevention of stress-induced apoptotic cell death. Here, we evaluate the ability of E2 to modulate the intracellular NGB localization and the NGB interaction with mitochondrial cytochrome c following the H2O2-induced toxicity. Present results demonstrate that NGB is expressed in the nuclei, mitochondria, and cytosol of human neuroblastoma SK-N-BE cells. E2, but not H2O2 treatment of SK-N-BE cells, reallocates NGB mainly at the mitochondria and contemporarily reduces the number of apoptotic nuclei and the levels of cleaved caspase-3. Remarkably, the E2 treatment strongly increases NGB–cytochrome c association into mitochondria and reduces the levels of cytochrome c into the cytosol of SK-N-BE cells. Although both estrogen receptors (ERα and ERβ) are expressed in the nucleus, mitochondria, and cytosol of SK-N-BE cells, this E2 effect specifically requires the mitochondrial ERβ activity. As a whole, these data demonstrate that the interception of the intrinsic apoptotic pathway into mitochondria (i.e., the prevention of cytochrome c release) is one of the pivotal mechanisms underlying E2-dependent NGB neuroprotection against H2O2 toxicity. PMID:23429294

  10. Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway

    USGS Publications Warehouse

    Jung, T.W.; Lee, M.W.; Lee, Y.-J.; Kim, S.M.

    2012-01-01

    Type 2 diabetes mellitus is thought to be partially associated with endoplasmic reticulum (ER) stress toxicity on pancreatic beta cells and the result of decreased insulin synthesis and secretion. In this study, we showed that a well-known insulin sensitizer, metformin, directly protects against dysfunction and death of ER stress-induced NIT-1 cells (a mouse pancreatic beta cell line) via AMP-activated protein kinase (AMPK) and phosphatidylinositol-3 (PI3) kinase activation. We also showed that exposure of NIT-1 cells to metformin (5mM) increases cellular resistance against ER stress-induced NIT-1 cell dysfunction and death. AMPK and PI3 kinase inhibitors abolished the effect of metformin on cell function and death. Metformin-mediated protective effects on ER stress-induced apoptosis were not a result of an unfolded protein response or the induced inhibitors of apoptotic proteins. In addition, we showed that exposure of ER stressed-induced NIT-1 cells to metformin decreases the phosphorylation of c-Jun NH(2) terminal kinase (JNK). These data suggest that metformin is an important determinant of ER stress-induced apoptosis in NIT-1 cells and may have implications for ER stress-mediated pancreatic beta cell destruction via regulation of the AMPK-PI3 kinase-JNK pathway.

  11. Unpolished Thai rice prevents ACF formation and dysplastic progression in AOM-induced rats and induces apoptosis through redox alteration in CaCo-2 cells.

    PubMed

    Tammasakchai, Achiraya; Chaiyasut, Chaiyavat; Riengrojpitak, Suda; Suwannalert, Prasit

    2015-01-01

    Oxidative stress is associated with colon carcinogenesis including aberrant crypt foci (ACF) formation and it plays an important role in pathophysiological changes in cancer cells. The aims of this study were to investigate the effects of dietary unpolished Thai rice (UTR) on ACF formation and dysplastic progression in azoxymethane (AOM)-treated rats. Anti-cancer efficacy of UTR regarding apoptotic induction and oxidative redox status in human colon cancer (CaCo-2) cells was also investigated. Rats given 20% and 70% of UTR in the diet showed significantly and dose-dependently decreased total number of ACF. UTR treatment also was strongly associated with the low percentage of dysplastic progression and mucin depletion. In addition, we found that UTR significantly induced cancer cell apoptosis, increased cellular oxidants, and decreased the level of GSH/GSSG ratio in CaCo-2 cells. Our study suggests that UTR supplementation may be a useful strategy for CRC prevention with the inhibition of precancerous progression, with induction of cancer cell apoptosis through redox alteration.

  12. Phytosphingosine induced mitochondria-involved apoptosis.

    PubMed

    Nagahara, Yukitoshi; Shinomiya, Takahisa; Kuroda, Sachiko; Kaneko, Naoki; Nishio, Reiji; Ikekita, Masahiko

    2005-02-01

    Sphingolipids are putative intracellular signal mediators in cell differentiation, growth inhibition, and apoptosis. Sphingosine, sphinganine, and phytosphingosine are structural analogs of sphingolipids and are classified as long-chain sphingoid bases. Sphingosine and sphinganine are known to play important roles in apoptosis. In the present study, we examined the phytosphingosine-induced apoptosis mechanism, focusing on mitochondria in human T-cell lymphoma Jurkat cells. Phytosphingosine significantly induced chromatin DNA fragmentation, which is a hallmark of apoptosis. Enzymatic activity measurements of caspases revealed that caspase-3 and caspase-9 are activated in phytosphingosine-induced apoptosis, but there is little activation of caspase-8 suggesting that phytosphingosine influences mitochondrial functions. In agreement with this hypothesis, a decrease in DeltaPsi(m) and the release of cytochrome c to the cytosol were observed upon phytosphingosine treatment. Furthermore, overexpression of mitochondria-localized anti-apoptotic protein Bcl-2 prevented phytosphingosine apoptotic stimuli. Western blot assays revealed that phytosphingosine decreases phosphorylated Akt and p70S6k. Dephosphorylation of Akt was partially inhibited by protein phosphatase inhibitor OA and OA attenuated phytosphingosine-induced apoptosis. Moreover, using a cell-free system, phytosphingosine directly reduced DeltaPsi(m). These results indicate that phytosphingosine perturbs mitochondria both directly and indirectly to induce apoptosis.

  13. TL1A-induced NF-kappaB activation and c-IAP2 production prevent DR3-mediated apoptosis in TF-1 cells.

    PubMed

    Wen, Leng; Zhuang, Li; Luo, Xia; Wei, Ping

    2003-10-03

    We recently identified TL1A, an endothelium-derived T cell costimulator and a ligand for tumor necrosis factor receptor superfamily members DR3 and decoy receptor 3. To elucidate the signaling events triggered by TL1A-DR3 interaction and to understand the molecular mechanisms regulating DR3-mediated apoptosis, we have studied the effect of TL1A and an agonistic DR3 monoclonal antibody in human erythroleukemic TF-1 cells, which express DR3 endogenously. TL1A induced the formation of a DR3 signaling complex containing TRADD, TRAF2, and RIP and activated the NF-kappaB and the ERK, JNK, and p38 mitogen-activated protein kinase pathways. However, TL1A or an agonistic DR3 monoclonal antibody did not induce apoptosis in these cells nor were there detectable levels of FADD or procaspase-8 seen in the signaling complex. Interestingly, DR3-mediated apoptosis was induced in TF-1 cells in the presence of a NF-kappaB pathway-specific inhibitor but not in the presence of mitogen-activated protein kinase inhibitors, either alone or in combination, suggesting that DR3-induced NF-kappaB activation was responsible for resistance to apoptosis in these cells. Consistent with this, we found that TL1A significantly increased the production of c-IAP2, a known NF-kappaB-dependent anti-apoptotic protein, and that the NF-kappaB inhibitor or cycloheximide prevented its synthesis. Furthermore, inhibition of c-IAP2 production by RNA interference significantly sensitized TF-1 cells to TL1A-induced apoptosis. Our study identifies a molecular mechanism by which TL1A and DR3 regulate cell fate in TF-1 cells.

  14. Addition of exogenous NAD+ prevents mefloquine-induced neuroaxonal and hair cell degeneration through reduction of caspase-3-mediated apoptosis in cochlear organotypic cultures.

    PubMed

    Ding, Dalian; Qi, Weidong; Yu, Dongzhen; Jiang, Haiyan; Han, Chul; Kim, Mi-Jung; Katsuno, Kana; Hsieh, Yun Hua; Miyakawa, Takuya; Salvi, Richard; Tanokura, Masaru; Someya, Shinichi

    2013-01-01

    Mefloquine is widely used for the treatment of malaria. However, this drug is known to induce neurological side effects including depression, anxiety, balance disorder, and sensorineural hearing loss. Yet, there is currently no treatment for these side effects. In this study, we show that the coenzyme NAD(+), known to play a critical role in maintaining the appropriate cellular redox environment, protects cochlear axons and sensory hair cells from mefloquine-induced degeneration in cultured rat cochleae. Mefloquine alone destroyed hair cells and nerve fiber axons in rat cochlear organotypics cultures in a dose-dependent manner, while treatment with NAD(+) protected axons and hair cells from mefloquine-induced degeneration. Furthermore, cochlear organs treated with mefloquine showed increased oxidative stress marker levels, including superoxide and protein carbonyl, and increased apoptosis marker levels, including TUNEL-positive nuclei and caspases-3. Treatment with NAD(+) reduced the levels of these oxidative stress and apoptosis markers. Taken together, our findings suggest that that mefloquine disrupts the cellular redox environment and induces oxidative stress in cochlear hair cells and nerve fibers leading to caspases-3-mediated apoptosis of these structures. Exogenous NAD(+) suppresses mefloquine-induced oxidative stress and prevents the degeneration of cochlear axons and sensory hair cells caused by mefloquine treatment.

  15. Addition of Exogenous NAD+ Prevents Mefloquine-Induced Neuroaxonal and Hair Cell Degeneration through Reduction of Caspase-3-Mediated Apoptosis in Cochlear Organotypic Cultures

    PubMed Central

    Ding, Dalian; Qi, Weidong; Yu, Dongzhen; Jiang, Haiyan; Han, Chul; Kim, Mi-Jung; Katsuno, Kana; Hsieh, Yun Hua; Miyakawa, Takuya; Salvi, Richard; Tanokura, Masaru; Someya, Shinichi

    2013-01-01

    Background Mefloquine is widely used for the treatment of malaria. However, this drug is known to induce neurological side effects including depression, anxiety, balance disorder, and sensorineural hearing loss. Yet, there is currently no treatment for these side effects. Principal Findings In this study, we show that the coenzyme NAD+, known to play a critical role in maintaining the appropriate cellular redox environment, protects cochlear axons and sensory hair cells from mefloquine-induced degeneration in cultured rat cochleae. Mefloquine alone destroyed hair cells and nerve fiber axons in rat cochlear organotypics cultures in a dose-dependent manner, while treatment with NAD+ protected axons and hair cells from mefloquine-induced degeneration. Furthermore, cochlear organs treated with mefloquine showed increased oxidative stress marker levels, including superoxide and protein carbonyl, and increased apoptosis marker levels, including TUNEL-positive nuclei and caspases-3. Treatment with NAD+ reduced the levels of these oxidative stress and apoptosis markers. Conclusions/Significance Taken together, our findings suggest that that mefloquine disrupts the cellular redox environment and induces oxidative stress in cochlear hair cells and nerve fibers leading to caspases-3-mediated apoptosis of these structures. Exogenous NAD+ suppresses mefloquine-induced oxidative stress and prevents the degeneration of cochlear axons and sensory hair cells caused by mefloquine treatment. PMID:24223197

  16. Anti-osteopontin monoclonal antibody prevents ovariectomy-induced osteoporosis in mice by promotion of osteoclast apoptosis

    SciTech Connect

    Zhang, Bo; Dai, Jianxin; Wang, Huaqing; Wei, Huafeng; Zhao, Jian; Guo, Yajun; and others

    2014-09-26

    Highlight: • We first report that anti-osteopontin mAb could protect osteoporosis in mice. • Anti-osteopontin mAb could promote the osteoclast apoptosis. • Targeting osteopontin might have therapeutic potentials for osteoporosis. - Abstract: Osteopontin (OPN) is abundant in mineralized tissues and has long been implicated in bone remodeling. However, the therapeutic effect of targeting OPN in bone loss diseases and the underlying molecular mechanism remain largely unknown. Here, we reported that anti-OPN mAb (23C3) could protect against ovariectomy-induced osteoporosis in mice, demonstrated by microcomputed tomography analysis and histopathology evaluation. In vitro assay showed that 23C3 mAb reduced osteoclasts (OCs)-mediated bone resorption through promotion of mature OC apoptosis. Thus, the study has important implications for understanding the role of OPN in OC bone resorption and survival, and OPN antagonists may have therapeutic potential for osteoporosis and other osteopenic diseases.

  17. Inhibition of VDAC1 prevents Ca²⁺-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages.

    PubMed

    Chen, Haibo; Gao, Weiwei; Yang, Yang; Guo, Shuyuan; Wang, Huan; Wang, Wei; Zhang, Shuisheng; Zhou, Qi; Xu, Haobo; Yao, Jianting; Tian, Zhen; Li, Bicheng; Cao, Wenwu; Zhang, Zhiguo; Tian, Ye

    2014-12-01

    Ultrasound combined with endogenous protoporphyrin IX derived from 5-aminolevulinic acid (ALA-SDT) is known to induce apoptosis in multiple cancer cells and macrophages. Persistent retention of macrophages in the plaque has been implicated in the pathophysiology and progression of atherosclerosis. Here we investigated the effects of inhibition of voltage-dependent anion channel 1 (VDAC1) on ALA-SDT-induced THP-1 macrophages apoptosis. Cells were pre-treated with VDAC1 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) disodium salt for 1 h or downregulated VDAC1 expression by small interfering RNA and exposed to ultrasound. Cell viability was assessed by MTT assay, and cell apoptosis along with necrosis was evaluated by Hoechst 33342/propidium iodide staining and flow cytometry. Levels of cytochrome c release was assessed by confocal microscope and Western blot. The levels of full length caspases, caspase activation, and VDAC isoforms were analyzed by Western blot. Intracellular reactive oxygen species generation, mitochondrial membrane permeability, and intracellular Ca(2+) [Ca(2+)]i levels were measured with fluorescent probes. We confirmed that the pharmacological inhibition of VDAC1 by DIDS notably prevented ALA-SDT-induced cell apoptosis in THP-1 macrophages. Additionally, DIDS significantly inhibited intracellular ROS generation and apoptotic biochemical changes such as inner mitochondrial membrane permeabilization, loss of mitochondrial membrane potential, cytochrome c release and activation of caspase-3 and caspase-9. Moreover, ALA-SDT elevated the [Ca(2+)]i levels and it was also notably reduced by DIDS. Furthermore, both of intracellular ROS generation and cell apoptosis were predominately inhibited by Ca(2+) chelating reagent BAPTA-AM. Intriguingly, ALA-treatment markedly augmented VDAC1 protein levels exclusively, and the downregulation of VDAC1 expression by specific siRNA also significantly abolished cell apoptosis. Altogether, these

  18. ERK-mediated activation of Fas apoptotic inhibitory molecule 2 (Faim2) prevents apoptosis of 661W cells in a model of detachment-induced photoreceptor cell death.

    PubMed

    Besirli, Cagri G; Zheng, Qiong-Duon; Reed, David M; Zacks, David N

    2012-01-01

    In this study, we examined the role of Fas apoptotic inhibitory molecule 2 (Faim2), an inhibitor of the Fas signaling pathway, and its regulation by stress kinase signaling during Fas-mediated apoptosis of 661W cells, an immortalized photoreceptor-like cell line Treatment of 661W cells with a Fas-activating antibody led to increased levels of Faim2. Both ERK and JNK stress kinase pathways were activated in Fas-treated 661W cells, but only the inhibition of the ERK pathway reduced the levels of Faim2. Blocking the ERK pathway using a pharmacological inhibitor increased the susceptibility of 661W cells to Fas-induced caspase activation and apoptosis. When the levels of Faim2 were reduced in 661W cells by siRNA knockdown, Fas activating antibody treatment resulted in earlier and more robust caspase activation, and increased cell death. These results demonstrate that Faim2 acts as a neuroprotectant during Fas-mediated apoptosis of 661W cells. The expression of Faim2 is triggered, at least in part, by Fas-receptor activation and subsequent ERK signaling. Our findings identify a novel protective pathway that auto-regulates Fas-induced photoreceptor apoptosis in vitro. Modulation of this pathway to increase Faim2 expression may be a potential therapeutic option to prevent photoreceptor death.

  19. Preventing Friction Induced Chondrocyte Apoptosis: A Comparison of Human Synovial Fluid and Hylan G-F 20

    PubMed Central

    Waller, Kimberly A; Zhang, Ling X; Fleming, Braden C; Jay, Gregory D

    2013-01-01

    Objectives Symptomatic osteoarthritis (OA) is a common painful disease with limited treatment options. A rising number of OA patients have been treated with intraarticular injections of hyaluronic acid, including the high molecular weight hylan G-F 20, which is injected following arthrocentesis. This study investigated the effectiveness of hylan G-F 20 to lower coefficient of friction (COF) and prevent chondrocyte apoptosis in vitro. Methods A disc-on-disc bovine cartilage bearing was used to measure the static and kinetic COF when lubricated with hylan G-F 20, human synovial fluid (HSF) and phosphate buffered saline (PBS). Following friction testing, we stained paraffin embedded sections of these cartilage bearings for activated caspase-3, a marker of apoptosis. Results Bearings lubricated with hylan G-F 20 had kinetic COF values that were similar to bearings lubricated with PBS, but significantly higher than those lubricated with HSF. There were no significant differences in static COF values in bearings lubricated with hylan G-F 20 as compared to PBS or HSF. However, bearings lubricated with HSF had a significantly lower static COF values compared to bearings lubricated with PBS. The mean percentage of caspase-3 positive chondrocytes in the superficial and upper intermediate zones of bearings lubricated with hylan G-F 20 were significantly higher when compared to bearings lubricated with HSF or unloaded controls, but significantly lower than those lubricated with PBS. Conclusion These findings indicate that joint lubrication may prevent chondrocyte apoptosis by lowering the COF. Furthermore, removal of synovial fluid prior to hylan G-F 20 injection may be detrimental to cartilage health. PMID:22660808

  20. Ligation of CD8α on human natural killer cells prevents activation-induced apoptosis and enhances cytolytic activity

    PubMed Central

    Addison, Elena G; North, Janet; Bakhsh, Ismail; Marden, Chloe; Haq, Sumaira; Al-Sarraj, Samia; Malayeri, Reza; Wickremasinghe, R Gitendra; Davies, Jeffrey K; Lowdell, Mark W

    2005-01-01

    It has been previously shown that the subset of human natural killer (NK) cells which express CD8 in a homodimeric α/α form are more cytotoxic than their CD8– counterparts but the mechanisms behind this differential cytolytic activity remained unknown. Target cell lysis by CD8– NK cells is associated with high levels of effector cell apoptosis, which is in contrast to the significantly lower levels found in the CD8α+ cells after lysis of the same targets. We report that cross-linking of the CD8α chains on NK cells induces rapid rises in intracellular Ca2+ and increased expression of CD69 at the cell surface by initiating the influx of extracellular Ca2+ ions. We demonstrate that secretion of cytolytic enzymes initiates NK-cell apoptosis from which CD8α+ NK cells are protected by an influx of exogenous calcium following ligation of CD8 on the NK-cell surface. This ligation is through interaction with fellow NK cells in the cell conjugate and can occur when the target cells lack major histocompatibility complex (MHC) Class I expression. Protection from apoptosis is blocked by preincubation of the NK cells with anti-MHC Class I antibody. Thus, in contrast to the CD8– subset, CD8α+ NK cells are capable of sequential lysis of multiple target cells. PMID:16236125

  1. Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA damage and apoptosis: potential for prevention of skin carcinogenesis.

    PubMed

    Arora, Sumit; Tyagi, Nikhil; Bhardwaj, Arun; Rusu, Lilia; Palanki, Rohan; Vig, Komal; Singh, Shree R; Singh, Ajay P; Palanki, Srinivas; Miller, Michael E; Carter, James E; Singh, Seema

    2015-07-01

    Ultraviolet (UV)-B radiation from the sun is an established etiological cause of skin cancer, which afflicts more than a million lives each year in the United States alone. Here, we tested the chemopreventive efficacy of silver-nanoparticles (AgNPs) against UVB-irradiation-induced DNA damage and apoptosis in human immortalized keratinocytes (HaCaT). AgNPs were synthesized by reduction-chemistry and characterized for their physicochemical properties. AgNPs were well tolerated by HaCaT cells and their pretreatment protected them from UVB-irradiation-induced apoptosis along with significant reduction in cyclobutane-pyrimidine-dimer formation. Moreover, AgNPs pre-treatment led to G1-phase cell-cycle arrest in UVB-irradiated HaCaT cells. AgNPs were efficiently internalized in UVB-irradiated cells and localized into cytoplasmic and nuclear compartments. Furthermore, we observed an altered expression of various genes involved in cell-cycle, apoptosis and nucleotide-excision repair in HaCaT cells treated with AgNPs prior to UVB-irradiation. Together, these findings provide support for potential utility of AgNPs as novel chemopreventive agents against UVB-irradiation-induced skin carcinogenesis. Excessive exposure to the sun is known to increase the risk of skin cancer due to DNA damage. In this work, the authors tested the use of silver nanoparticles as protective agents against ultraviolet radiation. The positive results may open a door for the use of silver nanoparticle as novel agents in the future. Published by Elsevier Inc.

  2. CaMKII inhibition in type II pneumocytes protects from bleomycin-induced pulmonary fibrosis by preventing Ca2+-dependent apoptosis.

    PubMed

    Winters, Christopher J; Koval, Olha; Murthy, Shubha; Allamargot, Chantal; Sebag, Sara C; Paschke, John D; Jaffer, Omar A; Carter, A Brent; Grumbach, Isabella M

    2016-01-01

    The calcium and calmodulin-dependent kinase II (CaMKII) translates increases in intracellular Ca(2+) into downstream signaling events. Its function in pulmonary pathologies remains largely unknown. CaMKII is a well-known mediator of apoptosis and regulator of endoplasmic reticulum (ER) Ca(2+). ER stress and apoptosis of type II pneumocytes lead to aberrant tissue repair and progressive collagen deposition in pulmonary fibrosis. Thus we hypothesized that CaMKII inhibition alleviates fibrosis in response to bleomycin by attenuating apoptosis and ER stress of type II pneumocytes. We first established that CaMKII was strongly expressed in the distal respiratory epithelium, in particular in surfactant protein-C-positive type II pneumocytes, and activated after bleomycin instillation. We generated a novel transgenic model of inducible expression of the CaMKII inhibitor peptide AC3-I limited to type II pneumocytes (Tg SPC-AC3-I). Tg SPC-AC3-I mice were protected from development of pulmonary fibrosis after bleomycin exposure compared with wild-type mice. CaMKII inhibition also provided protection from apoptosis in type II pneumocytes in vitro and in vivo. Moreover, intracellular Ca(2+) levels and ER stress were increased by bleomycin and significantly blunted with CaMKII inhibition in vitro. These data demonstrate that CaMKII inhibition prevents type II pneumocyte apoptosis and development of pulmonary fibrosis in response to bleomycin. CaMKII inhibition may therefore be a promising approach to prevent or ameliorate the progression of pulmonary fibrosis.

  3. Thiamine and benfotiamine prevent apoptosis induced by high glucose-conditioned extracellular matrix in human retinal pericytes.

    PubMed

    Beltramo, Elena; Nizheradze, Konstantin; Berrone, Elena; Tarallo, Sonia; Porta, Massimo

    2009-10-01

    Early and selective loss of pericytes and thickening of the basement membrane are hallmarks of diabetic retinopathy. We reported reduced adhesion, but no changes in apoptosis, of bovine retinal pericytes cultured on extracellular matrix (ECM) produced by endothelial cells in high glucose (HG). Since human and bovine pericytes may behave differently in conditions mimicking the diabetic milieu, we verified the behaviour of human retinal pericytes cultured on HG-conditioned ECM. Pericytes were cultured in physiological/HG on ECM produced by human umbilical vein endothelial cells in physiological/HG, alone or in the presence of thiamine and benfotiamine. Adhesion, proliferation, apoptosis, p53 and Bcl-2/Bax ratio (mRNA levels and protein concentrations) were measured in wild-type and immortalized human pericytes. Both types of pericytes adhered less to HG-conditioned ECM and plastic than to physiological glucose-conditioned ECM. DNA synthesis was impaired in pericytes cultured in HG on the three different surfaces but there were no differences in proliferation. DNA fragmentation and Bcl-2/Bax ratio were greatly enhanced by HG-conditioned ECM in pericytes kept in both physiological and HG. Addition of thiamine and benfotiamine to HG during ECM production completely prevented these damaging effects. Apoptosis is strongly increased in pericytes cultured on ECM produced by endothelium in HG, probably due to impairment of the Bcl-2/Bax ratio. Thiamine and benfotiamine completely revert this effect. This behaviour is therefore completely different from that of bovine pericytes, underlining the importance of establishing species-specific cell models to study the mechanisms of diabetic retinopathy. (c) 2009 John Wiley & Sons, Ltd.

  4. TGF-β1 prevents simulated ischemia/reperfusion-induced cardiac fibroblast apoptosis by activation of both canonical and non-canonical signaling pathways.

    PubMed

    Vivar, Raúl; Humeres, Claudio; Ayala, Pedro; Olmedo, Ivonne; Catalán, Mabel; García, Lorena; Lavandero, Sergio; Díaz-Araya, Guillermo

    2013-06-01

    Ischemia/reperfusion injury is a major cause of myocardial death. In the heart, cardiac fibroblasts play a critical role in healing post myocardial infarction. TGF-β1 has shown cardioprotective effects in cardiac damage; however, if TGF-β1 can prevent cardiac fibroblast death triggered by ischemia/reperfusion is unknown. Therefore, we test this hypothesis, and whether the canonical and/or non-canonical TGF-β1 signaling pathways are involved in this protective effect. Cultured rat cardiac fibroblasts were subjected to simulated ischemia/reperfusion. Cell viability was analyzed by trypan blue exclusion and propidium iodide by flow cytometry. The processing of procaspases 8, 9 and 3 to their active forms was assessed by Western blot, whereas subG1 population was evaluated by flow cytometry. Levels of total and phosphorylated forms of ERK1/2, Akt and Smad2/3 were determined by Western blot. The role of these signaling pathways on the protective effect of TGF-β1 was studied using specific chemical inhibitors. Simulated ischemia over 8h triggers a significant cardiac fibroblast death, which increased by reperfusion, with apoptosis actively involved. These effects were only prevented by the addition of TGF-β1 during reperfusion. TGF-β1 pretreatment increased the levels of phosphorylated forms of ERK1/2, Akt and Smad2/3. The inhibition of ERK1/2, Akt and Smad3 also blocked the preventive effects of TGF-β1 on cardiac fibroblast apoptosis induced by simulated ischemia/reperfusion. Overall, our data suggest that TGF-β1 prevents cardiac fibroblast apoptosis induced by simulated ischemia-reperfusion through the canonical (Smad3) and non canonical (ERK1/2 and Akt) signaling pathways. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Thymoquinone prevents endoplasmic reticulum stress and mitochondria-induced apoptosis in a rat model of partial hepatic warm ischemia reperfusion.

    PubMed

    Bouhlel, Ahlem; Ben Mosbah, Ismail; Hadj Abdallah, Najet; Ribault, Catherine; Viel, Roselyne; Mannaï, Saber; Corlu, Anne; Ben Abdennebi, Hassen

    2017-10-01

    This study was undertaken to evaluate the protective effect of thymoquinone (TQ), the bioactive compound of Nigella sativa seeds, against warm ischemia-reperfusion (I/R) injury in liver. Rats were given an oral administration of a vehicle solution (sham group) or TQ at the appropriate dose (10, 20, 30 and 40mg/kg) for ten days consecutively. Following, they were subjected to 60min of partial hepatic ischemia followed by 24h of reperfusion. .Transaminase activities, histopathological changes, TNFα and antioxidant parameters were evaluated. Also, endoplasmic reticulum (ER) stress, mitochondrial damage and apoptosis were studied. In addition, ERK and P38 phosphorylation was determined by Western blot technique. We found that TQ at 30mg/kg is the effective dose to protect rat liver against I/R injury. Moreover, 30mg/kg of TQ prevented histological damages, inflammation and oxidative stress. Interestingly, it decreased the expression of ER stress parameters including GRP78, CHOP and caspase-12. In parallel, it improved mitochondrial function and attenuated the expression of apoptotic parameters. Furthermore, TQ significantly enhanced ERK and P38 phosphorylation. In conclusion, we demonstrated the potential of TQ to protect the rat liver against I/R injury through the prevention of ER stress and mitochondrial dysfunction. These effects implicate the prevention of oxidative stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor Prevents Steroid-Associated Osteonecrosis of the Femoral Head in Rabbits by Promoting Angiogenesis and Inhibiting Apoptosis

    PubMed Central

    Fan, Lihong; Li, Jia; Yu, Zefeng; Dang, Xiaoqian; Wang, Kunzheng

    2014-01-01

    The purpose of this study was to investigate the preventive effect of ethyl 3,4-dihydroxybenzoate(EDHB) on steroid-associated femoral head osteonecrosis(ONFH) in a rabbit model. New Zealand white rabbits were randomly divided into two groups (prevention group and model group), each containing 24 rabbits. Osteonecrosis was induced by lipopolysaccharide(LPS) combined with methylprednisolone(MPS). The prevention group received an intraperitoneal injection of EDHB at 50 mg/kg body weight every other day starting three days before establishing rabbit models of osteonecrosis, for a total of nine doses. Osteonecrosis was verified by haematoxylin-eosin (HE) staining. The expression of HIF-1α and VEGF was analyzed by immunohistochemistry. Angiogenesis, apoptosis and microstructural parameters were also analyzed. The rabbit models of osteonecrosis were successfully established and observed by HE staining. Histopathological observations indicated that EDHB reduced the rate of empty lacunae and the incidence of osteonecrosis. Immunohistochemical staining for HIF-1α and VEGF suggested that EDHB therapy inhibited degradation of HIF-1α and promoted expression of VEGF. Ink artery infusion angiography and microvessel density analysis revealed that there were more microvessels in the prevention group than in the model group. The TUNEL apoptosis assay suggested that EDHB intervention could reduce the number of apoptotic cells in avascular osteonecrosis of the femoral head. Micro-CT scanning indicated that the treatment group had better microstructural parameters than the model group. EDHB prevents steroid-associated osteonecrosis of the femoral head in rabbits by promoting angiogenesis and inhibiting apoptosis of bone cells and hematopoietic tissue. PMID:25244080

  7. Overexpression of Hsp20 prevents endotoxin-induced myocardial dysfunction and apoptosis via inhibition of NF-kappaB activation.

    PubMed

    Wang, Xiaohong; Zingarelli, Basilia; O'Connor, Michael; Zhang, Pengyuan; Adeyemo, Adeola; Kranias, Evangelia G; Wang, Yigang; Fan, Guo-Chang

    2009-09-01

    The occurrence of cardiovascular dysfunction in sepsis is associated with a significantly increased mortality rate of 70% to 90% compared with 20% in septic patients without cardiovascular impairment. Thus, rectification or blockade of myocardial depressant factors should partly ameliorate sepsis progression. Heat shock protein 20 (Hsp20) has been shown to enhance myocardial contractile function and protect against doxorubicin-induced cardiotoxicity. To investigate the possible role of Hsp20 in sepsis-mediated cardiac injury, we first examined the expression profiles of five major Hsps in response to lipopolysaccharide (LPS) challenge, and observed that only the expression of Hsp20 was downregulated in LPS-treated myocardium, suggesting that this decrease might be one of the mechanisms contributing to LPS-induced cardiovascular defects. Further studies using loss-of-function and gain-of-function approaches in adult rat cardiomyocytes verified that reduced Hsp20 levels were indeed correlated with the impaired contractile function. In fact, overexpression of Hsp20 significantly enhanced cardiomyocyte contractility upon LPS treatment. Moreover, after administration of LPS (25 microg/g) in vivo, Hsp20 transgenic mice (10-fold overexpression) displayed: 1) an improvement in myocardial function; 2) reduced the degree of cardiac apoptosis; and 3) decreased NF-kappaB activity, accompanied with reduced myocardial cytokines IL-1beta and TNF-alpha production, compared to the LPS-treated non-transgenic littermate controls. Thus, the increases in Hsp20 levels can protect against LPS-induced cardiac apoptosis and dysfunction, associated with inhibition of NF-kappaB activity, suggesting that Hsp20 may be a new therapeutic agent for the treatment of sepsis.

  8. Reduced ultraviolet-induced DNA damage and apoptosis in human skin with topical application of a photolyase-containing DNA repair enzyme cream: clues to skin cancer prevention.

    PubMed

    Berardesca, Enzo; Bertona, Marco; Altabas, Karmela; Altabas, Velimir; Emanuele, Enzo

    2012-02-01

    The exposure of human skin to ultraviolet radiation (UVR) results in the formation of DNA photolesions that give rise to photoaging, mutations, cell death and the onset of carcinogenic events. Photolyase (EC 4.1.99.3) is a DNA repair enzyme that reverses damage caused by exposure to UVR. We sought to investigate whether addition of photolyase enhances the protection provided by a traditional sunscreen (SS), by reducing the in vivo formation of cyclobutane-type pyrimidine dimers (CPDs) and UVR-induced apoptosis in human skin. Ten volunteers (Fitzpatrick skin type II) were exposed to solar-simulated (ss) UVR at a three times minimal erythema dose for 4 consecutive days. Thirty minutes prior to each exposure, the test materials [vehicle, SS (sun protection factor 50) alone, and SS plus photolyase from Anacystis nidulans] were applied topically to three different sites. One additional site was left untreated and one received ssUVR only. Biopsy specimens were taken 72 h after the last irradiation. The amount of CPDs and the extent of apoptosis were measured by ELISA. Photolyase plus SS was superior to SS alone in reducing both the formation of CPDs and apoptotic cell death (both P<0.001). In conclusion, the addition of photolyase to a traditional SS contributes significantly to the prevention of UVR-induced DNA damage and apoptosis when applied topically to human skin.

  9. Baicalin prevents the apoptosis of endplate chondrocytes by inhibiting the oxidative stress induced by H2O2.

    PubMed

    Pan, Yutao; Chen, Di; Lu, Qingyou; Liu, Lifeng; Li, Xia; Li, Zengchun

    2017-09-01

    Osteoarthritis (OA) is a degenerative disease of articular cartilage. The pathogenesis of OA remains to be fully elucidated, and several studies have found that oxidative stress is important in its pathogenesis. Baicalin is well known and has already been investigated for its role of inhibiting the oxidative stress pathway. Thus, the present study aimed to investigate the role of baicalin on the inhibition of oxidative stress in endplate chondrocytes induced by hydrogen peroxide (H2O2). Following treatment of endplate chondrocytes with different doses of H2O2 with or without baicalin for different incubation durations, a CCK‑8 assay and Annexin V/PI staining were used to measure the cell proliferation and apoptotic rates to identify the optimal experimental conditions. Subsequently, for examining the effects and underlying mechanism of baicalin on oxidative stress, the protein expression levels of cleaved‑poly (ADP‑ribose) polymerase (PARP), B‑cell lymphoma‑2‑associated X protein (Bax) and pro‑caspase‑3 were analyzed using western blot analysis, intracellular anti‑oxidant activities, including those of malondialdehyde (MDA), superoxide dismutase (SOD) and nitric oxide (NO), were quantified, and the levels of endothelial nitric oxide synthase (eNOS) were examined using reverse transcription‑polymerase chain reaction analysis. The results revealed that the oxidative stress of endplate chondrocytes induced by 0.5 mM H2O2 for 4 h were the most appropriate conditions for experiments, and pretreatment with 100 µmol/l baicalin for 1 h effectively reversed the effect of H2O2 on the endplate chondrocytes. In addition, Annexin V/PI staining demonstrated that the cell death induced by H2O2 was apoptotic, and baicalin reversed the apoptosis induced by oxidative stress. H2O2 activated PARP cleavage, and the expression of Bax and pro‑caspase‑3; however, baicalin inhibited the expression of these apoptotic signaling indicators. Baicalin also reduced

  10. Quercetin-3-O-(2"-galloyl)-α-l-rhamnopyranoside prevents TRAIL-induced apoptosis in human keratinocytes by suppressing the caspase-8- and Bid-pathways and the mitochondrial pathway.

    PubMed

    Kim, Yun Jeong; Jung, Eun Byul; Seo, Seong Jun; Park, Kwan Hee; Lee, Min Won; Lee, Chung Soo

    2013-08-25

    Quercetin and its derivatives have antioxidant and anti-inflammatory effects. Nevertheless, in human keratinocytes, compared to the reports on other toxic insults, researches on the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis that may be involved in skin diseases are rare. Furthermore, the effect of quercetin-3-O-(2"-galloyl)-α-l-rhamnopyranoside (QGR), a new quercetin derivative, on TRAIL-induced apoptosis in keratinocytes has not been studied. In this respect, we investigated the effect of QGR on TRAIL-induced apoptosis in human keratinocytes. TRAIL triggers apoptosis by inducing a decrease in Bid, Bcl-2, Bcl-xL and survivin protein levels, increase in Bax and VDAC1 levels, loss of the mitochondrial transmembrane potential, release of cytochrome c, activation of caspases (-8, -9 and -3), cleavage of PARP-1, and an increase in the tumor suppressor p53 levels. Treatment with QGR prevented TRAIL-induced apoptosis-related protein activation, formation of reactive oxygen species, nuclear damage, and cell death. In contrast, quercetin induces cytotoxicity and had an additive effect on TRAIL-induced apoptosis-related protein activation and cell death. These results suggest that the QGR, unlike quercetin, may reduce TRAIL-induced apoptosis in human keratinocytes by suppressing the activation of the caspase-8- and Bid-pathways and the mitochondria-mediated cell death pathway, which is associated with the formation of reactive oxygen species. These data suggest that QGR could be effective in the prevention of TRAIL-induced apoptosis-mediated skin diseases. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. RNA-binding protein RBM3 prevents NO-induced apoptosis in human neuroblastoma cells by modulating p38 signaling and miR-143

    PubMed Central

    Yang, Hai-Jie; Ju, Fei; Guo, Xin-Xin; Ma, Shuang-Ping; Wang, Lei; Cheng, Bin-Feng; Zhuang, Rui-Juan; Zhang, Bin-Bin; Shi, Xiang; Feng, Zhi-Wei; Wang, Mian

    2017-01-01

    Nitric oxide (NO)-induced apoptosis in neurons is an important cause of neurodegenerative disease in humans. The cold-inducible protein RBM3 mediates the protective effects of cooling on apoptosis induced by various insults. However, whether RBM3 protects neural cells from NO-induced apoptosis is unclear. This study aimed to investigate the neuroprotective effect of RBM3 on NO-induced apoptosis in human SH-SY5Y neuroblastoma cells. Firstly, we demonstrated that mild hypothermia (32 °C) induces RBM3 expression and confers a potent neuroprotective effect on NO-induced apoptosis, which was substantially diminished when RBM3 was silenced by siRNA. Moreover, overexpression of RBM3 exhibited a strong protective effect against NO-induced apoptosis. Signaling pathway screening demonstrated that only p38 inhibition by RBM3 provided neuroprotective effect, although RBM3 overexpression could affect the activation of p38, JNK, ERK, and AKT signaling in response to NO stimuli. Notably, RBM3 overexpression also blocked the activation of p38 signaling induced by transforming growth factor-β1. Furthermore, both RBM3 overexpression and mild hypothermia abolished the induction of miR-143 by NO, which was shown to mediate the cytotoxicity of NO in a p38-dependent way. These findings suggest that RBM3 protects neuroblastoma cells from NO-induced apoptosis by suppressing p38 signaling, which mediates apoptosis through miR-143 induction. PMID:28134320

  12. RNA-binding protein RBM3 prevents NO-induced apoptosis in human neuroblastoma cells by modulating p38 signaling and miR-143.

    PubMed

    Yang, Hai-Jie; Ju, Fei; Guo, Xin-Xin; Ma, Shuang-Ping; Wang, Lei; Cheng, Bin-Feng; Zhuang, Rui-Juan; Zhang, Bin-Bin; Shi, Xiang; Feng, Zhi-Wei; Wang, Mian

    2017-01-30

    Nitric oxide (NO)-induced apoptosis in neurons is an important cause of neurodegenerative disease in humans. The cold-inducible protein RBM3 mediates the protective effects of cooling on apoptosis induced by various insults. However, whether RBM3 protects neural cells from NO-induced apoptosis is unclear. This study aimed to investigate the neuroprotective effect of RBM3 on NO-induced apoptosis in human SH-SY5Y neuroblastoma cells. Firstly, we demonstrated that mild hypothermia (32 °C) induces RBM3 expression and confers a potent neuroprotective effect on NO-induced apoptosis, which was substantially diminished when RBM3 was silenced by siRNA. Moreover, overexpression of RBM3 exhibited a strong protective effect against NO-induced apoptosis. Signaling pathway screening demonstrated that only p38 inhibition by RBM3 provided neuroprotective effect, although RBM3 overexpression could affect the activation of p38, JNK, ERK, and AKT signaling in response to NO stimuli. Notably, RBM3 overexpression also blocked the activation of p38 signaling induced by transforming growth factor-β1. Furthermore, both RBM3 overexpression and mild hypothermia abolished the induction of miR-143 by NO, which was shown to mediate the cytotoxicity of NO in a p38-dependent way. These findings suggest that RBM3 protects neuroblastoma cells from NO-induced apoptosis by suppressing p38 signaling, which mediates apoptosis through miR-143 induction.

  13. Lithium protects ethanol-induced neuronal apoptosis

    SciTech Connect

    Zhong Jin . E-mail: jizhong@iupui.edu; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-12-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3{beta}, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3{beta} (ser9). In addition, the selective GSK-3{beta} inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits.

  14. Gadolinium induces macrophage apoptosis.

    PubMed

    Mizgerd, J P; Molina, R M; Stearns, R C; Brain, J D; Warner, A E

    1996-02-01

    Gadolinium (Gd) suppresses reticuloendothelial functions in vivo by unknown mechanisms. In vitro exposure of rat alveolar macrophages to GdCl3.6H20 caused cell death, as measured by trypan blue permeability, in both dose- and time-dependent fashions. Even a 10-min exposure to Gd caused significant cell death by 24 h. The morphology of Gd-treated cells, pyknosis and karyorrhexis prior to loss of membrane integrity, suggested apoptosis. Upon flow cytometric examination, Gd-treated propidium iodide-excluding cells demonstrated light scatter changes characteristic of apoptotic cells (decreased forward and increased right angle scatter). Gel electrophoresis of DNA from Gd-treated macrophages clearly showed the ladder pattern unique to apoptotic cells. Electron-dense structures containing Gd were observed via electron spectroscopic imaging within phagosomes and also within nuclei (associated with condensed chromatin). Gadolinium, endocytosed by macrophages and distributed to nuclei, causes apoptosis of macrophages in vitro.

  15. Glutaredoxin 2 Prevents H2O2-Induced Cell Apoptosis by Protecting Complex I Activity in the Mitochondria*

    PubMed Central

    Wu, Hongli; Xing, Kuiyi; Lou, Marjorie F.

    2010-01-01

    Glutaredoxin 2 (Grx2) belongs to the oxidoreductase family and is an isozyme of glutaredoxin 1 (Grx1) present in the mitochondria, however its function is not well understood. The purpose of this study is to evaluate the potential anti-apoptotic function of Grx2 by examining its ability to protect complex I in the mitochondrial electron transport system using human lens epithelial cells as a model. We found that cells treated with 200 μM hydrogen peroxide (H2O2) for 24 h exhibited decreased viability and became apoptotic with corresponding Bax up-regulation, Bcl-2 down-regulation, caspase 3 activation and mitochondrial cytochrome c leakage. Grx2 over-expression (OE) could protect cells against H2O2-induced damage while Grx2 knockdown (KD) showed the opposite effect. Under the same conditions, H2O2 treatment caused 50% inactivation of complex I activity in control cells (vector only), 75% in Grx2 KD cells but only 20% in Grx2 OE cells. This antiapoptotic function of Grx2 is specific as rotenone, a complex I specific inhibitor, could block this Grx2-mediated protection of complex I activity. Immunoprecipitation study also revealed that Grx2 co-precipitated with complex I in the mitochondrial lysate. Thus, the mechanism of Grx2 protection against H2O2-induced apoptosis is likely associated with its ability to preserve complex I. PMID:20547138

  16. Neurotrophic peptides, ADNF-9 and NAP, prevent alcohol-induced apoptosis at midgestation in fetal brains of C57BL/6 mouse.

    PubMed

    Sari, Youssef; Weedman, Jason M; Nkrumah-Abrokwah, Maxwell

    2013-01-01

    Prenatal alcohol exposure is known to induce fetal brain growth deficits at different embryonic stages. We focused this study on investigating the neuroprotective effects against alcohol-induced apoptosis at midgestation using activity-dependent neurotrophic factor (ADNF)-9, a peptide (SALLRSIPA) derived from activity-dependent neurotrophic factor, and NAP, a peptide (NAPVSIPQ) derived from activity-dependent neuroprotective protein. We used an established fetal alcohol exposure mouse model. On embryonic day 7 (E7), weight-matched pregnant females were assigned to the following groups: (1) ethanol liquid diet (ALC) group with 25 % (4.49 %, v/v) ethanol-derived calories, (2) pair-fed (PF) control group, (3) ALC combined with i.p. injections (1.5 mg/kg) of ADNF-9 (ALC/ADNF-9) group, (4) ALC combined with i.p. injections (1.5 mg/kg) of NAP (ALC/NAP) group, (5) PF liquid diet combined with i.p. injections of ADNF-9 (PF/ADNF-9) group, and (6) PF liquid diet combined with i.p. injections of NAP (PF/NAP) group. On day 15 (E15), fetal brains were collected, weighed, and assayed for TdT-mediated dUTP nick end labeling (TUNEL) staining. ADNF-9 or NAP was administered daily from E7 to E15 alongside PF or ALC liquid diet exposure. Our results show that NAP and ADNF-9 significantly prevented alcohol-induced weight reduction of fetal brains. Apoptosis was determined by TUNEL staining; NAP or ADNF-9 administration alongside alcohol exposure significantly prevented alcohol-induced increase in TUNEL-positive cells in primordium of the cingulate cortex and ganglionic eminence. These findings may pave the path toward potential therapeutics against alcohol intoxication during pregnancy stages.

  17. Petroleum ether extract of Chenopodium album L. prevents cell growth and induces apoptosis of human lung cancer cells

    PubMed Central

    Zhao, Ting; Pan, Hui; Feng, Yang; Li, Haizhou; Zhao, Yang

    2016-01-01

    Chenopodium album L. is a common edible herb distributed in China that has been used as a traditional Chinese medicine for antiviral, antifungal, anti-inflammatory and cancer treatment. However, to the best of our knowledge no previous reports have investigated its the function of its phytochemical extracts in lung cancer cells. The purpose of the present study was to assess the anticancer activities of the phytochemical extracts of C. album L. on human non-small cell lung cancer A549 cells. The present findings demonstrated that the petroleum ether (PE) extract of C. album L. exhibited significant growth inhibitory effects on A549 with an IC50 value of 33.31±2.79 µg/ml. As determined by MTT and colony formation assays, its growth inhibitory effects were dose- and time-dependent. Furthermore, PE extract-treated A549 cells exhibited dose-dependent cell growth arrest at the G1 phase of the cell cycle and cell apoptosis was induced. These results provide useful data on the anticancer activities of C. album L. in human lung cancer and demonstrated the novel possibilities of this plant in developing lung cancer therapies. PMID:27882153

  18. Research Advances on Pathways of Nickel-Induced Apoptosis

    PubMed Central

    Guo, Hongrui; Chen, Lian; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan

    2015-01-01

    High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity. PMID:26703593

  19. Antioxidants Prevent Ethanol-Associated Apoptosis in Fetal Rhombencephalic Neurons

    PubMed Central

    Antonio, Angeline M.; Druse, Mary J.

    2008-01-01

    It is well known that ethanol damages the developing nervous system by augmenting apoptosis. Previously, this laboratory reported that ethanol augments apoptosis in fetal rhombencephalic neurons, and that the increased apoptosis is associated with reduced activity of the phosphatidylinositol 3’kinase pathway and downstream expression of pro-survival genes. Other laboratories have shown that another mechanism by which ethanol induces apoptosis in developing neurons is through the generation of reactive oxygen species (ROS) and the associated oxidative stress. The present study used an in vitro model to investigate the potential neuroprotective effects of several antioxidants against ethanol-associated apoptosis in fetal rhombencephalic neurons. The investigated antioxidants included three phenolics: (-)-epigallocatechin-3-gallate (EGCG), a flavanoid polyphenol found in green tea; curcumin, found in tumeric; and resveratrol (3,5,4’-trihydroxystilbene), a component of red wine. Additional antioxidants, including melatonin, a naturally occurring indole, and α-lipoic acid, a naturally occurring dithiol, were also investigated. These studies demonstrated that a 24-hour treatment of fetal rhombencephalic neurons with 75 mM ethanol caused a 3-fold increase in the percentage of apoptotic neurons. However, co-treatment of these cultures with any of the five different antioxidants prevented ethanol-associated apoptosis. Antioxidant treatment did not alter the extent of apoptosis in control neurons, i.e., those cultured in the absence of ethanol. These studies showed that several classes of antioxidants can exert neuroprotection against ethanol-associated apoptosis in fetal rhombencephalic neurons. PMID:18329634

  20. Stabilization of Nrf2 by tBHQ prevents LPS-induced apoptosis in differentiated PC12 cells.

    PubMed

    Khodagholi, Fariba; Tusi, Solaleh Khoramian

    2011-08-01

    The inflammatory reaction plays an important role in the pathogenesis of the neurodegenerative disorders. tert-butylhydroquinone (tBHQ) exhibits a wide range of pharmacological activities including anti-oxidative and anti-inflammatory action. In this study, we tried to elucidate possible effects of tBHQ on lipopolysaccharide (LPS)-induced inflammatory reaction and its underlying mechanism in neuron-like PC12 cells. tBHQ inhibited LPS-induced generation of reactive oxygen species (ROS) and elevation of intracellular calcium level. It also inhibited LPS-induced cyclooxygenase 2 (COX-2), TNF-α, nuclear factor KappaB (NF-kB), and caspase-3 expression in a dose-dependent manner while stabilizing nuclear factor-erythroid 2 p45-related factor 2. Moreover, the phosphorylations of p38, ERK1/2, and JNK were suppressed by tBHQ. These results suggest that the anti-inflammatory properties of tBHQ might result from inhibition of COX-2 and TNF-α expression, inhibition of NF-kB nuclear translocation along with suppression of MAP kinases (p38, ERK1/2, and JNK) phosphorylation in PC12 cells, so may be a useful agent for prevention of inflammatory diseases.

  1. Nuclear glutathione S-transferase pi prevents apoptosis by reducing the oxidative stress-induced formation of exocyclic DNA products.

    PubMed

    Kamada, Kensaku; Goto, Shinji; Okunaga, Tomohiro; Ihara, Yoshito; Tsuji, Kentaro; Kawai, Yoshichika; Uchida, Koji; Osawa, Toshihiko; Matsuo, Takayuki; Nagata, Izumi; Kondo, Takahito

    2004-12-01

    We previously found that nuclear glutathione S-transferase pi (GSTpi) accumulates in cancer cells resistant to anticancer drugs, suggesting that it has a role in the acquisition of resistance to anticancer drugs. In the present study, the effect of oxidative stress on the nuclear translocation of GSTpi and its role in the protection of DNA from damage were investigated. In human colonic cancer HCT8 cells, the hydrogen peroxide (H(2)O(2))-induced increase in nuclear condensation, the population of sub-G(1) peak, and the number of TUNEL-positive cells were observed in cells pretreated with edible mushroom lectin, an inhibitor of the nuclear transport of GSTpi. The DNA damage and the formation of lipid peroxide were dependent on the dose of H(2)O(2) and the incubation time. Immunological analysis showed that H(2)O(2) induced the nuclear accumulation of GSTpi but not of glutathione peroxidase. Formation of the 7-(2-oxo-hepyl)-substituted 1,N(2)-etheno-2'-deoxyguanosine adduct by the reaction of 13-hydroperoxyoctadecadienoic acid (13-HPODE) with 2'-deoxyguanosine was inhibited by GSTpi in the presence of glutathione. The conjugation product of 4-oxo-2-nonenal, a lipid aldehyde of 13-HPODE, with GSH in the presence of GSTpi, was identified by LS/MS. These results suggested that nuclear GSTpi prevents H(2)O(2)-induced DNA damage by scavenging the formation of lipid-peroxide-modified DNA.

  2. Phenylbutyric Acid Rescues Endoplasmic Reticulum Stress-Induced Suppression of APP Proteolysis and Prevents Apoptosis in Neuronal Cells

    PubMed Central

    Wiley, Jesse C.; Meabon, James S.; Frankowski, Harald; Smith, Elise A.; Schecterson, Leslayann C.; Bothwell, Mark; Ladiges, Warren C.

    2010-01-01

    Background The familial and sporadic forms of Alzheimer's disease (AD) have an identical pathology with a severe disparity in the time of onset [1]. The pathological similarity suggests that epigenetic processes may phenocopy the Familial Alzheimer's disease (FAD) mutations within sporadic AD. Numerous groups have demonstrated that FAD mutations in presenilin result in ‘loss of function’ of γ-secretase mediated APP cleavage [2], [3], [4], [5]. Accordingly, ER stress is prominent within the pathologically impacted brain regions in AD patients [6] and is reported to inhibit APP trafficking through the secretory pathway [7], [8]. As the maturation of APP and the cleaving secretases requires trafficking through the secretory pathway [9], [10], [11], we hypothesized that ER stress may block trafficking requisite for normal levels of APP cleavage and that the small molecular chaperone 4-phenylbutyrate (PBA) may rescue the proteolytic deficit. Methodology/Principal Findings The APP-Gal4VP16/Gal4-reporter screen was stably incorporated into neuroblastoma cells in order to assay γ-secretase mediated APP proteolysis under normal and pharmacologically induced ER stress conditions. Three unrelated pharmacological agents (tunicamycin, thapsigargin and brefeldin A) all repressed APP proteolysis in parallel with activation of unfolded protein response (UPR) signaling—a biochemical marker of ER stress. Co-treatment of the γ-secretase reporter cells with PBA blocked the repressive effects of tunicamycin and thapsigargin upon APP proteolysis, UPR activation, and apoptosis. In unstressed cells, PBA stimulated γ-secretase mediated cleavage of APP by 8–10 fold, in the absence of any significant effects upon amyloid production, by promoting APP trafficking through the secretory pathway and the stimulation of the non-pathogenic α/γ-cleavage. Conclusions/Significance ER stress represses γ-secretase mediated APP proteolysis, which replicates some of the proteolytic deficits

  3. Phenylbutyric acid rescues endoplasmic reticulum stress-induced suppression of APP proteolysis and prevents apoptosis in neuronal cells.

    PubMed

    Wiley, Jesse C; Meabon, James S; Frankowski, Harald; Smith, Elise A; Schecterson, Leslayann C; Bothwell, Mark; Ladiges, Warren C

    2010-02-09

    The familial and sporadic forms of Alzheimer's disease (AD) have an identical pathology with a severe disparity in the time of onset [1]. The pathological similarity suggests that epigenetic processes may phenocopy the Familial Alzheimer's disease (FAD) mutations within sporadic AD. Numerous groups have demonstrated that FAD mutations in presenilin result in 'loss of function' of gamma-secretase mediated APP cleavage [2], [3], [4], [5]. Accordingly, ER stress is prominent within the pathologically impacted brain regions in AD patients [6] and is reported to inhibit APP trafficking through the secretory pathway [7], [8]. As the maturation of APP and the cleaving secretases requires trafficking through the secretory pathway [9], [10], [11], we hypothesized that ER stress may block trafficking requisite for normal levels of APP cleavage and that the small molecular chaperone 4-phenylbutyrate (PBA) may rescue the proteolytic deficit. The APP-Gal4VP16/Gal4-reporter screen was stably incorporated into neuroblastoma cells in order to assay gamma-secretase mediated APP proteolysis under normal and pharmacologically induced ER stress conditions. Three unrelated pharmacological agents (tunicamycin, thapsigargin and brefeldin A) all repressed APP proteolysis in parallel with activation of unfolded protein response (UPR) signaling-a biochemical marker of ER stress. Co-treatment of the gamma-secretase reporter cells with PBA blocked the repressive effects of tunicamycin and thapsigargin upon APP proteolysis, UPR activation, and apoptosis. In unstressed cells, PBA stimulated gamma-secretase mediated cleavage of APP by 8-10 fold, in the absence of any significant effects upon amyloid production, by promoting APP trafficking through the secretory pathway and the stimulation of the non-pathogenic alpha/gamma-cleavage. ER stress represses gamma-secretase mediated APP proteolysis, which replicates some of the proteolytic deficits associated with the FAD mutations. The small molecular

  4. Inhibition of Mitochondrial Cytochrome c Release and Suppression of Caspases by Gamma-Tocotrienol Prevent Apoptosis and Delay Aging in Stress-Induced Premature Senescence of Skin Fibroblasts

    PubMed Central

    Makpol, Suzana; Abdul Rahim, Norhazira; Kien Hui, Chua; Wan Ngah, Wan Zurinah

    2012-01-01

    In this study, we determined the molecular mechanism of γ-tocotrienol (GTT) in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs). Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal) and promoted G0/G1 cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P < 0.05). GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P < 0.05). Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P < 0.05) in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins. PMID:22919441

  5. Inhibition of mitochondrial cytochrome c release and suppression of caspases by gamma-tocotrienol prevent apoptosis and delay aging in stress-induced premature senescence of skin fibroblasts.

    PubMed

    Makpol, Suzana; Abdul Rahim, Norhazira; Hui, Chua Kien; Ngah, Wan Zurinah Wan

    2012-01-01

    In this study, we determined the molecular mechanism of γ-tocotrienol (GTT) in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs). Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal) and promoted G(0)/G(1) cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P < 0.05). GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P < 0.05). Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P < 0.05) in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.

  6. Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria.

