ERIC Educational Resources Information Center
Heimberg, Richard G.
2009-01-01
Moscovitch's (2009) model of social phobia is put forth as an integration and extension of previous cognitive-behavioral models. The author asserts that his approach overcomes a number of shortcomings of previous models and will serve to better guide case conceptualization, treatment planning, and intervention implementation for clients with…
Gendered Perspectives about Water Risks and Policy Strategies: A Tripartite Conceptual Approach
ERIC Educational Resources Information Center
Larson, Kelli L.; Ibes, Dorothy C.; White, Dave D.
2011-01-01
Previous research has examined gendered perspectives on a variety of environmental risks. Mixed results complicate the ability to make generalizations about human-ecological judgments, largely because of the use of inconsistent conceptual and methodological approaches in previous work. Following the tripartite model, we examine differences between…
Thomas, Jonathan V.; Stanton, Gregory P.; Bumgarner, Johnathan R.; Pearson, Daniel K.; Teeple, Andrew; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn
2013-01-01
Several previous studies have been done to compile or collect physical and chemical data, describe the hydrogeologic processes, and develop conceptual and numerical groundwater-flow models of the Edwards-Trinity aquifer in the Trans-Pecos region. Documented methods were used to compile and collect groundwater, surface-water, geochemical, geophysical, and geologic information that subsequently were used to develop this conceptual model.
A conceptual modeling framework for discrete event simulation using hierarchical control structures.
Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D
2015-08-01
Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.
Applying Model Analysis to a Resource-Based Analysis of the Force and Motion Conceptual Evaluation
ERIC Educational Resources Information Center
Smith, Trevor I.; Wittmann, Michael C.; Carter, Tom
2014-01-01
Previously, we analyzed the Force and Motion Conceptual Evaluation in terms of a resources-based model that allows for clustering of questions so as to provide useful information on how students correctly or incorrectly reason about physics. In this paper, we apply model analysis to show that the associated model plots provide more information…
A conceptual modeling framework for discrete event simulation using hierarchical control structures
Furian, N.; O’Sullivan, M.; Walker, C.; Vössner, S.; Neubacher, D.
2015-01-01
Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM’s applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models’ system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example. PMID:26778940
Workplace Commitment: A Conceptual Model Developed from Integrative Review of the Research
ERIC Educational Resources Information Center
Fornes, Sandra L.; Rocco, Tonette S.; Wollard, Karen K.
2008-01-01
This article investigates the previous research and theories of workplace commitment using content analysis and concept mapping. It provides a conceptual model of workplace commitment, integrating the literature on organizational commitment, occupational/career commitment, and individual commitment. The significance of this article lies in the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Keating; W.Statham
2004-02-12
The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the groundmore » surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model.« less
Models and theories of prescribing decisions: A review and suggested a new model.
Murshid, Mohsen Ali; Mohaidin, Zurina
2017-01-01
To date, research on the prescribing decisions of physician lacks sound theoretical foundations. In fact, drug prescribing by doctors is a complex phenomenon influenced by various factors. Most of the existing studies in the area of drug prescription explain the process of decision-making by physicians via the exploratory approach rather than theoretical. Therefore, this review is an attempt to suggest a value conceptual model that explains the theoretical linkages existing between marketing efforts, patient and pharmacist and physician decision to prescribe the drugs. The paper follows an inclusive review approach and applies the previous theoretical models of prescribing behaviour to identify the relational factors. More specifically, the report identifies and uses several valuable perspectives such as the 'persuasion theory - elaboration likelihood model', the stimuli-response marketing model', the 'agency theory', the theory of planned behaviour,' and 'social power theory,' in developing an innovative conceptual paradigm. Based on the combination of existing methods and previous models, this paper suggests a new conceptual model of the physician decision-making process. This unique model has the potential for use in further research.
Fracture control of ground water flow and water chemistry in a rock aquitard.
Eaton, Timothy T; Anderson, Mary P; Bradbury, Kenneth R
2007-01-01
There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/S(s)) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies.
Fracture control of ground water flow and water chemistry in a rock aquitard
Eaton, T.T.; Anderson, M.P.; Bradbury, K.R.
2007-01-01
There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/Ss) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies. ?? 2007 National Ground Water Association.
Gallistel, C R; Gibbon, J
2000-04-01
The authors draw together and develop previous timing models for a broad range of conditioning phenomena to reveal their common conceptual foundations: First, conditioning depends on the learning of the temporal intervals between events and the reciprocals of these intervals, the rates of event occurrence. Second, remembered intervals and rates translate into observed behavior through decision processes whose structure is adapted to noise in the decision variables. The noise and the uncertainties consequent on it have both subjective and objective origins. A third feature of these models is their timescale invariance, which the authors argue is a very important property evident in the available experimental data. This conceptual framework is similar to the psychophysical conceptual framework in which contemporary models of sensory processing are rooted. The authors contrast it with the associative conceptual framework.
Conceptualizing the Essence of Presence in E-Learning through Digital Dasein
ERIC Educational Resources Information Center
Haj-Bolouri, Amir; Flensburg, Per
2017-01-01
Previous research on e-learning elucidates the notion of presence and learning. Scholars have conceptualized different concepts and theories based on the idea of distance education and learning. However, the "experience" of learning has been overshadowed with emphasizes on pedagogical models for social presence, theories on how to…
Models and theories of prescribing decisions: A review and suggested a new model
Mohaidin, Zurina
2017-01-01
To date, research on the prescribing decisions of physician lacks sound theoretical foundations. In fact, drug prescribing by doctors is a complex phenomenon influenced by various factors. Most of the existing studies in the area of drug prescription explain the process of decision-making by physicians via the exploratory approach rather than theoretical. Therefore, this review is an attempt to suggest a value conceptual model that explains the theoretical linkages existing between marketing efforts, patient and pharmacist and physician decision to prescribe the drugs. The paper follows an inclusive review approach and applies the previous theoretical models of prescribing behaviour to identify the relational factors. More specifically, the report identifies and uses several valuable perspectives such as the ‘persuasion theory - elaboration likelihood model’, the stimuli–response marketing model’, the ‘agency theory’, the theory of planned behaviour,’ and ‘social power theory,’ in developing an innovative conceptual paradigm. Based on the combination of existing methods and previous models, this paper suggests a new conceptual model of the physician decision-making process. This unique model has the potential for use in further research. PMID:28690701
NASA Astrophysics Data System (ADS)
Posner, A. J.
2017-12-01
The Middle Rio Grande River (MRG) traverses New Mexico from Cochiti to Elephant Butte reservoirs. Since the 1100s, cultivating and inhabiting the valley of this alluvial river has required various river training works. The mid-20th century saw a concerted effort to tame the river through channelization, Jetty Jacks, and dam construction. A challenge for river managers is to better understand the interactions between a river training works, dam construction, and the geomorphic adjustments of a desert river driven by spring snowmelt and summer thunderstorms carrying water and large sediment inputs from upstream and ephemeral tributaries. Due to its importance to the region, a vast wealth of data exists for conditions along the MRG. The investigation presented herein builds upon previous efforts by combining hydraulic model results, digitized planforms, and stream gage records in various statistical and conceptual models in order to test our understanding of this complex system. Spatially continuous variables were clipped by a set of river cross section data that is collected at decadal intervals since the early 1960s, creating a spatially homogenous database upon which various statistical testing was implemented. Conceptual models relate forcing variables and response variables to estimate river planform changes. The developed database, represents a unique opportunity to quantify and test geomorphic conceptual models in the unique characteristics of the MRG. The results of this investigation provides a spatially distributed characterization of planform variable changes, permitting managers to predict planform at a much higher resolution than previously available, and a better understanding of the relationship between flow regime and planform changes such as changes to longitudinal slope, sinuosity, and width. Lastly, data analysis and model interpretation led to the development of a new conceptual model for the impact of ephemeral tributaries in alluvial rivers.
NASA Astrophysics Data System (ADS)
Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao
2016-09-01
Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The previous hypothesis that regional groundwater flow from the piedmont groundwater recharge zone predominantly discharges at the coastline may therefore be false. A more reliable alternative might be to conceptualize deep groundwater below the coastal plains a hydrodynamically stagnant zone, responding gradually to landscape and hydrological change on geologic timescales. This study brings a new and original understanding of the groundwater flow system in an important regional basin, in the context of its geometry and evolution over geological timescales. There are important implications for the sustainability of the ongoing high rates of groundwater extraction in the NCB.
ERIC Educational Resources Information Center
Klausmeier, Herbert J.; And Others
The Conceptual Learning and Development (CLD) Model suggests four successive levels of concept learning: (1) concrete--recognizing an object which has been encountered previously; (2) identity--recognizing a known object when it appears in a different spatial, time, or sensory perspective; (3) classificatory--generalizing that two items are alike…
ERIC Educational Resources Information Center
Michel, Rebecca E.
2012-01-01
Occupational satisfaction is the extent to which individuals are fulfilled by their employment. The Conceptual Framework of Faculty Job Satisfaction (Hagedorn, 2000) describes how aspects of work impact occupational satisfaction, yet researchers have not previously used this model with counselor educators. This study investigated the applicability…
Conceptual Variation or Incoherence? Textbook Discourse on Genes in Six Countries
ERIC Educational Resources Information Center
Gericke, Niklas M.; Hagberg, Mariana; dos Santos, Vanessa Carvalho; Joaquim, Leyla Mariane; El-Hani, Charbel N.
2014-01-01
The aim of this paper is to investigate in a systematic and comparative way previous results of independent studies on the treatment of genes and gene function in high school textbooks from six different countries. We analyze how the conceptual variation within the scientific domain of Genetics regarding gene function models and gene concepts is…
Met or matched expectations: what accounts for a successful back pain consultation in primary care?
Georgy, Ehab E.; Carr, Eloise C.J.; Breen, Alan C.
2011-01-01
Abstract Background Patients’ as well as doctors’ expectations might be key elements for improving the quality of health care; however, previous conceptual and theoretical frameworks related to expectations often overlook such complex and complementary relationship between patients’ and doctors’ expectations. The concept of ‘matched patient–doctor expectations’ is not properly investigated, and there is lack of literature exploring such aspect of the consultation. Aim The paper presents a preliminary conceptual model for the relationship between patients’ and doctors’ expectations with specific reference to back pain management in primary care. Methods The methods employed in this study are integrative literature review, examination of previous theoretical frameworks, identification of conceptual issues in existing literature, and synthesis and development of a preliminary pragmatic conceptual framework. Outcome A simple preliminary model explaining the formation of expectations in relation to specific antecedents and consequences was developed; the model incorporates several stages and filters (influencing factors, underlying reactions, judgement, formed reactions, outcome and significance) to explain the development and anticipated influence of expectations on the consultation outcome. Conclusion The newly developed model takes into account several important dynamics that might be key elements for more successful back pain consultation in primary care, mainly the importance of matching patients’ and doctors’ expectations as well as the importance of addressing unmet expectations. PMID:21679288
Looking at the ICF and human communication through the lens of classification theory.
Walsh, Regina
2011-08-01
This paper explores the insights that classification theory can provide about the application of the International Classification of Functioning, Disability and Health (ICF) to communication. It first considers the relationship between conceptual models and classification systems, highlighting that classification systems in speech-language pathology (SLP) have not historically been based on conceptual models of human communication. It then overviews the key concepts and criteria of classification theory. Applying classification theory to the ICF and communication raises a number of issues, some previously highlighted through clinical application. Six focus questions from classification theory are used to explore these issues, and to propose the creation of an ICF-related conceptual model of communicating for the field of communication disability, which would address some of the issues raised. Developing a conceptual model of communication for SLP purposes closely articulated with the ICF would foster productive intra-professional discourse, while at the same time allow the profession to continue to use the ICF for purposes in inter-disciplinary discourse. The paper concludes by suggesting the insights of classification theory can assist professionals to apply the ICF to communication with the necessary rigour, and to work further in developing a conceptual model of human communication.
Women’s Sexuality: Behaviors, Responses, and Individual Differences
Andersen, Barbara L.; Cyranowski, Jill M.
2009-01-01
Classic and contemporary approaches to the assessment of female sexuality are discussed. General approaches, assessment strategies, and models of female sexuality are organized within the conceptual domains of sexual behaviors, sexual responses (desire, excitement, orgasm, and resolution), and individual differences, including general and sex-specific personality models. Where applicable, important trends and relationships are highlighted in the literature with both existing reports and previously unpublished data. The present conceptual overview highlights areas in sexual assessment and model building that are in need of further research and theoretical clarification. PMID:8543712
A three-dimensional conceptual model of the water quality distribution in the Albuquerque Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, D.
1995-12-31
It is possible to construct a conceptual model of the Albuquerque Basin`s geochemical characteristics and water quality distribution based on (1) the Hawley and Haase hydrogeological model, (2) water analyses from City of Albuquerque water wells, and (3) sound geological and chemical principles. Previous studies have characterized the water quality and geochemistry of the Albuquerque Basin from a two-dimensional perspective; however, to date, there has been no examination of the variation of water quality with depth within the Albuquerque Basin. The primary focus of this paper is to describe a first attempt at developing a conceptual understanding of the three-dimensionalmore » water quality distribution of the Albuquerque Basin based on the above three building blocks.« less
A VARIABLE REACTIVITY MODEL FOR ION BINDING TO ENVIRONMENTAL SORBENTS
The conceptual and mathematical basis for a new general-composite modeling approach for ion binding to environmental sorbents is presented. The work extends the Simple Metal Sorption (SiMS) model previously presented for metal and proton binding to humic substances. A surface com...
Klijs, Bart; Kibele, Eva U B; Ellwardt, Lea; Zuidersma, Marij; Stolk, Ronald P; Wittek, Rafael P M; Mendes de Leon, Carlos M; Smidt, Nynke
2016-08-11
Previous studies are inconclusive on whether poor socioeconomic conditions in the neighborhood are associated with major depressive disorder. Furthermore, conceptual models that relate neighborhood conditions to depressive disorder have not been evaluated using empirical data. In this study, we investigated whether neighborhood income is associated with major depressive episodes. We evaluated three conceptual models. Conceptual model 1: The association between neighborhood income and major depressive episodes is explained by diseases, lifestyle factors, stress and social participation. Conceptual model 2: A low individual income relative to the mean income in the neighborhood is associated with major depressive episodes. Conceptual model 3: A high income of the neighborhood buffers the effect of a low individual income on major depressive disorder. We used adult baseline data from the LifeLines Cohort Study (N = 71,058) linked with data on the participants' neighborhoods from Statistics Netherlands. The current presence of a major depressive episode was assessed using the MINI neuropsychiatric interview. The association between neighborhood income and major depressive episodes was assessed using a mixed effect logistic regression model adjusted for age, sex, marital status, education and individual (equalized) income. This regression model was sequentially adjusted for lifestyle factors, chronic diseases, stress, and social participation to evaluate conceptual model 1. To evaluate conceptual models 2 and 3, an interaction term for neighborhood income*individual income was included. Multivariate regression analysis showed that a low neighborhood income is associated with major depressive episodes (OR (95 % CI): 0.82 (0.73;0.93)). Adjustment for diseases, lifestyle factors, stress, and social participation attenuated this association (ORs (95 % CI): 0.90 (0.79;1.01)). Low individual income was also associated with major depressive episodes (OR (95 % CI): 0.72 (0.68;0.76)). The interaction of individual income*neighborhood income on major depressive episodes was not significant (p = 0.173). Living in a low-income neighborhood is associated with major depressive episodes. Our results suggest that this association is partly explained by chronic diseases, lifestyle factors, stress and poor social participation, and thereby partly confirm conceptual model 1. Our results do not support conceptual model 2 and 3.
Dynamics in Higher Education Politics: A Theoretical Model
ERIC Educational Resources Information Center
Kauko, Jaakko
2013-01-01
This article presents a model for analysing dynamics in higher education politics (DHEP). Theoretically the model draws on the conceptual history of political contingency, agenda-setting theories and previous research on higher education dynamics. According to the model, socio-historical complexity can best be analysed along two dimensions: the…
Cheah, Charissa; Yu, Jing; Hart, Craig; Sun, Shuyan; Olsen, Joseph
2015-05-01
Despite the theoretical conceptualization of parental psychological control as a multidimensional construct, the majority of previous studies have examined psychological control as a unidimensional scale. Moreover, the conceptualization of shaming and its associations with love withdrawal and guilt induction are unclear. The current study aimed to fill these gaps by evaluating the latent factor structure underlying 18 items from Olsen et al. (2002) that were conceptually relevant to love withdrawal, guilt induction, and shaming practices in a sample of 169 mothers of Chinese-American preschoolers. A multidimensional three-factor model and bi-factor model were specified based on our formulated operational definitions for the three dimensions of psychological control. Both models were found to be superior to the unidimensional model. In addition, results from the bi-factor model and an additional second-order factor model indicated that psychological control is essentially empirically isomorphic with guilt induction. Although love withdrawal and shaming factors were also fairly strong indicators of psychological control, each exhibited important additional unique variability and mutual distinctiveness. Implications for the conceptualization of love withdrawal, guilt induction, and shaming as well as directions for future studies are discussed.
Cheah, Charissa; Yu, Jing; Hart, Craig; Sun, Shuyan; Olsen, Joseph
2014-01-01
Despite the theoretical conceptualization of parental psychological control as a multidimensional construct, the majority of previous studies have examined psychological control as a unidimensional scale. Moreover, the conceptualization of shaming and its associations with love withdrawal and guilt induction are unclear. The current study aimed to fill these gaps by evaluating the latent factor structure underlying 18 items from Olsen et al. (2002) that were conceptually relevant to love withdrawal, guilt induction, and shaming practices in a sample of 169 mothers of Chinese-American preschoolers. A multidimensional three-factor model and bi-factor model were specified based on our formulated operational definitions for the three dimensions of psychological control. Both models were found to be superior to the unidimensional model. In addition, results from the bi-factor model and an additional second-order factor model indicated that psychological control is essentially empirically isomorphic with guilt induction. Although love withdrawal and shaming factors were also fairly strong indicators of psychological control, each exhibited important additional unique variability and mutual distinctiveness. Implications for the conceptualization of love withdrawal, guilt induction, and shaming as well as directions for future studies are discussed. PMID:26052168
Conceptual Variation or Incoherence? Textbook Discourse on Genes in Six Countries
NASA Astrophysics Data System (ADS)
Gericke, Niklas M.; Hagberg, Mariana; dos Santos, Vanessa Carvalho; Joaquim, Leyla Mariane; El-Hani, Charbel N.
2014-02-01
The aim of this paper is to investigate in a systematic and comparative way previous results of independent studies on the treatment of genes and gene function in high school textbooks from six different countries. We analyze how the conceptual variation within the scientific domain of Genetics regarding gene function models and gene concepts is transformed via the didactic transposition into school science textbooks. The results indicate that a common textbook discourse on genes and their function exist in textbooks from the different countries. The structure of science as represented by conceptual variation and the use of multiple models was present in all the textbooks. However, the existence of conceptual variation and multiple models is implicit in these textbooks, i.e., the phenomenon of conceptual variation and multiple models are not addressed explicitly, nor its consequences and, thus, it ends up introducing conceptual incoherence about the gene concept and its function within the textbooks. We conclude that within the found textbook-discourse ontological aspects of the academic disciplines of genetics and molecular biology were retained, but without their epistemological underpinnings; these are lost in the didactic transposition. These results are of interest since students might have problems reconstructing the correct scientific understanding from the transformed school science knowledge as depicted within the high school textbooks. Implications for textbook writing as well as teaching are discussed in the paper.
The ACTIVE conceptual framework as a structural equation model.
Gross, Alden L; Payne, Brennan R; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M; Farias, Sarah; Giovannetti, Tania; Ip, Edward H; Marsiske, Michael; Rebok, George W; Schaie, K Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N
2018-01-01
Background/Study Context: Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA < .05; all CFI > .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p < .005). Empirical data confirm the hypothesized ACTIVE conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be different from those with the greatest chance of transfer to real-world activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Harrington
2004-10-25
The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through themore » Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to the TSPA, which uses the ASHPLUME software described and used in this model report. Thus, ASHPLUME software inputs are inputs to this model report for ASHPLUME runs in this model report. However, ASHPLUME software inputs are outputs of this model report for ASHPLUME runs by TSPA.« less
Validating a Technology Enhanced Student-Centered Learning Model
ERIC Educational Resources Information Center
Kang, Myunghee; Hahn, Jungsun; Chung, Warren
2015-01-01
The Technology Enhanced Student Centered Learning (TESCL) Model in this study presents the core factors that ensure the quality of learning in a technology-supported environment. Although the model was conceptually constructed using a student-centered learning framework and drawing upon previous studies, it should be validated through real-world…
Mathematical Rigor vs. Conceptual Change: Some Early Results
NASA Astrophysics Data System (ADS)
Alexander, W. R.
2003-05-01
Results from two different pedagogical approaches to teaching introductory astronomy at the college level will be presented. The first of these approaches is a descriptive, conceptually based approach that emphasizes conceptual change. This descriptive class is typically an elective for non-science majors. The other approach is a mathematically rigorous treatment that emphasizes problem solving and is designed to prepare students for further study in astronomy. The mathematically rigorous class is typically taken by science majors. It also fulfills an elective science requirement for these science majors. The Astronomy Diagnostic Test version 2 (ADT 2.0) was used as an assessment instrument since the validity and reliability have been investigated by previous researchers. The ADT 2.0 was administered as both a pre-test and post-test to both groups. Initial results show no significant difference between the two groups in the post-test. However, there is a slightly greater improvement for the descriptive class between the pre and post testing compared to the mathematically rigorous course. There was great care to account for variables. These variables included: selection of text, class format as well as instructor differences. Results indicate that the mathematically rigorous model, doesn't improve conceptual understanding any better than the conceptual change model. Additional results indicate that there is a similar gender bias in favor of males that has been measured by previous investigators. This research has been funded by the College of Science and Mathematics at James Madison University.
Hervatis, Vasilis; Loe, Alan; Barman, Linda; O'Donoghue, John; Zary, Nabil
2015-10-06
Preparing the future health care professional workforce in a changing world is a significant undertaking. Educators and other decision makers look to evidence-based knowledge to improve quality of education. Analytics, the use of data to generate insights and support decisions, have been applied successfully across numerous application domains. Health care professional education is one area where great potential is yet to be realized. Previous research of Academic and Learning analytics has mainly focused on technical issues. The focus of this study relates to its practical implementation in the setting of health care education. The aim of this study is to create a conceptual model for a deeper understanding of the synthesizing process, and transforming data into information to support educators' decision making. A deductive case study approach was applied to develop the conceptual model. The analytics loop works both in theory and in practice. The conceptual model encompasses the underlying data, the quality indicators, and decision support for educators. The model illustrates how a theory can be applied to a traditional data-driven analytics approach, and alongside the context- or need-driven analytics approach.
Loe, Alan; Barman, Linda; O'Donoghue, John; Zary, Nabil
2015-01-01
Background Preparing the future health care professional workforce in a changing world is a significant undertaking. Educators and other decision makers look to evidence-based knowledge to improve quality of education. Analytics, the use of data to generate insights and support decisions, have been applied successfully across numerous application domains. Health care professional education is one area where great potential is yet to be realized. Previous research of Academic and Learning analytics has mainly focused on technical issues. The focus of this study relates to its practical implementation in the setting of health care education. Objective The aim of this study is to create a conceptual model for a deeper understanding of the synthesizing process, and transforming data into information to support educators’ decision making. Methods A deductive case study approach was applied to develop the conceptual model. Results The analytics loop works both in theory and in practice. The conceptual model encompasses the underlying data, the quality indicators, and decision support for educators. Conclusions The model illustrates how a theory can be applied to a traditional data-driven analytics approach, and alongside the context- or need-driven analytics approach. PMID:27731840
Conceptual fluency increases recollection: behavioral and electrophysiological evidence
Wang, Wei; Li, Bingbing; Gao, Chuanji; Xu, Huifang; Guo, Chunyan
2015-01-01
It is widely established that fluency can contribute to recognition memory. Previous studies have found that enhanced fluency increases familiarity, but not recollection. The present study was motivated by a previous finding that conceptual priming affected recollection. We used event-related potentials to investigate the electrophysiological correlates of these effects with conceptually related two-character Chinese words. We found that previous conceptual priming effects on conceptual fluency only increased the incidence of recollection responses. We also found that enhanced conceptual fluency was associated with N400 attenuation, which was also correlated with the behavioral indicator of recollection. These results suggest that the N400 effect might be related to the impact of conceptual fluency on recollection recognition. These study findings provide further evidence for the relationship between fluency and recollection. PMID:26175678
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.
2001-08-29
The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures andmore » parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.« less
Conceptual Model of Military Women's Life Events and Well-Being.
Segal, Mady W; Lane, Michelle D
2016-01-01
This article presents a life course conceptual model and applies it to the study of military women's experiences and the effect of those life events on their well-being. Of special concern are the effects on women serving in direct combat jobs, as well as in any specialties operating in a hostile environment. Drawing on previous research, the model considers and gives examples of how a woman's well-being is affected by events in her military career, her family life, and other areas of life. The article emphasizes the effects of intersections of multiple events, as well as how the effects on well-being are mediated or moderated by other factors, including individual characteristics, military contextual variables, and resources. The analysis also includes the impacts of preventative and treatment interventions, as well as of policies, programs, and practices. Based on the model and on previous research, questions for future research are posed. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Eating disorders and non-suicidal self-injury: Structural equation modelling of a conceptual model.
Vieira, Ana Isabel; Machado, Bárbara C; Moreira, Célia S; Machado, Paulo P P; Brandão, Isabel; Roma-Torres, António; Gonçalves, Sónia
2018-06-14
Evidence suggests several risk factors for both eating disorders (ED) and nonsuicidal self-injury (NSSI), but the relationships between these factors are not well understood. Considering our previous work and a conceptual model, this cross-sectional study aimed to assess the relationships among distal and proximal factors for the presence of NSSI in ED. We assessed 245 ED patients with the Oxford Risk Factor Interview for ED. Structural equation modelling revealed that both distal and proximal factors were related to the presence of NSSI in ED, disclosing a mediating role of the proximal factors. Stressful life events mediated the relationship between childhood sexual abuse, peer aggression, and both ED and NSSI. Childhood physical abuse was related to ED and NSSI via substance use, negative self-evaluation, and suicide attempts. Findings provided support for the conceptual model and highlight the possible mechanisms by which psychosocial factors may lead to ED and NSSI. Copyright © 2018 John Wiley & Sons, Ltd and Eating Disorders Association.
Macquarrie, K T B; Mayer, K U; Jin, B; Spiessl, S M
2010-03-01
Redox evolution in sparsely fractured crystalline rocks is a key, and largely unresolved, issue when assessing the geochemical suitability of deep geological repositories for nuclear waste. Redox zonation created by the influx of oxygenated waters has previously been simulated using reactive transport models that have incorporated a variety of processes, resulting in predictions for the depth of oxygen penetration that may vary greatly. An assessment and direct comparison of the various underlying conceptual models are therefore needed. In this work a reactive transport model that considers multiple processes in an integrated manner is used to investigate the ingress of oxygen for both single fracture and fracture zone scenarios. It is shown that the depth of dissolved oxygen migration is greatly influenced by the a priori assumptions that are made in the conceptual models. For example, the ability of oxygen to access and react with minerals in the rock matrix may be of paramount importance for single fracture conceptual models. For fracture zone systems, the abundance and reactivity of minerals within the fractures and thin matrix slabs between the fractures appear to provide key controls on O(2) attenuation. The findings point to the need for improved understanding of the coupling between the key transport-reaction feedbacks to determine which conceptual models are most suitable and to provide guidance for which parameters should be targeted in field and laboratory investigations. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jansen, Peter A.; Watter, Scott
2012-03-01
Connectionist language modelling typically has difficulty with syntactic systematicity, or the ability to generalise language learning to untrained sentences. This work develops an unsupervised connectionist model of infant grammar learning. Following the semantic boostrapping hypothesis, the network distils word category using a developmentally plausible infant-scale database of grounded sensorimotor conceptual representations, as well as a biologically plausible semantic co-occurrence activation function. The network then uses this knowledge to acquire an early benchmark clausal grammar using correlational learning, and further acquires separate conceptual and grammatical category representations. The network displays strongly systematic behaviour indicative of the general acquisition of the combinatorial systematicity present in the grounded infant-scale language stream, outperforms previous contemporary models that contain primarily noun and verb word categories, and successfully generalises broadly to novel untrained sensorimotor grounded sentences composed of unfamiliar nouns and verbs. Limitations as well as implications to later grammar learning are discussed.
School Management and Moral Literacy: A Conceptual Analysis of the Model
ERIC Educational Resources Information Center
Sagnak, Mesut
2012-01-01
The aim of this study is to analyze the moral literacy model developed by Tuana; discuss the superiorities and limitations, and constitute the theoretical conditions of a new model by utilizing previous researches and theories asserted about this subject. The model has stated that moral literacy is composed of three main components as ethics…
Validating the Mexican American Intergenerational Caregiving Model
ERIC Educational Resources Information Center
Escandon, Socorro
2011-01-01
The purpose of this study was to substantiate and further develop a previously formulated conceptual model of Role Acceptance in Mexican American family caregivers by exploring the theoretical strengths of the model. The sample consisted of women older than 21 years of age who self-identified as Hispanic, were related through consanguinal or…
Models of Sexual and Relational Orientation: A Critical Review and Synthesis
ERIC Educational Resources Information Center
Moe, Jeffry L.; Reicherzer, Stacee; Dupuy, Paula J.
2011-01-01
Many frameworks exist to explain and describe the phenomenon of same-sex sexuality as it applies to human development. This conceptual article provides a critical overview and synthesis of previous models to serve as a theoretical bridge for the suggested multiple continua model of sexual and relational orientations. Recommendations for how…
The Persistence of the Gender Gap in Introductory Physics
NASA Astrophysics Data System (ADS)
Kost, Lauren E.; Pollock, Steven J.; Finkelstein, Noah D.
2008-10-01
We previously showed[l] that despite teaching with interactive engagement techniques, the gap in performance between males and females on conceptual learning surveys persisted from pre- to posttest, at our institution. Such findings were counter to previously published work[2]. Our current work analyzes factors that may influence the observed gender gap in our courses. Posttest conceptual assessment data are modeled using both multiple regression and logistic regression analyses to estimate the gender gap in posttest scores after controlling for background factors that vary by gender. We find that at our institution the gender gap persists in interactive physics classes, but is largely due to differences in physics and math preparation and incoming attitudes and beliefs.
Difficulties associated with predicting forage intake by grazing beef cows
USDA-ARS?s Scientific Manuscript database
The current National Research Council (NRC) model is based on a single equation that relates dry matter intake (DMI) to metabolic size and net energy density of the diet offered and was a significant improvement over previous models. However, observed DMI by grazing animals can be conceptualized by...
Cognitive-Affective Predictors of Women's Readiness to End Domestic Violence Relationships
ERIC Educational Resources Information Center
Shurman, Lauren A.; Rodriguez, Christina M.
2006-01-01
A model of women's readiness to terminate an abusive relationship was examined, using cognitive and emotional factors to predict readiness to change as conceptualized in the transtheoretical model. Factors previously identified in the domestic violence literature were selected to represent cognitive predictors (attribution and attachment style)…
De Clercq, Etienne
2008-09-01
It is widely accepted that the development of electronic patient records, or even of a common electronic patient record, is one possible way to improve cooperation and data communication between nurses and physicians. Yet, little has been done so far to develop a common conceptual model for both medical and nursing patient records, which is a first challenge that should be met to set up a common electronic patient record. In this paper, we describe a problem-oriented conceptual model and we show how it may suit both nursing and medical perspectives in a hospital setting. We started from existing nursing theory and from an initial model previously set up for primary care. In a hospital pilot site, a multi-disciplinary team refined this model using one large and complex clinical case (retrospective study) and nine ongoing cases (prospective study). An internal validation was performed through hospital-wide multi-professional interviews and through discussions around a graphical user interface prototype. To assess the consistency of the model, a computer engineer specified it. Finally, a Belgian expert working group performed an external assessment of the model. As a basis for a common patient record we propose a simple problem-oriented conceptual model with two levels of meta-information. The model is mapped with current nursing theories and it includes the following concepts: "health care element", "health approach", "health agent", "contact", "subcontact" and "service". These concepts, their interrelationships and some practical rules for using the model are illustrated in this paper. Our results are compatible with ongoing standardization work at the Belgian and European levels. Our conceptual model is potentially a foundation for a multi-professional electronic patient record that is problem-oriented and therefore patient-centred.
The ACTIVE conceptual framework as a structural equation model
Gross, Alden L.; Payne, Brennan R.; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M.; Farias, Sarah; Giovannetti, Tania; Ip, Edward H.; Marsiske, Michael; Rebok, George W.; Schaie, K. Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N.
2018-01-01
Background/Study Context Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. Methods The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Results Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA < .05; all CFI > .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p < .005). Conclusions Empirical data confirm the hypothesized ACTIVE conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be different from those with the greatest chance of transfer to real-world activities. PMID:29303475
Augmenting Conceptual Design Trajectory Tradespace Exploration with Graph Theory
NASA Technical Reports Server (NTRS)
Dees, Patrick D.; Zwack, Mathew R.; Steffens, Michael; Edwards, Stephen
2016-01-01
Within conceptual design changes occur rapidly due to a combination of uncertainty and shifting requirements. To stay relevant in this fluid time, trade studies must also be performed rapidly. In order to drive down analysis time while improving the information gained by these studies, surrogate models can be created to represent the complex output of a tool or tools within a specified tradespace. In order to create this model however, a large amount of data must be collected in a short amount of time. By this method, the historical approach of relying on subject matter experts to generate the data required is schedule infeasible. However, by implementing automation and distributed analysis the required data can be generated in a fraction of the time. Previous work focused on setting up a tool called multiPOST capable of orchestrating many simultaneous runs of an analysis tool assessing these automated analyses utilizing heuristics gleaned from the best practices of current subject matter experts. In this update to the previous work, elements of graph theory are included to further drive down analysis time by leveraging data previously gathered. It is shown to outperform the previous method in both time required, and the quantity and quality of data produced.
The Development and Application of the Coping with Bullying Scale for Children
ERIC Educational Resources Information Center
Parris, Leandra N.
2013-01-01
The Multidimensional Model for Coping with Bullying (MMCB; Parris, in development) was conceptualized based on a literature review of coping with bullying and by combining relevant aspects of previous models. Strategies were described based on their focus (problem-focused vs. emotion-focused) and orientation (avoidance, approach-self,…
Conceptualizations of Personality Disorders with the Five Factor Model-Count and Empathy Traits
ERIC Educational Resources Information Center
Kajonius, Petri J.; Dåderman, Anna M.
2017-01-01
Previous research has long advocated that emotional and behavioral disorders are related to general personality traits, such as the Five Factor Model (FFM). The addition of section III in the latest "Diagnostic and Statistical Manual of Mental Disorders" (DSM) recommends that extremity in personality traits together with maladaptive…
Integrating O/S models during conceptual design, part 1
NASA Technical Reports Server (NTRS)
Ebeling, Charles E.
1994-01-01
The University of Dayton is pleased to submit this report to the National Aeronautics and Space Administration (NASA), Langley Research Center, which integrates a set of models for determining operational capabilities and support requirements during the conceptual design of proposed space systems. This research provides for the integration of the reliability and maintainability (R&M) model, both new and existing simulation models, and existing operations and support (O&S) costing equations in arriving at a complete analysis methodology. Details concerning the R&M model and the O&S costing model may be found in previous reports accomplished under this grant (NASA Research Grant NAG1-1327). In the process of developing this comprehensive analysis approach, significant enhancements were made to the R&M model, updates to the O&S costing model were accomplished, and a new simulation model developed. This is the 1st part of a 3 part technical report.