    PubMed

    Santos, N A G; Bezerra, C S Catão; Martins, N M; Curti, C; Bianchi, M L P; Santos, A C

    2008-01-01

    Nephrotoxicity is the major dose-limiting factor of cisplatin chemotherapy. Reactive oxygen species generated in mitochondria are thought to be the main cause of cellular damage in such injury. The present study examined, in vivo, the protective potential of the hydroxyl radical scavenger dimethylthiourea (DMTU) against cisplatin-induced effects on renal mitochondrial bioenergetics, redox state and oxidative stress. Adult male Wistar rats (200 to 220 g) were divided into four groups of eight animals each. The control group was treated only with an intraperitoneal (i.p.) injection of saline solution (1 ml/100 g body weight). The second group was given only DMTU (500 mg/kg body weight, i.p, followed by 125 mg/Kg, i.p., twice a day until they were killed). The third group was given a single injection of cisplatin (10 mg/kg body weight, i.p.). The fourth group was given DMTU (500 mg/kg body weight, i.p.), just before the cisplatin injection (10 mg/kg body weight, i.p.), followed by injections of DMTU (125 mg/kg body weight, i.p.) twice a day until they were killed. Animals were killed 72 h after the treatment. Besides not presenting any direct effect on mitochondria, DMTU substantially inhibited cisplatin-induced mitochondrial injury and cellular death by apoptosis, suppressing the occurrence of acute renal failure. All the following cisplatin-induced effects were prevented by DMTU: (1) increased plasmatic levels of creatinine and blood urea nitrogen (BUN); (2) decreased ATP content, calcium uptake and electrochemical potential; (3) oxidation of lipids, including cardiolipin; and oxidation of proteins, including sulfhydryl, and aconitase enzyme, as well as accumulation of carbonyl proteins; (4) depletion of the antioxidant defense (NADPH and GSH) and (5) increased activity of the apoptosis executioner caspase-3. Our findings show the important role played by mitochondria and hydroxyl radicals in cisplatin-induced nephrotoxicity, as well as the effectiveness of DMTU in

  7. The mechanism of PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Cai, Xiongwei; Liu, Timon C.; Ding, Xin-Min; Gu, Ying; Liu, Fan-Guang; Liu, Song-Hao

    2003-12-01

    Photodynamic therapy (PDT) can induce apoptosis in many cancer cells in vitro and in tumors in vivo. Cells become more oxidation with PDT, and maintain differentiation and proliferation, go apoptosis and necrosis with the increase of reactive oxygen species (ROS) concentration. ROS can induce apoptosis through mitochondria by inhibiting respiration chain or oxidative phosphorylation or damaging mitochondrial membrane. ROS can initiate apoptosis through endoplamic reticulum(ER) by opening Ca2+ channel or starting unfold protein response (UPR). ROS can also induce apoptosis through Golgi by producing ganglioside GD3 by use of ceramide, which induces apoptosis by activating caspase-3, JNK and p38 MAPK. It can also induce apoptosis by activating Bip (mitochondria-dependant) or preocaspase-12 (mitochondria- independent) or inhibiting protein synthesizing. There are so complicated cross-talking among different signal pathways or organnells that we think PDT-induced apoptosis is mediated by multiplex pathways and excessive levels in a refined network.

  8. Morinda citrifolia mitigates rotenone-induced striatal neuronal loss in male Sprague-Dawley rats by preventing mitochondrial pathway of intrinsic apoptosis.

    PubMed

    Kishore Kumar, S Narasimhan; Deepthy, Jayakumar; Saraswathi, Uthamaraman; Thangarajeswari, Mohan; Yogesh Kanna, Sathyamoorthy; Ezhil, Pannerselvam; Kalaiselvi, Periandavan

    2016-11-24

    Parkinson disease (PD) is a neurodegenerative disorder affecting mainly the motor system, as a result of death of dopaminergic neurons in the substantia nigra pars compacta. The present scenario of research in PD is directed to identify novel molecules that can be administered individually or co-administered with L-Dopa to prevent the L-Dopa-Induced Dyskinesia (LID) like states that arise during chronic L-Dopa administration. Hence, in this study, we investigated whether Morinda citrifolia has therapeutic effects in rotenone-induced Parkinson's disease (PD) with special reference to mitochondrial dysfunction mediated intrinsic apoptosis. Male Sprague-Dawley rats were stereotaxically infused with rotenone (3 µg in both SNPc and VTA) and co-treated with the ethyl acetate extract of Morinda citrifolia and levodopa. The results revealed that rotenone-induced cell death was reduced by MCE treatment as measured by decline in the levels of pro-apoptotic proteins. Moreover, MCE treatment significantly augmented the levels of anti-apoptotic Bcl2 and blocks the release of cytochrome c, thereby alleviating the rotenone-induced dopaminergic neuronal loss, as evidenced by tyrosine hydroxylase (TH) immunostaining in the striatum. Taken together, the results suggest that Morinda citrifolia may be beneficial for the treatment of neurodegenerative diseases like PD.

  9. Total knee replacement induces peripheral blood lymphocytes apoptosis and it is not prevented by regional anesthesia - a randomized study.

    PubMed

    Kosel, Juliusz; Rusak, Małgorzata; Gołembiewski, Łukasz; Dąbrowska, Milena; Siemiątkowski, Andrzej

    2016-01-01

    Among the many changes caused by a surgical insult one of the least studied is postoperative immunosuppression. This phenomenon is an important cause of infectious complications of surgery such as surgical site infection or hospital acquired pneumonia. One of the mechanisms leading to postoperative immunosuppression is the apoptosis of immunological cells. Anesthesia during surgery is intended to minimize harmful changes and maintain perioperative homeostasis. The aim of the study was evaluation of the effect of the anesthetic technique used for total knee replacement on postoperative peripheral blood lymphocyte apoptosis. 34 patients undergoing primary total knee replacement were randomly assigned to two regional anesthetic protocols: spinal anesthesia and combined spinal-epidural anesthesia. 11 patients undergoing total knee replacement under general anesthesia served as control group. Before surgery, immediately after surgery, during first postoperative day and seven days after the surgery venous blood samples were taken and the immunological status of the patient was assessed with the use of flow cytometry, along with lymphocyte apoptosis using fluorescent microscopy. Peripheral blood lymphocyte apoptosis was seen immediately in the postoperative period and was accompanied by a decrease of the number of T cells and B cells. There were no significant differences in the number of apoptotic lymphocytes according to the anesthetic protocol. Changes in the number of T CD3/8 cells and the number of apoptotic lymphocytes were seen on the seventh day after surgery. Peripheral blood lymphocyte apoptosis is an early event in the postoperative period that lasts up to seven days and is not affected by the choice of the anesthetic technique. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. [Total knee replacement induces peripheral blood lymphocytes apoptosis and it is not prevented by regional anesthesia - a randomized study].

    PubMed

    Kosel, Juliusz; Rusak, Małgorzata; Gołembiewski, Łukasz; Dąbrowska, Milena; Siemiątkowski, Andrzej

    2016-01-01

    Among the many changes caused by a surgical insult one of the least studied is postoperative immunosuppression. This phenomenon is an important cause of infectious complications of surgery such as surgical site infection or hospital acquired pneumonia. One of the mechanisms leading to postoperative immunosuppression is the apoptosis of immunological cells. Anesthesia during surgery is intended to minimize harmful changes and maintain perioperative homeostasis. The aim of the study was evaluation the effect of the anesthetic technique used for total knee replacement on postoperative peripheral blood lymphocyte apoptosis. 34 patients undergoing primary total knee replacement were randomly assigned to two regional anesthetic protocols: spinal anesthesia and combined spinal-epidural anesthesia. 11 patients undergoing total knee replacement under general anesthesia served as control group. Before surgery, immediately after surgery, during first postoperative day and seven days after the surgery venous blood samples were taken and the immunological status of the patient was assessed with the use of flow cysts 87 m, along with lymphocyte apoptosis using fluorescent microscopy. Peripheral blood lymphocyte apoptosis was seen immediately in the postoperative period and was accompanied by a decrease of the number of T cells and B cells. There were no significant differences in the number of apoptotic lymphocytes according to the anesthetic protocol. Changes in the number of T CD3/8 cells and the number of apoptotic lymphocytes were seen on the seventh day after surgery. Peripheral blood lymphocyte apoptosis is an early event in the postoperative period lasts up to seven days and is not affected by the choice of the anesthetic technique. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  11. Adenosine triphosphate prevents serum deprivation-induced apoptosis in human mesenchymal stem cells via activation of the MAPK signaling pathways.

    PubMed

    Berlier, Jessica L; Rigutto, Sabrina; Dalla Valle, Antoine; Lechanteur, Jessica; Soyfoo, Muhammad S; Gangji, Valerie; Rasschaert, Joanne

    2015-01-01

    Human mesenchymal stem cells (hMSC) are multipotent cells derived from various sources including adipose and placental tissues as well as bone marrow. Owing to their regenerative and immunomodulatory properties, their use as a potential therapeutic tool is being extensively tested. However, one of the major hurdles in using cell-based therapy is the use of fetal bovine serum that can trigger immune responses, viral and prion diseases. The development of a culture medium devoid of serum while preserving cell viability is therefore a major challenge. In this study, we demonstrated that adenosine triphosphate (ATP) restrained serum deprivation-induced cell death in hMSC by preventing caspases 3/7 activation and modulating ERK1/2 and p38 MAPK signaling pathways. We also showed that serum deprivation conditions triggered dephosphorylation of the proapoptotic protein Bad leading to cell death. Adjunction of ATP restored the phosphorylation state of Bad. Furthermore, ATP significantly modulated the expression of proapoptopic and antiapoptotic genes, in favor of an antiapoptotic profile expression. Finally, we established that hMSC released a high amount of ATP in the extracellular medium when cultured in a serum-free medium. Collectively, our results demonstrate that ATP favors hMSC viability in serum deprivation conditions. Moreover, they shed light on the cardinal role of the MAPK pathways, ERK1/2 and p38 MAPK, in promoting hMSC survival.

  12. Methods for determining Myc-induced apoptosis.

    PubMed

    Lu, Dan; Littlewood, Trevor D

    2013-01-01

    Although many oncoproteins promote cell growth and proliferation, some also possess the potential to induce cell death by apoptosis. Deregulated expression of the myc oncogene promotes apoptosis in both cultured cells and in some tissues in vivo. Here we describe techniques to detect Myc-induced apoptosis in vitro using flow cytometry and microscopy and in vivo using immunohistochemical staining.

  13. Inhibition of Osteocyte Apoptosis Prevents the Increase in Osteocytic Receptor Activator of Nuclear Factor κB Ligand (RANKL) but Does Not Stop Bone Resorption or the Loss of Bone Induced by Unloading*

    PubMed Central

    Plotkin, Lilian I.; Gortazar, Arancha R.; Davis, Hannah M.; Condon, Keith W.; Gabilondo, Hugo; Maycas, Marta; Allen, Matthew R.; Bellido, Teresita

    2015-01-01

    Apoptosis of osteocytes and osteoblasts precedes bone resorption and bone loss with reduced mechanical stimulation, and receptor activator of NF-κB ligand (RANKL) expression is increased with unloading in mice. Because osteocytes are major RANKL producers, we hypothesized that apoptotic osteocytes signal to neighboring osteocytes to increase RANKL expression, which, in turn, increases osteoclastogenesis and bone resorption. The traditional bisphosphonate (BP) alendronate (Aln) or IG9402, a BP analog that does not inhibit resorption, prevented the increase in osteocyte apoptosis and osteocytic RANKL expression. The BPs also inhibited osteoblast apoptosis but did not prevent the increase in osteoblastic RANKL. Unloaded mice exhibited high serum levels of the bone resorption marker C-telopeptide fragments of type I collagen (CTX), elevated osteoclastogenesis, and increased osteoclasts in bone. Aln, but not IG9402, prevented all of these effects. In addition, Aln prevented the reduction in spinal and femoral bone mineral density, spinal bone volume/tissue volume, trabecular thickness, mechanical strength, and material strength induced by unloading. Although IG9402 did not prevent the loss of bone mass, it partially prevented the loss of strength, suggesting a contribution of osteocyte viability to strength independent of bone mass. These results demonstrate that osteocyte apoptosis leads to increased osteocytic RANKL. However, blockade of these events is not sufficient to restrain osteoclast formation, inhibit resorption, or stop bone loss induced by skeletal unloading. PMID:26085098

  14. GH-Releasing Hormone Promotes Survival and Prevents TNF-α-Induced Apoptosis and Atrophy in C2C12 Myotubes.

    PubMed

    Gallo, Davide; Gesmundo, Iacopo; Trovato, Letizia; Pera, Giulia; Gargantini, Eleonora; Minetto, Marco Alessandro; Ghigo, Ezio; Granata, Riccarda

    2015-09-01

    Skeletal muscle atrophy is a consequence of different chronic diseases, including cancer, heart failure, and diabetes, and also occurs in aging and genetic myopathies. It results from an imbalance between anabolic and catabolic processes, and inflammatory cytokines, such as TNF-α, have been found elevated in muscle atrophy and implicated in its pathogenesis. GHRH, in addition to stimulating GH secretion from the pituitary, exerts survival and antiapoptotic effects in different cell types. Moreover, we and others have recently shown that GHRH displays antiapoptotic effects in isolated cardiac myocytes and protects the isolated heart from ischemia/reperfusion injury and myocardial infarction in vivo. On these bases, we investigated the effects of GHRH on survival and apoptosis of TNF-α-treated C2C12 myotubes along with the underlying mechanisms. GHRH increased myotube survival and prevented TNF-α-induced apoptosis through GHRH receptor-mediated mechanisms. These effects involved activation of phosphoinositide 3-kinase/Akt pathway and inactivation of glycogen synthase kinase-3β, whereas mammalian target of rapamycin was unaffected. GHRH also increased the expression of myosin heavy chain and the myogenic transcription factor myogenin, which were both reduced by the cytokine. Furthermore, GHRH inhibited TNF-α-induced expression of nuclear factor-κB, calpain, and muscle ring finger1, which are all involved in muscle protein degradation. In summary, these results indicate that GHRH exerts survival and antiapoptotic effects in skeletal muscle cells through the activation of anabolic pathways and the inhibition of proteolytic routes. Overall, our findings suggest a novel therapeutic role for GHRH in the treatment of muscle atrophy-associated diseases.

  15. Synthetic Beta-Lactam Antibiotics as a Selective Breast Cancer Cell Apoptosis Inducer: Significance in Breast Cancer Prevention and Treatment

    DTIC Science & Technology

    2007-03-01

    apoptosis in human breast cancer but not normal cells. To test this innovative hypothesis, we have performed the proposed experiments as reported below...H O OH3CO HY 20 O OCH3 N O SCH3 O ClO H N O HY16 The un-acylated bis-hydroxyl lactam, HY 17, was also prepared for testing . N O SCH3 HO...activities of novel β-lactams. In order to discover more potent β- lactams against cancer, we have tested numerous of β-lactams that were synthesized by

  16. Platelets induce apoptosis via membrane-bound FasL

    PubMed Central

    Schleicher, Rebecca I.; Reichenbach, Frank; Kraft, Peter; Kumar, Anil; Lescan, Mario; Todt, Franziska; Göbel, Kerstin; Hilgendorf, Ingo; Geisler, Tobias; Bauer, Axel; Olbrich, Marcus; Schaller, Martin; Wesselborg, Sebastian; O’Reilly, Lorraine; Meuth, Sven G.; Schulze-Osthoff, Klaus; Gawaz, Meinrad; Li, Xuri; Kleinschnitz, Christoph; Edlich, Frank

    2015-01-01

    After tissue injury, both wound sealing and apoptosis contribute to restoration of tissue integrity and functionality. Although the role of platelets (PLTs) for wound closure and induction of regenerative processes is well established, the knowledge about their contribution to apoptosis is incomplete. Here, we show that PLTs present the death receptor Fas ligand (FasL) on their surface after activation. Activated PLTs as well as the isolated membrane fraction of activated PLTs but not of resting PLTs induced apoptosis in a dose-dependent manner in primary murine neuronal cells, human neuroblastoma cells, and mouse embryonic fibroblasts. Membrane protein from PLTs lacking membrane-bound FasL (FasL△m/△m) failed to induce apoptosis. Bax/Bak-mediated mitochondrial apoptosis signaling in target cells was not required for PLT-induced cell death, but increased the apoptotic response to PLT-induced Fas signaling. In vivo, PLT depletion significantly reduced apoptosis in a stroke model and an inflammation-independent model of N-methyl-d-aspartic acid-induced retinal apoptosis. Furthermore, experiments using PLT-specific PF4Cre+ FasLfl/fl mice demonstrated a role of PLT-derived FasL for tissue apoptosis. Because apoptosis secondary to injury prevents inflammation, our findings describe a novel mechanism on how PLTs contribute to tissue homeostasis. PMID:26232171

  17. Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury

    PubMed Central

    Zhou, Yulong; Zhang, Hongyu; Zheng, Binbin; Ye, Libing; Zhu, Sipin; Johnson, Noah R; Wang, Zhouguang; Wei, Xiaojie; Chen, Daqing; Cao, Guodong; Fu, Xiaobing; Li, Xiaokun; Xu, Hua-Zi; Xiao, Jian

    2016-01-01

    Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption. PMID:26722220

  18. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    PubMed

    Radhakrishnan, E K; Bava, Smitha V; Narayanan, Sai Shyam; Nath, Lekshmi R; Thulasidasan, Arun Kumar T; Soniya, Eppurathu Vasudevan; Anto, Ruby John

    2014-01-01

    We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  19. Prevention of cytokine withdrawal-induced apoptosis by Mcl-1 requires interaction between Mcl-1 and Bim.

    PubMed

    Jamil, Sarwat; Wang, Shih Wei; Bondy, Lise; Mojtabavi, Shadi; Duronio, Vincent

    2010-10-01

    Growth factor withdrawal from hemopoietic cells results in activation of the mitochondrial pathway of apoptosis. Members of the Bcl-2 family regulate this pathway, with anti-apoptotic members counteracting the effects of pro-apoptotic members. We investigated the effect on Mcl-1 function of mutation at a conserved threonine 163 residue (T163) in its proline, glutamate, serine, and threonine rich (PEST) region. Under normal growth conditions, Mcl-1 half-life increased with alteration of T163 to glutamic acid, but decreased with mutation to alanine. However, both T163 mutants exhibited greater pro-survival effects compared with the wild type, which can be explained by an increased stability of the T163A mutant in cytokine-starved conditions. Both the mutant forms exhibited prolonged binding to pro-apoptotic Bim in cytokine-deprived cells. The extent to which Mcl-1 mutants were able to exert their anti-apoptotic effects correlated with their ability to associate with Bim. We further observed that primary bone marrow derived macrophages survived following cytokine withdrawal as long as Bim and Mcl-1 remained associated. In our study, we were unable to detect a role for GSK-3-mediated regulation of Mcl-1 expression. Based on these results we propose that upon cytokine withdrawal, survival of hemopoietic cells depends on association between Mcl-1 and Bim. Furthermore, alteration of T163 of Mcl-1 may change the protein such that its association with Bim is affected, resulting in prolonged association and increased survival.

  20. Resveratrol Induces Apoptosis-Like Death and Prevents In Vitro and In Vivo Virulence of Entamoeba histolytica.

    PubMed

    Pais-Morales, Jonnatan; Betanzos, Abigail; García-Rivera, Guillermina; Chávez-Munguía, Bibiana; Shibayama, Mineko; Orozco, Esther

    2016-01-01

    Entamoeba histolytica causes amoebiasis, an infection that kills 100,000 individuals each year. Metronidazole and its derivatives are currently used against this protozoan, but these drugs present adverse effects on human health. Here, we investigated the effect of resveratrol (a natural compound) on E. histolytica trophozoites viability, as well as its influence on the parasite virulence. Trophozoites growth was arrested by 72 μM resveratrol and the IC50 was determined as 220 μM at 48 h. Cells appeared smaller, rounded and in clusters, with debris-containing vacuoles and with abnormally condensed chromatin. Resveratrol triggered reactive oxygen species production. It caused lipid peroxidation and produced phosphatidylserine externalization and DNA fragmentation this latter evidenced by TUNEL assays. It also provoked an increase of intracellular Ca2+ concentration, activated calpain and decreased superoxide dismutase activity, indicating that an apoptosis-like event occurred; however, autophagy was not detected. Cytopathic activity, phagocytosis, encystment and in vivo virulence were diminished dramatically by pre-incubation of trophozoites with resveratrol, evidencing that resveratrol attenuated the trophozoite virulence in vitro. Interestingly, after the inoculation of virulent trophozoites, animals treated with the drug did not develop or developed very small abscesses. Our findings propose that resveratrol could be an alternative to contend amoebiasis.

  1. Resveratrol Induces Apoptosis-Like Death and Prevents In Vitro and In Vivo Virulence of Entamoeba histolytica

    PubMed Central

    Pais-Morales, Jonnatan; Betanzos, Abigail; García-Rivera, Guillermina; Chávez-Munguía, Bibiana; Shibayama, Mineko; Orozco, Esther

    2016-01-01

    Entamoeba histolytica causes amoebiasis, an infection that kills 100,000 individuals each year. Metronidazole and its derivatives are currently used against this protozoan, but these drugs present adverse effects on human health. Here, we investigated the effect of resveratrol (a natural compound) on E. histolytica trophozoites viability, as well as its influence on the parasite virulence. Trophozoites growth was arrested by 72 μM resveratrol and the IC50 was determined as 220 μM at 48 h. Cells appeared smaller, rounded and in clusters, with debris-containing vacuoles and with abnormally condensed chromatin. Resveratrol triggered reactive oxygen species production. It caused lipid peroxidation and produced phosphatidylserine externalization and DNA fragmentation this latter evidenced by TUNEL assays. It also provoked an increase of intracellular Ca2+ concentration, activated calpain and decreased superoxide dismutase activity, indicating that an apoptosis-like event occurred; however, autophagy was not detected. Cytopathic activity, phagocytosis, encystment and in vivo virulence were diminished dramatically by pre-incubation of trophozoites with resveratrol, evidencing that resveratrol attenuated the trophozoite virulence in vitro. Interestingly, after the inoculation of virulent trophozoites, animals treated with the drug did not develop or developed very small abscesses. Our findings propose that resveratrol could be an alternative to contend amoebiasis. PMID:26731663

  2. Prevention of neuronal apoptosis by phorbol ester-induced activation of protein kinase C: blockade of p38 mitogen-activated protein kinase.

    PubMed

    Behrens, M M; Strasser, U; Koh, J Y; Gwag, B J; Choi, D W

    1999-01-01

    Consistent with previous studies on cell lines and non-neuronal cells, specific inhibitors of protein kinase C induced mouse primary cultured neocortical neurons to undergo apoptosis. To examine the complementary hypothesis that activating protein kinase C would attenuate neuronal apoptosis, the cultures were exposed for 1 h to phorbol-12-myristate-13-acetate, which activated protein kinase C as evidenced by downstream enhancement of the mitogen-activated protein kinase pathway. Exposure to phorbol-12-myristate-13-acetate, or another active phorbol ester, phorbol-12,13-didecanoate, but not to the inactive ester, 4alpha-phorbol-12,13-didecanoate, markedly attenuated neuronal apoptosis induced by serum deprivation. Phorbol-12-myristate-13-acetate also attenuated neuronal apoptosis induced by exposure to beta-amyloid peptide 1-42, or oxygen-glucose deprivation in the presence of glutamate receptor antagonists. The neuroprotective effects of phorbol-12-myristate-13-acetate were blocked by brief (non-toxic) concurrent exposure to the specific protein kinase C inhibitors, but not by a specific mitogen-activated protein kinase 1 inhibitor. Phorbol-12-myristate-13-acetate blocked the induction of p38 mitogen-activated protein kinase activity and specific inhibition of this kinase by SB 203580 attenuated serum deprivation-induced apoptosis. c-Jun N-terminal kinase 1 activity was high at rest and not modified by phorbol-12-myristate-13-acetate treatment. These data strengthen the idea that protein kinase C is a key modulator of several forms of central neuronal apoptosis, in part acting through inhibition of p38 mitogen-activated protein kinase regulated pathways.

  3. Vitamin D fails to prevent serum starvation- or staurosporine-induced apoptosis in human and rat osteosarcoma-derived cell lines

    SciTech Connect

    Witasp, Erika; Gustafsson, Ann-Catrin; Cotgreave, Ian; Lind, Monica . E-mail: monica.lind@imm.ki.se; Fadeel, Bengt . E-mail: bengt.fadeel@imm.ki.se

    2005-05-13

    Previous studies have suggested that 1,25(OH){sub 2}D{sub 3}, the active form of vitamin D{sub 3}, may increase the survival of bone-forming osteoblasts through an inhibition of apoptosis. On the other hand, vitamin D{sub 3} has also been shown to trigger apoptosis in human cancer cells, including osteosarcoma-derived cell lines. In the present study, we show that 1,25(OH){sub 2}D{sub 3} induces a time- and dose-dependent loss of cell viability in the rat osteosarcoma cell line, UMR-106, and the human osteosarcoma cell line, TE-85. We were unable, however, to detect nuclear condensation, phosphatidylserine externalization, or other typical signs of apoptosis in this model. Moreover, 1,25(OH){sub 2}D{sub 3} failed to protect against apoptosis induced by serum starvation or incubation with the protein kinase inhibitor, staurosporine. These in vitro findings are thus at variance with several previous reports in the literature and suggest that induction of or protection against apoptosis of bone-derived cells may not be a primary function of vitamin D{sub 3}.

  4. Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway

    PubMed Central

    Tao, Shi-Cong; Yuan, Ting; Rui, Bi-Yu; Zhu, Zhen-Zhong; Guo, Shang-Chun; Zhang, Chang-Qing

    2017-01-01

    An excess of glucocorticoids (GCs) is reported to be one of the most common causes of osteonecrosis of the femoral head (ONFH). In addition, GCs can induce bone cell apoptosis through modulating endoplasmic reticulum (ER) stress. Among the three main signal pathways in ER stress, the PERK (protein kinase RNA-like ER kinase)/CHOP (CCAAT-enhancer-binding protein homologous protein) pathway has been considered to be closely associated with apoptosis. Platelet-rich plasma (PRP) has been referred to as a concentration of growth factors and the exosomes derived from PRP (PRP-Exos) have a similar effect to their parent material. The enriched growth factors can be encapsulated into PRP-Exos and activate Akt and Erk pathways to promote angiogenesis. Activation of the Akt pathway may promote the expression of anti-apoptotic proteins like Bcl-2, while CHOP can inhibit B-cell lymphoma 2 (Bcl-2) expression to increase the level of cleaved caspase-3 and lead to cell death. Consequently, we hypothesized that PRP-Exos prevent apoptosis induced by glucocorticoid-associated ER stress in rat ONFH via the Akt/Bad/Bcl-2 signal pathway. To verify this hypothesis, a dexamethasone (DEX)-treated in vitro cell model and methylprednisolone (MPS)-treated in vivo rat model were adopted. Characterization of PRP-Exos, and effects of PRP-Exos on proliferation, apoptosis, angiogenesis, and osteogenesis of cells treated with GCs in vitro and in vivo were examined. Furthermore, the mechanism by which PRP-Exos rescue the GC-induced apoptosis through the Akt/Bad/Bcl-2 pathway was also investigated. The results indicate that PRP-Exos have the capability to prevent GC-induced apoptosis in a rat model of ONFH by promoting Bcl-2 expression via the Akt/Bad/Bcl-2 signal pathway under ER stress. PMID:28255363

  5. Sitagliptin prevents the development of metabolic and hormonal disturbances, increased β-cell apoptosis and liver steatosis induced by a fructose-rich diet in normal rats.

    PubMed

    Maiztegui, Bárbara; Borelli, María I; Madrid, Viviana G; Del Zotto, Héctor; Raschia, María A; Francini, Flavio; Massa, María L; Flores, Luis E; Rebolledo, Oscar R; Gagliardino, Juan J

    2011-01-01

    The aim of the present study was to test the effect of sitagliptin and exendin-4 upon metabolic alterations, β-cell mass decrease and hepatic steatosis induced by F (fructose) in rats. Normal adult male Wistar rats received a standard commercial diet without (C) or with 10% (w/v) F in the drinking water (F) for 3 weeks; animals from each group were randomly divided into three subgroups: untreated (C and F) and simultaneously receiving either sitagliptin (CS and FS; 115.2 mg/day per rat) or exendin-4 (CE and FE; 0.35 nmol/kg of body weight, intraperitoneally). Water and food intake, oral glucose tolerance, plasma glucose, triacylglycerol (triglyceride), insulin and fructosamine concentration, HOMA-IR [HOMA (homoeostasis model assessment) for insulin resistance], HOMA-β (HOMA for β-cell function) and liver triacylglycerol content were measured. Pancreas immunomorphometric analyses were also performed. IGT (impaired glucose tolerance), plasma triacylglycerol, fructosamine and insulin levels, HOMA-IR and HOMA-β indexes, and liver triacylglycerol content were significantly higher in F rats. Islet β-cell mass was significantly lower in these rats, due to an increase in the percentage of apoptosis. The administration of exendin-4 and sitagliptin to F animals prevented the development of all the metabolic disturbances and the changes in β-cell mass and fatty liver. Thus these compounds, useful in treating Type 2 diabetes, would also prevent/delay the progression of early metabolic and tissue markers of this disease.

  6. Fas/CD95 prevents autoimmunity independently of lipid raft localization and efficient apoptosis induction

    PubMed Central

    Cruz, Anthony C.; Ramaswamy, Madhu; Ouyang, Claudia; Klebanoff, Christopher A.; Sengupta, Prabuddha; Yamamoto, Tori N.; Meylan, Françoise; Thomas, Stacy K.; Richoz, Nathan; Eil, Robert; Price, Susan; Casellas, Rafael; Rao, V. Koneti; Lippincott-Schwartz, Jennifer; Restifo, Nicholas P.; Siegel, Richard M.

    2016-01-01

    Mutations affecting the apoptosis-inducing function of the Fas/CD95 TNF-family receptor result in autoimmune and lymphoproliferative disease. However, Fas can also costimulate T-cell activation and promote tumour cell growth and metastasis. Palmitoylation at a membrane proximal cysteine residue enables Fas to localize to lipid raft microdomains and induce apoptosis in cell lines. Here, we show that a palmitoylation-defective Fas C194V mutant is defective in inducing apoptosis in primary mouse T cells, B cells and dendritic cells, while retaining the ability to enhance naive T-cell differentiation. Despite inability to efficiently induce cell death, the Fas C194V receptor prevents the lymphoaccumulation and autoimmunity that develops in Fas-deficient mice. These findings indicate that induction of apoptosis through Fas is dependent on receptor palmitoylation in primary immune cells, and Fas may prevent autoimmunity by mechanisms other than inducing apoptosis. PMID:28008916

  7. Lichen metabolites prevent UV light and nitric oxide-mediated plasmid DNA damage and induce apoptosis in human melanoma cells.

    PubMed

    Russo, A; Piovano, M; Lombardo, L; Garbarino, J; Cardile, V

    2008-09-26

    In humans both UV-A and UV-B can cause gene mutations and suppress immunity, which leads to skin cancer, including melanoma. Inhibition of reactive oxygen species (ROS) and reactive nitrogen species (RNS) appears particularly promising as ROS and RNS production by both UV-A and UV-B contributes to inflammation, immunosuppression, gene mutation and carcinogenesis. We evaluated the effect of two lichen compounds, sphaerophorin (depside) and pannarin (depsidone) on pBR322 DNA cleavage induced by hydroxyl radicals (()OH), and by nitric oxide (NO), and their superoxide anion (O(2)(-)) scavenging capacity. In addition, we investigated the growth inhibitory activity of these compounds against human melanoma cells (M14 cell line). Sphaerophorin and pannarin showed a protective effect on plasmid DNA and exhibited a superoxide dismutase like effect. The data obtained in cell culture show that these lichen metabolites inhibit the growth of melanoma cells, inducing an apoptotic cell death, demonstrated by the fragmentation of genomic DNA (COMET and TUNEL Assays) and by a significant increase of caspase-3 activity, and correlated, at least in part, to the increase of ROS generation, These results confirm the promising biological properties of sphaerophorin and pannarin and encourage further investigations on their molecular mechanisms.

  8. Thymol and carvacrol prevent cisplatin-induced nephrotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats.

    PubMed

    El-Sayed, E M; Abd-Allah, A R; Mansour, A M; El-Arabey, A A

    2015-04-01

    The aim of the present study is to assess the possible protective effects of thymol and carvacrol against cisplatin (CP)-induced nephrotoxicity. A single dose of CP {6 mg/kg, intraperitoneally (i.p.)} injected to male rats revealed significant increases in serum urea, creatinine, and tumor necrosis factor alpha levels. It also increased kidney contents of malondialdehyde and caspase-3 activity with significant reduction in serum albumin, kidney content of reduced glutathione as well as catalase, and superoxide dismutase activity as compared to that of the control group. In contrast, administration of thymol {20 mg/kg, orally (p.o.)} and/or carvacrol (15 mg/kg, p.o.) for 14 days before CP injection and for 7 days after CP administration restored the kidney function and examined oxidative stress parameters. In conclusion, thymol was more effective nephroprotective than carvacrol. Moreover, a combination of thymol and carvacrol had a synergistic nephroprotective effect that might be attributed to antioxidant, anti-inflammatory, and antiapoptotic activities.

  9. Berberine prevents nitric oxide-induced rat chondrocyte apoptosis and cartilage degeneration in a rat osteoarthritis model via AMPK and p38 MAPK signaling.

    PubMed

    Zhou, Yan; Liu, Shi-Qing; Yu, Ling; He, Bin; Wu, Shi-Hao; Zhao, Qi; Xia, Shao-Qiang; Mei, Hong-Jun

    2015-09-01

    Chondrocyte apoptosis is an important mechanism involved in osteoarthritis (OA). Berberine (BBR), a plant alkaloid derived from Chinese medicine, is characterized by multiple pharmacological effects, such as anti-inflammatory and anti-apoptotic activities. This study aimed to evaluate the chondroprotective effect and underlying mechanisms of BBR on sodium nitroprusside (SNP)-stimulated chondrocyte apoptosis and surgically-induced rat OA model. The in vitro results revealed that BBR suppressed SNP-stimulated chondrocyte apoptosis as well as cytoskeletal remodeling, down-regulated expressions of inducible nitric oxide synthase (iNOS) and caspase-3, and up-regulated Bcl-2/Bax ratio and Type II collagen (Col II) at protein levels, which were accompanied by increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and decreased phosphorylation of p38 mitogen-activated protein kinase (MAPK). Furthermore, the anti-apoptotic effect of BBR was blocked by AMPK inhibitor Compound C (CC) and adenosine-9-β-D-arabino-furanoside (Ara A), and enhanced by p38 MAPK inhibitor SB203580. In vivo experiment suggested that BBR ameliorated cartilage degeneration and exhibited an anti-apoptotic effect on articular cartilage in a rat OA model, as demonstrated by histological analyses, TUNEL assay and immunohistochemical analyses of caspase-3, Bcl-2 and Bax expressions. These findings suggest that BBR suppresses SNP-stimulated chondrocyte apoptosis and ameliorates cartilage degeneration via activating AMPK signaling and suppressing p38 MAPK activity.

  10. Local anesthetics induce human renal cell apoptosis.

    PubMed

    Lee, H Thomas; Xu, Hua; Siegel, Cory D; Krichevsky, Igor E

    2003-01-01

    Renal cell apoptosis contributes significantly to the pathogenesis of acute renal failure. Local anesthetics induce apoptosis in neuronal and lymphocytic cell lines. We examined the effects of chronic (48 h) local anesthetic treatment (lidocaine, bupivacaine and tetracaine) on human proximal tubular (HK-2) cells. Apoptosis induction was assessed by detecting poly(ADP)-ribose polymerase fragmentation, caspase activation, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, DNA laddering and by cellular morphology. Cell death was quantified by measuring neutral red dye uptake and lactate dehydrogenase released into the cell culture medium. All 3 local anesthetics caused concentration-dependent cell death, induced HK-2 cell apoptosis and potentiated TNF-alpha induced apoptosis. Local anesthetics induced HK-2 cell apoptosis by activation of caspases 3, 6, 7, 8 and 9. ZVAD-fmk, a pan-caspase inhibitor, blocked the local anesthetic induced HK-2 cell apoptosis. Local anesthetics also inhibited the activities of anti-apoptotic kinases protein kinase B (Akt) and extracellular signal regulated mitrogen-activated protein kinase. Local anesthetic's pro-apoptotic effects are independent of sodium channel inhibition as tetrodotoxin, a selective voltage-gated sodium channel blocker, failed to mimic local anesthetic-mediated induction or potentiation of HK-2 cell apoptosis. We conclude that local anesthetics induce human renal cell apoptotic signaling by caspase activation and via inhibition of pro-survival signaling pathways.

  11. iRAGE as a novel carboxymethylated peptide that prevents advanced glycation end product-induced apoptosis and endoplasmic reticulum stress in vascular smooth muscle cells.

    PubMed

    Maltais, Jean-Sébastien; Simard, Elie; Froehlich, Ulrike; Denault, Jean-Bernard; Gendron, Louis; Grandbois, Michel

    2016-02-01

    Advanced glycation end-products (AGE) and the receptor for AGE (RAGE) have been linked to numerous diabetic vascular complications. RAGE activation promotes a self-sustaining state of chronic inflammation and has been shown to induce apoptosis in various cell types. Although previous studies in vascular smooth muscle cells (VSMC) showed that RAGE activation increases vascular calcification and interferes with their contractile phenotype, little is known on the potential of RAGE to induce apoptosis in VSMC. Using a combination of apoptotic assays, we showed that RAGE stimulation with its ligand CML-HSA promotes apoptosis of VSMC. The formation of stress granules and the increase in the level of the associated protein HuR point toward RAGE-dependent endoplasmic reticulum (ER) stress, which is proposed as a key contributor of RAGE-induced apoptosis in VSMC as it has been shown to promote cell death via numerous mechanisms, including up-regulation of caspase-9. Chronic NF-κB activation and modulation of Bcl-2 homologs are also suspected to contribute to RAGE-dependent apoptosis in VSMC. With the goal of reducing RAGE signaling and its detrimental impact on VSMC, we designed a RAGE antagonist (iRAGE) derived from the primary amino acid sequence of HSA. The resulting CML peptide was selected for the high glycation frequency of the primary sequence in the native protein in vivo. Pretreatment with iRAGE blocked 69.6% of the increase in NF-κB signaling caused by RAGE activation with CML-HSA after 48h. Preincubation with iRAGE was successful in reducing RAGE-induced apoptosis, as seen through enhanced cell survival by SPR and reduced PARP cleavage. Activation of executioner caspases was 63.5% lower in cells treated with iRAGE before stimulation with CML-HSA. To our knowledge, iRAGE is the first antagonist shown to block AGE-RAGE interaction and we propose the molecule as an initial candidate for drug discovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Carthamus tinctorius L. prevents LPS-induced TNFalpha signaling activation and cell apoptosis through JNK1/2-NFkappaB pathway inhibition in H9c2 cardiomyoblast cells.

    PubMed

    Tien, Yun-Chen; Lin, Jing-Ying; Lai, Chao-Hung; Kuo, Chia-Hua; Lin, Wen-Yuan; Tsai, Chang-Hai; Tsai, Fuu-Jen; Cheng, Yi-Chang; Peng, Wen-Huang; Huang, Chih-Yang

    2010-08-09

    Severe and potentially fatal hypotension and cardiac contractile dysfunction are common symptoms in patients with sepsis. In our previous study, we found that estradiol and estrogen-receptor alpha have cardio-protective effects in myocardial cells exposed to LPS. Estradiol supplementation has been shown to induce breast and cervical cancers. Flos Carthami, the flower of Carthamus tinctorius L. (Compositae) is an important traditional Chinese medicine used for the treatment of heart disease and inflammation, and therefore might be a potential alternative to Estradiol in the prevention of heart damage. This study investigated the effect of Flos Carthami (FC(EtOH)) ethanolic extract on LPS-induced apoptosis in H9c2 cardiomyoblast cells. H9c2 cells induced apoptosis with LPS administration (1 microg/mL). H9c2 cells were divided into five groups: Control, LPS (1 microg/mL), and three FC(EtOH) (31.25, 62.5,and 125 microg/mL). We detected apoptosis using MTT, LDH, TUNEL assay. JC-1 staining and Western blot were used to detect pro-apoptosis proteins, anti-apoptosis proteins, MAPK proteins (JNK, ERK, and P38), and NFkappaB expression. FC(EtOH) (62.5 microg/mL) inhibited LPS-induced apoptosis by suppressing JNK1/2 activity, which resulted in the reduction of both IkappaB degradation and NFkappaB activation. In addition, FC(EtOH) led to the activation of anti-apoptotic proteins, Bcl-2 and Bcl-xL, the stabilization of the mitochondria membrane and the down-regulation of extrinsic and intrinsic pro-apoptotic proteins, such as TNFalpha, active caspase-8, t-Bid, Bax, active caspases-9, and -3. Carthamus tinctorius L. possesses the ability to suppress JNK activity and inhibit LPS-induced TNFalpha activation and apoptosis in H9c2 cardiomyoblast cells. Carthamus tinctorius L could potentially serve as a cardio-protective agent against LPS-induced apoptosis. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Ferulate protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in tert-butyl hydroperoxide-induced Caco-2 cells.

    PubMed

    Kim, Hyun Jung; Lee, Eun Kyeong; Park, Min Hi; Ha, Young Mi; Jung, Kyung Jin; Kim, Min-Sun; Kim, Mi Kyung; Yu, Byung Pal; Chung, Hae Young

    2013-03-01

    Epithelial barrier function is determined by both transcellular and paracellular permeability, the latter of which is mainly influenced by tight junctions (TJs) and apoptotic leaks within the epithelium. We investigated the protective effects of ferulate on epithelial barrier integrity by examining permeability, TJ protein expression, and apoptosis in Caco-2 cells treated with tert-butyl hydroperoxide (t-BHP), a strong reactive species inducer. Caco-2 cells pretreated with ferulate (5 or 15 μM) were exposed to t-BHP (100 μM), and ferulate suppressed the t-BHP-mediated increases in reactive species and epithelial permeability in Caco-2 cells. Moreover, ferulate inhibited epithelial cell leakage induced by t-BHP, which was accompanied by decreased expression of the TJ proteins zonula occludens-1 and occludin. In addition, pretreatment with ferulate markedly protected cells against t-BHP-induced apoptosis, as evidenced by decreased nuclear condensation, cytochrome c release, and caspase-3 cleavage and an increased Bax/Bcl-2 ratio. These results suggest that ferulate protects the epithelial barrier of Caco-2 cells against oxidative stress, which results in increased epithelial permeability, decreased TJ protein expression, and increased apoptosis. The most significant finding of our study is the demonstration of protective, ferulate-mediated antioxidant effects on barrier integrity, with a particular focus on intracellular molecular mechanisms.

  14. Honey induces apoptosis in renal cell carcinoma

    PubMed Central

    Samarghandian, Saeed; Afshari, Jalil Tavakkol; Davoodi, Saiedeh

    2011-01-01

    Background: The fact that antioxidants have several preventative effects against different diseases, such as coronary diseases, inflammatory disorders, neurologic degeneration, aging, and cancer, has led to the search for food rich in antioxidants. Honey has been used as a traditional food and medical source since ancient times. However, recently many scientists have been concentrating on the antioxidant property of honey. By use of human renal cancer cell lines (ACHN), we investigated the antiproliferative activity, apoptosis, and the antitumor activity of honey. Materials and Methods: The cells were cultured in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum treated with different concentrations of honey for 3 consecutive days. Cell viability was quantitated by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptotic cells were determined using Annexin-V-fluorescein isothiocyanate (FITC) by flow cytometry. Results: Honey decreased the cell viability in the malignant cells in a concentration- and time-dependent manner. The IC 50 values against the ACHN cell lines were determined as 1.7 ± 0.04% and 2.1 ± 0.03% μg/mL after 48 and 72 h, respectively. Honey induced apoptosis of the ACHN cells in a concentration-dependent manner, as determined by flow cytometry histogram of treated cells. Conclusion: It might be concluded that honey may cause cell death in the ACHN cells, in which apoptosis plays an important role. Most of the drugs used in the cancer treatment are apoptotic inducers, hence apoptotic nature of honey is considered vital. Therefore, it prompted us to investigate honey as a potential candidate for renal cancer treatment. PMID:21472079

  15. Ketamine-induced apoptosis in cultured rat cortical neurons

    SciTech Connect

    Takadera, Tsuneo . E-mail: t-takadera@hokuriku-u.ac.jp; Ishida, Akira; Ohyashiki, Takao

    2006-01-15

    Recent data suggest that anesthetic drugs cause neurodegeneration during development. Ketamine is frequently used in infants and toddlers for elective surgeries. The purpose of this study is to determine whether glycogen synthase kinase-3 (GSK-3) is involved in ketamine-induced apoptosis. Ketamine increased apoptotic cell death with morphological changes which were characterized by cell shrinkage, nuclear condensation or fragmentation. In addition, insulin growth factor-1 completely blocked the ketamine-induced apoptotic cell death. Ketamine decreased Akt phosphorylation. GSK-3 is known as a downstream target of Akt. The selective inhibitors of GSK-3 prevented the ketamine-induced apoptosis. Moreover, caspase-3 activation was accompanied by the ketamine-induced cell death and inhibited by the GSK-3 inhibitors. These results suggest that activation of GSK-3 is involved in ketamine-induced apoptosis in rat cortical neurons.

  16. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    SciTech Connect

    Aguilar, David; Strom, Joshua; Chen, Qin M.

    2014-04-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA.

  17. VRK3-mediated nuclear localization of HSP70 prevents glutamate excitotoxicity-induced apoptosis and Aβ accumulation via enhancement of ERK phosphatase VHR activity

    PubMed Central

    Song, Haengjin; Kim, Wanil; Kim, Sung-Hoon; Kim, Kyong-Tai

    2016-01-01

    Most of neurodegenerative disorders are associated with protein aggregation. Glutamate-induced excitotoxicity and persistent extracellular signal-regulated kinase (ERK) activation are also implicated in neurodegenerative diseases. Here, we found that vaccinia-related kinase 3 (VRK3) facilitates nuclear localization of glutamate-induced heat shock protein 70 (HSP70). Nuclear HSP70 leads to enhancement of vaccinia H1-related phosphatase (VHR) activity via protein-protein interaction rather than its molecular chaperone activity, thereby suppressing excessive ERK activation. Moreover, glutamate-induced ERK activation stimulates the expression of HSP70 and VRK3 at the transcriptional level. Downregulation of either VRK3 or HSP70 rendered cells vulnerable to glutamate-induced apoptosis. Overexpression of HSP70 fused to a nuclear localization signal attenuated apoptosis more than HSP70 alone. The importance of nuclear localization of HSP70 in the negative regulation of glutamate-induced ERK activation was further confirmed in VRK3-deficient neurons. Importantly, we showed a positive correlation between levels of VRK3 and HSP70 in the progression of Alzheimer’s and Parkinson’s diseases in humans, and neurons with HSP70 nuclear localization exhibited less Aβ accumulation in brains from patients with Alzheimer’s disease. Therefore, HSP70 and VRK3 could potentially serve as diagnostic and therapeutic targets in neurodegenerative diseases. PMID:27941812

  18. Wogonin Induces Eosinophil Apoptosis and Attenuates Allergic Airway Inflammation

    PubMed Central

    Dorward, David A.; Sharma, Sidharth; Rennie, Jillian; Felton, Jennifer M.; Alessandri, Ana L.; Duffin, Rodger; Schwarze, Jurgen; Haslett, Christopher; Rossi, Adriano G.

    2015-01-01

    Rationale: Eosinophils are key effector cells in allergic diseases, including allergic rhinitis, eczema, and asthma. Their tissue presence is regulated by both recruitment and increased longevity at inflamed sites. Objectives: To investigate the ability of the flavone wogonin to induce eosinophil apoptosis in vitro and attenuate eosinophil-dominant allergic inflammation in vivo in mice. Methods: Human and mouse eosinophil apoptosis in response to wogonin was investigated by cellular morphology, flow cytometry, mitochondrial membrane permeability, and pharmacological caspase inhibition. Allergic lung inflammation was modeled in mice sensitized and challenged with ovalbumin. Bronchoalveolar lavage (BAL) and lung tissue were examined for inflammation, mucus production, and inflammatory mediator production. Airway hyperresponsiveness to aerosolized methacholine was measured. Measurements and Main Results: Wogonin induced time- and concentration-dependent human and mouse eosinophil apoptosis in vitro. Wogonin-induced eosinophil apoptosis occurred with activation of caspase-3 and was inhibited by pharmacological caspase inhibition. Wogonin administration attenuated allergic airway inflammation in vivo with reductions in BAL and interstitial eosinophil numbers, increased eosinophil apoptosis, reduced airway mucus production, and attenuated airway hyperresponsiveness. This wogonin-induced reduction in allergic airway inflammation was prevented by concurrent caspase inhibition in vivo. Conclusions: Wogonin induces eosinophil apoptosis and attenuates allergic airway inflammation, suggesting that it has therapeutic potential for the treatment of allergic inflammation in humans. PMID:25629436

  19. Ibuprofen enhances TRAIL-induced apoptosis through DR5 upregulation.

    PubMed

    Todo, Momoko; Horinaka, Mano; Tomosugi, Mitsuhiro; Tanaka, Ryoichi; Ikawa, Haruna; Sowa, Yoshihiro; Ishikawa, Hideki; Fujiwara, Hitoshi; Otsuji, Eigo; Sakai, Toshiyuki

    2013-11-01

    Numerous human chemoprevention studies have demonstrated that non-steroidal anti-inflammatory drugs (NSAIDs) possess chemopreventive effects against a variety of malignant tumors. However, there have been many clinical studies on aspirin, but not ibuprofen, even though ibuprofen is one of the most clinically and safely used NSAIDs showing potent anti-inflammatory effects. Moreover, we reported that many chemopreventive agents enhance the apoptosis-inducing effects of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which is known to be crucial for cancer prevention. We, therefore, investigated whether ibuprofen enhances the cytocidal effect of TRAIL and found that ibuprofen markedly stimulated the apoptosis-inducing efficacy of TRAIL against human colon cancer HCT116 cells. As detected by western blot analysis and real-time RT-PCR, ibuprofen upregulated the expression of death receptor 5 (DR5), a TRAIL receptor. TRAIL-induced apoptosis enhanced by ibuprofen was effectively decreased by a caspase inhibitor and dominant-negative DR5. Noteworthy, co-treatment of ibuprofen with TRAIL did not enhance apoptosis in normal peripheral blood mononuclear cells (PBMCs). These results demonstrated that ibuprofen and TRAIL synergistically induced apoptosis in human colon cancer HCT116 cells but not in normal PBMCs, raising the possibility that ibuprofen may be promising as a safe chemopreventive agent against colon cancer.

  20. Spirafolide from bay leaf (Laurus nobilis) prevents dopamine-induced apoptosis by decreasing reactive oxygen species production in human neuroblastoma SH-SY5Y cells.

    PubMed

    Ham, Ahrom; Kim, Bora; Koo, Uk; Nam, Kung-Woo; Lee, Sung-Jin; Kim, Kyeong Ho; Shin, Jongheon; Mar, Woongchon

    2010-12-01

    Reactive oxygen species (ROS) are important mediators in many neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. This study tested the neuroprotective effects of spirafolide, a compound purified from the leaves of Laurus nobilis L. (Lauraceae), against dopamine (DA)-induced apoptosis in human neuroblastoma SH-SY5Y cells. Following a 24-h exposure of cells to DA (final conc., 0.6 mM), we observed a marked increase in apoptosis, increased generation of ROS and decreased cell viability. Pretreatment of the cells for 24 h with spirafolide (0.4, 2, and 10 μM) before exposure to DA notably increased cell survival (p < 0.01) and lowered intracellular ROS levels (p < 0.01). These results indicate that spirafolide has neuroprotective effects against DA toxicity. These effects may contribute to the treatment of neurodegenerative diseases.

  1. Prevention of Trauma and Hemorrhagic Shock-Mediated Liver Apoptosis by Activation of Stat3α

    PubMed Central

    Moran, Ana; Akcan Arikan, Ayse; Mastrangelo, Mary-Ann A.; Wu, Yong; Yu, Bi; Poli, Valeria; Tweardy, David J.

    2008-01-01

    Trauma is a major cause of mortality in the United States. Death among those surviving the initial insult is caused by multiple organ failure (MOF) with the liver among the organs most frequently affected. We previously demonstrated in rodents that trauma complicated by hemorrhagic shock (trauma/HS) results in liver injury that can be prevented by IL-6 administration at the start of resuscitation; however, the contribution of the severity of HS to the extent of liver injury, whether or not resuscitation is required and the mechanism for the IL-6 protective effect have not been reported. In the experiments reported here, we demonstrated that the extent of liver apoptosis induced by trauma/HS depends on the duration of hypotension and requires resuscitation. We established that IL-6 administration at the start of resuscitation is capable of completely reversing liver apoptosis and is associated with increased Stat3 activation. Microarray analysis of the livers showed that the main effect of IL-6 was to normalize the trauma/HS-induced apoptosis transcriptome. Pharmacological inhibition of Stat3 activity within the liver blocked the ability of IL-6 to prevent liver apoptosis and to normalize the trauma/HS- induced liver apoptosis transcriptome. Genetic deletion of a Stat3β, a naturally occurring, dominant-negative isoform of the Stat3, attenuated trauma/HS-induced liver apoptosis, confirming a role for Stat3, especially Stat3α, in preventing trauma/HS-mediated liver apoptosis. Thus, trauma/HS-induced liver apoptosis depends on the duration of hypotension and requires resuscitation. IL-6 administration at the start of resuscitation reverses HS-induced liver apoptosis, through activation of Stat3α, which normalizes the trauma/HS-induced liver apoptosis transcriptome. PMID:18997875

  2. Apoptosis inducers in chronic lymphocytic leukemia

    PubMed Central

    Billard, Christian

    2014-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by a typical defect in apoptosis and is still an incurable disease. Numerous apoptosis inducers have been described. These synthetic compounds and natural products (mainly derived from plants) display antileukemic properties in vitro and in vivo and some have even been tested in the clinic in CLL. They act through several different mechanisms. Most of them involve proteins of the Bcl-2 family, which are the key regulators in triggering the mitochondrial pathway of caspase-dependent apoptosis. Thus, the Mcl-1/Noxa axis appeared as a target. Here I overview natural and synthetic apoptosis inducers and their mechanisms of action in CLL cells. Opportunities for developing novel, apoptosis-based therapeutics are presented. PMID:24525395

  3. DPI induces mitochondrial superoxide-mediated apoptosis.

    PubMed

    Li, Nianyu; Ragheb, Kathy; Lawler, Gretchen; Sturgis, Jennie; Rajwa, Bartek; Melendez, J Andres; Robinson, J Paul

    2003-02-15

    The iodonium compounds diphenyleneiodonium (DPI) and diphenyliodonium (IDP) are well-known phagocyte NAD(P)H oxidase inhibitors. However, it has been shown that at high concentrations they can inhibit the mitochondrial respiratory chain as well. Since inhibition of the mitochondrial respiratory chain has been shown to induce superoxide production and apoptosis, we investigated the effect of iodonium compounds on mitochondria-derived superoxide and apoptosis. Mitochondrial superoxide production was measured on both cultured cells and isolated rat-heart submitochondrial particles. Mitochondria function was examined by monitoring mitochondrial membrane potential. Apoptotic pathways were studied by measuring cytochrome c release and caspase 3 activation. Apoptosis was characterized by detecting DNA fragmentation on agarose gel and measuring propidium iodide- (PI-) stained subdiploid cells using flow cytometry. Our results showed that DPI could induce mitochondrial superoxide production. The same concentration of DPI induced apoptosis by decreasing mitochondrial membrane potential and releasing cytochrome c. Addition of antioxidants or overexpression of MnSOD significantly reduced DPI-induced mitochondrial damage, cytochrome c release, caspase activation, and apoptosis. These observations suggest that DPI can induce apoptosis via induction of mitochondrial superoxide. DPI-induced mitochondrial superoxide production may prove to be a useful model to study the signaling pathways of mitochondrial superoxide.

  4. Synergistic anti-tumor actions of luteolin and silibinin prevented cell migration and invasion and induced apoptosis in glioblastoma SNB19 cells and glioblastoma stem cells.

    PubMed

    Chakrabarti, Mrinmay; Ray, Swapan K

    2015-12-10

    Glioblastoma is the most lethal brain tumor. Failure of conventional chemotherapies prompted the search for natural compounds for treatment of glioblastoma. Plant-derived flavonoids could be alternative medicine for inhibiting not only glioblastoma cells but also glioblastoma stem cells (GSC). Two plant-derived flavonoids are luteolin (LUT) and silibinin (SIL). We investigated anti-tumor mechanisms of LUT and SIL in different human glioblastoma cells and GSC and found significant synergistic inhibition of human glioblastoma LN18 and SNB19 cells and GSC following treatment with combination of 20µM LUT and 50µM SIL. Combination of 20µM LUT and 50µM SIL was more effective than a conventional chemotherapeutic agent (BCNU or TMZ). We continued our studies with SNB19 cells and GSC and found dramatic inhibition of cell migration from spheroids and also cell invasion through matrigel following treatment with combination of LUT and SIL. This combination was highly effective to block angiogenesis and survival pathways leading to induction of apoptosis. Inhibition of PKCα, XIAP, and iNOS ultimately caused induction of extrinsic and intrinsic pathways of apoptosis. Collectively, synergistic efficacy of LUT and SIL could be a promising therapy to inhibit cell migration and invasion and induce apoptosis in different glioblastoma cells including GSC.

  5. Safranal prevents rotenone-induced oxidative stress and apoptosis in an in vitro model of Parkinson's disease through regulating Keap1/Nrf2 signaling pathway.

    PubMed

    Pan, P-K; Qiao, L-Y; Wen, X-N

    2016-12-30

    Safranal, a major constituent of saffron, possesses antioxidant and anti-apoptotic properties showing considerable neuroprotective effects. However, whether safranal shows therapeutic effect on Parkinson's disease (PD) remains unknown. In this study, we aimed to investigate the potential effect of safranal on PD using an in vitro model of PD induced by rotenone. We found that safranal significantly inhibited rotenone-induced cell death in a dose-dependent manner. Moreover, safranal also markedly suppressed the reactive oxygen species (ROS) generation and cell apoptosis induced by rotenone. Further investigation showed that safranal inhibited the expression of kelch-like ECH-associated protein 1 (Keap1) and promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) in rotenone-induced dopaminergic neurons. Meanwhile, the downstream antioxidant enzyme genes of Nrf2 including glutathione S transferase (GST), glutamate-cysteine ligase catalytic subunit (GCLc), NADPH-quinone oxidoreductase 1 (NQO1) and heme oxygenase1 (HO-1) were also induced by safranal in rotenone-induced dopaminergic neurons. However, the knockdown of Nrf2 significantly abrogated the protective effect of safranal on rotenone-induced neurotoxicity. Taken together, our study suggests that safranal protects against rotenone-induced neurotoxicity associated with Nrf2 signaling pathway implying that safranal may serve as a potent and promising therapeutic drug for the treatment of PD.