Kim, Junglyun; Ahn, Hyochol; Lyon, Debra E; Stechmiller, Joyce
2016-01-08
Although pressure ulcers are a prevalent condition, pain associated with pressure ulcers is not fully understood. Indeed, previous studies do not shed light on the association between pressure ulcer stages and the experience of pain. Especially, pain characteristics of suspected deep tissue injury, which is a new category that was recently added by the National Pressure Ulcer Advisory Panel, are yet unknown. This is concerning because the incidence of pressure ulcers in hospitalized patients has increased exponentially over the last two decades, and health care providers are struggling to ensure providing adequate care. Thus, in order to facilitate the development of effective interventions, this paper presents a conceptual framework to explore pressure ulcer pain in hospitalized patients. The concepts were derived from a biopsychosocial model of pain, and the relationships among each concept were identified through a literature review. Major propositions are presented based on the proposed conceptual framework, which integrates previous research on pressure ulcer pain, to ultimately improve understanding of pain in hospitalized patients with pressure ulcers.
ERIC Educational Resources Information Center
Conley, Sharon; You, Sukkyung
2014-01-01
A previous study examined role stress in relation to work outcomes; in this study, we added job structuring antecedents to a model of role stress and examined the moderating effects of locus of control. Structural equation modeling was used to assess the plausibility of our conceptual model, which specified hypothesized linkages among teachers'…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul L. Wichlacz
2003-09-01
This source-term summary document is intended to describe the current understanding of contaminant source terms and the conceptual model for potential source-term release to the environment at the Idaho National Engineering and Environmental Laboratory (INEEL), as presented in published INEEL reports. The document presents a generalized conceptual model of the sources of contamination and describes the general categories of source terms, primary waste forms, and factors that affect the release of contaminants from the waste form into the vadose zone and Snake River Plain Aquifer. Where the information has previously been published and is readily available, summaries of the inventorymore » of contaminants are also included. Uncertainties that affect the estimation of the source term release are also discussed where they have been identified by the Source Term Technical Advisory Group. Areas in which additional information are needed (i.e., research needs) are also identified.« less
Advances in cognitive theory and therapy: the generic cognitive model.
Beck, Aaron T; Haigh, Emily A P
2014-01-01
For over 50 years, Beck's cognitive model has provided an evidence-based way to conceptualize and treat psychological disorders. The generic cognitive model represents a set of common principles that can be applied across the spectrum of psychological disorders. The updated theoretical model provides a framework for addressing significant questions regarding the phenomenology of disorders not explained in previous iterations of the original model. New additions to the theory include continuity of adaptive and maladaptive function, dual information processing, energizing of schemas, and attentional focus. The model includes a theory of modes, an organization of schemas relevant to expectancies, self-evaluations, rules, and memories. A description of the new theoretical model is followed by a presentation of the corresponding applied model, which provides a template for conceptualizing a specific disorder and formulating a case. The focus on beliefs differentiates disorders and provides a target for treatment. A variety of interventions are described.
Williamson, S. C.; Bartholow, J. M.; Stalnaker, C. B.
1993-01-01
A conceptual model has been developed to test river regulation concepts by linking physical habitat and water temperature with salmonid population and production in cold water streams. Work is in progress to examine numerous questions as part of flow evaluation and habitat restoration programmes in the Trinity River of California and elsewhere. For instance, how much change in pre-smolt chinook salmon (Oncorhynchus tshawytscha) production in the Trinity River would result from a different annual instream allocation (i.e. up or down from 271 × 106 m3released in the late 1980s) and how much change in pre-smolt production would result from a different release pattern (i.e. different from the 8.5 m3 s−1 year-round release). The conceptual model is being used to: design, integrate and improve young-of-year population data collection efforts; test hypotheses that physical habitat significantly influences movement, growth and mortality of salmonid fishes; and analyse the relative severity of limiting factors during each life stage. The conceptual model, in conjunction with previously developed tools in the Instream Flow Incremental Methodology, should provide the means to more effectively manage a fishery resource below a regulated reservoir and to provide positive feedback to planning of annual reservoir operations.
Sturgeon, John A; Zautra, Alex J
2013-03-01
Pain is a complex construct that contributes to profound physical and psychological dysfunction, particularly in individuals coping with chronic pain. The current paper builds upon previous research, describes a balanced conceptual model that integrates aspects of both psychological vulnerability and resilience to pain, and reviews protective and exacerbating psychosocial factors to the process of adaptation to chronic pain, including pain catastrophizing, pain acceptance, and positive psychological resources predictive of enhanced pain coping. The current paper identifies future directions for research that will further enrich the understanding of pain adaptation and espouses an approach that will enhance the ecological validity of psychological pain coping models, including introduction of advanced statistical and conceptual models that integrate behavioral, cognitive, information processing, motivational and affective theories of pain.
Assessing Students' Attitudes In A College Physics Course In Mexico
NASA Astrophysics Data System (ADS)
de la Garza, Jorge; Alarcon, Hugo
2010-10-01
Considering the benefits of modeling instruction in improving conceptual learning while students work more like scientists, an implementation was made in an introductory Physics course in a Mexican University. Recently Brewe, Kramer and O'Brien have observed positive attitudinal shifts using modeling instruction in a course with a reduced number of students. These results are opposite to previous observations with methodologies that promote active learning. Inspired in those results, the Colorado Learning Attitudes about Science Survey (CLASS) was applied as pre and post tests in two Mechanics courses with modeling. In comparison to the different categories of the CLASS, significant positive shifts have been determined in Overall, Sophistication in Problem Solving, and Applied Conceptual Understanding in a sample of 44 students.
Evaluation of Sexual Communication Message Strategies
2011-01-01
Parent-child communication about sex is an important proximal reproductive health outcome. But while campaigns to promote it such as the Parents Speak Up National Campaign (PSUNC) have been effective, little is known about how messages influence parental cognitions and behavior. This study examines which message features explain responses to sexual communication messages. We content analyzed 4 PSUNC ads to identify specific, measurable message and advertising execution features. We then develop quantitative measures of those features, including message strategies, marketing strategies, and voice and other stylistic features, and merged the resulting data into a dataset drawn from a national media tracking survey of the campaign. Finally, we conducted multivariable logistic regression models to identify relationships between message content and ad reactions/receptivity, and between ad reactions/receptivity and parents' cognitions related to sexual communication included in the campaign's conceptual model. We found that overall parents were highly receptive to the PSUNC ads. We did not find significant associations between message content and ad reactions/receptivity. However, we found that reactions/receptivity to specific PSUNC ads were associated with increased norms, self-efficacy, short- and long-term expectations about parent-child sexual communication, as theorized in the conceptual model. This study extends previous research and methods to analyze message content and reactions/receptivity. The results confirm and extend previous PSUNC campaign evaluation and provide further evidence for the conceptual model. Future research should examine additional message content features and the effects of reactions/receptivity. PMID:21599875
Dual PECCS: a cognitive system for conceptual representation and categorization
NASA Astrophysics Data System (ADS)
Lieto, Antonio; Radicioni, Daniele P.; Rho, Valentina
2017-03-01
In this article we present an advanced version of Dual-PECCS, a cognitively-inspired knowledge representation and reasoning system aimed at extending the capabilities of artificial systems in conceptual categorization tasks. It combines different sorts of common-sense categorization (prototypical and exemplars-based categorization) with standard monotonic categorization procedures. These different types of inferential procedures are reconciled according to the tenets coming from the dual process theory of reasoning. On the other hand, from a representational perspective, the system relies on the hypothesis of conceptual structures represented as heterogeneous proxytypes. Dual-PECCS has been experimentally assessed in a task of conceptual categorization where a target concept illustrated by a simple common-sense linguistic description had to be identified by resorting to a mix of categorization strategies, and its output has been compared to human responses. The obtained results suggest that our approach can be beneficial to improve the representational and reasoning conceptual capabilities of standard cognitive artificial systems, and - in addition - that it may be plausibly applied to different general computational models of cognition. The current version of the system, in fact, extends our previous work, in that Dual- PECCS is now integrated and tested into two cognitive architectures, ACT-R and CLARION, implementing different assumptions on the underlying invariant structures governing human cognition. Such integration allowed us to extend our previous evaluation.
Bexfield, Laura M.; Thiros, Susan A.; Anning, David W.; Huntington, Jena M.; McKinney, Tim S.
2011-01-01
As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, the Southwest Principal Aquifers (SWPA) study is building a better understanding of the factors that affect water quality in basin-fill aquifers in the Southwestern United States. The SWPA study area includes four principal aquifers of the United States: the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; the Rio Grande aquifer system in New Mexico and Colorado; and the California Coastal Basin and Central Valley aquifer systems in California. Similarities in the hydrogeology, land- and water-use practices, and water-quality issues for alluvial basins within the study area allow for regional analysis through synthesis of the baseline knowledge of groundwater-quality conditions in basins previously studied by the NAWQA Program. Resulting improvements in the understanding of the sources, movement, and fate of contaminants are assisting in the development of tools used to assess aquifer susceptibility and vulnerability.This report synthesizes previously published information about the groundwater systems and water quality of 15 information-rich basin-fill aquifers (SWPA case-study basins) into conceptual models of the primary natural and human factors commonly affecting groundwater quality with respect to selected contaminants, thereby helping to build a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to those contaminants. Four relatively common contaminants (dissolved solids, nitrate, arsenic, and uranium) and two contaminant classes (volatile organic compounds (VOCs) and pesticide compounds) were investigated for sources and controls affecting their occurrence and distribution above specified levels of concern in groundwater of the case-study basins. Conceptual models of factors that are important to aquifer vulnerability with respect to those contaminants and contaminant classes were subsequently formed. The conceptual models are intended in part to provide a foundation for subsequent development of regional-scale statistical models that relate specific constituent concentrations or occurrence in groundwater to natural and human factors.
ERIC Educational Resources Information Center
De Corte, Erik; Verschaffel, Lieven
Design and results of an investigation attempting to analyze and improve children's solution processes in elementary addition and subtraction problems are described. As background for the study, a conceptual model was developed based on previous research. One dimension of the model relates to the characteristics of the tasks (numerical versus word…
ERIC Educational Resources Information Center
Myers, Nicholas D.; Wolfe, Edward W.; Feltz, Deborah L.; Penfield, Randall D.
2006-01-01
This study (a) provided a conceptual introduction to differential item functioning (DIF), (b) introduced the multifaceted Rasch rating scale model (MRSM) and an associated statistical procedure for identifying DIF in rating scale items, and (c) applied this procedure to previously collected data from American coaches who responded to the coaching…
ERIC Educational Resources Information Center
Guidera, Stan; MacPherson, D. Scot
2008-01-01
This paper presents the results of a study that was conducted to identify and document student perceptions of the effectiveness of computer modeling software introduced in a design foundations course that had previously utilized only conventional manually-produced representation techniques. Rather than attempt to utilize a production-oriented CAD…
ERIC Educational Resources Information Center
Savolainen, Reijo
2015-01-01
Introduction: The article contributes to the conceptual studies of affective factors in information seeking by examining Kuhlthau's information search process model. Method: This random-digit dial telephone survey of 253 people (75% female) living in a rural, medically under-serviced area of Ontario, Canada, follows-up a previous interview study…
Exploring Multiple Patterns of Faculty Productivity in STEM Disciplines at Doctoral Universities
ERIC Educational Resources Information Center
Liu, Ying
2010-01-01
This study is one of only a few that attempts to examine simultaneously faculty productivity in teaching, research, and service. The research is guided by a conceptual model built from several branches of the literature on career stage theory, motivation theory, and previous studies of faculty productivity. The model hypothesizes that faculty…
Renn, Jürgen
2015-01-01
ABSTRACT This paper introduces a conceptual framework for the evolution of complex systems based on the integration of regulatory network and niche construction theories. It is designed to apply equally to cases of biological, social and cultural evolution. Within the conceptual framework we focus especially on the transformation of complex networks through the linked processes of externalization and internalization of causal factors between regulatory networks and their corresponding niches and argue that these are an important part of evolutionary explanations. This conceptual framework extends previous evolutionary models and focuses on several challenges, such as the path‐dependent nature of evolutionary change, the dynamics of evolutionary innovation and the expansion of inheritance systems. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 565–577, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution published by Wiley Periodicals, Inc. PMID:26097188
Buchmann, Marlis; Steinhoff, Annekatrin
2017-10-01
Conceptualizing adolescent development within a life course framework that links the perspectives on social inequality and early life course transitions has largely been absent from previous research. Such a conceptual model is needed, however, in order to understand how the individual development of agentic capacities and the opportunities and constraints inherent in the social contexts of growing up interact and jointly affect young people's trajectories across the adolescent life stage. We present the corner stones of the conceptual "trident" of social inequality, life course transitions, and adolescent development and identify three major themes the eleven contributions to this special issue address within this conceptual framework: social and individual prerequisites and consequences of coping with life course transitions; intergenerational transmission belts of social inequality; socialization of agency in and outside the family home. These three themes exemplify the great analytical potential inherent in this framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichlacz, Paul Louis; Orr, Brennan
2002-08-01
The National Research Council has defined a conceptual model as ''an evolving hypothesis identifying the important features, processes, and events controlling fluid flow and contaminant transport of consequence at a specific field site in the context of a recognized problem''. Presently, several subregional conceptual models are under development at the Idaho National Engineering and Environmental Laboratory (INEEL). Additionally, facility-specific conceptual models have been described as part of INEEL environmental restoration activities. Compilation of these models is required to develop a comprehensive conceptual model that can be used to strategically plan for future groundwater research activities at the INEEL. Conceptual modelsmore » of groundwater flow and contaminant transport at the INEEL include the description of the geologic framework, matrix hydraulic properties, and inflows and outflows. They also include definitions of the contaminant source term and contaminant transport mechanisms. The geologic framework of the INEEL subregion is described by the geometry of the system, stratigraphic units within the system, and structural features that affect groundwater flow and contaminant transport. These elements define geohydrologic units that make up the Snake River Plain Aquifer (SRPA). The United States Geological Survey (USGS) conceptual model encompasses approximately 1,920 mi2 of the eastern Snake River Plain. The Waste Area Group (WAG)-10 model includes the USGS area and additional areas to the northeast and southeast. Both conceptual models are bounded to the northwest by the Pioneer Mountains, Lost River Range, and Lemhi Mountains. They are bounded to the southeast by groundwater flow paths determined from aquifer water-level contours. The upgradient extent of the USGS model is a water-level contour that includes the northeastern boundary of the INEEL. The WAG-10 model includes more of the Mud Lake area to utilize previous estimates of underflow into the subregion. Both conceptual models extend approximately 25 miles to the southwest of the INEEL, a distance sufficient to include known concentrations of contaminant tracers. Several hypotheses have been developed concerning the effective thickness of the SRPA at the INEEL. The USGS model has defined the effective thickness from electrical resistivity and borehole data to be as much as 2,500 ft in the eastern part of the subregion and as much as 4,000 ft in the southwestern part. The WAG-10 model has developed two alternatives using aquifer-temperature and electrical resistivity data. The ''thick'' aquifer interpretation utilizes colder temperature data and includes a northtrending zone in which the thickness exceeds 1,300 ft and with a maximum thickness of 1,700 ft. The ''thin'' aquifer interpretation minimizes aquifer thickness, with thickness ranging from 328 to 1,300 ft. Facility-specific models generally have focused efforts on the upper 250 ft of saturation. Conceptual models have utilized a stratigraphic data set to define geohydrologic units within the INEEL subregion. This data set, compiled from geophysical logs and cores from boreholes, correlates the thick, complex stack of basalt flows across the subregion. Conceptual models generally concur that the upper geohydrologic unit consists of a section of highly fractured, multiple, thin basalt flows and sedimentary interbeds. Beneath this unit is an areally extensive, thick, unfractured basalt flow that rises above the water table southwest of the INEEL. The bottom unit consists of a thick section of slightly- to moderately-altered basalt. A key objective of the DOE water-integration project at the INEEL is to coordinate development of a subregional conceptual model of groundwater flow and contaminant transport that is based on the best available understanding of geologic and hydrologic features. The first step in this process is to compile and summarize the current conceptual models of groundwater flow and contaminant transport at the INEEL that have been developed from extensive geohydrologic studies conducted during the last 50 years.« less
Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code
NASA Astrophysics Data System (ADS)
Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia
2015-04-01
Keywords: dessication-crack-induced-salinization, preferential flow, conceptual model, numerical model, vadose zone, vertisols, soil water retention function, HYDRUS 2D/3D Vertisols cover a hydrologically very significant area of semi-arid regions often through which water infiltrates to groundwater aquifers. Understanding of water flow and solute accumulation is thus very relevant to agricultural activity and water resources management. Previous works suggest a conceptual model of dessication-crack-induced-salinization where salinization of sediment in the deep section of the vadose zone (up to 4 m) is induced by subsurface evaporation due to convective air flow in the dessication cracks. It suggests that the salinization is induced by the hydraulic gradient between the dry sediment in the vicinity of cracks (low potential) and the relatively wet sediment further from the main cracks (high potential). This paper presents a modified previously suggested conceptual model and a numerical model. The model uses a simple uniform flow approach but unconventionally prescribes the boundary conditions and the hydraulic parameters of soil. The numerical model is bound to one location close to a dairy farm waste lagoon, but the application of the suggested conceptual model could be possibly extended to all semi-arid regions with vertisols. Simulations were conducted using several modeling approaches with an ultimate goal of fitting the simulation results to the controlling variables measured in the field: temporal variation in water content across thick layer of unsaturated clay sediment (>10 m), sediment salinity and salinity the water draining down the vadose zone to the water table. The development of the model was engineered in several steps; all computed as forward solutions by try-and-error approach. The model suggests very deep instant infiltration of fresh water up to 12 m, which is also supported by the field data. The paper suggests prescribing a special atmospheric boundary to the wall of the crack (so that the solute can accumulate due to evaporation on the crack block wall, and infiltrating fresh water can push the solute further down) - in order to do so, HYDRUS 2D/3D code had to be modified by its developers. Unconventionally, the main fitting parameters were: parameter a and n in the soil water retention curve and saturated hydraulic conductivity. The amount of infiltrated water (within a reasonable range), the infiltration function in the crack and the actual evaporation from the crack were also used as secondary fitting parameters. The model supports the previous findings that significant amount (~90%) of water from rain events must infiltrate through the crack. It was also noted that infiltration from the crack has to be increasing with depth and that the highest infiltration rate should be somewhere between 1-3m. This paper suggests a new way how to model vertisols in semi-arid regions. It also supports the previous findings about vertisols: especially, the utmost importance of soil cracks as preferential pathways for water and contaminants and soil cracks as deep evaporators.
Perceived game realism: a test of three alternative models.
Ribbens, Wannes
2013-01-01
Perceived realism is considered a key concept in explaining the mental processing of media messages and the societal impact of media. Despite its importance, little is known about its conceptualization and dimensional structure, especially with regard to digital games. The aim of this study was to test a six-factor model of perceived game realism comprised of simulational realism, freedom of choice, perceptual pervasiveness, social realism, authenticity, and character involvement and to assess it against an alternative single- and five-factor model. Data were collected from 380 male digital game users who judged the realism of the first-person shooter Half-Life 2 based upon their previous experience with the game. Confirmatory factor analysis was applied to investigate which model fits the data best. The results support the six-factor model over the single- and five-factor solutions. The study contributes to our knowledge of perceived game realism by further developing its conceptualization and measurement.
AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
MANN, F.M.
2007-07-10
The Tank Farm Vadose Zone (TFVZ) Project conducts activities to characterize and analyze the long-term environmental and human health impacts from tank waste releases to the vadose zone. The project also implements interim measures to mitigate impacts, and plans the remediation of waste releases from tank farms and associated facilities. The scope of this document is to report data needs that are important to estimating long-term human health and environmental risks. The scope does not include technologies needed to remediate contaminated soils and facilities, technologies needed to close tank farms, or management and regulatory decisions that will impact remediation andmore » closure. This document is an update of ''A Summary and Evaluation of Hanford Site Tank Farm Subsurface Contamination''. That 1998 document summarized knowledge of subsurface contamination beneath the tank farms at the time. It included a preliminary conceptual model for migration of tank wastes through the vadose zone and an assessment of data and analysis gaps needed to update the conceptual model. This document provides a status of the data and analysis gaps previously defined and discussion of the gaps and needs that currently exist to support the stated mission of the TFVZ Project. The first data-gaps document provided the basis for TFVZ Project activities over the previous eight years. Fourteen of the nineteen knowledge gaps identified in the previous document have been investigated to the point that the project defines the current status as acceptable. In the process of filling these gaps, significant accomplishments were made in field work and characterization, laboratory investigations, modeling, and implementation of interim measures. The current data gaps are organized in groups that reflect Components of the tank farm vadose zone conceptual model: inventory, release, recharge, geohydrology, geochemistry, and modeling. The inventory and release components address residual wastes that will remain in the tanks and tank-farm infrastructure after closure and potential losses from leaks during waste retrieval. Recharge addresses the impacts of current conditions in the tank farms (i.e. gravel covers that affect infiltration and recharge) as well as the impacts of surface barriers. The geohydrology and geochemistry components address the extent of the existing subsurface contaminant inventory and drivers and pathways for contaminants to be transported through the vadose zone and groundwater. Geochemistry addresses the mobility of key reactive contaminants such as uranium. Modeling addresses conceptual models and how they are simulated in computers. The data gaps will be used to provide input to planning (including the upcoming C Farm Data Quality Objective meetings scheduled this year).« less
Augmenting Parametric Optimal Ascent Trajectory Modeling with Graph Theory
NASA Technical Reports Server (NTRS)
Dees, Patrick D.; Zwack, Matthew R.; Edwards, Stephen; Steffens, Michael
2016-01-01
It has been well documented that decisions made in the early stages of Conceptual and Pre-Conceptual design commit up to 80% of total Life-Cycle Cost (LCC) while engineers know the least about the product they are designing [1]. Once within Preliminary and Detailed design however, making changes to the design becomes far more difficult to enact in both cost and schedule. Primarily this has been due to a lack of detailed data usually uncovered later during the Preliminary and Detailed design phases. In our current budget-constrained environment, making decisions within Conceptual and Pre-Conceptual design which minimize LCC while meeting requirements is paramount to a program's success. Within the arena of launch vehicle design, optimizing the ascent trajectory is critical for minimizing the costs present within such concerns as propellant, aerodynamic, aeroheating, and acceleration loads while meeting requirements such as payload delivered to a desired orbit. In order to optimize the vehicle design its constraints and requirements must be known, however as the design cycle proceeds it is all but inevitable that the conditions will change. Upon that change, the previously optimized trajectory may no longer be optimal, or meet design requirements. The current paradigm for adjusting to these updates is generating point solutions for every change in the design's requirements [2]. This can be a tedious, time-consuming task as changes in virtually any piece of a launch vehicle's design can have a disproportionately large effect on the ascent trajectory, as the solution space of the trajectory optimization problem is both non-linear and multimodal [3]. In addition, an industry standard tool, Program to Optimize Simulated Trajectories (POST), requires an expert analyst to produce simulated trajectories that are feasible and optimal [4]. In a previous publication the authors presented a method for combatting these challenges [5]. In order to bring more detailed information into Conceptual and Pre-Conceptual design, knowledge of the effects originating from changes to the vehicle must be calculated. In order to do this, a model capable of quantitatively describing any vehicle within the entire design space under consideration must be constructed. This model must be based upon analysis of acceptable fidelity, which in this work comes from POST. Design space interrogation can be achieved with surrogate modeling, a parametric, polynomial equation representing a tool. A surrogate model must be informed by data from the tool with enough points to represent the solution space for the chosen number of variables with an acceptable level of error. Therefore, Design Of Experiments (DOE) is used to select points within the design space to maximize information gained on the design space while minimizing number of data points required. To represent a design space with a non-trivial number of variable parameters the number of points required still represent an amount of work which would take an inordinate amount of time via the current paradigm of manual analysis, and so an automated method was developed. The best practices of expert trajectory analysts working within NASA Marshall's Advanced Concepts Office (ACO) were implemented within a tool called multiPOST. These practices include how to use the output data from a previous run of POST to inform the next, determining whether a trajectory solution is feasible from a real-world perspective, and how to handle program execution errors. The tool was then augmented with multiprocessing capability to enable analysis on multiple trajectories simultaneously, allowing throughput to scale with available computational resources. In this update to the previous work the authors discuss issues with the method and solutions.
Kim, Junglyun; Ahn, Hyochol; Lyon, Debra E.; Stechmiller, Joyce
2016-01-01
Although pressure ulcers are a prevalent condition, pain associated with pressure ulcers is not fully understood. Indeed, previous studies do not shed light on the association between pressure ulcer stages and the experience of pain. Especially, pain characteristics of suspected deep tissue injury, which is a new category that was recently added by the National Pressure Ulcer Advisory Panel, are yet unknown. This is concerning because the incidence of pressure ulcers in hospitalized patients has increased exponentially over the last two decades, and health care providers are struggling to ensure providing adequate care. Thus, in order to facilitate the development of effective interventions, this paper presents a conceptual framework to explore pressure ulcer pain in hospitalized patients. The concepts were derived from a biopsychosocial model of pain, and the relationships among each concept were identified through a literature review. Major propositions are presented based on the proposed conceptual framework, which integrates previous research on pressure ulcer pain, to ultimately improve understanding of pain in hospitalized patients with pressure ulcers. PMID:27417595
Leffler, Daniel A; Acaster, Sarah; Gallop, Katy; Dennis, Melinda; Kelly, Ciarán P; Adelman, Daniel C
2017-04-01
Celiac disease is a chronic inflammatory condition with wide ranging effects on individual's lives caused by a combination of symptoms and the burden of adhering to a gluten-free diet (GFD). To further understand patients' experience of celiac disease, the impact it has on health-related quality of life (HRQOL), and to develop a conceptual model describing this impact. Adults with celiac disease on a GFD reporting symptoms within the previous 3 months were included; patients with refractory celiac disease and confounding medical conditions were excluded. A semistructured discussion guide was developed exploring celiac disease symptoms and impact on patients' HRQOL. An experienced interviewer conducted in-depth interviews. The data set was coded and analyzed using thematic analysis to identify concepts, themes, and the inter-relationships between them. Data saturation was monitored and concepts identified formed the basis of the conceptual model. Twenty-one participants were recruited, and 32 distinct gluten-related symptoms were reported and data saturation was reached. Analysis identified several themes impacting patients' HRQOL: fears and anxiety, day-to-day management of celiac disease, physical functioning, sleep, daily activities, social activities, emotional functioning, and relationships. The conceptual model highlights the main areas of impact and the relationships between concepts. Both symptoms and maintaining a GFD have a substantial impact on patient functioning and HRQOL in adults with celiac disease. The conceptual model derived from these data may help to design future patient-reported outcomes as well as interventions to improve the quality of life in an individual with celiac disease. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
A thick lens of fresh groundwater in the southern Lihue Basin, Kauai, Hawaii, USA
Izuka, S.K.; Gingerich, S.B.
2003-01-01
A thick lens of fresh groundwater exists in a large region of low permeability in the southern Lihue Basin, Kauai, Hawaii, USA. The conventional conceptual model for groundwater occurence in Hawaii and other shield-volcano islands does not account for such a thick freshwater lens. In the conventional conceptual model, the lava-flow accumulations of which most shield volcanoes are built form large regions of relatively high permeability and thin freshwater lenses. In the southern Lihue Basin, basin-filling lavas and sediments form a large region of low regional hydraulic conductivity, which, in the moist climate of the basin, is saturated nearly to the land surface and water tables are hundreds of meters above sea level within a few kilometers from the coast. Such high water levels in shield-volcano islands were previously thought to exist only under perched or dike-impounded conditions, but in the southern Lihue Basin, high water levels exist in an apparently dike-free, fully saturated aquifer. A new conceptual model of groundwater occurrence in shield-volcano islands is needed to explain conditions in the southern Lihue Basin.
NASA Astrophysics Data System (ADS)
Palu, J. M.; Burberry, C. M.
2014-12-01
The reactivation potential of pre-existing basement structures affects the geometry of subsequent deformation structures. A conceptual model depicting the results of these interactions can be applied to multiple fold-thrust systems and lead to valuable deformation predictions. These predictions include the potential for hydrocarbon traps or seismic risk in an actively deforming area. The Sawtooth Range, Montana, has been used as a study area. A model for the development of structures close to the Augusta Syncline in the Sawtooth Range is being developed using: 1) an ArcGIS map of the basement structures of the belt based on analysis of geophysical data indicating gravity anomalies and aeromagnetic lineations, seismic data indicating deformation structures, and well logs for establishing lithologies, previously collected by others and 2) an ArcGIS map of the surface deformation structures of the belt based on interpretation of remote sensing images and verification through the collection of surface field data indicating stress directions and age relationships, resulting in a conceptual model based on the understanding of the interaction of the two previous maps including statistical correlations of data and development of balanced cross-sections using Midland Valley's 2D/3D Move software. An analysis of the model will then indicate viable deformation paths where prominent basement structures influenced subsequently developed deformation structures and reactivated faults. Preliminary results indicate that the change in orientation of thrust faults observed in the Sawtooth Range, from a NNW-SSE orientation near the Gibson Reservoir to a WNW-ESE trend near Haystack Butte correlates with pre-existing deformation structures lying within the Great Falls Tectonic Zone. The Scapegoat-Bannatyne trend appears to be responsible for this orientation change and rather than being a single feature, may be composed of up to 4 NE-SW oriented basement strike-slip faults. This indicates that the pre-existing basement features have a profound effect on the geometry of the later deformation. This conceptual model can also be applied to other deformed belts to provide a prediction for the potential hydrocarbon trap locations of the belt as well as their seismic risk.
Dealing With Unexpected Events on the Flight Deck: A Conceptual Model of Startle and Surprise.
Landman, Annemarie; Groen, Eric L; van Paassen, M M René; Bronkhorst, Adelbert W; Mulder, Max
2017-12-01
A conceptual model is proposed in order to explain pilot performance in surprising and startling situations. Today's debate around loss of control following in-flight events and the implementation of upset prevention and recovery training has highlighted the importance of pilots' ability to deal with unexpected events. Unexpected events, such as technical malfunctions or automation surprises, potentially induce a "startle factor" that may significantly impair performance. Literature on surprise, startle, resilience, and decision making is reviewed, and findings are combined into a conceptual model. A number of recent flight incident and accident cases are then used to illustrate elements of the model. Pilot perception and actions are conceptualized as being guided by "frames," or mental knowledge structures that were previously learned. Performance issues in unexpected situations can often be traced back to insufficient adaptation of one's frame to the situation. It is argued that such sensemaking or reframing processes are especially vulnerable to issues caused by startle or acute stress. Interventions should focus on (a) increasing the supply and quality of pilot frames (e.g., though practicing a variety of situations), (b) increasing pilot reframing skills (e.g., through the use of unpredictability in training scenarios), and (c) improving pilot metacognitive skills, so that inappropriate automatic responses to startle and surprise can be avoided. The model can be used to explain pilot behavior in accident cases, to design experiments and training simulations, to teach pilots metacognitive skills, and to identify intervention methods.
[Active ageing and success: A brief history of conceptual models].
Petretto, Donatella Rita; Pili, Roberto; Gaviano, Luca; Matos López, Cristina; Zuddas, Carlo
2016-01-01
The aim of this paper is to analyse and describe different conceptual models of successful ageing, active and healthy ageing developed in Europe and in America in the 20° century, starting from Rowe and Kahn's original model (1987, 1997). A narrative review was conducted on the literature on successful ageing. Our review included definition of successful ageing from European and American scholars. Models were found that aimed to describe indexes of active and healthy ageing, models devoted to describe processes involved in successful ageing, and additional views that emphasise subjective and objective perception of successful ageing. A description is also given of critiques on previous models and remedies according to Martin et al. (2014) and strategies for successful ageing according to Jeste and Depp (2014). The need is discussed for the enhancement of Rowe and Kahn's model and other models with a more inclusive, universal description of ageing, incorporating scientific evidence regarding active ageing. Copyright © 2015 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.
Hagger, Martin S; Chatzisarantis, Nikos L D
2016-06-01
The trans-contextual model outlines the processes by which autonomous motivation toward activities in a physical education context predicts autonomous motivation toward physical activity outside of school, and beliefs about, intentions toward, and actual engagement in, out-of-school physical activity. In the present article, we clarify the fundamental propositions of the model and resolve some outstanding conceptual issues, including its generalizability across multiple educational domains, criteria for its rejection or failed replication, the role of belief-based antecedents of intentions, and the causal ordering of its constructs. We also evaluate the consistency of model relationships in previous tests of the model using path-analytic meta-analysis. The analysis supported model hypotheses but identified substantial heterogeneity in the hypothesized relationships across studies unattributed to sampling and measurement error. Based on our meta-analysis, future research needs to provide further replications of the model in diverse educational settings beyond physical education and test model hypotheses using experimental methods.
Taylor, Randolph S; Francis, Wendy S
2017-03-01
Previous literature has demonstrated conceptual repetition priming across languages in bilinguals. This between-language priming effect is taken as evidence that translation equivalents have shared conceptual representations across languages. However, the vast majority of this research has been conducted using only concrete nouns as stimuli. The present experiment examined conceptual repetition priming within and between languages in adjectives, a part of speech not previously investigated in studies of bilingual conceptual representation. The participants were 100 Spanish-English bilinguals who had regular exposure to both languages. At encoding, participants performed a shallow processing task and a deep-processing task on English and Spanish adjectives. At test, they performed an antonym-generation task in English, in which the target responses were either adjectives presented at encoding or control adjectives not previously presented. The measure of priming was the response time advantage for producing repeated adjectives relative to control adjectives. Significant repetition priming was observed both within and between languages under deep, but not shallow, encoding conditions. The results indicate that the conceptual representations of adjective translation equivalents are shared across languages.
Examining the influence of formative assessment on conceptual accumulation and conceptual change
NASA Astrophysics Data System (ADS)
Tomita, Miki K.
This study explored the effect of formative assessment on student achievement in science. Research in science education has shown that students enter science classrooms with previously formed explanatory models of the natural world; these naive "mental models" have a substantial influence on their learning of scientific conceptions. In general, conceptual change describes the pathway from pre-instructional or prior conceptions to a post-instructional or desired conception. Conceptual change involves a fundamental restructuring of a network of concepts rather than fitting new concepts into an existing conceptual network or structure. Research has shown that conceptual change is difficult to promote; for example, students may accumulate multiple conceptions over the course of instruction, including both new misconceptions and more scientifically-sound conceptions. Hellden and Solomon (2004) found that although students tended to evoke the same, less-scientific conceptions over time, they could produce more scientifically-sound conceptions during interviews with appropriate prompting; thus, students undergo conceptual accumulation rather than conceptual change. Students can recall scientifically-sound conceptions they have learned and may use them to reason, but they do so in partnership or hybridization with their less-scientific prior conceptions. Formative assessment, which focuses on providing immediate feedback by acting upon student understanding during the course of instruction, and conceptual change have both been linked to increased student achievement. Formative assessment is an instructional strategy that helps teachers to assess students' current understanding, identify the gap between current understanding and expected understanding, and provide immediate and useful feedback to students on how to close the gap. Formative assessment ranges from formal (e.g. embedded, planned-for interactions between teacher and entire class) to informal (e.g. on-the-fly interactions between teacher and class or student). In this study, the links between formative assessment and conceptual accumulation and conceptual change were explored. Specifically, this study asked: (1) Does formative assessment promote conceptual accumulation, and (2) Does formative assessment promote conceptual change? It was hypothesized that conceptual change-focused formative assessment would foster conceptual change, in addition to supporting conceptual accumulation. It was further hypothesized that all students will show gains in conceptual accumulation as indicated by measures of declarative and procedural knowledge, but that students exposed to conceptual change-focused formative assessment would also show gains in conceptual change as indicated by measures of schematic knowledge or mental models. To research the effect of formative assessment on conceptual accumulation and conceptual change, a small randomized experiment involving 102 middle school students was conducted. In Phase I of the study, 52 6th graders were randomly assigned to a treatment or control group; in Phase II of this study, 50 7th graders were randomly assigned to a treatment or control group. Both the control and experimental groups in both phases were taught about sinking and floating by the same teacher (the author) with identical curriculum materials and activities. In addition, the experimental group received three sets of embedded formative assessments focused on conceptual change around the topic of why things sink and float during the course of instruction. In Phase I of this study, both groups were kept at the same pace through the entire sequence of investigations. The control condition spent more time on some of the more critical FAST lessons, gathering additional data to support the theories the curriculum expected they would develop at a particular juncture but not receiving structured experiences aimed at addressing misconceptions. In Phase II, students in the control condition spent roughly the same time on each FAST lesson as those in the experimental condition (e.g. they finished the sequence of activities earlier because they did not have class sessions devoted to the RLs inserted at critical junctures) but participated in the formal assessments as a block of activities after they finished the FAST investigations and posttest measures. In other words, in addition to replicating Phase I, Phase II included a Reflective Lesson section for the control group after the end of the experiment proper, followed by a post-posttest. Overall, it was found that embedding conceptual change-focused formative assessments in the FAST curriculum significantly influenced conceptual change. It was also found that all students experienced significant gains in terms of their conceptual accumulation, regardless of exposure to the formative assessments. This study connected two previously isolated but theoretically linked educational frameworks: conceptual change and formative assessment. It was found that formative assessments can be used to promote conceptual change. It was also found that conceptual change is different than conceptual accumulation, in that students who show gains on measures of declarative and procedural knowledge do not necessarily show gains on measures of schematic knowledge. (Abstract shortened by UMI.)