  6. Geranylgeranylacetone suppresses hydrogen peroxide-induced apoptosis of osteoarthritic chondrocytes.

    PubMed

    Yoda, Masaki; Sakai, Tadahiro; Mitsuyama, Hirohito; Hiraiwa, Hideki; Ishiguro, Naoki

    2011-11-01

    Osteoarthritis (OA) is a common disease, afflicting many sufferers with both pain and functional disorders. Various therapies have been attempted for OA, but no fully effective treatment has been established yet. Apoptosis of chondrocytes caused by reactive oxygen species (ROS) has been considered important in the pathogenesis of OA. The progression of OA may be prevented by suppressing apoptosis of chondrocytes. Geranylgeranylacetone (GGA) has been used as an anti-ulcer drug in Japan for more than 20 years. Several recent studies have shown that GGA can induce heat shock protein (HSP) and exert cytoprotective actions on a large variety of cells and tissues. In this study, we investigated the effects of GGA on the apoptosis of OA chondrocytes induced by hydrogen peroxide (H(2)O(2)). Human isolated OA chondrocytes were cultured in the absence or presence of GGA. Cell viability, caspase 3/7 and 9 activities, HSP70 mRNA and protein expressions were examined, and morphological analyses were conducted after exposure of cells to H(2)O(2) to induce apoptosis. Geranylgeranylacetone dose-dependently reversed the H(2)O(2)-induced decrease in cell viability. It was recognized that GGA rendered OA chondrocytes resistant to H(2)O(2)-induced apoptosis from Hoechst 33342 staining and TUNEL staining. Caspases 3 and 9 were activated by addition of H(2)O(2), and GGA suppressed this H(2)O(2)-induced activation of both caspases. H(2)O(2)-induced induction of HSP70 was enhanced in OA chondrocytes by pretreatment with GGA. The results showed that GGA can suppress apoptosis of chondrocytes and enhance production of HSP70. This study is the first, to our knowledge, to demonstrate that GGA protects OA chondrocytes from H(2)O(2)-induced apoptosis, at least in part by enhancing HSP70 production. These results indicate that GGA is a potentially useful drug for the treatment of OA.

  7. Human umbilical vein endothelial cells accelerate oxalate-induced apoptosis of human renal proximal tubule epithelial cells in co-culture system which is prevented by pyrrolidine dithiocarbamate.

    PubMed

    Sarıca, Kemal; Aydin, Hasan; Yencilek, Faruk; Telci, Dilek; Yilmaz, Bayram

    2012-10-01

    Oxalate is the most common component of kidney stones and elevated urinary levels induce renal tubular cell toxicity and death which is essential for crystal attachment. Endothelial cells, in some studies have been shown to regulate certain functions of renal proximal tubule cells. The aim of this study was to evaluate the effect of endothelial cells on tubular cell apoptosis in a co-culture system mimicking the in vivo renal physiological settings. The human umbilical vein endothelial cells (HUVEC) and human renal proximal tubule epithelial cells (RPTEC) were exposed to increasing concentrations (0-1.0 mM) of oxalate with or without 10 μM PDTC pretreatment for 24 h. In HUVEC, RPTEC and HUVEC-RPTEC co-cultures, the cell viability was measured using the WST-1 assay and cell death with the TUNEL analysis using the flow cytometry. The treatment of RPTECs with oxalate lead to 8.9-26.2% cell death which was reduced to 0-1.6% with the PDTC pretreatment. The death rate of RPTECs was significantly increased by 15-19% at different oxalate concentrations when co-cultured with HUVECs. In contrast, cell viability was not substantially altered in PDTC pretreated RPTECs that were co-cultured with HUVECs. Apoptosis was the way of cell death as similar rate of apoptosis was observed in cell culture systems. Although cell viability of RPTECs was further reduced when co-cultured with HUVECs, it was restored with the pretreatment of PDTC. This is the first study focusing on the role of endothelial cells on RPTEC apoptosis following hyperoxaluria.

  8. Procyanidin B2 and a cocoa polyphenolic extract inhibit acrylamide-induced apoptosis in human Caco-2 cells by preventing oxidative stress and activation of JNK pathway.

    PubMed

    Rodríguez-Ramiro, Ildefonso; Ramos, Sonia; Bravo, Laura; Goya, Luis; Martín, María Ángeles

    2011-12-01

    Humans are exposed to dietary acrylamide (AA) during their lifetime; it is therefore necessary to investigate the mechanisms associated with AA induced toxic effects. Accumulating evidence indicates that oxidative stress may contribute to AA cytotoxicity, but the link between oxidative stress and AA cytotoxicity in the gastrointestinal tract, the primary organ in contact with dietary AA, has not been described. In this study, we evaluate the alterations of the redox balance induced by AA in Caco-2 intestinal cells as well as the potential protective role of natural antioxidants such as a well-standardized cocoa polyphenolic extract (CPE) and its main polyphenol components epicatechin (EC) and procyanidin B2 (PB2). We found that AA-induced oxidative stress in Caco-2 cells is evidenced by glutathione (GSH) depletion and reactive oxygen species (ROS) overproduction. AA also activated the extracellular-regulated kinases and the c-Jun N-amino terminal kinases (JNKs) leading to an increase in caspase-3 activity and cell death. Studies with appropriate inhibitors confirmed the implication of oxidative stress and JNKs activation in AA-induced apoptosis. Additionally, AA cytotoxicity was counteracted by CPE or PB2 by inhibiting GSH consumption and ROS generation, increasing the levels of gamma-glutamyl cysteine synthase and glutathione-S-transferase and blocking the apoptotic pathways activated by AA. Therefore, AA-induced cytotoxicity and apoptosis are closely related to oxidative stress in Caco-2 cells. Interestingly, natural dietary antioxidant such as PB2 and CPE were able to suppress AA toxicity by improving the redox status of Caco-2 cells and by blocking the apoptotic pathway activated by AA.

  9. Caffeinated coffee, decaffeinated coffee, and the phenolic phytochemical chlorogenic acid up-regulate NQO1 expression and prevent H₂O₂-induced apoptosis in primary cortical neurons.

    PubMed

    Kim, Jiyoung; Lee, Siyoung; Shim, Jaesung; Kim, Hyo Won; Kim, Jaekyoon; Jang, Young Jin; Yang, Hee; Park, Jiman; Choi, Seung Hwan; Yoon, Ji Hye; Lee, Ki Won; Lee, Hyong Joo

    2012-04-01

    Neurodegenerative disorders are strongly associated with oxidative stress, which is induced by reactive oxygen species including hydrogen peroxide (H₂O₂). Epidemiological studies have suggested that coffee may be neuroprotective, but the molecular mechanisms underlying this effect have not been clarified. In this study, we investigated the protective effects of caffeinated coffee, decaffeinated coffee, and the phenolic phytochemical chlorogenic acid (5-O-caffeoylquinic acid), which is present in both caffeinated and decaffeinated coffee, against oxidative neuronal death. H₂O₂-induced apoptotic nuclear condensation in neuronal cells was strongly inhibited by pretreatment with caffeinated coffee, decaffeinated coffee, or chlorogenic acid. Pretreatment with caffeinated coffee, decaffeinated coffee, or chlorogenic acid inhibited the H₂O₂-induced down-regulation of anti-apoptotic proteins Bcl-2 and Bcl-X(L) while blocking H₂O₂-induced pro-apoptotic cleavage of caspase-3 and pro-poly(ADP-ribose) polymerase. We also found that caffeinated coffee, decaffeinated coffee, and chlorogenic acid induced the expression of NADPH:quinine oxidoreductase 1 (NQO1) in neuronal cells, suggesting that these substances protect neurons from H₂O₂-induced apoptosis by up-regulation of this antioxidant enzyme. The neuroprotective efficacy of caffeinated coffee was similar to that of decaffeinated coffee, indicating that active compounds present in both caffeinated and decaffeinated coffee, such as chlorogenic acid, may drive the effects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Bryostatin 1 Inhibits Phorbol Ester-Induced Apoptosis in Prostate Cancer Cells by Differentially Modulating Protein Kinase C (PKC) δ Translocation and Preventing PKCδ-Mediated Release of Tumor Necrosis Factor-α

    PubMed Central

    von Burstin, Vivian A.; Xiao, Liqing

    2010-01-01

    Bryostatin 1, a macrocyclic lactone that has been widely characterized as an ultrapotent protein kinase C (PKC) activator, displays marked pharmacological differences with the typical phorbol ester tumor promoters. Bryostatin 1 impairs phorbol 12-myristate 13-acetate (PMA)-induced tumor promotion in mice and is in clinical trials as an anticancer agent for a number of hematopoietic malignancies and solid tumors. In this study, we characterized the effect of bryostatin 1 on LNCaP prostate cancer cells, a cellular model in which PKC isozymes play important roles in the control of growth and survival. Although phorbol esters promote a strong apoptotic response in LNCaP cells via PKCδ-mediated release of TNFα, bryostatin 1 failed to trigger a death effect even at high concentrations, and it prevented PMA-induced apoptosis in these cells. Mechanistic analysis revealed that bryostatin 1 is unable to induce TNFα release, and it impairs the secretion of this cytokine from LNCaP cells in response to PMA. Unlike PMA, bryostatin 1 failed to promote the translocation of PKCδ to the plasma membrane. Moreover, bryostatin 1 prevented PMA-induced PKCδ peripheral translocation. Studies using a membrane-targeted PKCδ construct revealed that the peripheral localization of the kinase is a requisite for triggering apoptosis in LNCaP cells, arguing that mislocalization of PKCδ may explain the actions of bryostatin 1. The identification of an antiapoptotic effect of bryostatin 1 may have significant relevance in the context of its therapeutic efficacy. PMID:20516369

  11. Bryostatin 1 inhibits phorbol ester-induced apoptosis in prostate cancer cells by differentially modulating protein kinase C (PKC) delta translocation and preventing PKCdelta-mediated release of tumor necrosis factor-alpha.

    PubMed

    von Burstin, Vivian A; Xiao, Liqing; Kazanietz, Marcelo G

    2010-09-01

    Bryostatin 1, a macrocyclic lactone that has been widely characterized as an ultrapotent protein kinase C (PKC) activator, displays marked pharmacological differences with the typical phorbol ester tumor promoters. Bryostatin 1 impairs phorbol 12-myristate 13-acetate (PMA)-induced tumor promotion in mice and is in clinical trials as an anticancer agent for a number of hematopoietic malignancies and solid tumors. In this study, we characterized the effect of bryostatin 1 on LNCaP prostate cancer cells, a cellular model in which PKC isozymes play important roles in the control of growth and survival. Although phorbol esters promote a strong apoptotic response in LNCaP cells via PKCdelta-mediated release of TNFalpha, bryostatin 1 failed to trigger a death effect even at high concentrations, and it prevented PMA-induced apoptosis in these cells. Mechanistic analysis revealed that bryostatin 1 is unable to induce TNFalpha release, and it impairs the secretion of this cytokine from LNCaP cells in response to PMA. Unlike PMA, bryostatin 1 failed to promote the translocation of PKCdelta to the plasma membrane. Moreover, bryostatin 1 prevented PMA-induced PKCdelta peripheral translocation. Studies using a membrane-targeted PKCdelta construct revealed that the peripheral localization of the kinase is a requisite for triggering apoptosis in LNCaP cells, arguing that mislocalization of PKCdelta may explain the actions of bryostatin 1. The identification of an antiapoptotic effect of bryostatin 1 may have significant relevance in the context of its therapeutic efficacy.

  12. Tubular cell apoptosis and cidofovir-induced acute renal failure.

    PubMed

    Ortiz, Alberto; Justo, Pilar; Sanz, Ana; Melero, Rosa; Caramelo, Carlos; Guerrero, Manuel Fernández; Strutz, Frank; Müller, Gerhard; Barat, Antonio; Egido, Jesus

    2005-01-01

    Cidofovir is an antiviral drug with activity against a wide array of DNA viruses including poxvirus. The therapeutic use of cidofovir is marred by a dose-limiting side effect, nephrotoxicity, leading to proximal tubular cell injury and acute renal failure. Treatment with cidofovir requires the routine use of prophylactic measures. A correct knowledge of the cellular and molecular mechanisms of cidofovir toxicity may lead to the development of alternative prophylactic strategies. We recently cared for a patient with irreversible acute renal failure due to cidofovir. Renal biopsy showed tubular cell apoptosis. Cidofovir induced apoptosis in primary cultures of human proximal tubular cells in a temporal (peak apoptosis at 7 days) and concentration (10-40 microg/ml) pattern consistent with that of clinical toxicity. Apoptosis was identified by the presence of hypodiploid cells, by the exposure of annexin V binding sites and by morphological features and was associated with the appearance of active caspase-3 fragments. Cell death was specific as it was also present in a human proximal tubular epithelial cell line (HK-2), but not in a human kidney fibroblast cell line, and was prevented by probenecid. An inhibitor of caspase-3 (DEVD) prevented cidofovir apoptosis. The survival factors present in serum, insulin-like growth factor-1 and hepatocyte growth factor, were also protective. The present data suggest that apoptosis induction is a mechanism contributing to cidofovir nephrotoxicity. The prophylactic administration of factors with survival activity for tubular epithelium should be further explored in cidofovir renal injury.

  13. Neem oil limonoids induces p53-independent apoptosis and autophagy

    PubMed Central

    Chandra, Dhyan

    2012-01-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells. PMID:22915764

  14. Neem oil limonoids induces p53-independent apoptosis and autophagy.

    PubMed

    Srivastava, Pragya; Yadav, Neelu; Lella, Ravi; Schneider, Andrea; Jones, Anthony; Marlowe, Timothy; Lovett, Gabrielle; O'Loughlin, Kieran; Minderman, Hans; Gogada, Raghu; Chandra, Dhyan

    2012-11-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells.

  15. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    PubMed Central

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  16. GABA tea prevents cardiac fibrosis by attenuating TNF-alpha and Fas/FasL-mediated apoptosis in streptozotocin-induced diabetic rats.

    PubMed

    Cherng, Shur-Hueih; Huang, Chih-Yang; Kuo, Wei-Wen; Lai, Shue-Er; Tseng, Chien-Yu; Lin, Yueh-Min; Tsai, Fuu-Jen; Wang, Hsueh-Fang

    2014-03-01

    GABA tea is a tea product that contains a high level of gamma-aminobutyric acid (GABA). This study investigated the effects of GABA tea on the heart in a diabetic rat model. Male Wistar rats were injected with 55mg/kg streptozotocin (STZ) to induce diabetes for 2weeks and then orally given dosages of 4.55 and 45.5mg/kg/day GABA tea extract for 6weeks. The results revealed that fasting blood glucose levels returned to normal levels in GABA tea-treated diabetic rats, but not in the untreated diabetic rats. Additionally, GABA tea effectively inhibited cardiac fibrosis induced by STZ. Further experiments showed that the STZ-induced protein levels of tumor necrosis factor-alpha (TNF-alpha), Fas, activated caspase-8 and caspase-3 were significantly inhibited by the GABA tea treatment. Therefore, our data suggest that the inhibiting effect of GABA tea on STZ-induced cardiac fibrosis in diabetic rats may be mediated by reducing blood glucose and further attenuating TNF-alpha expression and/or Fas/Fas ligand (FasL)-mediated apoptosis. These findings will provide implications for the potential anti-diabetic properties of GABA tea.

  17. Sodium nitroprusside induces apoptosis of rabbit chondrocytes

    NASA Astrophysics Data System (ADS)

    Liang, Qian; Wang, Xiao-Ping; Chen, Tong-Sheng

    2013-02-01

    Osteoarthritis (OA) is characterized by a slowly progressing degradation of the matrix and destruction of articular cartilage. Apoptosis of chondrocyte is accounted for the mechanism of OA. Nitric oxide (NO), as a stimulus, has been shown to induce chondrocyte apoptosis by activating the matrix metalloproteinases (MMPs), increasing the expression of cyclooxygenase 2 (COX-2) and the level of prostaglandin E2 (PGE2), inhibiting the proteoglycan synthesis and type II collagen expression. In this study, sodium nitroprusside (SNP) was administered to be the NO donor to explore the mechanism of NO-induced apoptosis of rabbit chondrocytes obtained from six weeks old New Zealand rabbits. CCK-8 assay revealed the inhibitory effect of SNP on cell viability. We used flow cytometry (FCM) to assess the form of cell death by Annexin-V/propidium iodide (PI) double staining, and evaluate the change of mitochondrial membrane potential (ΔΨm). We found that the SNP induced chondrocyte apoptosis in a dose- and time-dependent manner and an observable reduction of ΔΨm. In conclusion, our findings indicate that SNP induces apoptosis of rabbit chondrocytes via a mitochondria-mediated pathway.

  18. Ceramide-Induced Apoptosis in Renal Tubular Cells: A Role of Mitochondria and Sphingosine-1-Phoshate

    PubMed Central

    Ueda, Norishi

    2015-01-01

    Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed. PMID:25751724

  19. Molecular mechanisms of UV-induced apoptosis.

    PubMed

    Kulms, D; Schwarz, T

    2000-10-01

    Sunburn cells, single standing cells with typical morphologic features occurring in UV-exposed skin, have been recognized as keratinocytes undergoing apoptosis following UV irradiation. Induction of apoptosis following UV exposure appears to be a protective mechanism, getting rid off severely damaged cells that bear the risk of malignant transformation. UV-mediated apoptosis is a highly complex process in which different molecular pathways are involved. These include DNA damage, activation of the tumor suppressor gene p53, triggering of cell death receptors either directly by UV or by autocrine release of death ligands, mitochondrial damage and cytochrome C release. Detailed knowledge about the interplay between these pathways will increase our understanding of photocarcinogenesis. This review briefly discusses recent findings concerning the molecular mechanisms underlying UV-induced apoptosis.

  20. (+)-Catechin protects dermal fibroblasts against oxidative stress-induced apoptosis

    PubMed Central

    2014-01-01

    Background Oxidative stress has been suggested as a mechanism underlying skin aging, as it triggers apoptosis in various cell types, including fibroblasts, which play important roles in the preservation of healthy, youthful skin. Catechins, which are antioxidants contained in green tea, exert various actions such as anti-inflammatory, anti-bacterial, and anti-cancer actions. In this study, we investigated the effect of (+)-catechin on apoptosis induced by oxidative stress in fibroblasts. Methods Fibroblasts (NIH3T3) under oxidative stress induced by hydrogen peroxide (0.1 mM) were treated with either vehicle or (+)-catechin (0–100 μM). The effect of (+)-catechin on cell viability, apoptosis, phosphorylation of c-Jun terminal kinases (JNK) and p38, and activation of caspase-3 in fibroblasts under oxidative stress were evaluated. Results Hydrogen peroxide induced apoptotic cell death in fibroblasts, accompanied by induction of phosphorylation of JNK and p38 and activation of caspase-3. Pretreatment of the fibroblasts with (+)-catechin inhibited hydrogen peroxide-induced apoptosis and reduced phosphorylation of JNK and p38 and activation of caspase-3. Conclusion (+)-Catechin protects against oxidative stress-induced cell death in fibroblasts, possibly by inhibiting phosphorylation of p38 and JNK. These results suggest that (+)-catechin has potential as a therapeutic agent for the prevention of skin aging. PMID:24712558

  1. The preventive effects of hyperoside on lung cancer in vitro by inducing apoptosis and inhibiting proliferation through Caspase-3 and P53 signaling pathway.

    PubMed

    Liu, Yuan-Hua; Liu, Guang-Hui; Mei, Jing-Jing; Wang, Jing

    2016-10-01

    Though advanced surgical operation and chemotherapy have been under taken, lung cancer remains one of the most aggressive and fatal human malignancies with a low survival rate. Thus, novel therapeutic strategies for prevention and remedy are urgently needed in lung cancer. Hyperoside, known as quercetin-3-O-β-d-galactopyranoside, is a natural flavonol glycoside discovered in plants of genera Hypericum, displaying anti-oxidant, anticancer, and anti-inflammatory properties. In the study, we attempted to investigate whether hyperoside could inhibit lung cancer progression via Caspase-3- and P53-regulated cell death. In in vitro and in vivo experiments, we explored hyperoside at three different dosages on cell apoptosis, cell proliferation, cell migration, cell invasion, cell cycle distribution, the related signalling pathways, as well as xenograft tumor growth. Our data suggested that hyperoside exerted inhibitory role in lung cancer development. Inhibition of NF-κB transcriptional activity, Caspase-9/Caspase-3 activation, the cell cycle arrest, and suppression of cell proliferation-related signaling pathway led to the lung cancer inhibition. Further, via mice xenograft model in vivo, we indicated that hyperoside completely impeded tumor growth through angiogenesis inhibition. Our study illustrated that hyperoside might provide a synergistic anticancer effects that warrant further study and investigation due to its potential role in clinical applications. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes.

    PubMed

    Wang, Yue; Gao, Hong; Na, Xiao-Lin; Dong, Shu-Ying; Dong, Hong-Wei; Yu, Jia; Jia, Li; Wu, Yong-Hui

    2016-11-30

    The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL) for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH), activities of superoxide dismutase (SOD) and catalase (CAT), mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.

  3. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes

    PubMed Central

    Wang, Yue; Gao, Hong; Na, Xiao-Lin; Dong, Shu-Ying; Dong, Hong-Wei; Yu, Jia; Jia, Li; Wu, Yong-Hui

    2016-01-01

    The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL) for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH), activities of superoxide dismutase (SOD) and catalase (CAT), mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes. PMID:27916916

  4. Downregulation of apoptosis and modulation of TGF-β1 by sodium selenate prevents streptozotocin-induced diabetic rat renal impairment.

    PubMed

    Roy, Souvik; Dontamalla, Sudheer Kumar; Mondru, Anil Kumar; Sannigrahi, Santanu; Veerareddy, Prabhakar Reddy

    2011-01-01

    To investigate whether sodium selenate treatment would impact on the onset of diabetic nephropathy, we examined blood glucose, serum biochemical components, and interrelationship between oxidative stress, TGF-β1, and apoptosis in streptozotocin (STZ) induced diabetic rats. Sixty male Wistar rats were divided into six groups. Group I (n = 10), normal control; Group II (n = 10), diabetic control; Group III (n = 10), sodium selenate (16 μmoles/kg) + diabetic; Group IV (n = 10), sodium selenate (32 μmoles/kg) + diabetic; Group V (n = 10), sodium selenate (16 μmoles/kg) control; and Group VI (n = 10), sodium selenate (32 μmoles/kg) control. Sodium selenate was administered via orogastric route for 10 weeks. In the diabetic group, diabetes was induced by single intraperitoneal injection of STZ (50 mg/kg). The levels of blood glucose were estimated and total cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, creatinine, urea, and albumin were detected in serum. Antioxidant status was examined by measuring the superoxide dismutase (SOD), catalase, glutathione, and lipid peroxidation in kidney tissues. Histopathological studies were performed in the kidney tissue sections. The expression of TGF-β1 was estimated by the immunohistochemical analysis in kidneys. Apoptotic study in kidney was performed using the TdT-mediated dUTP nick end labeling technique. It was observed that blood glucose, serum, total cholesterol, HDL cholesterol, triglycerides, creatinine, urea, and albumin were significantly higher in diabetic control groups. Diabetic + sodium selenate (16 and 32 μmoles/kg) significantly reduced blood glucose, serum, total cholesterol, HDL cholesterol, triglycerides, creatinine, urea, and albumin levels. Selenium-treated groups significantly increased antioxidant enzyme activities (SOD, catalase, and glutathione) in kidneys of diabetic rats. All enzyme activities of selenium control groups did not differ compared

  5. Gui-ling-gao, a traditional Chinese functional food, prevents oxidative stress-induced apoptosis in H9c2 cardiomyocytes.

    PubMed

    Li, Fan; Wu, Jian-Hong; Wang, Qing-Hua; Shu, Yuan-Lan; Wan, Chun-Wai; Chan, Chi-On; Kam-Wah Mok, Daniel; Chan, Shun-Wan

    2013-04-30

    Functional foods have become an increasingly popular alternative to prevent diseases and maintain body health status. Gui-ling-gao (GLG, also known as turtle jelly) is a well-known traditional functional food popular in Southern China and Hong Kong. This study aimed to investigate the antioxidative and anti-apoptotic effects of GLG, a traditional Chinese functional food, on preventing oxidative stress-induced injury in H9c2 cardiomyocytes. In this study, the antioxidative capacities of GLG were measured by using both a cell-free assay [2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl assay] and biological methods [2,2'-azobis(2-amidinopropane)-induced haemolysis assay and H(2)O(2)-induced cell damage on H9c2 cardiomyocytes]. Additionally, the total phenolic content was measured using the Folin-Ciocalteu method. Furthermore, the anti-apoptotic effect of GLG was evaluated by nuclear staining and a DNA fragmentation assay. GLG was found to have good antioxidant activities and high total phenolic content. In H(2)O(2)-induced cell damage on H9c2 cells, GLG was demonstrated to ameliorate the apoptotic effects, such as nuclear condensations, increased intracellular caspase-3 activity and inter-nucleosomal DNA cleavage, induced by H(2)O(2). The present study demonstrated for the first time that GLG possesses anti-apoptotic potential in vitro and this effect may be mediated, in part, by its antioxidative function. Additionally, the antioxidative capacities of GLG were proved both chemically and biologically. This study provides scientific evidence to prove the anecdotal health-beneficial claim that the consumption of GLG could help the body to handle endogenous toxicants such as free radicals.

  6. Tyrosol prevents ischemia/reperfusion-induced cardiac injury in H9c2 cells: involvement of ROS, Hsp70, JNK and ERK, and apoptosis.

    PubMed

    Sun, Liwei; Fan, Hang; Yang, Lingguang; Shi, Lingling; Liu, Yujun

    2015-02-25

    Ischemia-Reperfusion (I/R) injury causes ROS overproduction, creating oxidative stress, and can trigger myocyte death, resulting in heart failure. Tyrosol is an antioxidant abounded in diets and medicine. Our objective was to investigate the protective effect of tyrosol on I/R-caused mortality in H9c2 cardiomyocytes through its influence on ROS, Hsp70, ERK, JNK, Bcl-2, Bax and caspase-8. A simulated I/R model was used, myocytes loss was examined by MTT, and ROS levels were measured using DCFH-DA. Nuclear condensation and caspase-3 activity were assessed by DAPI staining and fluorometric assay. Phosphorylated ERK and JNK were determined by electrochemiluminescent ELISA, and Hsp70, Bcl-2, Bax and caspase-8 were examined by Western blotting. Results show that tyrosol salvaged myocyte loss, inhibited nuclear condensation and caspase-3 activity dose-dependently, indicating its protection against I/R-caused myocyte loss. Furthermore, tyrosol significantly inhibited ROS accumulation and activation of ERK and JNK, augmenting Hsp70 expression. Besides, tyrosol inhibited I/R-induced apoptosis, associated with retained anti-apoptotic Bcl-2 protein, and attenuated pro-apoptotic Bax protein, resulting in a preservation of Bcl-2/Bax ratio. Finally, tyrosol notably decreased cleaved caspase-8 levels. In conclusion, cytoprotection of tyrosol in I/R-caused myocyte mortality was involved with the mitigation of ROS, prohibition of the activation of ERK, JNK and caspase-8, and elevation of Hsp70 and Bcl-2/Bax ratio.

  7. Noscapine induces apoptosis in human glioma cells by an apoptosis-inducing factor-dependent pathway.

    PubMed

    Newcomb, Elizabeth W; Lukyanov, Yevgeniy; Smirnova, Iva; Schnee, Tona; Zagzag, David

    2008-07-01

    Previously, we identified noscapine as a small molecule inhibitor of the hypoxia-inducible factor-1 pathway in hypoxic human glioma cells and human umbilical vein endothelial cells. Noscapine is a nontoxic ingredient in cough medicine currently used in clinical trials for patients with non-Hodgkin's lymphoma or chronic lymphocytic leukemia to assess antitumor efficacy. Here, we have evaluated the sensitivity of four human glioma cell lines to noscapine-induced apoptosis. Noscapine was a potent inhibitor of proliferation and inducer of apoptosis. Induction of apoptosis was associated with activation of the c-jun N-terminal kinase signaling pathway concomitant with inactivation of the extracellular signal regulated kinase signaling pathway and phosphorylation of the antiapoptotic protein Bcl-2. Noscapine-induced apoptosis was associated with the release of mitochondrial proteins apoptosis-inducing factor (AIF) and/or cytochrome c. In some glioma cell lines, only AIF release occurred without cytochrome c release or poly (ADP-ribose) polymerase cleavage. Knock-down of AIF decreased noscapine-induced apoptosis. Our results suggest the potential importance of noscapine as a novel agent for use in patients with glioblastoma owing to its low toxicity profile and its potent anticancer activity.

  8. Molecular mechanisms of asbestos-induced lung epithelial cell apoptosis.

    PubMed

    Liu, Gang; Beri, Rohinee; Mueller, Amanda; Kamp, David W

    2010-11-05

    Asbestos causes pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully elucidated. Accumulating evidence show that alveolar epithelial cell (AEC) apoptosis is a crucial initiating and perpetuating event in the development of pulmonary fibrosis following exposure to a wide variety of noxious stimuli, including asbestos. We review the important molecular mechanisms underlying asbestos-induced AEC apoptosis. Specifically, we focus on the role of asbestos in augmenting AEC apoptosis by the mitochondria- and p53-regulated death pathways that result from the production of iron-derived reactive oxygen species (ROS) and DNA damage. We summarize emerging evidence implicating the endoplasmic reticulum (ER) stress response in AEC apoptosis in patients with idiopathic pulmonary fibrosis (IPF), a disease with similarities to asbestosis. Finally, we discuss a recent finding that a mitochondrial oxidative DNA repair enzyme (8-oxoguanine DNA glycosylase; Ogg1) acts as a mitochondrial aconitase chaperone protein to prevent oxidant (asbestos and H(2)O(2))-induced AEC mitochondrial dysfunction and intrinsic apoptosis. The coupling of mitochondrial Ogg1 to mitochondrial aconitase is a novel mechanism linking metabolism to mitochondrial DNA that may be important in the pathophysiologic events resulting in oxidant-induced toxicity as seen in tumors, aging, and respiratory disorders (e.g. asbestosis, IPF). Collectively, these studies are illuminating the molecular basis of AEC apoptosis following asbestos exposure that may prove useful for developing novel therapeutic strategies. Importantly, the asbestos paradigm is elucidating pathophysiologic insights into other more common pulmonary diseases, such as IPF and lung cancer, for which better therapy is required.

  9. Mechanisms of vanilloid-induced apoptosis.

    PubMed

    Hail, Numsen

    2003-06-01

    Chemical compounds that contain the vanillyl moiety (4-hydroxy-3-methoxybenzyl) are collectively classified as vanilloids. Vanilloid phytochemicals can be found in a variety of sources, some of which are routinely consumed by humans throughout the world. The dietary and/or medicinal use of vanilloids may be effective in inhibiting or reversing carcinogenesis, which has sparked a considerable interest in these compounds as potential chemopreventive or chemotherapeutic agents. Certain vanilloids are also valuable as pharmacological tools for investigating neurobiology, and have been proven effective in alleviating neurogenic pain and inflammation. Recently several vanilloids have demonstrated the ability to induce apoptosis in various cell types. Vanilloids can interact with proteins and membranes to initiate pleiotropic effects, some of which are potentially cytotoxic. Certain vanilloids bind to cation channels on nociceptive sensory neurons to regulate Ca(2+) uptake, which can promote neurotoxicity resulting in apoptosis and necrosis. Furthermore, some vanilloids appear to interfere with enzymatic processes in the plasma membrane and the mitochondria by functioning as coenzyme Q antagonist. This can promote reactive oxygen species production and/or the disruption of redox homeostasis resulting in apoptosis. This review will examine the cellular targets, cytotoxic effects, and the downstream effector mechanisms associated with vanilloid-induced apoptosis.

  10. A New Fungal Diterpene Induces VDAC1-dependent Apoptosis in Bax/Bak-deficient Cells.

    PubMed

    Huang, Li; Han, Junjie; Ben-Hail, Danya; He, Luwei; Li, Baowei; Chen, Ziheng; Wang, Yueying; Yang, Yanlei; Liu, Lei; Zhu, Yushan; Shoshan-Barmatz, Varda; Liu, Hongwei; Chen, Quan

    2015-09-25

    The pro-apoptotic Bax and Bak proteins are considered central to apoptosis, yet apoptosis occurs in their absence. Here, we asked whether the mitochondrial protein VDAC1 mediates apoptosis independently of Bax/Bak. Upon screening a fungal secondary metabolite library for compounds inducing apoptosis in Bax/Bak-deficient mouse embryonic fibroblasts, we identified cyathin-R, a new cyathane diterpenoid compound able to activate apoptosis in the absence of Bax/Bak via promotion of the VDAC1 oligomerization that mediates cytochrome c release. Diphenylamine-2-carboxilic acid, an inhibitor of VDAC1 conductance and oligomerization, inhibited cyathin-R-induced VDAC1 oligomerization and apoptosis. Similarly, Bcl-2 overexpression conferred resistance to cyathin-R-induced apoptosis and VDAC1 oligomerization. Silencing of VDAC1 expression prevented cyathin-R-induced apoptosis. Finally, cyathin-R effectively attenuated tumor growth and induced apoptosis in Bax/Bak-deficient cells implanted into a xenograft mouse model. Hence, this study identified a new compound promoting VDAC1-dependent apoptosis as a potential therapeutic option for cancerous cells lacking or presenting inactivated Bax/Bak. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Activation of the IFN-inducible enzyme RNase L causes apoptosis of animal cells.

    PubMed

    Díaz-Guerra, M; Rivas, C; Esteban, M

    1997-09-29

    The interferon (IFN)-induced enzyme RNase L produced by a recombinant vaccinia virus (VV) causes death of mammalian cells with morphological and biochemical characteristics of apoptosis. Coexpression of 2-5A-synthetase enhances apoptosis induced by RNase L Activation of endogenous RNase L by infection with a VV ts mutant (ts22) or with wild-type virus in the presence of the antipoxvirus drug isatin-beta-thiosemicarbazone, a treatment known to significantly increase the amount of double-stranded RNA late during infection, also causes pronounced apoptosis of infected cells. The effects observed with recombinant virus-derived RNase L or with the endogenous enzyme are specific, since apoptosis also occurs in cells derived from mice lacking the IFN-induced protein kinase (PKR). The apoptosis antagonist Bcl-2 prevents induction of cell death by RNase L activation. Apoptosis of mammalian cells by RNase L activation could be a mechanism mediating anticellular actions of IFN.

  12. Parvovirus B19-Induced Apoptosis of Hepatocytes

    PubMed Central

    Poole, Brian D.; Karetnyi, Yuory V.; Naides, Stanley J.

    2004-01-01

    Parvovirus B19 (B19 virus) can persist in multiple tissues and has been implicated in a variety of diseases, including acute fulminant liver failure. The mechanism by which B19 virus induces liver failure remains unknown. Hepatocytes are nonpermissive for B19 virus replication. We previously reported that acute fulminant liver failure associated with B19 virus infection was characterized by hepatocellular dropout. We inoculated both primary hepatocytes and the hepatocellular carcinoma cell line Hep G2 with B19 virus and assayed for apoptosis by using annexin V staining. Reverse transcriptase PCR analysis and immunofluorescence demonstrated that B19 virus was able to infect the cells and produce its nonstructural protein but little or no structural capsid protein. Infection with B19 virus induced means of 28% of Hep G2 cells and 10% of primary hepatocytes to undergo apoptosis, which were four- and threefold increases, respectively, over background levels. Analysis of caspase involvement showed that B19 virus-inoculated cultures had a significant increase in the number of cells with active caspase 3. Inhibition studies demonstrated that caspases 3 and 9, but not caspase 8, are required for B19 virus-induced apoptosis. PMID:15220451

  13. Herbal Medicine as Inducers of Apoptosis in Cancer Treatment

    PubMed Central

    Safarzadeh, Elham; Sandoghchian Shotorbani, Siamak; Baradaran, Behzad

    2014-01-01

    Cancer is uncontrolled growth of abnormal cells in the body. Nowadays, cancer is considered as a human tragedy and one of the most prevalent diseases in the wide, and its mortality resulting from cancer is being increased. It seems necessary to identify new strategies to prevent and treat such a deadly disease. Control survival and death of cancerous cell are important strategies in the management and therapy of cancer. Anticancer agents should kill the cancerous cell with the minimal side effect on normal cells that is possible through the induction of apoptosis. Apoptosis is known as programmed cell death in both normal and damaged tissues. This process includes some morphologically changes in cells such as rapid condensation and budding of the cell, formation of membrane-enclosed apoptotic bodies with well-preserved organelles. Induction of apoptosis is one of the most important markers of cytotoxic antitumor agents. Some natural compounds including plants induce apoptotic pathways that are blocked in cancer cells through various mechanisms in cancer cells. Multiple surveys reported that people with cancer commonly use herbs or herbal products. Vinca Alkaloids, Texans, podo phyllotoxin, Camptothecins have been clinically used as Plant derived anticancer agents. The present review summarizes the literature published so far regarding herbal medicine used as inducers of apoptosis in cancer. PMID:25364657

  14. Statin-induced apoptosis and skeletal myopathy.

    PubMed

    Dirks, Amie J; Jones, Kimberly M

    2006-12-01

    Over 100 million prescriptions were filled for statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) in 2004. Statins were originally developed to lower plasma cholesterol in patients with hypercholesterolemia and are the most effective drugs on the market in doing so. Because of the discovered pleiotropic effects of statins, the use has expanded to the treatment of many other conditions, including ventricular arrythmias, idiopathic dilated cardiomyopathy, cancer, osteoporosis, and diabetes. The elderly population is growing. Therefore, it is estimated that the number of statin users will also increase. Fortunately, the use of statins is relatively safe with few side effects. Myopathy is the most common side effect with symptoms ranging from fatigue, weakness, and pain to symptoms associated with rhabdomyolysis which is a life-threatening condition. The development of statin-induced rhabdomyolysis is rare occurring in approximately 0.1% of patients; however, the occurrence of less severe symptoms is underreported and may be 1-5% or more. Physical exercise appears to increase the likelihood for the development of myopathy in patients taking statins. It is thought that as many as 25% of statin users who exercise may experience muscle fatigue, weakness, aches, and cramping due to statin therapy and potentially dismissed by the patient and physician. The mechanisms causing statin-induced myopathy have not been elucidated; however, research efforts suggest that apoptosis of myofibers may contribute. The mitochondrion is considered a regulatory center of apoptosis, and therefore its role in the induction of apoptosis will be discussed as well as the mechanism of statin-induced apoptosis and myopathy.

  15. Chronic Treatment with a Water-Soluble Extract from the Culture Medium of Ganoderma lucidum Mycelia Prevents Apoptosis and Necroptosis in Hypoxia/Ischemia-Induced Injury of Type 2 Diabetic Mouse Brain

    PubMed Central

    Xuan, Meiyan; Okazaki, Mari; Iwata, Naohiro; Asano, Satoshi; Kamiuchi, Shinya; Matsuzaki, Hirokazu; Sakamoto, Takeshi; Miyano, Yoshiyuki; Iizuka, Hiroshi; Hibino, Yasuhide

    2015-01-01

    Type 2 diabetes mellitus has been known to increase systemic oxidative stress by chronic hyperglycemia and visceral obesity and aggravate cerebral ischemic injury. On the basis of our previous study regarding a water-soluble extract from the culture medium of Ganoderma lucidum mycelia (designed as MAK), which exerts antioxidative and neuroprotective effects, the present study was conducted to evaluate the preventive effects of MAK on apoptosis and necroptosis (a programmed necrosis) induced by hypoxia/ischemia (H/I) in type 2 diabetic KKAy mice. H/I was induced by a combination of unilateral common carotid artery ligation with hypoxia (8% O2 for 20 min) and subsequent reoxygenation. Pretreatment with MAK (1 g/kg, p.o.) for a week significantly reduced H/I-induced neurological deficits and brain infarction volume assessed at 24 h of reoxygenation. Histochemical analysis showed that MAK significantly suppressed superoxide production, neuronal cell death, and vacuolation in the ischemic penumbra, which was accompanied by a decrease in the numbers of TUNEL- or cleaved caspase-3-positive cells. Furthermore, MAK decreased the expression of receptor-interacting protein kinase 3 mRNA and protein, a key molecule for necroptosis. These results suggest that MAK confers resistance to apoptotic and necroptotic cell death and relieves H/I-induced cerebral ischemic injury in type 2 diabetic mice. PMID:25945116

  16. Palmitate causes endoplasmic reticulum stress and apoptosis in human mesenchymal stem cells: prevention by AMPK activator.

    PubMed

    Lu, Jun; Wang, Qinghua; Huang, Lianghu; Dong, Huiyue; Lin, Lingjing; Lin, Na; Zheng, Feng; Tan, Jianming

    2012-11-01

    Elevated circulating saturated fatty acids concentration is commonly associated with poorly controlled diabetes. The highly prevalent free fatty acid palmitate could induce apoptosis in various cell types, but little is known about its effects on human mesenchymal stem cells (MSCs). Here, we report that prolonged exposure to palmitate induces human bone marrow-derived MSC (hBM-MSC) and human umbilical cord-derived MSC apoptosis. We investigated the role of endoplasmic reticulum (ER) stress, which is known to promote cell apoptosis. Palmitate activated XBP1 splicing, elF2α (eukaryotic translation initiation factor 2α) phosphorylation, and CHOP, ATF4, BiP, and GRP94 transcription in hBM-MSCs. ERK1/2 and p38 MAPK phosphorylation were also induced by palmitate in hBM-MSCs. A selective p38 inhibitor inhibited palmitate activation of the ER stress, whereas the ERK1/2 inhibitors had no effect. The AMP-activated protein kinase activator aminoimidazole carboxamide ribonucleotide blocked palmitate-induced ER stress and apoptosis. These findings suggest that palmitate induces ER stress and ERK1/2 and p38 activation in hBM-MSCs, and AMP-activated protein kinase activator prevents the deleterious effects of palmitate by inhibiting ER stress and apoptosis.

  17. HIV increases HCV-induced hepatocyte apoptosis

    PubMed Central

    Jang, Jae Young; Shao, Run-Xuan; Lin, Wenyu; Weinberg, Ethan; Chung, Woo Jin; Tsai, Wei Lun; Zhao, Hong; Goto, Kaku; Zhang, Leiliang; Mendez-Navarro, Jorge; Jilg, Nikolaus; Peng, Lee F.; Brockman, Mark A.; Chung, Raymond T.

    2010-01-01

    Background and Aims HCV related liver disease is one of the most important complications in persons with HIV, with accelerated fibrosis progression in coinfected persons compared to those with HCV alone. We hypothesized that HIV coinfection increases HCV related hepatocyte apoptosis and that HCV and HIV influence TRAIL signaling in hepatocytes. Methods We analyzed the effect of HIV on JFH1-infected Huh 7.5.1 cells. Apoptosis was measured by Caspase-Glo 3/7 assay and Western blot for cleaved PARP. TRAIL, TRAIL receptor 1 (DR4) and 2 (DR5) mRNA and protein levels were assessed by real-time PCR and Western blot. We also investigated activation of caspase pathways using caspase inhibitors and assessed expression of Bid and cytochrome C. Results We found increased caspase 3/7 activity and cleaved PARP in JFH1 HCV-infected Huh7.5.1 cells in the presence of heat-inactivated HIV compared to Huh7.5.1 cells infected with JFH1 or exposed to heat-inactivated HIV alone. Both DR4 and DR5 mRNA and protein expression were increased in JFH1-infected cells in the presence of inactivated HIV compared to Huh7.5.1 cells infected with JFH1 or exposed to heat-inactivated HIV alone. Pancaspase, Caspase-8, and caspase-9 inhibition blocked apoptosis induced by HCV, inactivated HIV and HCV plus inactivated HIV. A caspase-9 inhibitor blocked apoptosis induced by HCV, HIV and HCV-HIV comparably to pancaspase and caspase-8 inhibitors. HCV induced the activation of Bid cleavage and cytochrome C release. The addition of HIV substantially augmented this induction. Conclusions Our findings indicate that hepatocyte apoptosis is increased in the presence of HCV and HIV compared to HCV or HIV alone, and that this increase is mediated by DR4 and DR5 up-regulation. They provide an additional mechanism for the observed accelerated liver disease progression observed in HCV-HIV coinfection. PMID:21146890

  18. Sphingosine-induced apoptosis is dependent on lysosomal proteases.

    PubMed Central

    Kågedal, K; Zhao, M; Svensson, I; Brunk, U T

    2001-01-01

    We propose a new mechanism for sphingosine-induced apoptosis, involving relocation of lysosomal hydrolases to the cytosol. Owing to its lysosomotropic properties, sphingosine, which is also a detergent, especially when protonated, accumulates by proton trapping within the acidic vacuolar apparatus, where most of its action as a detergent would be exerted. When sphingosine was added in low-to-moderate concentrations to Jurkat and J774 cells, partial lysosomal rupture occurred dose-dependently, starting within a few minutes. This phenomenon preceded caspase activation, as well as changes of mitochondrial membrane potential. High sphingosine doses rapidly caused extensive lysosomal rupture and ensuing necrosis, without antecedent apoptosis or caspase activation. The sphingosine effect was prevented by pre-treatment with another, non-toxic, lysosomotropic base, ammonium chloride, at 10 mM. The lysosomal protease inhibitors, pepstatin A and epoxysuccinyl-L-leucylamido-3-methyl-butane ethyl ester ('E-64d'), inhibited markedly sphingosine-induced caspase activity to almost the same degree as the general caspase inhibitor benzyloxycarbonyl-Val-Ala-DL-Asp-fluoromethylketone ('Z-VAD-FMK'), although they did not by themselves inhibit caspases. We conclude that cathepsin D and one or more cysteine proteases, such as cathepsins B or L, are important mediators of sphingosine-induced apoptosis, working upstream of the caspase cascade and mitochondrial membrane-potential changes. PMID:11583579

  19. Tanshinone IIA blocks dexamethasone-induced apoptosis in osteoblasts through inhibiting Nox4-derived ROS production.

    PubMed

    Li, Jia; He, Chongru; Tong, Wenwen; Zou, Yuming; Li, Dahe; Zhang, Chen; Xu, Weidong

    2015-01-01

    Apoptosis of osteoblasts caused by glucocorticoids has been identified as an important contributor to the development of osteoporosis. Tanshinone IIA (Tan), an active ingredient extracted from the rhizome of the Salvia miltiorrhiza Bunge (Danshen), has been reported to cast positive effects on osteoporosis. However, the precise mechanisms accounting this action remain elusive. In this study, by using osteoblastic MC3T3-E1 cells as a model, we confirmed the protective effects of Tan against dexamethasone (Dex)-induced cell apoptosis and further clarified its molecular mechanism of action. Our results showed that treatment with Dex caused cell injury, increased cytosol cytochrome c level and Nox expression, induced apoptosis in caspase-9-dependent manner, and enhanced reactive oxygen species (ROS) production. Tan attenuated these deleterious consequence triggered by Dex. Moreover, Dex-induced ROS production and cell injury were inhibited by antioxidant, NADPH oxidases inhibitors, Nox4 inhibitor, and Nox4 small interfering RNA (siRNA). Overexpression of Nox4 almost abolished the inhibitory effect of Tan on Dex-induced cell injury and apoptosis. The results also demonstrated significant involvement of Nox4 in the Dex-induced apoptosis. Nox4-derived ROS led to apoptosis through activation of intrinsic mitochondrial pathway. Additionally, we evidenced that Tan reversed Dex-induced apoptosis via inactivation of Nox4. The present findings suggest that inhibition of Nox4 may be a novel therapeutic approach of Tan to prevent against glucocorticoids-induced osteoblasts apoptosis and osteoporosis.

  20. Tanshinone IIA blocks dexamethasone-induced apoptosis in osteoblasts through inhibiting Nox4-derived ROS production

    PubMed Central

    Li, Jia; He, Chongru; Tong, Wenwen; Zou, Yuming; Li, Dahe; Zhang, Chen; Xu, Weidong

    2015-01-01

    Apoptosis of osteoblasts caused by glucocorticoids has been identified as an important contributor to the development of osteoporosis. Tanshinone IIA (Tan), an active ingredient extracted from the rhizome of the Salvia miltiorrhiza Bunge (Danshen), has been reported to cast positive effects on osteoporosis. However, the precise mechanisms accounting this action remain elusive. In this study, by using osteoblastic MC3T3-E1 cells as a model, we confirmed the protective effects of Tan against dexamethasone (Dex)-induced cell apoptosis and further clarified its molecular mechanism of action. Our results showed that treatment with Dex caused cell injury, increased cytosol cytochrome c level and Nox expression, induced apoptosis in caspase-9-dependent manner, and enhanced reactive oxygen species (ROS) production. Tan attenuated these deleterious consequence triggered by Dex. Moreover, Dex-induced ROS production and cell injury were inhibited by antioxidant, NADPH oxidases inhibitors, Nox4 inhibitor, and Nox4 small interfering RNA (siRNA). Overexpression of Nox4 almost abolished the inhibitory effect of Tan on Dex-induced cell injury and apoptosis. The results also demonstrated significant involvement of Nox4 in the Dex-induced apoptosis. Nox4-derived ROS led to apoptosis through activation of intrinsic mitochondrial pathway. Additionally, we evidenced that Tan reversed Dex-induced apoptosis via inactivation of Nox4. The present findings suggest that inhibition of Nox4 may be a novel therapeutic approach of Tan to prevent against glucocorticoids-induced osteoblasts apoptosis and osteoporosis. PMID:26722597

  1. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  2. Astaxanthin prevents pulmonary fibrosis by promoting myofibroblast apoptosis dependent on Drp1-mediated mitochondrial fission

    PubMed Central

    Zhang, Jinjin; Xu, Pan; Wang, Youlei; Wang, Meirong; Li, Hongbo; Lin, Shengcui; Mao, Cuiping; Wang, Bingsi; Song, Xiaodong; Lv, Changjun

    2015-01-01

    Promotion of myofibroblast apoptosis is a potential therapeutic strategy for pulmonary fibrosis. This study investigated the antifibrotic effect of astaxanthin on the promotion of myofibroblast apoptosis based on dynamin-related protein-1 (Drp1)-mediated mitochondrial fission in vivo and in vitro. Results showed that astaxanthin can inhibit lung parenchymal distortion and collagen deposition, as well as promote myofibroblast apoptosis. Astaxanthin demonstrated pro-apoptotic function in myofibroblasts by contributing to mitochondrial fission, thereby leading to apoptosis by increasing the Drp1 expression and enhancing Drp1 translocation into the mitochondria. Two specific siRNAs were used to demonstrate that Drp1 is necessary to promote astaxanthin-induced mitochondrial fission and apoptosis in myofibroblasts. Drp1-associated genes, such as Bcl-2-associated X protein, cytochrome c, tumour suppressor gene p53 and p53-up-regulated modulator of apoptosis, were highly up-regulated in the astaxanthin group compared with those in the sham group. This study revealed that astaxanthin can prevent pulmonary fibrosis by promoting myofibroblast apoptosis through a Drp1-dependent molecular pathway. Furthermore, astaxanthin provides a potential therapeutic value in pulmonary fibrosis treatment. PMID:26119034

  3. Astaxanthin prevents pulmonary fibrosis by promoting myofibroblast apoptosis dependent on Drp1-mediated mitochondrial fission.

    PubMed

    Zhang, Jinjin; Xu, Pan; Wang, Youlei; Wang, Meirong; Li, Hongbo; Lin, Shengcui; Mao, Cuiping; Wang, Bingsi; Song, Xiaodong; Lv, Changjun

    2015-09-01

    Promotion of myofibroblast apoptosis is a potential therapeutic strategy for pulmonary fibrosis. This study investigated the antifibrotic effect of astaxanthin on the promotion of myofibroblast apoptosis based on dynamin-related protein-1 (Drp1)-mediated mitochondrial fission in vivo and in vitro. Results showed that astaxanthin can inhibit lung parenchymal distortion and collagen deposition, as well as promote myofibroblast apoptosis. Astaxanthin demonstrated pro-apoptotic function in myofibroblasts by contributing to mitochondrial fission, thereby leading to apoptosis by increasing the Drp1 expression and enhancing Drp1 translocation into the mitochondria. Two specific siRNAs were used to demonstrate that Drp1 is necessary to promote astaxanthin-induced mitochondrial fission and apoptosis in myofibroblasts. Drp1-associated genes, such as Bcl-2-associated X protein, cytochrome c, tumour suppressor gene p53 and p53-up-regulated modulator of apoptosis, were highly up-regulated in the astaxanthin group compared with those in the sham group. This study revealed that astaxanthin can prevent pulmonary fibrosis by promoting myofibroblast apoptosis through a Drp1-dependent molecular pathway. Furthermore, astaxanthin provides a potential therapeutic value in pulmonary fibrosis treatment.

  4. Mdivi-1 prevents apoptosis induced by ischemia-reperfusion injury in primary hippocampal cells via inhibition of reactive oxygen species-activated mitochondrial pathway.

    PubMed

    Wang, Jinying; Wang, Peng; Li, Shuhong; Wang, Shilei; Li, Yu; Liang, Nan; Wang, Min

    2014-07-01

    Apoptosis is one of the major mechanisms of neuronal injury during ischemic-reperfusion (I/R). Mitochondrial division inhibitor (mdivi-1) is a selective inhibitor of mitochondrial fission protein Drp1. The previous experiments support that mdivi-1 reduce I/R injury in the heart model of rat, but the neuroprotective effect of the mdivi-1 is not yet clearly defined at the cellular levels in brain. In our present study, we estimated a brain model of I/R injury in vitro by subjecting oxygen and glucose deprivation (OGD) followed by reoxygenation to the cultured rat primary hippocampal cells, which aimed to find the neuroprotective mechanism of mdivi-1. The cell was pretreated with mdivi-1 for 40 minutes and then ischemia for 6 hours followed by reperfusion for 20 hours. The redox state, cell apoptosis, and expression of Drp1, Bcl-2, Bax, and cytochrome C proteins were measured. The data showed that administration of mdivi-1 at the doses of 50 μM significantly reduced oxidative stress, attenuated cell apoptosis, upregulated Bcl-2 expression, and downregulated Drp1, Bax, and cytochrome C expression. The results suggested that mdivi-1 protected brain from OGD reperfusion injury, which through suppressing the ROS initiated mitochondrial pathway.

  5. Alginate Oligosaccharide Prevents Acute Doxorubicin Cardiotoxicity by Suppressing Oxidative Stress and Endoplasmic Reticulum-Mediated Apoptosis.

    PubMed

    Guo, Jun-Jie; Ma, Lei-Lei; Shi, Hong-Tao; Zhu, Jian-Bing; Wu, Jian; Ding, Zhi-Wen; An, Yi; Zou, Yun-Zeng; Ge, Jun-Bo

    2016-12-20

    Doxorubicin (DOX) is a highly potent chemotherapeutic agent, but its usage is limited by dose-dependent cardiotoxicity. DOX-induced cardiotoxicity involves increased oxidative stress and activated endoplasmic reticulum-mediated apoptosis. Alginate oligosaccharide (AOS) is a non-immunogenic, non-toxic and biodegradable polymer, with anti-oxidative, anti-inflammatory and anti-endoplasmic reticulum stress properties. The present study examined whether AOS pretreatment could protect against acute DOX cardiotoxicity, and the underlying mechanisms focused on oxidative stress and endoplasmic reticulum-mediated apoptosis. We found that AOS pretreatment markedly increased the survival rate of mice insulted with DOX, improved DOX-induced cardiac dysfunction and attenuated DOX-induced myocardial apoptosis. AOS pretreatment mitigated DOX-induced cardiac oxidative stress, as shown by the decreased expressions of gp91 (phox) and 4-hydroxynonenal (4-HNE). Moreover, AOS pretreatment significantly decreased the expression of Caspase-12, C/EBP homologous protein (CHOP) (markers for endoplasmic reticulum-mediated apoptosis) and Bax (a downstream molecule of CHOP), while up-regulating the expression of anti-apoptotic protein Bcl-2. Taken together, these findings identify AOS as a potent compound that prevents acute DOX cardiotoxicity, at least in part, by suppression of oxidative stress and endoplasmic reticulum-mediated apoptosis.

  6. Alginate Oligosaccharide Prevents Acute Doxorubicin Cardiotoxicity by Suppressing Oxidative Stress and Endoplasmic Reticulum-Mediated Apoptosis

    PubMed Central

    Guo, Jun-Jie; Ma, Lei-Lei; Shi, Hong-Tao; Zhu, Jian-Bing; Wu, Jian; Ding, Zhi-Wen; An, Yi; Zou, Yun-Zeng; Ge, Jun-Bo

    2016-01-01

    Doxorubicin (DOX) is a highly potent chemotherapeutic agent, but its usage is limited by dose-dependent cardiotoxicity. DOX-induced cardiotoxicity involves increased oxidative stress and activated endoplasmic reticulum-mediated apoptosis. Alginate oligosaccharide (AOS) is a non-immunogenic, non-toxic and biodegradable polymer, with anti-oxidative, anti-inflammatory and anti-endoplasmic reticulum stress properties. The present study examined whether AOS pretreatment could protect against acute DOX cardiotoxicity, and the underlying mechanisms focused on oxidative stress and endoplasmic reticulum-mediated apoptosis. We found that AOS pretreatment markedly increased the survival rate of mice insulted with DOX, improved DOX-induced cardiac dysfunction and attenuated DOX-induced myocardial apoptosis. AOS pretreatment mitigated DOX-induced cardiac oxidative stress, as shown by the decreased expressions of gp91 (phox) and 4-hydroxynonenal (4-HNE). Moreover, AOS pretreatment significantly decreased the expression of Caspase-12, C/EBP homologous protein (CHOP) (markers for endoplasmic reticulum-mediated apoptosis) and Bax (a downstream molecule of CHOP), while up-regulating the expression of anti-apoptotic protein Bcl-2. Taken together, these findings identify AOS as a potent compound that prevents acute DOX cardiotoxicity, at least in part, by suppression of oxidative stress and endoplasmic reticulum-mediated apoptosis. PMID:27999379

  7. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells.

    PubMed

    Qin, Guiqi; Zhao, ChuBiao; Zhang, Lili; Liu, Hongyu; Quan, Yingyao; Chai, Liuying; Wu, Shengnan; Wang, Xiaoping; Chen, Tongsheng

    2015-08-01

    This report is designed to dissect the detail molecular mechanism by which dihydroartemisinin (DHA), a derivative of artemisinin, induces apoptosis in human hepatocellular carcinoma (HCC) cells. DHA induced a loss of the mitochondrial transmemberane potential (ΔΨm), release of cytochrome c, activation of caspases, and externalization of phosphatidylserine indicative of apoptosis induction. Compared with the modest inhibitory effects of silencing Bax, silencing Bak largely prevented DHA-induced ΔΨm collapse and apoptosis though DHA induced a commensurable activation of Bax and Bak, demonstrating a key role of the Bak-mediated intrinsic apoptosis pathway. DHA did not induce Bid cleavage and translocation from cytoplasm to mitochondria and had little effects on the expressions of Puma and Noxa, but did increase Bim and Bak expressions and decrease Mcl-1 expression. Furthermore, the cytotoxicity of DHA was remarkably reduced by silencing Bim, and modestly but significantly reduced by silencing Puma or Noxa. Silencing Bim or Noxa preferentially reduced DHA-induced Bak activation, while silencing Puma preferentially reduced DHA-induced Bax activation, demonstrating that Bim and to a lesser extent Noxa act as upstream mediators to trigger the Bak-mediated intrinsic apoptosis pathway. In addition, silencing Mcl-1 enhanced DHA-induced Bak activation and apoptosis. Taken together, our data demonstrate a crucial role of Bim in preferentially regulating the Bak/Mcl-1 rheostat to mediate DHA-induced apoptosis in HCC cells.

  8. Akt inhibition improves irinotecan treatment and prevents cell emergence by switching the senescence response to apoptosis

    PubMed Central

    Vétillard, Alexandra; Jonchère, Barbara; Moreau, Marie; Toutain, Bertrand; Henry, Cécile; Fontanel, Simon; Bernard, Anne-Charlotte; Campone, Mario; Guette, Catherine; Coqueret, Olivier

    2015-01-01

    Activated in response to chemotherapy, senescence is a tumor suppressive mechanism that induces a permanent loss of proliferation. However, in response to treatment, it is not really known how cells can escape senescence and how irreversible or incomplete this pathway is. We have recently described that cells that escape senescence are more transformed than non-treated parental cells, they resist anoikis and rely on Mcl-1. In this study, we further characterize this emergence in response to irinotecan, a first line treatment used in colorectal cancer. Our results indicate that Akt was activated as a feedback pathway during the early step of senescence. The inhibition of the kinase prevented cell emergence and improved treatment efficacy, both in vitro and in vivo. This improvement was correlated with senescence inhibition, p21waf1 downregulation and a concomitant activation of apoptosis due to Noxa upregulation and Mcl-1 inactivation. The inactivation of Noxa prevented apoptosis and increased the number of emergent cells. Using either RNA interference or p21waf1-deficient cells, we further confirmed that an intact p53-p21-senescence pathway favored cell emergence and that its downregulation improved treatment efficacy through apoptosis induction. Therefore, although senescence is an efficient suppressive mechanism, it also generates more aggressive cells as a consequence of apoptosis inhibition. We therefore propose that senescence-inducing therapies should be used sequentially with drugs favoring cell death such as Akt inhibitors. This should reduce cell emergence and tumor relapse through a combined induction of senescence and apoptosis. PMID:26485768

  9. HIV-1 protease-induced apoptosis

    PubMed Central

    2014-01-01

    Background Apoptosis is one of the presumptive causes of CD4+ T cell depletion during HIV infection and progression to AIDS. However, the precise role of HIV-1 in this process remains unexplained. HIV-1 protease (PR) has been suggested as a possible factor, but a direct link between HIV-1 PR enzymatic activity and apoptosis has not been established. Results Here, we show that expression of active HIV-1 PR induces death in HeLa and HEK-293 cells via the mitochondrial apoptotic pathway. This conclusion is based on in vivo observations of the direct localization of HIV-1 PR in mitochondria, a key player in triggering apoptosis. Moreover, we observed an HIV-1 PR concentration-dependent decrease in mitochondrial membrane potential and the role of HIV-1 PR in activation of caspase 9, PARP cleavage and DNA fragmentation. In addition, in vitro data demonstrated that HIV-1 PR mediates cleavage of mitochondrial proteins Tom22, VDAC and ANT, leading to release of AIF and Hsp60 proteins. By using yeast two-hybrid screening, we also identified a new HIV-1 PR interaction partner, breast carcinoma-associated protein 3 (BCA3). We found that BCA3 accelerates p53 transcriptional activity on the bax promoter, thus elevating the cellular level of pro-apoptotic Bax protein. Conclusion In summary, our results describe the involvement of HIV-1 PR in apoptosis, which is caused either by a direct effect of HIV-1 PR on mitochondrial membrane integrity or by its interaction with cellular protein BCA3. PMID:24886575

  10. Drosophila p53 isoforms differentially regulate apoptosis and apoptosis-induced proliferation.

    PubMed

    Dichtel-Danjoy, M-L; Ma, D; Dourlen, P; Chatelain, G; Napoletano, F; Robin, M; Corbet, M; Levet, C; Hafsi, H; Hainaut, P; Ryoo, H D; Bourdon, J-C; Mollereau, B

    2013-01-01

    Irradiated or injured cells enter apoptosis, and in turn, promote proliferation of surrounding unaffected cells. In Drosophila, apoptotic cells have an active role in proliferation, where the caspase Dronc and p53 induce mitogen expression and growth in the surrounding tissues. The Drosophila p53 gene structure is conserved and encodes at least two protein isoforms: a full-length isoform (Dp53) and an N-terminally truncated isoform (DΔNp53). Historically, DΔNp53 was the first p53 isoform identified and was thought to be responsible for all p53 biological activities. It was shown that DΔNp53 induces apoptosis by inducing the expression of IAP antagonists, such as Reaper. Here we investigated the roles of Dp53 and DΔNp53 in apoptosis and apoptosis-induced proliferation. We found that both isoforms were capable of activating apoptosis, but that they each induced distinct IAP antagonists. Expression of DΔNp53 induced Wingless (Wg) expression and enhanced proliferation in both 'undead cells' and in 'genuine' apoptotic cells. In contrast to DΔNp53, Dp53 did not induce Wg expression in the absence of the endogenous p53 gene. Thus, we propose that DΔNp53 is the main isoform that regulates apoptosis-induced proliferation. Understanding the roles of Drosophila p53 isoforms in apoptosis and in apoptosis-induced proliferation may shed new light on the roles of p53 isoforms in humans, with important implications in cancer biology.

  11. Apoptosis induced by a human milk protein.

    PubMed

    Håkansson, A; Zhivotovsky, B; Orrenius, S; Sabharwal, H; Svanborg, C

    1995-08-15

    To the breast-fed infant, human milk is more than a source of nutrients; it furnishes a wide array of molecules that restrict microbes, such as antibodies, bactericidins, and inhibitors of bacterial adherence. However, it has rarely been considered that human milk may also contain substances bioactive toward host cells. While investigating the effect of human milk on bacterial adherence to a human lung cancer cell line, we were surprised to discover that the milk killed the cells. Analysis of this effect revealed that a component of milk in a particular physical state--multimeric alpha-lact-albumin--is a potent Ca(2+)-elevating and apoptosis-inducing agent with broad, yet selective, cytotoxic activity. Multimeric alpha-lactalbumin killed all transformed, embryonic, and lymphoid cells tested but spared mature epithelial elements. These findings raise the possibility that milk contributes to mucosal immunity not only by furnishing antimicrobial molecules but also by policing the function of lymphocytes and epithelium. Finally, analysis of the mechanism by which multimeric alpha-lactalbumin induces apoptosis in transformed epithelial cells could lead to the design of antitumor agents.

  12. Hyperthermia: an effective strategy to induce apoptosis in cancer cells.

    PubMed

    Ahmed, Kanwal; Tabuchi, Yoshiaki; Kondo, Takashi

    2015-11-01

    Heat has been used as a medicinal and healing modality throughout human history. The combination of hyperthermia (HT) with radiation and anticancer agents has been used clinically and has shown positive results to a certain extent. However, the clinical results of HT treatment alone have been only partially satisfactory. Cell death following HT treatment is a function of both temperature and treatment duration. HT induces cancer cell death through apoptosis; the degree of apoptosis and the apoptotic pathway vary in different cancer cell types. HT-induced reactive oxygen species production are responsible for apoptosis in various cell types. However, the underlying mechanism of signal transduction and the genes related to this process still need to be elucidated. In this review, we summarize the molecular mechanism of apoptosis induced by HT, enhancement of heat-induced apoptosis, and the genetic network involved in HT-induced apoptosis.

  13. The mitochondrial pathway of anesthetic isoflurane-induced apoptosis.

    PubMed

    Zhang, Yiying; Dong, Yuanlin; Wu, Xu; Lu, Yan; Xu, Zhipeng; Knapp, Andrew; Yue, Yun; Xu, Tiejun; Xie, Zhongcong

    2010-02-05

    The common inhalation anesthetic isoflurane has been shown to induce apoptosis, which then leads to accumulation of beta-amyloid protein, the hallmark feature of Alzheimer disease neuropathogenesis. The underlying molecular mechanism of the isoflurane-induced apoptosis is largely unknown. We, therefore, set out to assess whether isoflurane can induce apoptosis by regulating Bcl-2 family proteins, enhancing reactive oxygen species (ROS) accumulation, and activating the mitochondrial pathway of apoptosis. We performed these studies in cultured cells, primary neurons, and mice. Here we show for the first time that treatment with 2% isoflurane for 6 h can increase pro-apoptotic factor Bax levels, decrease anti-apoptotic factor Bcl-2 levels, increase ROS accumulation, facilitate cytochrome c release from the mitochondria to the cytosol, induce activation of caspase-9 and caspase-3, and finally cause apoptosis as compared with the control condition. We have further found that isoflurane can increase the mRNA levels of Bax and reduce the mRNA levels of Bcl-2. The isoflurane-induced ROS accumulation can be attenuated by the intracellular calcium chelator BAPTA. Finally, the anesthetic desflurane does not induce activation of mitochondrial pathway of apoptosis. These results suggest that isoflurane may induce apoptosis through Bcl-2 family proteins- and ROS-associated mitochondrial pathway of apoptosis. These findings, which have identified at least partially the molecular mechanism by which isoflurane induces apoptosis, will promote more studies aimed at studying the potential neurotoxic effects of anesthetics.

  14. Pinocembrin prevents glutamate-induced apoptosis in SH-SY5Y neuronal cells via decrease of bax/bcl-2 ratio.

    PubMed

    Gao, Mei; Zhang, Wen-Cui; Liu, Qing-Shan; Hu, Juan-Juan; Liu, Geng-Tao; Du, Guan-Hua

    2008-09-04

    Pinocembrin is the most abundant flavonoids in propolis, and has been proven to have antioxidant, antibacterial and anti-inflammatory property. To assess the protective effects of pinocembrin on neurons, SH-SY5Y neuronal cells were pretreated with pinocembrin for 2 h followed by co-treatment with glutamate (2 mM) for 12 h. Cell viability was determined by(3,4,5-dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide assay, and apoptosis was confirmed by cell morphology, capillary zone electrophoresis and flow cytometry assay. Cell morphology was evaluated with Hoechst33258/PI dye. Treatment with pinocembrin (10(-5), 10(-6), 10(-7) mol/l) increased cell viability dose-dependently, inhibited LDH release and attenuated apoptosis. Intracellular free [Ca(2+)] was increased after glutamate exposure, and this increase was attenuated in cells treated with pinocembrin. bax mRNA expression increased remarkably following glutamate exposure and pinocembrin treatment manifested a reduction effect. bcl-2 mRNA expression changes were not detected in groups with or without pinocembrin. Western blotting results indicated that pinocembrin treatment reduced the expression of Bax and had no effect on Bcl-2, thus decreased the Bax-Bcl-2 ratio, which is in consistent with the gene expression result. Pinocembrin could also down-regulate the expression of p53 protein, and inhibit the release of cytochrome c from mitochondria to cytosol. Thus we conclude that pinocembrin exerts its neuroprotective effects in glutamate injury model partly by inhibiting p53 expression, thus Bax-Bcl-2 ratio, and the release of cytochrome c.

  15. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis.

    PubMed Central

    Mosser, D D; Caron, A W; Bourget, L; Denis-Larose, C; Massie, B

    1997-01-01

    Resistance to stress-induced apoptosis was examined in cells in which the expression of hsp70 was either constitutively elevated or inducible by a tetracycline-regulated transactivator. Heat-induced apoptosis was blocked in hsp70-expressing cells, and this was associated with reduced cleavage of the common death substrate protein poly(ADP-ribose) polymerase (PARP). Heat-induced cell death was correlated with the activation of the stress-activated protein kinase SAPK/JNK (c-Jun N-terminal kinase). Activation of SAPK/JNK was strongly inhibited in cells in which hsp70 was induced to a high level, indicating that hsp70 is able to block apoptosis by inhibiting signaling events upstream of SAPK/JNK activation. In contrast, SAPK/JNK activation was not inhibited by heat shock in cells with constitutively elevated levels of hsp70. Cells that constitutively overexpress hsp70 resist apoptosis induced by ceramide, a lipid signaling molecule that is generated by apoptosis-inducing treatments and is linked to SAPK/JNK activation. Similar to heat stress, resistance to ceramide-induced apoptosis occurs in spite of strong SAPK/JNK activation. Therefore, hsp70 is also able to inhibit apoptosis at some point downstream of SAPK/JNK activation. Since PARP cleavage is prevented in both cell lines, these results suggest that hsp70 is able to prevent the effector steps of apoptotic cell death. Processing of the CED-3-related protease caspase-3 (CPP32/Yama/apopain) is inhibited in hsp70-expressing cells; however, the activity of the mature enzyme is not affected by hsp70 in vitro. Caspase processing may represent a critical heat-sensitive target leading to cell death that is inhibited by the chaperoning function of hsp70. The inhibition of SAPK/JNK signaling and apoptotic protease effector steps by hsp70 likely contributes to the resistance to stress-induced apoptosis seen in transiently induced thermotolerance. PMID:9271409

  16. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis.

    PubMed

    Inoue, Shigeaki; Unsinger, Jacqueline; Davis, Christopher G; Muenzer, Jared T; Ferguson, Thomas A; Chang, Katherine; Osborne, Dale F; Clark, Andrew T; Coopersmith, Craig M; McDunn, Jonathan E; Hotchkiss, Richard S

    2010-02-01

    IL-15 is a pluripotent antiapoptotic cytokine that signals to cells of both the innate and adaptive immune system and is regarded as a highly promising immunomodulatory agent in cancer therapy. Sepsis is a lethal condition in which apoptosis-induced depletion of immune cells and subsequent immunosuppression are thought to contribute to morbidity and mortality. This study tested the ability of IL-15 to block apoptosis, prevent immunosuppression, and improve survival in sepsis. Mice were made septic using cecal ligation and puncture or Pseudomonas aeruginosa pneumonia. The experiments comprised a 2 x 2 full factorial design with surgical sepsis versus sham and IL-15 versus vehicle. In addition to survival studies, splenic cellularity, canonical markers of activation and proliferation, intracellular pro- and antiapoptotic Bcl-2 family protein expression, and markers of immune cell apoptosis were evaluated by flow cytometry. Cytokine production was examined both in plasma of treated mice and splenocytes that were stimulated ex vivo. IL-15 blocked sepsis-induced apoptosis of NK cells, dendritic cells, and CD8 T cells. IL-15 also decreased sepsis-induced gut epithelial apoptosis. IL-15 therapy increased the abundance of antiapoptotic Bcl-2 while decreasing proapoptotic Bim and PUMA. IL-15 increased both circulating IFN-gamma, as well as the percentage of NK cells that produced IFN-gamma. Finally, IL-15 increased survival in both cecal ligation and puncture and P. aeruginosa pneumonia. In conclusion, IL-15 prevents two immunopathologic hallmarks of sepsis, namely, apoptosis and immunosuppression, and improves survival in two different models of sepsis. IL-15 represents a potentially novel therapy of this highly lethal disorder.

  17. Ginsenoside compound K induces apoptosis in nasopharyngeal carcinoma cells via activation of apoptosis-inducing factor

    PubMed Central

    2014-01-01

    Background Nasopharyngeal carcinoma (NPC) has a high incidence rate in Southern China. Although there are conventional therapies, the side effects and toxicities are not always tolerable for patients. Recently, the tumoricidal effect of ginsenosides on different cancer cells has been studied. This study aims to investigate the anti-cancer effect of ginsenosides on NPC cells and their underlying mechanism. Methods The cytotoxicity of ginsenosides on NPC cell line HK-1 was measured by MTT assay. Apoptosis was detected by propidium iodide staining followed by flow cytometry. A xenograft tumor model was established by injecting nude mice with HK-1 cells. The activation of caspases and apoptosis-inducing factor (AIF) were evaluated by Western blot analysis. Nuclear translocation of AIF was also studied by immunofluorescence staining. Mitochondrial membrane potential was measured by JC-1 dye using flow cytometry. Results Four ginsenosides, 20 (S)-Rh2, compound K (CK), panaxadiol (PD) and protopanaxadiol (PPD), induced apoptotic cell death in HK-1 cells in a concentration-dependent manner. CK inhibited HK-1 xenograft tumor growth most extensively and depleted mitochondrial membrane potential depolarization and induced translocation of AIF from cytoplasm to nucleus in HK-1 cells. In addition, depletion of AIF by siRNA abolished CK-induced HK-1 cell death. Conclusion Ginsenoside CK-induced apoptosis of HK-1 cells was mediated by the mitochondrial pathway and could significantly inhibit tumor growth in vivo. PMID:24690317

  18. Evaluation of preventive and therapeutic activity of novel non-steroidal anti-inflammatory drug, CG100649, in colon cancer: Increased expression of TNF-related apoptosis-inducing ligand receptors enhance the apoptotic response to combination treatment with TRAIL.

    PubMed

    Woo, Jong Kyu; Kang, Ju-Hee; Jang, Yeong-Su; Ro, Seonggu; Cho, Joong Myung; Kim, Hwan-Mook; Lee, Sang-Jin; Oh, Seung Hyun

    2015-04-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) have been suggested as the potential new class of preventive or therapeutic antitumor agents. The aim of the present study was to evaluate the antitumor activity of the novel NSAID, CG100649. CG100649 is a novel NSAID dual inhibitor for COX-2 and carbonic anhydrase (CA)-I/-II. In the present study, we investigated the alternative mechanism by which CG100649 mediated suppression of the colon cancer growth and development. The anchorage‑dependent and -independent clonogenic assay showed that CG100649 inhibited the clonogenicity of human colon cancer cells. The flow cytometric analysis showed that CG100649 induced the G2/M cell cycle arrest in colon cancer cells. Animal studies showed that CG100649 inhibited the tumor growth in colon cancer xenograft in nude mice. Furthermore, quantitative PCR and FACS analysis demonstrated that CG100649 upregulated the expression of TNF-related apoptosis-inducing ligand (TRAIL) receptors (DR4 and DR5) but decreased the expression of decoy receptors (DcR1 and DcR2) in colon cancer cells. The results showed that CG100649 treatment sensitized TRAIL‑mediated growth suppression and apoptotic cell death. The combination treatment resulted in significant repression of the intestinal polyp formation in APCmin/+ mice. Our data clearly demonstrated that CG100649 contains preventive and therapeutic activity for colon cancer. The present study may be useful for identification of the potential benefit of the NSAID CG100649, for the achievement of a better treatment response in colon cancer.

  19. Aspartame-induced apoptosis in PC12 cells.

    PubMed

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Apoptosis induced by propolis in human hepatocellular carcinoma cell line.

    PubMed

    Choi, Y H; Lee, W Y; Nam, S Y; Choi, K C; Park, Y E

    1999-07-01

    Propolis has been reported to exhibit a wide spectrum of activities including antibiotic, antiviral, anti-inflammatory, immunostimulatory and tumor carcinostatic properties. We showed propolis induced apoptosis in a human hepatoma cell line (SNU449) by FITC-Annexin V/PI staining. We also compared the apoptosis inducing effect between Korean and Commercial (Sigma # p-1010) propolis. There was no difference on apoptosis between them.

  1. High glucose induces apoptosis via upregulation of Bim expression in proximal tubule epithelial cells.

    PubMed

    Zhang, Xiao-Qian; Dong, Jian-Jun; Cai, Tian; Shen, Xue; Zhou, Xiao-Jun; Liao, Lin

    2017-04-11

    Diabetic nephropathy is the primary cause of end-stage renal disease. Apoptosis of tubule epithelial cells is a major feature of diabetic nephropathy. The mechanisms of high glucose (HG) induced apoptosis are not fully understood. Here we demonstrated that, HG induced apoptosis via upregulating the expression of proapoptotic Bcl-2 homology domain 3 (BH3)-only protein Bim protein, but not bring a significant change in the baseline level of autophagy in HK2 cells. The increase of Bim expression was caused by the ugregulation of transcription factors, FOXO1 and FOXO3a. Bim expression initiates BAX/BAK-mediated mitochondria-dependent apoptosis. Silence of Bim by siRNA in HK2 cells prevented HG-induced apoptosis and also sensitized HK2 cells to autophagy during HG treatment. The autophagy inhibitor 3-MA increased the injury in Bim knockdown HK2 cells by retriggering apoptosis. The above results suggest a Bim-independent apoptosis pathway in HK2 cells, which normally could be inhibited by autophagy. Overall, our results indicate that HG induces apoptosis via up-regulation of Bim expression in proximal tubule epithelial cells.

  2. High glucose induces apoptosis via upregulation of Bim expression in proximal tubule epithelial cells

    PubMed Central

    Zhang, Xiao-Qian; Dong, Jian-Jun; Cai, Tian; Shen, Xue; Zhou, Xiao-Jun; Liao, Lin

    2017-01-01

    Diabetic nephropathy is the primary cause of end-stage renal disease. Apoptosis of tubule epithelial cells is a major feature of diabetic nephropathy. The mechanisms of high glucose (HG) induced apoptosis are not fully understood. Here we demonstrated that, HG induced apoptosis via upregulating the expression of proapoptotic Bcl-2 homology domain 3 (BH3)-only protein Bim protein, but not bring a significant change in the baseline level of autophagy in HK2 cells. The increase of Bim expression was caused by the ugregulation of transcription factors, FOXO1 and FOXO3a. Bim expression initiates BAX/BAK-mediated mitochondria-dependent apoptosis. Silence of Bim by siRNA in HK2 cells prevented HG-induced apoptosis and also sensitized HK2 cells to autophagy during HG treatment. The autophagy inhibitor 3-MA increased the injury in Bim knockdown HK2 cells by retriggering apoptosis. The above results suggest a Bim-independent apoptosis pathway in HK2 cells, which normally could be inhibited by autophagy. Overall, our results indicate that HG induces apoptosis via up-regulation of Bim expression in proximal tubule epithelial cells. PMID:28445931

  3. Caspase Cleavages of the Lymphocyte-oriented Kinase Prevent Ezrin, Radixin, and Moesin Phosphorylation during Apoptosis*

    PubMed Central

    Leroy, Catherine; Belkina, Natalya V.; Long, Thavy; Deruy, Emeric; Dissous, Colette; Shaw, Stephen; Tulasne, David

    2016-01-01

    The lymphocyte-oriented kinase (LOK), also called serine threonine kinase 10 (STK10), is synthesized mainly in lymphocytes. It is involved in lymphocyte migration and polarization and can phosphorylate ezrin, radixin, and moesin (the ERM proteins). In a T lymphocyte cell line and in purified human lymphocytes, we found LOK to be cleaved by caspases during apoptosis. The first cleavage occurs at aspartic residue 332, located between the kinase domain and the coiled-coil regulation domain. This cleavage generates an N-terminal fragment, p50 N-LOK, containing the kinase domain and a C-terminal fragment, which is further cleaved during apoptosis. Although these cleavages preserve the entire kinase domain, p50 N-LOK displays no kinase activity. In apoptotic lymphocytes, caspase cleavages of LOK are concomitant with a decrease in ERM phosphorylation. When non-apoptotic lymphocytes from mice with homozygous and heterozygous LOK knockout were compared, the latter showed a higher level of ERM phosphorylation, but when apoptosis was induced, LOK−/− and LOK+/− lymphocytes showed the same low level, confirming in vivo that LOK-induced ERM phosphorylation is prevented during lymphocyte apoptosis. Our results demonstrate that cleavage of LOK during apoptosis abolishes its kinase activity, causing a decrease in ERM phosphorylation, crucial to the role of the ERM proteins in linking the plasma membrane to actin filaments. PMID:26945071

  4. Genistein inhibits hypoxia, ischemic-induced death, and apoptosis in PC12 cells.

    PubMed

    Wang, Yu-Xiang; Tian, Kun; He, Cong-Cong; Ma, Xue-Ling; Zhang, Feng; Wang, Hong-Gang; An, Di; Heng, Bin; Jiang, Yu-Gang; Liu, Yan-Qiang

    2017-03-01

    A hypoxia/ischemia neuronal model was established in PC12 cells using oxygen-glucose deprivation (OGD). OGD-induced neuronal death, apoptosis, glutamate receptor subunit GluR2 expression, and potassium channel currents were evaluated in the present study to determine the effects of genistein in mediating the neuronal death and apoptosis induced by hypoxia and ischemia, as well as its underlying mechanism. OGD exposure reduced the cell viability, increased apoptosis, decreased the GluR2 expression, and decreased the voltage-activated potassium currents. Genistein partially reversed the effects induced by OGD. Therefore, genistein may prevent hypoxia/ischemic-induced neuronal apoptosis that is mediated by alterations in GluR2 expression and voltage-activated potassium currents. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Beta-adrenergic agonists inhibit corticosteroid-induced apoptosis of airway epithelial cells.

    PubMed

    Tse, Roberta; Marroquin, Bertha A; Dorscheid, Delbert R; White, Steven R

    2003-08-01

    Airway epithelial damage is a feature of persistent asthma. Treatment with inhaled and oral corticosteroids may suppress inflammation and gain clinical control despite continued epithelial damage. We have previously demonstrated that corticosteroids elicit apoptosis of airway epithelial cells in culture. beta-Adrenergic receptor agonists are commonly used in asthma therapy and can inhibit corticosteroid-induced apoptosis of eosinophils. We tested the hypothesis that beta-adrenergic agonists would inhibit corticosteroid-induced airway epithelial cell apoptosis in cultured primary airway epithelial cells and in the cell line 1HAEo-. Albuterol treatment inhibited dexamethasone-induced apoptosis completely but did not inhibit apoptosis induced by Fas receptor activation. The protective effect of albuterol was duplicated by two different analogs of protein kinase A. The protective effect was not associated with increased translocation of the glucocorticoid receptor to the nucleus nor with changes in glucocorticoid receptor-mediated transcriptional activation or repression. We demonstrate that beta-adrenergic agonists can inhibit corticosteroid-induced apoptosis but not apoptosis induced by Fas activation. These data suggest that one potential deleterious effect of corticosteroid therapy in asthma can be prevented by concomitant beta-adrenergic agonist treatment.

  6. Apoptosis by dietary agents for prevention and treatment of prostate cancer

    PubMed Central

    Khan, Naghma; Adhami, Vaqar Mustafa; Mukhtar, Hasan

    2010-01-01

    Accumulating data clearly indicate that induction of apoptosis is an important event for chemoprevention of cancer by naturally occurring dietary agents. In mammalian cells, apoptosis has been divided into two major pathways: the extrinsic pathway, activated by pro-apoptotic receptor signals at the cellular surface; and the intrinsic pathway, which involves the disruption of mitochondrial membrane integrity. This process is strictly controlled in response to integrity of pro-death signaling and plays critical roles in development, maintenance of homeostasis, and host defense in multicellular organisms. For chemoprevention studies, prostate cancer (PCa) represents an ideal disease due to its long latency, its high incidence, tumor marker availability, and identifiable preneoplastic lesions and risk groups. In this article, we highlight the studies of various apoptosis-inducing dietary compounds for prevention of PCa in vitro in cell culture, in preclinical studies in animals, and in human clinical trials. PMID:19926708

  7. Cloned Shiga Toxin 2 B Subunit Induces Apoptosis in Ramos Burkitt's Lymphoma B Cells

    PubMed Central

    Marcato, Paola; Mulvey, George; Armstrong, Glen D.

    2002-01-01

    The Shiga toxins (Stx1 and Stx2), produced by Shigella dysenteriae type 1 and enterohemorrhagic Escherichia coli, consist of one A subunit and five B subunits. The Stx1 and Stx2 B subunits form a pentameric structure that binds to globotriaosylceramide (Gb3-Cer) receptors on eukaryotic cells and promotes endocytosis. The A subunit then inhibits protein biosynthesis, which triggers apoptosis in the affected cell. In addition to its Gb3-Cer binding activity, the data in the following report demonstrate that the Stx2 B pentamer induces apoptosis in Ramos Burkitt's lymphoma B cells independently of A subunit activity. Apoptosis was not observed in A subunit-free preparations of the Stx1 B pentamer which competitively inhibited Stx2 B pentamer-mediated apoptosis. The pancaspase inhibitor, Z-VAD-fmk, prevented apoptosis in Ramos cells exposed to the Stx2 B subunit, Stx1 or Stx2. Brefeldin A, an inhibitor of the Golgi transport system, also prevented Stx2 B subunit-mediated apoptosis. These observations suggest that the Stx2 B subunit must be internalized, via Gb3-Cer receptors, to induce Ramos cell apoptosis. Moreover, unlike the two holotoxins, Stx2 B subunit-mediated apoptosis does not involve inhibition of protein biosynthesis. This study provides further insight into the pathogenic potential of this family of potent bacterial exotoxins. PMID:11854211

  8. Cytosolic pro-apoptotic SPIKE induces mitochondrial apoptosis in cancer.

    PubMed

    Nikolic, Ivana; Kastratovic, Tatjana; Zelen, Ivanka; Zivanovic, Aleksandar; Arsenijevic, Slobodan; Mitrovic, Marina

    2010-04-30

    Proteins of the BCL-2 family are important regulators of apoptosis. The BCL-2 family includes three main subgroups: the anti-apoptotic group, such as BCL-2, BCL-XL, BCL-W, and MCL-1; multi-domain pro-apoptotic BAX, BAK; and pro-apoptotic "BH3-only" BIK, PUMA, NOXA, BID, BAD, and SPIKE. SPIKE, a rare pro-apoptotic protein, is highly conserved throughout the evolution, including Caenorhabditis elegans, whose expression is downregulated in certain tumors, including kidney, lung, and breast. In the literature, SPIKE was proposed to interact with BAP31 and prevent BCL-XL from binding to BAP31. Here, we utilized the Position Weight Matrix method to identify SPIKE to be a BH3-only pro-apoptotic protein mainly localized in the cytosol of all cancer cell lines tested. Overexpression of SPIKE weakly induced apoptosis in comparison to the known BH3-only pro-apoptotic protein BIK. SPIKE promoted mitochondrial cytochrome c release, the activation of caspase 3, and the caspase cleavage of caspase's downstream substrates BAP31 and p130CAS. Although the informatics analysis of SPIKE implicates this protein as a member of the BH3-only BCL-2 subfamily, its role in apoptosis remains to be elucidated.

  9. Testosterone reduces AGTR1 expression to prevent β-cell and islet apoptosis from glucotoxicity.

    PubMed

    Kooptiwut, Suwattanee; Hanchang, Wanthanee; Semprasert, Namoiy; Junking, Mutita; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2015-03-01

    Hypogonadism in men is associated with an increased incidence of type 2 diabetes. Supplementation with testosterone has been shown to protect pancreatic β-cell against apoptosis due to toxic substances including streptozotocin and high glucose. One of the pathological mechanisms of glucose-induced pancreatic β-cell apoptosis is the induction of the local rennin-angiotensin-aldosterone system (RAAS). The role of testosterone in regulation of the pancreatic RAAS is still unknown. This study aims to investigate the protective action of testosterone against glucotoxicity-induced pancreatic β-cell apoptosis via alteration of the pancreatic RAAS pathway. Rat insulinoma cell line (INS-1) cells or isolated male mouse islets were cultured in basal and high-glucose media in the presence or absence of testosterone, losartan, and angiotensin II (Ang II), then cell apoptosis, cleaved caspase 3 expression, oxidative stress, and expression of angiotensin II type 1 receptor (AGTR1) and p47(phox) mRNA and protein were measured. Testosterone and losartan showed similar effects in reducing pancreatic β-cell apoptosis. Testosterone significantly reduced expression of AGTR1 protein in INS-1 cells cultured in high-glucose medium or high-glucose medium with Ang II. Testosterone decreased the expression of AGTR1 and p47(phox) mRNA and protein in comparison with levels in cells cultured in high-glucose medium alone. Furthermore, testosterone attenuated superoxide production when co-cultured with high-glucose medium. In contrast, when cultured in basal glucose, supplementation of testosterone did not have any effect on cell apoptosis, oxidative stress, and expression of AGT1R and p47(phox). In addition, high-glucose medium did not increase cleaved caspase 3 in AGTR1 knockdown experiments. Thus, our results indicated that testosterone prevents pancreatic β-cell apoptosis due to glucotoxicity through reduction of the expression of ATGR1 and its signaling pathway.

  10. Different mechanisms are involved in apoptosis induced by melanoma gangliosides on human monocyte-derived dendritic cells.

    PubMed

    Bennaceur, Karim; Popa, Iuliana; Chapman, Jessica Alice; Migdal, Camille; Péguet-Navarro, Josette; Touraine, Jean-Louis; Portoukalian, Jacques

    2009-06-01

    Tumor escape is linked to multiple mechanisms, notably the liberation, by tumor cells, of soluble factors that inhibit the function of dendritic cells (DC). We have shown that melanoma gangliosides impair DC differentiation and induce their apoptosis. The present study was aimed to give insight into the mechanisms involved. DC apoptosis was independent of the catabolism of gangliosides since lactosylceramide did not induce cell death. Apoptosis induced by GM3 and GD3 gangliosides was not blocked by inhibitors of de novo ceramide biosynthesis, whereas the acid sphingomyelinase inhibitor desipramine only prevented apoptosis induced by GM3. Furthermore, our results suggest that DC apoptosis was triggered via caspase activation, and it was ROS dependent with GD3 ganglioside, suggesting that GM3 and GD3 induced apoptosis through different mechanisms.

  11. Different mechanisms are involved in apoptosis induced by melanoma gangliosides on human monocyte-derived dendritic cells

    PubMed Central

    Bennaceur, Karim; Popa, Iuliana; Chapman, Jessica Alice; Migdal, Camille; Péguet-Navarro, Josette; Touraine, Jean-Louis; Portoukalian, Jacques

    2009-01-01

    Tumor escape is linked to multiple mechanisms, notably the liberation, by tumor cells, of soluble factors that inhibit the function of dendritic cells (DC). We have shown that melanoma gangliosides impair DC differentiation and induce their apoptosis. The present study was aimed to give insight into the mechanisms involved. DC apoptosis was independent of the catabolism of gangliosides since lactosylceramide did not induce cell death. Apoptosis induced by GM3 and GD3 gangliosides was not blocked by inhibitors of de novo ceramide biosynthesis, whereas the acid sphingomyelinase inhibitor desipramine only prevented apoptosis induced by GM3. Furthermore, our results suggest that DC apoptosis was triggered via caspase activation, and it was ROS dependent with GD3 ganglioside, suggesting that GM3 and GD3 induced apoptosis through different mechanisms. PMID:19240275

  12. Resveratrol protects rabbit articular chondrocyte against sodium nitroprusside-induced apoptosis via scavenging ROS.

    PubMed

    Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2014-09-01

    This study aims to investigate the mechanism by which resveratrol (RV) prevents sodium nitroprusside (SNP)-induced chondrocyte apoptosis, which is a characteristic feature of osteoarthritis (OA). Rabbit articular chondrocytes were pre-incubated with 100 μM RV for 18 h before 1.5 mM SNP co-treatment for 6 h. Cell viability was evaluated by CCK-8. Annexin V/PI double staining and Hoechst 33258 staining were used to determine the fashion of SNP-induced chondrocytes death. Mitochondrial membrane potential (ΔΨm) was measured by using flow cytometry (FCM) with TMRM and Rhodamine 123 staining. Intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels were confirmed by FCM analysis with DCFH-DA and DAF-FM DA staining. Cytoskeleton proteins of chondrocytes co-stained with Actin-Trakcer Green and Tubulin-Trakcer Red were validated by confocal microscopy. SNP induced time- and dose-dependent chondrocytes apoptosis with decline of ΔΨm, activation of caspases as well as cytoskeletal remodeling. SNP induced a significant induction of both ROS and NO. RV remarkably prevented SNP-induced ROS production and apoptosis as well as cytoskeletal remodeling, but did not prevent SNP-induced NO production. Pretreatment with NO scavengers did not significantly prevent SNP-induced apoptosis and cytoskeletal remodeling. SNP induces NO-independent ROS production which dominates rabbit articular chondrocyte apoptosis, and RV protects chondrocytes against SNP-induced apoptosis via scavenging ROS instead of NO.

  13. Functional role of CCCTC binding factor (CTCF) in stress-induced apoptosis

    SciTech Connect

    Li Tie; Lu Luo . E-mail: lluou@ucla.edu

    2007-08-15

    CTCF, a nuclear transcriptional factor, is a multifunctional protein and involves regulation of growth factor- and cytokine-induced cell proliferation/differentiation. In the present study, we investigated the role of CTCF in protecting stress-induced apoptosis in various human cell types. We found that UV irradiation and hyper-osmotic stress induced human corneal epithelial (HCE) and hematopoietic myeloid cell apoptosis detected by significantly increased caspase 3 activity and decreased cell viability. The stress-induced apoptotic response in these cells requires down-regulation of CTCF at both mRNA and protein levels, suggesting that CTCF may play an important role in downstream events of stress-induced signaling pathways. Inhibition of NF{kappa}B activity prevented stress-induced down-regulation of CTCF and increased cell viability against stress-induced apoptosis. The anti-apoptotic effect of CTCF was further studied by manipulating CTCF activities in HCE and hematopoietic cells. Transient transfection of cDNAs encoding full-length human CTCF markedly suppressed stress-induced apoptosis in these cells. In contrast, knocking down of CTCF mRNA using siRNA specific to CTCF significantly promoted stress-induced apoptosis. Thus, our results reveal that CTCF is a down stream target of stress-induced signaling cascades and it plays a significant anti-apoptotic role in regulation of stress-induced cellular responses in HCE and hematopoietic myeloid cells.

  14. PKD prevents H{sub 2}O{sub 2}-induced apoptosis via NF-{kappa}B and p38 MAPK in RIE-1 cells

    SciTech Connect

    Song Jun; Li Jing; Qiao Jingbo; Jain, Sunil; Mark Evers, B.; Chung, Dai H.

    2009-01-16

    Previously, we demonstrated that protein kinase D (PKD) plays a protective role during H{sub 2}O{sub 2}-induced intestinal cell death. Here, we sought to determine whether this effect is mediated by nuclear factor-{kappa}B (NF-{kappa}B) and mitogen-activated protein kinases (MAPKs). Treatment with H{sub 2}O{sub 2} activated NF-{kappa}B in RIE-1 cells; H{sub 2}O{sub 2} also induced the translocation of NF-{kappa}B p65 as well as phosphorylation of I{kappa}B-{alpha}. PKD1 siRNA inhibited H{sub 2}O{sub 2}-induced activation, translocation of NF-{kappa}B, and phosphorylation of I{kappa}B-{alpha}. We also found that overexpression of wild type PKD1 attenuated H{sub 2}O{sub 2}-induced phosphorylation of p38 MAPK and its upstream activator, MAPK kinase (MKK) 3/6, whereas the phosphorylation was increased by PKD1 siRNA or kinase-dead PKD1. Phosphorylation of neither extracellular signal-regulated kinases (ERK) 1/2 nor c-Jun N-terminal kinases (JNK) was altered by PKD1 plasmids or siRNA. Our findings suggest that PKD protects intestinal cells through up-regulation of NF-{kappa}B and down-regulation of p38 MAPK.

  15. Mannosylated lipoarabinomannan antagonizes Mycobacterium tuberculosis-induced macrophage apoptosis by altering Ca+2-dependent cell signaling.

    PubMed

    Rojas, M; García, L F; Nigou, J; Puzo, G; Olivier, M

    2000-07-01

    Mycobacterium tuberculosis-induced macrophage apoptosis can be inhibited by mannosylated lipoarabinomannan (ManLAM), although it induces tumor necrosis factor (TNF)-alpha and NO production, which participate in apoptosis induction. ManLAM also modulates Ca(+2)-dependent intracellular events, and Ca(+2) participates in apoptosis in different systems. Ca(+2) was assessed for involvement in M. tuberculosis-induced macrophage apoptosis and for modulation by ManLAM. The role of Ca(+2) was supported by the blockade of apoptosis by cAMP inhibitors and the Ca(+2) chelator, BAPTA/AM. These agents also inhibited caspase-1 activation and cAMP-responsive element-binding protein translocation without affecting TNF-alpha production. Infection of macrophages with M. tuberculosis induced an influx of Ca(+2) that was prevented by ManLAM. Similarly, M. tuberculosis infection-altered mitochondrial permeability transition was prevented by ManLAM and BAPTA/AM. Finally, ManLAM and BAPTA/AM reversed the effects of M. tuberculosis on p53 and Bcl-2 expression. ManLAM counteracts the alterations of calcium-dependent intracellular events that occur during M. tuberculosis-induced macrophage apoptosis.

  16. Hyperthermia Promotes and Prevents Respiratory Epithelial Apoptosis through Distinct Mechanisms

    PubMed Central

    Nagarsekar, Ashish; Tulapurkar, Mohan E.; Singh, Ishwar S.; Atamas, Sergei P.; Shah, Nirav G.

    2012-01-01

    Hyperthermia has been shown to confer cytoprotection and to augment apoptosis in different experimental models. We analyzed the mechanisms of both effects in the same mouse lung epithelial (MLE) cell line (MLE15). Exposing MLE15 cells to heat shock (HS; 42°C, 2 h) or febrile-range hyperthermia (39.5°C) concurrent with activation of the death receptors, TNF receptor 1 or Fas, greatly accelerated apoptosis, which was detectable within 30 minutes and was associated with accelerated activation of caspase-2, -8, and -10, and the proapoptotic protein, Bcl2-interacting domain (Bid). Caspase-3 activation and cell death were partially blocked by inhibitors targeting all three initiator caspases. Cells expressing the IκB superrepessor were more susceptible than wild-type cells to TNF-α–induced apoptosis at 37°C, but HS and febrile-range hyperthermia still increased apoptosis in these cells. Delaying HS for 3 hours after TNF-α treatment abrogated its proapoptotic effect in wild-type cells, but not in IκB superrepressor-expression cells, suggesting that TNF-α stimulates delayed resistance to the proapoptotic effects of HS through an NF-κB–dependent mechanism. Pre-exposure to 2-hour HS beginning 6 to16 hours before TNF-α treatment or Fas activation reduced apoptosis in MLE15 cells. The antiapoptotic effects of HS pretreatment were reduced in TNF-α–treated embryonic fibroblasts from heat shock factor-1 (HSF1)-deficient mice, but the proapoptotic effects of concurrent HS were preserved. Thus, depending on the temperature and timing relative to death receptor activation, hyperthermia can exert pro- and antiapoptotic effects through distinct mechanisms. PMID:22962066

  17. Deletion of the Mitochondrial Flavoprotein Apoptosis Inducing Factor (AIF) Induces β-Cell Apoptosis and Impairs β-Cell Mass

    PubMed Central

    Schulthess, Fabienne T.; Katz, Sophie; Ardestani, Amin; Kawahira, Hiroshi; Georgia, Senta; Bosco, Domenico; Bhushan, Anil; Maedler, Kathrin

    2009-01-01

    Background Apoptosis is a hallmark of β-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to β-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF). In the present study, we investigated the role of AIF on β-cell mass and survival using the Harlequin (Hq) mutant mice, which are hypomorphic for AIF. Methodology/Principal Findings Immunohistochemical evaluation of pancreata from Hq mutant mice displayed much smaller islets compared to wild-type mice (WT). Analysis of β-cell mass in these mice revealed a greater than 4-fold reduction in β-cell mass together with an 8-fold increase in β-cell apoptosis. Analysis of cell cycle dynamics, using BrdU pulse as a marker for cells in S-phase, did not detect significant differences in the frequency of β-cells in S-phase. In contrast, double staining for phosphorylated Histone H3 and insulin showed a 3-fold increase in β-cells in the G2 phase in Hq mutant mice, but no differences in M-phase compared to WT mice. This suggests that the β-cells from Hq mutant mice are arrested in the G2 phase and are unlikely to complete the cell cycle. β-cells from Hq mutant mice display increased sensitivity to hydrogen peroxide-induced apoptosis, which was confirmed in human islets in which AIF was depleted by siRNA. AIF deficiency had no effect on glucose stimulated insulin secretion, but the impaired effect of hydrogen peroxide on β-cell function was potentiated. Conclusions/Significance Our results indicate that AIF is essential for maintaining β-cell mass and for oxidative stress response. A decrease in the oxidative phosphorylation capacity may counteract the development of diabetes, despite its deleterious effects on β-cell survival. PMID:19197367

  18. Apoptosis Induced by Metal Complexes and Interaction with Dexamethasone

    PubMed Central

    Kim, Jung Sun; Barros, José Carlos Almeida

    2002-01-01

    Apoptosis induced by rhodium II amidate, rhodium II propionate, cisplatin and interactions with dexamethaxone were studied on some human leukemia cell lines Raji, Jurkat and U937. Apoptosis was studied by flow cytometry, agarose gel electrophoresis and morphological analysis. Rhodium II propionate induced apoptosis in all the three cell lines, Rhodium II amidate, in the lymphoid cell lines Jurkat and Raji, and cisplatin, only in the Jurkat, a T lymphoid cell line. It has also been observed that the addition of dexamethasone enhances the apoptosis index only in U937, a monocytic line with a glucocorticoid receptor bearing. PMID:18476001

  19. Mifepristone Prevents Stress-Induced Apoptosis in Newborn Neurons and Increases AMPA Receptor Expression in the Dentate Gyrus of C57/BL6 Mice

    PubMed Central

    Llorens-Martín, María; Trejo, José L.

    2011-01-01

    Chronic stress produces sustained elevation of corticosteroid levels, which is why it is considered one of the most potent negative regulators of adult hippocampal neurogenesis (AHN). Several mood disorders are accompanied by elevated glucocorticoid levels and have been linked to alterations in AHN, such as major depression (MD). Nevertheless, the mechanism by which acute stress affects the maturation of neural precursors in the dentate gyrus is poorly understood. We analyzed the survival and differentiation of 1 to 8 week-old cells in the dentate gyrus of female C57/BL6 mice following exposure to an acute stressor (the Porsolt or forced swimming test). Furthermore, we evaluated the effects of the glucocorticoid receptor (GR) antagonist mifepristone on the cell death induced by the Porsolt test. Forced swimming induced selective apoptotic cell death in 1 week-old cells, an effect that was abolished by pretreatment with mifepristone. Independent of its antagonism of GR, mifepristone also induced an increase in the percentage of 1 week-old cells that were AMPA+. We propose that the induction of AMPA receptor expression in immature cells may mediate the neuroprotective effects of mifepristone, in line with the proposed antidepressant effects of AMPA receptor potentiators. PMID:22140582

  20. Involvement of Mst1 in tumor necrosis factor-{alpha}-induced apoptosis of endothelial cells

    SciTech Connect

    Ohtsubo, Hideki; Ichiki, Toshihiro Imayama, Ikuyo; Ono, Hiroki; Fukuyama, Kae; Hashiguchi, Yasuko; Sadoshima, Junichi; Sunagawa, Kenji

    2008-03-07

    Mammalian sterile 20-kinase 1 (Mst1), a member of the sterile-20 family protein kinase, plays an important role in the induction of apoptosis. However, little is know about the physiological activator of Mst1 and the role of Mst1 in endothelial cells (ECs). We examined whether Mst1 is involved in the tumor necrosis factor (TNF)-{alpha}-induced apoptosis of ECs. Western blot analysis revealed that TNF-{alpha} induced activation of caspase 3 and Mst1 in a time- and dose-dependent manner. TNF-{alpha}-induced Mst1 activation is almost completely prevented by pretreatment with Z-DEVD-FMK, a caspase 3 inhibitor. Nuclear staining with Hoechst 33258 and fluorescence-activated cell sorting of propidium iodide-stained cells showed that TNF-{alpha} induced apoptosis of EC. Diphenyleneiodonium, an inhibitor of NADPH oxidase, and N-acetylcysteine, a potent antioxidant, also inhibited TNF-{alpha}-induced activation of Mst1 and caspase 3, as well as apoptosis. Knockdown of Mst1 expression by short interfering RNA attenuated TNF-{alpha}-induced apoptosis but not cleavage of caspase 3. These results suggest that Mst1 plays an important role in the induction of TNF-{alpha}-induced apoptosis of EC. However, positive feedback mechanism between Mst1 and caspase 3, which was shown in the previous studies, was not observed. Inhibition of Mst1 function may be beneficial for maintaining the endothelial integrity and inhibition of atherogenesis.

  1. Role of PUMA in methamphetamine-induced neuronal apoptosis.

    PubMed

    Chen, Chuanxiang; Qincao, Litao; Xu, Jingtao; Du, Sihao; Huang, Enping; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2016-01-05

    Exposure to methamphetamine (METH), a widely used illicit drug, has been shown to cause neuron apoptosis. p53 upregulated modulator of apoptosis (PUMA) is a key mediator in neuronal apoptosis. This study aimed to examine the effects of PUMA in METH-induced neuronal apoptosis. We determined PUMA protein expression in PC12 cells and SH-SY5Y cells after METH exposure using western blot. We also observed the effect of METH on neuronal apoptosis after silencing PUMA expression with siRNA using TUNEL staining and flow cytometry. Additionally, to investigate possible mechanisms of METH-induced PUMA-mediated neuronal apoptosis, we measured the protein expression of apoptotic markers, including cleaved caspase-3, cleaved PARP, Bax, B-cell leukemia/lymphoma-2 (Bcl-2) and cytochrome c (cyto c), after METH treatment with or without PUMA knockdown. Results showed that METH exposure induced cell apoptosis, increased PUMA protein levels, activated caspase-3 and PARP, elevated Bax and reduced Bcl-2 expression, as well as increased the release of cyto c from mitochondria to the cytoplasm in both PC12 and SH-SY5Y cells. All these effects were attenuated or reversed after silencing PUMA. A schematic depicting the role of PUMA in METH-induced mitochondrial apoptotic pathway was proposed. Our results suggest that PUMA plays an important role in METH-triggered apoptosis and it may be a potential target for ameliorating neuronal injury and apoptosis caused by METH.

  2. Glucocorticoid-induced apoptosis and cellular mechanisms of myopathy.

    PubMed

    Dirks-Naylor, Amie J; Griffiths, Carrie L

    2009-10-01

    Glucocorticoid-induced myopathy is a common side effect of chronic glucocorticoid therapy. Several mechanisms are currently being examined as ways in which glucocorticoid-induced myopathy occurs. These include apoptotic signaling through mitochondrial-mediated and Fas-mediated apoptosis, the role of the proteosome, the suppression of the IGF-1 signaling, and the role of ceramide in glucocorticoid-induced apoptosis and myopathy. It is difficult to differentiate which mechanism may be the initiating event responsible for the induction of apoptosis; however, all of the mechanisms play a vital role in glucocorticoid-induced myopathy.

  3. Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)

    PubMed Central

    Elmallah, Mohammed I. Y.; Micheau, Olivier

    2015-01-01

    Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells. PMID:26580630

  4. Drosophila p53 isoforms differentially regulate apoptosis and apoptosis-induced proliferation

    PubMed Central

    Dichtel-Danjoy, M-L; Ma, D; Dourlen, P; Chatelain, G; Napoletano, F; Robin, M; Corbet, M; Levet, C; Hafsi, H; Hainaut, P; Ryoo, H D; Bourdon, J-C; Mollereau, B

    2013-01-01

    Irradiated or injured cells enter apoptosis, and in turn, promote proliferation of surrounding unaffected cells. In Drosophila, apoptotic cells have an active role in proliferation, where the caspase Dronc and p53 induce mitogen expression and growth in the surrounding tissues. The Drosophila p53 gene structure is conserved and encodes at least two protein isoforms: a full-length isoform (Dp53) and an N-terminally truncated isoform (DΔNp53). Historically, DΔNp53 was the first p53 isoform identified and was thought to be responsible for all p53 biological activities. It was shown that DΔNp53 induces apoptosis by inducing the expression of IAP antagonists, such as Reaper. Here we investigated the roles of Dp53 and DΔNp53 in apoptosis and apoptosis-induced proliferation. We found that both isoforms were capable of activating apoptosis, but that they each induced distinct IAP antagonists. Expression of DΔNp53 induced Wingless (Wg) expression and enhanced proliferation in both ‘undead cells' and in ‘genuine' apoptotic cells. In contrast to DΔNp53, Dp53 did not induce Wg expression in the absence of the endogenous p53 gene. Thus, we propose that DΔNp53 is the main isoform that regulates apoptosis-induced proliferation. Understanding the roles of Drosophila p53 isoforms in apoptosis and in apoptosis-induced proliferation may shed new light on the roles of p53 isoforms in humans, with important implications in cancer biology. PMID:22898807

  5. Apoptosis and autophagy induction as mechanism of cancer prevention by naturally occurring dietary agents

    PubMed Central

    Mukhtar, Eiman; Adhami, Vaqar Mustafa; Khan, Naghma; Mukhtar, Hasan

    2013-01-01

    Nontoxic naturally occurring compounds, especially those from dietary sources, are receiving increasing consideration for prevention and treatment of diseases including cancer. There is a growing need for innovative anticancer therapies and therefore search for natural compounds with novel biological activities or antineoplastic potential is currently an important area in drug discovery. Support for this interest also comes from increasing concern over the efficacy and safety of many conventional therapies, especially those that run over a long course of time. Laboratory studies in different in vitro and in vivo systems have shown that many natural compounds possess the capacity to regulate response to oxidative stress and DNA damage, suppress angiogenesis, inhibit cell proliferation and induce autophagy and apoptosis. This review discusses the induction of apoptosis and autophagy as a mechanism of cancer prevention by some of the most studied naturally occurring dietary compounds. PMID:23140293

  6. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium.

    PubMed

    Wang, Yingjie; Zhang, Lan; Li, Yongjun; Chen, Lijuan; Wang, Xiaolong; Guo, Wei; Zhang, Xue; Qin, Gangjian; He, Sheng-hu; Zimmerman, Arthur; Liu, Yutao; Kim, Il-man; Weintraub, Neal L; Tang, Yaoliang

    2015-08-01

    Induced pluripotent stem cells (iPS) exhibit enhanced survival and proliferation in ischemic tissues. However, the therapeutic application of iPS cells is limited by their tumorigenic potential. We hypothesized that iPS cells can transmit cytoprotective signals to cardiomyocytes via exosomes/microvesicles. Exosomes/microvesicles secreted from mouse cardiac fibroblast (CF)-derived iPS cells (iPS-exo) were purified from conditioned medium and confirmed by electron micrograph, size distribution and zeta potential by particle tracking analyzer and protein expression of the exosome markers CD63 and Tsg101. We observed that exosomes are at low zeta potential, and easily aggregate. Temperature affects zeta potential (-14 to -15 mV at 23 °C vs -24 mV at 37 °C). The uptake of iPS-exo protects H9C2 cells against H2O2-induced oxidative stress by inhibiting caspase 3/7 activation (P < 0.05, n = 6). Importantly, iPS-exo treatment can protect against myocardial ischemia/reperfusion (MIR) injury via intramyocardial injection into mouse ischemic myocardium before reperfusion. Furthermore, iPS-exo deliver cardioprotective miRNAs, including nanog-regulated miR-21 and HIF-1α-regulated miR-210, to H9C2 cardiomyocytes in vitro. Exosomes/microvesicles secreted by iPS cells are very effective at transmitting cytoprotective signals to cardiomyocytes in the setting of MIR. iPS-exo thus represents novel biological nanoparticles that offer the benefits of iPS cell therapy without the risk of tumorigenicity and can potentially serve as an "off-the-shelf" therapy to rescue ischemic cardiomyocytes in conditions such as MIR. Copyright © 2015. Published by Elsevier Ireland Ltd.

  7. Mechanisms and Consequences of Ebolavirus-Induced Lymphocyte Apoptosis

    DTIC Science & Technology

    2010-01-01

    system to respond to infection (5, 6). However, recent studies have indicated that a functional CD8+ T cell-mediated immune response is generated in...systemic implications of lymphocyte apoptosis in EBOV infection are known. In this study , we show data suggesting that EBOV-induced lymphocyte apoptosis in...apoptosis in vitro through an unknown mechanism (11). However, no previous studies have analyzed the effect of blocking either the intrinsic or extrinsic

  8. [Apoptosis and thymocyte development (epithelial cells as inducers of thymocyte apoptosis)].