Wilkerson, J Michael; Iantaffi, Alex; Smolenski, Derek J; Brady, Sonya S; Horvath, Keith J; Grey, Jeremy A; Rosser, B R Simon
2012-01-01
While the effects of sexually explicit media (SEM) on heterosexuals' sexual intentions and behaviors have been studied, little is known about the consumption and possible influence of SEM among men who have sex with men (MSM). Importantly, conceptual models of how Internet-based SEM influences behavior are lacking. Seventy-nine MSM participated in online focus groups about their SEM viewing preferences and sexual behavior. Twenty-three participants reported recent exposure to a new behavior via SEM. Whether participants modified their sexual intentions and/or engaged in the new behavior depended on three factors: arousal when imagining the behavior, pleasure when attempting the behavior, and trust between sex partners. Based on MSM's experience, we advance a model of how viewing a new sexual behavior in SEM influences sexual intentions and behaviors. The model includes five paths. Three paths result in the maintenance of sexual intentions and behaviors. One path results in a modification of sexual intentions while maintaining previous sexual behaviors, and one path results in a modification of both sexual intentions and behaviors. With this model, researchers have a framework to test associations between SEM consumption and sexual intentions and behavior, and public health programs have a framework to conceptualize SEM-based HIV/STI prevention programs.
Learning Processes and Approaches: Examining Their Interrelationships to Understand Student Learning
ERIC Educational Resources Information Center
Chennamsetti, Prashanti
2008-01-01
The purpose of this paper is to explore the relationship between two contrasting research paradigms, namely, cognitive and experiential research, a significant literature review previously unaddressed. To achieve this objective, a conceptual description of three theoretical frameworks, Dual-Store model, Levels of Processing (LOP; drawn from…
Atmospheric carbon dioxide and the climate record
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellsaesser, H.W.
1989-04-01
This paper is an attempt to provide a summary review of conclusions from previous studies on this subject. Subject headings include: conceptualization of the greenhouse effect, the climatic effect of doubled CO/sub 2/, interpretation of the climatic record, diagnosis of apparent and possible model deficiencies, and the palaeoclimatic record.
Response to conflict among wilderness visitors
Ingrid Schneider
2000-01-01
Previous conceptual efforts suggest that response to recreational conflict should be framed within an adapted stresscoping response model. An important element in understanding response to conflict is the context of the experience. A basic underlying component of the wilderness experience is privacy, which indicates wilderness visitors are interested in releasingâ...
A Conceptual Model of Observed Physical Literacy
ERIC Educational Resources Information Center
Dudley, Dean A.
2015-01-01
Physical literacy is a concept that is gaining greater acceptance around the world with the United Nations Educational, Cultural, and Scientific Organization (2013) recognizing it as one of several central tenets in a quality physical education framework. However, previous attempts to understand progression in physical literacy learning have been…
2016-01-01
Background Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. Objectives The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. Methods A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. Results The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one’s choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Conclusions Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines. PMID:26912288
Gray, Kathleen; Sockolow, Paulina
2016-02-24
Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one's choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines.
Conceptual recurrence plots: revealing patterns in human discourse.
Angus, Daniel; Smith, Andrew; Wiles, Janet
2012-06-01
Human discourse contains a rich mixture of conceptual information. Visualization of the global and local patterns within this data stream is a complex and challenging problem. Recurrence plots are an information visualization technique that can reveal trends and features in complex time series data. The recurrence plot technique works by measuring the similarity of points in a time series to all other points in the same time series and plotting the results in two dimensions. Previous studies have applied recurrence plotting techniques to textual data; however, these approaches plot recurrence using term-based similarity rather than conceptual similarity of the text. We introduce conceptual recurrence plots, which use a model of language to measure similarity between pairs of text utterances, and the similarity of all utterances is measured and displayed. In this paper, we explore how the descriptive power of the recurrence plotting technique can be used to discover patterns of interaction across a series of conversation transcripts. The results suggest that the conceptual recurrence plotting technique is a useful tool for exploring the structure of human discourse.
What's in a (role) name? Formal and conceptual aspects of comprehending personal nouns.
Irmen, Lisa
2007-11-01
Two eye-tracking studies assessed effects of grammatical and conceptual gender cues in generic role name processing in German. Participants read passages about a social or occupational group introduced by way of a generic role name (e.g., Soldaten/soldiers, Künstler/artists). Later in the passage the gender of this group was specified by the anaphoric expression diese Männer/these men or diese Frauen/these women. Testing masculine generic role names of male, female or neutral conceptual gender (Exp. 1) showed that a gender mismatch between the role name's conceptual gender and the anaphor significantly slowed reading immediately before and after the anaphoric noun. A mismatch between the antecedent's grammatical gender and the anaphor slowed down the reading of the anaphoric noun itself. Testing grammatically gender-unmarked role names (Exp. 2) revealed a general male bias in participants' understanding, irrespective of grammatical or conceptual gender. The experiments extend previous findings on gender effects to non-referential role names and generic contexts. Theoretical aspects of gender and plural reference as well as gender information in mental models are discussed.
The Influence of Atmosphere-Ocean Interaction on MJO Development and Propagation
2014-09-30
evaluate modeling results and process studies. The field phase of this project is associated with DYNAMO , which is the US contribution to the...influence on ocean temperature 4. Extended run for DYNAMO with high vertical resolution NCOM RESULTS Summary of project results The work funded...model experiments of the November 2011 MJO – the strongest MJO episode observed during the DYNAMO . The previous conceptual model that was based on TOGA
ERIC Educational Resources Information Center
Reinhold, Sarah; Gegenfurtner, Andreas; Lewalter, Doris
2018-01-01
Social support and motivation to transfer are important components in conceptual models on transfer of training. Previous research indicates that both support and motivation influence transfer. To date, however, it is not yet clear if social support influences transfer of training directly, or if this influence is mediated by motivation to…
Strategies for Teaching Healthy Behavior Conceptual Knowledge
ERIC Educational Resources Information Center
Kloeppel, Tiffany; Kulinna, Pamela Hodges
2012-01-01
By definition, conceptual knowledge is rich in relationships and understanding the kind of knowledge that may be transferred between situations. Despite the lack of importance that Conceptual Physical Education has been given in previous physical education reform efforts, research findings have shown that Conceptual Physical Education along with…
Frone, Michael R.; Trinidad, Jonathan R.
2014-01-01
This study develops and tests a new conceptual model of perceived physical availability of alcohol at work that provides unique insight into three dimensions of workplace physical availability of alcohol and their direct and indirect relations to workplace alcohol use and impairment. Data were obtained from a national probability sample of 2,727 U.S. workers. The results support the proposed conceptual model and provide empirical support for a positive relation of perceived physical availability of alcohol at work to workplace alcohol use and two dimensions of workplace impairment (workplace intoxication and workplace hangover). Ultimately, the findings suggest that perceived physical availability of alcohol at work is a risk factor for alcohol use and impairment during the workday, and that this relation is more complex than previously hypothesized. PMID:25243831
NASA Astrophysics Data System (ADS)
Larsson, Caroline; Tibell, Lena A. E.
2015-10-01
A well-ordered biological complex can be formed by the random motion of its components, i.e. self-assemble. This is a concept that incorporates issues that may contradict students' everyday experiences and intuitions. In previous studies, we have shown that a tangible model of virus self-assembly, used in a group exercise, helps students to grasp the process of self-assembly and in particular the facet "random molecular collision". The present study investigates how and why the model and the group exercise facilitate students' learning of this particular facet. The data analysed consist of audio recordings of six group exercises ( n = 35 university students) and individual semi-structured interviews ( n = 5 university students). The analysis is based on constructivist perspectives of learning, a combination of conceptual change theory and learning with external representations. Qualitative analysis indicates that perceived counterintuitive aspects of the process created a cognitive conflict within learners. The tangible model used in the group exercises facilitated a conceptual change in their understanding of the process. In particular, the tangible model appeared to provide cues and possible explanations and functioned as an "eye-opener" and a "thinking tool". Lastly, the results show signs of emotions also being important elements for successful accommodation.
Neutronic design studies of a conceptual DCLL fusion reactor for a DEMO and a commercial power plant
NASA Astrophysics Data System (ADS)
Palermo, I.; Veredas, G.; Gómez-Ros, J. M.; Sanz, J.; Ibarra, A.
2016-01-01
Neutronic analyses or, more widely, nuclear analyses have been performed for the development of a dual-coolant He/LiPb (DCLL) conceptual design reactor. A detailed three-dimensional (3D) model has been examined and optimized. The design is based on the plasma parameters and functional materials of the power plant conceptual studies (PPCS) model C. The initial radial-build for the detailed model has been determined according to the dimensions established in a previous work on an equivalent simplified homogenized reactor model. For optimization purposes, the initial specifications established over the simplified model have been refined on the detailed 3D design, modifying material and dimension of breeding blanket, shield and vacuum vessel in order to fulfil the priority requirements of a fusion reactor in terms of the fundamental neutronic responses. Tritium breeding ratio, energy multiplication factor, radiation limits in the TF coils, helium production and displacements per atom (dpa) have been calculated in order to demonstrate the functionality and viability of the reactor design in guaranteeing tritium self-sufficiency, power efficiency, plasma confinement, and re-weldability and structural integrity of the components. The paper describes the neutronic design improvements of the DCLL reactor, obtaining results for both DEMO and power plant operational scenarios.
Jordan recurrent neural network versus IHACRES in modelling daily streamflows
NASA Astrophysics Data System (ADS)
Carcano, Elena Carla; Bartolini, Paolo; Muselli, Marco; Piroddi, Luigi
2008-12-01
SummaryA study of possible scenarios for modelling streamflow data from daily time series, using artificial neural networks (ANNs), is presented. Particular emphasis is devoted to the reconstruction of drought periods where water resource management and control are most critical. This paper considers two connectionist models: a feedforward multilayer perceptron (MLP) and a Jordan recurrent neural network (JNN), comparing network performance on real world data from two small catchments (192 and 69 km 2 in size) with irregular and torrential regimes. Several network configurations are tested to ensure a good combination of input features (rainfall and previous streamflow data) that capture the variability of the physical processes at work. Tapped delayed line (TDL) and memory effect techniques are introduced to recognize and reproduce temporal dependence. Results show a poor agreement when using TDL only, but a remarkable improvement can be obtained with JNN and its memory effect procedures, which are able to reproduce the system memory over a catchment in a more effective way. Furthermore, the IHACRES conceptual model, which relies on both rainfall and temperature input data, is introduced for comparative study. The results suggest that when good input data is unavailable, metric models perform better than conceptual ones and, in general, it is difficult to justify substantial conceptualization of complex processes.
Competition between conceptual relations affects compound recognition: the role of entropy.
Schmidtke, Daniel; Kuperman, Victor; Gagné, Christina L; Spalding, Thomas L
2016-04-01
Previous research has suggested that the conceptual representation of a compound is based on a relational structure linking the compound's constituents. Existing accounts of the visual recognition of modifier-head or noun-noun compounds posit that the process involves the selection of a relational structure out of a set of competing relational structures associated with the same compound. In this article, we employ the information-theoretic metric of entropy to gauge relational competition and investigate its effect on the visual identification of established English compounds. The data from two lexical decision megastudies indicates that greater entropy (i.e., increased competition) in a set of conceptual relations associated with a compound is associated with longer lexical decision latencies. This finding indicates that there exists competition between potential meanings associated with the same complex word form. We provide empirical support for conceptual composition during compound word processing in a model that incorporates the effect of the integration of co-activated and competing relational information.
The (Mathematical) Modeling Process in Biosciences.
Torres, Nestor V; Santos, Guido
2015-01-01
In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology.
Motion Planning in a Society of Intelligent Mobile Agents
NASA Technical Reports Server (NTRS)
Esterline, Albert C.; Shafto, Michael (Technical Monitor)
2002-01-01
The majority of the work on this grant involved formal modeling of human-computer integration. We conceptualize computer resources as a multiagent system so that these resources and human collaborators may be modeled uniformly. In previous work we had used modal for this uniform modeling, and we had developed a process-algebraic agent abstraction. In this work, we applied this abstraction (using CSP) in uniformly modeling agents and users, which allowed us to use tools for investigating CSP models. This work revealed the power of, process-algebraic handshakes in modeling face-to-face conversation. We also investigated specifications of human-computer systems in the style of algebraic specification. This involved specifying the common knowledge required for coordination and process-algebraic patterns of communication actions intended to establish the common knowledge. We investigated the conditions for agents endowed with perception to gain common knowledge and implemented a prototype neural-network system that allows agents to detect when such conditions hold. The literature on multiagent systems conceptualizes communication actions as speech acts. We implemented a prototype system that infers the deontic effects (obligations, permissions, prohibitions) of speech acts and detects violations of these effects. A prototype distributed system was developed that allows users to collaborate in moving proxy agents; it was designed to exploit handshakes and common knowledge Finally. in work carried over from a previous NASA ARC grant, about fifteen undergraduates developed and presented projects on multiagent motion planning.
ERIC Educational Resources Information Center
Larsson, Caroline; Tibell, Lena A.
2015-01-01
A well-ordered biological complex can be formed by the random motion of its components, i.e. self-assemble. This is a concept that incorporates issues that may contradict students' everyday experiences and intuitions. In previous studies, we have shown that a tangible model of virus self-assembly, used in a group exercise, helps students to grasp…
Students' Proficiency Scores within Multitrait Item Response Theory
ERIC Educational Resources Information Center
Scott, Terry F.; Schumayer, Daniel
2015-01-01
In this paper we present a series of item response models of data collected using the Force Concept Inventory. The Force Concept Inventory (FCI) was designed to poll the Newtonian conception of force viewed as a multidimensional concept, that is, as a complex of distinguishable conceptual dimensions. Several previous studies have developed…
School Innovation: The Mutual Impacts of Organizational Learning and Creativity
ERIC Educational Resources Information Center
McCharen, Belinda; Song, JiHoon; Martens, Jon
2011-01-01
The primary aim of this research is to identify cultural determinants of organizational learning and knowledge creation practices, which could be the driving factors for the innovation process in school settings (Mulford, 1998; Silins et al., 2002). A conceptual process model for school innovation was developed. In contrast to previous approaches,…
The College-Choice Process of High Achieving Freshmen: A Comparative Case Study
ERIC Educational Resources Information Center
Dale, Amanda
2010-01-01
The purpose of this study was to examine the college-choice process of high achieving students. Employing current literature and previous research, it combined current models of college choice and the influential factors identified throughout the literature while utilizing the concept of bounded rationality to create a conceptual framework to…
Dealing With Unexpected Events on the Flight Deck: A Conceptual Model of Startle and Surprise
Landman, Annemarie; Groen, Eric L.; van Paassen, M. M. (René); Bronkhorst, Adelbert W.; Mulder, Max
2017-01-01
Objective: A conceptual model is proposed in order to explain pilot performance in surprising and startling situations. Background: Today’s debate around loss of control following in-flight events and the implementation of upset prevention and recovery training has highlighted the importance of pilots’ ability to deal with unexpected events. Unexpected events, such as technical malfunctions or automation surprises, potentially induce a “startle factor” that may significantly impair performance. Method: Literature on surprise, startle, resilience, and decision making is reviewed, and findings are combined into a conceptual model. A number of recent flight incident and accident cases are then used to illustrate elements of the model. Results: Pilot perception and actions are conceptualized as being guided by “frames,” or mental knowledge structures that were previously learned. Performance issues in unexpected situations can often be traced back to insufficient adaptation of one’s frame to the situation. It is argued that such sensemaking or reframing processes are especially vulnerable to issues caused by startle or acute stress. Conclusion: Interventions should focus on (a) increasing the supply and quality of pilot frames (e.g., though practicing a variety of situations), (b) increasing pilot reframing skills (e.g., through the use of unpredictability in training scenarios), and (c) improving pilot metacognitive skills, so that inappropriate automatic responses to startle and surprise can be avoided. Application: The model can be used to explain pilot behavior in accident cases, to design experiments and training simulations, to teach pilots metacognitive skills, and to identify intervention methods. PMID:28777917
Macroergomonics' contribution to the effectiveness of collaborative supply chains.
Herrera, Sandra Mejias; Huatuco, Luisa Huaccho
2012-01-01
This article presents a conceptual model that combines Macroergonomics and Supply chain. The authors combine their expertise on these individual topics, building on their previous research. The argument of the paper is that human factors are key to achieve effective supplier-customer collaboration. A conceptual model is presented, its elements and their interactions are explained. The Content-Context-Process is applied as a departing point to this model. Macroergonomics aspects considered are: a systemic approach, participatory ergonomics, formation of ergonomics teams and evaluation of ergonomics projects. The expected outcomes are: (a) improvement of production and productivity levels, (b) improvement of the product quality, (c) Reduction of absenteeism, (d) Improvement in the quality of work life (from the employees' perspective), and (e) increase in the employees' contribution rate of ideas for improvement. A case study was carried out at a vitroplant production organisation incorporating environmental aspects to obtain sustainable benefits.
Shen, Yuzhong; Ju, Chuanjing; Koh, Tas Yong; Rowlinson, Steve; Bridge, Adrian J
2017-01-05
Unsafe acts contribute dominantly to construction accidents, and increasing safety behavior is essential to reduce accidents. Previous research conceptualized safety behavior as an interaction between proximal individual differences (safety knowledge and safety motivation) and distal contextual factors (leadership and safety climate). However, relatively little empirical research has examined this conceptualization in the construction sector. Given the cultural background of the sample, this study makes a slight modification to the conceptualization and views transformational leadership as an antecedent of safety climate. Accordingly, this study establishes a multiple mediator model showing the mechanisms through which transformational leadership translates into safety behavior. The multiple mediator model is estimated by the structural equation modeling (SEM) technique, using individual questionnaire responses from a random sample of construction personnel based in Hong Kong. As hypothesized, transformational leadership has a significant impact on safety climate which is mediated by safety-specific leader-member exchange (LMX), and safety climate in turn impacts safety behavior through safety knowledge. The results suggest that future safety climate interventions should be more effective if supervisors exhibit transformational leadership, encourage construction personnel to voice safety concerns without fear of retaliation, and repeatedly remind them about safety on the job.
Shen, Yuzhong; Ju, Chuanjing; Koh, Tas Yong; Rowlinson, Steve; Bridge, Adrian J.
2017-01-01
Unsafe acts contribute dominantly to construction accidents, and increasing safety behavior is essential to reduce accidents. Previous research conceptualized safety behavior as an interaction between proximal individual differences (safety knowledge and safety motivation) and distal contextual factors (leadership and safety climate). However, relatively little empirical research has examined this conceptualization in the construction sector. Given the cultural background of the sample, this study makes a slight modification to the conceptualization and views transformational leadership as an antecedent of safety climate. Accordingly, this study establishes a multiple mediator model showing the mechanisms through which transformational leadership translates into safety behavior. The multiple mediator model is estimated by the structural equation modeling (SEM) technique, using individual questionnaire responses from a random sample of construction personnel based in Hong Kong. As hypothesized, transformational leadership has a significant impact on safety climate which is mediated by safety-specific leader–member exchange (LMX), and safety climate in turn impacts safety behavior through safety knowledge. The results suggest that future safety climate interventions should be more effective if supervisors exhibit transformational leadership, encourage construction personnel to voice safety concerns without fear of retaliation, and repeatedly remind them about safety on the job. PMID:28067775
Krause, James S.; Saunders, Lee L.; DiPiro, Nicole D.; Reed, Karla S.
2013-01-01
Background: To successfully prevent secondary health conditions (SHCs) and promote longevity after spinal cord injury (SCI), we must first understand the risk factors precipitating their occurrence and develop strategies to address these risk factors. Conceptual models may aid in identifying the nature of SHCs and guide research, clinical practice, and the development of prevention strategies. Objective: Our purpose is to review and refine an existing theoretical risk and prevention model (TRPM) as a means of classifying risk and protective factors for SHCs and mortality after SCI and for identifying points of intervention. Methods: We describe conceptual work within the field of SCI research and SHCs, including a description of the TRPM, a review of research using the TRPM, and conceptual enhancements to the TRPM based on previous research. Conclusions: The enhanced TRPM directs research to the timing and chronicity of the SHCs and their relationship with overall health and physiologic decline. Future research should identify differences in the nature of SHCs, the extent to which they relate to risk and protective factors, and the degree to which they may be prevented with appropriate research-based strategies. PMID:23459002
Wilkerson, J. Michael; Iantaffi, Alex; Smolenski, Derek J.; Brady, Sonya S.; Horvath, Keith J.; Grey, Jeremy A.; Rosser, B. R. Simon
2012-01-01
While the effects of sexually explicit media (SEM) on heterosexuals’ sexual intentions and behaviors have been studied, little is known about the consumption and possible influence of SEM among men who have sex with men (MSM). Importantly, conceptual models of how Internet-based SEM influences behavior are lacking. Seventy-nine MSM participated in online focus groups about their SEM viewing preferences and sexual behavior. Twenty-three participants reported recent exposure to a new behavior via SEM. Whether participants modified their sexual intentions and/or engaged in the new behavior depended on three factors: arousal when imagining the behavior, pleasure when attempting the behavior, and trust between sex partners. Based on MSM’s experience, we advance a model of how viewing a new sexual behavior in SEM influences sexual intentions and behaviors. The model includes five paths. Three paths result in the maintenance of sexual intentions and behaviors. One path results in a modification of sexual intentions while maintaining previous sexual behaviors, and one path results in a modification of both sexual intentions and behaviors. With this model, researchers have a framework to test associations between SEM consumption and sexual intentions and behavior, and public health programs have a framework to conceptualize SEM-based HIV/STI prevention programs. PMID:23185126
NASA Astrophysics Data System (ADS)
Yang, J.; Zammit, C.; McMillan, H. K.
2016-12-01
As in most countries worldwide, water management in lowland areas is a big concern for New Zealand due to its economic importance for water related human activities. As a result, the estimation of available water resources in these areas (e.g., for irrigation and water supply purpose) is crucial and often requires an understanding of complex hydrological processes, which are often characterized by strong interactions between surface water and groundwater (usually expressed as losing and gaining rivers). These processes are often represented and simulated using integrated physically based hydrological models. However models with physically based groundwater modules typically require large amount of non-readily available geologic and aquifer information and are computationally intensive. Instead, this paper presents a conceptual groundwater model that is fully integrated into New Zealand's national hydrological model TopNet based on TopModel concepts (Beven, 1992). Within this conceptual framework, the integrated model can simulate not only surface processes, but also groundwater processes and surface water-groundwater interaction processes (including groundwater flow, river-groundwater interaction, and groundwater interaction with external watersheds). The developed model was applied to two New Zealand catchments with different hydro-geological and climate characteristics (Pareora catchment in the Canterbury Plains and Grey catchment on the West Coast). Previous studies have documented strong interactions between the river and groundwater, based on the analysis of a large number of concurrent flow measurements and associated information along the river main stem. Application of the integrated hydrological model indicates flow simulation (compared to the original hydrological model conceptualisation) during low flow conditions are significantly improved and further insights on local river dynamics are gained. Due to its conceptual characteristics and low level of data requirement, the integrated model could be used at local and national scales to improve the simulation of hydrological processes in non-topographically driven areas (where groundwater processes are important), and to assess impact of climate change on the integrated hydrological cycle in these areas.
NASA Technical Reports Server (NTRS)
Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.
1992-01-01
In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.
Enhancing conceptual change using argumentative essays
NASA Astrophysics Data System (ADS)
Kalman, Calvin S.; Rohar, Shelley; Wells, David
2004-05-01
We show the utility of following up collaborative group work with written exercises. In a previous paper we discussed promoting conceptual change using collaborative group exercises in a manner based on the notion of conceptual conflict developed by Hewson and Hewson in which representatives of differing viewpoints debate their outlook. In this paper, we describe an enhancement of this method based on Feyerabend's principle of counterinduction—the process by which one theory or idea is used to affect change in its rival. Students were required to follow up the conceptual conflict exercises with a written critique. Evaluations were done using the same enhanced version of the force concept inventory as administered to the students in the previous study.
Data Warehouse Design from HL7 Clinical Document Architecture Schema.
Pecoraro, Fabrizio; Luzi, Daniela; Ricci, Fabrizio L
2015-01-01
This paper proposes a semi-automatic approach to extract clinical information structured in a HL7 Clinical Document Architecture (CDA) and transform it in a data warehouse dimensional model schema. It is based on a conceptual framework published in a previous work that maps the dimensional model primitives with CDA elements. Its feasibility is demonstrated providing a case study based on the analysis of vital signs gathered during laboratory tests.
ERIC Educational Resources Information Center
Potter, George
2011-01-01
There has been a shift in the conceptualization of leadership and needed leadership skills in education within today's society. Models that were previously used to aid in the development and understanding of leadership roles may not be appropriate given the current climate within education. However, new concepts based largely on research are…
Applying Conceptual Blending to Model Coordinated Use of Multiple Ontological Metaphors
ERIC Educational Resources Information Center
Dreyfus, Benjamin W.; Gupta, Ayush; Redish, Edward F.
2015-01-01
Energy is an abstract science concept, so the ways that we think and talk about energy rely heavily on ontological metaphors: metaphors for what kind of thing energy is. Two commonly used ontological metaphors for energy are "energy as a substance" and "energy as a vertical location." Our previous work has demonstrated that…
O'Connor, Stephen S; Shain, Lindsey M; Whitehill, Jennifer M; Ebel, Beth E
2017-02-01
Previous research suggests that anticipation of incoming phone calls or messages and impulsivity are significantly associated with motor vehicle crash. We took a more explanative approach to investigate a conceptual model regarding the direct and indirect effect of compulsive cell phone use and impulsive personality traits on crash risk. We recruited a sample of 307 undergraduate college students to complete an online survey that included measures of cell phone use, impulsivity, and history of motor vehicle crash. Using a structural equation model, we examined the direct and indirect relationships between factors of the Cell Phone Overuse Scale-II (CPOS-II), impulsivity, in-vehicle phone use, and severity and frequency of previous motor vehicle crash. Self-reported miles driven per week and year in college were included as covariates in the model. Our findings suggest that anticipation of incoming communication has a direct association with greater in-vehicle phone use, but was not directly or indirectly associated with increasing risk of previous motor vehicle crash. Of the three latent factors comprising the CPOS-II, only anticipation was significantly associated with elevated cell phone use while driving. Greater impulsivity and use of in-vehicle cell phone use while driving were directly and significantly associated with greater risk of motor vehicle crash. Anticipation of incoming cellular contacts (calls or texts) is associated with greater in-vehicle phone use, while greater in-vehicle cell phone use and impulsive traits are associated with elevated risk of motor vehicle crashes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dini-Andreote, Francisco; Stegen, James C; van Elsas, Jan Dirk; Salles, Joana Falcão
2015-03-17
Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages--which provide a larger spatiotemporal scale relative to within stage analyses--revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended--and experimentally testable--conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.
Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan Dirk; Salles, Joana Falcão
2015-01-01
Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages—which provide a larger spatiotemporal scale relative to within stage analyses—revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended—and experimentally testable—conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems. PMID:25733885
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. A. Wasiolek
The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the referencemore » biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).« less
Leach, Colin Wayne; van Zomeren, Martijn; Zebel, Sven; Vliek, Michael L W; Pennekamp, Sjoerd F; Doosje, Bertjan; Ouwerkerk, Jaap W; Spears, Russell
2008-07-01
Recent research shows individuals' identification with in-groups to be psychologically important and socially consequential. However, there is little agreement about how identification should be conceptualized or measured. On the basis of previous work, the authors identified 5 specific components of in-group identification and offered a hierarchical 2-dimensional model within which these components are organized. Studies 1 and 2 used confirmatory factor analysis to validate the proposed model of self-definition (individual self-stereotyping, in-group homogeneity) and self-investment (solidarity, satisfaction, and centrality) dimensions, across 3 different group identities. Studies 3 and 4 demonstrated the construct validity of the 5 components by examining their (concurrent) correlations with established measures of in-group identification. Studies 5-7 demonstrated the predictive and discriminant validity of the 5 components by examining their (prospective) prediction of individuals' orientation to, and emotions about, real intergroup relations. Together, these studies illustrate the conceptual and empirical value of a hierarchical multicomponent model of in-group identification.
Rouse, R A
1991-01-01
Work by both advertising and health researchers has independently yielded hierarchy of effects models which can be used to predict campaign success. Unfortunately, however, previous work has been criticized as "common sense" approaches which are more "assumed" than "proven." This analysis argues that much of the problem is due to the lack of precision often associated with over-simplified "uni-dimensional" models. Instead, this perspective synthesized a "two-dimensional" health hierarchy of effects model and outlines a pragmatic strategy for campaign measurement.
Grembowski, David; Schaefer, Judith; Johnson, Karin E; Fischer, Henry; Moore, Susan L; Tai-Seale, Ming; Ricciardi, Richard; Fraser, James R; Miller, Donald; LeRoy, Lisa
2014-03-01
Effective healthcare for people with multiple chronic conditions (MCC) is a US priority, but the inherent complexity makes both research and delivery of care particularly challenging. As part of AHRQ Multiple Chronic Conditions Research Network (MCCRN) efforts, the Network developed a conceptual model to guide research in this area. To synthesize methodological and topical issues relevant to MCC patient care into a framework that can improve the delivery of care and advance future research about caring for patients with MCC. The Network synthesized essential constructs for MCC research identified from roundtable discussion, input from expert advisors, and previously published models. The AHRQ MCCRN conceptual model defines complexity as the gap between patient needs and healthcare services, taking into account both the multiple considerations that affect the needs of MCC patients, as well as the contextual factors that influence service delivery. The model reframes processes and outcomes to include not only clinical care quality and experience, but also patient health, well being, and quality of life. The single-condition paradigm for treating needs one-by-one falls apart and highlights the need for care systems to address dynamic patient needs. Defining complexity in terms of the misalignment between patient needs and services offers new insights in how to research and develop solutions to patient care needs.
NASA Astrophysics Data System (ADS)
Torres, Y.; Escalante, M. P.
2009-04-01
This work illustrates the advantages of using a Geographic Information System in a cooperative project with researchers of different countries, such as the RESIS II project (financed by the Norwegian Government and managed by CEPREDENAC) for seismic hazard assessment of Central America. As input data present different formats, cover distinct geographical areas and are subjected to different interpretations, data inconsistencies may appear and their management get complicated. To achieve data homogenization and to integrate them in a GIS, it is required previously to develop a conceptual model. This is accomplished in two phases: requirements analysis and conceptualization. The Unified Modeling Language (UML) is used to compose the conceptual model of the GIS. UML complies with ISO 19100 norms and allows the designer defining model architecture and interoperability. The GIS provides a frame for the combination of large geographic-based data volumes, with an uniform geographic reference and avoiding duplications. All this information contains its own metadata following ISO 19115 normative. In this work, the integration in the same environment of active faults and subduction slabs geometries, combined with the epicentres location, has facilitated the definition of seismogenetic regions. This is a great support for national specialists of different countries to make easier their teamwork. The GIS capacity for making queries (by location and by attributes) and geostatistical analyses is used to interpolate discrete data resulting from seismic hazard calculations and to create continuous maps as well as to check and validate partial results of the study. GIS-based products, such as complete, homogenised databases and thematic cartography of the region, are distributed to all researchers, facilitating cross-national communication, the project execution and results dissemination.
Punishment in human choice: direct or competitive suppression?
Critchfield, Thomas S; Paletz, Elliott M; MacAleese, Kenneth R; Newland, M Christopher
2003-01-01
This investigation compared the predictions of two models describing the integration of reinforcement and punishment effects in operant choice. Deluty's (1976) competitive-suppression model (conceptually related to two-factor punishment theories) and de Villiers' (1980) direct-suppression model (conceptually related to one-factor punishment theories) have been tested previously in nonhumans but not at the individual level in humans. Mouse clicking by college students was maintained in a two-alternative concurrent schedule of variable-interval money reinforcement. Punishment consisted of variable-interval money losses. Experiment 1 verified that money loss was an effective punisher in this context. Experiment 2 consisted of qualitative model comparisons similar to those used in previous studies involving nonhumans. Following a no-punishment baseline, punishment was superimposed upon both response alternatives. Under schedule values for which the direct-suppression model, but not the competitive-suppression model, predicted distinct shifts from baseline performance, or vice versa, 12 of 14 individual-subject functions, generated by 7 subjects, supported the direct-suppression model. When the punishment models were converted to the form of the generalized matching law, least-squares linear regression fits for a direct-suppression model were superior to those of a competitive-suppression model for 6 of 7 subjects. In Experiment 3, a more thorough quantitative test of the modified models, fits for a direct-suppression model were superior in 11 of 13 cases. These results correspond well to those of investigations conducted with nonhumans and provide the first individual-subject evidence that a direct-suppression model, evaluated both qualitatively and quantitatively, describes human punishment better than a competitive-suppression model. We discuss implications for developing better punishment models and future investigations of punishment in human choice. PMID:13677606
The (Mathematical) Modeling Process in Biosciences
Torres, Nestor V.; Santos, Guido
2015-01-01
In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology. PMID:26734063
A bicycle safety index for evaluating urban street facilities.
Asadi-Shekari, Zohreh; Moeinaddini, Mehdi; Zaly Shah, Muhammad
2015-01-01
The objectives of this research are to conceptualize the Bicycle Safety Index (BSI) that considers all parts of the street and to propose a universal guideline with microscale details. A point system method comparing existing safety facilities to a defined standard is proposed to estimate the BSI. Two streets in Singapore and Malaysia are chosen to examine this model. The majority of previous measurements to evaluate street conditions for cyclists usually cannot cover all parts of streets, including segments and intersections. Previous models also did not consider all safety indicators and cycling facilities at a microlevel in particular. This study introduces a new concept of a practical BSI to complete previous studies using its practical, easy-to-follow, point system-based outputs. This practical model can be used in different urban settings to estimate the level of safety for cycling and suggest some improvements based on the standards.
Recurrent personality dimensions in inclusive lexical studies: indications for a big six structure.
Saucier, Gerard
2009-10-01
Previous evidence for both the Big Five and the alternative six-factor model has been drawn from lexical studies with relatively narrow selections of attributes. This study examined factors from previous lexical studies using a wider selection of attributes in 7 languages (Chinese, English, Filipino, Greek, Hebrew, Spanish, and Turkish) and found 6 recurrent factors, each with common conceptual content across most of the studies. The previous narrow-selection-based six-factor model outperformed the Big Five in capturing the content of the 6 recurrent wideband factors. Adjective markers of the 6 recurrent wideband factors showed substantial incremental prediction of important criterion variables over and above the Big Five. Correspondence between wideband 6 and narrowband 6 factors indicate they are variants of a "Big Six" model that is more general across variable-selection procedures and may be more general across languages and populations.
Priming Effects Associated with the Hierarchical Levels of Classification Systems
ERIC Educational Resources Information Center
Loehrlein, Aaron J.
2012-01-01
The act of categorization produces conceptual representations in memory while knowledge organization (KO) systems provide conceptual representations that are used in information storage and retrieval systems. Previous research has explored how KO systems can be designed to resemble the user's internal conceptual structures. However, the more…
Knowledge, Expectations, and Inductive Reasoning within Conceptual Hierarchies
ERIC Educational Resources Information Center
Coley, John D.; Hayes, Brett; Lawson, Christopher; Moloney, Michelle
2004-01-01
Previous research (e.g. "Cognition" 64 (1997) 73) suggests that the privileged level for inductive inference in a folk biological conceptual hierarchy does not correspond to the ''basic'' level (i.e. the level at which concepts are both informative and distinct). To further explore inductive inference within conceptual hierarchies, we examine…
[The conceptual bases for an entrepreneurial management of local health systems].
Yepes, F J; Durán-Arenas, L
1994-01-01
Health management has become a fashion and it is now common to talk about strategic or service management, or of total quality management applied to health systems. However, all these elements of business management are being translated to health systems without a previous analysis on the implicit health model and the rationality of the prevalent production functions, which can lead to a higher level of efficiency but with an inadequate use of resources. This paper suggests the importance of integrating the advances in management and health sciences and proposes what are considered to be the conceptual basis for the design of a management tool geared to conduct local health systems with effectiveness, efficiency, quality and equity.
NASA Astrophysics Data System (ADS)
Lin, Y.; Bajcsy, P.; Valocchi, A. J.; Kim, C.; Wang, J.
2007-12-01
Natural systems are complex, thus extensive data are needed for their characterization. However, data acquisition is expensive; consequently we develop models using sparse, uncertain information. When all uncertainties in the system are considered, the number of alternative conceptual models is large. Traditionally, the development of a conceptual model has relied on subjective professional judgment. Good judgment is based on experience in coordinating and understanding auxiliary information which is correlated to the model but difficult to be quantified into the mathematical model. For example, groundwater recharge and discharge (R&D) processes are known to relate to multiple information sources such as soil type, river and lake location, irrigation patterns and land use. Although hydrologists have been trying to understand and model the interaction between each of these information sources and R&D processes, it is extremely difficult to quantify their correlations using a universal approach due to the complexity of the processes, the spatiotemporal distribution and uncertainty. There is currently no single method capable of estimating R&D rates and patterns for all practical applications. Chamberlin (1890) recommended use of "multiple working hypotheses" (alternative conceptual models) for rapid advancement in understanding of applied and theoretical problems. Therefore, cross analyzing R&D rates and patterns from various estimation methods and related field information will likely be superior to using only a single estimation method. We have developed the Pattern Recognition Utility (PRU), to help GIS users recognize spatial patterns from noisy 2D image. This GIS plug-in utility has been applied to help hydrogeologists establish alternative R&D conceptual models in a more efficient way than conventional methods. The PRU uses numerical methods and image processing algorithms to estimate and visualize shallow R&D patterns and rates. It can provide a fast initial estimate prior to planning labor intensive and time consuming field R&D measurements. Furthermore, the Spatial Pattern 2 Learn (SP2L) was developed to cross analyze results from the PRU with ancillary field information, such as land coverage, soil type, topographic maps and previous estimates. The learning process of SP2L cross examines each initially recognized R&D pattern with the ancillary spatial dataset, and then calculates a quantifiable reliability index for each R&D map using a supervised machine learning technique called decision tree. This JAVA based software package is capable of generating alternative R&D maps if the user decides to apply certain conditions recognized by the learning process. The reliability indices from SP2L will improve the traditionally subjective approach to initiating conceptual models by providing objectively quantifiable conceptual bases for further probabilistic and uncertainty analyses. Both the PRU and SP2L have been designed to be user-friendly and universal utilities for pattern recognition and learning to improve model predictions from sparse measurements by computer-assisted integration of spatially dense geospatial image data and machine learning of model dependencies.
ERIC Educational Resources Information Center
Knickel, Karlheinz; Brunori, Gianluca; Rand, Sigrid; Proost, Jet
2009-01-01
The role of farming previously dedicated mainly to food production changed with an increasing recognition of the multifunctionality of agriculture and rural areas. It seems obvious to expect that farmers and rural actors adapt themselves to these new conditions, which are innovative and redefine their job. In many regions farmers can increase…
Virtual Ray Tracing as a Conceptual Tool for Image Formation in Mirrors and Lenses
ERIC Educational Resources Information Center
Heikkinen, Lasse; Savinainen, Antti; Saarelainen, Markku
2016-01-01
The ray tracing method is widely used in teaching geometrical optics at the upper secondary and university levels. However, using simple and straightforward examples may lead to a situation in which students use the model of ray tracing too narrowly. Previous studies show that students seem to use the ray tracing method too concretely instead of…
ERIC Educational Resources Information Center
Prather, Walter; Golden, Jeannie A.
2009-01-01
Attachment theory provides a useful conceptual framework for understanding trauma and the treatment of children who have been abused. This article examines childhood trauma and attachment issues from the perspective of behavior analysis, and provides a theoretical basis for two alternative treatment models for previously abused children and their…
ERIC Educational Resources Information Center
O'Connor, Bridget N.
2004-01-01
Building on the conceptual foundations suggested in the previous two papers in this issue, this article describes the application of a workplace learning cycle theory to the construction of a curriculum for a graduate-level course of study in workplace education. As a way to prepare chief learning officers and heads of corporate universities, the…
Cui, Xiaoyu; Gao, Chuanji; Zhou, Jianshe; Guo, Chunyan
2016-09-28
It has been widely shown that recognition memory includes two distinct retrieval processes: familiarity and recollection. Many studies have shown that recognition memory can be facilitated when there is a perceptual match between the studied and the tested items. Most event-related potential studies have explored the perceptual match effect on familiarity on the basis of the hypothesis that the specific event-related potential component associated with familiarity is the FN400 (300-500 ms mid-frontal effect). However, it is currently unclear whether the FN400 indexes familiarity or conceptual implicit memory. In addition, on the basis of the findings of a previous study, the so-called perceptual manipulations in previous studies may also involve some conceptual alterations. Therefore, we sought to determine the influence of perceptual manipulation by color changes on recognition memory when the perceptual or the conceptual processes were emphasized. Specifically, different instructions (perceptually or conceptually oriented) were provided to the participants. The results showed that color changes may significantly affect overall recognition memory behaviorally and that congruent items were recognized with a higher accuracy rate than incongruent items in both tasks, but no corresponding neural changes were found. Despite the evident familiarity shown in the two tasks (the behavioral performance of recognition memory was much higher than at the chance level), the FN400 effect was found in conceptually oriented tasks, but not perceptually oriented tasks. It is thus highly interesting that the FN400 effect was not induced, although color manipulation of recognition memory was behaviorally shown, as seen in previous studies. Our findings of the FN400 effect for the conceptual but not perceptual condition support the explanation that the FN400 effect indexes conceptual implicit memory.
Function-based payment model for inpatient medical rehabilitation: an evaluation.
Sutton, J P; DeJong, G; Wilkerson, D
1996-07-01
To describe the components of a function-based prospective payment model for inpatient medical rehabilitation that parallels diagnosis-related groups (DRGs), to evaluate this model in relation to stakeholder objectives, and to detail the components of a quality of care incentive program that, when combined with this payment model, creates an incentive for provides to maximize functional outcomes. This article describes a conceptual model, involving no data collection or data synthesis. The basic payment model described parallels DRGs. Information on the potential impact of this model on medical rehabilitation is gleaned from the literature evaluating the impact of DRGs. The conceptual model described is evaluated against the results of a Delphi Survey of rehabilitation providers, consumers, policymakers, and researchers previously conducted by members of the research team. The major shortcoming of a function-based prospective payment model for inpatient medical rehabilitation is that it contains no inherent incentive to maximize functional outcomes. Linkage of reimbursement to outcomes, however, by withholding a fixed proportion of the standard FRG payment amount, placing that amount in a "quality of care" pool, and distributing that pool annually among providers whose predesignated, facility-level, case-mix-adjusted outcomes are attained, may be one strategy for maximizing outcome goals.
Shah, Sachin D.
2004-01-01
Air Force Plant 4 and adjacent Naval Air Station-Joint Reserve Base Carswell Field at Fort Worth, Texas, constitute a government-owned, contractor-operated facility that has been in operation since 1942. Contaminants from AFP4, primarily volatile organic compounds and metals, have entered the ground-water-flow system through leakage from waste-disposal sites and from manufacturing processes. The U.S. Geological Survey developed a comprehensive geodatabase of temporal and spatial environmental information associated with the hydrogeologic units (alluvial aquifer, Goodland-Walnut confining unit, and Paluxy aquifer) beneath the facility and a three-dimensional conceptual model of the hydrogeologic units integrally linked to the geodatabase. The geodatabase design uses a thematic layer approach to create layers of feature data using a geographic information system. The various features are separated into relational tables in the geodatabase on the basis of how they interact and correspond to one another. Using the geodatabase, geographic data at the site are manipulated to produce maps, allow interactive queries, and perform spatial analyses. The conceptual model for the study area comprises computer-generated, three-dimensional block diagrams of the hydrogeologic units. The conceptual model provides a platform for visualization of hydrogeologic-unit sections and surfaces and for subsurface environmental analyses. The conceptual model is based on three structural surfaces and two thickness configurations of the study area. The three structural surfaces depict the altitudes of the tops of the three hydrogeologic units. The two thickness configurations are those of the alluvial aquifer and the Goodland-Walnut confining unit. The surface of the alluvial aquifer was created using a U.S. Geological Survey 10-meter digital elevation model. The 2,130 point altitudes of the top of the Goodland-Walnut unit were compiled from lithologic logs from existing wells, available soil-boring logs, and previous studies. Data from 120 wells, primarily from existing reports, were used to create a map of the approximate altitude of the Paluxy aquifer.
Coupling groundwater and riparian vegetation models to assess effects of reservoir releases
Springer, Abraham E.; Wright, Julie M.; Shafroth, Patrick B.; Stromberg, Juliet C.; Patten, Duncan T.
1999-01-01
Although riparian areas in the arid southwestern United States are critical for maintaining species diversity, their extent and health have been declining since Euro‐American settlement. The purpose of this study was to develop a methodology to evaluate the potential for riparian vegetation restoration and groundwater recharge. A numerical groundwater flow model was coupled with a conceptual riparian vegetation model to predict hydrologic conditions favorable to maintaining riparian vegetation downstream of a reservoir. A Geographic Information System (GIS) was used for this one‐way coupling. Constant and seasonally varying releases from the dam were simulated using volumes anticipated to be permitted by a regional water supplier. Simulations indicated that seasonally variable releases would produce surface flow 5.4–8.5 km below the dam in a previously dry reach. Using depth to groundwater simulations from the numerical flow model with conceptual models of depths to water necessary for maintenance of riparian vegetation, the GIS analysis predicted a 5‐ to 6.5‐fold increase in the area capable of sustaining riparian vegetation.
Dementia and well-being: A conceptual framework based on Tom Kitwood's model of needs.
Kaufmann, Elke G; Engel, Sabine A
2016-07-01
The topic of well-being is becoming increasingly significant as a key outcome measure in dementia care. Previous work on personhood of individuals with dementia suggests that their subjective well-being can be described in terms of comfort, inclusion, identity, occupation and attachment The study aimed to examine Tom Kitwood's model of psychological needs and well-being in dementia based on the self-report of individuals with moderate or severe dementia and to differentiate and elaborate this model in the light of the empirical qualitative data. Nineteen inhabitants of a special long-term care unit were interviewed using a semi-structured interview. Data were analysed using content analysis. Thirty components within Kitwood's model have been identified. A conceptual framework of subjective well-being in dementia was developed based on a theoretical background. The study was able to find indications that Kitwood's model has empirical relevance. Nevertheless, it requires to be extended by the domain agency. Furthermore, the study suggests that individuals with dementia are important informants of their subjective well-being. © The Author(s) 2014.
Roux-Rouquié, Magali; Caritey, Nicolas; Gaubert, Laurent; Rosenthal-Sabroux, Camille
2004-07-01
One of the main issues in Systems Biology is to deal with semantic data integration. Previously, we examined the requirements for a reference conceptual model to guide semantic integration based on the systemic principles. In the present paper, we examine the usefulness of the Unified Modelling Language (UML) to describe and specify biological systems and processes. This makes unambiguous representations of biological systems, which would be suitable for translation into mathematical and computational formalisms, enabling analysis, simulation and prediction of these systems behaviours.
30 CFR 250.294 - May I combine the Conceptual Plan and the DWOP?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Information Deepwater Operations Plan (dwop) § 250.294 May I combine the Conceptual Plan and the DWOP? If your development project meets the following criteria, you may submit a combined Conceptual Plan/DWOP on or before... production or completion technology for which you have obtained approval previously. ...
30 CFR 250.294 - May I combine the Conceptual Plan and the DWOP?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Information Deepwater Operations Plan (dwop) § 250.294 May I combine the Conceptual Plan and the DWOP? If your development project meets the following criteria, you may submit a combined Conceptual Plan/DWOP on or before... production or completion technology for which you have obtained approval previously. ...
30 CFR 250.294 - May I combine the Conceptual Plan and the DWOP?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Information Deepwater Operations Plan (dwop) § 250.294 May I combine the Conceptual Plan and the DWOP? If your development project meets the following criteria, you may submit a combined Conceptual Plan/DWOP on or before... production or completion technology for which you have obtained approval previously. ...
Intercomparison of 3D pore-scale flow and solute transport simulation methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.
2016-09-01
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include methods that 1) explicitly model the three-dimensional geometry of pore spaces and 2) those that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of class 1, based on direct numerical simulation using computational fluid dynamics (CFD) codes, against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of class 1 based on the immersed-boundary method (IMB),more » lattice Boltzmann method (LBM), smoothed particle hydrodynamics (SPH), as well as a model of class 2 (a pore-network model or PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results with previously reported experimental observations. Experimental observations are limited to measured pore-scale velocities, so solute transport comparisons are made only among the various models. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations).« less
NASA Astrophysics Data System (ADS)
Koehler, Karen E.
The purpose of this qualitative study was to explore the use of 3-D printed models as an instructional tool in a middle school science classroom for students with visual impairments and compare their use to traditional tactile graphics for aiding conceptual understanding of geoscience concepts. Specifically, this study examined if the students' conceptual understanding of plate tectonics was different when 3-D printed objects were used versus traditional tactile graphics and explored the misconceptions held by students with visual impairments related to plate tectonics and associated geoscience concepts. Interview data was collected one week prior to instruction and one week after instruction and throughout the 3-week instructional period and additional ata sources included student journals, other student documents and audio taped instructional sessions. All students in the middle school classroom received instruction on plate tectonics using the same inquiry-based curriculum but during different time periods of the day. One group of students, the 3D group, had access to 3-D printed models illustrating specific geoscience concepts and the group of students, the TG group, had access to tactile graphics illustrating the same geoscience concepts. The videotaped pre and post interviews were transcribed, analyzed and coded for conceptual understanding using constant comparative analysis and to uncover student misconceptions. All student responses to the interview questions were categorized in terms of conceptual understanding. Analysis of student journals and classroom talk served to uncover student mental models and misconceptions about plate tectonics and associated geoscience concepts to measure conceptual understanding. A slight majority of the conceptual understanding before instruction was categorized as no understanding or alternative understanding and after instruction the larger majority of conceptual understanding was categorized as scientific or scientific with fragments. Most of the participants in the study increased their scientific understandings of plate tectonics and other geoscience concepts and held more scientific understandings after instruction than before instruction. All students had misconceptions before the instructional period began, but the number of misconceptions were fewer after the instructional period. Students in the TG group not only had fewer misconceptions than the 3D group before instruction, but also after instruction. Many of the student misconceptions were similar to those held by students with typical vision; however, some were unique to students with visual impairments. One unique aspect of this study was the examination of student mental models, which had not previously been done with students with visual impairments, but is more commonplace in research on students with typical vision. Student mental models were often descriptive rather than explanatory, often incorporating scientific language, but not clearly showing that the student had a complete grasp of the concept. Consistent with prior research, the use of 3-D printed models instead of tactile graphics seemed to make little difference either positively or negatively on student conceptual understanding; however, the participants did interact with the 3-D printed models differently, sometimes gleaning additional information from them. This study also provides additional support for inquiry-based instruction as an effective means of science instruction for students with visual impairments.
A model of free-living gait: A factor analysis in Parkinson's disease.
Morris, Rosie; Hickey, Aodhán; Del Din, Silvia; Godfrey, Alan; Lord, Sue; Rochester, Lynn
2017-02-01
Gait is a marker of global health, cognition and falls risk. Gait is complex, comprised of multiple characteristics sensitive to survival, age and pathology. Due to covariance amongst characteristics, conceptual gait models have been established to reduce redundancy and aid interpretation. Previous models have been derived from laboratory gait assessments which are costly in equipment and time. Body-worn monitors (BWM) allow for free-living, low-cost and continuous gait measurement and produce similar covariant gait characteristics. A BWM gait model from both controlled and free-living measurement has not yet been established, limiting utility. 103 control and 67 PD participants completed a controlled laboratory assessment; walking for two minutes around a circuit wearing a BWM. 89 control and 58 PD participants were assessed in free-living, completing normal activities for 7 days wearing a BWM. Fourteen gait characteristics were derived from the BWM, selected according to a previous model. Principle component analysis derived factor loadings of gait characteristics. Four gait domains were derived for both groups and conditions; pace, rhythm, variability and asymmetry. Domains totalled 84.84% and 88.43% of variance for controlled and 90.00% and 93.03% of variance in free-living environments for control and PD participants respectively. Gait characteristic loading was unambiguous for all characteristics apart from gait variability which demonstrated cross-loading for both groups and environments. The model was highly congruent with the original model. The conceptual gait models remained stable using a BWM in controlled and free-living environments. The model became more discrete supporting utility of the gait model for free-living gait. Copyright © 2016 Elsevier B.V. All rights reserved.
Lichtenberg, Peter A; Ocepek-Welikson, Katja; Ficker, Lisa J; Gross, Evan; Rahman-Filipiak, Analise; Teresi, Jeanne A
2018-01-01
The objectives of this study were threefold: (1) to empirically test the conceptual model proposed by the Lichtenberg Financial Decision-making Rating Scale (LFDRS); (2) to examine the psychometric properties of the LFDRS contextual factors in financial decision-making by investigating both the reliability and convergent validity of the subscales and total scale, and (3) extending previous work on the scale through the collection of normative data on financial decision-making. A convenience sample of 200 independent function and community dwelling older adults underwent cognitive and financial management testing and were interviewed using the LFDRS. Confirmatory factor analysis, internal consistency measures, and hierarchical regression were used in a sample of 200 community-dwelling older adults, all of whom were making or had recently made a significant financial decision. Results confirmed the scale's reliability and supported the conceptual model. Convergent validity analyses indicate that as hypothesized, cognition is a significant predictor of risk scores. Financial management scores, however, were not predictive of decision-making risk scores. The psychometric properties of the LFDRS support the scale's use as it was proposed. The LFDRS instructions and scale are provided for clinicians to use in financial capacity assessments.
Fern, Lorna A; Taylor, Rachel M; Whelan, Jeremy; Pearce, Susie; Grew, Tom; Brooman, Katie; Starkey, Carol; Millington, Hannah; Ashton, James; Gibson, Faith
2013-01-01
There is recognition that teenagers and young adults with cancer merit age-appropriate specialist care. However, outcomes associated with such specialist care are not defined. Patient experience and patient-reported outcomes such as quality of life are gaining importance. Nevertheless, there is a lack of theoretical basis and patient involvement in experience surveys for young people. We previously proposed a conceptual model of the lived experience of cancer. We aimed to refine this model adding to areas that were lacking or underreported. The proposed conceptual framework will inform a bespoke patient experience survey for young people. Using participatory research, 11 young people aged 13 to 25 years at diagnosis, participated in a 1-day workshop consisting of semistructured peer-to-peer interviews. Eight core themes emerged: impact of cancer diagnosis, information provision, place of care, role of health professionals, coping, peers, psychological support, and life after cancer. The conceptual framework has informed survey development for a longitudinal cohort study examining patient experience and outcomes associated with specialist cancer care. Young people must be kept at the center of interactions in recognition of their stated needs of engagement, of individually tailored information and support unproxied by parents/family. Age-appropriate information and support services that help young people deal with the impact of cancer on daily life and life after cancer must be made available. If we are to develop services that meet need, patient experience surveys must be influenced by patient involvement. Young people can be successfully involved in planning research relevant to their experience.
Brief introductory guide to agent-based modeling and an illustration from urban health research.
Auchincloss, Amy H; Garcia, Leandro Martin Totaro
2015-11-01
There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation.
Brief introductory guide to agent-based modeling and an illustration from urban health research
Auchincloss, Amy H.; Garcia, Leandro Martin Totaro
2017-01-01
There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation. PMID:26648364
NASA Astrophysics Data System (ADS)
Fovet, O.; Ruiz, L.; Hrachowitz, M.; Faucheux, M.; Gascuel-Odoux, C.
2015-01-01
While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is difficult to measure, and another one is that objective functions are usually based on individual variables time series (e.g. the discharge). This reduces the ability of classical procedures to assess the relevance of the conceptual hypotheses associated with models. We analysed the annual hysteric patterns observed between stream flow and water storage both in the saturated and unsaturated zones of the hillslope and the riparian zone of a headwater catchment in French Brittany (Environmental Research Observatory ERO AgrHys (ORE AgrHys)). The saturated-zone storage was estimated using distributed shallow groundwater levels and the unsaturated-zone storage using several moisture profiles. All hysteretic loops were characterized by a hysteresis index. Four conceptual models, previously calibrated and evaluated for the same catchment, were assessed with respect to their ability to reproduce the hysteretic patterns. The observed relationship between stream flow and saturated, and unsaturated storages led us to identify four hydrological periods and emphasized a clearly distinct behaviour between riparian and hillslope groundwaters. Although all the tested models were able to produce an annual hysteresis loop between discharge and both saturated and unsaturated storage, the integration of a riparian component led to overall improved hysteretic signatures, even if some misrepresentation remained. Such a system-like approach is likely to improve model selection.
Quinn, T. Alexander; Kohl, Peter
2013-01-01
Since the development of the first mathematical cardiac cell model 50 years ago, computational modelling has become an increasingly powerful tool for the analysis of data and for the integration of information related to complex cardiac behaviour. Current models build on decades of iteration between experiment and theory, representing a collective understanding of cardiac function. All models, whether computational, experimental, or conceptual, are simplified representations of reality and, like tools in a toolbox, suitable for specific applications. Their range of applicability can be explored (and expanded) by iterative combination of ‘wet’ and ‘dry’ investigation, where experimental or clinical data are used to first build and then validate computational models (allowing integration of previous findings, quantitative assessment of conceptual models, and projection across relevant spatial and temporal scales), while computational simulations are utilized for plausibility assessment, hypotheses-generation, and prediction (thereby defining further experimental research targets). When implemented effectively, this combined wet/dry research approach can support the development of a more complete and cohesive understanding of integrated biological function. This review illustrates the utility of such an approach, based on recent examples of multi-scale studies of cardiac structure and mechano-electric function. PMID:23334215
ERIC Educational Resources Information Center
Aristovnik, Aleksander
2012-01-01
The purpose of the paper is to review some previous researches examining ICT efficiency and the impact of ICT on educational output/outcome as well as different conceptual and methodological issues related to performance measurement. Moreover, a definition, measurements and the empirical application of a model measuring the efficiency of ICT use…
ERIC Educational Resources Information Center
Bissonnette, Sarah A.; Combs, Elijah D.; Nagami, Paul H.; Byers, Victor; Fernandez, Juliana; Le, Dinh; Realin, Jared; Woodham, Selina; Smith, Julia I.; Tanner, Kimberly D.
2017-01-01
While there have been concerted efforts to reform undergraduate biology toward teaching students to organize their conceptual knowledge like experts, there are few tools that attempt to measure this. We previously developed the Biology Card Sorting Task (BCST), designed to probe how individuals organize their conceptual biological knowledge.…
ERIC Educational Resources Information Center
Viennot, Laurence; Décamp, Nicolas
2016-01-01
This investigation is focused on possible links between the development of critical attitude and conceptual understanding. We conducted a fine grained analysis of five student teachers' critical and conceptual development during a one hour and a half interaction with an expert. This investigation completes a series of three previous studies…
The development of a survey instrument for community health improvement.
Bazos, D A; Weeks, W B; Fisher, E S; DeBlois, H A; Hamilton, E; Young, M J
2001-01-01
OBJECTIVE: To develop a survey instrument that could be used both to guide and evaluate community health improvement efforts. DATA SOURCES/STUDY SETTING: A randomized telephone survey was administered to a sample of about 250 residents in two communities in Lehigh Valley, Pennsylvania in the fall of 1997. METHODS: The survey instrument was developed by health professionals representing diverse health care organizations. This group worked collaboratively over a period of two years to (1) select a conceptual model of health as a foundation for the survey; (2) review relevant literature to identify indicators that adequately measured the health constructs within the chosen model; (3) develop new indicators where important constructs lacked specific measures; and (4) pilot test the final survey to assess the reliability and validity of the instrument. PRINCIPAL FINDINGS: The Evans and Stoddart Field Model of the Determinants of Health and Well-Being was chosen as the conceptual model within which to develop the survey. The Field Model depicts nine domains important to the origins and production of health and provides a comprehensive framework from which to launch community health improvement efforts. From more than 500 potential indicators we identified 118 survey questions that reflected the multiple determinants of health as conceptualized by this model. Sources from which indicators were selected include the Behavior Risk Factor Surveillance Survey, the National Health Interview Survey, the Consumer Assessment of Health Plans Survey, and the SF-12 Summary Scales. The work group developed 27 new survey questions for constructs for which we could not locate adequate indicators. Twenty-five questions in the final instrument can be compared to nationally published norms or benchmarks. The final instrument was pilot tested in 1997 in two communities. Administration time averaged 22 minutes with a response rate of 66 percent. Reliability of new survey questions was adequate. Face validity was supported by previous findings from qualitative and quantitative studies. CONCLUSIONS: We developed, pilot tested, and validated a survey instrument designed to provide more comprehensive and timely data to communities for community health assessments. This instrument allows communities to identify and measure critical domains of health that have previously not been captured in a single instrument. PMID:11508639
Conceptual and logical level of database modeling
NASA Astrophysics Data System (ADS)
Hunka, Frantisek; Matula, Jiri
2016-06-01
Conceptual and logical levels form the top most levels of database modeling. Usually, ORM (Object Role Modeling) and ER diagrams are utilized to capture the corresponding schema. The final aim of business process modeling is to store its results in the form of database solution. For this reason, value oriented business process modeling which utilizes ER diagram to express the modeling entities and relationships between them are used. However, ER diagrams form the logical level of database schema. To extend possibilities of different business process modeling methodologies, the conceptual level of database modeling is needed. The paper deals with the REA value modeling approach to business process modeling using ER-diagrams, and derives conceptual model utilizing ORM modeling approach. Conceptual model extends possibilities for value modeling to other business modeling approaches.
Nguyen, Quoc Dinh; Fernandez, Nicolas; Karsenti, Thierry; Charlin, Bernard
2014-12-01
Although reflection is considered a significant component of medical education and practice, the literature does not provide a consensual definition or model for it. Because reflection has taken on multiple meanings, it remains difficult to operationalise. A standard definition and model are needed to improve the development of practical applications of reflection. This study was conducted in order to identify, explore and analyse the most influential conceptualisations of reflection, and to develop a new theory-informed and unified definition and model of reflection. A systematic review was conducted to identify the 15 most cited authors in papers on reflection published during the period from 2008 to 2012. The authors' definitions and models were extracted. An exploratory thematic analysis was carried out and identified seven initial categories. Categories were clustered and reworded to develop an integrative definition and model of reflection, which feature core components that define reflection and extrinsic elements that influence instances of reflection. Following our review and analysis, five core components of reflection and two extrinsic elements were identified as characteristics of the reflective thinking process. Reflection is defined as the process of engaging the self (S) in attentive, critical, exploratory and iterative (ACEI) interactions with one's thoughts and actions (TA), and their underlying conceptual frame (CF), with a view to changing them and a view on the change itself (VC). Our conceptual model consists of the defining core components, supplemented with the extrinsic elements that influence reflection. This article presents a new theory-informed, five-component definition and model of reflection. We believe these have advantages over previous models in terms of helping to guide the further study, learning, assessment and teaching of reflection. © 2014 John Wiley & Sons Ltd.
Squirt flow due to interfacial water films in hydrate bearing sediments
NASA Astrophysics Data System (ADS)
Sell, Kathleen; Quintal, Beatriz; Kersten, Michael; Saenger, Erik H.
2018-05-01
Sediments containing gas hydrate dispersed in the pore space are known to show a characteristic seismic anomaly which is a high attenuation along with increasing seismic velocities. Currently, this observation cannot be fully explained albeit squirt-flow type mechanisms on the microscale have been speculated to be the cause. Recent major findings from in situ experiments, using the gas in excess
and water in excess
formation method, and coupled with high-resolution synchrotron-based X-ray micro-tomography, have revealed the systematic presence of thin water films between the quartz grains and the encrusting hydrate. The data obtained from these experiments underwent an image processing procedure to quantify the thicknesses and geometries of the aforementioned interfacial water films. Overall, the water films vary from sub-micrometer to a few micrometers in thickness. In addition, some of the water films interconnect through water bridges. This geometrical analysis is used to propose a new conceptual squirt flow model for hydrate bearing sediments. A series of numerical simulations is performed considering variations of the proposed model to study seismic attenuation caused by such thin water films. Our results support previous speculation that squirt flow can explain high attenuation at seismic frequencies in hydrate bearing sediments, but based on a conceptual squirt flow model which is geometrically different than those previously considered.
Measuring patient-perceived hospital service quality: a conceptual framework.
Pai, Yogesh P; Chary, Satyanarayana T
2016-04-18
Purpose - Although measuring healthcare service quality is not a new phenomenon, the instruments used to measure are timeworn. With the shift in focus to patient centric processes in hospitals and recognizing healthcare to be different compared to other services, service quality measurement needs to be tuned specifically to healthcare. The purpose of this paper is to design a conceptual framework for measuring patient perceived hospital service quality (HSQ), based on existing service quality literature. Design/methodology/approach - Using HSQ theories, expanding existing healthcare service models and literature, a conceptual framework is proposed to measure HSQ. The paper outlines patient perceived service quality dimensions. Findings - An instrument for measuring HSQ dimensions is developed and compared with other service quality measuring instruments. The latest dimensions are in line with previous studies, but a relationship dimension is added. Practical implications - The framework empowers managers to assess healthcare quality in corporate, public and teaching hospitals. Originality/value - The paper helps academics and practitioners to assess HSQ from a patient perspective.
Assessment of Alternative Conceptual Models Using Reactive Transport Modeling with Monitoring Data
NASA Astrophysics Data System (ADS)
Dai, Z.; Price, V.; Heffner, D.; Hodges, R.; Temples, T.; Nicholson, T.
2005-12-01
Monitoring data proved very useful in evaluating alternative conceptual models, simulating contaminant transport behavior, and reducing uncertainty. A graded approach using three alternative conceptual site models was formulated to simulate a field case of tetrachloroethene (PCE) transport and biodegradation. These models ranged from simple to complex in their representation of subsurface heterogeneities. The simplest model was a single-layer homogeneous aquifer that employed an analytical reactive transport code, BIOCHLOR (Aziz et al., 1999). Due to over-simplification of the aquifer structure, this simulation could not reproduce the monitoring data. The second model consisted of a multi-layer conceptual model, in combination with numerical modules, MODFLOW and RT3D within GMS, to simulate flow and reactive transport. Although the simulation results from the second model were comparatively better than those from the simple model, they still did not adequately reproduce the monitoring well concentrations because the geological structures were still inadequately defined. Finally, a more realistic conceptual model was formulated that incorporated heterogeneities and geologic structures identified from well logs and seismic survey data using the Petra and PetraSeis software. This conceptual model included both a major channel and a younger channel that were detected in the PCE source area. In this model, these channels control the local ground-water flow direction and provide a preferential chemical transport pathway. Simulation results using this conceptual site model proved compatible with the monitoring concentration data. This study demonstrates that the bias and uncertainty from inadequate conceptual models are much larger than those introduced from an inadequate choice of model parameter values (Neuman and Wierenga, 2003; Meyer et al., 2004; Ye et al., 2004). This case study integrated conceptual and numerical models, based on interpreted local hydrogeologic and geochemical data, with detailed monitoring plume data. It provided key insights for confirming alternative conceptual site models and assessing the performance of monitoring networks. A monitoring strategy based on this graded approach for assessing alternative conceptual models can provide the technical bases for identifying critical monitoring locations, adequate monitoring frequency, and performance indicator parameters for performance monitoring involving ground-water levels and PCE concentrations.
A Structural Equation Model of Conceptual Change in Physics
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Sinatra, Gale M.
2011-01-01
A model of conceptual change in physics was tested on introductory-level, college physics students. Structural equation modeling was used to test hypothesized relationships among variables linked to conceptual change in physics including an approach goal orientation, need for cognition, motivation, and course grade. Conceptual change in physics…
The Site-Scale Saturated Zone Flow Model for Yucca Mountain
NASA Astrophysics Data System (ADS)
Al-Aziz, E.; James, S. C.; Arnold, B. W.; Zyvoloski, G. A.
2006-12-01
This presentation provides a reinterpreted conceptual model of the Yucca Mountain site-scale flow system subject to all quality assurance procedures. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain, which is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. This effort started from the ground up with a revised and updated hydrogeologic framework model, which incorporates the latest lithology data, and increased grid resolution that better resolves the hydrogeologic framework, which was updated throughout the model domain. In addition, faults are much better represented using the 250× 250- m2 spacing (compared to the previous model's 500× 500-m2 spacing). Data collected since the previous model calibration effort have been included and they comprise all Nye County water-level data through Phase IV of their Early Warning Drilling Program. Target boundary fluxes are derived from the newest (2004) Death Valley Regional Flow System model from the US Geologic Survey. A consistent weighting scheme assigns importance to each measured water-level datum and boundary flux extracted from the regional model. The numerical model is calibrated by matching these weighted water level measurements and boundary fluxes using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM~v2.24 and parameter estimation software PEST~v5.5) and model setup facilitates efficient calibration of multiple conceptual models. Analyses evaluate the impact of these updates and additional data on the modeled potentiometric surface and the flowpaths emanating from below the repository. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the proposed repository and compare them to those from the previous model calibration. Specific discharge at a point 5~km from the repository is also examined and found to be within acceptable uncertainty. The results show that updated model yields a calibration with smaller residuals than the previous model revision while ensuring that flowpaths follow measured gradients and paths derived from hydrochemical analyses. This work was supported by the Yucca Mountain Site Characterization Office as part of the Civilian Radioactive Waste Management Program, which is managed by the U.S. Department of Energy, Yucca Mountain Site Characterization Project. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE AC04 94AL85000.