    PubMed

    Iarilin, A A; Bulanova, E G; Sharova, N I; Budagian, V M

    1998-01-01

    Apoptosis, together with proliferation, is a main factor of selection of the clones of developing T-lymphocytes: the clones not supported by positive selection are subject to apoptosis and apoptosis accounts for discarding of potentially autoaggressive clones, i.e., for negative selection in the thymus and peripheral lymphoid tissue. Realization of apoptosis at different stages of the development of T-lymphocytes depends to a varying extent on Fas, Bcl-2, p53, and other regulators. The dendritic cells are the main cell type, the contact with determines apoptosis of T-lymphocytes. A possible role of the epithelial cells was shown in few models (on murine cells) and was not practically studied. We obtained a line of epithelial cells of the human thymus cells HTSC, cocultivation with which induces apoptosis of immature thymocytes and blood T-cells activated by mitogens. Development of apoptosis is suppressed by inhibitors of protein and RNA synthesis, chelators Ca2+, ions Zn2+, and factors destroying the cytoskeleton components. In this model, interaction of pairs of molecules CD4-HLA class II and LFA-1-ICAM-1. When in contact with the HTSC cells, the thymocytes of mice mutant for Fas-receptor (line MRL.lpr) are subject to apoptosis, but when this receptor is present, it affects the development of apoptosis.

  9. NADPH oxidases participate to doxorubicin-induced cardiac myocyte apoptosis.

    PubMed

    Gilleron, Mylène; Marechal, Xavier; Montaigne, David; Franczak, Jessica; Neviere, Remi; Lancel, Steve

    2009-10-30

    Cumulative doses of doxorubicin, a potent anticancer drug, lead to serious myocardial dysfunction. Numerous mechanisms including apoptosis have been proposed to account for its cardiotoxicity. Cardiac apoptosis induced by doxorubicin has been related to excessive reactive oxygen species production by the mitochondrial NADH dehydrogenase. Here, we explored whether doxorubicin treatment activates other superoxide anion generating systems such as the NADPH oxidases, membrane-embedded flavin-containing enzymes, and whether the subsequent oxidative stress contributes to apoptosis. We showed that doxorubicin treatment of rat cardiomyoblasts H9c2 triggers increases in caspase-3 like activity and hypoploid cells, both common features of apoptosis. Doxorubicin exposure also leads to a rapid superoxide production through NADPH oxidase activation. Inhibition of these enzymes using diphenyliodonium and apocynin reduces doxorubicin-induced reactive oxygen species production, caspase-3 like activity and sub-G1 cell population. In conclusion, NADPH oxidases participate to doxorubicin-induced cardiac apoptosis.

  10. UXT plays dual opposing roles on SARM-induced apoptosis.

    PubMed

    Sethurathinam, Shalini; Singh, Laishram Pradeepkumar; Panneerselvam, Porkodi; Byrne, Bernadette; Ding, Jeak Ling

    2013-10-11

    Apoptosis is a vital defense mechanism for the clearance of infected cells. Ubiquitously expressed transcript (UXT), which exists in two isoforms (V1 and V2), interact with both apoptotic and cellular proteins. By yeast two-hybrid analysis, we found that UXT interacts with SARM (sterile α and HEAT armadillo motif-containing protein). Since SARM is a TLR adaptor which induces intrinsic apoptosis following immune activation, we were prompted to query whether UXT and SARM might co-regulate apoptosis. We found that the UXT isoforms elicit dual opposing regulatory effects on SARM-induced apoptosis; while UXT V1, co-expressed with SARM, caused a reduction in caspase 8 activity, UXT V2 strongly increased caspase 8 activity and enhanced SARM-induced apoptosis by activating the extrinsic pathway and depolarizing the mitochondria.

  11. Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells.

    PubMed

    Yamada, Atsushi; Aki, Toshihiko; Unuma, Kana; Funakoshi, Takeshi; Uemura, Koichi

    2015-01-01

    The aim of this study is to investigate the molecular mechanisms underlying delayed progressive pulmonary fibrosis, a characteristic of subacute paraquat (PQ) poisoning. Epithelial-mesenchymal transition (EMT) has been proposed as a cause of organ fibrosis, and transforming growth factor-β (TGF-β) is suggested to be a powerful mediator of EMT. We thus examined the possibility that EMT is involved in pulmonary fibrosis during PQ poisoning using A549 human alveolar epithelial cells in vitro. The cells were treated with various concentrations of PQ (0-500 μM) for 2-12 days. Short-term (2 days) high-dose (>100 μM) treatments with PQ induced cell death accompanied by the activation of caspase9 as well as a decrease in E-cadherin (an epithelial cell marker), suggesting apoptotic cell death with the features of anoikis (cell death due to the loss of cell-cell adhesion). In contrast, long-term (6-12 days) low-dose (30 μM) treatments with PQ resulted in a transformation into spindle-shaped mesenchymal-like cells with a decrease of E-cadherin as well as an increase of α-smooth muscle actin (α-SMA). The mesenchymal-like cells also secreted the extracellular matrix (ECM) protein fibronectin into the culture medium. The administration of a TGF-β1 receptor antagonist, SB431542, almost completely attenuated the mesenchymal transformation as well as fibronectin secretion, suggesting a crucial role of TGF-β1 in EMT-like cellular response and subsequent fibrogenesis. It is noteworthy that despite the suppression of EMT-fibrogenesis, apoptotic death was observed in cells treated with PQ+SB431542. EMT-like cellular response and subsequent fibrogenesis were also observed in normal human bronchial epithelial (NHBE) cells exposed to PQ in a TGF-β1-dependent manner. Taken together, our experimental model reflects well the etiology of PQ poisoning in human and shows the involvement of EMT-like cellular response in both fibrogenesis and resistance to cell death during subacute PQ

  12. TTC5 is required to prevent apoptosis of acute myeloid leukemia stem cells.

    PubMed

    Lynch, J T; Somerville, T D D; Spencer, G J; Huang, X; Somervaille, T C P

    2013-04-04

    Using a screening strategy, we identified the tetratricopeptide repeat (TPR) motif protein, Tetratricopeptide repeat domain 5 (TTC5, also known as stress responsive activator of p300 or Strap) as required for the survival of human acute myeloid leukemia (AML) cells. TTC5 is a stress-inducible transcription cofactor known to interact directly with the histone acetyltransferase EP300 to augment the TP53 response. Knockdown (KD) of TTC5 induced apoptosis of both murine and human AML cells, with concomitant loss of clonogenic and leukemia-initiating potential; KD of EP300 elicited a similar phenotype. Consistent with the physical interaction of TTC5 and EP300, the onset of apoptosis following KD of either gene was preceded by reduced expression of BCL2 and increased expression of pro-apoptotic genes. Forced expression of BCL2 blocked apoptosis and partially rescued the clonogenic potential of AML cells following TTC5 KD. KD of both genes also led to the accumulation of MYC, an acetylation target of EP300, and the form of MYC that accumulated exhibited relative hypoacetylation at K148 and K157, residues targeted by EP300. In view of the ability of excess cellular MYC to sensitize cells to apoptosis, our data suggest a model whereby TTC5 and EP300 cooperate to prevent excessive accumulation of MYC in AML cells and their sensitization to cell death. They further reveal a hitherto unappreciated role for TTC5 in leukemic hematopoiesis.

  13. TTC5 is required to prevent apoptosis of acute myeloid leukemia stem cells

    PubMed Central

    Lynch, J T; Somerville, T D D; Spencer, G J; Huang, X; Somervaille, T C P

    2013-01-01

    Using a screening strategy, we identified the tetratricopeptide repeat (TPR) motif protein, Tetratricopeptide repeat domain 5 (TTC5, also known as stress responsive activator of p300 or Strap) as required for the survival of human acute myeloid leukemia (AML) cells. TTC5 is a stress-inducible transcription cofactor known to interact directly with the histone acetyltransferase EP300 to augment the TP53 response. Knockdown (KD) of TTC5 induced apoptosis of both murine and human AML cells, with concomitant loss of clonogenic and leukemia-initiating potential; KD of EP300 elicited a similar phenotype. Consistent with the physical interaction of TTC5 and EP300, the onset of apoptosis following KD of either gene was preceded by reduced expression of BCL2 and increased expression of pro-apoptotic genes. Forced expression of BCL2 blocked apoptosis and partially rescued the clonogenic potential of AML cells following TTC5 KD. KD of both genes also led to the accumulation of MYC, an acetylation target of EP300, and the form of MYC that accumulated exhibited relative hypoacetylation at K148 and K157, residues targeted by EP300. In view of the ability of excess cellular MYC to sensitize cells to apoptosis, our data suggest a model whereby TTC5 and EP300 cooperate to prevent excessive accumulation of MYC in AML cells and their sensitization to cell death. They further reveal a hitherto unappreciated role for TTC5 in leukemic hematopoiesis. PMID:23559008

  14. Resveratrol induces apoptosis via a Bak-mediated intrinsic pathway in human lung adenocarcinoma cells.

    PubMed

    Zhang, Weiwei; Wang, Xiaoping; Chen, Tongsheng

    2012-05-01

    Our recent study have shown that resveratrol (RV), a natural plant polyphenol found in red grape skins as well as other food product, induced apoptosis via the downstream factors, caspase-independent AIF and to lesser extent caspase-9, of intrinsic apoptosis pathway in human lung adenocarcinoma (ASTC-a-1) cells. This report is designed to explore the roles of the upstream mediators of the intrinsic pathway, such as Bak/Bax, Bim, Puma and Noxa, during RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1 and A549) cell lines. RV treatment remarkably induced the activation of Bak but not Bax, and silencing Bak but not Bax by shRNA almost completely prevented RV-induced cell death, mitochondrial dysfunction and also largely prevented RV-induced AIF release, demonstrating the preferential engagement of Bak but not Bax during RV-induced apoptosis. In addition, although RV treatment induced a significant degradation of Mcl-1, knockdown of Mcl-1 by shRNA only modestly increased RV-induced Bak activation. Interestingly, silencing Bim but not Puma and Noxa remarkably attenuated RV-induced cell death, loss of mitochondrial membrane potential, and Bak activation, suggesting the important roles of Bim. Collectively, our findings for the first time demonstrate that RV induces apoptosis dominantly via a Bak- but not Bax-mediated AIF-dependent mitochondrial apoptotic signaling pathway in which Bim but not Puma and Noxa may supply the force to trigger Bak activation and subsequent apoptosis in both ASTC-a-1 and A549 cell lines. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Wogonin, a plant flavone, potentiates etoposide-induced apoptosis in cancer cells.

    PubMed

    Lee, Eibai; Enomoto, Riyo; Suzuki, Chie; Ohno, Masataka; Ohashi, Toshinori; Miyauchi, Azusa; Tanimoto, Eriko; Maeda, Kaori; Hirano, Hiroyuki; Yokoi, Toshio; Sugahara, Chiyoko

    2007-01-01

    Etoposide, a podophylotoxin anticancer agent, induces apoptotic cell death in normal and cancer cells. Etoposide-induced apoptosis plays a role in not only anticancer effect but also adverse reaction, such as myelosuppression. Since we have found that wogonin, a flavone found in Scutellaria baicalensis Georgi, prevents thymocyte apoptosis induced by various compounds including etoposide, we examined the effect of this flavone on etoposide-induced apoptosis in cancer cells. Although 100 muM wogonin itself significantly increased DNA fragmentation in HL-60 cells, this change was not observed in Jurkat cells. On the other hand, this flavone significantly potentiated etoposide-induced apoptosis in Jurkat and HL-60 cells. Similarly, wogonin accelerated etoposide-induced cell death in lung cancer cells. Since wogonin had no effect on the action of other anticancer agents, such as 5-FU and cisplatin, this flavone seems to accelerate only etoposide-induced apoptotic cell death in cancer cells. These results suggest that the modification of etoposide-induced apoptosis by wogonin may be available to reduce the adverse reaction of this agent.

  16. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells.

    PubMed

    Takahashi, Eriko; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori

    2006-03-01

    In the present study, using inhibitors of ceramide synthase (fumonisin B1), ketosphinganine synthetase (L-cycloserine), acid sphingomyelinase (D609 and desipramine) and neutral sphingomyelinase (GW4869), the role of ceramide in X-ray-induced apoptosis was investigated in MOLT-4 cells. The diacylglycerol kinase (DGK) assay showed that the intracellular concentration of ceramide increased time-dependently after X irradiation of cells, and this radiation-induced accumulation of ceramide did not occur prior to the appearance of apoptotic cells. Treatment with D609 significantly inhibited radiation-induced apoptosis, but did not inhibit the increase of intracellular ceramide. Treatment with desipramine or GW4869 prevented neither radiation-induced apoptosis nor the induced increase of ceramide. On the other hand, fumonisin B1 and L-cycloserine had no effect on the radiation-induced induction of apoptosis, in spite of significant inhibition of the radiation-induced ceramide. From these results, it was suggested that the increase of the intracellular concentration of ceramide was not essential for radiation-induced apoptosis in MOLT-4 cells.

  17. Oncogenic Ras promotes butyrate-induced apoptosis through inhibition of gelsolin expression.

    PubMed

    Klampfer, Lidija; Huang, Jie; Sasazuki, Takehiko; Shirasawa, Senji; Augenlicht, Leonard

    2004-08-27

    Activation of Ras promotes oncogenesis by altering a multiple of cellular processes, such as cell cycle progression, differentiation, and apoptosis. Oncogenic Ras can either promote or inhibit apoptosis, depending on the cell type and the nature of the apoptotic stimuli. The response of normal and transformed colonic epithelial cells to the short chain fatty acid butyrate, a physiological regulator of epithelial cell maturation, is also divergent: normal epithelial cells proliferate, and transformed cells undergo apoptosis in response to butyrate. To investigate the role of k-ras mutations in butyrate-induced apoptosis, we utilized HCT116 cells, which harbor an oncogenic k-ras mutation and two isogenic clones with targeted inactivation of the mutant k-ras allele, Hkh2, and Hke-3. We demonstrated that the targeted deletion of the mutant k-ras allele is sufficient to protect epithelial cells from butyrate-induced apoptosis. Consistent with this, we showed that apigenin, a dietary flavonoid that has been shown to inhibit Ras signaling and to reverse transformation of cancer cell lines, prevented butyrate-induced apoptosis in HCT116 cells. To investigate the mechanism whereby activated k-ras sensitizes colonic cells to butyrate, we performed a genome-wide analysis of Ras target genes in the isogenic cell lines HCT116, Hkh2, and Hke-3. The gene exhibiting the greatest down-regulation by the activating k-ras mutation was gelsolin, an actin-binding protein whose expression is frequently reduced or absent in colorectal cancer cell lines and primary tumors. We demonstrated that silencing of gelsolin expression by small interfering RNA sensitized cells to butyrate-induced apoptosis through amplification of the activation of caspase-9 and caspase-7. These data therefore demonstrate that gelsolin protects cells from butyrate-induced apoptosis and suggest that Ras promotes apoptosis, at least in part, through its ability to down-regulate the expression of gelsolin.

  18. Gliotoxin Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells

    PubMed Central

    Chen, Junxiong; Wang, Chenliang; Lan, Wenjian; Huang, Chunying; Lin, Mengmeng; Wang, Zhongyang; Liang, Wanling; Iwamoto, Aikichi; Yang, Xiangling; Liu, Huanliang

    2015-01-01

    The discovery of new bioactive compounds from marine natural sources is very important in pharmacological research. Here we developed a Wnt responsive luciferase reporter assay to screen small molecule inhibitors of cancer associated constitutive Wnt signaling pathway. We identified that gliotoxin (GTX) and some of its analogues, the secondary metabolites from marine fungus Neosartorya pseufofischeri, acted as inhibitors of the Wnt signaling pathway. In addition, we found that GTX downregulated the β-catenin levels in colorectal cancer cells with inactivating mutations of adenomatous polyposis coli (APC) or activating mutations of β-catenin. Furthermore, we demonstrated that GTX induced growth inhibition and apoptosis in multiple colorectal cancer cell lines with mutations of the Wnt signaling pathway. Together, we illustrated a practical approach to identify small-molecule inhibitors of the Wnt signaling pathway and our study indicated that GTX has therapeutic potential for the prevention or treatment of Wnt dependent cancers and other Wnt related diseases. PMID:26445050

  19. Chlorpromazine Protects Against Apoptosis Induced by Exogenous Stimuli in the Developing Rat Brain

    PubMed Central

    Li, Yujun; Zhang, Qingmeng; Chen, Yang; Fu, Yingmei; Fang, Wenjuan; Wang, Jindong; Zhong, Zhaohua; Ling, Hong; Zhang, Liming; Zhang, Fengmin

    2011-01-01

    Background Chlorpromazine (CPZ), a commonly used antipsychotic drug, was found to play a neuroprotective role in various models of toxicity. However, whether CPZ has the potential to affect brain apoptosis in vivo is still unknown. The purpose of this study was to investigate the potential effect of CPZ on the apoptosis induced by exogenous stimuli. Methodology The ethanol treated infant rat was utilized as a valid apoptotic model, which is commonly used and could trigger robust apoptosis in brain tissue. Prior to the induction of apoptosis by subcutaneous injection of ethanol, 7-day-old rats were treated with CPZ at several doses (5 mg/kg, 10 mg/kg and 20 mg/kg) by intraperitoneal injection. Apoptotic cells in the brain were measured using TUNEL analysis, and the levels of cleaved caspase-3, cytochrome c, the pro-apoptotic factor Bax and the anti-apoptotic factor Bcl-2 were assessed by immunostaining or western blot. Findings Compared to the group injected with ethanol only, the brains of the CPZ-pretreated rats had fewer apoptotic cells, lower expression of cleaved caspase-3, cytochrome c and Bax, and higher expression of Bcl-2. These results demonstrate that CPZ could prevent apoptosis in the brain by regulating the mitochondrial pathway. Conclusions CPZ exerts an inhibitory effect on apoptosis induced by ethanol in the rat brain, intimating that it may offer a means of protecting nerve cells from apoptosis induced by exogenous stimuli. PMID:21779358

  20. Angiotensin II induces apoptosis in renal proximal tubular cells.

    PubMed

    Bhaskaran, Madhu; Reddy, Krishna; Radhakrishanan, Neetu; Franki, Nicholas; Ding, Guohua; Singhal, Pravin C

    2003-05-01

    ANG II has been demonstrated to play a role in the progression of tubulointerstial injury. We studied the direct effect of ANG II on apoptosis of cultured rat renal proximal tubular epithelial cells (RPTECs). ANG II promoted RPTEC apoptosis in a dose- and time-dependent manner. This effect of ANG II was attenuated by anti-transforming growth factor (TGF)-beta antibody. Moreover, TGF-beta triggered RPTEC apoptosis in a dose-dependent manner. ANG II also enhanced RPTEC expression of Fas and Fas ligand (FasL); furthermore, anti-FasL antibody attenuated ANG II-induced RPTEC apoptosis. In addition, ANG II increased RPTEC expression of Bax, a cell death protein. Both ANG II type 1 (AT(1)) and type 2 (AT(2)) receptor blockers inhibited ANG II-induced RPTEC apoptosis. SB-202190, an inhibitor of p38 MAPK phosphorylation, and caspase-3 inhibitor also attenuated ANG II-induced RPTEC apoptosis. ANG II enhanced RPTEC heme oxygenase (HO)-1 expression. Interestingly, pretreatment with hemin as well as curcumin (inducers of HO-1) inhibited the ANG II-induced tubular cell apoptosis; conversely, pretreatment with zinc protoporphyrin, an inhibitor of HO-1 expression, promoted the effect of ANG II. These results suggest that ANG II-induced apoptosis is mediated via both AT(1) and AT(2) receptors through the generation of TGF-beta, followed by the transcription of cell death genes such as Fas, FasL, and Bax. Modulation of tubular cell expression of HO-1 has an inverse relationship with the ANG II-induced tubular cell apoptosis.

  1. Glucocorticoid-induced apoptosis of healthy and malignant lymphocytes

    PubMed Central

    Smith, Lindsay K.; Cidlowski, John A.

    2016-01-01

    Glucocorticoids exert a wide range of physiological effects, including the induction of apoptosis in lymphocytes. The progression of glucocorticoid-induced apoptosis is a multi-component process requiring contributions from both genomic and cytoplasmic signaling events. There is significant evidence indicating that the transactivation activity of the glucocorticoid receptor is required for the initiation of glucocorticoid-induced apoptosis. However, the rapid cytoplasmic effects of glucocorticoids may also contribute to the glucocorticoid-induced apoptosis-signaling pathway. Endogenous glucocorticoids shape the T-cell repertoire through both the induction of apoptosis by neglect during thymocyte maturation and the antagonism of T-cell receptor (TCR)-induced apoptosis during positive selection. Owing to their ability to induce apoptosis in lymphocytes, synthetic glucocorticoids are widely used in the treatment of haematological malignancies. Glucocorticoid chemotherapy is limited, however, by the emergence of glucocorticoid resistance. The development of novel therapies designed to overcome glucocorticoid resistance will dramatically improve the efficacy of glucocorticoid therapy in the treatment of haematological malignancies. PMID:20541659

  2. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  3. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  4. Variability in DDT-induced apoptosis in Mexican indigenous populations.

    PubMed

    Pérez-Maldonado, Iván N; Pérez-Vázquez, Francisco J; Gaspar-Ramírez, Octavio; González-Amaro, Roberto; Díaz-Barriga, Fernando

    2011-11-01

    In previous studies, we showed that DDT and its metabolites are able to induce apoptosis of peripheral blood mononuclear cells (PBMC) "in vitro" and "in vivo", by a mechanism involving oxidative stress. The objective of this study was to evaluate the mechanism by which DDT induces apoptosis in PBMC in children exposed to DDT and its metabolites. Eligibility criteria included children who: (1) have lived in the selected community since birth, (2) were between 6 and 14 years of age at the time of the study, (3) had not been exposed to medicaments or tobacco smoke, and (4) had had no infectious diseases in the month prior to the study. DDT and its metabolites were quantified using gas chromatography with an electron capture detector, PBMC apoptosis was measured using the TUNEL assay, DNA damage and oxidative damage were studied using the comet assay. Apoptosis correlated to DDE exposure (p=0.040), as previously found. DNA damage also correlated to DDT (p=0.005) and DDE (p=0.004) levels. However, neither exposure to DDT or DDE and oxidative damage, nor oxidative damage and apoptosis, were significantly correlated. Children living in Lacanja, Chiapas, one of the communities studied in this work, had the highest levels of exposure to DDT and its metabolites, yet had the lowest percentage of apoptosis. Resistance to DDE-induced apoptosis was found in children from one community. Further studies are needed in order to understand the mechanism involved in this apoptosis resistance.

  5. Cyclic adenosine monophosphate-mediated protection against bile acid-induced apoptosis in cultured rat hepatocytes.

    PubMed

    Webster, C R; Anwer, M S

    1998-05-01

    Cyclic adenosine monophosphate (cAMP) has been shown to modulate apoptosis. To evaluate the role of cAMP in bile acid-induced hepatocyte apoptosis, we studied the effect of agents that increase cAMP on the induction of apoptosis by glycochenodeoxycholate (GCDC) in cultured rat hepatocytes. GCDC induced apoptosis in 26.5%+/-1.1% of hepatocytes within 2 hours. Twenty-minute pretreatment of hepatocytes with 100 micromol/L 8-(4-chlorothiophenyl) cAMP (CP-cAMP) resulted in a reduction in the amount of apoptosis to 35.2%+/-3.8% of that seen in hepatocytes treated with GCDC alone. Other agents that increase intracellular cAMP, including dibutyryl cAMP (100 micromol/L), glucagon (200 nmol/L), and a combination of forskolin (20 micromol/L) and 3-isobutyl-1-methylxanthine (20 micromol/L), also inhibited GCDC-induced apoptosis to a similar extent. Pretreatment with the protein kinase A (PKA) inhibitor, KT5720, prevented the protective effect of CP-cAMP and inhibited CP-cAMP-induced activation of PKA activity. Inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin (50 nmol/L), or Ly 294002 (20 micromol/L) also prevented the cytoprotective effect of cAMP. PI3K assays confirmed that wortmannin (50 nmol/L) inhibited PI3K activity, while CP-cAMP had no effect on the activity of this lipid kinase. GCDC increased mitogen-activated protein kinase (MAPK) activity, but had no effect on stress-activated protein kinase (SAPK) activity in hepatocytes. cAMP decreased basal and GCDC-induced MAPK activity and increased SAPK activity. The MAPK kinase inhibitor, PD 98059, inhibited both GCDC-mediated MAPK activation and GCDC-induced apoptosis. 1) agents that increase intracellular cAMP protect against hepatocyte apoptosis induced by hydrophobic bile acids; 2) activation of MAPK by GCDC may be involved in bile acid-induced apoptosis; and 3) cAMP-mediated cytoprotection against bile acid-induced apoptosis appears to involve PKA, MAPK, and PI3K.

  6. Zinc pyrithione induces apoptosis and increases expression of Bim.

    PubMed

    Mann, J J; Fraker, P J

    2005-03-01

    We demonstrate herein that zinc pyrithione can induce apoptosis at nanomolar concentrations. Zinc pyrithione was a potent inducer of cell death causing greater than 40-60% apoptosis among murine thymocytes, murine splenic lymphocytes and human Ramos B and human Jurkat T cells. Conversely, the addition of a zinc chelator protected thymocytes against zinc pyrithione induced apoptosis indicating these responses were specific for zinc. Zinc-induced apoptosis was dependent on transcription and translation which suggested possible regulation by a proapoptotic protein. Indeed, zinc induced a 1.9 and 3.4 fold increase respectively in expression of the BimEL and BimL isoforms and also stimulated production of the most potent isoform, BimS. This increase in Bim isoform expression was dependent on transcription being blocked by treatment with actinomycin D. Overexpression of Bcl-2 or Bcl-xL provided substantial protection of Ramos B and Jurkat T cells against zinc-induced apoptosis. Zinc also activated the caspase cascade demonstrated by cleavage of caspase 9. Addition of specific inhibitors for caspase 9 and caspase 3 also blocked zinc-induced apoptosis. The data herein adds to the growing evidence that free or unbound zinc could be harmful to cells of the immune system.

  7. Flavones induce neutrophil apoptosis by down-regulation of Mcl-1 via a proteasomal-dependent pathway.

    PubMed

    Lucas, Christopher D; Allen, Keith C; Dorward, David A; Hoodless, Laura J; Melrose, Lauren A; Marwick, John A; Tucker, Carl S; Haslett, Christopher; Duffin, Rodger; Rossi, Adriano G

    2013-03-01

    Neutrophil apoptosis and subsequent nonphlogistic clearance by surrounding phagocytes are key to the successful resolution of neutrophilic inflammation, with dysregulated apoptosis reported in multiple human inflammatory diseases. Enhancing neutrophil apoptosis has proresolution and anti-inflammatory effects in preclinical models of inflammation. Here we investigate the ability of the flavones apigenin, luteolin, and wogonin to induce neutrophil apoptosis in vitro and resolve neutrophilic inflammation in vivo. Human neutrophil apoptosis was assessed morphologically and by flow cytometry following incubation with apigenin, luteolin, and wogonin. All three flavones induced time- and concentration-dependent neutrophil apoptosis (apigenin, EC=12.2 μM; luteolin, EC=14.6 μM; and wogonin, EC=28.9 μM). Induction of apoptosis was caspase dependent, as it was blocked by the broad-spectrum caspase inhibitor Q-VD-OPh and was associated with both caspase-3 and caspase-9 activation. Flavone-induced apoptosis was preceded by down-regulation of the prosurvival protein Mcl-1, with proteasomal inhibition preventing flavone-induced Mcl-1 down-regulation and apoptosis. The flavones abrogated the survival effects of mediators that prolong neutrophil life span, including lipoteichoic acid, peptidoglycan, dexamethasone, and granulocyte-macrophage colony stimulating factor, by driving apoptosis. Furthermore, wogonin enhanced resolution of established neutrophilic inflammation in a zebrafish model of sterile tissue injury. Wogonin-induced resolution was dependent on apoptosis in vivo as it was blocked by caspase inhibition. Our data show that the flavones induce neutrophil apoptosis and have potential as neutrophil apoptosis-inducing anti-inflammatory, proresolution agents.

  8. PDT-induced apoptosis in arterial smooth muscles cells

    NASA Astrophysics Data System (ADS)

    Nyamekye, Isaac; Renick, R.; Gilbert, C.; McEwan, Jean R.; Evan, G.; Bishop, Christopher C. R.; Bown, Stephen G.

    1995-03-01

    PDT kills smooth muscle cells (SMC) in vivo and thus prevents intimal hyperplasia after angioplasty. It causes little inflammation and structural integrity of the artery is not compromised. We have studied the process of the SMC death in vitro. Cultured rat SMC (cell line sv40 ATCC) were sensitized with aluminum disulphonated phthalocyanine (AlS2Pc), and then irradiated with 675 nm laser light (2.5 J/cm2). Controls were studied using only sensitizer or laser for treatment. The cells were incubated and the dying process observed with a time lapse video and microscope system. PDT caused a characteristic pattern of death. Cells lost contact with neighbors, shrank, and showed hyperactivity and membrane ruffling. The cells imploded into active and condensed membrane bound vesicles which were terminally reduced to residual bodies. These are the morphological changes of apoptosis. The control cells which were given AlS2Pc alone or laser alone showed no death. PDT induced cultured arterial SMC death by apoptosis rather than necrosis. An apoptotic mechanism of cell death in vivo would explain the relative lack of inflammation and local tissue destruction in the face of massive death.

  9. HIV-1 viral protein r induces ERK and caspase-8 dependent apoptosis in renal tubular epithelial cells

    PubMed Central

    Snyder, Alexandra; Alsauskas, Zygimantas C.; Leventhal, Jeremy S.; Rosenstiel, Paul E.; Gong, Pengfei; Chan, Justin JK; Barley, Kevin; He, John C.; Klotman, Mary E.; Ross, Michael J.; Klotman, Paul E.

    2010-01-01

    Objective HIV-associated nephropathy is the most common cause of end stage renal disease in persons with HIV/AIDS and is characterized by focal glomerulosclerosis and dysregulated renal tubular epithelial cell (RTEC) proliferation and apoptosis. HIV-1 viral protein r (Vpr) has been implicated in HIV-induced RTEC apoptosis but the mechanisms of Vpr-induced RTEC apoptosis are unknown. The aim of this study was therefore to determine the mechanisms of Vpr-induced apoptosis in RTEC. Methods Apoptosis and caspase activation were analyzed in human RTEC cells (HK2) after transduction with Vpr-expressing and control lentiviral vectors. Bax and BID were inhibited with lentiviral shRNA, and ERK activation was blocked with the MEK1,2 inhibitor, U0126. Results Vpr induced apoptosis as indicated by caspase 3/7 activation, PARP-1 cleavage and mitochondrial injury. Vpr activated both caspases-8 and 9. Inhibition of Bax reduced Vpr-induced apoptosis, as reported in other cell types. Additionally, Vpr induced cleavage of BID to tBID and suppression of BID expression prevented Vpr-induced apoptosis. Since sustained ERK activation can activate caspase-8 in some cell types, we studied the role of ERK in Vpr-induced caspase-8 activation. Vpr induced sustained ERK activation in HK2 cells and incubation with U0126 reduced Vpr-induced caspase-8 activation, BID cleavage and apoptosis. We detected phosphorylated ERK in RTEC in HIVAN biopsy specimens by immunohistochemistry. Conclusions These studies delineate a novel pathway of Vpr-induced apoptosis in RTEC, which is mediated by sustained ERK activation, resulting in caspase 8-mediated cleavage of BID to tBID, thereby facilitating Bax-mediated mitochondrial injury and apoptosis. PMID:20404718

  10. Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells.

    PubMed Central

    Wu, M; Lee, H; Bellas, R E; Schauer, S L; Arsura, M; Katz, D; FitzGerald, M J; Rothstein, T L; Sherr, D H; Sonenshein, G E

    1996-01-01

    Apoptosis of the WEHI 231 immature B cell lymphoma line following membrane interaction with an antibody against the surface IgM chains (anti-IgM) is preceded by dramatic changes in Nuclear Factor-kappaB (NF-kappaB)/ Rel binding activities. An early transient increase in NF-kappaB/Rel binding is followed by a significant decrease in intensity below basal levels. Here we have explored the role of these changes in Rel-related factors in B cell apoptosis. Treatment of WEH1 231 cells with N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), a protease inhibitor which prevents degradation of the inhibitor of NF-kappaB (IkappaB)-alpha, or with low doses of pyrrolidinedithiocarbamate (PDTC) selectively inhibited NF-kappaB/Rel factor binding and induced apoptosis. Bcl-XL expression protected WEHI 231 cells from apoptosis induced by these agents. Microinjection of WEHI 231 cells with either IkappaB-alpha-GST protein or a c-Rel affinity-purified antibody induced apoptosis. Ectopic c-Rel expression ablated apoptosis induced by TPCK or anti-IgM. Treatment of BALENLM 17 and A20 B lymphoma cells or normal murine splenic B lymphocytes with either TPCK or PDTC also resulted in apoptosis. These findings indicate that the drop in NF-kappaB/Rel binding following anti-IgM treatment activates apoptosis of WEHI 231 cells; furthermore, they implicate the NF-kappaB/Rel family in control of apoptosis of normal and transformed B cells. Images PMID:8887559

  11. Phellinus linteus sensitises apoptosis induced by doxorubicin in prostate cancer

    PubMed Central

    Collins, L; Zhu, T; Guo, J; Xiao, Z J; Chen, C-Y

    2006-01-01

    It has been demonstrated that the Phellinus linteus (PL) mushroom, which mainly consists of polysaccharides, possesses antitumour activity. The mechanisms of PL against malignant growth remain unknown. The anticancer drug doxorubicin (Dox) has been shown to induce apoptosis via initiating a caspase cascade. In this investigation, we tested the effect of PL on Dox-induced apoptosis in prostate cancer LNCaP cells. We showed that PL or Dox, at relatively low doses, does not induce apoptosis in the cells. However, combination treatment with low doses of PL and Dox results in a synergistic effect on the induction of apoptosis. In this apoptotic process, caspases 8, 3 and BID are cleaved, and the addition of caspase inhibitor z-VADfmk completely blocks apoptosis. In addition, JNK is activated in response to PL or the combination treatment in LNCaP cells. The suppression of JNK partially inhibits the induction of apoptosis elicited by the co-treatment. These findings indicate that PL has a synergistic effect with Dox to activate caspases in prostate cancer LNCaP cells. Our study also suggests that PL has therapeutic potential to augment the magnitude of apoptosis induced by antiprostate cancer drugs. PMID:16868541

  12. Phellinus linteus sensitises apoptosis induced by doxorubicin in prostate cancer.

    PubMed

    Collins, L; Zhu, T; Guo, J; Xiao, Z J; Chen, C-Y

    2006-08-07

    It has been demonstrated that the Phellinus linteus (PL) mushroom, which mainly consists of polysaccharides, possesses antitumour activity. The mechanisms of PL against malignant growth remain unknown. The anticancer drug doxorubicin (Dox) has been shown to induce apoptosis via initiating a caspase cascade. In this investigation, we tested the effect of PL on Dox-induced apoptosis in prostate cancer LNCaP cells. We showed that PL or Dox, at relatively low doses, does not induce apoptosis in the cells. However, combination treatment with low doses of PL and Dox results in a synergistic effect on the induction of apoptosis. In this apoptotic process, caspases 8, 3 and BID are cleaved, and the addition of caspase inhibitor z-VADfmk completely blocks apoptosis. In addition, JNK is activated in response to PL or the combination treatment in LNCaP cells. The suppression of JNK partially inhibits the induction of apoptosis elicited by the co-treatment. These findings indicate that PL has a synergistic effect with Dox to activate caspases in prostate cancer LNCaP cells. Our study also suggests that PL has therapeutic potential to augment the magnitude of apoptosis induced by antiprostate cancer drugs.

  13. Inhibition of Apoptosis-Regulated Signaling Kinase-1 and Prevention of Congestive Heart Failure by Estrogen

    PubMed Central

    Satoh, Minoru; Matter, Christian M.; Ogita, Hisakazu; Takeshita, Kyosuke; Wang, Chao-Yung; Dorn, Gerald W.; Liao, James K.

    2008-01-01

    Background Epidemiological studies have shown gender differences in the incidence of congestive heart failure (CHF); however, the role of estrogen in CHF is not known. We hypothesize that estrogen prevents cardiomyocyte apoptosis and the development of CHF. Methods and Results 17β-Estradiol (E2, 0.5 mg/60-day release) or placebo pellet was implanted subcutaneously into male Gαq transgenic (Gq) mice. After 8 weeks, E2 treatment decreased the extent of cardiac hypertrophy and dilation and improved contractility in Gq mice. E2 treatment also attenuated nicotinamide adenine dinucleotide phosphate oxidase activity and superoxide anion production via downregulation of Rac1. This correlated with reduced apoptosis in cardiomyocytes of Gq mice. The antioxidative properties of E2 were also associated with increased expression of thioredoxin (Trx), Trx reductases, and Trx reductase activity in the hearts of Gq mice. Furthermore, the activation of apoptosis signal-regulating kinase 1 and its downstream effectors, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase, in the hearts of Gq mice was reduced by long-term E2 treatment. Indeed, E2 (10 nmol/L)-treated cardiomyocytes were much more resistant to angiotensin II–induced apoptosis. These antiapoptotic and cardioprotective effects of E2 were blocked by an estrogen receptor antagonist (ICI 182,780) and by a Trx reductase inhibitor (azelaic acid). Conclusions These findings indicate that long-term E2 treatment improves CHF by antioxidative mechanisms that involve the upregulation of Trx and inhibition of Rac1-mediated attenuated nicotinamide adenine dinucleotide phosphate oxidase activity and apoptosis signal-regulating kinase 1 /c-Jun N-terminal kinase/p38 mitogen-activated protein kinase–mediated apoptosis. These results suggest that estrogen may be a useful adjunctive therapy for patients with CHF. PMID:17562954

  14. UVC-induced apoptosis in Dubca cells is independent of JNK activation and p53{sup Ser-15} phosphorylation

    SciTech Connect

    Chathoth, Shahanas; Thayyullathil, Faisal; Hago, Abdulkader; Shahin, Allen; Patel, Mahendra; Galadari, Sehamuddin

    2009-06-12

    Ultraviolet C (UVC) irradiation in mammalian cell lines activates a complex signaling network that leads to apoptosis. By using Dubca cells as a model system, we report the presence of a UVC-induced apoptotic pathway that is independent of c-Jun N-terminal kinases (JNKs) activation and p53 phosphorylation at Ser{sup 15}. Irradiation of Dubca cells with UVC results in a rapid JNK activation and phosphorylation of its downstream target c-Jun, as well as, phosphorylation of activating transcription factor 2 (ATF2). Pre-treatment with JNK inhibitor, SP600125, inhibited UVC-induced c-Jun phosphorylation without preventing UVC-induced apoptosis. Similarly, inhibition of UVC-induced p53 phosphorylation did not prevent Dubca cell apoptosis, suggesting that p53{sup Ser-15} phosphorylation is not associated with UVC-induced apoptosis signaling. The pan-caspase inhibitor z-VAD-fmk inhibited UVC-induced PARP cleavage, DNA fragmentation, and ultimately apoptosis of Dubca cells. Altogether, our study clearly indicates that UVC-induced apoptosis is independent of JNK and p53 activation in Dubca cells, rather, it is mediated through a caspase dependent pathway. Our findings are not in line with the ascribed critical role for JNKs activation, and downstream phosphorylation of targets such as c-Jun and ATF2 in UVC-induced apoptosis.

  15. Crizotinib induces PUMA-dependent apoptosis in colon cancer cells.

    PubMed

    Zheng, Xingnan; He, Kan; Zhang, Lin; Yu, Jian

    2013-05-01

    Oncogenic alterations in MET or anaplastic lymphoma kinase (ALK) have been identified in a variety of human cancers. Crizotinib (PF02341066) is a dual MET and ALK inhibitor and approved for the treatment of a subset of non-small cell lung carcinoma and in clinical development for other malignancies. Crizotinib can induce apoptosis in cancer cells, whereas the underlying mechanisms are not well understood. In this study, we found that crizotinib induces apoptosis in colon cancer cells through the BH3-only protein PUMA. In cells with wild-type p53, crizotinib induces rapid induction of PUMA and Bim accompanied by p53 stabilization and DNA damage response. The induction of PUMA and Bim is mediated largely by p53, and deficiency in PUMA or p53, but not Bim, blocks crizotinib-induced apoptosis. Interestingly, MET knockdown led to selective induction of PUMA, but not Bim or p53. Crizotinib also induced PUMA-dependent apoptosis in p53-deficient colon cancer cells and synergized with gefitinib or sorafenib to induce marked apoptosis via PUMA in colon cancer cells. Furthermore, PUMA deficiency suppressed apoptosis and therapeutic responses to crizotinib in xenograft models. These results establish a critical role of PUMA in mediating apoptotic responses of colon cancer cells to crizotinib and suggest that mechanisms of oncogenic addiction to MET/ALK-mediated survival may be cell type-specific. These findings have important implications for future clinical development of crizotinib.

  16. Enoxacin directly inhibits osteoclastogenesis without inducing apoptosis.

    PubMed

    Toro, Edgardo J; Zuo, Jian; Ostrov, David A; Catalfamo, Dana; Bradaschia-Correa, Vivian; Arana-Chavez, Victor; Caridad, Aliana R; Neubert, John K; Wronski, Thomas J; Wallet, Shannon M; Holliday, L Shannon

    2012-05-18

    Enoxacin has been identified as a small molecule inhibitor of binding between the B2-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments. It inhibits bone resorption by calcitriol-stimulated mouse marrow cultures. We hypothesized that enoxacin acts directly and specifically on osteoclasts by disrupting the interaction between plasma membrane-directed V-ATPases, which contain the osteoclast-selective a3-subunit of V-ATPase, and microfilaments. Consistent with this hypothesis, enoxacin dose-dependently reduced the number of multinuclear cells expressing tartrate-resistant acid phosphatase (TRAP) activity produced by RANK-L-stimulated osteoclast precursors. Enoxacin (50 μM) did not induce apoptosis as measured by TUNEL and caspase-3 assays. V-ATPases containing the a3-subunit, but not the "housekeeping" a1-subunit, were isolated bound to actin. Treatment with enoxacin reduced the association of V-ATPase subunits with the detergent-insoluble cytoskeleton. Quantitative PCR revealed that enoxacin triggered significant reductions in several osteoclast-selective mRNAs, but levels of various osteoclast proteins were not reduced, as determined by quantitative immunoblots, even when their mRNA levels were reduced. Immunoblots demonstrated that proteolytic processing of TRAP5b and the cytoskeletal protein L-plastin was altered in cells treated with 50 μM enoxacin. Flow cytometry revealed that enoxacin treatment favored the expression of high levels of DC-STAMP on the surface of osteoclasts. Our data show that enoxacin directly inhibits osteoclast formation without affecting cell viability by a novel mechanism that involves changes in posttranslational processing and trafficking of several proteins with known roles in osteoclast function. We propose that these effects are downstream to blocking the binding interaction between a3-containing V-ATPases and microfilaments.

  17. Enoxacin Directly Inhibits Osteoclastogenesis without Inducing Apoptosis*

    PubMed Central

    Toro, Edgardo J.; Zuo, Jian; Ostrov, David A.; Catalfamo, Dana; Bradaschia-Correa, Vivian; Arana-Chavez, Victor; Caridad, Aliana R.; Neubert, John K.; Wronski, Thomas J.; Wallet, Shannon M.; Holliday, L. Shannon

    2012-01-01

    Enoxacin has been identified as a small molecule inhibitor of binding between the B2-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments. It inhibits bone resorption by calcitriol-stimulated mouse marrow cultures. We hypothesized that enoxacin acts directly and specifically on osteoclasts by disrupting the interaction between plasma membrane-directed V-ATPases, which contain the osteoclast-selective a3-subunit of V-ATPase, and microfilaments. Consistent with this hypothesis, enoxacin dose-dependently reduced the number of multinuclear cells expressing tartrate-resistant acid phosphatase (TRAP) activity produced by RANK-L-stimulated osteoclast precursors. Enoxacin (50 μm) did not induce apoptosis as measured by TUNEL and caspase-3 assays. V-ATPases containing the a3-subunit, but not the “housekeeping” a1-subunit, were isolated bound to actin. Treatment with enoxacin reduced the association of V-ATPase subunits with the detergent-insoluble cytoskeleton. Quantitative PCR revealed that enoxacin triggered significant reductions in several osteoclast-selective mRNAs, but levels of various osteoclast proteins were not reduced, as determined by quantitative immunoblots, even when their mRNA levels were reduced. Immunoblots demonstrated that proteolytic processing of TRAP5b and the cytoskeletal protein l-plastin was altered in cells treated with 50 μm enoxacin. Flow cytometry revealed that enoxacin treatment favored the expression of high levels of DC-STAMP on the surface of osteoclasts. Our data show that enoxacin directly inhibits osteoclast formation without affecting cell viability by a novel mechanism that involves changes in posttranslational processing and trafficking of several proteins with known roles in osteoclast function. We propose that these effects are downstream to blocking the binding interaction between a3-containing V-ATPases and microfilaments. PMID:22474295

  18. Cytoprotective effects of phenolic acids on methylglyoxal-induced apoptosis in Neuro-2A cells.

    PubMed

    Huang, Shang-Ming; Chuang, Hong-Chih; Wu, Chi-Hao; Yen, Gow-Chin

    2008-08-01

    In the process of glycation, methylglyoxal is a reactive dicarbonyl compound physiologically generated as an intermediate of glycolysis, and is found in high levels in blood or tissue of diabetic models. Biological glycation has been commonly implicated in the development of diabetic microvascular complications of neuropathy. Increasing evidence suggests that neuronal cell cycle regulatory failure followed by apoptosis is an important mechanism in the development of diabetic neuropathy complication. Naturally occurring antioxidants, especially phenolic acids have been recommended as the major bioactive compounds to prevent chronic diseases and promote health benefits. The objective of this study was to investigate the inhibitory abilities of phenolic acids (chlorogenic acid, syringic acid and vanillic acid) on methylglyoxal-induced mouse Neuro-2A neuroblastoma (Neuro-2A) cell apoptosis in the progression of diabetic neuropathy. The data indicated that methylglyoxal induced mouse Neuro-2A neuroblastoma (Neuro-2A) cell apoptosis via alternation of mitochondria membrane potential and Bax/Bcl-2 ratio, activation of caspase-3, and cleavage of poly (ADP-ribose) polymerase. Furthermore, the results demonstrated that activation of mitogen-activated protein kinase signal pathways (JNK and p38) participated in the methylglyoxal-induced Neuro-2A cell apoptosis process. Treatment of Neuro-2A cells with phenolic acids markedly suppresses cell apoptosis induced by methylglyoxal, suggesting that phenolic acids possess cytoprotective ability in the prevention of diabetic neuropathy complication.

  19. Apoptosis in vascular cells induced by cold atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Sladek, Raymond; Stoffels, Eva

    2006-10-01

    Apoptosis is a natural mechanism of cellular self-destruction. It can be triggered by moderate, yet irreversible damage. Apoptosis plays a major role in tissue renewal. Artificial apoptosis induction will become a novel therapy that meets all requirements for tissue-saving surgery. Diseased tissues can disappear without inflammation and scarring. This is particularly important in treatment of blockages in body tracts (e.g. cardiovascular diseases). Artificial induction of apoptosis can be achieved by means of cold plasma treatment. In this work an atmospheric micro-plasma operated in helium/air has been used to induce apoptosis in vascular cells. Parametric studies of apoptosis induction have been conducted; the efficiency is almost 100%. The apoptotic factors are ROS/RNS (reactive oxygen and nitrogen species). Their densities in the plasma have been measured by mass spectrometry. For apoptosis induction, RNS seem to be more important than ROS, because of their relative abundance. Moreover, addition of a ROS scavenger (ascorbic acid) to the cell culture medium does not reduce the occurrence of apoptosis. Cold plasma is a very efficient tool for fundamental studies of apoptosis, and later, for controlled tissue removal in vivo.

  20. Chloride channels involve in hydrogen peroxide-induced apoptosis of PC12 cells.

    PubMed

    Zuo, Wanhong; Zhu, Linyan; Bai, Zhiquan; Zhang, Haifeng; Mao, Jianwen; Chen, Lixin; Wang, Liwei

    2009-10-02

    Chloride channel activity is one of the critical factors responsible for cell apoptotic volume decrease (AVD). However, the roles of chloride channels in apoptosis have not been fully understood. In the current study, we assessed the role of chloride channels in hydrogen peroxide (H(2)O(2))-induced apoptosis of pheochromocytoma cells (PC12). Extracellular application of H(2)O(2) activated a chloride current and induced cell volume decrease in a few minutes. Incubation of cells with H(2)O(2) elevated significantly the membrane permeability to the DNA dye Hoechst 33258 in 1h and induced apoptosis of most PC12 cells tested in 24h. The chloride channel blocker NPPB (5-nitro-2-(3-phenylpropylamino)-benzoate) prevented appearance of H(2)O(2)-induced high membrane permeability and cell shrinkage, suppressed H(2)O(2)-activated chloride currents and protected PC12 cells from apoptosis induced by H(2)O(2). The results suggest that chloride channels may contribute to H(2)O(2)-induced apoptosis by ways of elevation of membrane permeability and AVD in PC12 cells.

  1. Phenylethanoid glycosides from Cistanches salsa inhibit apoptosis induced by 1-methyl-4-phenylpyridinium ion in neurons.

    PubMed

    Tian, Xue-Fei; Pu, Xiao-Ping

    2005-02-10

    In our study we investigated the neuroprotective effects of phenylethanoid glycosides (PhGs) from Cistanches salsa on 1-methyl-4-phenylpyridinium ion (MPP(+))-induced apoptosis in cerebellar granule neurons (CGNs). CGNs were treated with 100 microM MPP(+) for 24h to induce apoptosis, simultaneously CGNs were incubated with PhGs at 10, 20 and 40 microg/ml, respectively. In addition CGNs were pretreated with PhGs at 20 microg/ml for 6, 12, 24 h, respectively, and then treated with 100 microM MPP(+) for 24 h. 3-(4,5-Dimethylthiazol-2-ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that the treatment of CGNs with PhGs inhibited the decrease of cell viability induced by MPP(+). The activation of caspase-3 and caspase-8 was induced by MPP(+) in apoptosis. The caspase-3 and caspase-8 fluorogenic assays showed that the treatments of CGNs with PhGs efficiently suppressed the activation of caspase-3 and caspase-8 induced by MPP(+). It is concluded that PhGs can prevent the MPP(+)-induced apoptosis in CGNs and exert its anti-apoptosis effect by inhibiting caspase-3 and caspase-8 activities.

  2. TSC-22 Promotes Interleukin-2-Deprivation Induced Apoptosis in T-Lymphocytes.

    PubMed

    Pépin, Aurélie; Espinasse, Marie-Alix; Latré de Laté, Perle; Szely, Natacha; Pallardy, Marc; Biola-Vidamment, Armelle

    2016-08-01

    Originally described as a TGF-β-inducible gene, tsc-22 (Transforming growth factor-beta Stimulated Clone 22) encodes a transcriptional regulator affecting biological processes such as cell growth, differentiation, or apoptosis. Along with GILZ (Glucocorticoid-Induced Leucine Zipper), TSC-22 belongs to the evolutionary conserved TSC-22 Domain family. We previously showed that, in T-lymphocytes, GILZ expression was induced upon IL-2 withdrawal, delaying apoptosis through down-regulation of the pro-apoptotic protein BIM expression. The aim of this work was then to elucidate the respective roles of GILZ and TSC-22 upon IL-2 deprivation-induced apoptosis. We report here that these two highly homologous genes are concomitantly expressed in most human tissues and in primary T-lymphocytes and that expression of TSC-22 promotes T-lymphocytes apoptosis by inhibiting GILZ functions. Indeed, we demonstrated that TSC-22 expression in the murine lymphoid CTLL-2 cell line promoted IL-2 deprivation-induced apoptosis. BIM expression and caspases-9 and -3 activities were markedly increased in TSC-22 expressing clones compared to control clones. Analysis of GILZ expression revealed that TSC-22 prevented the induction of the GILZ protein upon IL-2 deprivation, by inhibiting gilz mRNA transcription. These results suggested that TSC-22 could counteract the protective effect of GILZ on IL-2-deprivation-induced apoptosis. Moreover, TSC-22-induced inhibition of GILZ expression was also found in CTLL-2 cells treated with glucocorticoids or TGF-β. In the human NKL cell line deprived of IL-2, TSC-22 showed the same effect and thus may represent a potent repressor of GILZ expression in IL-2-dependent cells, independently of the cell type, or the stimulus, leading to an increase of IL-2-deprived T-cells apoptosis. J. Cell. Biochem. 117: 1855-1868, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Resveratrol inhibits TIGAR to promote ROS induced apoptosis and autophagy.

    PubMed

    Kumar, Bhupender; Iqbal, Mohammad Askandar; Singh, Rajnish Kumar; Bamezai, Rameshwar N K

    2015-11-01

    Resveratrol has been shown to exhibit its anti-cancer effect through a variety of mechanisms. Here, TIGAR (TP53-Induced Glycolysis and Apoptosis Regulator) was identified as an important target of resveratrol for exhibiting ROS-dependent-consequences on apoptosis and autophagy. Resveratrol treatment decreased TIGAR protein irrespective of cell line used. Down-regulated TIGAR protein triggered a drop in reduced-glutathione levels which resulted in sustained ROS, responsible for apoptosis and autophagy. Over-expression and silencing experiments demonstrated the importance of TIGAR in affecting the ROS-dependent anti-cancer effects of resveratrol. Resveratrol treated cells exhibited autophagy to escape apoptosis, however, chloroquine treatment along with resveratrol, blocked protective autophagy and facilitated apoptosis. Collectively, results unravel the effects of resveratrol on TIGAR in mediating its ROS dependent influence and suggest a better combination therapy of resveratrol and chloroquine for probable cancer treatment.

  4. Mitochondrial DNA damage induces apoptosis in senescent cells

    PubMed Central

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-01-01

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV–HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells. PMID:23868060

  5. Mitochondrial DNA damage induces apoptosis in senescent cells.

    PubMed

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-07-18

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV-HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells.

  6. Inonotus obliquus Protects against Oxidative Stress-Induced Apoptosis and Premature Senescence

    PubMed Central

    Yun, Jong Seok; Pahk, Jung Woon; Lee, Jong Seok; Shin, Won Cheol; Lee, Shin Young; Hong, Eock Kee

    2011-01-01

    In this study, we investigated the cytoprotective effects of Inonotus obliquus against oxidative stress-induced apoptosis and premature senescence. Pretreatment with I. obliquus scavenged intracellular ROS and prevented lipid peroxidation in hydrogen peroxide-treated human fibroblasts. As a result, I. obliquus exerted protective effects against hydrogen peroxide-induced apoptosis and premature senescence in human fibroblasts. In addition, I. obliquus suppressed UV-induced morphologic skin changes, such as skin thickening and wrinkle formation, in hairless mice in vivo and increased collagen synthesis through inhibition of MMP-1 and MMP-9 activities in hydrogen peroxide- treated human fibroblasts. Taken together, these results demonstrate that I. obliquus can prevent the aging process by attenuating oxidative stress in a model of stress-induced premature senescence. PMID:21359681

  7. Cold-inducible RNA-binding protein inhibits neuron apoptosis through the suppression of mitochondrial apoptosis.

    PubMed

    Zhang, Hai-Tao; Xue, Jing-Hui; Zhang, Zhi-Wen; Kong, Hai-Bo; Liu, Ai-Jun; Li, Shou-Chun; Xu, Dong-Gang

    2015-10-05

    Cold-inducible RNA-binding protein (CIRP) is induced by mild hypothermia in several mammals, but the precise mechanism by which CIRP mediates hypothermia-induced neuroprotection remains unknown. We aimed to investigate the molecular mechanisms by which CIRP protects the nervous system during mild hypothermia. Rat cortical neurons were isolated and cultured in vitro under mild hypothermia (32°C). Apoptosis was measured by annexin V and propidium iodide staining, visualized by flow cytometry. Neuron ultrastructure was visualized by transmission electron microscopy. CIRP overexpression and knockdown were achieved via infection with pL/IRES/GFP-CIRP and pL/shRNA/F-CIRP-A lentivirus. RT(2) Profiler PCR Array Pathway Analysis and western blotting were used to evaluate the effects of CIRP overexpresion/knockdown on the neurons׳ transcriptome. Neuron late apoptosis was significantly reduced at day 7 of culture by 12h hypothermia, but neuron ultrastructure remained relatively intact. RT(2) Profiler PCR Array Pathway Analysis of 84 apoptosis pathway-associated factors revealed that mild hypothermia and CIRP overexpression induce similar gene expression profiles, specifically alterations of genes implicated in the mitochondrial apoptosis pathway. Mild hypothermia-treated neurons up-regulated 12 and down-regulated 38 apoptosis pathway-associated genes. CIRP-overexpressing neurons up-regulated 15 and down-regulated 46 genes. CIRP-knocked-down hypothermia-treated cells up-regulated 9 and down-regulated 40 genes. Similar results were obtained at the protein level. In conclusion, CIRP may inhibit neuron apoptosis through the suppression of the mitochondria apoptosis pathway during mild hypothermia.

  8. Requirement of evading apoptosis for HIF-1α-induced malignant progression in mouse cells.

    PubMed

    Hayashi, Masami; Yoo, Yoo Young-Gun; Christensen, Jared; Huang, L Eric

    2011-07-15

    Tumor hypoxia is correlated with genetic alteration and malignant progression. Our previous studies indicated that the hypoxia-inducible transcription factor, HIF-1α, is responsible for hypoxic suppression of DNA repair in tumor cells by a non-canonical mode of action that requires the HIF-1α PAS-B subdomain. The involvement of HIF-1α in genetic alteration has raised an intriguing question as to whether normal cells would respond to hypoxic stress differently to avert genetic alteration. In this study, we chose several mouse cell types ranging from benign to malignant, apoptosis-proficient to apoptosis-deficient, and determined their responses to HIF-1α expression. In agreement with our previous findings, transient hypoxia and HIF-1α expression inhibited DNA repair and induced DNA damage in all cell types examined; however, cumulative DNA damage only occurred in apoptosis-deficient, malignant cells transduced for sustained expression of HIF-1α or HIF-1α PAS-B itself. In keeping with the theory of apoptosis as a cancer barrier, only these apoptosis-deficient cells acquired anchorage-independent growth and epithelial-mesenchymal transition. Furthermore, these cells exhibited increased Akt activity and resistance to etoposide by inhibiting autophagy. Altogether, our results define an essential role for apoptosis to prevent HIF-1α-induced genetic alteration and thereby malignant progression.