History dependent quantum random walks as quantum lattice gas automata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shakeel, Asif, E-mail: asif.shakeel@gmail.com, E-mail: dmeyer@math.ucsd.edu, E-mail: plove@haverford.edu; Love, Peter J., E-mail: asif.shakeel@gmail.com, E-mail: dmeyer@math.ucsd.edu, E-mail: plove@haverford.edu; Meyer, David A., E-mail: asif.shakeel@gmail.com, E-mail: dmeyer@math.ucsd.edu, E-mail: plove@haverford.edu
Quantum Random Walks (QRW) were first defined as one-particle sectors of Quantum Lattice Gas Automata (QLGA). Recently, they have been generalized to include history dependence, either on previous coin (internal, i.e., spin or velocity) states or on previous position states. These models have the goal of studying the transition to classicality, or more generally, changes in the performance of quantum walks in algorithmic applications. We show that several history dependent QRW can be identified as one-particle sectors of QLGA. This provides a unifying conceptual framework for these models in which the extra degrees of freedom required to store the historymore » information arise naturally as geometrical degrees of freedom on the lattice.« less
Reiter, Michael A; Saintil, Max; Yang, Ziming; Pokrajac, Dragoljub
2009-08-01
Conceptual modeling is a useful tool for identifying pathways between drivers, stressors, Valued Ecosystem Components (VECs), and services that are central to understanding how an ecosystem operates. The St. Jones River watershed, DE is a complex ecosystem, and because management decisions must include ecological, social, political, and economic considerations, a conceptual model is a good tool for accommodating the full range of inputs. In 2002, a Four-Component, Level 1 conceptual model was formed for the key habitats of the St. Jones River watershed, but since the habitat level of resolution is too fine for some important watershed-scale issues we developed a functional watershed-scale model using the existing narrowed habitat-scale models. The narrowed habitat-scale conceptual models and associated matrices developed by Reiter et al. (2006) were combined with data from the 2002 land use/land cover (LULC) GIS-based maps of Kent County in Delaware to assemble a diagrammatic and numerical watershed-scale conceptual model incorporating the calculated weight of each habitat within the watershed. The numerical component of the assembled watershed model was subsequently subjected to the same Monte Carlo narrowing methodology used for the habitat versions to refine the diagrammatic component of the watershed-scale model. The narrowed numerical representation of the model was used to generate forecasts for changes in the parameters "Agriculture" and "Forest", showing that land use changes in these habitats propagated through the results of the model by the weighting factor. Also, the narrowed watershed-scale conceptual model identified some key parameters upon which to focus research attention and management decisions at the watershed scale. The forecast and simulation results seemed to indicate that the watershed-scale conceptual model does lead to different conclusions than the habitat-scale conceptual models for some issues at the larger watershed scale.
Refinement, Validation and Benchmarking of a Model for E-Government Service Quality
NASA Astrophysics Data System (ADS)
Magoutas, Babis; Mentzas, Gregoris
This paper presents the refinement and validation of a model for Quality of e-Government Services (QeGS). We built upon our previous work where a conceptualized model was identified and put focus on the confirmatory phase of the model development process, in order to come up with a valid and reliable QeGS model. The validated model, which was benchmarked with very positive results with similar models found in the literature, can be used for measuring the QeGS in a reliable and valid manner. This will form the basis for a continuous quality improvement process, unleashing the full potential of e-government services for both citizens and public administrations.
Conceptual Frameworks in the Doctoral Research Process: A Pedagogical Model
ERIC Educational Resources Information Center
Berman, Jeanette; Smyth, Robyn
2015-01-01
This paper contributes to consideration of the role of conceptual frameworks in the doctoral research process. Through reflection on the two authors' own conceptual frameworks for their doctoral studies, a pedagogical model has been developed. The model posits the development of a conceptual framework as a core element of the doctoral…
NASA Astrophysics Data System (ADS)
Kelly, Jacquelyn
Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they are proficient in engineering language. However, exposure to engineering terms did not influence engineering language proficiency. These results stress the importance of engineering language proficiency for learning, but warn that simply exposing students to engineering terms does not promote engineering language proficiency.
Adoption of Clinical Information Systems in Health Services Organizations
Austin, Charles J.; Holland, Gloria J.
1988-01-01
This paper presents a conceptual model of factors which influence organizational decisions to invest in the installation of clinical information systems. Using results of previous research as a framework, the relative influence of clinical, fiscal, and strategic-institutional decision structures are examined. These adoption decisions are important in health services organizations because clinical information is essential for managing demand and allocating resources, managing quality of care, and controlling costs.
NASA Technical Reports Server (NTRS)
Yeh, Hue-Hsia; Brown, Cheryl; Jeng, Frank
2012-01-01
Advanced Life Support Sizing Analysis Tool (ALSSAT) at the time of this reporting has been updated to version 6.0. A previous version was described in Tool for Sizing Analysis of the Advanced Life Support System (MSC- 23506), NASA Tech Briefs, Vol. 29, No. 12 (December 2005), page 43. To recapitulate: ALSSAT is a computer program for sizing and analyzing designs of environmental-control and life-support systems for spacecraft and surface habitats to be involved in exploration of Mars and the Moon. Of particular interest for analysis by ALSSAT are conceptual designs of advanced life-support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water and process human wastes to reduce the need of resource resupply. ALSSAT is a means of investigating combinations of such subsystems technologies featuring various alternative conceptual designs and thereby assisting in determining which combination is most cost-effective. ALSSAT version 6.0 has been improved over previous versions in several respects, including the following additions: an interface for reading sizing data from an ALS database, computational models of a redundant regenerative CO2 and Moisture Removal Amine Swing Beds (CAMRAS) for CO2 removal, upgrade of the Temperature & Humidity Control's Common Cabin Air Assembly to a detailed sizing model, and upgrade of the Food-management subsystem.
Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology
NASA Astrophysics Data System (ADS)
Weiler, Markus; McDonnell, Jeff
2004-01-01
We present an approach for process conceptualization in hillslope hydrology. We develop and implement a series of virtual experiments, whereby the interaction between water flow pathways, source and mixing at the hillslope scale is examined within a virtual experiment framework. We define these virtual experiments as 'numerical experiments with a model driven by collective field intelligence'. The virtual experiments explore the first-order controls in hillslope hydrology, where the experimentalist and modeler work together to cooperatively develop and analyze the results. Our hillslope model for the virtual experiments (HillVi) in this paper is based on conceptualizing the water balance within the saturated and unsaturated zone in relation to soil physical properties in a spatially explicit manner at the hillslope scale. We argue that a virtual experiment model needs to be able to capture all major controls on subsurface flow processes that the experimentalist might deem important, while at the same time being simple with few 'tunable parameters'. This combination makes the approach, and the dialog between experimentalist and modeler, a useful hypothesis testing tool. HillVi simulates mass flux for different initial conditions under the same flow conditions. We analyze our results in terms of an artificial line source and isotopic hydrograph separation of water and subsurface flow. Our results for this first set of virtual experiments showed how drainable porosity and soil depth variability exert a first order control on flow and transport at the hillslope scale. We found that high drainable porosity soils resulted in a restricted water table rise, resulting in more pronounced channeling of lateral subsurface flow along the soil-bedrock interface. This in turn resulted in a more anastomosing network of tracer movement across the slope. The virtual isotope hydrograph separation showed higher proportions of event water with increasing drainable porosity. When combined with previous experimental findings and conceptualizations, virtual experiments can be an effective way to isolate certain controls and examine their influence over a range of rainfall and antecedent wetness conditions.
Davison, Kirsten K; Blake, Christine E; Blaine, Rachel E; Younginer, Nicholas A; Orloski, Alexandria; Hamtil, Heather A; Ganter, Claudia; Bruton, Yasmeen P; Vaughn, Amber E; Fisher, Jennifer O
2015-09-17
Snacking contributes to excessive energy intakes in children. Yet factors shaping child snacking are virtually unstudied. This study examines food parenting practices specific to child snacking among low-income caregivers. Semi-structured interviews were conducted in English or Spanish with 60 low-income caregivers of preschool-aged children (18 non-Hispanic white, 22 African American/Black, 20 Hispanic; 92% mothers). A structured interview guide was used to solicit caregivers' definitions of snacking and strategies they use to decide what, when and how much snack their child eats. Interviews were audio-recorded, transcribed verbatim and analyzed using an iterative theory-based and grounded approach. A conceptual model of food parenting specific to child snacking was developed to summarize the findings and inform future research. Caregivers' descriptions of food parenting practices specific to child snacking were consistent with previous models of food parenting developed based on expert opinion [1, 2]. A few noteworthy differences however emerged. More than half of participants mentioned permissive feeding approaches (e.g., my child is the boss when it comes to snacks). As a result, permissive feeding was included as a higher order feeding dimension in the resulting model. In addition, a number of novel feeding approaches specific to child snacking emerged including child-centered provision of snacks (i.e., responding to a child's hunger cues when making decisions about snacks), parent unilateral decision making (i.e., making decisions about a child's snacks without any input from the child), and excessive monitoring of snacks (i.e., monitoring all snacks provided to and consumed by the child). The resulting conceptual model includes four higher order feeding dimensions including autonomy support, coercive control, structure and permissiveness and 20 sub-dimensions. This study formulates a language around food parenting practices specific to child snacking, identifies dominant constructs, and proposes a conceptual framework to guide future research.
Conceptual Change Texts in Chemistry Teaching: A Study on the Particle Model of Matter
ERIC Educational Resources Information Center
Beerenwinkel, Anne; Parchmann, Ilka; Grasel, Cornelia
2011-01-01
This study explores the effect of a conceptual change text on students' awareness of common misconceptions on the particle model of matter. The conceptual change text was designed based on principles of text comprehensibility, of conceptual change instruction and of instructional approaches how to introduce the particle model. It was evaluated in…
A Mission Concept to Study Multigenerational Mammalian Reproduction in Partial Gravity
NASA Technical Reports Server (NTRS)
Rodgers, Erica M.; Simon, Matthew A.; Chai, Patrick R.; Neilan, James H.; Stillwagen, Fred H.; Williams, Phillip A.; Lewis, Weston
2016-01-01
A team at NASA Langley Research Center conducted a study during which a conceptual space mission was designed. In this study, rodents are used as human analogs to gather biological and systems data in a relevant environment applicable to future settlements on Mars. The mission concept uniquely addresses the combined effects of long-durations (one-year or greater), autonomous and robotic operations, and biological responses to partial gravity with an emphasis on reproduction. The objectives of this study were to 1) understand challenges associated with designing an artificial gravity habitat that supports the reproduction and maturation of a large animal colony, 2) identify mission architectures and operational concepts to transport and maintain such a facility, and 3) identify fundamental science considerations for mammalian reproduction studies to inform vehicle design. A model demonstration unit was developed to visualize and test certain design concepts that resulted from these considerations. Three versions of this demonstration unit were built over the course of the study, each taking into account lessons learned from the previous version. This paper presents the updated baseline mission and spacecraft design concepts to achieve these objectives, with a specific emphasis on updates since publication in previous works. Analyses of the integrated system trades among the elements which make up the conceptual vehicle are described to address overall feasibility and identify potential integrated design opportunities. The latest iteration of the habitat robotics design and a conceptual design example for autonomous care of crew and systems are also presented. Finally, the conclusion of this conceptual design study, necessary future analyses to enable such a facility, and comments upon other applications of a similar exploration-focused research facilities are addressed.
Validation of the Continuum of Care Conceptual Model for Athletic Therapy
Lafave, Mark R.; Butterwick, Dale; Eubank, Breda
2015-01-01
Utilization of conceptual models in field-based emergency care currently borrows from existing standards of medical and paramedical professions. The purpose of this study was to develop and validate a comprehensive conceptual model that could account for injuries ranging from nonurgent to catastrophic events including events that do not follow traditional medical or prehospital care protocols. The conceptual model should represent the continuum of care from the time of initial injury spanning to an athlete's return to participation in their sport. Finally, the conceptual model should accommodate both novices and experts in the AT profession. This paper chronicles the content validation steps of the Continuum of Care Conceptual Model for Athletic Therapy (CCCM-AT). The stages of model development were domain and item generation, content expert validation using a three-stage modified Ebel procedure, and pilot testing. Only the final stage of the modified Ebel procedure reached a priori 80% consensus on three domains of interest: (1) heading descriptors; (2) the order of the model; (3) the conceptual model as a whole. Future research is required to test the use of the CCCM-AT in order to understand its efficacy in teaching and practice within the AT discipline. PMID:26464897
A Physically Based Coupled Chemical and Physical Weathering Model for Simulating Soilscape Evolution
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Welivitiya, D.; Hancock, G. R.
2015-12-01
A critical missing link in existing landscape evolution models is a dynamic soil evolution models where soils co-evolve with the landform. Work by the authors over the last decade has demonstrated a computationally manageable model for soil profile evolution (soilscape evolution) based on physical weathering. For chemical weathering it is clear that full geochemistry models such as CrunchFlow and PHREEQC are too computationally intensive to be couplable to existing soilscape and landscape evolution models. This paper presents a simplification of CrunchFlow chemistry and physics that makes the task feasible, and generalises it for hillslope geomorphology applications. Results from this simplified model will be compared with field data for soil pedogenesis. Other researchers have previously proposed a number of very simple weathering functions (e.g. exponential, humped, reverse exponential) as conceptual models of the in-profile weathering process. The paper will show that all of these functions are possible for specific combinations of in-soil environmental, geochemical and geologic conditions, and the presentation will outline the key variables controlling which of these conceptual models can be realistic models of in-profile processes and under what conditions. The presentation will finish by discussing the coupling of this model with a physical weathering model, and will show sample results from our SSSPAM soilscape evolution model to illustrate the implications of including chemical weathering in the soilscape evolution model.
NASA Technical Reports Server (NTRS)
Geiselhart, Karl A.; Ozoroski, Lori P.; Fenbert, James W.; Shields, Elwood W.; Li, Wu
2011-01-01
This paper documents the development of a conceptual level integrated process for design and analysis of efficient and environmentally acceptable supersonic aircraft. To overcome the technical challenges to achieve this goal, a conceptual design capability which provides users with the ability to examine the integrated solution between all disciplines and facilitates the application of multidiscipline design, analysis, and optimization on a scale greater than previously achieved, is needed. The described capability is both an interactive design environment as well as a high powered optimization system with a unique blend of low, mixed and high-fidelity engineering tools combined together in the software integration framework, ModelCenter. The various modules are described and capabilities of the system are demonstrated. The current limitations and proposed future enhancements are also discussed.
Improved Conceptual Models Methodology (ICoMM) for Validation of Non-Observable Systems
2015-12-01
distribution is unlimited IMPROVED CONCEPTUAL MODELS METHODOLOGY (ICoMM) FOR VALIDATION OF NON-OBSERVABLE SYSTEMS by Sang M. Sok December 2015...REPORT TYPE AND DATES COVERED Dissertation 4. TITLE AND SUBTITLE IMPROVED CONCEPTUAL MODELS METHODOLOGY (ICoMM) FOR VALIDATION OF NON-OBSERVABLE...importance of the CoM. The improved conceptual model methodology (ICoMM) is developed in support of improving the structure of the CoM for both face and
Montalván, F J; Heredia, J; Ruiz, J M; Pardo-Igúzquiza, E; García de Domingo, A; Elorza, F J
2017-01-15
The Fuente de Piedra lake is a hypersaline wetland of great extension (13.5km 2 ) and rich in aquatic birds and other species. It became therefore the third Spanish wetland to be included in the Ramsar convention and has been a "nature reserve" since 1984. The lake has an endorheic basin (150km 2 ) with variable-density flows dominated by complex hydrogeological conditions. The traditional conceptualization of endorheic basins in semiarid climates considered that the brine in this hydric system was exclusively of evaporative origin and was placed only in the lake and its surrounding discharge area in the basin. Previous geophysical and hydrochemical studies identified different types of waters and brines. In this work, natural tracers (Cl - , Br - , Na + , Mg 2+ ) and environmental isotopes ( 18 O, 2 H, 14 C, 13 C and 3 H) were employed to a) discriminate different types of brines according to their degree of evaporation and genesis, and b) to estimate residence times of brine waters and identify recharge areas of the different flow subsystems. A conceptual model of the hydrogeological system of the lake basin and its links to a regional karst system is proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
Lichtenberg, Peter A.; Ocepek-Welikson, Katja; Ficker, Lisa J.; Gross, Evan; Rahman-Filipiak, Analise; Teresi, Jeanne A.
2017-01-01
Objectives The objectives of this study were threefold: (1) to empirically test the conceptual model proposed by the Lichtenberg Financial Decision Rating Scale (LFDRS); (2) to examine the psychometric properties of the LFDRS contextual factors in financial decision-making by investigating both the reliability and convergent validity of the subscales and total scale, and (3) extending previous work on the scale through the collection of normative data on financial decision-making. Methods A convenience sample of 200 independent function and community dwelling older adults underwent cognitive and financial management testing and were interviewed using the LFDRS. Confirmatory factor analysis, internal consistency measures, and hierarchical regression were used in a sample of 200 community-dwelling older adults, all of whom were making or had recently made a significant financial decision. Results Results confirmed the scale’s reliability and supported the conceptual model. Convergent validity analyses indicate that as hypothesized, cognition is a significant predictor of risk scores. Financial management scores, however, were not predictive of decision-making risk scores. Conclusions The psychometric properties of the LFDRS support the scale’s use as it was proposed in Lichtenberg et al., 2015. Clinical Implications The LFDRS instructions and scale are provided for clinicians to use in financial capacity assessments. PMID:29077531
NASA Astrophysics Data System (ADS)
Pétré, Marie-Amélie; Rivera, Alfonso; Lefebvre, René
2016-04-01
The Milk River transboundary aquifer straddles southern Alberta (Canada) and northern Montana (United States), a semi-arid and water-short region. The extensive use of this regional sandstone aquifer over the 20th century has led to a major drop in water levels locally, and concerns about the durability of the resources have been raised since the mid-1950. Even though the Milk River Aquifer (MRA) has been studied for decades, most of the previous studies were limited by the international border, preventing a sound understanding of the aquifer dynamics. Yet, a complete portrait of the aquifer is required for proper management of this shared resource. The transboundary study of the MRA aims to overcome transboundary limitations by providing a comprehensive characterization of the groundwater resource at the aquifer scale, following a three-stage approach: 1) The development of a 3D unified geological model of the MRA (50,000 km2). The stratigraphic framework on both sides of the border was harmonized and various sources of geological data were unified to build the transboundary geological model. The delineation of the aquifer and the geometry and thicknesses of the geological units were defined continuously across the border. 2) Elaboration of a conceptual hydrogeological model by linking hydrogeological and geochemical data with the 3D unified geological model. This stage is based on a thorough literature review and focused complementary field work on both sides of the border. The conceptual model includes the determination of the groundwater flow pattern, the spatial distribution of hydraulic properties, a groundwater budget and the definition of the groundwater types. Isotopes (3H, 14C, 36Cl) were used to delineate the recharge area as well as the active and low-flow areas. 3) The building of a 3D numerical groundwater flow model of the MRA (26,000 km2). This model is a transposition of the geological and hydrogeological conceptual models. A pre-exploitation steady-state model and a subsequent transient numerical model with several exploitation scenarios were developed. The numerical model aims to test the conceptual model and to provide a basis to assess the best possible uses of this valuable resource that is shared by Canada and the United States of America. This study provides a unique approach with scientific tools for proper aquifer assessment and groundwater management at the aquifer scale, not interrupted by a jurisdictional boundary. These tools are combined and integrated into three models, which together will form the basis of reliable sustainable groundwater and aquifer management in cooperation, thus facilitating the creation of a system of transboundary water governance based on scientific knowledge.
The Emergence of Organizing Structure in Conceptual Representation.
Lake, Brenden M; Lawrence, Neil D; Tenenbaum, Joshua B
2018-06-01
Both scientists and children make important structural discoveries, yet their computational underpinnings are not well understood. Structure discovery has previously been formalized as probabilistic inference about the right structural form-where form could be a tree, ring, chain, grid, etc. (Kemp & Tenenbaum, 2008). Although this approach can learn intuitive organizations, including a tree for animals and a ring for the color circle, it assumes a strong inductive bias that considers only these particular forms, and each form is explicitly provided as initial knowledge. Here we introduce a new computational model of how organizing structure can be discovered, utilizing a broad hypothesis space with a preference for sparse connectivity. Given that the inductive bias is more general, the model's initial knowledge shows little qualitative resemblance to some of the discoveries it supports. As a consequence, the model can also learn complex structures for domains that lack intuitive description, as well as predict human property induction judgments without explicit structural forms. By allowing form to emerge from sparsity, our approach clarifies how both the richness and flexibility of human conceptual organization can coexist. Copyright © 2018 Cognitive Science Society, Inc.
Clarifying the Relation Between Extraversion and Positive Affect.
Smillie, Luke D; DeYoung, Colin G; Hall, Phillip J
2015-10-01
This article clarifies two sources of ambiguity surrounding the relation between extraversion and positive affect. First, positive affect is defined differently across major models of the structure of affect. Second, no previous research has examined potentially diverging associations of lower-order aspects of extraversion (i.e., assertiveness and enthusiasm) with positive affect. Australian (Study 1: N = 437, 78% female, Mage = 20.41) and American (Study 2: N = 262, 39% female, Mage = 33.86) participants completed multiple measures of extraversion and positive affect. Correlations were employed to examine relations among these measures. In both studies, extraversion was most clearly associated with positive affect as conceptualized within a major factor model of affect-specifically, as positive activation (Watson & Tellegen, 1985)-rather than the valence-based conceptualization of positive affect provided by a circumplex model of affect (Russell, 1980). This was also the case for the assertiveness and enthusiasm aspects of extraversion. Our findings clarify the nature of the positive affective component of extraversion, which is best described in terms of both positive valence and high activation. © 2014 Wiley Periodicals, Inc.
Benoit, Richard; Mion, Lorraine
2012-08-01
This paper presents a proposed conceptual model to guide research on pressure ulcer risk in critically ill patients, who are at high risk for pressure ulcer development. However, no conceptual model exists that guides risk assessment in this population. Results from a review of prospective studies were evaluated for design quality and level of statistical reporting. Multivariate findings from studies having high or medium design quality by the National Institute of Health and Clinical Excellence standards were conceptually grouped. The conceptual groupings were integrated into Braden and Bergstrom's (Braden and Bergstrom [1987] Rehabilitation Nursing, 12, 8-12, 16) conceptual model, retaining their original constructs and augmenting their concept of intrinsic factors for tissue tolerance. The model could enhance consistency in research on pressure ulcer risk factors. Copyright © 2012 Wiley Periodicals, Inc.
Knowledge Restructuring in the Development of Children's Cosmologies
NASA Astrophysics Data System (ADS)
Blown, E. J.; Bryce, T. G. K.
2006-10-01
The development of children’s cosmologies was investigated over a 13-year period, using multi-modal, in-depth interviews with 686 children (217 boys, 227 girls from New Zealand and 129 boys, 113 girls from China), aged 2 18. Children were interviewed while they observed the apparent motion of the Sun and Moon, and other features of the Earth; drew their ideas of the shape and motion of the Earth, Moon and Sun, and the causes of daytime and night-time; then modelled them using play-dough; which led into discussion of related ideas. These interviews revealed that children’s cosmologies were far richer than previously thought and surprisingly similar in developmental trends across the two cultures. There was persuasive evidence of three types of conceptual change: a long-term process (over years) similar to weak restructuring; a medium-term process (over months) akin to radical restructuring; and a dynamic form of conceptual crystallisation (often in seconds) whereby previously unconnected/conflicting concepts gel to bring new meaning to previously isolated ideas. The interview technique enabled the researchers to ascertain children’s concepts from intuitive, cultural, and scientific levels. The evidence supports the argument that children have coherent cosmologies that they actively create to make sense of the world rather than fragmented, incoherent “knowledge-in-pieces”.
Gorecki, Claudia; Lamping, Donna L; Brown, Julia M; Madill, Anna; Firth, Jill; Nixon, Jane
2010-12-01
Evaluating outcomes such as health-related quality of life is particularly important and relevant in skin conditions such as pressure ulcers where the condition and associated interventions pose substantial burden to patients. Measures to evaluate such outcomes need to be developed by utilising patient-perspective to ensure that content and conceptualisation is relevant to patients. Our aim was to develop a conceptual framework of health-related quality of life in pressure ulcers, based on patients' views about the impact of pressure ulcers and interventions on health-related quality of life to inform the development of a new patient-reported outcome measure. SETTING, PARTICIPANTS AND METHODS: We developed a working conceptual framework based on a previous review of the literature, then used semi-structured qualitative interviews with 30 adults with pressure ulcers (22-94 years) purposively sampled from hospital, community and rehabilitation care settings in England and Northern Ireland to obtain patients' views, and thematic content analysis and review by a multidisciplinary expert group to develop the final conceptual framework. Our conceptual model includes four health-related quality of life domains (symptoms, physical functioning, psychological well-being, social functioning), divided into 13 sub-domains and defined by specific descriptive components. We have identified health-related quality of life outcomes that are important to people with pressure ulcers and developed a conceptual framework using robust and systematic methods, which provides the basis for the development of a new pressure ulcer-specific measure of health-related quality of life. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Robins, N. S.; Rutter, H. K.; Dumpleton, S.; Peach, D. W.
2005-01-01
Groundwater investigation has long depended on the process of developing a conceptual flow model as a precursor to developing a mathematical model, which in turn may lead in complex aquifers to the development of a numerical approximation model. The assumptions made in the development of the conceptual model depend heavily on the geological framework defining the aquifer, and if the conceptual model is inappropriate then subsequent modelling will also be incorrect. Paradoxically, the development of a robust conceptual model remains difficult, not least because this 3D paradigm is usually reduced to 2D plans and sections. 3D visualisation software is now available to facilitate the development of the conceptual model, to make the model more robust and defensible and to assist in demonstrating the hydraulics of the aquifer system. Case studies are presented to demonstrate the role and cost-effectiveness of the visualisation process.
Lopez-Vergara, Hector I; Colder, Craig R
2013-11-01
Motivation and executive functioning are central to the etiology of attention-deficit/hyperactivity disorder (ADHD). Furthermore, it has been hypothesized that motivation should show specificity of association with ADHD-impulsivity/hyperactivity symptoms, whereas executive functioning should show specificity of association with ADHD-inattention symptoms. This study tests this specificity-hypothesis and extends previous research by conceptualizing motivation to include both reactivity to reward and punishment. Executive functioning was assessed using two different laboratory measures (the Wisconsin-Card-Sort and Stop-Signal Tasks) and motivation was measured using a laboratory measure of sensitivity to reward and punishment (the Point-Scoring-Reaction-Time Task). Findings suggested specificity of association between executive functioning and symptoms of inattention, and between motivation and symptoms of impulsivity/hyperactivity. However, support varied across indices of executive functioning. Results provide support for multiple component models of ADHD symptoms and extend the literature by providing a theoretically based conceptualization of motivation grounded on developmental neuroscience models of motivated behavior.
Gignac, M A; Cott, C
1998-09-01
This paper presents a conceptual model of physical independence and dependence as it relates to adult onset, chronic physical illness and disability. Physical independence and dependence are presented as two separate, continuous, and multiply determined constructs, and illustrations are provided of situations where people can be independent, dependent, not independent, or experience imposed dependence. The paper also discusses potential determinants of physical independence and dependence, including different domains of disability, the role of subjective perceptions, demographics, the physical and social/political environments, personal resources, attitudes and coping resources, illness and efficacy appraisals, and the nature of the assistive relationship. The paper extends work on physical independence and dependence by synthesizing the findings from previous studies and incorporating the findings from other relevant areas of research into the area. It also expands on the concepts of physical independence and dependence, as well as their determinants, and relates independence and dependence to other outcomes of interest such as service delivery.
Turnaround Time Modeling for Conceptual Rocket Engines
NASA Technical Reports Server (NTRS)
Nix, Michael; Staton, Eric J.
2004-01-01
Recent years have brought about a paradigm shift within NASA and the Space Launch Community regarding the performance of conceptual design. Reliability, maintainability, supportability, and operability are no longer effects of design; they have moved to the forefront and are affecting design. A primary focus of this shift has been a planned decrease in vehicle turnaround time. Potentials for instituting this decrease include attacking the issues of removing, refurbishing, and replacing the engines after each flight. less, it is important to understand the operational affects of an engine on turnaround time, ground support personnel and equipment. One tool for visualizing this relationship involves the creation of a Discrete Event Simulation (DES). A DES model can be used to run a series of trade studies to determine if the engine is meeting its requirements, and, if not, what can be altered to bring it into compliance. Using DES, it is possible to look at the ways in which labor requirements, parallel maintenance versus serial maintenance, and maintenance scheduling affect the overall turnaround time. A detailed DES model of the Space Shuttle Main Engines (SSME) has been developed. Trades may be performed using the SSME Processing Model to see where maintenance bottlenecks occur, what the benefits (if any) are of increasing the numbers of personnel, or the number and location of facilities, in addition to trades previously mentioned, all with the goal of optimizing the operational turnaround time and minimizing operational cost. The SSME Processing Model was developed in such a way that it can easily be used as a foundation for developing DES models of other operational or developmental reusable engines. Performing a DES on a developmental engine during the conceptual phase makes it easier to affect the design and make changes to bring about a decrease in turnaround time and costs.
NASA Astrophysics Data System (ADS)
Morón, S.; Gallagher, S. J.; Moresi, L. N.; Salles, T.; Rey, P. F.; Payenberg, T.
2016-12-01
The effect of plate-mantle dynamics on surface topography has increasingly being recognized. This concept is particularly useful for the understanding of the links between plate-mantle dynamics, continental break up and the creation of sedimentary basins and their associated drainage systems. To unravel these links back in time we present an approach that uses numerical models and the geological record. The sedimentary basins of the North West Shelf (NWS) of Australia contain an exceptional record of the Permian to early Cretaceous polyphased rifting of Australia from Greater India, which is in turn associated with the breakup of Gondwana. This record and the relative tectonic quiescence of the Australian Continent since the Late Cretaceous make the NWS a great natural laboratory for investigating the interaction between mantle dynamics, plate tectonics and drainage patterns. Furthermore, as a result of the extensive petroleum exploration and production in the area a uniquely large dataset containing seismic, lithologic, biostratigraphic and detrital zircon information is already available. This study will first focus on augmenting zircon datasets to refine the current conceptual models of paleodrainage systems associated with the NWS. Current conceptual models of drainage patterns suggest the previous existance of large transcontinental rivers that transported sediments from Antarctica and India, rather than from more proximal Australian sources. From a mass-balance point of view this model seems reasonable, as large transcontinental rivers would be required to transport the significant volume of sediments that are deposited in the thick (15km) sedimentary sequences of the NWS. Coupling of geodynamic (Underworld) and landscape-dynamics (Badlands) models will allow us to numerically test the likelihood of this conceptual model and also to present and integrated approach to investigate the link between deep Earth processes and surficial processes.
NASA Technical Reports Server (NTRS)
Pace, Dale K.
2000-01-01
A simulation conceptual model is a simulation developers way of translating modeling requirements (i. e., what is to be represented by the simulation or its modification) into a detailed design framework (i. e., how it is to be done), from which the software, hardware, networks (in the case of distributed simulation), and systems/equipment that will make up the simulation can be built or modified. A conceptual model is the collection of information which describes a simulation developers concept about the simulation and its pieces. That information consists of assumptions, algorithms, characteristics, relationships, and data. Taken together, these describe how the simulation developer understands what is to be represented by the simulation (entities, actions, tasks, processes, interactions, etc.) and how that representation will satisfy the requirements to which the simulation responds. Thus the conceptual model is the basis for judgment about simulation fidelity and validity for any condition that is not specifically tested. The more perspicuous and precise the conceptual model, the more likely it is that the simulation development will both fully satisfy requirements and allow demonstration that the requirements are satisfied (i. e., validation). Methods used in simulation conceptual model development have significant implications for simulation management and for assessment of simulation uncertainty. This paper suggests how to develop and document a simulation conceptual model so that the simulation fidelity and validity can be most effectively determined. These ideas for conceptual model development apply to all simulation varieties. The paper relates these ideas to uncertainty assessments as they relate to simulation fidelity and validity. The paper also explores implications for simulation management from conceptual model development methods, especially relative to reuse of simulation components.
NASA Astrophysics Data System (ADS)
Koji, Yusuke; Kitamura, Yoshinobu; Kato, Yoshikiyo; Tsutsui, Yoshio; Mizoguchi, Riichiro
In conceptual design, it is important to develop functional structures which reflect the rich experience in the knowledge from previous design failures. Especially, if a designer learns possible abnormal behaviors from a previous design failure, he or she can add an additional function which prevents such abnormal behaviors and faults. To do this, it is a crucial issue to share such knowledge about possible faulty phenomena and how to cope with them. In fact, a part of such knowledge is described in FMEA (Failure Mode and Effect Analysis) sheets, function structure models for systematic design and fault trees for FTA (Fault Tree Analysis).
Bhat; Bergstrom; Teasley; Bowker; Cordell
1998-01-01
/ This paper describes a framework for estimating the economic value of outdoor recreation across different ecoregions. Ten ecoregions in the continental United States were defined based on similarly functioning ecosystem characters. The individual travel cost method was employed to estimate recreation demand functions for activities such as motor boating and waterskiing, developed and primitive camping, coldwater fishing, sightseeing and pleasure driving, and big game hunting for each ecoregion. While our ecoregional approach differs conceptually from previous work, our results appear consistent with the previous travel cost method valuation studies.KEY WORDS: Recreation; Ecoregion; Travel cost method; Truncated Poisson model
Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.
2013-01-01
The general progression of human land use is an initial disturbance (e.g., deforestation, mining, agricultural expansion, overgrazing, and urbanization) that creates a sediment pulse to an estuary followed by dams that reduce sediment supply. We present a conceptual model of the effects of increasing followed by decreasing sediment supply that includes four sequential regimes, which propagate downstream: a stationary natural regime, transient increasing sediment supply, transient decreasing sediment supply, and a stationary altered regime. The model features characteristic lines that separate the four regimes. Previous studies of the San Francisco Estuary and watershed are synthesized in the context of this conceptual model. Hydraulic mining for gold in the watershed increased sediment supply to the estuary in the late 1800s. Adjustment to decreasing sediment supply began in the watershed and upper estuary around 1900 and in the lower estuary in the 1950s. Large freshwater flow in the late 1990s caused a step adjustment throughout the estuary and watershed. It is likely that the estuary and watershed are still capable of adjusting but further adjustment will be as steps that occur only during greater floods than previously experienced during the adjustment period. Humans are actively managing the system to try to prevent greater floods. If this hypothesis of step changes occurring for larger flows is true, then the return interval of step changes will increase or, if humans successfully control floods in perpetuity, there will be no more step changes.
An Expanded Conceptual Framework of Medical Students' Primary Care Career Choice.
Pfarrwaller, Eva; Audétat, Marie-Claude; Sommer, Johanna; Maisonneuve, Hubert; Bischoff, Thomas; Nendaz, Mathieu; Baroffio, Anne; Junod Perron, Noëlle; Haller, Dagmar M
2017-11-01
In many countries, the number of graduating medical students pursuing a primary care career does not meet demand. These countries face primary care physician shortages. Students' career choices have been widely studied, yet many aspects of this process remain unclear. Conceptual models are useful to plan research and educational interventions in such complex systems.The authors developed a framework of primary care career choice in undergraduate medical education, which expands on previously published models. They used a group-based, iterative approach to find the best way to represent the vast array of influences identified in previous studies, including in a recent systematic review of the literature on interventions to increase the proportion of students choosing a primary care career. In their framework, students enter medical school with their personal characteristics and initial interest in primary care. They complete a process of career decision making, which is subject to multiple interacting influences, both within and outside medical school, throughout their medical education. These influences are stratified into four systems-microsystem, mesosystem, exosystem, and macrosystem-which represent different levels of interaction with students' career choices.This expanded framework provides an updated model to help understand the multiple factors that influence medical students' career choices. It offers a guide for the development of new interventions to increase the proportion of students choosing primary care careers and for further research to better understand the variety of processes involved in this decision.
Wells-Parker, Elisabeth; Mann, Robert E; Dill, Patricia L; Stoduto, Gina; Shuggi, Rania; Cross, Ginger W
2009-05-01
This review summarizes evidence on negative affect among drinking drivers. Elevations in negative affect, including depressed mood, anxiety and hostility, have long been noted in convicted drinking drivers, and recent evidence suggests an association between negative affect and driving after drinking in the general population. Previous efforts to understand the significance of this negative affective state have ranged from suggestions that it may play a causal role in drinking driving to suggestions that it may interfere with response to treatment and remedial interventions. Recent studies have uncovered an important paradox involving negative affect among convicted drinking drivers (hereafter DUI offenders). DUI offenders with high levels of negative affect recidivated more frequently following a DUI program than did those reporting no or minimal negative affect. However, when a brief supportive motivational intervention was added to the program, offenders with high negative affect levels showed lower recidivism rates than did those with no or minimal negative affect. The review includes studies from the general literature on alcohol treatment in which the same negative affect paradox was reported. In an attempt to understand this paradox, we present a conceptual model involving well-established psychological processes, with a focus on salient discrepancy, the crucial component of cognitive dissonance. In this model, negative affect plays an important role in motivating both continued high-risk drinking as well as therapeutic change. This model suggests that links between motivational states and negative affective processes may be more complex than previously thought. Implications for intervention with DUI offenders are discussed.
The Cancer Family Caregiving Experience: An Updated and Expanded Conceptual Model
Fletcher, Barbara Swore; Miaskowski, Christine; Given, Barbara; Schumacher, Karen
2011-01-01
Objective The decade from 2000–2010 was an era of tremendous growth in family caregiving research specific to the cancer population. This research has implications for how cancer family caregiving is conceptualized, yet the most recent comprehensive model of cancer family caregiving was published ten years ago. Our objective was to develop an updated and expanded comprehensive model of the cancer family caregiving experience, derived from concepts and variables used in research during past ten years. Methods A conceptual model was developed based on cancer family caregiving research published from 2000–2010. Results Our updated and expanded model has three main elements: 1) the stress process, 2) contextual factors, and 3) the cancer trajectory. Emerging ways of conceptualizing the relationships between and within model elements are addressed, as well as an emerging focus on caregiver-patient dyads as the unit of analysis. Conclusions Cancer family caregiving research has grown dramatically since 2000 resulting in a greatly expanded conceptual landscape. This updated and expanded model of the cancer family caregiving experience synthesizes the conceptual implications of an international body of work and demonstrates tremendous progress in how cancer family caregiving research is conceptualized. PMID:22000812
The Endpoint Hypothesis: A Topological-Cognitive Assessment of Geographic Scale Movement Patterns
NASA Astrophysics Data System (ADS)
Klippel, Alexander; Li, Rui
Movement patterns of individual entities at the geographic scale are becoming a prominent research focus in spatial sciences. One pertinent question is how cognitive and formal characterizations of movement patterns relate. In other words, are (mostly qualitative) formal characterizations cognitively adequate? This article experimentally evaluates movement patterns that can be characterized as paths through a conceptual neighborhood graph, that is, two extended spatial entities changing their topological relationship gradually. The central questions addressed are: (a) Do humans naturally use topology to create cognitive equivalent classes, that is, is topology the basis for categorizing movement patterns spatially? (b) Are ‘all’ topological relations equally salient, and (c) does language influence categorization. The first two questions are addressed using a modification of the endpoint hypothesis stating that: movement patterns are distinguished by the topological relation they end in. The third question addresses whether language has an influence on the classification of movement patterns, that is, whether there is a difference between linguistic and non-linguistic category construction. In contrast to our previous findings we were able to document the importance of topology for conceptualizing movement patterns but also reveal differences in the cognitive saliency of topological relations. The latter aspect calls for a weighted conceptual neighborhood graph to cognitively adequately model human conceptualization processes.
Li, Bingbing; Taylor, Jason R; Wang, Wei; Gao, Chuanji; Guo, Chunyan
2017-08-01
Processing fluency appears to influence recognition memory judgements, and the manipulation of fluency, if misattributed to an effect of prior exposure, can result in illusory memory. Although it is well established that fluency induced by masked repetition priming leads to increased familiarity, manipulations of conceptual fluency have produced conflicting results, variously affecting familiarity or recollection. Some recent studies have found that masked conceptual priming increases correct recollection (Taylor & Henson, 2012), and the magnitude of this behavioural effect correlates with analogous fMRI BOLD priming effects in brain regions associated with recollection (Taylor, Buratto, & Henson, 2013). However, the neural correlates and time-courses of masked repetition and conceptual priming were not compared directly in previous studies. The present study used event-related potentials (ERPs) to identify and compare the electrophysiological correlates of masked repetition and conceptual priming and investigate how they contribute to recognition memory. Behavioural results were consistent with previous studies: Repetition primes increased familiarity, whereas conceptual primes increased correct recollection. Masked repetition and conceptual priming also decreased the latency of late parietal component (LPC). Masked repetition priming was associated with an early P200 effect and a later parietal maximum N400 effect, whereas masked conceptual priming was only associated with a central-parietal maximum N400 effect. In addition, the topographic distributions of the N400 repetition priming and conceptual priming effects were different. These results suggest that fluency at different levels of processing is associated with different ERP components, and contributes differentially to subjective recognition memory experiences. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Miyajima, Hiroyuki; Yuhara, Naohiro
Regenerative Life Support Systems (RLSS), which maintain human lives by recycling substances essential for living, are comprised of humans, plants, and material circulation systems. The plants supply food to the humans or reproduce water and gases by photosynthesis, while the material circulation systems recycle physicochemically and circulate substances disposed by humans and plants. RLSS attracts attention since manned space activities have been shifted from previous short trips to long-term stay activities as such base as a space station, a lunar base, and a Mars base. The present typical space base is the International Space Station (ISS), a manned experimental base for prolonged stays, where RLSS recycles only water and air. In order to accommodate prolonged and extended manned activity in future space bases, developing RLSS that implements food production and regeneration of resources at once using plants is expected. The configuration of RLSS should be designed to suit its own duty, for which design requirements for RLSS with an unprecedented configuration may arise. Accordingly, it is necessary to establish a conceptual design method for generalized RLSS. It is difficult, however, to systematize the design process by analyzing previous design because there are only a few ground-experimental facilities, namely CEEF (Closed Ecology Experiment Facilities) of Japan, BIO-Plex (Bioregenerative Planetary Life Support Systems Test Complex) of the U.S., and BIOS3 of Russia. Thus a conceptual design method which doesn’t rely on previous design examples is required for generalized RLSS from the above reasons. This study formalizes a conceptual design process, and develops a conceptual design support tool for RLSS based on this design process.
Examining the Effects of Model-Based Inquiry on Concepetual Understanding and Engagement in Science
NASA Astrophysics Data System (ADS)
Baze, Christina L.
Model-Based Inquiry (MBI) is an instructional model which engages students in the scientific practices of modeling, explanation, and argumentation while they work to construct explanations for natural phenomena. This instructional model has not been previously studied at the community college level. The purpose of this study is to better understand how MBI affects the development of community college students' conceptual understanding of evolution and engagement in the practices of science. Mixed-methods were employed to collect quantitative and qualitative data through the multiple-choice Concepts Inventory of Natural Selection, student artifacts, and semi-structured interviews. Participants were enrolled in Biology Concepts, an introductory class for non-science majors, at a small, rural community college in the southwestern United States. Preliminary data shows that conceptual understanding is not adversely affected by the implementation of MBI, and that students gain valuable insights into the practices of science. Specifically, students who participated in the MBI intervention group gained a better understanding of the role of models in explaining and predicting phenomena and experienced feeling ownership of their ideas, an appropriate depth of thinking, more opportunities for collaboration, and coherence and context within the unit. Implications of this study will be of interest to postsecondary science educators and researchers who seek to reform and improve science education.
Characterizing the gender gap in introductory physics
NASA Astrophysics Data System (ADS)
Kost, Lauren E.; Pollock, Steven J.; Finkelstein, Noah D.
2009-06-01
Previous research [S. J. Pollock , Phys. Rev. ST Phys. Educ. Res. 3, 1 (2007)] showed that despite the use of interactive engagement techniques, the gap in performance between males and females on a conceptual learning survey persisted from pretest to post-test at the University of Colorado at Boulder. Such findings were counter to previously published work [M. Lorenzo , Am. J. Phys. 74, 118 (2006)]. This study begins by identifying a variety of other gender differences. There is a small but significant difference in the course grades of males and females. Males and females have significantly different prior understandings of physics and mathematics. Females are less likely to take high school physics than males, although they are equally likely to take high school calculus. Males and females also differ in their incoming attitudes and beliefs about physics. This collection of background factors is analyzed to determine the extent to which each factor correlates with performance on a conceptual post-test and with gender. Binned by quintiles, we observe that males and females with similar pretest scores do not have significantly different post-test scores (p>0.2) . The post-test data are then modeled using two regression models (multiple regression and logistic regression) to estimate the gender gap in post-test scores after controlling for these important prior factors. These prior factors account for about 70% of the observed gender gap. The results indicate that the gender gap exists in interactive physics classes at our institution but is largely associated with differences in previous physics and math knowledge and incoming attitudes and beliefs.
Why College Students Cheat: A Conceptual Model of Five Factors
ERIC Educational Resources Information Center
Yu, Hongwei; Glanzer, Perry L.; Johnson, Byron R.; Sriram, Rishi; Moore, Brandon
2018-01-01
Though numerous studies have identified factors associated with academic misconduct, few have proposed conceptual models that could make sense of multiple factors. In this study, we used structural equation modeling (SEM) to test a conceptual model of five factors using data from a relatively large sample of 2,503 college students. The results…
[Policies to reduce health inequalities].
Borrell, Carme; Artazcoz, Lucía
2008-01-01
This paper reviews policies to reduce social inequalities in health and presents some examples. Previously it presents the model on social determinants of health inequalities. The model described on the determinants of health inequalities is used by the Commission on Social Determinants of Health of the World Health Organisation that contains three main elements: the socio-economic and political context, socioeconomic status and intermediary factors. It describes 10 principles to keep in mind to launch interventions aimed at reducing inequalities in health and describes various policies depending on different "entry points" considered in the conceptual model. Finally we present two examples: The Public Health Policy of Sweden and the programme "Barrio Adentro" in Venezuela.
Conceptualizing Telehealth in Nursing Practice: Advancing a Conceptual Model to Fill a Virtual Gap.
Nagel, Daniel A; Penner, Jamie L
2016-03-01
Increasingly nurses use various telehealth technologies to deliver health care services; however, there has been a lag in research and generation of empirical knowledge to support nursing practice in this expanding field. One challenge to generating knowledge is a gap in development of a comprehensive conceptual model or theoretical framework to illustrate relationships of concepts and phenomena inherent to adoption of a broad range of telehealth technologies to holistic nursing practice. A review of the literature revealed eight published conceptual models, theoretical frameworks, or similar entities applicable to nursing practice. Many of these models focus exclusively on use of telephones and four were generated from qualitative studies, but none comprehensively reflect complexities of bridging nursing process and elements of nursing practice into use of telehealth. The purpose of this article is to present a review of existing conceptual models and frameworks, discuss predominant themes and features of these models, and present a comprehensive conceptual model for telehealth nursing practice synthesized from this literature for consideration and further development. This conceptual model illustrates characteristics of, and relationships between, dimensions of telehealth practice to guide research and knowledge development in provision of holistic person-centered care delivery to individuals by nurses through telehealth technologies. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Rolland, Colette; Yu, Eric; Salinesi, Camille; Castro, Jaelson
The use of intentional concepts, the notion of "goal" in particular, has been prominent in recent approaches to requirement engineering (RE). Goal-oriented frameworks and methods for requirements engineering (GORE) have been keynote topics in requirements engineering, conceptual modelling, and more generally in software engineering. What are the conceptual modelling foundations in these approaches? RIGiM (Requirements Intentions and Goals in Conceptual Modelling) aims to provide a forum for discussing the interplay between requirements engineering and conceptual modelling, and in particular, to investigate how goal- and intention-driven approaches help in conceptualising purposeful systems. What are the fundamental objectives and premises of requirements engineering and conceptual modelling respectively, and how can they complement each other? What are the demands on conceptual modelling from the standpoint of requirements engineering? What conceptual modelling techniques can be further taken advantage of in requirements engineering? What are the upcoming modelling challenges and issues in GORE? What are the unresolved open questions? What lessons are there to be learnt from industrial experiences? What empirical data are there to support the cost-benefit analysis when adopting GORE methods? Are there application domains or types of project settings for which goals and intentional approaches are particularly suitable or not suitable? What degree of formalization and automation, or interactivity is feasible and appropriate for what types of participants during requirements engineering?
Van Oudenhove, Lukas; Cuypers, Stefaan
2014-05-01
Psychosomatic medicine, with its prevailing biopsychosocial model, aims to integrate human and exact sciences with their divergent conceptual models. Therefore, its own conceptual foundations, which often remain implicit and unknown, may be critically relevant. We defend the thesis that choosing between different metaphysical views on the 'mind-body problem' may have important implications for the conceptual foundations of psychosomatic medicine, and therefore potentially also for its methods, scientific status and relationship with the scientific disciplines it aims to integrate: biomedical sciences (including neuroscience), psychology and social sciences. To make this point, we introduce three key positions in the philosophical 'mind-body' debate (emergentism, reductionism, and supervenience physicalism) and investigate their consequences for the conceptual basis of the biopsychosocial model in general and its 'psycho-biological' part ('mental causation') in particular. Despite the clinical merits of the biopsychosocial model, we submit that it is conceptually underdeveloped or even flawed, which may hamper its use as a proper scientific model.
Wolfs, Vincent; Villazon, Mauricio Florencio; Willems, Patrick
2013-01-01
Applications such as real-time control, uncertainty analysis and optimization require an extensive number of model iterations. Full hydrodynamic sewer models are not sufficient for these applications due to the excessive computation time. Simplifications are consequently required. A lumped conceptual modelling approach results in a much faster calculation. The process of identifying and calibrating the conceptual model structure could, however, be time-consuming. Moreover, many conceptual models lack accuracy, or do not account for backwater effects. To overcome these problems, a modelling methodology was developed which is suited for semi-automatic calibration. The methodology is tested for the sewer system of the city of Geel in the Grote Nete river basin in Belgium, using both synthetic design storm events and long time series of rainfall input. A MATLAB/Simulink(®) tool was developed to guide the modeller through the step-wise model construction, reducing significantly the time required for the conceptual modelling process.
Hartman, Rosemary; Brown, Larry R.; Hobbs, Jim
2017-01-01
This chapter describes a general model of food webs within tidal wetlands and represents how physical features of the wetland affect the structure and function of the food web. This conceptual model focuses on how the food web provides support for (or may reduce support for) threatened fish species. This model is part of a suite of conceptual models designed to guide monitoring of restoration sites throughout the San Francisco Estuary (SFE), but particularly within the Sacramento-San Joaquin Delta (Delta) and Suisun Marsh. The conceptual models have been developed based on the Delta Regional Ecosystem Restoration Implementation Plan (DRERIP) models, and are designed to aid in the identification and evaluation of monitoring metrics for tidal wetland restoration projects. Many tidal restoration sites in the Delta are being constructed to comply with environmental regulatory requirements associated with the operation of the Central Valley Project and State Water Project. These include the Biological Opinions for Delta Smelt (Hypomesus transpacificus) and salmonids (U.S. Fish and Wildlife Service 2008; National Marine Fisheries Service 2009), and the Incidental Take Permit for Longfin Smelt (Spirinchus thaleichthyes) (California Department of Fish and Wildlife 2009). These regulatory requirements are based on the hypothesis that the decline of listed fish species is due in part to a decline in productivity of the food web (phytoplankton and zooplankton in particular) or alterations in the food web such that production is consumed by other species in the Estuary (Sommer et al. 2007; Baxter et al. 2010; Brown et al. 2016a). Intertidal wetlands and shallow subtidal habitat can be highly productive, so restoring areas of tidal wetlands may result in a net increase in productivity that will provide food web support for these fish species. However, other factors such as invasive bivalves that reduce phytoplankton and zooplankton biomass and invasive predatory fishes that may compete with or prey upon listed fishes can limit the utility of tidal wetlands for food web support (Lucas and Thompson 2012; Herbold et al. 2014). This model utilizes information from the previous DRERIP models for Delta food webs (Durand 2008) and tidal wetlands (Kneib et al. 2008), an updated DRERIP model (Durand 2015), and the State of BayDelta Science 2016 review of recent Delta food web literature (Brown et al. 2016a).
Profiles of inconsistent knowledge in children's pathways of conceptual change.
Schneider, Michael; Hardy, Ilonca
2013-09-01
Conceptual change requires learners to restructure parts of their conceptual knowledge base. Prior research has identified the fragmentation and the integration of knowledge as 2 important component processes of knowledge restructuring but remains unclear as to their relative importance and the time of their occurrence during development. Previous studies mostly were based on the categorization of answers in interview studies and led to mixed empirical results, suggesting that methodological improvements might be helpful. We assessed 161 third-graders' knowledge about floating and sinking of objects in liquids at 3 measurement points by means of multiple-choice tests. The tests assessed how strongly the children agreed with commonly found but mutually incompatible statements about floating and sinking. A latent profile transition analysis of the test scores revealed 5 profiles, some of which indicated the coexistence of inconsistent pieces of knowledge in learners. The majority of students (63%) were on 1 of 7 developmental pathways between these profiles. Thus, a child's knowledge profile at a point in time can be used to predict further development. The degree of knowledge integration decreased on some individual developmental paths, increased on others, and remained stable on still others. The study demonstrates the usefulness of explicit quantitative models of conceptual change. The results support a constructivist perspective on conceptual development, in which developmental changes of a learner's knowledge base result from idiosyncratic, yet systematic knowledge-construction processes. PsycINFO Database Record (c) 2013 APA, all rights reserved.
A Conceptual Model for Shear-Induced Phase Behavior in Crystallizing Cocoa Butter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzanti,G.; Guthrie, S.; Marangoni, A.
2007-01-01
We propose a conceptual model to explain the quantitative data from synchrotron X-ray diffraction experiments on the shear-induced phase behavior of cocoa butter, the main structural component of chocolate. We captured two-dimensional diffraction patterns from cocoa butter at crystallization temperatures of 17.5, 20.0, and 22.5 {sup o}C under shear rates from 45 to 1440 s{sup -1} and under static conditions. From the simultaneous analysis of the integrated intensity, correlation length, lamellar thickness, and crystalline orientation, we postulate a conceptual model to provide an explanation for the distribution of phases II, IV, V, and X and the kinetics of the process.more » As previously proposed in the literature, we assume that the crystallites grow layer upon layer of slightly different composition. The shear rate and temperature applied define these compositions. Simultaneously, the shear and temperature define the crystalline interface area available for secondary nucleation by promoting segregation and affecting the size distribution of the crystallites. The combination of these factors (composition, area, and size distribution) favors dramatically the early onset of phase V under shear and determines the proportions of phases II, IV, V, and X after the transition. The experimental observations, the methodology used, and the proposed explanation are of fundamental and industrial interest, since the structural properties of crystalline networks are determined by their microstructure and polymorphic crystalline state. Different proportions of the phases will thus result in different characteristics of the final material.« less
How to become a top model: impact of animal experimentation on human Salmonella disease research.
Tsolis, Renée M; Xavier, Mariana N; Santos, Renato L; Bäumler, Andreas J
2011-05-01
Salmonella serotypes are a major cause of human morbidity and mortality worldwide. Over the past decades, a series of animal models have been developed to advance vaccine development, provide insights into immunity to infection, and study the pathogenesis of human Salmonella disease. The successive introduction of new animal models, each suited to interrogate previously neglected aspects of Salmonella disease, has ushered in important conceptual advances that continue to have a strong and sustained influence on the ideas driving research on Salmonella serotypes. This article reviews important milestones in the use of animal models to study human Salmonella disease and identify research needs to guide future work.
Conceptual Models and Guidelines for Clinical Assessment of Financial Capacity
Marson, Daniel
2016-01-01
The ability to manage financial affairs is a life skill of critical importance, and neuropsychologists are increasingly asked to assess financial capacity across a variety of settings. Sound clinical assessment of financial capacity requires knowledge and appreciation of applicable clinical conceptual models and principles. However, the literature has presented relatively little conceptual guidance for clinicians concerning financial capacity and its assessment. This article seeks to address this gap. The article presents six clinical models of financial capacity : (1) the early gerontological IADL model of Lawton, (2) the clinical skills model and (3) related cognitive psychological model developed by Marson and colleagues, (4) a financial decision-making model adapting earlier decisional capacity work of Appelbaum and Grisso, (5) a person-centered model of financial decision-making developed by Lichtenberg and colleagues, and (6) a recent model of financial capacity in the real world developed through the Institute of Medicine. Accompanying presentation of the models is discussion of conceptual and practical perspectives they represent for clinician assessment. Based on the models, the article concludes by presenting a series of conceptually oriented guidelines for clinical assessment of financial capacity. In summary, sound assessment of financial capacity requires knowledge and appreciation of clinical conceptual models and principles. Awareness of such models, principles and guidelines will strengthen and advance clinical assessment of financial capacity. PMID:27506235
Methods and conceptual models to guide the development of tools for diagnosing the causes of biological impairment within aquatic ecosystems of the United States are described in this report. The conceptual models developed here address nutrients, suspended and bedded sediments (...
Human systems dynamics: Toward a computational model
NASA Astrophysics Data System (ADS)
Eoyang, Glenda H.
2012-09-01
A robust and reliable computational model of complex human systems dynamics could support advancements in theory and practice for social systems at all levels, from intrapersonal experience to global politics and economics. Models of human interactions have evolved from traditional, Newtonian systems assumptions, which served a variety of practical and theoretical needs of the past. Another class of models has been inspired and informed by models and methods from nonlinear dynamics, chaos, and complexity science. None of the existing models, however, is able to represent the open, high dimension, and nonlinear self-organizing dynamics of social systems. An effective model will represent interactions at multiple levels to generate emergent patterns of social and political life of individuals and groups. Existing models and modeling methods are considered and assessed against characteristic pattern-forming processes in observed and experienced phenomena of human systems. A conceptual model, CDE Model, based on the conditions for self-organizing in human systems, is explored as an alternative to existing models and methods. While the new model overcomes the limitations of previous models, it also provides an explanatory base and foundation for prospective analysis to inform real-time meaning making and action taking in response to complex conditions in the real world. An invitation is extended to readers to engage in developing a computational model that incorporates the assumptions, meta-variables, and relationships of this open, high dimension, and nonlinear conceptual model of the complex dynamics of human systems.
The evolution of social and semantic networks in epistemic communities
NASA Astrophysics Data System (ADS)
Margolin, Drew Berkley
This study describes and tests a model of scientific inquiry as an evolving, organizational phenomenon. Arguments are derived from organizational ecology and evolutionary theory. The empirical subject of study is an epistemic community of scientists publishing on a research topic in physics: the string theoretic concept of "D-branes." The study uses evolutionary theory as a means of predicting change in the way members of the community choose concepts to communicate acceptable knowledge claims. It is argued that the pursuit of new knowledge is risky, because the reliability of a novel knowledge claim cannot be verified until after substantial resources have been invested. Using arguments from both philosophy of science and organizational ecology, it is suggested that scientists can mitigate and sensibly share the risks of knowledge discovery within the community by articulating their claims in legitimate forms, i.e., forms that are testable within and relevant to the community. Evidence from empirical studies of semantic usage suggests that the legitimacy of a knowledge claim is influenced by the characteristics of the concepts in which it is articulated. A model of conceptual retention, variation, and selection is then proposed for predicting the usage of concepts and conceptual co-occurrences in the future publications of the community, based on its past. Results substantially supported hypothesized retention and selection mechanisms. Future concept usage was predictable from previous concept usage, but was limited by conceptual carrying capacity as predicted by density dependence theory. Also as predicted, retention was stronger when the community showed a more cohesive social structure. Similarly, concepts that showed structural signatures of high testability and relevance were more likely to be selected after previous usage frequency was controlled for. By contrast, hypotheses for variation mechanisms were not supported. Surprisingly, concepts whose structural position suggested they would be easiest to discover through search processes were used less frequently, once previous usage frequency was controlled for. The study also makes a theoretical contribution by suggesting ways that evolutionary theory can be used to integrate findings from the study of science with insights from organizational communication. A variety of concrete directions for future studies of social and semantic network evolution are also proposed.
Can the Neuman Systems Model be adapted to the Malaysian nursing context?
Shamsudin, Nafsiah
2002-04-01
Nursing in Malaysia is still developing as a profession. Issues such as using nursing conceptual models or frameworks in the delivery of nursing care have not been addressed by the majority of nurses. One reason for this has been the level of education and preparation of nurses, while another reason lies with the origins of existing nursing conceptual models. Most nursing conceptual models have their origins in North America. Their utility by nurses of different cultures and academic preparations might not be appropriate. Nursing is a social activity, an interaction between the nurse and the patient. It is carried out in a social environment within a particular culture. Conceptual models developed in one culture might not be readily implanted into another culture. This paper discusses how a conceptual model developed in North America; that is, the Neuman Systems Model, can be adapted into the Malaysian nursing context.
Geza, Mengistu; Lowe, Kathryn S; Huntzinger, Deborah N; McCray, John E
2013-07-01
Onsite wastewater treatment systems are commonly used in the United States to reclaim domestic wastewater. A distinct biomat forms at the infiltrative surface, causing resistance to flow and decreasing soil moisture below the biomat. To simulate these conditions, previous modeling studies have used a two-layer approach: a thin biomat layer (1-5 cm thick) and the native soil layer below the biomat. However, the effect of wastewater application extends below the biomat layer. We used numerical modeling supported by experimental data to justify a new conceptual model that includes an intermediate zone (IZ) below the biomat. The conceptual model was set up using Hydrus 2D and calibrated against soil moisture and water flux measurements. The estimated hydraulic conductivity value for the IZ was between biomat and the native soil. The IZ has important implications for wastewater treatment. When the IZ was not considered, a loading rate of 5 cm d resulted in an 8.5-cm ponding. With the IZ, the same loading rate resulted in a 9.5-cm ponding. Without the IZ, up to 3.1 cm d of wastewater could be applied without ponding; with the IZ, only up to 2.8 cm d could be applied without ponding. The IZ also plays a significant role in soil moisture distribution. Without the IZ, near-saturation conditions were observed only within the biomat, whereas near-saturation conditions extended below the biomat with the IZ. Accurate prediction of ponding is important to prevent surfacing of wastewater. The degree of water and air saturation influences pollutant treatment efficiency through residence time, volatility, and biochemical reactions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Teaching Non-Recursive Binary Searching: Establishing a Conceptual Framework.
ERIC Educational Resources Information Center
Magel, E. Terry
1989-01-01
Discusses problems associated with teaching non-recursive binary searching in computer language classes, and describes a teacher-directed dialog based on dictionary use that helps students use their previous searching experiences to conceptualize the binary search process. Algorithmic development is discussed and appropriate classroom discussion…
Conceptual Model Learning Objects and Design Recommendations for Small Screens
ERIC Educational Resources Information Center
Churchill, Daniel
2011-01-01
This article presents recommendations for the design of conceptual models for applications via handheld devices such as personal digital assistants and some mobile phones. The recommendations were developed over a number of years through experience that involves design of conceptual models, and applications of these multimedia representations with…
Semantic Description of Educational Adaptive Hypermedia Based on a Conceptual Model
ERIC Educational Resources Information Center
Papasalouros, Andreas; Retalis, Symeon; Papaspyrou, Nikolaos
2004-01-01
The role of conceptual modeling in Educational Adaptive Hypermedia Applications (EAHA) is especially important. A conceptual model of an educational application depicts the instructional solution that is implemented, containing information about concepts that must be ac-quired by learners, tasks in which learners must be involved and resources…
A Multivariate Model of Conceptual Change
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Heddy, Benjamin; Bailey, MarLynn; Farley, John
2016-01-01
The present study used the Cognitive Reconstruction of Knowledge Model (CRKM) model of conceptual change as a framework for developing and testing how key cognitive, motivational, and emotional variables are linked to conceptual change in physics. This study extends an earlier study developed by Taasoobshirazi and Sinatra ("J Res Sci…
Conceptual Model of Research to Reduce Stigma Related to Mental Disorders in Adolescents
Pinto-Foltz, Melissa D.; Logsdon, M. Cynthia
2010-01-01
Purpose: To explicate an initial conceptual model that is amenable to testing and guiding anti-stigma interventions with adolescents. Design/Sources Used: Multidisciplinary research and theoretical articles were reviewed. . Conclusions: The conceptual model may guide anti-stigma interventions, and undergo testing and refinement in the future to reflect scientific advances in stigma reduction among adolescents. Use of a conceptual model enhances empirical evaluation of anti-stigma interventions yielding a casual explanation for the intervention effects and enhances clinical applicability of interventions across settings. PMID:19916813
Senin, Tatjana; Meyer, Thorsten
2018-01-22
Aim was to gather theoretical knowledge about self-determination and to develop a conceptual model for medical rehabilitation- which serves as a basis for discussion. We performed a literature research in electronic databases. Various theories and research results were adopted and transferred to the context of medical rehabilitation and into a conceptual model. The conceptual model of self-determination reflects on a continuum which forms of self-determination may be present in situations of medical rehabilitation treatments. The location on the continuum depends theoretically on the manifestation of certain internal and external factors that may influence each other. The model provides a first conceptualization of self-determination focusing on medical rehabilitation which should be further refined and tested empirically. © Georg Thieme Verlag KG Stuttgart · New York.
Data Modeling & the Infrastructural Nature of Conceptual Tools
ERIC Educational Resources Information Center
Lesh, Richard; Caylor, Elizabeth; Gupta, Shweta
2007-01-01
The goal of this paper is to demonstrate the infrastructural nature of many modern conceptual technologies. The focus of this paper is on conceptual tools associated with elementary types of data modeling. We intend to show a variety of ways in which these conceptual tools not only express thinking, but also mold and shape thinking. And those ways…
Models as Relational Categories
NASA Astrophysics Data System (ADS)
Kokkonen, Tommi
2017-11-01
Model-based learning (MBL) has an established position within science education. It has been found to enhance conceptual understanding and provide a way for engaging students in authentic scientific activity. Despite ample research, few studies have examined the cognitive processes regarding learning scientific concepts within MBL. On the other hand, recent research within cognitive science has examined the learning of so-called relational categories. Relational categories are categories whose membership is determined on the basis of the common relational structure. In this theoretical paper, I argue that viewing models as relational categories provides a well-motivated cognitive basis for MBL. I discuss the different roles of models and modeling within MBL (using ready-made models, constructive modeling, and generative modeling) and discern the related cognitive aspects brought forward by the reinterpretation of models as relational categories. I will argue that relational knowledge is vital in learning novel models and in the transfer of learning. Moreover, relational knowledge underlies the coherent, hierarchical knowledge of experts. Lastly, I will examine how the format of external representations may affect the learning of models and the relevant relations. The nature of the learning mechanisms underlying students' mental representations of models is an interesting open question to be examined. Furthermore, the ways in which the expert-like knowledge develops and how to best support it is in need of more research. The discussion and conceptualization of models as relational categories allows discerning students' mental representations of models in terms of evolving relational structures in greater detail than previously done.
Randhawa, Gurprit K
2017-01-01
A conceptual model for exploring the relationship between end-user support (EUS) and electronic medical record (EMR) use by primary care physicians is presented. The model was developed following a review of conceptual and theoretical frameworks related to technology adoption/use and EUS. The model includes (a) one core construct (facilitating conditions), (b) four antecedents and one postcedent of facilitating conditions, and (c) four moderators. EMR use behaviour is the key outcome of the model. The proposed conceptual model should be tested. The model may be used to inform planning and decision-making for EMR implementations to increase EMR use for benefits realization.
NASA Astrophysics Data System (ADS)
Dodd, J. P.; Pollyea, R.
2014-12-01
The Atacama Desert of northern Chile is one of the driest regions on Earth and receives less than 5mm of precipitation annually. The Pampa del Tamarugal (PdT) Basin contains the largest aquifer system in the region, yet the mechanisms and timing of aquifer recharge and continental-scale groundwater flux are poorly understood. Although there is little debate that the source of groundwater recharge is the higher elevation regions of the Andean Altiplano to the east of the PdT Basin, there remains much uncertainty surrounding the mechanisms and timing of aquifer recharge and continental-scale groundwater flux. Most recharge models of the PdT focus on surface water runoff and alluvial fan recharge on shorter time scales, but many of these models explicitly neglect deep flow pathways. Previous investigators have combined the thermal aquifer profile and 14C groundwater ages to propose an alternative conceptual model in which cold meteoric water infiltrates deep into the Cordillera before circulating upward into the PdT by thermal convection through fault-controlled migration pathways. Although this conceptual model provides a convincing theoretical argument for deep fluid circulation, it cannot constrain the magnitude of this deep recharge flux. In this work, we revisit deep-flow conceptual model by combining the spatial distribution of hydrogen and oxygen isotope values as groundwater tracers with a non-isothermal model of continental scale groundwater flow through a two-dimensional transect from the Chilean Andes to the PdT Basin. This work provides first-order estimates on the contribution of deep groundwater circulation within the PdT Aquifer, while providing a framework for (1) quantifying boundary conditions for high resolution models of groundwater resources within the PdT Aquifer, (2) assessing the influence of variable future climate scenarios for groundwater availability in the region, and (3) further integrating conservative tracers and numerical models for groundwater resource evaluation in hyperarid environments.
Boduszek, Daniel; Dhingra, Katie
2016-10-01
There is considerable debate about the underlying factor structure of the Beck Hopelessness Scale (BHS) in the literature. An established view is that it reflects a unitary or bidimensional construct in nonclinical samples. There are, however, reasons to reconsider this conceptualization. Based on previous factor analytic findings from both clinical and nonclinical studies, the aim of the present study was to compare 16 competing models of the BHS in a large university student sample (N = 1, 733). Sixteen distinct factor models were specified and tested using conventional confirmatory factor analytic techniques, along with confirmatory bifactor modeling. A 3-factor solution with 2 method effects (i.e., a multitrait-multimethod model) provided the best fit to the data. The reliability of this conceptualization was supported by McDonald's coefficient omega and the differential relationships exhibited between the 3 hopelessness factors ("feelings about the future," "loss of motivation," and "future expectations") and measures of goal disengagement, brooding rumination, suicide ideation, and suicide attempt history. The results provide statistical support for a 3-trait and 2-method factor model, and hence the 3 dimensions of hopelessness theorized by Beck. The theoretical and methodological implications of these findings are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Bird, Victoria; Leamy, Mary; Tew, Jerry; Le Boutillier, Clair; Williams, Julie; Slade, Mike
2014-07-01
Mental health services in the UK, Australia and other Anglophone countries have moved towards supporting personal recovery as a primary orientation. To provide an empirically grounded foundation to identify and evaluate recovery-oriented interventions, we previously published a conceptual framework of personal recovery based on a systematic review and narrative synthesis of existing models. Our objective was to test the validity and relevance of this framework for people currently using mental health services. Seven focus groups were conducted with 48 current mental health consumers in three NHS trusts across England, as part of the REFOCUS Trial. Consumers were asked about the meaning and their experience of personal recovery. Deductive and inductive thematic analysis applying a constant comparison approach was used to analyse the data. The analysis aimed to explore the validity of the categories within the conceptual framework, and to highlight any areas of difference between the conceptual framework and the themes generated from new data collected from the focus groups. Both the inductive and deductive analysis broadly validated the conceptual framework, with the super-ordinate categories Connectedness, Hope and optimism, Identity, Meaning and purpose, and Empowerment (CHIME) evident in the analysis. Three areas of difference were, however, apparent in the inductive analysis. These included practical support; a greater emphasis on issues around diagnosis and medication; and scepticism surrounding recovery. This study suggests that the conceptual framework of personal recovery provides a defensible theoretical base for clinical and research purposes which is valid for use with current consumers. However, the three areas of difference further stress the individual nature of recovery and the need for an understanding of the population and context under investigation. © The Royal Australian and New Zealand College of Psychiatrists 2014.