  9. Requirement of evading apoptosis for HIF-1α-induced malignant progression in mouse cells

    PubMed Central

    Hayashi, Masami; Yoo, Yoo Young-Gun; Christensen, Jared

    2011-01-01

    Tumor hypoxia is correlated with genetic alteration and malignant progression. Our previous studies indicated that the hypoxia-inducible transcription factor, HIF-1α, is responsible for hypoxic suppression of DNA repair in tumor cells by a non-canonical mode of action that requires the HIF-1α PAS-B subdomain. The involvement of HIF-1α in genetic alteration has raised an intriguing question as to whether normal cells would respond to hypoxic stress differently to avert genetic alteration. In this study, we chose several mouse cell types ranging from benign to malignant, apoptosis-proficient to apoptosis-deficient, and determined their responses to HIF-1α expression. In agreement with our previous findings, transient hypoxia and HIF-1α expression inhibited DNA repair and induced DNA damage in all cell types examined; however, cumulative DNA damage only occurred in apoptosis-deficient, malignant cells transduced for sustained expression of HIF-1α or HIF-1α PAS-B itself. In keeping with the theory of apoptosis as a cancer barrier, only these apoptosis-deficient cells acquired anchorage-independent growth and epithelial-mesenchymal transition. Furthermore, these cells exhibited increased Akt activity and resistance to etoposide by inhibiting autophagy. Altogether, our results define an essential role for apoptosis to prevent HIF-1α-induced genetic alteration and thereby malignant progression. PMID:21654209

  10. Arsenic trioxide-induced apoptosis through oxidative stress in cells of colon cancer cell lines.

    PubMed

    Nakagawa, Yoshihito; Akao, Yukihiro; Morikawa, Hiroshi; Hirata, Ichiro; Katsu, Kenichi; Naoe, Tomoki; Ohishi, Nobuko; Yagi, Kunio

    2002-03-29

    Exposure of three colon cancer cell lines, SW480, DLD-1, and COLO201, to arsenic trioxide in the medium induced a marked concentration-dependent suppression of cell growth. The intracellular contents of reduced glutathione (GSH) in these cell lines tended to be inversely correlated with the sensitivity of the cells to arsenic trioxide. Among the cell lines, SW480 cells underwent apoptosis at the low arsenic trioxide concentration of 2 microM, which was prevented by pretreatment of the cells with N-acetylcysteine and was enhanced by buthionine sulfoximine. The production of reactive oxygen intermediates which were examined by 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA), increased with time after treatment with arsenic trioxide. The apoptosis was executed by the activation of caspase 3, which was shown by Western blot, enzymatic activity, and apoptosis inhibition assay. The mitochondrial membrane potential of adherent apoptotic SW480 cells and the cells from intermediate layer separated by density gradient centrifugation, both of which showed the active form of caspase 3 by Western blot analysis, was not lost. The overexpression of Bcl-2 protein in SW480 cells could not prevent the apoptosis induced by the treatment with arsenic trioxide. All these findings indicate that arsenic trioxide-induced apoptosis in SW480 cells is executed by the activation of caspase 3 without mediating by mitochondria under the overproduction of reactive oxygen species.

  11. Daidzin protects PC12 cells from serum deprivation-induced apoptosis.

    PubMed

    Ji, Zhao-Ning; Liu, Guo-Qing

    2002-12-01

    This article examines the effect of daidzin on PC12 cell apoptosis induced by serum-free medium. PC12 cell survival was measured by MTT assay. The DNA content and percentage of apoptosis were monitored by flow cytometry and DNA fragmentation was analyzed by agarose gel electrophoresis. The results showed that serum-free (12 h) medium induced apoptosis in PC12 cells. When the cells had been treated with daidzin (0.1, 1 microM) for 12 h, the percentage of PC12 cell apoptosis was significantly decreased to 12.21 and 4.24% from 91.94% in the group with serum deprivation, and DNA fragmentation was prevented. Daidzin (0.01-10 microM) attenuated the cytotoxic effect of sodium cyanide (20 mM), glutamate (0.5 mM) and sodium nitroprusside (0.5 mM) in a manner dependent on concentration. The results suggested that daidzin prevented PC12 cell from serum free-induced apoptosis.

  12. RGD-FasL Induces Apoptosis in Hepatocellular Carcinoma

    PubMed Central

    Liu, Zhongchen; Wang, Juan; Yin, Ping; Qiu, Jinhua; Liu, Ruizhen; Li, Wenzhu; Fan, Xin; Cheng, Xiaofeng; Chen, Caixia; Zhang, Jiakai; Zhuang, Guohong

    2009-01-01

    Despite impressive results obtained in animal models, the clinical use of Fas ligand (FasL) as an anticancer drug is limited by severe toxicity. Systemic toxicity of death ligands may be prevented by using genes encoding membrane-bound death ligands and by targeted transgene expression through either targeted transduction or targeted transcription. Selective induction of tumor cell death is a promising anticancer strategy. A fusion protein is created by fusing the extracellular domain of Fas ligand (FasL) to the peptide arginine-glycine-aspartic acid (RGD) that selectively targets avβ3-integrins on tumor endothelial cells. The purpose of this study is to evaluate the effects of RGD-FasL on tumor growth and survival in a murine hepatocellular carcinoma (HCC) tumor model. Treatment with RGD-FasL displaying an obvious suppressive effect on the HCC tumor model as compared to that with FasL (p < 0.05) and resulted in a more additive effect on tumor growth delay in this model. RGD-FasL treatment significantly enhanced mouse survival and caused no toxic effect, such as weight loss, organ failure, or other treatment-related toxicities. Apoptosis was detected by flow cytometric analysis and TUNEL assays; those results also showed that RGD-FasL is a more potent inducer of cell apoptosis for H22 and H9101 cell lines than FasL (p < 0.05). In conclusion, RGD-FasL appears to be a low-toxicity selective inducer of tumor cell death, which merits further investigation in preclinical and clinical studies. Furthermore, this approach offers a versatile technology for complexing target ligands with therapeutic recombinant proteins. To distinguish the anti-tumor effects of FasL in vivo, tumor and liver tissues were harvested to examine for evidence of necrotic cells, tumor cells, or apoptotic cells by Hematoxylin and eosin (H&E) staining. PMID:19728930

  13. Dendroaspis natriuretic peptide induces the apoptosis of cardiac muscle cells.

    PubMed

    Ha, Ki-Chan; Chae, Han-Jung; Piao, Cheng-Shi; Kim, Suhn-Hee; Kim, Hyung-Ryong; Chae, Soo-Wan

    2005-01-01

    Early heart failure is characterized by elevated plasma Dendroaspis natriuretic peptide-like immunoreactivity (DNP-LI). However, the direct effects of DNP on heart or the heart-associated cell system are not well known. Therefore, we investigated whether DNP induces the apoptosis of H9c2 cardiac muscle cells. H9c2 cardiac muscle cells and rat neonatal cardiomyocytes were treated with various concentrations of DNP. Cell viability and nuclear morphology change were determined by trypan blue staining and Hoechst 33258 staining, respectively. Caspase-3-like activity was measured using specific fluorogenic substrates. Pro-and antiapoptotic proteins were assayed by Western blotting. DNP induced the apoptosis of H9c2 cardiac muscle cells in a dose-dependent manner. Maximum effects occurred at 100 nM concentration of DNP, with a 7-8-fold increase in apoptotic cells, to reach a maximum apoptotic index of 17%. We also identified that H9c2 cardiac muscle cells expressed Natriuretic peptide reactor -A and -B, which respond to DNP to generate cGMP. The treatment with DNP also markedly reduced levels of Bcl-2, inhibitor of apoptosis protein-1, and inhibitor of apoptosis protein-2 and increased the level of Bax and cytochrome c release into cytoplasm and subsequent caspase-3 activation, which co-occurred with increased apoptosis. DNP-induced apoptosis was mediated by cyclic GMP, and this effect was mimicked by dibutylyl-cGMP (30 microM), a membrane permeable analog of cGMP. Furthermore, DNP-induced apoptosis was observed in rat neonatal cardiomyocytes. These results suggest that DNP induces the apoptosis of H9c2 cardiac muscle cells and of cardiomyocytes via cGMP and demonstrate that the operative mechanism includes the regulation of Bcl-2 family proteins.

  14. Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo.

    PubMed

    Budhraja, Amit; Gao, Ning; Zhang, Zhuo; Son, Young-Ok; Cheng, Senping; Wang, Xin; Ding, Songze; Hitron, Andrew; Chen, Gang; Luo, Jia; Shi, Xianglin

    2012-01-01

    In this study, we investigated the functional role of Akt and c-jun-NH(2)-kinase (JNK) signaling cascades in apigenin-induced apoptosis in U937 human leukemia cells and anti-leukemic activity of apigenin in vivo. Apigenin induced apoptosis by inactivation of Akt with a concomitant activation of JNK, Mcl-1 and Bcl-2 downregulation, cytochrome c release from mitochondria, and activation of caspases. Constitutively active myristolated Akt prevented apigenin-induced JNK, caspase activation, and apoptosis. Conversely, LY294002 and a dominant-negative construct of Akt potentiated apigenin-induced apoptosis in leukemia cells. Interruption of the JNK pathway showed marked reduction in apigenin-induced caspase activation and apoptosis in leukemia cells. Furthermore, in vivo administration of apigenin resulted in attenuation of tumor growth in U937 xenografts accompanied by inactivation of Akt and activation of JNK. Attenuation of tumor growth in U937 xenografts by apigenin raises the possibility that apigenin may have clinical implications and can be further tested for incorporating in leukemia treatment regimens. ©2011 AACR.

  15. Reactive oxygen species modulate Zn(2+)-induced apoptosis in cancer cells.

    PubMed

    Provinciali, Mauro; Donnini, Alessia; Argentati, Katy; Di Stasio, Grazia; Bartozzi, Beatrice; Bernardini, Giovanni

    2002-03-01

    Some recent evidence has suggested a protective role of zinc against cancer. The mechanism by which zinc exerts this action has not been defined and, in particular, it has not been clarified whether zinc may directly act on cancer cells and the molecular mechanisms involved in this effect. In this study, we examined the in vitro effect of zinc on the apoptosis of mouse TS/A mammary adenocarcinoma cells, studying the zinc-dependent modulation of the intracellular levels of reactive oxygen species (ROS) and of p53 and Fas/Fas ligand pathways. We showed that zinc concentrations ranging from 33.7 to 75 muM Zn(2+) induced apoptosis in mammary cancer cells. The apoptosis was associated with an increased production of intracellular ROS, and of p53 and Fas/Fas ligand mRNA and protein. Zn(2+) induced a faint metallothionein response in TS/A cells in comparison with mouse lymphocytes. The treatment of tumor cells with the antioxidant N-acetylcysteine was able to prevent Zn(2+)-induced apoptosis, as well as the increase of p53 and Fas ligand protein induced by zinc. The data demonstrate that zinc exerts a direct action on mammary cancer cells inducing ROS-mediated apoptosis and that the effect may be mediated by the ROS-dependent induction of p53 and Fas/Fas ligand.

  16. Protective effects of catalase overexpression on UVB-induced apoptosis in normal human keratinocytes.

    PubMed

    Rezvani, Hamid Reza; Mazurier, Frédéric; Cario-André, Muriel; Pain, Catherine; Ged, Cécile; Taïeb, Alain; de Verneuil, Hubert

    2006-06-30

    UV-induced apoptosis in keratinocytes is a highly complex process in which various molecular pathways are involved. These include the extrinsic pathway via triggering of death receptors and the intrinsic pathway via DNA damage and reactive oxygen species (ROS) formation. In this study we investigated the effect of catalase and CuZn-superoxide dismutase (SOD) overexpression on apoptosis induced by UVB exposure at room temperature or 4 degrees C on normal human keratinocytes. Irradiation at low temperature reduced UV-induced apoptosis by 40% in normal keratinocytes independently of any change in p53 and with a decrease in caspase-8 activation. Catalase overexpression decreased apoptosis by 40% with a reduction of caspase-9 activation accompanied by a decrease in p53. Keeping cells at low temperature and catalase overexpression had additive effects. CuZn-SOD overexpression had no significant effect on UVB-induced apoptosis. UVB induced an increase in ROS levels at two distinct stages: immediately following irradiation and around 3 h after irradiation. Catalase overexpression inhibited only the late increase in ROS levels. We conclude that catalase overexpression has a protective role against UVB irradiation by preventing DNA damage mediated by the late ROS increase.

  17. Phloroglucinol induces apoptosis via apoptotic signaling pathways in HT-29 colon cancer cells

    PubMed Central

    KANG, MI-HYE; KIM, IN-HYE; NAM, TAEK-JEO NG

    2014-01-01

    Phloroglucinol is a polyphenolic compound that is used to treat and prevent several human diseases, as it exerts beneficial biological activities, including anti-oxidant, anti-inflammatory and anticancer properties. The aim of the present study was to investigate the effects of phloroglucinol on apoptotic signaling pathways in HT-29 colon cancer cells. The results indicated that phloroglucinol suppressed cell viability and induced apoptosis in HT-29 cells in a concentration-dependent manner. Phloroglucinol treatment of HT-29 cells resulted in characteristic apoptosis-related changes: altered Bcl-2 family proteins, cytochrome c release, and activation of caspase-3 and caspase-8. This study also showed that proteins involved in apoptosis were stimulated by treatment with phloroglucinol. These findings demonstrated that phloroglucinol exerts anticancer activity in HT-29 colon cancer cells through induction of apoptosis. PMID:25070748

  18. [Apoptosis of human leukemic cells induced by topoisomerase I and II inhibitors].

    PubMed

    Solary, E; Dubrez, L; Eymin, B; Bertrand, R; Pommier, Y

    1996-03-01

    Comparison between five human leukemic lines (BV173, HL60, U937, K562, KCL22) suggest that the main determinant of their sensitivity to topoisomerase I (camptothecin) and II (VP-16) inhibitors is their ability to regulate cell cycle progression in response to specific DNA damage, then to die through apoptosis: the more the cells inhibit cell cycle progression, the less sensitive they are. The final pathway of apoptosis induction involves a cytoplasmic signal, active at neutral pH, needing magnesium, sensitive to various protease inhibitors and activated directly by staurosporine. Modulators of intracellular signaling (calcium chelators, calmodulin inhibitors, PKC modulators, kinase and phosphatase inhibitors) have no significant influence upon apoptosis induction. Conversely, apoptosis induction pathway is modified during monocytic differentiation of HL60 cells induced by phorbol esters. Lastly, poly(ADP-ribosyl)ation and chromatine structure should regulate apoptotic DNA fragmentation that is prevented by 3-aminobenzamide and spermine, respectively.

  19. Subclinical concentrations of sevoflurane reduce oxidative stress but do not prevent hippocampal apoptosis.

    PubMed

    Zhou, Zhi-Bin; Yang, Xiao-Yu; Tang, Ying; Zhou, Xue; Zhou, Li-Hua; Feng, Xia

    2016-07-01

    Sevoflurane is generally considered a pro-apoptotic agent in the neonatal brain. However, recent studies have suggested that low levels of sevoflurane anesthesia may be neuroprotective and have a memory enhancing effect. The present study aimed to investigate whether sevoflurane exerts a neuroprotective effect at subclinical concentrations, with regard to oxidative state. In the current study, postnatal day 7 (P7) Sprague‑Dawley rats were continuously exposed to 0.3, 1.3, or 2.3% sevoflurane for 6 h. ELISA was used to quantify the levels of superoxide dismutase, glutathione peroxidase (GSH‑px) and malondialdehyde (MDA) in the plasma and the hippocampus. Terminal deoxynucleotidyl-transferase dUTP nick-end labeling staining was used to observe hippocampal neuronal apoptosis. Altered object exploration tests for recognition memory were employed to investigate long‑term behavioral effects at postnatal day 28. The results demonstrated that a single 6 h exposure to a subclinical concentration (1.3%) of sevoflurane at P7 reduces MDA and GPH‑px production in rats. Sevoflurane induced hippocampal apoptosis in a dose‑dependent manner and altered recognition memory testing indicated no differences among the groups. Although early exposure to a subclinical concentration of sevoflurane reduced oxidative stress, it did not prevent the process of sevoflurane-induced hippocampal apoptosis. These changes did not affect subsequent recognition memory in juvenile rats.

  20. Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis.

    PubMed

    Giardino, I; Fard, A K; Hatchell, D L; Brownlee, M

    1998-07-01

    Aminoguanidine (AG) treatment, like nerve growth factor (NGF) treatment, prevents diabetes-induced apoptosis of retinal Müller cells in the rat eye, but the mechanism involved is unknown. In this study, the effects of preincubation with AG on oxidant-induced apoptosis, oxidant-induced intracellular reactive oxygen species (ROS) production, and lipid peroxidation were determined in rat retinal Müller cells and compared with the effects of NGF, a protein that protects neuronal cells from oxidative stress. The effect of AG on rabbit vitreous lipid peroxide levels was also determined. After exposure to increasing concentrations of H2O2, there was a corresponding increase in the percentage of apoptotic Müller cells. Preincubation with AG for 48 h completely inhibited oxidant-induced apoptosis in response to 10 micromol/l H2O2 (+AG 0 vs. 10 micromol/l, NS), and reduced the percentage of apoptotic cells in response to 50 micromol/l H2O2 by 50% (+AG vs. -AG, P < 0.01). Longer preincubation did not increase the antiapoptotic effect of AG. The effect of AG was dose-dependent. Similar results were obtained after preincubation with NGF. Both AG and NGF preincubation prevented the twofold increase in oxidant-induced lipid peroxides. The fivefold increase in oxidant-induced ROS production was decreased 100% by NGF, but only 61% by AG preincubation. The twofold increase in vitreous lipid peroxide level in diabetic rabbits was completely prevented by AG treatment. AG reduced H2O2-induced benzoate hydroxylation in a dose-dependent manner. Intracellular glutathione content was unchanged. These data demonstrate that AG can act as an antioxidant in vivo, quenching hydroxyl radicals and lipid peroxidation in cells and tissues and preventing oxidant-induced apoptosis.

  1. The effects of humanin and its analogues on male germ cell apoptosis induced by chemotherapeutic drugs.

    PubMed

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S; Liu, Peter Y; Cohen, Pinchas; Wang, Christina

    2015-04-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy [cyclophosphamide (CP) and Doxorubicin (DOX)]-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or insulin-like growth factor binding protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: (1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; (2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; (3) self-dimerization or binding to IGFBP-3 may not be involved in HN's effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects.

  2. Interdependence of Bad and Puma during ionizing-radiation-induced apoptosis.

    PubMed

    Toruno, Cristhian; Carbonneau, Seth; Stewart, Rodney A; Jette, Cicely

    2014-01-01

    Ionizing radiation (IR)-induced DNA double-strand breaks trigger an extensive cellular signaling response that involves the coordination of hundreds of proteins to regulate DNA repair, cell cycle arrest and apoptotic pathways. The cellular outcome often depends on the level of DNA damage as well as the particular cell type. Proliferating zebrafish embryonic neurons are highly sensitive to IR-induced apoptosis, and both p53 and its transcriptional target puma are essential mediators of the response. The BH3-only protein Puma has previously been reported to activate mitochondrial apoptosis through direct interaction with the pro-apoptotic Bcl-2 family proteins Bax and Bak, thus constituting the role of an "activator" BH3-only protein. This distinguishes it from BH3-only proteins like Bad that are thought to indirectly promote apoptosis through binding to anti-apoptotic Bcl-2 family members, thereby preventing the sequestration of activator BH3-only proteins and allowing them to directly interact with and activate Bax and Bak. We have shown previously that overexpression of the BH3-only protein Bad in zebrafish embryos supports normal embryonic development but greatly sensitizes developing neurons to IR-induced apoptosis. While Bad has previously been shown to play only a minor role in promoting IR-induced apoptosis of T cells in mice, we demonstrate that Bad is essential for robust IR-induced apoptosis in zebrafish embryonic neural tissue. Moreover, we found that both p53 and Puma are required for Bad-mediated radiosensitization in vivo. Our findings show the existence of a hierarchical interdependence between Bad and Puma whereby Bad functions as an essential sensitizer and Puma as an essential activator of IR-induced mitochondrial apoptosis specifically in embryonic neural tissue.

  3. Interdependence of Bad and Puma during Ionizing-Radiation-Induced Apoptosis

    PubMed Central

    Toruno, Cristhian; Carbonneau, Seth; Stewart, Rodney A.; Jette, Cicely

    2014-01-01

    Ionizing radiation (IR)-induced DNA double-strand breaks trigger an extensive cellular signaling response that involves the coordination of hundreds of proteins to regulate DNA repair, cell cycle arrest and apoptotic pathways. The cellular outcome often depends on the level of DNA damage as well as the particular cell type. Proliferating zebrafish embryonic neurons are highly sensitive to IR-induced apoptosis, and both p53 and its transcriptional target puma are essential mediators of the response. The BH3-only protein Puma has previously been reported to activate mitochondrial apoptosis through direct interaction with the pro-apoptotic Bcl-2 family proteins Bax and Bak, thus constituting the role of an “activator” BH3-only protein. This distinguishes it from BH3-only proteins like Bad that are thought to indirectly promote apoptosis through binding to anti-apoptotic Bcl-2 family members, thereby preventing the sequestration of activator BH3-only proteins and allowing them to directly interact with and activate Bax and Bak. We have shown previously that overexpression of the BH3-only protein Bad in zebrafish embryos supports normal embryonic development but greatly sensitizes developing neurons to IR-induced apoptosis. While Bad has previously been shown to play only a minor role in promoting IR-induced apoptosis of T cells in mice, we demonstrate that Bad is essential for robust IR-induced apoptosis in zebrafish embryonic neural tissue. Moreover, we found that both p53 and Puma are required for Bad-mediated radiosensitization in vivo. Our findings show the existence of a hierarchical interdependence between Bad and Puma whereby Bad functions as an essential sensitizer and Puma as an essential activator of IR-induced mitochondrial apoptosis specifically in embryonic neural tissue. PMID:24516599

  4. The Effects of Humanin and Its Analogues on Male Germ Cell Apoptosis Induced by Chemotherapeutic Drugs

    PubMed Central

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S.; Liu, Peter Y.; Cohen, Pinchas; Wang, Christina

    2015-01-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy (Cyclophosphamide, CP and Doxorubicin, DOX)-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: 1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; 2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; 3) self-dimerization or binding to IGFBP-3 may not be involved in HN’s effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects. PMID:25666707

  5. Amyloid β-42 induces neuronal apoptosis by targeting mitochondria.

    PubMed

    Han, Xiao-Jian; Hu, Yang-Yang; Yang, Zhang-Jian; Jiang, Li-Ping; Shi, Sheng-Lan; Li, Ye-Ru; Guo, Miao-Yu; Wu, Hong-Li; Wan, Yu-Ying

    2017-10-01

    Alzheimer's disease (AD), with a typical pathological hallmark of amyloid‑beta (Aβ)‑containing plaques and neurofibrillary tangles, is one of the most common types of chronic neurodegenerative diseases. Aβ oligomers serve a crucial role in the pathogenesis of AD, and lead to neuronal loss. However, the precise mechanism of Aβ oligomers in AD remains to be elucidated. The present study demonstrated that 10 µM Aβ‑42 activated the caspase signaling pathway, and induced significant apoptosis in primary cultured mouse cerebral cortical neurons. The results of reverse transcription‑quantitative polymerase chain reaction and western blotting demonstrated that Aβ‑42 (10 µM) also significantly upregulated the transcription and expression of the mitochondrial fission protein dynamin‑related protein 1 (Drp1), and downregulated the transcription and expression of mitochondrial fusion proteins, including mitofusin 1/2 (Mfn1/2) and mitochondrial dynamin like GTPase (OPA‑1). Neurons were transfected with pDsRed2‑Mito for mitochondrial imaging, which revealed that 10 µM Aβ‑42 induced mitochondrial fission in cortical neurons. In addition, 2',7'‑dichlorodihydrofluorescein diacetate and tetramethylrhodamine ethyl ester staining indicated that Aβ‑42 increased the reactive oxygen species (ROS) level and reduced mitochondrial membrane potential in neurons. Inhibition of Drp1 activity by Mdivi‑1 efficiently prevented Aβ‑42‑induced ROS production and disruption of mitochondrial membrane potential. Loss of mitochondrial membrane potential may activate PTEN‑induced putative kinase 1 (Pink1), the prominent sensor for mitochondrial damage, and trigger the process of mitophagy to remove the damaged mitochondria. In the present study, western blotting revealed that the levels of autophagy marker microtubule‑associated proteins 1A/1B light chain 3B (LC3B) and Pink1 were upregulated after Aβ‑42 stimulation. In conclusion, these data indicated that

  6. Angiotensin II induces apoptosis in intestinal epithelial cells through the AT2 receptor, GATA-6 and the Bax pathway

    SciTech Connect

    Sun, Lihua; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Yang, Yang; Yang, Hua

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. Black-Right-Pointing-Pointer The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. Black-Right-Pointing-Pointer GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. Black-Right-Pointing-Pointer GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. In the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.

  7. X-ray-induced cell death: Apoptosis and necrosis

    SciTech Connect

    Nakano, Hisako; Shinohara, Kunio

    1994-10-01

    X-ray-induced cell death in MOLT-4N1, a subclone of MOLT-4 cells, and M10 cells was studied with respect to their modes of cell death, apoptosis and necrosis. MOLT-4N1 cells showed radiosensitivity similar to that of M10 cells, a radiosensitive mutant of L5178Y, as determined by the colony formation assay. Analysis of cell size demonstrated that MOLT-4N1 cells increased in size at an early stage after irradiation and then decreased to a size smaller than that of control cells, whereas the size of irradiated M10 cells increased continuously. Apoptosis detected by morphological changes and DNA ladder formation (the cleavage of DNA into oligonucleosomal fragments) occurred in X-irradiated MOLT-4N1 cells but not in M10 cells. Pulsed-field gel electrophoresis showed that the ladder formation involved an intermediate-sized DNA (about 20 kbp). Most of the DNA was detected at the origin in both methods of electrophoresis in the case of M10 cells, though a trace amount of ladder formation was observed. Heat treatment of M10 cells induced apoptosis within 30 min after treatment, in contrast to MOLT-4N1 cells. The results suggest that apoptosis and necrosis are induced by X rays in a manner which is dependent on the cell line irrespective of the capability of the cells to develop apoptosis. DNA fragmentation was the earliest change observed in the development of apoptosis. 27 refs., 8 figs., 1 tab.

  8. Tamoxifen Attenuates Lipopolysaccharide/Galactosamine-induced Acute Liver Failure by Antagonizing Hepatic Inflammation and Apoptosis.

    PubMed

    Zhang, Peng; Zhang, Meisheng; Wan, Mengqi; Huang, Xiaoliu; Jiang, Yan; Xu, Siying; Luo, Mansheng

    2017-04-01

    Bacterial lipopolysaccharide (LPS)-induced acute liver failure (ALF) is a common severe clinical syndrome in intensive care unit. No other methods are available for its prevention apart from supportive treatment and liver transplantation. Tamoxifen (TAM) was reported to attenuate ALF induced by excessive acetaminophen, while its effect on LPS-induced ALF remained unknown. For this, in the present study, we comprehensively assessed whether TAM can attenuate ALF induced by LPS/galactosamine (GaIN). Mice were given TAM once a day for three times. Twelve hours after the last treatment, mice were given LPS/GaIN (intraperitoneally [i.p.]). Survival, plasma transaminases, and histopathology were examined. Serum TNF-α and IL-1β were analyzed by ELISA. Hepatic apoptosis was analyzed by TUNEL and caspase-3 Western blotting, respectively. Compared to the model group, ALF induced by LPS/GaIN was alleviated remarkably following TAM administration, as evidenced by the improvement of survival (87.5% vs. 37.5%), hepatic swell, moderate transaminases, slightly increased serum TNF-α, IL-1β (P < 0.05), and moderate histopathology. In respect of apoptosis, severe hepatocellular apoptosis was reduced notably by TAM treatment confirmed by less TUNEL-positive hepatocytes and decreased caspase-3 cleavage. The results demonstrated that TAM could attenuate LPS/GaIN-induced ALF effectively, probably due to hepatic inflammation and apoptosis antagonism. Furthermore, it was the first report about the effect of TAM on LPS/GaIN-induced ALF.

  9. Sodium fluoride induces apoptosis in cultured splenic lymphocytes from mice

    PubMed Central

    Cui, Hengmin; Chen, Lian; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Zhao, Ling

    2016-01-01

    Though fluorine has been shown to induce apoptosis in immune organs in vivo, there has no report on fluoride-induced apoptosis in the cultured lymphocytes. Therefore, this study was conducted with objective of investigating apoptosis induced by sodium fluoride (NaF) and the mechanism behind that in the cultured splenic lymphocytes by flow cytometry, western blot and Hoechst 33258 staining. The splenic lymphocytes were isolated from 3 weeks old male ICR mice and exposed to NaF (0, 100, 200, and 400 μmol/L) in vitro for 24 and 48 h. When compared to control group, flow cytometry assay and Hoechst 33258 staining showed that NaF induced lymphocytes apoptosis, which was promoted by decrease of mitochondria transmembrane potential, up-regulation of Bax, Bak, Fas, FasL, caspase 9, caspase 8, caspase 7, caspase 6 and caspase 3 protein expression (P < 0.05 or P <0.01), and down-regulation of Bcl-2 and Bcl-xL protein expression (P <0.05 or P <0.01). The above-mentioned data suggested that NaF-induced apoptosis in splenic lymphocytes could be mediated by mitochondrial and death receptor pathways. PMID:27655720

  10. Exploiting poly(I:C) to induce cancer cell apoptosis.

    PubMed

    Bianchi, Francesca; Pretto, Samantha; Tagliabue, Elda; Balsari, Andrea; Sfondrini, Lucia

    2017-09-07

    TLR3 belong to the Toll-like receptors family, it is mainly expressed on immune cells where it senses pathogen-associated molecular patterns and initiates innate immune response. TLR3 agonist poly(I:C) was developed to mimic pathogens infection and boost immune system activation to promote anti-cancer therapy. Accordingly, TLR agonists were included in the National Cancer Institute list of immunotherapeutic agents with the highest potential to cure cancer. Besides well known effects on immune cells, poly(I:C) was also shown, in experimental models, to directly induce apoptosis in cancer cells expressing TLR3. This review presents the current knowledge on the mechanism of poly(I:C)-induced apoptosis in cancer cells. Experimental evidences on positive or negative regulators of TLR3-mediated apoptosis induced by poly(I:C) are reported and strategies are proposed to successfully promote this event in cancer cells. Cancer cells apoptosis is an additional arm offered by poly(I:C), besides activation of immune system, for the treatment of various type of cancer. A further dissection of TLR3 signaling would contribute to greater resolution of the critical steps that impede full exploitation of the poly(I:C)-induced apoptosis. Experimental evidences about negative regulator of poly(I:C)-induced apoptotic program should be considered in combinations with TLR3 agonists in clinical trials.

  11. Peri-nuclear clustering of mitochondria is triggered during aluminum maltolate induced apoptosis.

    PubMed

    Dewitt, David A; Hurd, Jennifer A; Fox, Nena; Townsend, Brigitte E; Griffioen, Kathleen J S; Ghribi, Othman; Savory, John

    2006-07-01

    Synapse loss and neuronal death are key features of Alzheimer's disease pathology. Disrupted axonal transport of mitochondria is a potential mechanism that could contribute to both. As the major producer of ATP in the cell, transport of mitochondria to the synapse is required for synapse maintenance. However, mitochondria also play an important role in the regulation of apoptosis. Investigation of aluminum (Al) maltolate induced apoptosis in human NT2 cells led us to explore the relationship between apoptosis related changes and the disruption of mitochondrial transport. Similar to that observed with tau over expression, NT2 cells exhibit peri-nuclear clustering of mitochondria following treatment with Al maltolate. Neuritic processes largely lacked mitochondria, except in axonal swellings. Similar, but more rapid results were observed following staurosporine administration, indicating that the clustering effect was not specific to Al maltolate. Organelle clustering and transport disruption preceded apoptosis. Incubation with the caspase inhibitor zVAD-FMK effectively blocked apoptosis, however failed to prevent organelle clustering. Thus, transport disruption is associated with the initiation, but not necessarily the completion of apoptosis. These results, together with observed transport defects and apoptosis related changes in Alzheimer disease brain suggest that mitochondrial transport disruption may play a significant role in synapse loss and thus the pathogenesis or Alzheimer's disease.

  12. Simvastatin induces apoptosis by a Rho-dependent mechanism in cultured cardiac fibroblasts and myofibroblasts

    SciTech Connect

    Copaja, Miguel; Venegas, Daniel; Aranguiz, Pablo; Canales, Jimena; Vivar, Raul; Catalan, Mabel; Olmedo, Ivonne; Rodriguez, Andrea E.; Chiong, Mario; Leyton, Lisette; Lavandero, Sergio; Diaz-Araya, Guillermo

    2011-08-15

    Several clinical trials have shown the beneficial effects of statins in the prevention of coronary heart disease. Additionally, statins promote apoptosis in vascular smooth muscle cells, in renal tubular epithelial cells and also in a variety of cell lines; yet, the effects of statins on cardiac fibroblast and myofibroblast, primarily responsible for cardiac tissue healing are almost unknown. Here, we investigated the effects of simvastatin on cardiac fibroblast and myofibroblast viability and studied the molecular cell death mechanism triggered by simvastatin in both cell types. Methods: Rat neonatal cardiac fibroblasts and myofibroblasts were treated with simvastatin (0.1-10 {mu}M) up to 72 h. Cell viability and apoptosis were evaluated by trypan blue exclusion method and by flow cytometry, respectively. Caspase-3 activation and Rho protein levels and activity were also determined by Western blot and pull-down assay, respectively. Results: Simvastatin induces caspase-dependent apoptosis of cardiac fibroblasts and myofibroblasts in a concentration- and time-dependent manner, with greater effects on fibroblasts than myofibroblasts. These effects were prevented by mevalonate, farnesylpyrophosphate and geranylgeranylpyrophosphate, but not squalene. These last results suggest that apoptosis was dependent on small GTPases of the Rho family rather than Ras. Conclusion: Simvastatin triggered apoptosis of cardiac fibroblasts and myofibroblasts by a mechanism independent of cholesterol synthesis, but dependent of isoprenilation of Rho protein. Additionally, cardiac fibroblasts were more susceptible to simvastatin-induced apoptosis than cardiac myofibroblasts. Thus simvastatin could avoid adverse cardiac remodeling leading to a less fibrotic repair of the damaged tissues. - Research Highlights: > Simvastatin decreases CF and CMF viability independent of cholesterol synthesis. > Simvastatin induces CF and CMF apoptosis in a caspase-dependent manner being CMF more resistant

  13. Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1.

    PubMed

    Yu, Xi-Yong; Song, Yao-Hua; Geng, Yong-Jian; Lin, Qiu-Xiong; Shan, Zhi-Xin; Lin, Shu-Guang; Li, Yangxin

    2008-11-21

    Glucose toxicity is an important initiator of cardiovascular disease, contributing to the development of cardiomyocyte death and diabetic complications. The present study investigated whether high glucose state could induce apoptosis of rat cardiomyocyte cell line H9C2 through microRNA regulated insulin-like growth factor (IGF-1) signaling pathway. Our data showed that H9C2 cells exposed to high glucose have increased miR-1 expression level, decreased mitochondrial membrane potential, increased cytochrome-c release, and increased apoptosis. Glucose induced mitochondrial dysfunction, cytochrome-c release and apoptosis was blocked by IGF-1. Using prediction algorithms, we identified 3'-untranslated regions of IGF-1 gene are the target of miR-1. miR-1 mimics, but not mutant miR-1, blocked the capacity of IGF-1 to prevent glucose-induced mitochondrial dysfunction, cytochrome-c release and apoptosis. In conclusion, our data demonstrate that IGF-1 inhibits glucose-induced mitochondrial dysfunction, cytochrome-c release and apoptosis and IGF-1's effect is regulated by miR-1.

  14. Docosahexaenoic acid sensitizes colon cancer cells to sulindac sulfide-induced apoptosis.

    PubMed

    Lim, Soo-Jeong; Lee, Eunmyong; Lee, Eun-Hye; Kim, Soo-Yeon; Cha, Jun Hyung; Choi, Hwanho; Park, Wanseo; Choi, Hyeon Kyeom; Ko, Seong-Hee; Kim, So Hee

    2012-06-01

    Sulindac analogs represent one of the most efficacious groups of NSAIDs reducing the risk of colon cancer. Recent studies have shown that sulindac sulfide, a sulindac analog effective at lower doses compared to its parent compound, triggers the death receptor (DR)5-dependent extrinsic apoptotic pathway. Induction of apoptosis via activation of the DR-mediated pathway would be an ideal therapeutic strategy to eliminate cancer cells. In this study, we investigated the possibility that colon cancer cells are sensitized to sulindac sulfide-induced apoptosis by docosahexaenoic acid (DHA), via activation of the DR/extrinsic apoptotic pathway. Our data demonstrated that DHA combination sensitized colon cancer cells to sulindac sulfide-induced apoptosis, leading to enhanced growth suppression of human colon cancer xenografts. The combination effect was primarily attributed to increased cleavage of poly(ADP-ribose) polymerase (PARP) and caspase-8 activation. Moreover, pretreatment with z-IETD-FMK (caspase-8 inhibitor) or stable expression of dominant negative caspase-8 genes blocked DHA/sulindac sulfide cotreatment-induced apoptosis. In view of the finding that DR5 silencing abrogated the combination-stimulated apoptosis, we propose that apoptotic synergy induced by sulindac sulfide plus DHA is mediated via DR5. Our findings collectively support the utility of a combination of sulindac sulfide and DHA in the effective prevention and treatment of colon cancer.

  15. Effects of cerebrolysin administration on oxidative stress-induced apoptosis in lymphocytes from CADASIL patients.

    PubMed

    Formichi, Patrizia; Radi, Elena; Battisti, Carla; Di Maio, Giuseppe; Dotti, Maria Teresa; Muresanu, Dafin; Federico, Antonio

    2013-04-01

    Cerebrolysin (Cere) is a peptidergic nootropic drug with neurotrophic properties which has been used to treat dementia and sequelae of stroke. Use of Cere prevents nuclear structural changes typical of apoptosis and significantly reduces the number of apoptotic cells after several apoptotic stimuli. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a hereditary disease caused by mutations of the Notch3 gene encoding the Notch3 protein. Notch3 is involved in the regulation of apoptosis, modulating Fas-Ligand (Fas-L)- induced apoptosis. The aim of this study was to evaluate the in vitro protective effects of Cere against oxidative stress-induced apoptosis in cells from CADASIL patients. We used peripheral blood lymphocytes (PBLs) from 15 CADASIL patients (age range 34-70 years); 2-deoxy-D-ribose (dRib), a highly reducing sugar, was used as paradigm pro-apoptotic stimulus. Apoptosis was analyzed by flow cytometry and fluorescence microscopy. Administration of Cere to PBLs from CADASIL patients cultured under standard conditions had no effect on the percentage of apoptotic cells. Administration of Cere to PBLs cultured with dRib caused a significant decrease in apoptosis after 48 h of culture in only 5 patients, whereas in the other 10 patients, Cere treatment was not associated with any significant difference in the percentage of apoptosis. This result showed a protective effect of Cere against oxidative stress-induced apoptosis only in 30 % of the CADASIL patients, suggesting that the Notch3 gene probably does not influence the anti-apoptotic properties of Cere in vitro.

  16. Increases of intracellular magnesium promote glycodeoxycholate-induced apoptosis in rat hepatocytes.

    PubMed Central

    Patel, T; Bronk, S F; Gores, G J

    1994-01-01

    Retention of bile salts by the hepatocyte contributes to liver injury during cholestasis. Although cell injury can occur by one of two mechanisms, necrosis versus apoptosis, information is lacking regarding apoptosis as a mechanism of cell death by bile salts. Our aim was to determine if the bile salt glycodeoxycholate (GDC) induces apoptosis in rat hepatocytes. Morphologic assessment included electron microscopy and quantitation of nuclear fragmentation by fluorescent microscopy. Biochemical studies included measurements of DNA fragmentation, in vitro endonuclease activity, cytosolic free Ca2+ (Cai2+), and cytosolic free Mg2+ (Mgi2+). Morphologic studies demonstrated typical features of apoptosis in GDC (50 microM) treated cells. The "ladder pattern" of DNA fragmentation was also present in DNA obtained from GDC-treated cells. In vitro endonuclease activity was 2.5-fold greater with Mg2+ than Ca2+. Although basal Cai2+ values did not change after addition of GDC, Mgi2+ increased twofold. Incubation of cells in an Mg(2+)-free medium prevented the rise in Mgi2+ and reduced nuclear and DNA fragmentation. In conclusion, GDC induces apoptosis in hepatocytes by a mechanism promoted by increases of Mgi2+ with stimulation of Mg(2+)-dependent endonucleases. These data suggest for the first time that changes of Mgi2+ may participate in the program of cellular events culminating in apoptosis. Images PMID:7989573

  17. Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Wu, Shengnan

    2011-03-01

    The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.

  18. Simulating cell apoptosis induced sinus node dysfunction.

    PubMed

    Kharche, Sanjay; Beling, John; Biktasheva, Irina V; Zhang, Henggui; Biktashev, Vadim N

    2013-01-01

    Sinus node dysfunction (SND) is correlated to the pacemaker sinoatrial node (SAN) cell apoptosis. This study explores the effect of such a dysfunctional SAN on electrical propagation into neighboring atrial tissue. The Fenton Karma model was extended to simulate mouse SAN and atrial cell action potentials. The cell models were incorporated into a 2D model consisting of a central SAN region surrounded by atrial tissue. The intercellular gap junctional coupling, as quantified by the diffusion constant, was estimated to give conduction speeds as observed in mouse atrial tissue. The size of mouse SAN pacemaking region was estimated using the 2D model. In multiple simulations, the effects of an increasing proportion of apoptotic pacemaker cells on atrial tissue pacing were simulated and quantified. The SAN size that gave a basal mouse atrial cycle length (ACL) of 295 ms was found to be 0.6 mm in radius. At low pacemaker cell apoptosis proportion, there was a drastic increase of ACL. At modest increase in the number of apoptotic cells, bradycardia was observed. The incidence of sinus arrest was also found to be high. When the number of apoptotic cells were 10% of the total number of pacemaking cells, all pacemaking was arrested. Phenomenological models have been developed to study mouse atrial electrophysiology and confirm experimental findings. The results show the significance of cell apoptosis as a major mechanism of SND.

  19. Prolactin inhibits the apoptosis of chondrocytes induced by serum starvation.

    PubMed

    Zermeño, C; Guzmán-Morales, J; Macotela, Y; Nava, G; López-Barrera, F; Kouri, J B; Lavalle, C; de la Escalera, G Martínez; Clapp, C

    2006-05-01

    The apoptosis of chondrocytes plays an important role in endochondral bone formation and in cartilage degradation during aging and disease. Prolactin (PRL) is produced in chondrocytes and is known to promote the survival of various cell types. Here we show that articular chondrocytes from rat postpubescent and adult cartilage express the long form of the PRL receptor as revealed by immunohistochemistry of cartilage sections and by RT-PCR and Western blot analyses of the isolated chondrocytes. Furthermore, we demonstrate that PRL inhibits the apoptosis of these same chondrocytes cultured in low-serum. Chondrocyte apoptosis was measured by hypodiploid DNA content determined by flow cytometry and by DNA fragmentation evaluated by the ELISA and the TUNEL methods. The anti-apoptotic effect of PRL was dose-dependent and was prevented by heat inactivation. These data demonstrate that PRL can act as a survival factor for chondrocytes and that it has potential preventive and therapeutic value in arthropathies characterized by cartilage degradation.

  20. H2O2 intensifies CN(-)-induced apoptosis in pea leaves.

    PubMed

    Samuilov, V D; Kiselevsky, D B; Sinitsyn, S V; Shestak, A A; Lagunova, E M; Nesov, A V

    2006-04-01

    H2O2 intensifies CN(-)-induced apoptosis in stoma guard cells and to lesser degree in basic epidermal cells in peels of the lower epidermis isolated from pea leaves. The maximum effect of H2O2 on guard cells was observed at 10(-4) M. By switching on non-cyclic electron transfer in chloroplasts menadione and methyl viologen intensified H2O2 generation in the light, but prevented the CN--induced apoptosis in guard cells. The light stimulation of CN- effect on guard cell apoptosis cannot be caused by disturbance of the ribulose-1,5-bisphosphate carboxylase function and associated OH* generation in chloroplasts with participation of free transition metals in the Fenton or Haber-Weiss type reactions as well as with participation of the FeS clusters of the electron acceptor side of Photosystem I. Menadione and methyl viologen did not suppress the CN(-)-induced apoptosis in epidermal cells that, unlike guard cells, contain mitochondria only, but not chloroplasts. Quinacrine and diphenylene iodonium, inhibitors of NAD(P)H oxidase of cell plasma membrane, had no effect on the respiration and photosynthetic O2 evolution by leaf slices, but prevented the CN(-)-induced guard cell death. The data suggest that NAD(P)H oxidase of guard cell plasma membrane is a source of reactive oxygen species (ROS) needed for execution of CN(-)-induced programmed cell death. Chloroplasts and mitochondria were inefficient as ROS sources in the programmed death of guard cells. When ROS generation is insufficient, exogenous H2O2 exhibits a stimulating effect on programmed cell death. H2O2 decreased the inhibitory effects of DCMU and DNP-INT on the CN(-)-induced apoptosis of guard cells. Quinacrine, DCMU, and DNP-INT had no effect on CN(-)-induced death of epidermal cells.

  1. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis.

    PubMed

    Nie, C; Luo, Y; Zhao, X; Luo, N; Tong, A; Liu, X; Yuan, Z; Wang, C; Wei, Y

    2014-10-30

    The protein kinase inhibitor 7-hydroxystaurosporine (UCN-01) is one of the most potent and frequently used proapoptotic stimuli. The BH3-only molecule of Bcl-2 family proteins has been reported to contribute to UCN-01-induced apoptosis. Here we have found that UCN-01 triggers Puma-induced mitochondrial apoptosis pathway. Our data confirmed that Akt-FoxO3a pathway mediated Puma activation. Importantly, we elucidate the detailed mechanisms of Puma-induced apoptosis. Our data have also demonstrated that caspase-9 is a decisive molecule of Puma induction after UCN-01 treatment. Caspase-9 mediates apoptosis through two kinds of feedback loops. On the one hand, caspase-9 enhances Puma activation by cleaving Bcl-2 and Bcl-xL independent of caspase-3. On the other hand, caspase-9 directly activated caspase-3 in the presence of caspase-3. Caspase-3 could cleave XIAP in an another positive feedback loop to further sensitize cancer cells to UCN-01-induced apoptosis. Therefore, caspase-9 mediates Puma activation to determine the threshold for overcoming chemoresistance in cancer cells.

  2. C-Peptide Activates AMPKα and Prevents ROS-Mediated Mitochondrial Fission and Endothelial Apoptosis in Diabetes

    PubMed Central

    Bhatt, Mahendra Prasad; Lim, Young-Cheol; Kim, Young-Myeong; Ha, Kwon-Soo

    2013-01-01

    Vasculopathy is a major complication of diabetes; however, molecular mechanisms mediating the development of vasculopathy and potential strategies for prevention have not been identified. We have previously reported that C-peptide prevents diabetic vasculopathy by inhibiting reactive oxygen species (ROS)-mediated endothelial apoptosis. To gain further insight into ROS-dependent mechanism of diabetic vasculopathy and its prevention, we studied high glucose–induced cytosolic and mitochondrial ROS production and its effect on altered mitochondrial dynamics and apoptosis. For the therapeutic strategy, we investigated the vasoprotective mechanism of C-peptide against hyperglycemia-induced endothelial damage through the AMP-activated protein kinase α (AMPKα) pathway using human umbilical vein endothelial cells and aorta of diabetic mice. High glucose (33 mmol/L) increased intracellular ROS through a mechanism involving interregulation between cytosolic and mitochondrial ROS generation. C-peptide (1 nmol/L) activation of AMPKα inhibited high glucose–induced ROS generation, mitochondrial fission, mitochondrial membrane potential collapse, and endothelial cell apoptosis. Additionally, the AMPK activator 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside and the antihyperglycemic drug metformin mimicked protective effects of C-peptide. C-peptide replacement therapy normalized hyperglycemia-induced AMPKα dephosphorylation, ROS generation, and mitochondrial disorganization in aorta of diabetic mice. These findings highlight a novel mechanism by which C-peptide activates AMPKα and protects against hyperglycemia-induced vasculopathy. PMID:23884890

  3. P53 mediates amosite asbestos-induced alveolar epithelial cell mitochondria-regulated apoptosis.

    PubMed

    Panduri, Vijayalakshmi; Surapureddi, Sailesh; Soberanes, Saul; Weitzman, Sigmund A; Chandel, Navdeep; Kamp, David W

    2006-04-01

    Asbestos causes pulmonary toxicity in part by generating reactive oxygen species that cause DNA damage. We previously showed that the mitochondria-regulated (intrinsic) death pathway mediates alveolar epithelial cell (AEC) DNA damage and apoptosis. Because p53 regulates the DNA damage response in part by inducing intrinsic cell death, we determined whether p53-dependent transcriptional activity mediates asbestos-induced AEC mitochondrial dysfunction and apoptosis. We show that inhibitors of p53-dependent transcriptional activation (pifithrin and type 16-E6 protein) block asbestos-induced AEC mitochondrial membrane potential change (DeltaPsim), caspase 9 activation, and apoptosis. We demonstrate that asbestos activates p53 promoter activity, mRNA levels, protein expression, and Bax and p53 mitochondrial translocation. Further, pifithrin, E6, phytic acid, or rho(0)-A549 cells (cells incapable of mitochondrial reactive oxygen species production) block asbestos-induced p53 activation. Finally, we show that asbestos augments p53 expression in cells at the bronchoalveolar duct junctions of rat lungs and that phytic acid prevents this. These data suggest that p53-dependent transcription pathways mediate asbestos-induced AEC mitochondria-regulated apoptosis. This suggests an important interactive effect between p53 and the mitochondria in the pathogenesis of asbestos-induced pulmonary toxicity that may have broader implications for our understanding of pulmonary fibrosis and lung cancer.

  4. Autophagy Regulates Colistin-Induced Apoptosis in PC-12 Cells

    PubMed Central

    Zhang, Ling; Zhao, Yonghao; Ding, Wenjian; Jiang, Guozheng; Lu, Ziyin; Li, Li; Wang, Jinli

    2015-01-01

    Colistin is a cyclic cationic polypeptide antibiotic with activity against multidrug-resistant Gram-negative bacteria. Our recent study demonstrated that colistin induces apoptosis in primary chick cortex neurons and PC-12 cells. Although apoptosis and autophagy have different impacts on cell fate, there is a complex interaction between them. Autophagy plays an important role as a homeostasis regulator by removing excessive or unnecessary proteins and damaged organelles. The aim of the present study was to investigate the modulation of autophagy and apoptosis regulation in PC-12 cells in response to colistin treatment. PC-12 cells were exposed to colistin (125 to 250 μg/ml), and autophagy was detected by visualization of monodansylcadaverine (MDC)-labeled vacuoles, LC3 (microtubule-associated protein 1 light chain 3) immunofluorescence microscopic examination, and Western blotting. Apoptosis was measured by flow cytometry, Hoechst 33258 staining, and Western blotting. Autophagosomes were observed after treatment with colistin for 12 h, and the levels of LC3-II gene expression were determined; observation and protein levels both indicated that colistin induced a high level of autophagy. Colistin treatment also led to apoptosis in PC-12 cells, and the level of caspase-3 expression increased over the 24-h period. Pretreatment of cells with 3-methyladenine (3-MA) increased colistin toxicity in PC-12 cells remarkably. However, rapamycin treatment significantly increased the expression levels of LC3-II and beclin 1 and decreased the rate of apoptosis of PC-12 cells. Our results demonstrate that colistin induced autophagy and apoptosis in PC-12 cells and that the latter was affected by the regulation of autophagy. It is very likely that autophagy plays a protective role in the reduction of colistin-induced cytotoxicity in neurons. PMID:25645826

  5. Hydrogen peroxide induces apoptosis via a mitochondrial pathway in chondrocytes

    NASA Astrophysics Data System (ADS)

    Zhuang, Cai-ping; Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    The degenerative joint disease such as osteoarthritis (OA) is closely associated with the death of chondrocytes in apoptosis fashion. Hydrogen peroxide (H2O2), higher expression following acute damage in OA patients, has been shown to be up-regulated during apoptosis in a bulk of experimental models. This study was aimed to explore the mechanism of H2O2-induced rabbit chondrocytes apoptosis. Articular cartilage was biopsied from the joints of 6 weeks old New Zealand rabbits. Cell Counting Kit (CCK-8) assay was used to assess the inhibitory effect of H2O2 on cell viability. H2O2 treatment induced a remarkable reduction of cell viability. We used flow cytometry to assess the form of cell death with Annexin-V/PI double staining, and found that H2O2 treatment induced apoptosis in a dose-and time-dependent manner. Exposure of chondrocytes to 1.5 mM of H2O2 for 2 h induced a burst apoptosis that can be alleviated by N-acetyl cysteine (NAC) pretreatment, an anti-oxidant amino-acid derivative. Loss of mitochondria membrane potential (▵Ψm) was evaluated using confocal microscopy imaging and flow cytometry (FCM). H2O2 treatment induced a marked reduction of ▵Ψm, and the abrupt disappearance of ▵Ψm occurred within 5 minutes. These results indicate that H2O2 induces a rapid apoptosis via a mitochondrial pathway in rabbit chondrocytes.

  6. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide

    SciTech Connect

    Huang, Chunrong; Zheng, Haichong; He, Wanmei; Lu, Guifang; Li, Xia; Deng, Yubin; Zeng, Mian

    2016-05-20

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.

  7. Akt Requires Glucose Metabolism to Suppress Puma Expression and Prevent Apoptosis of Leukemic T Cells*

    PubMed Central

    Coloff, Jonathan L.; Mason, Emily F.; Altman, Brian J.; Gerriets, Valerie A.; Liu, Tingyu; Nichols, Amanda N.; Zhao, Yuxing; Wofford, Jessica A.; Jacobs, Sarah R.; Ilkayeva, Olga; Garrison, Sean P.; Zambetti, Gerard P.; Rathmell, Jeffrey C.

    2011-01-01

    The PI3K/Akt pathway is activated in stimulated cells and in many cancers to promote glucose metabolism and prevent cell death. Although inhibition of Akt-mediated cell survival may provide a means to eliminate cancer cells, this survival pathway remains incompletely understood. In particular, unlike anti-apoptotic Bcl-2 family proteins that prevent apoptosis independent of glucose, Akt requires glucose metabolism to inhibit cell death. This glucose dependence may occur in part through metabolic regulation of pro-apoptotic Bcl-2 family proteins. Here, we show that activated Akt relies on glycolysis to inhibit induction of Puma, which was uniquely sensitive to metabolic status among pro-apoptotic Bcl-2 family members and was rapidly up-regulated in glucose-deficient conditions. Importantly, preventing Puma expression was critical for Akt-mediated cell survival, as Puma deficiency protected cells from glucose deprivation and Akt could not readily block Puma-mediated apoptosis. In contrast, the pro-apoptotic Bcl-2 family protein Bim was induced normally even when constitutively active Akt was expressed, yet Akt could provide protection from Bim cytotoxicity. Up-regulation of Puma appeared mediated by decreased availability of mitochondrial metabolites rather than glycolysis itself, as alternative mitochondrial fuels could suppress Puma induction and apoptosis upon glucose deprivation. Metabolic regulation of Puma was mediated through combined p53-dependent transcriptional induction and control of Puma protein stability, with Puma degraded in nutrient-replete conditions and long lived in nutrient deficiency. Together, these data identify a key role for Bcl-2 family proteins in Akt-mediated cell survival that may be critical in normal immunity and in cancer through Akt-dependent stimulation of glycolysis to suppress Puma expression. PMID:21159778

  8. Mitochondrial-derived free radicals mediate asbestos-induced alveolar epithelial cell apoptosis.

    PubMed

    Panduri, Vijayalakshmi; Weitzman, Sigmund A; Chandel, Navdeep S; Kamp, David W

    2004-06-01

    Asbestos causes pulmonary toxicity by mechanisms that in part involve reactive oxygen species (ROS). However, the precise source of ROS is unclear. We showed that asbestos induces alveolar epithelial cell (AEC) apoptosis by a mitochondrial-regulated death pathway. To determine whether mitochondrial-derived ROS are necessary for causing asbestos-induced AEC apoptosis, we utilized A549-rho(omicron) cells that lack mitochondrial DNA and a functional electron transport. As expected, antimycin, which induces an oxidative stress by blocking mitochondrial electron transport at complex III, increased dichlorofluoroscein (DCF) fluorescence in A549 cells but not in A549-rho(omicron) cells. Compared with A549 cells, rho(omicron) cells have less asbestos-induced ROS production, as assessed by DCF fluorescence, and reductions in total glutathione levels as well as less caspase-9 activation and apoptosis, as assessed by TdT-mediated dUTP nick end labeling staining and DNA fragmentation. A mitochondrial anion channel inhibitor that prevents ROS release from the mitochondria to the cytoplasm also blocked asbestos-induced A549 cell caspase-9 activation and apoptosis. Finally, a role for nonmitochondrial-derived ROS with exposure to high levels of asbestos (50 microg/cm(2)) was suggested by our findings that an iron chelator (phytic acid or deferoxamine) or a free radical scavenger (sodium benzoate) provided additional protection against asbestos-induced caspase-9 activation and DNA fragmentation in rho(omicron) cells. We conclude that asbestos fibers affect mitochondrial DNA and functional electron transport, resulting in mitochondrial-derived ROS production that in turn mediates AEC apoptosis. Nonmitochondrial-associated ROS may also contribute to AEC apoptosis, particularly with high levels of asbestos exposure.

  9. Protective Role of Mitochondrial Peroxiredoxin III against UVB-Induced Apoptosis of Epidermal Keratinocytes.

    PubMed

    Baek, Jin Young; Park, Sujin; Park, Jiyoung; Jang, Ji Yong; Wang, Su Bin; Kim, Sin Ri; Woo, Hyun Ae; Lim, Kyung Min; Chang, Tong-Shin

    2017-06-01

    UVB light induces generation of reactive oxygen species, ultimately leading to skin cell damage. Mitochondria are a major source of reactive oxygen species in UVB-irradiated skin cells, with increased levels of mitochondrial reactive oxygen species having been implicated in keratinocyte apoptosis. Peroxiredoxin III (PrxIII) is the most abundant and potent H2O2-removing enzyme in the mitochondria of most cell types. Here, the protective role of PrxIII against UVB-induced apoptosis of epidermal keratinocytes was investigated. Mitochondrial H2O2 levels were differentiated from other types of ROS using mitochondria-specific fluorescent H2O2 indicators. Upon UVB irradiation, PrxIII-knockdown HaCaT human keratinocytes and PrxIII-deficient (PrxIII(-/-)) mouse primary keratinocytes exhibited enhanced accumulation of mitochondrial H2O2 compared with PrxIII-expressing controls. Keratinocytes lacking PrxIII were subsequently sensitized to apoptosis through mitochondrial membrane potential loss, cardiolipin oxidation, cytochrome c release, and caspase activation. Increased UVB-induced epidermal tissue damage in PrxIII(-/-) mice was attributable to increased caspase-dependent keratinocyte apoptosis. Our findings show that mitochondrial H2O2 is a key mediator in UVB-induced apoptosis of keratinocytes and that PrxIII plays a critical role in protecting epidermal keratinocytes against UVB-induced apoptosis through eliminating mitochondrial H2O2. These findings support the concept that reinforcing mitochondrial PrxIII defenses may help prevent UVB-induced skin damage such as inflammation, sunburn, and photoaging. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Activation of Kupffer cells and caspase-3 involved in rat hepatocyte apoptosis induced by endotoxin.

    PubMed

    Hamada, E; Nishida, T; Uchiyama, Y; Nakamura, J; Isahara, K; Kazuo, H; Huang, T P; Momoi, T; Ito, T; Matsuda, H

    1999-05-01

    Sepsis and lipopolysaccharides (LPS) cause mild to severe hepatic dysfunction. In this study, Kupffer cell activation, involvement of TNFalpha and caspases downstream of the TNFalpha receptor were examined in hepatocyte apoptosis induced by LPS. In in vivo experiments, male Sprague-Dawley rats were injected intravenously with LPS, and small amounts of the blood and liver were sampled to evaluate apoptosis. Kupffer cells were inactivated by pretreatment with gadolinium chloride for 2 days. In in vitro experiments, hepatocytes and Kupffer cells were separately isolated from rat livers using collagenase perfusion. LPS induced time-dependent and dose-dependent increases in the number of TUNEL-positive cells, which coincided with the apoptotic features of hepatocytes demonstrated by electron microscopy and DNA ladder. Activation of caspase-3-like proteases was observed with an increase in the number of apoptotic hepatocytes. Immunostaining with activated caspase-3-specific antibody showed that caspase-3 was activated only in the cytoplasm of TUNEL-positive hepatocytes. Inactivation of Kupffer cells by gadolinium chloride was concomitantly accompanied by the prevention of caspase-3 activation, hepatocyte apoptosis and liver injury induced by LPS. The co-culture system of hepatocytes and Kupffer cells, but neither cell culture system, individually, showed LPS-induced hepatocyte apoptosis. Kupffer cell-conditioned medium induced hepatocyte apoptosis, whereas addition of anti-TNFalpha antibody to Kupffer cell-conditioned medium did not. Additions of acetyl-DEVD-CHO, acetyl-YVAD-CHO, and acetyl-IETD-CHO to Kupffer cell-conditioned medium decreased the number of apoptotic hepatocytes. These results suggest that the activation of Kupffer cells, TNFalpha and caspases downstream of TNFR1 were involved in hepatocyte apoptosis induced by LPS.

  11. Inhibition of 12-lipoxygenase during baicalein-induced human lung nonsmall carcinoma H460 cell apoptosis.

    PubMed

    Leung, Henry W C; Yang, W H; Lai, M Y; Lin, C J; Lee, H Z

    2007-03-01

    Baicalein is known as a 12-lipoxygenase (12-LOX) inhibitor. The 12-LOX is found to be involved in the progression of human cancers and the inhibitor of 12-LOX offers a target for the prevention cancer. We demonstrated the inhibitory effect of baicalein on the gene and protein expression of 12-LOX in H460 human lung nonsmall carcinoma cell line. Treatment of baicalein inhibited the growth of H460 cells in a dose-dependent manner. Following 24h exposure to 50muM baicalein, cell cycle analysis revealed an increase in the cell population in S-phase. During the S-phase arrest, baicalein decreased the protein levels of cdk1 and cyclin B1, which are the regulating proteins of S-phase transition to G2/M-phase, in this study. Furthermore, baicalein induced the most of H460 cell apoptosis after treatment for 48h. H460 cells formed vesicles and apoptotic body, and then floated after treatment with baicalein. Baicalein-induced H460 cell apoptosis was confirmed by DNA condensation and fragmentation. Baicalein-induced apoptosis were also accompanied by decreasing in Bcl-2 and proform of caspase-3 and increasing p53 and Bax protein levels. Pretreatment with a specific caspase-3 inhibitor, Ac-DEVD-CHO, partially reduced baicalein-induced cell death, indicating baicalein induces apoptosis is partially dependent on caspase-3 pathway in H460 cells. These data suggest that baicalein, a 12-LOX inhibitor, inhibits the proliferation of H460 cells via S-phase arrest and induces apoptosis in association with the regulation of molecules in the cell cycle and apoptosis-related proteins.

  12. Salvianolic Acid B Inhibits Hydrogen Peroxide-Induced Endothelial Cell Apoptosis through Regulating PI3K/Akt Signaling

    PubMed Central

    Liu, Chen-Li; Xie, Li-Xia; Li, Min; Durairajan, Siva Sundara Kumar; Goto, Shinya; Huang, Jian-Dong

    2007-01-01

    Background Salvianolic acid B (Sal B) is one of the most bioactive components of Salvia miltiorrhiza, a traditional Chinese herbal medicine that has been commonly used for prevention and treatment of cerebrovascular disorders. However, the mechanism responsible for such protective effects remains largely unknown. It has been considered that cerebral endothelium apoptosis caused by reactive oxygen species including hydrogen peroxide (H2O2) is implicated in the pathogenesis of cerebrovascular disorders. Methodology and Principal Findings By examining the effect of Sal B on H2O2-induced apoptosis in rat cerebral microvascular endothelial cells (rCMECs), we found that Sal B pretreatment significantly attenuated H2O2-induced apoptosis in rCMECs. We next examined the signaling cascade(s) involved in Sal B-mediated anti-apoptotic effects. We showed that H2O2 induces rCMECs apoptosis mainly through the PI3K/ERK pathway, since a PI3K inhibitor (LY294002) blocked ERK activation caused by H2O2 and a specific inhibitor of MEK (U0126) protected cells from apoptosis. On the other hand, blockage of the PI3K/Akt pathway abrogated the protective effect conferred by Sal B and potentated H2O2-induced apoptosis, suggesting that Sal B prevents H2O2-induced apoptosis predominantly through the PI3K/Akt (upstream of ERK) pathway. Significance Our findings provide the first evidence that H2O2 induces rCMECs apoptosis via the PI3K/MEK/ERK pathway and that Sal B protects rCMECs against H2O2-induced apoptosis through the PI3K/Akt/Raf/MEK/ERK pathway. PMID:18091994

  13. Infection of Human Fallopian Tube Epithelial Cells with Neisseria gonorrhoeae Protects Cells from Tumor Necrosis Factor Alpha-Induced Apoptosis

    PubMed Central

    Morales, Priscilla; Reyes, Paz; Vargas, Macarena; Rios, Miguel; Imarai, Mónica; Cardenas, Hugo; Croxatto, Horacio; Orihuela, Pedro; Vargas, Renato; Fuhrer, Juan; Heckels, John E.; Christodoulides, Myron; Velasquez, Luis

    2006-01-01

    Following infection with Neisseria gonorrhoeae, bacteria may ascend into the Fallopian tubes (FT) and induce salpingitis, a major cause of infertility. In the FT, interactions between mucosal epithelial cells and gonococci are pivotal events in the pathogen's infection cycle and the inflammatory response. In the current study, primary FT epithelial cells were infected in vitro with different multiplicities of infection (MOI) of Pil+ Opa+ gonococci. Bacteria showed a dose-dependent association with cells and induced the secretion of tumor necrosis factor alpha (TNF-α). A significant finding was that gonococcal infection (MOI = 1) induced apoptosis in approximately 30% of cells, whereas increasing numbers of bacteria (MOI = 10 to 100) did not induce apoptosis. Apoptosis was observed in only 11% of cells with associated bacteria, whereas >84% of cells with no adherent bacteria were apoptotic. TNF-α was a key contributor to apoptosis, since (i) culture supernatants from cells infected with gonococci (MOI = 1) induced apoptosis in naïve cultures, suggesting that a soluble factor was responsible; (ii) gonococcal infection-induced apoptosis was inhibited with anti-TNF-α antibodies; and (iii) the addition of exogenous TNF-α induced apoptosis, which was inhibited by the presence of increasing numbers of bacteria (MOI = 10 to 100). These data suggest that TNF-α-mediated apoptosis of FT epithelial cells is likely a primary host defense mechanism to prevent pathogen colonization. However, epithelial cell-associated gonococci have evolved a mechanism to protect the cells from undergoing TNF-α-mediated apoptosis, and this modulation of the host innate response may contribute to establishment of infection. Understanding the antiapoptotic mechanisms used by Neisseria gonorrhoeae will inform the pathogenesis of salpingitis and could suggest new intervention strategies for prevention and treatment of the disease. PMID:16714596

  14. Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chloride-induced apoptosis and autophagy.

    PubMed

    Gallo, S; Gatti, S; Sala, V; Albano, R; Costelli, P; Casanova, E; Comoglio, P M; Crepaldi, T

    2014-04-17

    Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF), mainly activates prosurvival pathways, including protection from apoptosis. In this work, we investigated the cardioprotective mechanisms of Met activation by agonist monoclonal antibodies (mAbs). Cobalt chloride (CoCl2), a chemical mimetic of hypoxia, was used to induce cardiac damage in H9c2 cardiomyoblasts, which resulted in reduction of cell viability by (i) caspase-dependent apoptosis and (ii) - surprisingly - autophagy. Blocking either apoptosis with the caspase inhibitor benzyloxycarbonyl-VAD-fluoromethylketone or autophagosome formation with 3-methyladenine prevented loss of cell viability, which suggests that both processes contribute to cardiomyoblast injury. Concomitant treatment with Met-activating antibodies or HGF prevented apoptosis and autophagy. Pro-autophagic Redd1, Bnip3 and phospho-AMPK proteins, which are known to promote autophagy through inactivation of the mTOR pathway, were induced by CoCl2. Mechanistically, Met agonist antibodies or HGF prevented the inhibition of mTOR and reduced the flux of autophagosome formation. Accordingly, their anti-autophagic function was completely blunted by Temsirolimus, a specific mTOR inhibitor. Targeted Met activation was successful also in the setting of low oxygen conditions, in which Met agonist antibodies or HGF demonstrated anti-apoptotic and anti-autophagic effects. Activation of the Met pathway is thus a promising novel therapeutic tool for ischaemic injury.

  15. Cesium chloride protects cerebellar granule neurons from apoptosis induced by low potassium.

    PubMed

    Zhong, Jin; Yao, Weiguo; Lee, Weihua

    2007-10-01

    Neuronal apoptosis plays a critical role in the pathogenesis of neurodegenerative disorders, and neuroprotective agents targeting apoptotic signaling could have therapeutic use. Here we report that cesium chloride, an alternative medicine in treating radiological poison and cancer, has neuroprotective actions. Serum and potassium deprivation induced cerebellar granule neurons to undergo apoptosis, which correlated with the activation of caspase-3. Cesium prevented both the activation of caspase-3 and neuronal apoptosis in a dose-dependent manner. Cesium at 8 mM increased the survival of neurons from 45 +/- 3% to 91 +/- 5% of control. Cesium's neuroprotection was not mediated by PI3/Akt or MAPK signaling pathways, since it was unable to activate either Akt or MAPK by phosphorylation. In addition, specific inhibitors of PI3 kinase and MAP kinase did not block cesium's neuroprotective effects. On the other hand, cesium inactivated GSK3beta by phosphorylation of serine-9 and GSK3beta-specific inhibitor SB415286 prevented neuronal apoptosis. These data indicate that cesium's neuroprotection is likely via inactivating GSK3beta. Furthermore, cesium also prevented H(2)O(2)-induced neuronal death (increased the survival of neurons from 72 +/- 4% to 89 +/- 3% of control). Given its relative safety and good penetration of the brain blood barrier, our findings support the potential therapeutic use of cesium in neurodegenerative diseases.

  16. Sendai virus trailer RNA binds TIAR, a cellular protein involved in virus-induced apoptosis.

    PubMed

    Iseni, Frédéric; Garcin, Dominique; Nishio, Machiko; Kedersha, Nancy; Anderson, Paul; Kolakofsky, Daniel

    2002-10-01

    Sendai virus (SeV) leader (le) and trailer (tr) RNAs are short transcripts generated during abortive antigenome and genome synthesis, respectively. Recom binant SeV (rSeV) that express tr-like RNAs from the leader region are non-cytopathic and, moreover, prevent wild-type SeV from inducing apoptosis in mixed infections. These rSeV thus appear to have gained a function. Here we report that tr RNA binds to a cellular protein with many links to apoptosis (TIAR) via the AU-rich sequence 5' UUUUAAAUUUU. Duplication of this AU-rich sequence alone within the le RNA confers TIAR binding on this le* RNA and a non-cytopathic phenotype to these rSeV in cell culture. Transgenic overexpression of TIAR during SeV infection promotes apoptosis and reverses the anti-apoptotic effects of le* RNA expression. More over, TIAR overexpression and SeV infection act synergistically to induce apoptosis. These short viral RNAs may act by sequestering TIAR, a multivalent RNA recognition motif (RRM) family RNA-binding protein involved in SeV-induced apoptosis. In this view, tr RNA is not simply a by-product of abortive genome synthesis, but is also an antigenome transcript that modulates the cellular antiviral response.

  17. The effects of onion (Allium cepa) extract on doxorubicin-induced apoptosis in aortic endothelial cells.

    PubMed

    Alpsoy, Seref; Uygur, Ramazan; Aktas, Cevat; Topcu, Birol; Kanter, Mehmet; Erboga, Mustafa; Karakaya, Osman; Gedikbasi, Asuman

    2013-05-01

    The aim of this study was to investigate the effects of onion (Allium cepa) extracts (ACE) on doxorubicin (DOX)-induced apoptosis in aortic endothelial cells. The rats in the ACE-pretreated group were given a daily dose of 1 ml ACE for 14 days. To induce aortic endothelial cell apoptosis, DOX (30 mg kg(-1) body weight) was injected intraperitoneally by a single dose and the rats were sacrificed after 48 h. To date, no such studies have been performed on antiapoptotic potential of ACE on DOX-induced apoptosis in aortic endothelial cells. Our data indicate a significant reduction in the activity of in situ identification of apoptosis using terminal dUTP nick end-labeling in aortic endothelial cells of the DOX-treated group with ACE therapy. DOX-treated with ACE groups showed a significant decrease in malondialdehyde levels and increased levels of glutathione in comparison with the DOX-treated group. Data from our study show that prevention of endothelial cell apoptosis by ACE may contribute to the restoration of aortic endothelial dysfunction that is associated with DOX treatment.

  18. Ultraviolet-C-induced apoptosis protected by 635-nm laser irradiation in human gingival fibroblasts.

    PubMed

    Lim, Wonbong; Ko, Mikyung; Lee, Sungga; Kim, Inae; Jung, Mina; Kim, Okjoon; Cho, Seonghoun; Yang, Kyuho; Choi, Namki; Kim, Sunmi; Choi, Hongran

    2008-06-01

    The purpose of this study was to examine the protection afforded by 635-nm irradiation against ultraviolet (UV)-C-induced apoptosis in primary human gingival fibroblasts (hGFs). UV irradiation is known to cause photoaging and cellular apoptosis of skin cells and is considered to be one of the leading causes of skin carcinogenesis. To induce apoptosis, UV-C (100 mJ/cm2) was used to irradiate hGFs. To protect them from apoptosis, pretreatment with 635-nm irradiation was performed for 1 h immediately after cell plating 36 or 48 h before UV-C irradiation. The light source used for irradiation was a continuous-wave 635-nm LED laser emitting at 1 mW/cm2. Experimental samples were selected 24 h after UV-C irradiation. To measure the numbers of apoptotic cells, MTT assay and flow cytometric analyses were performed. For histomorphologic findings, Diff-Quick staining was carried out. Also, the activities and mRNA expression of caspase-3, caspase-8, and caspase-9 were measured. In the present study, the number of apoptotic cells declined in the cells that were pretreated with 635-nm light irradiation in a time-dependent manner. In addition, the activities and mRNA expression of caspase-3, caspase-8, and caspase-9 were significantly recovered by pretreatment with 635-nm irradiation. These results suggest that 635-nm visible light irradiation may be used as a protective tool to prevent UV-C-induced apoptosis.

  19. Involvement of Bim in Photofrin-mediated photodynamically induced apoptosis.

    PubMed

    Wang, Xianwang; He, Xiaobing; Hu, Shujuan; Sun, Anbang; Lu, Chengbiao

    2015-01-01

    Photodynamic therapy (PDT) is a promising noninvasive technique, which has been successfully applied to the treatment of human cancers. Studies have shown that the Bcl-2 family proteins play important roles in PDT-induced apoptosis. However, whether Bcl-2-interacting mediator of cell death (Bim) is involved in photodynamic treatment remains unknown. In this study, we attempt to determine the effect of Bim on Photofrin photodynamic treatment (PPT)-induced apoptosis in human lung adenocarcinoma ASTC-a-1 cells. The translocation of Bim/Bax of the cells were monitored by laser confocal scanning microscope. The levels of Bim protein and activated caspase-3 in cells were detected by western blot assay. Caspase-3 activities were measured by Caspase-3 Fluorogenic Substrate (Ac-DEVD-AFC) analysis. The induction of apoptosis was detected by Hoechst 33258 and PI staining as well as flow cytometry analysis. The effect of Bim on PPT-induced apoptosis was determined by RNAi. BimL translocated to mitochondria in response to PPT, similar to the downstream pro-apoptotic protein Bax activation. PPT increased the level of Bim and activated caspase-3 in cells and that knockdown of Bim by RNAi significantly protected against caspase-3 activity. PPT-induced apoptosis were suppressed in cells transfected with shRNA-Bim. We demonstrated the involvement of Bim in PPT-induced apoptosis in human ASTC-a-1 lung adenocarcinoma cells and suggested that enhancing Bim activity might be a potential strategy for treating human cancers. © 2015 S. Karger AG, Basel.

  20. Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway

    PubMed Central

    ZHAO, XIANGQIAN; JIANG, KAI; LIANG, BIN; HUANG, XIAOQIANG

    2016-01-01

    Xanthohumol may prevent and cure diabetes and atherosis, have oxidation resistance and antiviral function as well as anticancer effect preventing cancer cell metastasis. We investigate whether the anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway. Human liver cancer HepG2 cell were treated with 10, 20, 30 and 40 µM xanthohumol for 48 h. The present study showed that the anticancer effect of xanthohumol was effective in inhibiting proliferation and inducing apoptosis of human liver cancer HepG2 cells. Furthermore, the caspase-3 activity of human liver cancer HepG2 cells was increased by xanthohumol. In addition, 48-h treatment with xanthohumol suppressed NF-κB expression and promoted p53, cleaved PARP, AIF and cytochrome c expression and downregulated XIAP and Bcl-2/Bax expression in human liver cancer HepG2 cells. Therefore, the anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through the NF-κB/p53-apoptosis signaling pathway. PMID:26718026

  1. Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway.

    PubMed

    Zhao, Xiangqian; Jiang, Kai; Liang, Bin; Huang, Xiaoqiang

    2016-02-01

    Xanthohumol may prevent and cure diabetes and atherosis, have oxidation resistance and antiviral function as well as anticancer effect preventing cancer cell metastasis. We investigate whether the anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway. Human liver cancer HepG2 cell were treated with 10, 20, 30 and 40 µM xanthohumol for 48 h. The present study showed that the anticancer effect of xanthohumol was effective in inhibiting proliferation and inducing apoptosis of human liver cancer HepG2 cells. Furthermore, the caspase-3 activity of human liver cancer HepG2 cells was increased by xanthohumol. In addition, 48-h treatment with xanthohumol suppressed NF-κB expression and promoted p53, cleaved PARP, AIF and cytochrome c expression and downregulated XIAP and Bcl-2/Bax expression in human liver cancer HepG2 cells. Therefore, the anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through the NF-κB/p53-apoptosis signaling pathway.

  2. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression

    SciTech Connect

    Hasegawa, Kazuhiro; Wakino, Shu Yoshioka, Kyoko; Tatematsu, Satoru; Hara, Yoshikazu; Minakuchi, Hitoshi; Washida, Naoki; Tokuyama, Hirobumi; Hayashi, Koichi; Itoh, Hiroshi

    2008-07-18

    NAD{sup +}-dependent protein deacetylase Sirt1 regulates cellular apoptosis. We examined the role of Sirt1 in renal tubular cell apoptosis by using HK-2 cells, proximal tubular cell lines with or without reactive oxygen species (ROS), H{sub 2}O{sub 2}. Without any ROS, Sirt1 inhibitors enhanced apoptosis and the expression of ROS scavenger, catalase, and Sirt1 overexpression downregulated catalase. When apoptosis was induced with H{sub 2}O{sub 2}, Sirt1 was upregulated with the concomitant increase in catalase expression. Sirt1 overexpression rescued H{sub 2}O{sub 2}-induced apoptosis through the upregulation of catalase. H{sub 2}O{sub 2} induced the nuclear accumulation of forkhead transcription factor, FoxO3a and the gene silencing of FoxO3a enhanced H{sub 2}O{sub 2}-induced apoptosis. In conclusion, endogenous Sirt1 maintains cell survival by regulating catalase expression and by preventing the depletion of ROS required for cell survival. In contrast, excess ROS upregulates Sirt1, which activates FoxO3a and catalase leading to rescuing apoptosis. Thus, Sirt1 constitutes a determinant of renal tubular cell apoptosis by regulating cellular ROS levels.

  3. Osmotic stress sensitizes naturally resistant cells to TNF-alpha-induced apoptosis.

    PubMed

    Franco, D L; Nojek, I M; Molinero, L; Coso, O A; Costas, M A

    2002-10-01

    Most cells are naturally resistant to TNF-alpha-induced cell death and become sensitized when NF-kappaB transactivation is blocked or in the presence of protein synthesis inhibitors that prevent the expression of anti-apoptotic genes. In this report we analyzed the role of osmotic stress on TNF-alpha-induced cell death. We found that it sensitizes the naturally resistant HeLa cells to TNF-alpha-induced apoptosis, with the involvement of an increase in the activity of several kinases, the inhibition of Bcl-2 expression, and a late increase on NF-kappaB activation. Cell death occurs regardless of the enhanced NF-kappaB activity, whose inhibition produces an increase in apoptosis. The inhibition of p38 kinase, also involved in NF-kappaB activation, significantly increases the effect of osmotic stress on TNF-alpha-induced cell death.

  4. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    PubMed

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  5. Influenza Virus Induces Apoptosis via BAD-Mediated Mitochondrial Dysregulation

    PubMed Central

    Tran, Anh T.; Cortens, John P.; Du, Qiujiang; Wilkins, John A.

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication. PMID:23135712

  6. 3,5-Dimethoxy-4-(3-(2-carbonyl-ethyldisulfanyl)-propionyl)-benzoic acid 4-guanidino-butyl ester: a novel twin drug that prevents primary cardiac myocytes from hypoxia-induced apoptosis.

    PubMed

    Liu, Chunhua; Guo, Wei; Maerz, Stefanie; Gu, Xianfeng; Zhu, Yizhun

    2013-01-30

    Leonurine possesses cardioprotective effects in myocardial ischemia due to its anti-apoptotic properties. However, the process to isolate and purify leonurine is difficult, because of its low content in the Herb Leonuri and its impurity. Moreover, the high dosage used indicates low potency of leonurine. To overcome these defects, we had synthesized a novel twin drug of leonurine, 3,5-dimethoxy-4-(3-(2-carbonyl-ethyldisulfanyl)-propionyl)-benzoic acid 4-guanidino-butyl ester (compound 2). In this paper, we focused on investigating the cardioprotective effect and underlying mechanisms of compound 2. Our data showed that cell viability was significantly increased in a dose-dependent manner and the levels of lactate dehydrogenase (LDH) and creatine kinase (CK) were also significantly attenuated in the compound 2-treated group. In addition, we observed the cardioprotective effects by Hoechst 33258 nucleus staining, JC-1 staining, Annexin V-FITC/PI staining and transmission electron microscopy. Compound 2 inhibited apoptosis by reducing the ratio of Bcl-2/Bax, decreasing cleaved-caspase-3 expression and enhancing the phosphorylation of Akt. Furthermore, the phosphorylation effect of compound 2 was reversed by LY294002 the phosphatidylinositol-3-kinase (PI3K) inhibitor from happening. We concluded that compound 2 played a cardioprotective role in hypoxia-induced primary cardiac myocytes apoptosis partly via modulating the PI3K/Akt pathway at a 10-fold lower concentration than leonurine. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Epidermal growth factor prevents thallium(I)- and thallium(III)-mediated rat pheochromocytoma (PC12) cell apoptosis.

    PubMed

    Pino, María Teresa Luján; Marotte, Clarisa; Verstraeten, Sandra Viviana

    2017-03-01

    We have reported recently that the proliferation of PC12 cells exposed to micromolar concentrations of Tl(I) or Tl(III) has different outcomes, depending on the absence (EGF(-) cells) or the presence (EGF(+) cells) of epidermal growth factor (EGF) added to the media. In the current work, we investigated whether EGF supplementation could also modulate the extent of Tl(I)- or Tl(III)-induced cell apoptosis. Tl(I) and Tl(III) (25-100 μM) decreased cell viability in EGF(-) but not in EGF(+) cells. In EGF(-) cells, Tl(I) decreased mitochondrial potential, enhanced H2O2 generation, and activated mitochondrial-dependent apoptosis. In addition, Tl(III) increased nitric oxide production and caused a misbalance between the anti- and pro-apoptotic members of Bcl-2 family. Tl(I) increased ERK1/2, JNK, p38, and p53 phosphorylation in EGF(-) cells. In these cells, Tl(III) did not affect ERK1/2 and JNK phosphorylation but increased p53 phosphorylation that was related to the promotion of cell senescence. In addition, this cation significantly activated p38 in both EGF(-) and EGF(+) cells. The specific inhibition of ERK1/2, JNK, p38, or p53 abolished Tl(I)-mediated EGF(-) cell apoptosis. Only when p38 activity was inhibited, Tl(III)-mediated apoptosis was prevented in EGF(-) and EGF(+) cells. Together, current results indicate that EGF partially prevents the noxious effects of Tl by preventing the sustained activation of MAPKs signaling cascade that lead cells to apoptosis and point to p38 as a key mediator of Tl(III)-induced PC12 cell apoptosis.

  8. Mechanisms of sulindac-induced apoptosis and cell cycle arrest.

    PubMed

    Jung, Barbara; Barbier, Valerie; Brickner, Howard; Welsh, John; Fotedar, Arun; McClelland, Michael

    2005-02-28

    The mechanism underlying the chemopreventive effects of the non-steroidal anti-inflammatory drug sulindac remains unclear. Its active metabolite, sulindac sulfide, induces cell cycle arrest as well as apoptosis in mammalian cell lines. We now show that in murine thymocytes, sulindac sulfide-induced cell death is p53, bax, Fas, and FasL independent. In contrast, bcl2 transgenic thymocytes are resistant to sulindac sulfide-induced apoptosis. In addition, we demonstrate that sulindac sulfide-induced cell cycle arrest in mouse embryonic fibroblasts (MEFs) is partly mediated by the retinoblastoma tumor suppressor protein (Rb) and the cyclin kinase inhibitor p21waf1/cip1. Furthermore, MEFs deficient in p21 or Rb are more susceptible to sulindac sulfide-induced cell death. These results suggest that sulindac may selectively target premalignant cells with cell cycle checkpoint deficits.

  9. ING1 induces apoptosis through direct effects at the mitochondria.

    PubMed

    Bose, P; Thakur, S; Thalappilly, S; Ahn, B Y; Satpathy, S; Feng, X; Suzuki, K; Kim, S W; Riabowol, K

    2013-09-05

    The ING family of tumor suppressors acts as readers and writers of the histone epigenetic code, affecting DNA repair, chromatin remodeling, cellular senescence, cell cycle regulation and apoptosis. The best characterized member of the ING family, ING1,interacts with the proliferating cell nuclear antigen (PCNA) in a UV-inducible manner. ING1 also interacts with members of the14-3-3 family leading to its cytoplasmic relocalization. Overexpression of ING1 enhances expression of the Bax gene and was reported to alter mitochondrial membrane potential in a p53-dependent manner. Here we show that ING1 translocates to the mitochondria of primary fibroblasts and established epithelial cell lines in response to apoptosis inducing stimuli, independent of the cellular p53 status. The ability of ING1 to induce apoptosis in various breast cancer cell lines correlates well with its degree of translocation to the mitochondria after UV treatment. Endogenous ING1 protein specifically interacts with the pro-apoptotic BCL2 family member BAX, and colocalizes with BAX in a UV-inducible manner. Ectopic expression of a mitochondria-targeted ING1 construct is more proficient in inducing apoptosis than the wild type ING1 protein. Bioinformatic analysis of the yeast interactome indicates that yeast ING proteins interact with 64 mitochondrial proteins. Also, sequence analysis of ING1 reveals the presence of a BH3-like domain. These data suggest a model in which stress-induced cytoplasmic relocalization of ING1 by14-3-3 induces ING1-BAX interaction to promote mitochondrial membrane permeability and represent a paradigm shift in our understanding of ING1 function in the cytoplasm and its contribution to apoptosis [corrected].

  10. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria.

  11. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts

    PubMed Central

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria. PMID:26884825

  12. Hesperidin Attenuates Ultraviolet B-Induced Apoptosis by Mitigating Oxidative Stress in Human Keratinocytes

    PubMed Central

    Hewage, Susara Ruwan Kumara Madduma; Piao, Mei Jing; Kang, Kyoung Ah; Ryu, Yea Seong; Han, Xia; Oh, Min Chang; Jung, Uhee; Kim, In Gyu; Hyun, Jin Won

    2016-01-01

    Human skin cells undergo pathophysiological processes via generation of reactive oxygen species (ROS) upon excessive exposure to ultraviolet B (UVB) radiation. This study investigated the ability of hesperidin (C28H34O15) to prevent apoptosis due to oxidative stress generated through UVB-induced ROS. Hesperidin significantly scavenged ROS generated by UVB radiation, attenuated the oxidation of cellular macromolecules, established mitochondrial membrane polarization, and prevented the release of cytochrome c into the cytosol. Hesperidin downregulated expression of caspase-9, caspase-3, and Bcl-2-associated X protein, and upregulated expression of B-cell lymphoma 2. Hesperidin absorbed wavelengths of light within the UVB range. In summary, hesperidin shielded human keratinocytes from UVB radiation-induced damage and apoptosis via its antioxidant and UVB absorption properties. PMID:26797112

  13. Inhibition of c-myc expression induces apoptosis of WEHI 231 murine B cells.

    PubMed Central

    Wu, M; Arsura, M; Bellas, R E; FitzGerald, M J; Lee, H; Schauer, S L; Sherr, D H; Sonenshein, G E

    1996-01-01

    Treatment of WEHI 231 immature B-lymphoma cells with an antibody against their surface immunoglobulin (anti-Ig) induces apoptosis and has been studied extensively as a model of B-cell tolerance. Anti-Ig treatment of exponentially growing WEHI 231 cells results in an early transient increase in c-myc expression that is followed by a decline to below basal levels; this decrease in c-myc expression immediately precedes the induction of cell death. Here we have modulated NF-kappaB/Rel factor activity, which regulates the rate of c-myc gene transcription, to determine whether the increase or decrease in c-Myc-levels mediates apoptosis in WEHI 231 cells. Addition of the serine/threonine protease inhibitor N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), which blocks the normally rapid turnover of the specific inhibitor of NF-kappaB/Rel IkappaBalpha in these cells, caused a drop in Rel-related factor binding. TPCK treatment resulted in decreased c-myc expression, preventing the usual increase seen following anti-Ig treatment. Whereas inhibition of the induction of c-myc expression mediated by anti-Ig failed to block apoptosis, reduction of c-myc expression in exponentially growing WEHI 231 cells induced apoptosis even in the absence of anti-Ig treatment. In WEHI 231 clones ectopically expressing c-Myc, apoptosis induced by treatment with TPCK or anti-Ig was significantly diminished and cells continued to proliferate. Furthermore, apoptosis of WEHI 231 cells ensued following enhanced expression of Mad1, which has been found to reduce functional c-Myc levels. These results indicate that the decline in c-myc expression resulting from the drop in NF-kappaB/Rel binding leads to activation of apoptosis of WEHI 231 B cells. PMID:8756660

  14. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells

    SciTech Connect

    Park, Jae Hyeon; Lee, Jeong Eun; Shin, In Chul; Koh, Hyun Chul

    2013-04-01

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by

  15. Montelukast Induces Apoptosis-Inducing Factor-Mediated Cell Death of Lung Cancer Cells

    PubMed Central

    Chang, Wei-An; Tsai, Pei-Hsun; Wu, Cheng-Ying; Ho, Ya-Wen; Yen, Meng-Chi; Lin, Yi-Shiuan; Kuo, Po-Lin; Hsu, Ya-Ling

    2017-01-01

    Developing novel chemo-prevention techniques and advancing treatment are key elements to beating lung cancer, the most common cause of cancer mortality worldwide. Our previous cohort study showed that cysteinyl leukotriene receptor antagonists, mainly montelukast, decreased the lung cancer risk in asthma patients. In the current study, we conducted in vivo and in vitro experiments to demonstrate the inhibiting effect of montelukast on lung cancer and to investigate the underlying mechanisms. Using Lewis lung carcinoma-bearing mice, we showed that feeding montelukast significantly delayed the tumor growth in mice (p < 0.0001). Montelukast inhibited cell proliferation and colony formation and induced the cell death of lung cancer cells. Further investigation showed the down-regulation of B-cell lymphoma 2 (Bcl-2), up-regulation of Bcl-2 homologous antagonist/killer (Bak), and nuclear translocation of apoptosis-inducing factor (AIF) in montelukast-treated lung cancer cells. Montelukast also markedly decreased the phosphorylation of several proteins, such as with no lysine 1 (WNK1), protein kinase B (Akt), extracellular signal-regulated kinase 1/2 (Erk1/2), MAPK/Erk kinase (MEK), and proline-rich Akt substrate of 40-kDa (PRAS40), which might contribute to cell death. In conclusion, montelukast induced lung cancer cell death via the nuclear translocation of AIF. This study confirmed the chemo-preventive effect of montelukast shown in our previous cohort study. The utility of montelukast in cancer prevention and treatment thus deserves further studies. PMID:28672809

  16. Carboxyl-terminal modulator protein induces apoptosis by regulating mitochondrial function in lung cancer cells.

    PubMed

    Hwang, Soon-Kyung; Minai-Tehrani, Arash; Yu, Kyeong-Nam; Chang, Seung-Hee; Kim, Ji-Eun; Lee, Kee-Ho; Park, Jongsun; Beck, George R; Cho, Myung-Haing

    2012-05-01

    Serine/threonine protein kinase B (PKB/Akt) is involved in cell survival and growth. Carboxyl-terminal modulator protein (CTMP), a novel Akt binding partner, prevents Akt activation at the plasma membrane in response to various stimuli, and thus possesses a tumor suppressor-like function. In a previous study, we have demonstrated that CTMP inhibits tumor progression by facilitating apoptosis in a mouse lung cancer model. However, the precise mechanism of CTMP-induced apoptosis remains to be elucidated. The present study was performed to examine the role of CTMP in mitochondrial-mediated apoptosis and regulation of mitochondrial function in human lung carcinoma cells. Our results showed that CTMP altered mitochondrial morphology and caused the release of cytochrome c by inhibiting OPA1 expression. Additionally, CTMP facilitated mitochondrial-mediated apoptosis by inhibiting heat-shock protein 27 and preventing cytochrome c interaction with Apaf-1. Our data suggest that CTMP may therefore play a critical role in mitochondrial-mediated apoptosis in lung cancer cells.

  17. Effect of alteration of caveolin-1 expression on doxorubicin-induced apoptosis in H9c2 cardiac cells.

    PubMed

    Takaguri, Akira; Kamato, Maiko; Satoh, Yoshiaki; Ohtsuki, Kazuaki; Satoh, Kumi

    2015-09-01

    Doxorubicin is an anthracycline antibiotic widely used in cancer treatment. Although its antitumor efficacy appears to be dose dependent, its clinical use is greatly restricted by the development of cardiotoxicity associated with apoptosis. Although caveolin-1, the major structural protein in caveolae, can positively or negatively regulate apoptosis depending on the stimulus or cell types, the contribution of caveolin-1 to doxorubicin-induced apoptosis remains unknown. This study was performed to identify the regulatory role of caveolin-1 on doxorubicin-induced apoptosis in H9c2 cardiac cells using a genetic approach. Caveolin-1 knockdown with a short hairpin (sh) RNA adenovirus, but not overexpression of wild-type caveolin-1, resulted in a marked inhibition of doxorubicin-induced caspase-3 cleavage. However, caveolin-1 knockdown tended to protect against doxorubicin-induced decrease in cell viability, but it did not significantly reverse cell death induced by doxorubicin. Doxorubicin stimulated the phosphorylation of p38 and extracellular signal regulated kinase (ERK). Doxorubicin-induced caspase-3 cleavage was inhibited by U0126, a MEK inhibitor or SB203580, a p38 inhibitor. Caveolin-1 knockdown markedly inhibited doxorubicin-induced p-38 phosphorylation but not ERK-mediated p-53 phosphorylation in H9c2 cardiac cells. Our results suggest that reduced caveolin-1 expression plays an anti-apoptotic role in doxorubicin-induced apoptosis but that it is insufficient to prevent such an apoptosis in H9c2 cardiac cells.

  18. Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts.

    PubMed

    Psahoulia, Faiy H; Drosopoulos, Konstantinos G; Doubravska, Lenka; Andera, Ladislav; Pintzas, Alexander

    2007-09-01

    Cytokines such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in colon cancer cells through engagement of death receptors. Nevertheless, evading apoptosis induced by anticancer drugs characterizes many types of cancers. This results in the need for combination therapy. In this study, we have investigated whether the flavonoid quercetin could sensitize human colon adenocarcinoma cell lines to TRAIL-induced apoptosis. We report that quercetin enhanced TRAIL-induced apoptosis by causing the redistribution of DR4 and DR5 into lipid rafts. Nystatin, a cholesterol-sequestering agent, prevented quercetin-induced clustering of death receptors and sensitization to TRAIL-induced apoptosis in colon adenocarcinoma cells. In addition, our experiments show that quercetin, in combination with TRAIL, triggered the mitochondrial-dependent death pathway, as shown by Bid cleavage and the release of cytochrome c to the cytosol. Together, our findings propose that quercetin, through its ability to redistribute death receptors at the cell surface, facilitates death-inducing signaling complex formation and activation of caspases in response to death receptor stimulation. Based on these results, this study provides a challenging approach to enhance the efficiency of TRAIL-based therapies.

  19. The Central Executioner of Apoptosis: Multiple Connections between Protease Activation and Mitochondria in Fas/APO-1/CD95- and Ceramide-induced Apoptosis

    PubMed Central

    Susin, Santos A.; Zamzami, Naoufal; Castedo, Maria; Daugas, Eric; Wang, Hong-Gang; Geley, Stephan; Fassy, Florence; Reed, John C.; Kroemer, Guido

    1997-01-01

    According to current understanding, cytoplasmic events including activation of protease cascades and mitochondrial permeability transition (PT) participate in the control of nuclear apoptosis. However, the relationship between protease activation and PT has remained elusive. When apoptosis is induced by cross-linking of the Fas/APO-1/CD95 receptor, activation of interleukin-1β converting enzyme (ICE; caspase 1) or ICE-like enzymes precedes the disruption of the mitochondrial inner transmembrane potential (ΔΨm). In contrast, cytosolic CPP32/ Yama/Apopain/caspase 3 activation, plasma membrane phosphatidyl serine exposure, and nuclear apoptosis only occur in cells in which the ΔΨm is fully disrupted. Transfection with the cowpox protease inhibitor crmA or culture in the presence of the synthetic ICE-specific inhibitor Ac-YVAD.cmk both prevent the ΔΨm collapse and subsequent apoptosis. Cytosols from anti-Fas–treated human lymphoma cells accumulate an activity that induces PT in isolated mitochondria in vitro and that is neutralized by crmA or Ac-YVAD.cmk. Recombinant purified ICE suffices to cause isolated mitochondria to undergo PT-like large amplitude swelling and to disrupt their ΔΨm. In addition, ICE-treated mitochondria release an apoptosis-inducing factor (AIF) that induces apoptotic changes (chromatin condensation and oligonucleosomal DNA fragmentation) in isolated nuclei in vitro. AIF is a protease (or protease activator) that can be inhibited by the broad spectrum apoptosis inhibitor Z-VAD.fmk and that causes the proteolytical activation of CPP32. Although Bcl-2 is a highly efficient inhibitor of mitochondrial alterations (large amplitude swelling + ΔΨm collapse + release of AIF) induced by prooxidants or cytosols from ceramide-treated cells, it has no effect on the ICE-induced mitochondrial PT and AIF release. These data connect a protease activation pathway with the mitochondrial phase of apoptosis regulation. In addition, they provide a

  20. Glucocorticoid cotreatment induces apoptosis resistance toward cancer therapy in carcinomas.

    PubMed

    Herr, Ingrid; Ucur, Esat; Herzer, Kerstin; Okouoyo, Stella; Ridder, Rüdiger; Krammer, Peter H; von Knebel Doeberitz, Magnus; Debatin, Klaus-Michael

    2003-06-15

    Chemotherapy and radiation therapy for cancer often have severe side effects that limit their efficacy. Glucocorticoids (GCs) are frequently used as cotreatment because they may have potent proapoptotic properties and reduce nausea, hyperemesis, and acute toxicity on normal tissue. In contrast to the proapoptotic effect of GCs in lymphoid cells, resistance toward cancer therapy-mediated apoptosis was induced in solid tumors of human cervix and lung carcinomas. Filter hybridization, expression data, as well as functional assays identified multiple core apoptosis molecules, which are regulated by GCs in a pro- or antiapoptotic manner. Both antiapoptotic genes such as FLIP and members of the Bcl-2 and IAP family as well as proapoptotic elements of the death receptor and mitochondrial apoptosis pathways were down-regulated in carcinomas resulting in a decreased activity of caspase-8, caspase-9, and caspase-3. In contrast, death receptor and mitochondrial apoptosis signaling as well as caspase activity was enhanced by dexamethasone in lymphoid cells. To restore apoptosis sensitivity in dexamethasone-treated carcinomas, caspase-8 and caspase-9 were transfected. This resensitized tumor cells in vitro and xenografts in vivo to cisplatin induced cell death. These data therefore raise concern about the widespread combined use of GCs with antineoplastic drugs or agents in the clinical management of cancer patients.

  1. Salmonella typhimurium Invasion Induces Apoptosis in Infected Macrophages

    NASA Astrophysics Data System (ADS)

    Monack, Denise M.; Raupach, Barbel; Hromockyj, Alexander E.; Falkow, Stanley

    1996-09-01

    Invasive Salmonella typhimurium induces dramatic cytoskeletal changes on the membrane surface of mammalian epithelial cells and RAW264.7 macrophages as part of its entry mechanism. Noninvasive S. typhimurium strains are unable to induce this membrane ruffling. Invasive S. typhimurium strains invade RAW264.7 macrophages in 2 h with 7- to 10-fold higher levels than noninvasive strains. Invasive S. typhimurium and Salmonella typhi, independent of their ability to replicate intracellularly, are cytotoxic to RAW264.7 macrophages and, to a greater degree, to murine bone marrow-derived macrophages. Here, we show that the macrophage cytotoxicity mediated by invasive Salmonella is apoptosis, as shown by nuclear morphology, cytoplasmic vacuolization, and host cell DNA fragmentation. S. typhimurium that enter cells causing ruffles but are mutant for subsequent intracellular replication also initiate host cell apoptosis. Mutant S. typhimurium that are incapable of inducing host cell membrane ruffling fail to induce apoptosis. The activation state of the macrophage plays a significant role in the response of macrophages to Salmonella invasion, perhaps indicating that the signal or receptor for initiating programmed cell death is upregulated in activated macrophages. The ability of Salmonella to promote apoptosis may be important for the initiation of infection, bacterial survival, and escape of the host immune response.

  2. ClC-3 deficiency protects preadipocytes against apoptosis induced by palmitate in vitro and in type 2 diabetes mice.

    PubMed

    Huang, Yun-Ying; Huang, Xiong-Qin; Zhao, Li-Yan; Sun, Fang-Yun; Chen, Wen-Liang; Du, Jie-Yi; Yuan, Feng; Li, Jie; Huang, Xue-Lian; Liu, Jie; Lv, Xiao-Fei; Guan, Yong-Yuan; Chen, Jian-Wen; Wang, Guan-Lei

    2014-11-01

    Palmitate, a common saturated free fatty acid (FFA), has been demonstrated to induce preadipocyte apoptosis in the absence of adipogenic stimuli, suggesting that preadipocytes may be prone to apoptosis under adipogenic insufficient conditions, like type 2 diabetes mellitus (T2DM). ClC-3, encoding Cl(-) channel or Cl(-)/H(+) antiporter, is critical for cell fate choices of proliferation versus apoptosis under diseased conditions. However, it is unknown whether ClC-3 is related with preadipocyte apoptosis induced by palmitate or T2DM. Palmitate, but not oleate, induced apoptosis and increase in ClC-3 protein expression and endoplasmic reticulum (ER) stress in 3T3-L1 preadipocyte. ClC-3 specific siRNA attenuated palmitate-induced apoptosis and increased protein levels of Grp78, ATF4, CHOP and phosphorylation of JNK1/2, whereas had no effects on increased phospho-PERK and phospho-eIF2α protein expression. Moreover, the enhanced apoptosis was shown in preadipocytes from high-sucrose/fat, low-dose STZ induced T2DM mouse model with hyperglycemia, hyperlipidemia (elevated serum TG and FFA levels) and insulin resistance. ClC-3 knockout significantly attenuated preadipocyte apoptosis and the above metabolic disorders in T2DM mice. These data demonstrated that ClC-3 deficiency prevent preadipocytes against palmitate-induced apoptosis via suppressing ER stress, and also suggested that ClC-3 may play a role in regulating cellular apoptosis and disorders of glucose and lipid metabolism during T2DM.

  3. The mechanism of epipodophyllotoxin-induced thymocyte apoptosis: possible role of a novel Ca(2+)-independent protein kinase.

    PubMed

    Ye, X; Georgoff, I; Fleisher, S; Coffman, F D; Cohen, S; Fresa, K L

    1993-10-15

    The epipodophyllotoxins, etoposide (VP-16) and teniposide (VM-26), inhibit topoisomerase II activity by stabilization of the cleavable complex between the enzyme and DNA and formation of protein-bound double-stranded DNA breaks. While it is thought that these agents are cytotoxic by preventing cells from completing the S phase or undergoing mitosis, recent evidence suggests that these agents are also potent inducers of programmed cell death or apoptosis in both normal and malignant cells. We have examined the intracellular pathway leading to epipodophyllotoxin-induced apoptosis in normal mouse thymocytes. Epipodophyllotoxin-induced apoptosis may proceed via a mechanism that is independent of inhibition of topoisomerase activity per se because novobiocin and coumermycin, which inhibit the ATPase subunit of topoisomerase II, were relatively inefficient inducers of apoptosis in these cells, under conditions where strong apoptosis by the epipodophyllotoxins and dexamethasone could be observed. In addition, camptothecin, which inhibits topoisomerase I by stabilization of the cleavable complex between that enzyme and DNA, was also a poor inducer of apoptosis in these cells. Our data suggest that epipodophyllotoxin-induced mouse thymocyte apoptosis, like that induced by dexamethasone, proceeds via a mechanism that involves protein kinase C (PKC) or a similar enzyme. Apoptosis induced by VM-26 or by dexamethasone was inhibited by 1-(5-isoquinolinylsulfonyl)-2- methylpiperazine dihydrochloride (H7), an inhibitor of both PKC and cAMP-dependent protein kinases, but was relatively unaffected by N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA1004), a more specific inhibitor of cAMP-dependent protein kinases. A more specific inhibitor of PKC, sangivamycin, also inhibited both VM-26-induced and dexamethasone-induced apoptosis. Both VM-26- and dexamethasone-induced apoptosis were unaffected by EGTA, a calcium (Ca2+) chelator, under conditions that inhibited apoptosis induced by

  4. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2010-10-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  5. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  6. Novel interventions targeting on apoptosis and necrosis induced by aluminum chloride in neuroblastoma cells.

    PubMed

    Zhang, Q L; Niu, Qiao; Niu, P Y; Ji, X L; Zhang, C; Wang, L

    2010-01-01

    Aluminum chloride induces neuroblastoma cell (SH-SY5Y) death following in vitro exposure. The objective of this study is to define apoptosis and necrosis in an in vitro model system of SH-SY5Y cells, and to investigate appropriate defense mechanisms with caspase-3 small interference RNA (siRNA) and necrostatin-1 (Nec-1). SH-SY5Y cells were treated with aluminum chloride for 24 h, followed by analysis of cell death rates and alterations in morphology. The results show that aluminum chloride could induce cell death by a combination of apoptosis and necrosis. Treatment with caspase-3 siRNA resulted in inhibition of caspase-3 gene and protein expression, both indicatives of apoptosis reduction. In addition, decrement of apoptotic rate was evident. Interestingly, treatment with caspase-3 siRNA could markedly up-regulate the expression of LC3- II, indicating a shift of cell death mode, from apoptosis to autophagy. Nec-1 treatment significantly affected necrosis induced by aluminum chloride, resulting in decreased necrotic rates and marked inhibition of LC3- II expression. Results showed for the first time that cell death induced by aluminum chloride could be rescued by caspase-3 siRNA and Nec-1 in SH-SY5Y cells, and co-administration of both produced an additive effect on reducing cell death. These data will pave the way for future studies investigating the prevention of cell death in Al neurotoxicity both in vivo and in vitro.

  7. Melissa Officinalis L. Extracts Protect Human Retinal Pigment Epithelial Cells against Oxidative Stress-Induced Apoptosis

    PubMed Central

    Jeung, In Cheul; Jee, Donghyun; Rho, Chang-Rae; Kang, Seungbum

    2016-01-01

    Background: We evaluated the protective effect of ALS-L1023, an extract of Melissa officinalis L. (Labiatae; lemon balm) against oxidative stress-induced apoptosis in human retinal pigment epithelial cells (ARPE-19 cells). Methods: ARPE-19 cells were incubated with ALS-L1023 for 24 h and then treated with hydrogen peroxide (H2O2). Oxidative stress-induced apoptosis and intracellular generation of reactive oxygen species (ROS) were assessed by flow cytometry. Caspase-3/7 activation and cleaved poly ADP-ribose polymerase (PARP) were measured to investigate the protective role of ALS-L1023 against apoptosis. The protective effect of ALS-L1023 against oxidative stress through activation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) was evaluated by Western blot analysis. Results: ALS-L1023 clearly reduced H2O2-induced cell apoptosis and intracellular production of ROS. H2O2-induced oxidative stress increased caspase-3/7 activity and apoptotic PARP cleavage, which were significantly inhibited by ALS-L1023. Activation of the PI3K/Akt pathway was associated with the protective effect of ALS-L1023 on ARPE-19 cells. Conclusions: ALS-L1023 protected human RPE cells against oxidative damage. This suggests that ALS-L1023 has therapeutic potential for the prevention of dry age-related macular degeneration. PMID:26941573

  8. Humanin protects against chemotherapy-induced stage-specific male germ cell apoptosis in rats*

    PubMed Central

    Lue, Y.; Doumit, T.; Jia, Y.; Atienza, V.; Liu, P. Y.; Swerdloff, R. S.; Wang, C.

    2016-01-01

    SUMMARY Humanin (HN) has cytoprotective action on male germ cells after testicular stress induced by heat and hormonal deprivation. To examine whether HN has protective effects on chemotherapy-induced male germ cell apoptosis, we treated four groups of adult rats with (i) vehicle (control), (ii) HN, (iii) cyclophosphamide (CP); or (iv) HN+CP. To investigate whether the protective effects of HN on germ cells require the presence of Leydig cells, another four groups of rats were pre-treated with ethane dimethanesulfonate (EDS), a Leydig cell toxicant, to eliminate Leydig cells. After 3 days, when Leydig cells were depleted by EDS, we administered: (i) vehicle, (ii) HN, (iii) CP; or (iv) HN+CP to rats. All rats were killed 12 h after the injection of HN and/or CP. Germ cell apoptosis was detected by TUNEL assay and quantified by numerical count. Compared with control and HN (alone), CP significantly increased germ cell apoptosis; HN +CP significantly reduced CP-induced apoptosis at early (I–VI) and late stages (IX–XIV) but not at middle stages (VII–VIII) of the seminiferous epithelial cycle. Pre-treatment with EDS markedly suppressed serum and intratesticular testosterone (T) levels, and significantly increased germ cell apoptosis at the middle (VII–VIII) stages. CP did not further increase germ cell apoptosis in the EDS-pre-treated rats. HN significantly attenuated germ cell apoptosis at the middle stages in EDS pre-treated rats. To investigate whether HN has any direct effects on Leydig cell function, adult Leydig cells were isolated and treated with ketoconazole (KTZ) to block testosterone synthesis. HN was not effective in preventing the reduction of T production by KTZ in vitro. We conclude that HN decreases CP and/or EDS-induced germ cell apoptosis in a stage-specific fashion. HN acts directly on germ cells to protect against EDS-induced apoptosis in the absence of Leydig cells and intratesticular testosterone levels are very low. PMID:25891800

  9. Sapodilla plum (Achras sapota) induces apoptosis in cancer cell lines and inhibits tumor progression in mice.

    PubMed

    Srivastava, Mrinal; Hegde, Mahesh; Chiruvella, Kishore K; Koroth, Jinsha; Bhattacharya, Souvari; Choudhary, Bibha; Raghavan, Sathees C

    2014-08-21

    Intake of fruits rich in antioxidants in daily diet is suggested to be cancer preventive. Sapota is a tropical fruit grown and consumed extensively in several countries including India and Mexico. Here we show that methanolic extracts of Sapota fruit (MESF) induces cytotoxicity in a dose-dependent manner in cancer cell lines. Cell cycle analysis suggested activation of apoptosis, without arresting cell cycle progression. Annexin V-propidium iodide double-staining demonstrated that Sapota fruit extracts potentiate apoptosis rather than necrosis in cancer cells. Loss of mitochondrial membrane potential, upregulation of proapoptotic proteins, activation of MCL-1, PARP-1, and Caspase 9 suggest that MESF treatment leads to activation of mitochondrial pathway of apoptosis. More importantly, we show that MESF treatment leads to significant inhibition of tumor growth and a 3-fold increase in the life span of tumor bearing animals compared to untreated tumor mice.

  10. Sapodilla Plum (Achras sapota) Induces Apoptosis in Cancer Cell Lines and Inhibits Tumor Progression in Mice

    PubMed Central

    Srivastava, Mrinal; Hegde, Mahesh; Chiruvella, Kishore K.; Koroth, Jinsha; Bhattacharya, Souvari; Choudhary, Bibha; Raghavan, Sathees C.

    2014-01-01

    Intake of fruits rich in antioxidants in daily diet is suggested to be cancer preventive. Sapota is a tropical fruit grown and consumed extensively in several countries including India and Mexico. Here we show that methanolic extracts of Sapota fruit (MESF) induces cytotoxicity in a dose-dependent manner in cancer cell lines. Cell cycle analysis suggested activation of apoptosis, without arresting cell cycle progression. Annexin V-propidium iodide double-staining demonstrated that Sapota fruit extracts potentiate apoptosis rather than necrosis in cancer cells. Loss of mitochondrial membrane potential, upregulation of proapoptotic proteins, activation of MCL-1, PARP-1, and Caspase 9 suggest that MESF treatment leads to activation of mitochondrial pathway of apoptosis. More importantly, we show that MESF treatment leads to significant inhibition of tumor growth and a 3-fold increase in the life span of tumor bearing animals compared to untreated tumor mice. PMID:25142835

  11. Spontaneous and Fas-induced apoptosis of low-grade MDS erythroid precursors involves the endoplasmic reticulum.

    PubMed

    Gyan, E; Frisan, E; Beyne-Rauzy, O; Deschemin, J-C; Pierre-Eugene, C; Randriamampita, C; Dubart-Kupperschmitt, A; Garrido, C; Dreyfus, F; Mayeux, P; Lacombe, C; Solary, E; Fontenay, M

    2008-10-01

    Spontaneous apoptosis of bone marrow erythroid precursors accounts for the anemia that characterizes most low-grade myelodysplastic syndromes (MDS). We have shown that death of these precursors involved the Fas-dependent activation of caspase-8. To explore the pathway leading from caspase-8 activation to apoptosis, we transduced MDS bone marrow CD34(+) cells with a lentivirus encoding wild-type (WT) or endoplasmic reticulum (ER)-targeted Bcl-2 protein before inducing their erythroid differentiation. Both WT-Bcl-2 and ER-targeted Bcl-2 prevented spontaneous and Fas-dependent apoptosis in MDS erythroid precursors. ER-targeted Bcl-2 inhibited mitochondrial membrane depolarization and cytochrome c release in MDS erythroid precursors undergoing apoptosis, indicating a role for the ER in the death pathway, upstream of the mitochondria. MDS erythroid precursors demonstrated elevated ER Ca(2+) stores and these stores remained unaffected by ER-targeted Bcl-2. The ER-associated protein Bcl-2-associated protein (BAP) 31 was cleaved by caspase-8 in MDS erythroid precursors undergoing apoptosis. The protective effect of ER-targeted Bcl-2 toward spontaneous and Fas-induced apoptosis correlated with inhibition of BAP31 cleavage. A protective effect of erythropoietin against Fas-induced BAP31 cleavage and apoptosis was observed. We propose that apoptosis of MDS erythroid precursors involves the ER, downstream of Fas and upstream of the mitochondria, through the cleavage of the ER-associated BAP31 protein.