Improvements, testing and development of the ADM-τ sub-grid surface tension model for two-phase LES
NASA Astrophysics Data System (ADS)
Aniszewski, Wojciech
2016-12-01
In this paper, a specific subgrid term occurring in Large Eddy Simulation (LES) of two-phase flows is investigated. This and other subgrid terms are presented, we subsequently elaborate on the existing models for those and re-formulate the ADM-τ model for sub-grid surface tension previously published by these authors. This paper presents a substantial, conceptual simplification over the original model version, accompanied by a decrease in its computational cost. At the same time, it addresses the issues the original model version faced, e.g. introduces non-isotropic applicability criteria based on resolved interface's principal curvature radii. Additionally, this paper introduces more throughout testing of the ADM-τ, in both simple and complex flows.
Health literacy and public health: a systematic review and integration of definitions and models.
Sørensen, Kristine; Van den Broucke, Stephan; Fullam, James; Doyle, Gerardine; Pelikan, Jürgen; Slonska, Zofia; Brand, Helmut
2012-01-25
Health literacy concerns the knowledge and competences of persons to meet the complex demands of health in modern society. Although its importance is increasingly recognised, there is no consensus about the definition of health literacy or about its conceptual dimensions, which limits the possibilities for measurement and comparison. The aim of the study is to review definitions and models on health literacy to develop an integrated definition and conceptual model capturing the most comprehensive evidence-based dimensions of health literacy. A systematic literature review was performed to identify definitions and conceptual frameworks of health literacy. A content analysis of the definitions and conceptual frameworks was carried out to identify the central dimensions of health literacy and develop an integrated model. The review resulted in 17 definitions of health literacy and 12 conceptual models. Based on the content analysis, an integrative conceptual model was developed containing 12 dimensions referring to the knowledge, motivation and competencies of accessing, understanding, appraising and applying health-related information within the healthcare, disease prevention and health promotion setting, respectively. Based upon this review, a model is proposed integrating medical and public health views of health literacy. The model can serve as a basis for developing health literacy enhancing interventions and provide a conceptual basis for the development and validation of measurement tools, capturing the different dimensions of health literacy within the healthcare, disease prevention and health promotion settings.
Lemoine, E; Merceron, D; Sallantin, J; Nguifo, E M
1999-01-01
This paper describes a new approach to problem solving by splitting up problem component parts between software and hardware. Our main idea arises from the combination of two previously published works. The first one proposed a conceptual environment of concept modelling in which the machine and the human expert interact. The second one reported an algorithm based on reconfigurable hardware system which outperforms any kind of previously published genetic data base scanning hardware or algorithms. Here we show how efficient the interaction between the machine and the expert is when the concept modelling is based on reconfigurable hardware system. Their cooperation is thus achieved with an real time interaction speed. The designed system has been partially applied to the recognition of primate splice junctions sites in genetic sequences.
Bodenmann, Patrick; Baggio, Stéphanie; Iglesias, Katia; Althaus, Fabrice; Velonaki, Venetia-Sofia; Stucki, Stephanie; Ansermet, Corine; Paroz, Sophie; Trueb, Lionel; Hugli, Olivier; Griffin, Judith L; Daeppen, Jean-Bernard
2015-12-09
Frequent emergency department (ED) users meet several of the criteria of vulnerability, but this needs to be further examined taking into consideration all vulnerability's different dimensions. This study aimed to characterize frequent ED users and to define risk factors of frequent ED use within a universal health care coverage system, applying a conceptual framework of vulnerability. A controlled, cross-sectional study comparing frequent ED users to a control group of non-frequent users was conducted at the Lausanne University Hospital, Switzerland. Frequent users were defined as patients with five or more visits to the ED in the previous 12 months. The two groups were compared using validated scales for each one of the five dimensions of an innovative conceptual framework: socio-demographic characteristics; somatic, mental, and risk-behavior indicators; and use of health care services. Independent t-tests, Wilcoxon rank-sum tests, Pearson's Chi-squared test and Fisher's exact test were used for the comparison. To examine the -related to vulnerability- risk factors for being a frequent ED user, univariate and multivariate logistic regression models were used. We compared 226 frequent users and 173 controls. Frequent users had more vulnerabilities in all five dimensions of the conceptual framework. They were younger, and more often immigrants from low/middle-income countries or unemployed, had more somatic and psychiatric comorbidities, were more often tobacco users, and had more primary care physician (PCP) visits. The most significant frequent ED use risk factors were a history of more than three hospital admissions in the previous 12 months (adj OR:23.2, 95%CI = 9.1-59.2), the absence of a PCP (adj OR:8.4, 95%CI = 2.1-32.7), living less than 5 km from an ED (adj OR:4.4, 95%CI = 2.1-9.0), and household income lower than USD 2,800/month (adj OR:4.3, 95%CI = 2.0-9.2). Frequent ED users within a universal health coverage system form a highly vulnerable population, when taking into account all five dimensions of a conceptual framework of vulnerability. The predictive factors identified could be useful in the early detection of future frequent users, in order to address their specific needs and decrease vulnerability, a key priority for health care policy makers. Application of the conceptual framework in future research is warranted.
ERIC Educational Resources Information Center
Borg, C.; Gericke, N.; Höglund, H.-O.; Bergman, E.
2014-01-01
This article describes the results of a nationwide questionnaire study of 3229 Swedish upper secondary school teachers' conceptual understanding of sustainable development in relation to their subject discipline and teaching experience. Previous research has shown that teachers have difficulties understanding the complex concept of sustainable…
ERIC Educational Resources Information Center
Kim, Jun Hee; Callahan, Jamie L.
2013-01-01
Purpose: This article aims to develop a conceptual framework delineating the key dimension of the learning organization which significantly influences learning transfer. Design/methodology/approach: The conceptual framework was developed by analyzing previous studies and synthesizing the results associated with the following four relationships:…
ERIC Educational Resources Information Center
Fisher, P. Brian; McAdams, Erin
2015-01-01
Purpose: This paper aims to examine how both the amount and type of coursework impact students' conceptualizations of sustainability. Previous research demonstrates that academic coursework influences students' environmental attitudes, yet few studies have examined the impact of coursework on how students conceptualize "sustainability".…
Evaluating Conceptual Metaphor Theory
ERIC Educational Resources Information Center
Gibbs, Raymond W., Jr.
2011-01-01
A major revolution in the study of metaphor occurred 30 years ago with the introduction of "conceptual metaphor theory" (CMT). Unlike previous theories of metaphor and metaphorical meaning, CMT proposed that metaphor is not just an aspect of language, but a fundamental part of human thought. Indeed, most metaphorical language arises from…
Lessons from a Large-Scale Assessment: Results from Conceptual Inventories
ERIC Educational Resources Information Center
Thacker, Beth; Dulli, Hani; Pattillo, Dave; West, Keith
2014-01-01
We report conceptual inventory results of a large-scale assessment project at a large university. We studied the introduction of materials and instructional methods informed by physics education research (PER) (physics education research-informed materials) into a department where most instruction has previously been traditional and a significant…
Multiparadigm Design Environments
1992-01-01
following results: 1. New methods for programming in terms of conceptual models 2. Design of object-oriented languages 3. Compiler optimization and...experimented with object-based methods for programming directly in terms of conceptual models, object-oriented language design, computer program...expect the3e results to have a strong influence on future ,,j :- ...... L ! . . • a mm ammmml ll Illlll • l I 1 Conceptual Programming Conceptual
ERIC Educational Resources Information Center
Urey, Mustafa; Calik, Muammer
2008-01-01
Since students' misconceptions are not completely remedied by means of only one conceptual change method, the authors assume that using different conceptual methods embedded within the 5E model will not only be more effective in enhancing students' conceptual understanding, but also may eliminate all students' misconceptions. The aim of this study…
ERIC Educational Resources Information Center
Fortuin, Karen P. J.; van Koppen, C. S. A.; Leemans, Rik
2011-01-01
Conceptual models are useful for facing the challenges of environmental sciences curriculum and course developers and students. These challenges are inherent to the interdisciplinary and problem-oriented character of environmental sciences curricula. In this article, we review the merits of conceptual models in facing these challenges. These…
OBO to UML: Support for the development of conceptual models in the biomedical domain.
Waldemarin, Ricardo C; de Farias, Cléver R G
2018-04-01
A conceptual model abstractly defines a number of concepts and their relationships for the purposes of understanding and communication. Once a conceptual model is available, it can also be used as a starting point for the development of a software system. The development of conceptual models using the Unified Modeling Language (UML) facilitates the representation of modeled concepts and allows software developers to directly reuse these concepts in the design of a software system. The OBO Foundry represents the most relevant collaborative effort towards the development of ontologies in the biomedical domain. The development of UML conceptual models in the biomedical domain may benefit from the use of domain-specific semantics and notation. Further, the development of these models may also benefit from the reuse of knowledge contained in OBO ontologies. This paper investigates the support for the development of conceptual models in the biomedical domain using UML as a conceptual modeling language and using the support provided by the OBO Foundry for the development of biomedical ontologies, namely entity kind and relationship types definitions provided by the Basic Formal Ontology (BFO) and the OBO Core Relations Ontology (OBO Core), respectively. Further, the paper investigates the support for the reuse of biomedical knowledge currently available in OBOFFF ontologies in the development these conceptual models. The paper describes a UML profile for the OBO Core Relations Ontology, which basically defines a number of stereotypes to represent BFO entity kinds and OBO Core relationship types definitions. The paper also presents a support toolset consisting of a graphical editor named OBO-RO Editor, which directly supports the development of UML models using the extensions defined by our profile, and a command-line tool named OBO2UML, which directly converts an OBOFFF ontology into a UML model. Copyright © 2018 Elsevier Inc. All rights reserved.
A Common Core for Active Conceptual Modeling for Learning from Surprises
NASA Astrophysics Data System (ADS)
Liddle, Stephen W.; Embley, David W.
The new field of active conceptual modeling for learning from surprises (ACM-L) may be helpful in preserving life, protecting property, and improving quality of life. The conceptual modeling community has developed sound theory and practices for conceptual modeling that, if properly applied, could help analysts model and predict more accurately. In particular, we need to associate more semantics with links, and we need fully reified high-level objects and relationships that have a clear, formal underlying semantics that follows a natural, ontological approach. We also need to capture more dynamic aspects in our conceptual models to more accurately model complex, dynamic systems. These concepts already exist, and the theory is well developed; what remains is to link them with the ideas needed to predict system evolution, thus enabling risk assessment and response planning. No single researcher or research group will be able to achieve this ambitious vision alone. As a starting point, we recommend that the nascent ACM-L community agree on a common core model that supports all aspects—static and dynamic—needed for active conceptual modeling in support of learning from surprises. A common core will more likely gain the traction needed to sustain the extended ACM-L research effort that will yield the advertised benefits of learning from surprises.
Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A
2017-09-15
In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.
Olvera Alvarez, Hector A; Appleton, Allison A; Fuller, Christina H; Belcourt, Annie; Kubzansky, Laura D
2018-06-01
Environmental and social determinants of health often co-occur, particularly among socially disadvantaged populations, yet because they are usually studied separately, their joint effects on health are likely underestimated. Building on converging bodies of literature, we delineate a conceptual framework to address these issues. Previous models provided a foundation for study in this area, and generated research pointing to additional important issues. These include a stronger focus on biobehavioral pathways, both positive and adverse health outcomes, and intergenerational effects. To accommodate the expanded set of issues, we put forward the Integrated Socio-Environmental Model of Health and Well-Being (ISEM), which examines how social and environmental factors combine and potentially interact, via multi-factorial pathways, to affect health and well-being over the life span. We then provide applied examples including the study of how food environments affect dietary behavior. The ISEM provides a comprehensive, theoretically informed framework to guide future research on the joint contribution of social and environmental factors to health and well-being across the life span.
Numerical Simulation of the 9-10 June 1972 Black Hills Storm Using CSU RAMS
NASA Technical Reports Server (NTRS)
Nair, U. S.; Hjelmfelt, Mark R.; Pielke, Roger A., Sr.
1997-01-01
Strong easterly flow of low-level moist air over the eastern slopes of the Black Hills on 9-10 June 1972 generated a storm system that produced a flash flood, devastating the area. Based on observations from this storm event, and also from the similar Big Thompson 1976 storm event, conceptual models have been developed to explain the unusually high precipitation efficiency. In this study, the Black Hills storm is simulated using the Colorado State University Regional Atmospheric Modeling System. Simulations with homogeneous and inhomogeneous initializations and different grid structures are presented. The conceptual models of storm structure proposed by previous studies are examined in light of the present simulations. Both homogeneous and inhomogeneous initialization results capture the intense nature of the storm, but the inhomogeneous simulation produced a precipitation pattern closer to the observed pattern. The simulations point to stationary tilted updrafts, with precipitation falling out to the rear as the preferred storm structure. Experiments with different grid structures point to the importance of removing the lateral boundaries far from the region of activity. Overall, simulation performance in capturing the observed behavior of the storm system was enhanced by use of inhomogeneous initialization.
Formal verification of mathematical software
NASA Technical Reports Server (NTRS)
Sutherland, D.
1984-01-01
Methods are investigated for formally specifying and verifying the correctness of mathematical software (software which uses floating point numbers and arithmetic). Previous work in the field was reviewed. A new model of floating point arithmetic called the asymptotic paradigm was developed and formalized. Two different conceptual approaches to program verification, the classical Verification Condition approach and the more recently developed Programming Logic approach, were adapted to use the asymptotic paradigm. These approaches were then used to verify several programs; the programs chosen were simplified versions of actual mathematical software.
On axionic field ranges, loopholes and the weak gravity conjecture
Brown, Jon; Cottrell, William; Shiu, Gary; ...
2016-04-05
Here, we clarify some aspects of the impact that the Weak Gravity Conjecture has on models of (generalized) natural inflation. In particular we address certain technical and conceptual concerns recently raised regarding the stringent constraints and conclusions found in our previous work. We also point out the difficulties faced by attempts to evade these constraints. Furthermore, these new considerations improve the understanding of the quantum gravity constraints we found and further support the conclusion that it remains challenging for axions to drive natural inflation.
Thoughts About Nursing Curricula: Dark Clouds and Bright Lights.
Turkel, Marian C; Fawcett, Jacqueline; Amankwaa, Linda; Clarke, Pamela N; Dee, Vivien; Eustace, Rosemary; Hansell, Phyllis Shanley; Jones, Dorothy A; Smith, Marlaine C; Zahourek, Rothlyn
2018-04-01
In this essay, several nurse scholars who are particularly concerned about the contemporary state of nursing science present their concerns about the inclusion of nursing conceptual models and theories in the curricula of nursing programs (dark clouds) and ways in which the concerns have been addressed (bright lights). This essay is the second of two essays that were catalyzed by Barrett's paper, "Again, What Is Nursing Science?" The first essay was published in the previous issue of Nursing Science Quarterly.
Development of Conceptual Models for Internet Search: A Case Study.
ERIC Educational Resources Information Center
Uden, Lorna; Tearne, Stephen; Alderson, Albert
This paper describes the creation and evaluation of a World Wide Web-based courseware module, using conceptual models based on constructivism, that teaches novices how to use the Internet for searching. Questionnaires and interviews were used to understand the difficulties of a group of novices. The conceptual model of the experts for the task was…
Feasibility of Implementing an All-Volunteer Force for the ROK Armed Forces
2007-03-01
Korea’s current military/economic/political/social factors for voluntary recruitment through an open-systems conceptual model. Results indicate that the...recruitment through an open-systems conceptual model. Results indicate that the draft should be maintained for the near future, but this does not...7 A. A CONCEPTUAL MODEL FOR DEFENSE ORGANIZATION
Teacher Emotion Research: Introducing a Conceptual Model to Guide Future Research
ERIC Educational Resources Information Center
Fried, Leanne; Mansfield, Caroline; Dobozy, Eva
2015-01-01
This article reports on the development of a conceptual model of teacher emotion through a review of teacher emotion research published between 2003 and 2013. By examining 82 publications regarding teacher emotion, the main aim of the review was to identify how teacher emotion was conceptualised in the literature and develop a conceptual model to…
Showing Automatically Generated Students' Conceptual Models to Students and Teachers
ERIC Educational Resources Information Center
Perez-Marin, Diana; Pascual-Nieto, Ismael
2010-01-01
A student conceptual model can be defined as a set of interconnected concepts associated with an estimation value that indicates how well these concepts are used by the students. It can model just one student or a group of students, and can be represented as a concept map, conceptual diagram or one of several other knowledge representation…
Applying a Conceptual Model in Sport Sector Work- Integrated Learning Contexts
ERIC Educational Resources Information Center
Agnew, Deborah; Pill, Shane; Orrell, Janice
2017-01-01
This paper applies a conceptual model for work-integrated learning (WIL) in a multidisciplinary sports degree program. Two examples of WIL in sport will be used to illustrate how the conceptual WIL model is being operationalized. The implications for practice are that curriculum design must recognize a highly flexible approach to the nature of…
ERIC Educational Resources Information Center
Battisti, Bryce Thomas; Hanegan, Nikki; Sudweeks, Richard; Cates, Rex
2010-01-01
Concept inventories are often used to assess current student understanding although conceptual change models are problematic. Due to controversies with conceptual change models and the realities of student assessment, it is important that concept inventories are evaluated using a variety of theoretical models to improve quality. This study used a…
Health literacy and public health: A systematic review and integration of definitions and models
2012-01-01
Background Health literacy concerns the knowledge and competences of persons to meet the complex demands of health in modern society. Although its importance is increasingly recognised, there is no consensus about the definition of health literacy or about its conceptual dimensions, which limits the possibilities for measurement and comparison. The aim of the study is to review definitions and models on health literacy to develop an integrated definition and conceptual model capturing the most comprehensive evidence-based dimensions of health literacy. Methods A systematic literature review was performed to identify definitions and conceptual frameworks of health literacy. A content analysis of the definitions and conceptual frameworks was carried out to identify the central dimensions of health literacy and develop an integrated model. Results The review resulted in 17 definitions of health literacy and 12 conceptual models. Based on the content analysis, an integrative conceptual model was developed containing 12 dimensions referring to the knowledge, motivation and competencies of accessing, understanding, appraising and applying health-related information within the healthcare, disease prevention and health promotion setting, respectively. Conclusions Based upon this review, a model is proposed integrating medical and public health views of health literacy. The model can serve as a basis for developing health literacy enhancing interventions and provide a conceptual basis for the development and validation of measurement tools, capturing the different dimensions of health literacy within the healthcare, disease prevention and health promotion settings. PMID:22276600
A Systematic Review of Conceptual Frameworks of Medical Complexity and New Model Development.
Zullig, Leah L; Whitson, Heather E; Hastings, Susan N; Beadles, Chris; Kravchenko, Julia; Akushevich, Igor; Maciejewski, Matthew L
2016-03-01
Patient complexity is often operationalized by counting multiple chronic conditions (MCC) without considering contextual factors that can affect patient risk for adverse outcomes. Our objective was to develop a conceptual model of complexity addressing gaps identified in a review of published conceptual models. We searched for English-language MEDLINE papers published between 1 January 2004 and 16 January 2014. Two reviewers independently evaluated abstracts and all authors contributed to the development of the conceptual model in an iterative process. From 1606 identified abstracts, six conceptual models were selected. One additional model was identified through reference review. Each model had strengths, but several constructs were not fully considered: 1) contextual factors; 2) dynamics of complexity; 3) patients' preferences; 4) acute health shocks; and 5) resilience. Our Cycle of Complexity model illustrates relationships between acute shocks and medical events, healthcare access and utilization, workload and capacity, and patient preferences in the context of interpersonal, organizational, and community factors. This model may inform studies on the etiology of and changes in complexity, the relationship between complexity and patient outcomes, and intervention development to improve modifiable elements of complex patients.
Bergström, Zara M; Vogelsang, David A; Benoit, Roland G; Simons, Jon S
2015-09-01
Research links the medial prefrontal cortex (mPFC) with a number of social cognitive processes that involve reflecting on oneself and other people. Here, we investigated how mPFC might support the ability to recollect information about oneself and others relating to previous experiences. Participants judged whether they had previously related stimuli conceptually to themselves or someone else, or whether they or another agent had performed actions. We uncovered a functional distinction between dorsal and ventral mPFC subregions based on information retrieved from episodic long-term memory. The dorsal mPFC was generally activated when participants attempted to retrieve social information about themselves and others, regardless of whether this information concerned the conceptual or agentic self or other. In contrast, a role was discerned for ventral mPFC during conceptual but not agentic self-referential recollection, indicating specific involvement in retrieving memories related to self-concept rather than bodily self. A subsequent recognition test for new items that had been presented during the recollection task found that conceptual and agentic recollection attempts resulted in differential incidental encoding of new information. Thus, we reveal converging fMRI and behavioral evidence for distinct neurocognitive forms of self-referential recollection, highlighting that conceptual and bodily aspects of self-reflection can be dissociated. © The Author 2014. Published by Oxford University Press.
Bissonnette, Sarah A.; Combs, Elijah D.; Nagami, Paul H.; Byers, Victor; Fernandez, Juliana; Le, Dinh; Realin, Jared; Woodham, Selina; Smith, Julia I.; Tanner, Kimberly D.
2017-01-01
While there have been concerted efforts to reform undergraduate biology toward teaching students to organize their conceptual knowledge like experts, there are few tools that attempt to measure this. We previously developed the Biology Card Sorting Task (BCST), designed to probe how individuals organize their conceptual biological knowledge. Previous results showed the BCST could differentiate between different populations, namely non–biology majors (NBM) and biology faculty (BF). In this study, we administered the BCST to three additional populations, using a cross-sectional design: entering biology majors (EBM), advanced biology majors (ABM), and biology graduate students (BGS). Intriguingly, ABM did not initially sort like experts any more frequently than EBM. However, once the deep-feature framework was revealed, ABM were able to sort like experts more readily than did EBM. These results are consistent with the conclusion that biology education enables advanced biology students to use an expert-like conceptual framework. However, these results are also consistent with a process of “selection,” wherein students who persist in the major may have already had an expert-like conceptual framework to begin with. These results demonstrate the utility of the BCST in measuring differences between groups of students over the course of their undergraduate education. PMID:28213584
Bergström, Zara M.; Vogelsang, David A.; Benoit, Roland G.; Simons, Jon S.
2015-01-01
Research links the medial prefrontal cortex (mPFC) with a number of social cognitive processes that involve reflecting on oneself and other people. Here, we investigated how mPFC might support the ability to recollect information about oneself and others relating to previous experiences. Participants judged whether they had previously related stimuli conceptually to themselves or someone else, or whether they or another agent had performed actions. We uncovered a functional distinction between dorsal and ventral mPFC subregions based on information retrieved from episodic long-term memory. The dorsal mPFC was generally activated when participants attempted to retrieve social information about themselves and others, regardless of whether this information concerned the conceptual or agentic self or other. In contrast, a role was discerned for ventral mPFC during conceptual but not agentic self-referential recollection, indicating specific involvement in retrieving memories related to self-concept rather than bodily self. A subsequent recognition test for new items that had been presented during the recollection task found that conceptual and agentic recollection attempts resulted in differential incidental encoding of new information. Thus, we reveal converging fMRI and behavioral evidence for distinct neurocognitive forms of self-referential recollection, highlighting that conceptual and bodily aspects of self-reflection can be dissociated. PMID:24700584
Open Vehicle Sketch Pad Aircraft Modeling Strategies
NASA Technical Reports Server (NTRS)
Hahn, Andrew S.
2013-01-01
Geometric modeling of aircraft during the Conceptual design phase is very different from that needed for the Preliminary or Detailed design phases. The Conceptual design phase is characterized by the rapid, multi-disciplinary analysis of many design variables by a small engineering team. The designer must walk a line between fidelity and productivity, picking tools and methods with the appropriate balance of characteristics to achieve the goals of the study, while staying within the available resources. Identifying geometric details that are important, and those that are not, is critical to making modeling and methodology choices. This is true for both the low-order analysis methods traditionally used in Conceptual design as well as the highest-order analyses available. This paper will highlight some of Conceptual design's characteristics that drive the designer s choices as well as modeling examples for several aircraft configurations using the open source version of the Vehicle Sketch Pad (Open VSP) aircraft Conceptual design geometry modeler.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul L. Wichlacz; Robert C. Starr; Brennon Orr
2003-09-01
This document summarizes previous descriptions of geochemical system conceptual models for the vadose zone and groundwater zone (aquifer) beneath the Idaho National Engineering and Environmental Laboratory (INEEL). The primary focus is on groundwater because contaminants derived from wastes disposed at INEEL are present in groundwater, groundwater provides a pathway for potential migration to receptors, and because geochemical characteristics in and processes in the aquifer can substantially affect the movement, attenuation, and toxicity of contaminants. The secondary emphasis is perched water bodies in the vadose zone. Perched water eventually reaches the regional groundwater system, and thus processes that affect contaminants inmore » the perched water bodies are important relative to the migration of contaminants into groundwater. Similarly, processes that affect solutes during transport from nearsurface disposal facilities downward through the vadose zone to the aquifer are relevant. Sediments in the vadose zone can affect both water and solute transport by restricting the downward migration of water sufficiently that a perched water body forms, and by retarding solute migration via ion exchange. Geochemical conceptual models have been prepared by a variety of researchers for different purposes. They have been published in documents prepared by INEEL contractors, the United States Geological Survey (USGS), academic researchers, and others. The documents themselves are INEEL and USGS reports, and articles in technical journals. The documents reviewed were selected from citation lists generated by searching the INEEL Technical Library, the INEEL Environmental Restoration Optical Imaging System, and the ISI Web of Science databases. The citation lists were generated using the keywords ground water, groundwater, chemistry, geochemistry, contaminant, INEL, INEEL, and Idaho. In addition, a list of USGS documents that pertain to the INEEL was obtained and manually searched. The documents that appeared to be the most pertinent were selected from further review. These documents are tabulated in the citation list. This report summarizes existing geochemical conceptual models, but does not attempt to generate a new conceptual model or select the ''right'' model. This document is organized as follows. Geochemical models are described in general in Section 2. Geochemical processes that control the transport and fate of contaminants introduced into groundwater are described in Section 3. The natural geochemistry of the Eastern Snake River Plain Aquifer (SRPA) is described in Section 4. The effect of waste disposal on the INEEL subsurface is described in Section 5. The geochemical behavior of the major contaminants is described in Section 6. Section 7 describes the site-specific geochemical models developed for various INEEL facilities.« less
Promoting Complex Systems Learning through the Use of Conceptual Representations in Hypermedia
ERIC Educational Resources Information Center
Liu, Lei; Hmelo-Silver, Cindy E.
2009-01-01
Studying complex systems is increasingly important in many science domains. Many features of complex systems make it difficult for students to develop deep understanding. Our previous research indicated that a function-centered conceptual representation is part of the disciplinary toolbox of biologists, suggesting that it is an appropriate…
Using Concept Maps to Reveal Conceptual Typologies
ERIC Educational Resources Information Center
Hay, David B.; Kinchin, Ian M.
2006-01-01
Purpose: The purpose of this paper is to explain and develop a classification of cognitive structures (or typologies of thought), previously designated as spoke, chain and network thinking by Kinchin "et al." Design/methodology/approach: The paper shows how concept mapping can be used to reveal these conceptual typologies and endeavours to place…
ERIC Educational Resources Information Center
Amundsen, Cheryl; Wilson, Mary
2012-01-01
This is a conceptual review of the literature variously referred to as faculty development, educational development, instructional development, and academic development in higher education. Previous empirical reviews covering more than 30 years of published literature could draw only tentative and weak conclusions about the effectiveness of…
ERIC Educational Resources Information Center
Yoon, Susan A.; Elinich, Karen; Wang, Joyce; Van Schooneveld, Jacqueline G.
2012-01-01
This research follows on previous studies that investigated how digitally augmented devices and knowledge scaffolds enhance learning in a science museum. We investigated what combination of scaffolds could be used in conjunction with the unique characteristics of informal participation to increase conceptual and cognitive outcomes. 307 students…
ERIC Educational Resources Information Center
Yu, Jing; Cheah, Charissa S. L.; Hart, Craig H.; Sun, Shuyan; Olsen, Joseph A.
2015-01-01
Despite the theoretical conceptualization of parental psychological control as a multidimensional construct, the majority of previous studies have examined psychological control as a unidimensional scale. Moreover, the conceptualization of shaming and its associations with love withdrawal and guilt induction are unclear. The current study aimed to…
The Challenge of Developing a Universal Case Conceptualization for Functional Analytic Psychotherapy
ERIC Educational Resources Information Center
Bonow, Jordan T.; Maragakis, Alexandros; Follette, William C.
2012-01-01
Functional Analytic Psychotherapy (FAP) targets a client's interpersonal behavior for change with the goal of improving his or her quality of life. One question guiding FAP case conceptualization is, "What interpersonal behavioral repertoires will allow a specific client to function optimally?" Previous FAP writings have suggested that a therapist…
Hevesi, J.A.; Flint, A.L.; Flint, L.E.
2002-01-01
A three-dimensional ground-water flow model has been developed to evaluate the Death Valley regional flow system, which includes ground water beneath the Nevada Test Site. Estimates of spatially distributed net infiltration and recharge are needed to define upper boundary conditions. This study presents a preliminary application of a conceptual and numerical model of net infiltration. The model was developed in studies at Yucca Mountain, Nevada, which is located in the approximate center of the Death Valley ground-water flow system. The conceptual model describes the effects of precipitation, runoff, evapotranspiration, and redistribution of water in the shallow unsaturated zone on predicted rates of net infiltration; precipitation and soil depth are the two most significant variables. The conceptual model was tested using a preliminary numerical model based on energy- and water-balance calculations. Daily precipitation for 1980 through 1995, averaging 202 millimeters per year over the 39,556 square kilometers area of the ground-water flow model, was input to the numerical model to simulate net infiltration ranging from zero for a soil thickness greater than 6 meters to over 350 millimeters per year for thin soils at high elevations in the Spring Mountains overlying permeable bedrock. Estimated average net infiltration over the entire ground-water flow model domain is 7.8 millimeters per year.To evaluate the application of the net-infiltration model developed on a local scale at Yucca Mountain, to net-infiltration estimates representing the magnitude and distribution of recharge on a regional scale, the net-infiltration results were compared with recharge estimates obtained using empirical methods. Comparison of model results with previous estimates of basinwide recharge suggests that the net-infiltration estimates obtained using this model may overestimate recharge because of uncertainty in modeled precipitation, bedrock permeability, and soil properties for locations such as the Spring Mountains. Although this model is preliminary and uncalibrated, it provides a first approximation of the spatial distribution of net infiltration for the Death Valley region under current climatic conditions.
Challenges in Requirements Engineering: A Research Agenda for Conceptual Modeling
NASA Astrophysics Data System (ADS)
March, Salvatore T.; Allen, Gove N.
Domains for which information systems are developed deal primarily with social constructions—conceptual objects and attributes created by human intentions and for human purposes. Information systems play an active role in these domains. They document the creation of new conceptual objects, record and ascribe values to their attributes, initiate actions within the domain, track activities performed, and infer conclusions based on the application of rules that govern how the domain is affected when socially-defined and identified causal events occur. Emerging applications of information technologies evaluate such business rules, learn from experience, and adapt to changes in the domain. Conceptual modeling grammars aimed at representing their system requirements must include conceptual objects, socially-defined events, and the rules pertaining to them. We identify challenges to conceptual modeling research and pose an ontology of the artificial as a step toward meeting them.
Application of the human needs conceptual model to dental hygiene practice.
Darby, M L; Walsh, M M
2000-01-01
The Human Needs Conceptual Model is relevant to dental hygiene because of the need for dental hygienists to be client focused, humanistic, and accountable in practice. Application of the Human Needs Conceptual Model provides a formal framework for identifying and understanding the unique needs of the client that can be met through dental hygiene care. Practitioners find that the Human Needs Conceptual Model can not only help them in assessment and diagnosis, but also in client education, decision-making, care implementation, and the evaluation of treatment outcomes. By using the model, the dental hygienist is able to manage client care humanistically and holistically, and ensure that care is client-centered rather than task-oriented. With the model, a professional practice can be made operational.
White-Means, S I
1995-01-01
There is no consensus on the appropriate conceptualization of race in economic models of health care. This is because race is rarely the primary focus for analysis of the market. This article presents an alternative framework for conceptualizing race in health economic models. A case study is analyzed to illustrate the value of the alternative conceptualization. The case study findings clearly document the importance of model stratification according to race. Moreover, the findings indicate that empirical results are improved when medical utilization models are refined in a way that reflects the unique experiences of the population that is studied. PMID:7721593
Bell, Margaret Carol; Galatioto, Fabio; Giuffrè, Tullio; Tesoriere, Giovanni
2012-05-01
Building on previous research a conceptual framework, based on potential conflicts analysis, has provided a quantitative evaluation of 'proneness' to red-light running behaviour at urban signalised intersections of different geometric, flow and driver characteristics. The results provided evidence that commonly used violation rates could cause inappropriate evaluation of the extent of the red-light running phenomenon. Initially, an in-depth investigation of the functional form of the mathematical relationship between the potential and actual red-light runners was carried out. The application of the conceptual framework was tested on a signalised intersection in order to quantify the proneness to red-light running. For the particular junction studied proneness for daytime was found to be 0.17 north and 0.16 south for opposing main road approaches and 0.42 east and 0.59 west for the secondary approaches. Further investigations were carried out using a traffic microsimulation model, to explore those geometric features and traffic volumes (arrival patterns at the stop-line) that significantly affect red-light running. In this way the prediction capability of the proposed potential conflict model was improved. A degree of consistency in the measured and simulated red-light running was observed and the conceptual framework was tested through a sensitivity analysis applied to different stop-line positions and traffic volume variations. The microsimulation, although at its early stages of development, has shown promise in its ability to model unintentional red light running behaviour and following further work through application to other junctions, potentially provides a tool for evaluation of alternative junction designs on proneness. In brief, this paper proposes and applies a novel approach to model red-light running using a microsimulation and demonstrates consistency with the observed and theoretical results. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zyvoloski, G.; Kwicklis, E.; Eddebbarh, A.-A.; Arnold, B.; Faunt, C.; Robinson, B.A.
2003-01-01
This paper presents several different conceptual models of the Large Hydraulic Gradient (LHG) region north of Yucca Mountain and describes the impact of those models on groundwater flow near the potential high-level repository site. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain. This model is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. The numerical model is calibrated by matching available water level measurements using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM and parameter estimation software PEST) and model setup allows for efficient calibration of multiple conceptual models. Until now, the Large Hydraulic Gradient has been simulated using a low-permeability, east-west oriented feature, even though direct evidence for this feature is lacking. In addition to this model, we investigate and calibrate three additional conceptual models of the Large Hydraulic Gradient, all of which are based on a presumed zone of hydrothermal chemical alteration north of Yucca Mountain. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the potential repository that record differences in the predicted groundwater flow regime. The results show that Large Hydraulic Gradient can be represented with the alternate conceptual models that include the hydrothermally altered zone. The predicted pathways are mildly sensitive to the choice of the conceptual model and more sensitive to the quality of calibration in the vicinity on the repository. These differences are most likely due to different degrees of fit of model to data, and do not represent important differences in hydrologic conditions for the different conceptual models. ?? 2002 Elsevier Science B.V. All rights reserved.
Conceptual Models and Guidelines for Clinical Assessment of Financial Capacity.