  12. Molecular Mechanisms of Par-4-Induced Apoptosis in Prostate Cancer

    DTIC Science & Technology

    2007-05-01

    Sambrook J, Fritsch EF, Maniatis T. (1989). Molecular Cloning : A Laboratory Manual (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory...AD_________________ Award Number: W81XWH-05-1-0622 TITLE: Molecular Mechanisms of Par-4-Induced...SUBTITLE 5a. CONTRACT NUMBER Molecular Mechanisms of Par-4-Induced Apoptosis in Prostate Cancer 5b. GRANT NUMBER W81XWH-05-1-0622 5c. PROGRAM

  13. Calcium Uptake via Mitochondrial Uniporter Contributes to Palmitic Acid-induced Apoptosis in Mouse Podocytes.

    PubMed

    Yuan, Zeting; Cao, Aili; Liu, Hua; Guo, Henjiang; Zang, Yingjun; Wang, Yi; Wang, Yunman; Wang, Hao; Yin, Peihao; Peng, Wen

    2017-02-09

    Podocytes are component cells of the glomerular filtration barrier, and their loss by apoptosis is the main cause of proteinuria that leads to diabetic nephropathy (DN). Therefore, insights into podocyte apoptosis mechanism would allow a better understanding of DN pathogenesis and thus help develop adequate therapeutic strategies. Here, we investigated the molecular mechanism of palmitic acid-inhibited cell death in mouse podocytes, and found that palmitic acid increased cell death in a dose- and time-dependent manner. Palmitic acid induces apoptosis in podocytes through up-regulation of cytosolic and mitochondrial Ca(2+) , mitochondrial membrane potential (MMP), cytochrome c release and depletion of endoplasmic reticulum (ER) Ca(2+) , The intracellular calcium chelator, 1,2-bis (2-aminophenoxy) ethane-N,N,N, N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM), partially prevented this up-regulation whereas 2-aminoethoxydiphenyl borate (2-APB), an inositol 1,4,5-triphosphate receptor (IP3R) inhibitor; dantrolene, a ryanodine receptor (RyR) inhibitor; and 4,4'-diisothiocyanatostibene-2,2'-disulfonic acid (DIDS), an anion exchange inhibitor, had no effect. Interestingly, ruthenium red and Ru360, both inhibitors of the mitochondrial Ca(2+) uniporter (MCU), blocked palmitic acid-induced mitochondrial Ca(2+) elevation, cytochrome c release from mitochondria to cytosol, and apoptosis. siRNA to MCU markedly reduced curcumin-induced apoptosis. These data indicate that Ca(2+) uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes. This article is protected by copyright. All rights reserved.

  14. Lipid raft-regulated IGF-1R activation antagonizes TRAIL-induced apoptosis in gastric cancer cells.

    PubMed

    Xu, Ling; Qu, Xiujuan; Hu, Xuejun; Zhu, Zhitu; Li, Ce; Li, Enze; Ma, Yanju; Song, Na; Liu, Yunpeng

    2013-11-29

    Gastric cancer cells are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and the resistance mechanism is not fully understood. In human gastric cancer MGC803 and BGC823 cells, TRAIL induces insulin-like growth factor-1 receptor (IGF-1R) pathway activation. Treatment with IGF-1R inhibitor OSI-906 or small interfering RNAs against IGF-1R, prevents IGF-1R pathway activation and increases TRAIL-induced apoptosis. The TRAIL-induced IGF-1R pathway activation is promoted by IGF-1R translocation into lipid rafts. Moreover, the translocation of IGF-1R into lipid rafts is regulated by Casitas B-lineage lymphoma b (Cbl-b). Taken together, TRAIL-induced IGF-1R activation antagonizes TRAIL-induced apoptosis by Cbl-b-regulated distribution of IGF-1R in lipid rafts.

  15. Interferons as Inducers of Apoptosis in Malignant Cells

    PubMed Central

    Kotredes, Kevin P.

    2013-01-01

    Discovered as antiviral cytokines, interferons (IFNs) are now also recognized for their capacity to inhibit the growth of malignant cells via activation of programmed cell death, better known as apoptosis. In this review, we will cover recent advances made in this field, as it pertains to the various proposed mechanisms of IFN-induced apoptosis and the characterization of IFN-responsive genes not previously known to have apoptotic function. Also mentioned here is a description of the activation and crosstalk of survival signaling pathways as a mode of IFN resistance that remains a persistent clinical adversary to overcome and the future of IFNs as antitumor agents. PMID:23570382

  16. Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis

    PubMed Central

    ZHAO, PENG; MAO, JUN-MIN; ZHANG, SHU-YUN; ZHOU, ZE-QUAN; TAN, YANG; ZHANG, YU

    2014-01-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as a ‘chemopreventer’. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis, as well as its antioxidant functions. Quercetin can also reduce adipogenesis. Previous studies have shown that quercetin has potent inhibitory effects on animal fatty acid synthase (FASN). In the present study, activity of quercetin was evaluated in human liver cancer HepG2 cells. Intracellular FASN activity was calculated by measuring the absorption of NADPH via a spectrophotometer. MTT assay was used to test the cell viability, immunoblot analysis was performed to detect FASN expression levels and the apoptotic effect was detected by Hoechst 33258 staining. In the present study, it was found that quercetin could induce apoptosis in human liver cancer HepG2 cells with overexpression of FASN. This apoptosis was accompanied by the reduction of intracellular FASN activity and could be rescued by 25 or 50 μM exogenous palmitic acids, the final product of FASN-catalyzed synthesis. These results suggested that the apoptosis induced by quercetin was via the inhibition of FASN. These findings suggested that quercetin may be useful for preventing human liver cancer. PMID:25009654

  17. Plasma membrane redox system in the control of stress-induced apoptosis.

    PubMed

    Villalba, J M; Navas, P

    2000-01-01

    The plasma membrane of animal cells contains an electron transport system based on coenzyme Q (CoQ) reductases. Cytochrome b5 reductase is NADH-specific and reduces CoQ through a one-electron reaction mechanism. DT-diaphorase also reduces CoQ, although through a two-electron reaction mechanism using both NADH and NADPH, which may be particularly important under oxidative stress conditions. Because reduced CoQ protects membranes against peroxidations, and also maintains the reduced forms of exogenous antioxidants such as alpha-tocopherol and ascorbate, this molecule can be considered a central component of the plasma membrane antioxidant system. Stress-induced apoptosis is mediated by the activation of plasma membrane-bound neutral sphingomyelinase, which releases ceramide to the cytosol. Ceramide-dependent caspase activation is part of the apoptosis pathway. The reduced components of the plasma membrane antioxidant system, mainly CoQ, prevent both lipid peroxidation and sphingomyelinase activation. This results in the prevention of ceramide accumulation and caspase 3 activation and, as consequence, apoptosis is inhibited. We propose the hypothesis that antioxidant protective function of the plasma membrane redox system can be enough to protect cells against the externally induced mild oxidative stress. If this system is overwhelmed, intracellular mechanisms of protection are required to avoid activation of the apoptosis pathway.

  18. PI3K/AKT inhibition induces caspase-dependent apoptosis in HTLV-1-transformed cells.

    PubMed

    Jeong, Soo-Jin; Dasgupta, Arindam; Jung, Kyung-Jin; Um, Jee-Hyun; Burke, Aileen; Park, Hyeon Ung; Brady, John N

    2008-01-20

    The phosphatidylinositol-3-kinase (PI3K) and AKT (protein kinase B) signaling pathways play an important role in regulating cell cycle progression and cell survival. In previous studies, we demonstrated that AKT is activated in HTLV-1-transformed cells and that Tax activation of AKT is linked to p53 inhibition and cell survival. In the present study, we extend these observations to identify regulatory pathways affected by AKT in HTLV-1-transformed cells. We demonstrate that inhibition of AKT reduces the level of phosphorylated Bad, an important member of the pro-apoptotic family of proteins. Consistent with the decrease of phosphorylated Bad, cytochrome c is released from the mitochondria and caspase-9 is activated. Pretreatment of the cells with caspase-9 specific inhibitor z-LEHD-FMK or pan caspase inhibitor Ac-DEVD-CHO prevented LY294002-induced apoptosis. Of interest, p53 siRNA prevents LY294002-induced apoptosis in HTLV-1-transformed cells, suggesting that p53 reactivation is linked to apoptosis. In conclusion, the AKT pathway is involved in targeting multiple proteins which regulate caspase- and p53-dependent apoptosis in HTLV-1-transformed cells. Since AKT inhibitors simultaneously inhibit NF-kappaB and activate p53, these drugs should be promising candidates for HTLV-1-associated cancer therapy.

  19. Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis.

    PubMed

    Zhao, Peng; Mao, Jun-Min; Zhang, Shu-Yun; Zhou, Ze-Quan; Tan, Yang; Zhang, Yu

    2014-08-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as a 'chemopreventer'. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis, as well as its antioxidant functions. Quercetin can also reduce adipogenesis. Previous studies have shown that quercetin has potent inhibitory effects on animal fatty acid synthase (FASN). In the present study, activity of quercetin was evaluated in human liver cancer HepG2 cells. Intracellular FASN activity was calculated by measuring the absorption of NADPH via a spectrophotometer. MTT assay was used to test the cell viability, immunoblot analysis was performed to detect FASN expression levels and the apoptotic effect was detected by Hoechst 33258 staining. In the present study, it was found that quercetin could induce apoptosis in human liver cancer HepG2 cells with overexpression of FASN. This apoptosis was accompanied by the reduction of intracellular FASN activity and could be rescued by 25 or 50 μM exogenous palmitic acids, the final product of FASN-catalyzed synthesis. These results suggested that the apoptosis induced by quercetin was via the inhibition of FASN. These findings suggested that quercetin may be useful for preventing human liver cancer.

  20. Determinants of PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Kessel, David; Luo, Yu; Kim, Hyeong-Reh C.

    2000-03-01

    Photodynamic therapy can initiate cell death by apoptosis or necrosis. Using agents with known patterns of sub-cellular localization, we examined the correlation between sites of photodamage and the mode of cell death, using murine leukemia cells in vitro. Mitochondrial or mitochondrial/lysosomal photodamage caused the rapid release of cytochrome c. This effect was not temperature sensitive, and could be demonstrated immediately after irradiation of photosensitized cells at 10 degrees C. Subsequent warming to 37 degrees C led to a rapid apoptotic response, consistent with the known ability of cytochrome c to trigger the activation of caspase-3. In contrast, lysosomal or lysosomal/membrane photodamage resulted in the release of cathepsins and other proteolytic enzymes. A subsequent incubation at 37 degrees C resulted in mitochondrial degradation, leading to loss of cytochrome c within 30 min. The apoptotic response was both delayed and incomplete, with many dead cells not exhibiting an apoptotic morphology. The latter outcome was traced to photodamage to procaspase-3, an effect not observed with sensitizers that caused mainly mitochondrial photodamage. Studies in a cell-free system demonstrated that agents with lysosomal and/or membrane targets could bring about photoinactivation of caspase-3. These result are consistent with the proposal that photodynamic therapy can both activate and inactivate components of the apoptotic process.

  1. The flavonoid quercetin induces apoptosis and inhibits migration through a MAPK-dependent mechanism in osteoblasts.

    PubMed

    Nam, Tae Wook; Yoo, Chong Il; Kim, Hui Taek; Kwon, Chae Hwa; Park, Ji Yeon; Kim, Yong Keun

    2008-01-01

    The present study was undertaken to evaluate effects of quercetin, a major dietary flavonoid occurring in foods of plant origin, on cell viability and migration of osteoblastic cells. Quercetin inhibited cell viability, which was largely attributed to apoptosis, in a dose-and time-dependent manner in osteoblastic cells. Similar cytotoxicity of quercetin was observed in adipose tissue-derived stromal cells. Quercetin exerted a protective effect against H(2)O(2)-induced cell death, whereas it increased TNF-alpha-induced cell death. Western blot analysis showed that quercetin induced activation of ERK and p38, but not JNK. Quercetin-induced cell death was prevented by the ERK inhibitor PD98059, but not by inhibitors of p38 and JNK. Quercetin increased Bax expression and caused depolarization of mitochondrial membrane potential, which were inhibited by PD98059. Quercetin induced caspase-3 activation, and the quercetininduced cell death was prevented by caspase inhibitors. Quercetin inhibited cell migration, and its effect was prevented by inhibitors of ERK and p38. Taken together, these findings suggest that quercetin induces apoptosis through a mitochondria-dependent mechanism involving ERK activation and inhibits migration through activation of ERK and p38 pathways. Quercetin may exert both protective and deleterious effects in bone repair.

  2. Propolis Augments Apoptosis Induced by Butyrate via Targeting Cell Survival Pathways

    PubMed Central

    Drago, Eric; Bordonaro, Michael; Lee, Seon; Atamna, Wafa; Lazarova, Darina L.

    2013-01-01

    Diet is one of the major lifestyle factors affecting incidence of colorectal cancer (CC), and despite accumulating evidence that numerous diet-derived compounds modulate CC incidence, definitive dietary recommendations are not available. We propose a strategy that could facilitate the design of dietary supplements with CC-preventive properties. Thus, nutrient combinations that are a source of apoptosis-inducers and inhibitors of compensatory cell proliferation pathways (e.g., AKT signaling) may produce high levels of programmed death in CC cells. Here we report the combined effect of butyrate, an apoptosis inducer that is produced through fermentation of fiber in the colon, and propolis, a honeybee product, on CC cells. We established that propolis increases the apoptosis of CC cells exposed to butyrate through suppression of cell survival pathways such as the AKT signaling. The programmed death of CC cells by combined exposure to butyrate and propolis is further augmented by inhibition of the JNK signaling pathway. Analyses on the contribution of the downstream targets of JNK signaling, c-JUN and JAK/STAT, to the apoptosis of butyrate/propolis-treated CC cells ascertained that JAK/STAT signaling has an anti-apoptotic role; whereas, the role of cJUN might be dependent upon regulatory cell factors. Thus, our studies ascertained that propolis augments apoptosis of butyrate-sensitive CC cells and re-sensitizes butyrate-resistant CC cells to apoptosis by suppressing AKT signaling and downregulating the JAK/STAT pathway. Future in vivo studies should evaluate the CC-preventive potential of a dietary supplement that produces high levels of colonic butyrate, propolis, and diet-derived JAK/STAT inhibitors. PMID:24023824

  3. Effects of resveratrol on H(2)O(2)-induced apoptosis and expression of SIRTs in H9c2 cells.

    PubMed

    Yu, Wei; Fu, Yu-Cai; Zhou, Xiao-Hui; Chen, Chun-Juan; Wang, Xin; Lin, Rui-Bo; Wang, Wei

    2009-07-01

    Resveratrol, a polyphenol found in fruits, has been demonstrated to activate Sir2. Though many studies have demonstrated that resveratrol can activate SIRT1, whether it has effect on other sirtuins (SIRT2-7) are unknown. The present study shows that exposure of H9c2 cells to 50 microM H(2)O(2) for 6 h caused a significant increase in apoptosis, as evaluated by TUNEL and flow cytometry (FCM), but pretreatment of resveratrol (20 microM) eliminated H(2)O(2)-induced apoptosis. Resveratrol also prevented H(2)O(2)-induced caspase-3 activation. Exposure of cells to resveratrol caused rapid activation of SIRT1,3,4,7. Sirtuin inhibitor, nicotinamide (20 mM) attenuated resveratrol's inhibitory effect on cell apoptosis and caspase-3 activity. These results suggest that resveratrol protects cardiomyocytes from H(2)O(2)-induced apoptosis by activating SIRT1,3,4,7. 2009 Wiley-Liss, Inc.

  4. Honokiol-induced apoptosis and autophagy in glioblastoma multiforme cells.

    PubMed

    Chang, Ken-Hu; Yan, Ming-DE; Yao, Chih-Jung; Lin, Pei-Chun; Lai, Gi-Ming

    2013-11-01

    Honokiol, a hydroxylated biphenyl compound isolated from the Chinese herb Magnolia officinalis, has been reported to have anticancer activities in a variety of cancer cell lines. The present study aimed to evaluate the anticancer effect and possible molecular mechanisms of honokiol in a glioblastoma multiforme (GBM) cell line. The anticancer activities of honokiol were investigated in the DBTRG-05MG GBM cell line. The effect of honokiol on cell growth was determined using a sulforhodamine B assay. Flow cytometry and immunoblotting were used to measure honokiol-induced apoptosis (programmed cell death type I) and autophagy (programmed cell death type II). Honokiol was observed to reduce DBTRG-05MG cell viability in a dose-dependent manner. At a dose of 50 μM, honokiol markedly decreased the expression of Rb protein and led to the cleavage of poly(ADP-ribose) polymerase and Bcl-xL to promote apoptosis in the cancer cells. In addition, markers of autophagy, including Beclin-1 and LC3-II, were also significantly increased. In addition to apoptosis, honokiol was also able to induce autophagy in the DBTRG-05MG cells. The mechanisms that are responsible for the correlation between honokiol-induced apoptosis and autophagy require further investigation. Such efforts may provide a potential strategy for improving the clinical outcome of GBM treatment.

  5. Rapid Induction of Apoptosis in Gastrulating Mouse Embryos by Ethanol and Its Prevention by HB-EGF

    PubMed Central

    Kilburn, Brian A.; Chiang, Po Jen; Wang, Jun; Flentke, George R.; Smith, Susan M.; Armant, D. Randall

    2006-01-01

    Background Ethanol exposure during gastrulation and early neurulation induces apoptosis within certain embryonic cell populations, leading to craniofacial and neurological defects. There is currently little information about the initial kinetics of ethanol-induced apoptosis, and interest in the ability of endogenous survival factors to moderate apoptosis is growing. Ethanol alters intracellular signaling, leading to cell death in chick embryos, suggesting that apoptosis could occur rapidly and that signaling pathways activated by survival factors might reduce apoptosis. Methods Pregnant mice were intubated with 1, 2, or 4 g/kg ethanol on day 7.5 of embryogenesis (E7.5) 1, 3, or 6, hours before harvesting gastrulation-stage embryos. Control animals received maltose/dextran. Blood alcohol concentrations (BAC) were determined by gas chromatography. E7.5 embryos isolated from untreated dams were cultured in vitro for 1 or 3 hr with 0 or 400 mg% ethanol and 0 or 5 nM heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF). Apoptosis was quantified using fluorescence microscopy to detect annexin V binding and DNA fragmentation [terminal deoxynucleotidyl transferase-mediated dUTP-X nick end labeling (TUNEL)] in whole-mount or sectioned embryos. Results Both annexin V binding and TUNEL were elevated (p<0.05) in embryos exposed in utero to 1 g/kg ethanol for 3 hours, increasing linearly with time and ethanol concentration. Apoptosis increased (p<0.05) in all germ cell layers. Mice treated with 4 g/kg sustained BAC of 400 mg% for nearly 3 hours, significantly increasing apoptosis within the first hour. Cultured embryos exposed to 400 mg% ethanol displayed 2- to 3-fold more TUNEL than vehicle-treated embryos (p<0.05); however, exogenous HB-EGF prevented apoptosis. Conclusions Ethanol rapidly produced apoptosis in gastrulation-stage embryos, consistent with induction by intracellular signaling. The ethanol-induced apoptotic pathway was blocked by the

  6. Involvement of mitochondrial and B-RAF/ERK signaling pathways in berberine-induced apoptosis in human melanoma cells.

    PubMed

    Burgeiro, Ana; Gajate, Consuelo; Dakir, El Habib; Villa-Pulgarín, Janny A; Oliveira, Paulo J; Mollinedo, Faustino

    2011-07-01

    The natural isoquinoline alkaloid berberine exhibits a wide spectrum of biological activities including antitumor activity, but its mechanism of action remains to be fully elucidated. Here, we report that berberine induced apoptosis in human melanoma cells, through a process that involved mitochondria and caspase activation. Berberine-induced activation of a number of caspases, including caspases 3, 4, 7, 8, and 9. Pan-caspase inhibitor, z-VAD-fmk, and caspase-8 and caspase-9 inhibitors prevented apoptosis. Berberine also led to the generation of the p20 cleavage fragment of BAP31, involved in directing proapoptotic signals between the endoplasmic reticulum and the mitochondria. Treatment of SK-MEL-2 melanoma cells with berberine induced disruption of the mitochondrial transmembrane potential, release of cytochrome c and apoptosis-inducing factor from the mitochondria to the cytosol, generation of reactive oxygen species (ROS), and a decreased ATP/ADP ratio. Overexpression of bcl-xL by gene transfer prevented berberine-induced cell death, mitochondrial transmembrane potential loss, and cytochrome c and apoptosis-inducing factor release, but not ROS generation. N-acetyl-L-cysteine inhibited the production of ROS, but did not abrogate the berberine-induced apoptosis. Inhibition of extracellular signal-regulated kinase (ERK) phosphorylation, by using the mitogen-activated protein kinase/ERK kinase inhibitor PD98059, and reduction of B-RAF levels by silencing RNA induced cell death of SK-MEL-2 cells, and diminished the berberine concentration required to promote apoptosis. These data show that berberine-induced apoptosis in melanoma cells involves mitochondria and caspase activation, but ROS generation was not essential. Our results indicate that inhibition of B-RAF/ERK survival signaling facilitates the cell death response triggered by berberine.

  7. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins

    PubMed Central

    Xu, Xiao-Man; Zhang, Man-Li; Zhang, Yi; Zhao, Li

    2016-01-01

    In the present study, we investigated the effects and mechanisms of Osthole on the apoptosis of non-small cell lung cancer (NSCLC) cells and its synergistic effect with Embelin. Our results revealed that treatment with both Osthole and Embelin inhibited cell proliferation. Notably, combination treatment of Osthole and Embelin inhibited cell proliferation more significantly compared with monotherapy. In addition, morphological analysis and Annexin V/propidium iodide analysis revealed that the combination of Osthole and Embelin enhanced their effect on cell apoptosis. We further examined the effect of Osthole on the expression of inhibitor of apoptosis protein (IAP) family proteins. That treatment of A549 lung cancer cells with various concentrations of Osthole was observed to decrease the protein expression of X-chromosome-encoded IAP, c-IAP1, c-IAP2 and Survivin, and increase Smac expression in a dose-dependent manner. Furthermore, it was noted that Osthole or Embelin alone increased the expression of BAX, caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9, and decreased Bcl-2 levels following treatment. Osthole and Embelin combination treatment had a synergistic effect on the regulation of these proteins. In conclusion, our study demonstrated that Osthole inhibited proliferation and induced the apoptosis of lung cancer cells via IAP family proteins in a dose-dependent manner. Osthole enhances the antitumor effect of Embelin, indicating that combination of Osthole and Embelin has potential clinical significance in the treatment of NSCLC. PMID:27895730

  8. Perfluorooctane sulfonate induces apoptosis in N9 microglial cell line.

    PubMed

    Zhang, Ling; Li, Yuan-yuan; Zeng, Huai-cai; Li, Miao; Wan, Yan-Jian; Schluesener, Hermann J; Zhang, Zhi-yuan; Xu, Shun-qing

    2011-03-01

    Perfluorooctane sulfonate (PFOS) is an environmental persistent acid found at low levels in human, wildlife, and environmental media samples. To study the apoptosis effects of PFOS on microglia, murine N9 cell line was used as a model in current research. The results showed that PFOS could reduce the cell viability significantly, and the cellular apoptosis induced by PFOS was closely accompanied with dissipation of mitochondria membrane potential, upregulation messenger RNAs (mRNAs) of p53, Bax, caspase 9, and caspase 3, and decreased expression of Bcl-2 mRNA. These results suggested that PFOS could disturb homeostasis of N9 cells, impact mitochondria, and affect gene expression of apoptotic regulators, all of which resulted in a start-up of apoptosis.

  9. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    SciTech Connect

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi

    2014-10-15

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2

  10. Apoptosis of ATII cells in mice induced by phosgene.

    PubMed

    Li, Wen-li; Hai, Chun-xu; Liang, Xin; Zhang, Xiao-di; Chen, Hong-li; Qin, Xu-jun; Liu, Riu; He, Wei; Wang, Peng; Li, Bo

    2006-01-01

    Phosgene inhalation can induced pulmonary edema formation. The purpose of this study was to investigate cell of apoptosis in pulmonary edema mice induced by phosgene. Fifty-two BALB/c mice were random divided into a negative group and a positive group with 26 mice in each. Mice were exposed for 5 min to air and phosgene in the negative group and in the positive one, respectively. The dose of phosgene was 539 ppm. After 4 h of exposure, all mice were anesthetized. Lungs were analyzed for lung wet/dry weight ratio and pathological alternation. The method of isolation and culture of alveolar type II cells (ATII cells) was established to observe their apoptosis by electron microscope and flow cytometry. Apoptosis of lung cells was observed by DNA gel electrophoresis and TUNEL. The lung wet/dry weight ratio was significantly higher in the positive group (6.42 +/- 1.00) than in the negative group (4.25 +/- 0.47, p < 0.05). A large amount of fluid effusion was observed in the alveolus of mice induced by phosgene. Alveolar type II cells were identified by tannic acid staining and electron microscope. The apoptotic signs in alveolar type II cells, alveolar type I cells, eosinophils, macrophages, symphocytes, and ciliated cells were viewed under electron microscope in positive group. The ratio of apoptosis cells (40.26 +/- 7.74) in positive was higher than that (1.58 +/- 1.01, p < 0.001) in the negative group by flow cytometry. DNA ladder alternation was seen through DNA gel electrophoresis. Apoptosis of epithelia and vascular endothelia in lung were found by TUNEL. These results indicate that there is success in establishing a model of pulmonary edema and method of isolation and culture of AT II cells in BALB/c mice. Phosgene can induce apoptosis of cells in the lungs of BALB/c mice, and this indicates that pulmonary edema is related to apoptosis of lung cells in mice, induced by phosgene.

  11. Cisplatin induced apoptosis of ovarian cancer A2780s cells by activation of ERK/p53/PUMA signals.

    PubMed

    Song, Hao; Wei, Mei; Liu, Wenfen; Shen, Shulin; Li, Jiaqun; Wang, Liming

    2017-03-13

    Cisplatin (CDDP) is one of the most effective anticancer agents widely used in the treatment of solid tumors, including ovarian cancer. It is generally considered as a cytotoxic drug which kills cancer cells by causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, the underlying mechanisms leading to cell apoptosis remain obscure. In this study, the signaling pathways involved in CDDP -induced apoptosis were examined using CDDP-sensitive ovarian cancer A2780s cells. A2780s cells were treated with CDDP (1.5-3 μg/ml) for 6 h, 12 h and 24 h. Using siRNA targeting P53 and PUMA, and a selective MEK inhibitor, PD98059 to examine the relation between ERK1/2 activation, p53 and PUMA expression after exposure to CDDP, and the effect on CDDP-induced apoptosis. The results shown that treatment of A2780s cells with CDDP (3 μg/ml) for 6-24 h induced apoptosis, resulting in the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and accumulation of p53 and PUMA (p53 upregulated modulator of apoptosis) protein. Knockdown of P53 or PUMA by siRNA transfection blocked CDDP-induced apoptosis. Inhibition of ERK1/2 using PD98059, a selective MEK inhibitor, blocked the apoptotic cell death but prevented CDDP-induced accumulation of p53 and PUMA. Knockdown of P53 by siRNA transfection also blocked CDDP-induced accumulation of PUMA. We therefore concluded that CDDP activated ERK1/2 and induced-p53-dependent PUMA upregulation, resulting in triggering apoptosis in A2780s cells. Our study clearly demonstrates that the ERK1/2/p53/PUMA axis is related to CDDP-induced cell death in A2780s cells.

  12. Panax quinquefolium saponin attenuates cardiomyocyte apoptosis induced by thapsigargin through inhibition of endoplasmic reticulum stress

    PubMed Central

    Liu, Mi; Xue, Mei; Wang, Xiao-Reng; Tao, Tian-Qi; Xu, Fei-Fei; Liu, Xiu-Hua; Shi, Da-Zhuo

    2015-01-01

    Background Endoplasmic reticulum (ER) stress-related apoptosis is involved in the pathophysiology of many cardiovascular diseases, and Panax quinquefolium saponin (PQS) is able to inhibit excessive ER stress-related apoptosis of cardiomyocytes following hypoxia/reoxygenation and myocardial infarction. However, the pathway by which PQS inhibits the ER stress-related apoptosis is not well understood. To further investigate the protective effect of PQS against ER stress-related apoptosis, primary cultured cardiomyocytes were stimulated with thapsigargin (TG), which is widely used to model cellular ER stress, and it could induce apoptotic cell death in sufficient concentration. Methods Primary cultured cardiomyocytes from neonatal rats were exposed to TG (1 µmol/L) treatment for 24 h, following PQS pre-treatment (160 µg/mL) for 24 h or pre-treatment with small interfering RNA directed against protein kinase-like endoplasmic reticulum kinase (Si-PERK) for 6 h. The viability and apoptosis rate of cardiomyocytes were detected by cell counting kit-8 and flow cytometry respectively. ER stress-related protein expression, such as glucose-regulated protein 78 (GRP78), calreticulin, PERK, eukaryotic translation initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) were assayed by western blotting. Results Both PQS pre-treatment and PERK knockdown remarkably inhibited the cardiomyocyte apoptosis induced by TG, increased cell viability, decreased phosphorylation of both PERK and eIF2α, and decreased protein levels of both ATF4 and CHOP. There was no statistically significant difference between PQS pre-treatment and PERK knockdown in the cardioprotective effect. Conclusions Our data indicate that the PERK-eIF2α-ATF4-CHOP pathway of ER stress is involved in the apoptosis induced by TG, and PQS might prevent TG-induced cardiomyocyte apoptosis through a mechanism involving the suppression of this pathway. These findings

  13. Manganese induced apoptosis in haematopoietic cells of Nephrops norvegicus (L.).

    PubMed

    Oweson, Carolina A M; Baden, Susanne P; Hernroth, Bodil E

    2006-05-10

    Manganese (Mn) is highly abundant as MnO2 in marine sediments. During hypoxia in bottom waters, the reduced bioavailable fraction of manganese, Mn2+, increases. Thereby, Norway lobster, Nephrops norvegicus, can experience concentrations up to 1000 times normoxic levels. A previous study has shown that exposure to a realistic concentration of 20 mg l(-1) of Mn for 10 days reduced the number of circulating haemocytes in N. norvegicus significantly. Here we aimed to investigate if apoptosis contributes to the Mn-induced haemocytopenia, with the overall hypothesis that Mn induces apoptosis in a time and concentration dependent manner. N. norvegicus were exposed to Mn (0, 5, 10 and 20 mg l(-1)) for 5 and 10 days. After 5 days of exposure the total haemocyte counts were not affected. However, after 10 days there was a gradual decrease in cell numbers, reaching a reduction by 44% when the animals were exposed to 20 mg Mn l(-1). Apoptosis in cells, released from the haematopoietic tissue, was investigated by using TUNEL assay, which detects specific DNA strand breaks. The fraction of apoptotic cells gradually increased from 2.5% in un-exposed lobsters to 15% in those exposed to 20 mg l(-1) but there was no difference related to the exposure time. A gradual increase of apoptosis was further confirmed by electrophoretic DNA-ladder formation, however to a lower extent in lobsters exposed during 5 days. Cell viability, determined by metabolic activity and cell membrane integrity, was not reduced, indicating that apoptosis rather than necrosis caused reduced number of haemocytes. It was concluded that apoptosis seemed to increase already after 5 days of 5 mg l(-1) of Mn-exposure, although exposure for 10 days was required before it was reflected in the haemocyte numbers. Reduced numbers of haemocytes may increase the prevalence for infections in N. norvegicus in their natural habitat.

  14. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells

    PubMed Central

    Pomares, Helena; Palmeri, Claudia M; Iglesias-Serret, Daniel; Moncunill-Massaguer, Cristina; Saura-Esteller, José; Núñez-Vázquez, Sonia; Gamundi, Enric; Arnan, Montserrat; Preciado, Sara; Albericio, Fernando; Lavilla, Rodolfo; Pons, Gabriel; González-Barca, Eva M

    2016-01-01

    Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins (PHBs). In this study, the pro-apoptotic effect of fluorizoline was assessed in two cell lines and 21 primary samples from patients with debut of acute myeloid leukemia (AML). Fluorizoline induced apoptosis in AML cells at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline irrespectively of patients' clinical or genetic features. In addition, fluorizoline inhibited the clonogenic capacity and induced differentiation of AML cells. Fluorizoline increased the mRNA and protein levels of the pro-apoptotic BCL-2 family member NOXA both in cell lines and primary samples analyzed. These results suggest that targeting PHBs could be a new therapeutic strategy for AML. PMID:27542247

  15. p73-induced apoptosis: A question of compartments and cooperation

    SciTech Connect

    Dobbelstein, Matthias; Strano, Sabrina; Roth, Judith; Blandino, Giovanni . E-mail: blandino@ifo.it

    2005-06-10

    The transcriptionally active forms of p73 are capable of inducing apoptosis, and the isoforms termed TAp73 are important players when E2F and its oncogenic activators induce programmed cell death. However, the conditions under that TAp73 can kill a cell remain to be clarified. Recently, it has been found that p73 proteins are not merely floating in the nucleoplasm but rather can associate with specific compartments in the cell. Examples of intranuclear compartments associated with p73 proteins include the PML oncogenic domains and the nuclear matrix. In addition, p73 is found in the cytoplasm. It remains to be seen whether p73 might also associate with mitochondria, in analogy with p53. The relocalization of p73 is expected to be mediated by specific binding partners, mostly other proteins. Here, we discuss the possibility that the compartmentalization of p73, and the cooperation with the corresponding binding partners, might decide about its apoptosis-inducing activity.

  16. Analogs of farnesylcysteine induce apoptosis in HL-60 cells.

    PubMed

    Pérez-Sala, D; Gilbert, B A; Rando, R R; Cañada, F J

    1998-04-24

    S-Farnesyl-thioacetic acid (FTA), a competitive inhibitor of isoprenylated protein methyltransferase, potently suppressed the growth of HL-60 cells and induced apoptosis, as evidenced by the development of increased annexin-V binding, decreased binding of DNA dyes and internucleosomal DNA degradation. FTA did not impair the membrane association of ras proteins, conversely, it brought about a decrease in the proportion of ras present in the cytosolic fraction. Farnesylated molecules which are weak inhibitors of the methyltransferase also induced DNA laddering and reduced the proportion of cytosolic ras. These findings suggest that neither inhibition of isoprenylated protein methylation nor impairment of ras membrane association are essential for apoptosis induced by farnesylcysteine analogs.

  17. Molecular Mechanisms of Particle Ration Induced Apoptosis in Lymphocyte

    NASA Astrophysics Data System (ADS)

    Shi, Yufang

    Space radiation, composed of high-energy charged nuclei (HZE particles) and protons, has been previously shown to severely impact immune homeostasis in mice. To determine the molecular mechanisms that mediate acute lymphocyte depletion following exposure to HZE particle radiation mice were exposed to particle radiation beams at Brookhaven National Laboratory. We found that mice given whole body 5 6Fe particle irradiation (1GeV /n) had dose-dependent losses in total lymphocyte numbers in the spleen and thymus (using 200, 100 and 50 cGy), with thymocytes being more sensitive than splenocytes. All phenotypic subsets were reduced in number. In general, T cells and B cells were equally sensitive, while CD8+ T cells were more senstive than CD4+ T cells. In the thymus, immature CD4+CD8+ double-positive thymocytes were exquisitely sensitive to radiation-induced losses, single-positive CD4 or CD8 cells were less sensitive, and the least mature double negative cells were resistant. Irradiation of mice deficient in genes encoding essential apoptosis-inducing proteins revealed that the mechanism of lymphocyte depletion is independent of Fas ligand and TRAIL (TNF-ralated apoptosis-inducing ligand), in contrast to γ-radiation-induced lymphocyte losses which require the Fas-FasL pathway. Using inhibitors in vitro, lymphocyte apoptosis induced by HZE particle radiation was found to be caspase dependent, and not involve nitric oxide or oxygen free radicals.

  18. beta-Arrestins facilitate ubiquitin-dependent degradation of apoptosis signal-regulating kinase 1 (ASK1) and attenuate H2O2-induced apoptosis.

    PubMed

    Zhang, Zhengping; Hao, Jiaying; Zhao, Zhihui; Ben, Peiling; Fang, Fang; Shi, Lijun; Gao, Yanhong; Liu, Junhong; Wen, Chuanjun; Luo, Lan; Yin, Zhimin

    2009-07-01

    beta-Arrestins are ubiquitously expressed proteins that play important roles in receptor desensitization, endocytosis, proteosomal degradation, apoptosis and signaling. It has been reported that beta-Arrestin2 acts as a scaffold by directly interacting with the JNK3 isoform and recruiting MKK4 and the apoptosis-signaling kinase-1 (ASK1). Here, we report a novel function of beta-Arrestins in regulating H(2)O(2)-induced apoptosis. Our study demonstrates that beta-Arrestins physically associate with C-terminal domain of ASK1, and moreover, both over-expression and RNA interference (RNAi) experiments indicate that beta-Arrestins down-regulate ASK1 protein. In detail, beta-Arrestin-induced reduction of ASK1 protein is due to ubiquitination and proteasome-dependent degradation of ASK1 in response to association of beta-Arrestins and ASK1. Upon H(2)O(2) stimulation, the protein binding between beta-Arrestins and ASK1 increases and ASK1 degradation is expedited. In consequence, beta-Arrestins prevent ASK1-JNK signaling and as a result attenuate H(2)O(2)-induced apoptosis. Structurally, C-terminal domain of ASK1 is essential for beta-Arrestins and ASK1 association. We also found that CHIP is required for beta-Arrestins-induced ASK1 degradation, which suggested that beta-Arrestins function as a scaffold of ASK1 and CHIP, leading to CHIP-mediated ASK1 degradation. All these findings indicate that beta-Arrestins play a negative regulatory role in H(2)O(2)-induced apoptosis signaling through associating with ASK1 and CHIP and facilitating ASK1 degradation, which provides a new insight for analyzing the effects of beta-Arrestins on protecting cells from oxidative stress-induced apoptosis.

  19. Pim-2 protects H9c2 cardiomyocytes from hypoxia/reoxygenation-induced apoptosis via downregulation of Bim expression.

    PubMed

    Xu, Yan; Xing, Yawei; Xu, Yanjie; Huang, Chahua; Bao, Huihui; Hong, Kui; Cheng, Xiaoshu

    2016-12-01

    We know that silencing Bim, a pro-apoptosis protein, significantly attenuates glucose and oxygen-deprived induced apoptosis in cardiomyocytes. However, the mechanisms underlying the regulation of the Bim activation in the heart have remained unknown. Pim-2 is one of three Pim serine/threonine kinase family members thought to be involved in cell survival and proliferation. H9c2 cardiomyocytes were subjected to a hypoxia/reoxygenation (H/R) condition in vitro, mimicking ischemic/reperfusion injury in vivo. H/R augmented the expression of Bim, Cyt C, and Pim-2 and induced H9c2 cell apoptosis. Overexpression of Pim-2 attenuated apoptosis which induced by H/R in H9c2 cells, via downregulation of Bim and Cyt C expression. Silencing of Pim-2 promoted H/R-induced apoptosis via upregulation of Bim and Cyt C expression. Co-IP revealed the interaction between Pim-2 and Bim protein, with Bim Ser(65) phosphorylated by Pim-2. Furthermore, blocking proteasome activity by MG132 prevented Bim degradation, and Bim S65A mutation could reverse the anti-apoptotic role of Pim-2 which induced by H/R. These data demonstrated that Pim-2 is a novel Bim-interacting protein, which negatively regulates Bim degradation and protects H9c2 cardiomyocytes from H/R-induced apoptosis.

  20. Beneficial effects of Chrysin against Methotrexate-induced hepatotoxicity via attenuation of oxidative stress and apoptosis.

    PubMed

    Ali, Nemat; Rashid, Summya; Nafees, Sana; Hasan, Syed Kazim; Sultana, Sarwat

    2014-01-01

    Methotrexate (MTX), a folic acid antagonist, an effective chemotherapeutic agent is used in the treatment of a wide range of tumors and autoimmune diseases. Moreover, hepatotoxicity limits its clinical use. Several studies have already confirmed that the oxidative stress plays a major role in the pathogenesis of MTX-induced damage in the various organs especially in liver. The aim of this study was to determine the protective effect of Chrysin against MTX-induced hepatic oxidative stress and apoptosis in rats. In the present study, efficacy of Chrysin was investigated against hepatotoxicity caused by MTX in terms of biochemical investigations of antioxidant enzymes, apoptosis, and histopathological alteration in rat liver. In the MTX-treated group there was a significant increase in alanine transaminase, aspartate aminotransferase, lactate dehydrogenase activity and malondialdehyde content as well as decreased glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase activities and reduced glutathione content were also observed compared to the control group as a marker of oxidative stress. Histopathological alterations and apoptosis through the immunopositive staining of p53, cleaved caspases-3 and Bcl-2-associated X protein in rat liver were observed. Pretreatment of Chrysin at both doses prevents the hepatotoxicity by ameliorating oxidative stress, histopathological alterations, and apoptosis and thus our results suggest that Chrysin has a protective effect against hepatotoxicity induced by MTX and it may, therefore, improve the therapeutic index of MTX if co-administration is done.

  1. Interleukin-13 interferes with activation-induced t-cell apoptosis by repressing p53 expression

    PubMed Central

    Yang, Li; Xu, Ling-Zhi; Liu, Zhi-Qiang; Yang, Gui; Geng, Xiao-Rui; Mo, Li-Hua; Liu, Zhi-Gang; Zheng, Peng-Yuan; Yang, Ping-Chang

    2016-01-01

    The etiology and the underlying mechanism of CD4+ T-cell polarization are unclear. This study sought to investigate the mechanism by which interleukin (IL)-13 prevents the activation-induced apoptosis of CD4+ T cells. Here we report that CD4+ T cells expressed IL-13 receptor α2 in the intestine of sensitized mice. IL-13 suppressed both the activation-induced apoptosis of CD4+ T cells and the expression of p53 and FasL. Exposure to recombinant IL-13 inhibited activation-induced cell death (AICD) along with the expression of p53, caspase 3, and tumor necrosis factor-α in CD4+ T cells. Administration of an anti-IL-13 antibody enhanced the effect of specific immunotherapy on allergic inflammation in the mouse intestine, enforced the expression of p53 in intestinal CD4+ T cells, and enhanced the frequency of CD4+ T-cell apoptosis upon challenge with specific antigens. In summary, blocking IL-13 enhances the therapeutic effect of antigen-specific immunotherapy by regulating apoptosis and thereby enforcing AICD in CD4+ T cells. PMID:26189367

  2. Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis.

    PubMed

    Wang, Chun; Xu, Canxin; Sun, Mingwei; Luo, Dixian; Liao, Duan-Fang; Cao, Deliang

    2009-07-31

    Acetyl-CoA carboxylase-alpha (ACCA) is a rate-limiting enzyme in long chain fatty acid synthesis, playing a critical role in cellular energy storage and lipid synthesis. ACCA is upregulated in multiple types of human cancers and small interfering RNA-mediated ACCA silencing in human breast and prostate cancer cells results in oxidative stress and apoptosis. This study reports for the first time that TOFA (5-tetradecyloxy-2-furoic acid), an allosteric inhibitor of ACCA, is cytotoxic to lung cancer cells NCI-H460 and colon carcinoma cells HCT-8 and HCT-15, with an IC(50) at approximately 5.0, 5.0, and 4.5 microg/ml, respectively. TOFA at 1.0-20.0 microg/ml effectively blocked fatty acid synthesis and induced cell death in a dose-dependent manner. The cell death was characterized with PARP cleavage, DNA fragmentation, and annexin-V staining, all of which are the features of the apoptosis. Supplementing simultaneously the cells with palmitic acids (100 microM), the end-products of the fatty acid synthesis pathway, prevented the apoptosis induced by TOFA. Taken together, these data suggest that TOFA is a potent cytotoxic agent to lung and colon cancer cells, inducing apoptosis through disturbing their fatty acid synthesis.

  3. Ovariectomy-Induced Mitochondrial Oxidative Stress, Apoptosis, and Calcium Ion Influx Through TRPA1, TRPM2, and TRPV1 Are Prevented by 17β-Estradiol, Tamoxifen, and Raloxifene in the Hippocampus and Dorsal Root Ganglion of Rats.

    PubMed

    Yazğan, Yener; Nazıroğlu, Mustafa

    2016-11-10

    Relative 17β-estradiol (E2) deprivation and excessive production of mitochondrial oxygen free radicals (OFRs) with a high amount of Ca(2+) influx TRPA1, TRPM2, and TRPV1 activity is one of the main causes of neurodegenerative disease in postmenopausal women. In addition to the roles of tamoxifen (TMX) and raloxifene (RLX) in cancer and bone loss treatments, regulator roles in Ca(2+) influx and mitochondrial oxidative stress in neurons have not been reported. The aim of this study was to evaluate whether TMX and RLX interactions with TRPA1, TRPM2, and TRPV1 in primary hippocampal (HPC) and dorsal root ganglion (DRG) neuron cultures of ovariectomized (OVX) rats. Forty female rats were divided into five groups: a control group, an OVX group, an OVX+E2 group, an OVX+TMX group, and an OVX+RLX group. The OVX+E2, OVX+TMX, and OVX+RLX groups received E2, TMX, and RLX, respectively, for 14 days after the ovariectomy. E2, ovariectomy-induced TRPA1, TRPM2, and TRPV1 current densities, as well as accumulation of cytosolic free Ca(2+) in the neurons, were returned to the control levels by E2, TMX, and RLX treatments. In addition, E2, TMX, and RLX via modulation of TRPM2 and TRPV1 activity reduced ovariectomy-induced mitochondrial membrane depolarization, apoptosis, and cytosolic OFR production. TRPM2, TRPV1, PARP, and caspase-3 and caspase-9 expressions were also decreased in the neurons by the E2, TMX, and RLX treatments. In conclusion, we first reported the molecular effects of E2, TMX, and RLX on TRPA1, TRPM2, and TRPV1 channel activation in the OVX rats. In addition, we observed neuroprotective effects of E2, RLX, and TMX on oxidative and apoptotic injuries of the hippocampus and peripheral pain sensory neurons (DRGs) in the OVX rats. Graphical Abstract Possible molecular pathways of involvement of DEX in cerebral ischemia-induced apoptosis, oxidative stress, and calcium accumulation through TRPA1, TRPM2 and TRPV1 in the hippocampus and DRG neurons of rats. The N domain

  4. Fas-Induced Apoptosis Increases Hepatocyte Tissue Factor Procoagulant Activity In Vitro and In Vivo

    PubMed Central

    Lopez, Michelle; Kopec, Anna K.; Joshi, Nikita; Geddings, Julia E.; Cline, Holly; Towery, Keara L.; Rockwell, Cheryl E.; Mackman, Nigel; Luyendyk, James P.

    2014-01-01

    Hepatocyte (HPC) apoptosis occurs in association with hepatotoxic responses and chronic liver disease, and is coupled to activation of the blood coagulation cascade. HPCs have been shown to express tissue factor (TF), the primary activator of blood coagulation, in a form that lacks procoagulant activity. In this study, we determined the effect of inducing HPC apoptosis on the procoagulant activity of TF. Treatment of primary mouse HPCs with the Fas death receptor agonist (anti-CD95 antibody, Jo2) triggered apoptosis as shown by cleavage of caspase-3, increased caspase-3 proteolytic activity, and cell surface exposure of phosphatidylserine (PS). Jo2-induced apoptosis significantly increased TF-dependent factor Xa generation by HPCs. Moreover, Jo2 treatment was associated with increased levels of microparticle-associated TF procoagulant activity in the culture medium. Pretreatment with a caspase-3 inhibitor significantly reduced Jo2-induced HPC TF activity and prevented the increase in microparticle-associated TF procoagulant activity. Application of the high-affinity PS-binding protein lactadherin inhibited TF-dependent factor Xa generation by Jo2-treated HPCs and dramatically reduced microparticle-associated TF procoagulant activity. Treatment of wild-type mice with a sublethal dose of Jo2 was associated with a robust increase in the activation of coagulation as measured by plasma thrombin-antithrombin (TAT) levels; whereas mice with liver-specific TF deficiency had significantly lower TAT levels. Overall, the results indicate that Fas-initiated, caspase-3-dependent HPC apoptosis increases TF procoagulant activity through a mechanism involving PS externalization. This suggests that activation of liver TF likely contributes to the procoagulant state associated with HPC apoptosis in liver toxicity and disease. PMID:25015658

  5. Mechanism of Pyrethroid Pesticide–Induced Apoptosis: Role of Calpain and the ER Stress Pathway

    PubMed Central

    Hossain, Muhammad M.; Richardson, Jason R.

    2011-01-01

    Exposure to the pyrethroid pesticide deltamethrin has been demonstrated to cause apoptosis both in vitro and in vivo. However, the molecular pathways leading to deltamethrin-induced apoptosis have not been established. To identify these pathways, SK-N-AS neuroblastoma cells were exposed to deltamethrin (100nM–5μM) for 24–48 h. Deltamethrin produced a time- and dose-dependent increase (21–300%) in DNA fragmentation, an indicator of apoptosis. Data demonstrate that the initiation of DNA fragmentation resulted from interaction of deltamethrin with Na+ channels and consequent calcium influx, as tetrodotoxin and the intracellular Ca2+ chelator BAPTA-AM completely prevented apoptosis. DNA fragmentation was accompanied by increased caspase-9 and -3 activities and was abolished by specific caspase-9 and -3 inhibitors. However, deltamethrin did not increase cytosolic cytochrome c levels, indicating that the mitochondrial pathway was likely not involved. Additional studies demonstrated that deltamethrin exposure activated caspase-12 activity and that pharmacological inhibition and siRNA knockdown of calpain prevented deltamethrin-induced DNA fragmentation, thus indicating a role for the endoplasmic reticulum (ER) stress pathway. This was confirmed by the observation that inhibition of eIF2α abolished deltamethrin-induced DNA fragmentation. Together, these data demonstrate that deltamethrin causes apoptosis through its interaction with Na+ channels, leading to calcium overload and activation of the ER stress pathway. Because ER stress and the subsequent unfolded protein response have been observed in a number of neurodegenerative diseases, these data provide mechanistic information by which high-level exposure to pyrethroids may contribute to neurodegeneration. PMID:21555338

  6. Galectin-8 promotes migration and proliferation and prevents apoptosis in U87 glioblastoma cells.

    PubMed

    Metz, Claudia; Döger, Remziye; Riquelme, Elizabeth; Cortés, Priscilla; Holmes, Christopher; Shaughnessy, Ronan; Oyanadel, Claudia; Grabowski, Catalina; González, Alfonso; Soza, Andrea

    2016-07-27

    Glioblastoma is one of the most aggressive cancers of the brain. Malignant traits of glioblastoma cells include elevated migration, proliferation and survival capabilities. Galectins are unconventionally secreted glycan-binding proteins that modulate processes of cell adhesion, migration, proliferation and apoptosis by interacting with beta-galactosides of cell surface glycoproteins and the extracellular matrix. Galectin-8 is one of the galectins highly expressed in glioblastoma cells. It has a unique selectivity for terminally sialylated glycans recently found enhanced in these highly malignant cells. A previous study in glioblastoma cell lines reported that Gal-8 coating a plastic surface stimulates two-dimensional motility. Because in other cells Gal-8 arrests proliferation and induces apoptosis, here we extend its study by analyzing all of these processes in a U87 glioblastoma cell model. We used immunoblot and RT-PCR for Gal-8 expression analysis, recombinant Gal-8 produced in a bacteria system for Gal-8 treatment of the cells, and shRNA in lentivirus transduction for Gal-8 silencing. Cell migration as assessed in transwell filters. Cell proliferation, cell cycle and apoptosis were analyzed by FACS. Gal-8 as a soluble stimulus triggered chemotactic migration of U87 cells across the polycarbonate filter of transwell chambers, almost as intensively as fetal bovine serum. Unexpectedly, Gal-8 also enhanced U87 cell growth. Co-incubation of Gal-8 with lactose, which blocks galectin-glycan interactions, abrogated both effects. Immunoblot showed Gal-8 in conditioned media reflecting its secretion. U87 cells transduced with silencing shRNA in a lentiviral vector expressed and secreted 30-40 % of their normal Gal-8 levels. These cells maintained their migratory capabilities, but decreased their proliferation rate and underwent higher levels of apoptosis, as revealed by flow cytometry analysis of cell cycle, CFSE and activated caspase-3 staining. Proliferation seemed

  7. Rapamycin protects against dominant negative-HNF1A-induced apoptosis in INS-1 cells.

    PubMed

    Farrelly, Angela M; Kilbride, Seán M; Bonner, Caroline; Prehn, Jochen H M; Byrne, Maria M

    2011-11-01

    HNF1A-maturity onset diabetes of the young (HNF1A-MODY) is caused by mutations in Hnf1a gene encoding the transcription factor hepatocyte nuclear factor 1alpha (HNF1A). An increased rate of apoptosis has been associated with the decrease in beta-cell mass that is a hallmark of HNF1A-MODY and other forms of diabetes. In a cellular model of HNF1A-MODY, we have recently shown that signalling through mammalian target of rapamycin (mTOR) is decreased by the overexpression of a dominant-negative mutant of HNF1A (DN-HNF1A). mTOR is a protein kinase which has important roles in cell metabolism and growth, but also in cell survival, where it has been shown to be both protective and detrimental. Here, we show that pharmacological inhibition of mTOR activity with rapamycin protected INS-1 cells against DN-HNF1A-induced apoptosis. Rapamycin also prevented DN-HNF1A-induced activation of AMP-activated protein kinase (AMPK), an intracellular energy sensor which we have previously shown to mediate DN-HNF1A-induced apoptosis. Conversely, activation of mTOR with leucine potentiated DN-HNF1A-induced apoptosis. Gene silencing of raptor (regulatory associated protein of mTOR), a subunit of mTOR complex 1 (mTORC1), also conferred protection on INS-1 cells against DN-HNF1A-induced apoptosis, confirming that mTORC1 mediates the protective effect. The potential relevance of this effect with regards to the clinical use of rapamycin as an immunosuppressant in diabetics post-transplantation is discussed.

  8. Bacopa monnieri-Induced Protective Autophagy Inhibits Benzo[a]pyrene-Mediated Apoptosis.

    PubMed

    Das, Durgesh Nandini; Naik, Prajna Paramita; Nayak, Aditi; Panda, Prashanta Kumar; Mukhopadhyay, Subhadip; Sinha, Niharika; Bhutia, Sujit K

    2016-11-01

    Benzo[a]pyrene (B[a]P) is capable of inducing oxidative stress and cellular injuries leading to cell death and associates with a significant risk of cancer development. Prevention of B[a]P-induced cellular toxicity with herbal compound through regulation of mitochondrial oxidative stress might protect cell death and have therapeutic benefit to human health. In this study, we demonstrated the cytoprotective role of Bacopa monnieri (BM) against B[a]P-induced apoptosis through autophagy induction. Pretreatment with BM rescued the reduction in cell viability in B[a]P-treated human keratinocytes (HaCaT) cells indicating the cytoprotective potential of BM against B[a]P. Moreover, BM was found to inhibit B[a]P-mediated reactive oxygen species (ROS)-induced apoptosis activation in HaCaT cells. Furthermore, BM was found to preserve mitochondrial membrane potential and inhibited release of cytochrome c in B[a]P-treated HaCaT cells. Bacopa monnieri induced protective autophagy; we knocked down Beclin-1, and data showed that BM was unable to protect from B[a]P-induced mitochondrial ROS-mediated apoptosis in Beclin-1-deficient HaCaT cells. Moreover, we established that B[a]P-induced damaged mitochondria were found to colocalize and degraded within autolysosomes in order to protect HaCaT cells from mitochondrial injury. In conclusion, B[a]P-induced apoptosis was rescued by BM treatment and provided cytoprotection through Beclin-1-dependent autophagy activation. Copyright © 2016 John Wiley & Sons, Ltd.

  9. 5,7-Dihydroxyflavone Enhances the Apoptosis-Inducing Potential of TRAIL in Human Tumor Cells via Regulation of Apoptosis-Related Proteins.

    PubMed

    Zhang, Zhenzhen; Ye, Tingmei; Cai, Xueting; Yang, Jie; Lu, Wuguang; Hu, Chunping; Wang, Zhigang; Wang, Xiaoning; Cao, Peng

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising candidate for the treatment of cancer, because it preferentially induces apoptosis in numerous cancer cells with little or no effect on normal cells. 5,7-Dihydroxyflavone is a dietary flavonoid commonly found in many plants. Here we show that the combined treatment with 5,7-dihydroxyflavone and TRAIL at subtoxic concentrations induced strong apoptotic response in human hepatocarcinoma HepG2 cells, acute leukemia Jurkat T cells, and cervical carcinoma HeLa cells. We further investigated the mechanisms by which 5,7-dihydroxyflavone augments TRAIL-induced apoptosis in HepG2 cells. 5,7-Dihydroxyflavone up-regulated the expression of pro-apoptotic protein Bax, attenuated the expression of anti-apoptotic proteins Bcl-2, Mcl-1, and IAPs, and reduced the phosphorylation levels of Akt and STAT3, weakening the anti-apoptotic signals thus facilitating the process of apoptosis. Moreover, 5,7-dihydroxyflavone and TRAIL were well tolerated in mice, and the combination of 5,7-dihydroxyflavone and TRAIL reduced tumor burden in vivo in a HepG2 tumor xenograft model. Interestingly, 5,7-dihydroxyflavone-mediated sensitization to TRAIL-induced cell death was not observed in normal human hepatocytes L-O2. These result