Marson, Daniel
2016-09-01
The ability to manage financial affairs is a life skill of critical importance, and neuropsychologists are increasingly asked to assess financial capacity across a variety of settings. Sound clinical assessment of financial capacity requires knowledge and appreciation of applicable clinical conceptual models and principles. However, the literature has presented relatively little conceptual guidance for clinicians concerning financial capacity and its assessment. This article seeks to address this gap. The article presents six clinical models of financial capacity : (1) the early gerontological IADL model of Lawton, (2) the clinical skills model and (3) related cognitive psychological model developed by Marson and colleagues, (4) a financial decision-making model adapting earlier decisional capacity work of Appelbaum and Grisso, (5) a person-centered model of financial decision-making developed by Lichtenberg and colleagues, and (6) a recent model of financial capacity in the real world developed through the Institute of Medicine. Accompanying presentation of the models is discussion of conceptual and practical perspectives they represent for clinician assessment. Based on the models, the article concludes by presenting a series of conceptually oriented guidelines for clinical assessment of financial capacity. In summary, sound assessment of financial capacity requires knowledge and appreciation of clinical conceptual models and principles. Awareness of such models, principles and guidelines will strengthen and advance clinical assessment of financial capacity. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Janssen, Anna; Barnet, Stewart
2017-01-01
Background Despite rapid growth in eHealth research, there remains a lack of consistency in defining and using terms related to eHealth. More widely cited definitions provide broad understanding of eHealth but lack sufficient conceptual clarity to operationalize eHealth and enable its implementation in health care practice, research, education, and policy. Definitions that are more detailed are often context or discipline specific, limiting ease of translation of these definitions across the breadth of eHealth perspectives and situations. A conceptual model of eHealth that adequately captures its complexity and potential overlaps is required. This model must also be sufficiently detailed to enable eHealth operationalization and hypothesis testing. Objective This study aimed to develop a conceptual practice-based model of eHealth to support health professionals in applying eHealth to their particular professional or discipline contexts. Methods We conducted semistructured interviews with key informants (N=25) from organizations involved in health care delivery, research, education, practice, governance, and policy to explore their perspectives on and experiences with eHealth. We used purposeful sampling for maximum diversity. Interviews were coded and thematically analyzed for emergent domains. Results Thematic analyses revealed 3 prominent but overlapping domains of eHealth: (1) health in our hands (using eHealth technologies to monitor, track, and inform health), (2) interacting for health (using digital technologies to enable health communication among practitioners and between health professionals and clients or patients), and (3) data enabling health (collecting, managing, and using health data). These domains formed a model of eHealth that addresses the need for clear definitions and a taxonomy of eHealth while acknowledging the fluidity of this area and the strengths of initiatives that span multiple eHealth domains. Conclusions This model extends current understanding of eHealth by providing clearly defined domains of eHealth while highlighting the benefits of using digital technologies in ways that cross several domains. It provides the depth of perspectives and examples of eHealth use that are lacking in previous research. On the basis of this model, we suggest that eHealth initiatives that are most impactful would include elements from all 3 domains. PMID:29066429
Shaw, Tim; McGregor, Deborah; Brunner, Melissa; Keep, Melanie; Janssen, Anna; Barnet, Stewart
2017-10-24
Despite rapid growth in eHealth research, there remains a lack of consistency in defining and using terms related to eHealth. More widely cited definitions provide broad understanding of eHealth but lack sufficient conceptual clarity to operationalize eHealth and enable its implementation in health care practice, research, education, and policy. Definitions that are more detailed are often context or discipline specific, limiting ease of translation of these definitions across the breadth of eHealth perspectives and situations. A conceptual model of eHealth that adequately captures its complexity and potential overlaps is required. This model must also be sufficiently detailed to enable eHealth operationalization and hypothesis testing. This study aimed to develop a conceptual practice-based model of eHealth to support health professionals in applying eHealth to their particular professional or discipline contexts. We conducted semistructured interviews with key informants (N=25) from organizations involved in health care delivery, research, education, practice, governance, and policy to explore their perspectives on and experiences with eHealth. We used purposeful sampling for maximum diversity. Interviews were coded and thematically analyzed for emergent domains. Thematic analyses revealed 3 prominent but overlapping domains of eHealth: (1) health in our hands (using eHealth technologies to monitor, track, and inform health), (2) interacting for health (using digital technologies to enable health communication among practitioners and between health professionals and clients or patients), and (3) data enabling health (collecting, managing, and using health data). These domains formed a model of eHealth that addresses the need for clear definitions and a taxonomy of eHealth while acknowledging the fluidity of this area and the strengths of initiatives that span multiple eHealth domains. This model extends current understanding of eHealth by providing clearly defined domains of eHealth while highlighting the benefits of using digital technologies in ways that cross several domains. It provides the depth of perspectives and examples of eHealth use that are lacking in previous research. On the basis of this model, we suggest that eHealth initiatives that are most impactful would include elements from all 3 domains. ©Tim Shaw, Deborah McGregor, Melissa Brunner, Melanie Keep, Anna Janssen, Stewart Barnet. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 24.10.2017.
Reducing Children’s Behavior Problems through Social Capital: A Causal Assessment
López Turley, Ruth N.; Gamoran, Adam; McCarty, Alyn Turner; Fish, Rachel
2016-01-01
Behavior problems among young children have serious detrimental effects on short and long-term educational outcomes. An especially promising prevention strategy may be one that focuses on strengthening the relationships among families in schools, or social capital. However, empirical research on social capital has been constrained by conceptual and causal ambiguity. This study attempts to construct a more focused conceptualization of social capital and aims to determine the causal effects of social capital on children’s behavior. Using data from a cluster randomized trial of 52 elementary schools, we apply several multilevel models to assess the causal relationship, including intent to treat and treatment on the treated analyses. Taken together, these analyses provide stronger evidence than previous studies that social capital improves children’s behavioral outcomes and that these improvements are not simply a result of selection into social relations but result from the social relations themselves. PMID:27886729
An Empirical Study of Enterprise Conceptual Modeling
NASA Astrophysics Data System (ADS)
Anaby-Tavor, Ateret; Amid, David; Fisher, Amit; Ossher, Harold; Bellamy, Rachel; Callery, Matthew; Desmond, Michael; Krasikov, Sophia; Roth, Tova; Simmonds, Ian; de Vries, Jacqueline
Business analysts, business architects, and solution consultants use a variety of practices and methods in their quest to understand business. The resulting work products could end up being transitioned into the formal world of software requirement definitions or as recommendations for all kinds of business activities. We describe an empirical study about the nature of these methods, diagrams, and home-grown conceptual models as reflected in real practice at IBM. We identify the models as artifacts of "enterprise conceptual modeling". We study important features of these models, suggest practical classifications, and discuss their usage. Our survey shows that the "enterprise conceptual modeling" arena presents a variety of descriptive models, each used by a relatively small group of colleagues. Together they form a "long tail" that extends from "drawings" on one end to "standards" on the other.
Wang, Judy Y; Glover, Wiljeana J; Rhodes, Alison M; Nightingale, Deborah
2013-06-01
The influence of individual-level factors such as pretraumatic risk and protective factors and the availability of unit-level and enterprise-level factors on psychological health outcomes have been previously considered individually, but have not been considered in tandem across the U.S. Military psychological health system. We use the existing literature on military psychological health to build a conceptual system dynamics model of the U.S. Military psychological health system "service-cycle" from accession and deployment to future psychological health screening and treatment. The model highlights a few key observations, challenges, and opportunities for improvement for the system that relate to several topics including the importance of modeling operational demand combined with the population's psychological health as opposed to only physical health; the role of resilience and post-traumatic growth on the mitigation of stress; the positive and negative effects of pretraumatic risk factors, unit support, and unit leadership on the service-cycle; and the opportunity to improve the system more rapidly by including more feedback mechanisms regarding the usefulness of pre- and post-traumatic innovations to medical leaders, funding authorities, and policy makers. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
The evaluation of sources of knowledge underlying different conceptual categories.
Gainotti, Guido; Spinelli, Pietro; Scaricamazza, Eugenia; Marra, Camillo
2013-01-01
According to the "embodied cognition" theory and the "sensory-motor model of semantic knowledge": (a) concepts are represented in the brain in the same format in which they are constructed by the sensory-motor system and (b) various conceptual categories differ according to the weight of different kinds of information in their representation. In this study, we tried to check the second assumption by asking normal elderly subjects to subjectively evaluate the role of various perceptual, motor and language-mediated sources of knowledge in the construction of different semantic categories. Our first aim was to rate the influence of different sources of knowledge in the representation of animals, plant life and artifact categories, rather than in living and non-living beings, as many previous studies on this subject have done. We also tried to check the influence of age and stimulus modality on these evaluations of the "sources of knowledge" underlying different conceptual categories. The influence of age was checked by comparing results obtained in our group of elderly subjects with those obtained in a previous study, conducted with a similar methodology on a sample of young students. And the influence of stimulus modality was assessed by presenting the stimuli in the verbal modality to 50 subjects and in the pictorial modality to 50 other subjects. The distinction between "animals" and "plant life" in the "living" categories was confirmed by analyzing their prevalent sources of knowledge and by a cluster analysis, which allowed us to distinguish "plant life" items from animals. Furthermore, results of the study showed: (a) that our subjects considered the visual modality as the main source of knowledge for all categories taken into account; and (b) that in biological categories the next most important source of information was represented by other perceptual modalities, whereas in artifacts it was represented by the actions performed with them. Finally, age and stimulus modality did not significantly influence judgment of relevance of the sources of knowledge involved in the construction of different conceptual categories.
Educational Criteria for Evaluating Simple Class Diagrams Made by Novices for Conceptual Modeling
ERIC Educational Resources Information Center
Kayama, Mizue; Ogata, Shinpei; Asano, David K.; Hashimoto, Masami
2016-01-01
Conceptual modeling is one of the most important learning topics for higher education and secondary education. The goal of conceptual modeling in this research is to draw a class diagram using given notation to satisfy the given requirements. In this case, the subjects are asked to choose concepts to satisfy the given requirements and to correctly…
ERIC Educational Resources Information Center
Lee, Heewon; Contento, Isobel R.; Koch, Pamela
2013-01-01
Objective: To use and review a conceptual model of process evaluation and to examine the implementation of a nutrition education curriculum, "Choice, Control & Change", designed to promote dietary and physical activity behaviors that reduce obesity risk. Design: A process evaluation study based on a systematic conceptual model. Setting: Five…
Conceptual models of information processing
NASA Technical Reports Server (NTRS)
Stewart, L. J.
1983-01-01
The conceptual information processing issues are examined. Human information processing is defined as an active cognitive process that is analogous to a system. It is the flow and transformation of information within a human. The human is viewed as an active information seeker who is constantly receiving, processing, and acting upon the surrounding environmental stimuli. Human information processing models are conceptual representations of cognitive behaviors. Models of information processing are useful in representing the different theoretical positions and in attempting to define the limits and capabilities of human memory. It is concluded that an understanding of conceptual human information processing models and their applications to systems design leads to a better human factors approach.
Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich
2015-01-01
Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.
Conceptual Models of Depression in Primary Care Patients: A Comparative Study
Karasz, Alison; Garcia, Nerina; Ferri, Lucia
2009-01-01
Conventional psychiatric treatment models are based on a biopsychiatric model of depression. A plausible explanation for low rates of depression treatment utilization among ethnic minorities and the poor is that members of these communities do not share the cultural assumptions underlying the biopsychiatric model. The study examined conceptual models of depression among depressed patients from various ethnic groups, focusing on the degree to which patients’ conceptual models ‘matched’ a biopsychiatric model of depression. The sample included 74 primary care patients from three ethnic groups screening positive for depression. We administered qualitative interviews assessing patients’ conceptual representations of depression. The analysis proceeded in two phases. The first phase involved a strategy called ‘quantitizing’ the qualitative data. A rating scheme was developed and applied to the data by a rater blind to study hypotheses. The data was subjected to statistical analyses. The second phase of the analysis involved the analysis of thematic data using standard qualitative techniques. Study hypotheses were largely supported. The qualitative analysis provided a detailed picture of primary care patients’ conceptual models of depression and suggested interesting directions for future research. PMID:20182550
A Conceptual Framework for SAHRA Integrated Multi-resolution Modeling in the Rio Grande Basin
NASA Astrophysics Data System (ADS)
Liu, Y.; Gupta, H.; Springer, E.; Wagener, T.; Brookshire, D.; Duffy, C.
2004-12-01
The sustainable management of water resources in a river basin requires an integrated analysis of the social, economic, environmental and institutional dimensions of the problem. Numerical models are commonly used for integration of these dimensions and for communication of the analysis results to stakeholders and policy makers. The National Science Foundation Science and Technology Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) has been developing integrated multi-resolution models to assess impacts of climate variability and land use change on water resources in the Rio Grande Basin. These models not only couple natural systems such as surface and ground waters, but will also include engineering, economic and social components that may be involved in water resources decision-making processes. This presentation will describe the conceptual framework being developed by SAHRA to guide and focus the multiple modeling efforts and to assist the modeling team in planning, data collection and interpretation, communication, evaluation, etc. One of the major components of this conceptual framework is a Conceptual Site Model (CSM), which describes the basin and its environment based on existing knowledge and identifies what additional information must be collected to develop technically sound models at various resolutions. The initial CSM is based on analyses of basin profile information that has been collected, including a physical profile (e.g., topographic and vegetative features), a man-made facility profile (e.g., dams, diversions, and pumping stations), and a land use and ecological profile (e.g., demographics, natural habitats, and endangered species). Based on the initial CSM, a Conceptual Physical Model (CPM) is developed to guide and evaluate the selection of a model code (or numerical model) for each resolution to conduct simulations and predictions. A CPM identifies, conceptually, all the physical processes and engineering and socio-economic activities occurring (or to occur) in the real system that the corresponding numerical models are required to address, such as riparian evapotranspiration responses to vegetation change and groundwater pumping impacts on soil moisture contents. Simulation results from different resolution models and observations of the real system will then be compared to evaluate the consistency among the CSM, the CPMs, and the numerical models, and feedbacks will be used to update the models. In a broad sense, the evaluation of the models (conceptual or numerical), as well as the linkages between them, can be viewed as a part of the overall conceptual framework. As new data are generated and understanding improves, the models will evolve, and the overall conceptual framework is refined. The development of the conceptual framework becomes an on-going process. We will describe the current state of this framework and the open questions that have to be addressed in the future.
Conceptual strategies and inter-theory relations: The case of nanoscale cracks
NASA Astrophysics Data System (ADS)
Bursten, Julia R.
2018-05-01
This paper introduces a new account of inter-theory relations in physics, which I call the conceptual strategies account. Using the example of a multiscale computer simulation model of nanoscale crack propagation in silicon, I illustrate this account and contrast it with existing reductive, emergent, and handshaking approaches. The conceptual strategies account develops the notion that relations among physical theories, and among their models, are constrained but not dictated by limitations from physics, mathematics, and computation, and that conceptual reasoning within those limits is required both to generate and to understand the relations between theories. Conceptual strategies result in a variety of types of relations between theories and models. These relations are themselves epistemic objects, like theories and models, and as such are an under-recognized part of the epistemic landscape of science.
Flexible and fast: linguistic shortcut affects both shallow and deep conceptual processing.
Connell, Louise; Lynott, Dermot
2013-06-01
Previous research has shown that people use linguistic distributional information during conceptual processing, and that it is especially useful for shallow tasks and rapid responding. Using two conceptual combination tasks, we showed that this linguistic shortcut extends to the processing of novel stimuli, is used in both successful and unsuccessful conceptual processing, and is evident in both shallow and deep conceptual tasks. Specifically, as predicted by the ECCo theory of conceptual combination, people use the linguistic shortcut as a "quick-and-dirty" guide to whether the concepts are likely to combine into a coherent conceptual representation, in both shallow sensibility judgment and deep interpretation generation tasks. Linguistic distributional frequency predicts both the likelihood and the time course of rejecting a novel word compound as nonsensical or uninterpretable. However, it predicts the time course of successful processing only in shallow sensibility judgment, because the deeper conceptual process of interpretation generation does not allow the linguistic shortcut to suffice. Furthermore, the effects of linguistic distributional frequency are independent of any effects of conventional word frequency. We discuss the utility of the linguistic shortcut as a cognitive triage mechanism that can optimize processing in a limited-resource conceptual system.
Conceptual framework for behavioral and social science in HIV vaccine clinical research
Lau, Chuen-Yen; Swann, Edith M.; Singh, Sagri; Kafaar, Zuhayr; Meissner, Helen I.; Stansbury, James P.
2011-01-01
HIV vaccine clinical research occurs within a context where biomedical science and social issues are interlinked. Previous HIV vaccine research has considered behavioral and social issues, but often treated them as independent of clinical research processes. Systematic attention to the intersection of behavioral and social issues within a defined clinical research framework is needed to address gaps, such as those related to participation in trials, completion of trials, and the overall research experience. Rigorous attention to these issues at project inception can inform trial design and conduct by matching research approaches to the context in which trials are to be conducted. Conducting behavioral and social sciences research concurrent with vaccine clinical research is important because it can help identify potential barriers to trial implementation, as well as ultimate acceptance and dissemination of trial results. We therefore propose a conceptual framework for behavioral and social science in HIV vaccine clinical research and use examples from the behavioral and social science literature to demonstrate how the model can facilitate identification of significant areas meriting additional exploration. Standardized use of the conceptual framework could improve HIV vaccine clinical research efficiency and relevance. PMID:21821083
Conceptual framework for behavioral and social science in HIV vaccine clinical research.
Lau, Chuen-Yen; Swann, Edith M; Singh, Sagri; Kafaar, Zuhayr; Meissner, Helen I; Stansbury, James P
2011-10-13
HIV vaccine clinical research occurs within a context where biomedical science and social issues are interlinked. Previous HIV vaccine research has considered behavioral and social issues, but often treated them as independent of clinical research processes. Systematic attention to the intersection of behavioral and social issues within a defined clinical research framework is needed to address gaps, such as those related to participation in trials, completion of trials, and the overall research experience. Rigorous attention to these issues at project inception can inform trial design and conduct by matching research approaches to the context in which trials are to be conducted. Conducting behavioral and social sciences research concurrent with vaccine clinical research is important because it can help identify potential barriers to trial implementation, as well as ultimate acceptance and dissemination of trial results. We therefore propose a conceptual framework for behavioral and social science in HIV vaccine clinical research and use examples from the behavioral and social science literature to demonstrate how the model can facilitate identification of significant areas meriting additional exploration. Standardized use of the conceptual framework could improve HIV vaccine clinical research efficiency and relevance. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, S. A.; Hayman, G.; Damiani, R.
Blade element momentum methods, though conceptually simple, are highly useful for analyzing wind turbines aerodynamics and are widely used in many design and analysis applications. A new version of AeroDyn is being developed to take advantage of new robust solution methodologies, conform to a new modularization framework for National Renewable Energy Laboratory's FAST, utilize advanced skewed-wake analysis methods, fix limitations with previous implementations, and to enable modeling of highly flexible and nonstraight blades. This paper reviews blade element momentum theory and several of the options available for analyzing skewed inflow. AeroDyn implementation details are described for the benefit of usersmore » and developers. These new options are compared to solutions from the previous version of AeroDyn and to experimental data. Finally, recommendations are given on how one might select from the various available solution approaches.« less
DeCou, Christopher R; Cole, Trevor T; Rowland, Sarah E; Kaplan, Stephanie P; Lynch, Shannon M
2015-06-01
Female sex offenders may be implicated in up to one fifth of all sex crimes committed in the United States. Despite previous research findings that suggest unique patterns of offending among female sex offenders, limited empirical research has investigated the motivations and processes involved. The present study qualitatively examined female sex offenders' offense-related experiences and characterized the internal and external factors that contributed to offending. Semi-structured interviews with 24 female sex offenders were analyzed by a team of coders with limited exposure to the existing literature using grounded theory analysis. A conceptual framework emerged representing distinctive processes for solo- and co-offending, contextualized within ecological layers of social and environmental influence. This model extends previous work by offering an example of nested vulnerabilities proximal to female sexual offending. Implications for future research, prevention, and treatment are discussed. © The Author(s) 2014.
Prevost, Luanna B.; Smith, Michelle K.; Knight, Jennifer K.
2016-01-01
Previous work has shown that students have persistent difficulties in understanding how central dogma processes can be affected by a stop codon mutation. To explore these difficulties, we modified two multiple-choice questions from the Genetics Concept Assessment into three open-ended questions that asked students to write about how a stop codon mutation potentially impacts replication, transcription, and translation. We then used computer-assisted lexical analysis combined with human scoring to categorize student responses. The lexical analysis models showed high agreement with human scoring, demonstrating that this approach can be successfully used to analyze large numbers of student written responses. The results of this analysis show that students’ ideas about one process in the central dogma can affect their thinking about subsequent and previous processes, leading to mixed models of conceptual understanding. PMID:27909016
Partnering with parents in a pediatric ambulatory care setting: a new model.
Tourigny, Jocelyne; Chartrand, Julie
2015-06-01
Pediatric care has greatly evolved during the past 30 years, moving from a traditional, medically oriented approach to a more consultative, interactive model. In the literature, the concept of partnership has been explored and presented in various terms, including presence, collaboration, involvement, and participation. The models of partnership that have been proposed have rarely been evaluated, and do not take the unique environment of ambulatory care into account. Based on a literature review, strong clinical experience with families, and previous research with parents and health professionals, both the conceptual and empirical phases of a new model are described. This model can be adapted to other pediatric health care contexts in either primary or tertiary care and should be evaluated in terms of efficacy and usefulness.
Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA
Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.
2005-01-01
This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an inexpensive way to develop a roadmap for understanding sediment dynamics at a watershed scale.
Organizational intellectual capital and the role of the nurse manager: A proposed conceptual model.
Gilbert, Jason H; Von Ah, Diane; Broome, Marion E
Nurse managers must leverage both the human capital and social capital of the teams they lead in order to produce quality outcomes. Little is known about the relationship between human capital and social capital and how these concepts may work together to produce organizational outcomes through leadership of nurses. The purpose of this article was to explore the concepts of human capital and social capital as they relate to nursing leadership in health care organizations. Specific aims included (a) to synthesize the literature related to human capital and social capital in leadership, (b) to refine the conceptual definitions of human capital and social capital with associated conceptual antecedents and consequences, and (c) to propose a synthesized conceptual model guiding further empirical research of social capital and human capital in nursing leadership. A systematic integrative review of leadership literature using criteria informed by Whittemore and Knafl (2005) was completed. CINAHL Plus with Full Text, Academic Search Premier, Business Source Premier, Health Business FullTEXT, MEDLINE, and PsychINFO databases were searched for the years 1995 to 2016 using terms "human capital," "social capital," and "management." Analysis of conceptual definitions, theoretical and conceptual models, antecedents and consequences, propositions or hypotheses, and empirical support for 37 articles fitting review criteria resulted in the synthesis of the proposed Gilbert Conceptual Model of Organizational Intellectual Capital. The Gilbert Conceptual Model of Organizational Intellectual Capital advances the propositions of human capital theory and social capital theory and is the first model to conceptualize the direct and moderating effects that nurse leaders have on the human capital and social capital of the teams they lead. This model provides a framework for further empirical study and may have implications for practice, organizational policy, and education related to nursing leadership. Copyright © 2017 Elsevier Inc. All rights reserved.
Tolerance of uncertainty: Conceptual analysis, integrative model, and implications for healthcare.
Hillen, Marij A; Gutheil, Caitlin M; Strout, Tania D; Smets, Ellen M A; Han, Paul K J
2017-05-01
Uncertainty tolerance (UT) is an important, well-studied phenomenon in health care and many other important domains of life, yet its conceptualization and measurement by researchers in various disciplines have varied substantially and its essential nature remains unclear. The objectives of this study were to: 1) analyze the meaning and logical coherence of UT as conceptualized by developers of UT measures, and 2) develop an integrative conceptual model to guide future empirical research regarding the nature, causes, and effects of UT. A narrative review and conceptual analysis of 18 existing measures of Uncertainty and Ambiguity Tolerance was conducted, focusing on how measure developers in various fields have defined both the "uncertainty" and "tolerance" components of UT-both explicitly through their writings and implicitly through the items constituting their measures. Both explicit and implicit conceptual definitions of uncertainty and tolerance vary substantially and are often poorly and inconsistently specified. A logically coherent, unified understanding or theoretical model of UT is lacking. To address these gaps, we propose a new integrative definition and multidimensional conceptual model that construes UT as the set of negative and positive psychological responses-cognitive, emotional, and behavioral-provoked by the conscious awareness of ignorance about particular aspects of the world. This model synthesizes insights from various disciplines and provides an organizing framework for future research. We discuss how this model can facilitate further empirical and theoretical research to better measure and understand the nature, determinants, and outcomes of UT in health care and other domains of life. Uncertainty tolerance is an important and complex phenomenon requiring more precise and consistent definition. An integrative definition and conceptual model, intended as a tentative and flexible point of departure for future research, adds needed breadth, specificity, and precision to efforts to conceptualize and measure UT. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Researcher Self-Care in Emotionally Demanding Research: A Proposed Conceptual Framework.
Kumar, Smita; Cavallaro, Liz
2018-03-01
Researchers are emotionally and psychologically affected by emotionally demanding research that demands a tremendous amount of mental, emotional, or physical energy and potentially affects or depletes the researcher's well-being. Little attention has been given to preparing doctoral students and novice researchers engaged in such studies. Four possible types of emotionally demanding research experiences are presented: sensitive issues, personal trauma previously experienced, experience of traumatic life events during research, and unexpected events that arise during research in what was previously not identified as a sensitive issue. The need for self-care is highly relevant to each type, despite their different impacts on researcher well-being. This conceptual article furthers conversation in the field about how researchers and educators can address the need for self-care to prepare novice researchers and proposes a conceptual framework for researcher self-care in emotionally demanding research, with an aim for future empirical study.
Preserved conceptual implicit memory for pictures in patients with Alzheimer’s disease
Deason, Rebecca G.; Hussey, Erin P.; Flannery, Sean; Ally, Brandon A.
2015-01-01
The current study examined different aspects of conceptual implicit memory in patients with mild Alzheimer’s disease (AD). Specifically, we were interested in whether priming of distinctive conceptual features versus general semantic information related to pictures and words would differ for the mild AD patients and healthy older adults. In this study, 14 healthy older adults and 15 patients with mild AD studied both pictures and words followed by an implicit test section, where they were asked about distinctive conceptual or general semantic information related to the items they had previously studied (or novel items) Healthy older adults and patients with mild AD showed both conceptual priming and the picture superiority effect, but the AD patients only showed these effects for the questions focused on the distinctive conceptual information. We found that patients with mild AD showed intact conceptual picture priming in a task that required generating a response (answer) from a cue (question) for cues that focused on distinctive conceptual information. This experiment has helped improve our understanding of both the picture superiority effect and conceptual implicit memory in patients with mild AD in that these findings support the notion that conceptual implicit memory might potentially help to drive familiarity-based recognition in the face of impaired recollection in patients with mild AD. PMID:26291521
Preserved conceptual implicit memory for pictures in patients with Alzheimer's disease.
Deason, Rebecca G; Hussey, Erin P; Flannery, Sean; Ally, Brandon A
2015-10-01
The current study examined different aspects of conceptual implicit memory in patients with mild Alzheimer's disease (AD). Specifically, we were interested in whether priming of distinctive conceptual features versus general semantic information related to pictures and words would differ for the mild AD patients and healthy older adults. In this study, 14 healthy older adults and 15 patients with mild AD studied both pictures and words followed by an implicit test section, where they were asked about distinctive conceptual or general semantic information related to the items they had previously studied (or novel items). Healthy older adults and patients with mild AD showed both conceptual priming and the picture superiority effect, but the AD patients only showed these effects for the questions focused on the distinctive conceptual information. We found that patients with mild AD showed intact conceptual picture priming in a task that required generating a response (answer) from a cue (question) for cues that focused on distinctive conceptual information. This experiment has helped improve our understanding of both the picture superiority effect and conceptual implicit memory in patients with mild AD in that these findings support the notion that conceptual implicit memory might potentially help to drive familiarity-based recognition in the face of impaired recollection in patients with mild AD. Copyright © 2015. Published by Elsevier Inc.
How to Deal with Emotional Abuse and Neglect--Further Development of a Conceptual Framework (FRAMEA)
ERIC Educational Resources Information Center
Glaser, Danya
2011-01-01
Objective: To develop further the understanding of emotional abuse and neglect. Methods: Building on previous work, this paper describes the further development of a conceptual framework for the recognition and management of emotional abuse and neglect. Training in this framework is currently being evaluated. The paper also briefly reviews more…
ERIC Educational Resources Information Center
Byrd, Christy M.
2017-01-01
Background: The conceptualization of the role of race and culture in students' experience of school has been limited. This study presents a more comprehensive and multidimensional framework than previously conceptualized and includes the two domains of (1) intergroup interactions (frequency of interaction, quality of interaction, equal status, and…
Confronting Conceptual Challenges in Thermodynamics by Use of Self-Generated Analogies
ERIC Educational Resources Information Center
Haglund, Jesper; Jeppsson, Fredrik
2014-01-01
Use of self-generated analogies has been proposed as a method for students to learn about a new subject by reference to what they previously know, in line with a constructivist perspective on learning and a resource perspective on conceptual change. We report on a group exercise on using completion problems in combination with self-generated…
Learning about Friction: Group Dynamics in Engineering Students' Work with Free Body Diagrams
ERIC Educational Resources Information Center
Berge, Maria; Weilenmann, Alexandra
2014-01-01
In educational research, it is well-known that collaborative work on core conceptual issues in physics leads to significant improvements in students' conceptual understanding. In this paper, we explore collaborative learning in action, adding to previous research in engineering education with a specific focus on the students' use of free body…
Linear Algebra Revisited: An Attempt to Understand Students' Conceptual Difficulties
ERIC Educational Resources Information Center
Britton, Sandra; Henderson, Jenny
2009-01-01
This article looks at some of the conceptual difficulties that students have in a linear algebra course. An overview of previous research in this area is given, and the various theories that have been espoused regarding the reasons that students find linear algebra so difficult are discussed. Student responses to two questions testing the ability…
Previous Mental Health Service Utilization and Change in Clients' Depressive Symptoms
ERIC Educational Resources Information Center
Boswell, James F.; McAleavey, Andrew A.; Castonguay, Louis G.; Hayes, Jeffrey A.; Locke, Benjamin D.
2012-01-01
Although a potentially important factor in case conceptualization and treatment planning, the impact of previous treatment on subsequent counseling response has received little empirical attention. Using archival data, this study aimed to (a) report the prevalence of previous treatment utilization in a counseling population, (b) examine potential…
NASA Technical Reports Server (NTRS)
Mack, Robert J.; Needleman, Kathy E.
1990-01-01
A method for designing wind tunnel models of conceptual, low-boom, supersonic cruise aircraft is presented. Also included is a review of the procedures used to design the conceptual low-boom aircraft. In the discussion, problems unique to, and encountered during, the design of both the conceptual aircraft and the wind tunnel models are outlined. The sensitivity of low-boom characteristics in the aircraft design to control the volume and lift equivalent area distributions was emphasized. Solutions to these problems are reported; especially the two which led to the design of the wind tunnel model support stings.
The Model-Building Process in Introductory College Geography: An Illustrative Example
ERIC Educational Resources Information Center
Cadwallader, Martin
1978-01-01
Illustrates the five elements of conceptual models by developing a model of consumer behavior in choosing among alternative supermarkets. The elements are: identifying the problem, constructing a conceptual model, translating it into a symbolic model, operationalizing the model, and testing. (Author/AV)
A Conceptual Modeling Approach for OLAP Personalization
NASA Astrophysics Data System (ADS)
Garrigós, Irene; Pardillo, Jesús; Mazón, Jose-Norberto; Trujillo, Juan
Data warehouses rely on multidimensional models in order to provide decision makers with appropriate structures to intuitively analyze data with OLAP technologies. However, data warehouses may be potentially large and multidimensional structures become increasingly complex to be understood at a glance. Even if a departmental data warehouse (also known as data mart) is used, these structures would be also too complex. As a consequence, acquiring the required information is more costly than expected and decision makers using OLAP tools may get frustrated. In this context, current approaches for data warehouse design are focused on deriving a unique OLAP schema for all analysts from their previously stated information requirements, which is not enough to lighten the complexity of the decision making process. To overcome this drawback, we argue for personalizing multidimensional models for OLAP technologies according to the continuously changing user characteristics, context, requirements and behaviour. In this paper, we present a novel approach to personalizing OLAP systems at the conceptual level based on the underlying multidimensional model of the data warehouse, a user model and a set of personalization rules. The great advantage of our approach is that a personalized OLAP schema is provided for each decision maker contributing to better satisfy their specific analysis needs. Finally, we show the applicability of our approach through a sample scenario based on our CASE tool for data warehouse development.
NASA Astrophysics Data System (ADS)
Poncelet, Carine; Merz, Ralf; Merz, Bruno; Parajka, Juraj; Oudin, Ludovic; Andréassian, Vazken; Perrin, Charles
2017-08-01
Most of previous assessments of hydrologic model performance are fragmented, based on small number of catchments, different methods or time periods and do not link the results to landscape or climate characteristics. This study uses large-sample hydrology to identify major catchment controls on daily runoff simulations. It is based on a conceptual lumped hydrological model (GR6J), a collection of 29 catchment characteristics, a multinational set of 1103 catchments located in Austria, France, and Germany and four runoff model efficiency criteria. Two analyses are conducted to assess how features and criteria are linked: (i) a one-dimensional analysis based on the Kruskal-Wallis test and (ii) a multidimensional analysis based on regression trees and investigating the interplay between features. The catchment features most affecting model performance are the flashiness of precipitation and streamflow (computed as the ratio of absolute day-to-day fluctuations by the total amount in a year), the seasonality of evaporation, the catchment area, and the catchment aridity. Nonflashy, nonseasonal, large, and nonarid catchments show the best performance for all the tested criteria. We argue that this higher performance is due to fewer nonlinear responses (higher correlation between precipitation and streamflow) and lower input and output variability for such catchments. Finally, we show that, compared to national sets, multinational sets increase results transferability because they explore a wider range of hydroclimatic conditions.
Preliminary results from the hydrodynamic element of the 1994 entrapment zone study
Burau, J.R.; Stacey, M.; Gartner, J.W.
1995-01-01
This article discusses preliminary results from analyses of USGS hydrodynamic data collected as part of the 1994 Interagency Ecological Program entrapment zone study. The USGS took part in three 30-hour cruises and deployed instruments for measuring currents and salinity from April to June. This article primarily focuses on the analysis of data from five Acoustic Doppler Current ProUers (ADCPs) deployed in Carquinez Strait, Suisun Bay, and the Western Delta. From these analyses a revised conceptual model of the hydrodynamics of the entrapment/null zone has evolved. The ideas discussed in this newsletter article are essentially working hypotheses, which are presented here to stimulate discussion and further analyses. In this article we discuss the currently-held conceptual model of entrapment and present data that are inconsistent with this conceptual model. Finally, we suggest a revised conceptual model that is consistent with all of the hydrodynamic data collected to date and describe how the 1995 study incorporates our revised conceptual model into its design.
Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan D.; ...
2015-03-17
Despite growing recognition that deterministic and stochastic factors simultaneously influence bacterial communities, little is known about mechanisms shifting their relative importance. To better understand underlying mechanisms, we developed a conceptual model linking ecosystem development during primary succession to shifts in the stochastic/deterministic balance. To evaluate the conceptual model we coupled spatiotemporal data on soil bacterial communities with environmental conditions spanning 105 years of salt marsh development. At the local scale there was a progression from stochasticity to determinism due to Na accumulation with increasing ecosystem age, supporting a main element of the conceptual model. At the regional-scale, soil organic mattermore » (SOM) governed the relative influence of stochasticity and the type of deterministic ecological selection, suggesting scale-dependency in how deterministic ecological selection is imposed. Analysis of a new ecological simulation model supported these conceptual inferences. Looking forward, we propose an extended conceptual model that integrates primary and secondary succession in microbial systems.« less
Navigating Tensions Between Conceptual and Metaconceptual Goals in the Use of Models
NASA Astrophysics Data System (ADS)
Delgado, Cesar
2015-04-01
Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in J Sci Educ Technol 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build metaconceptual understanding. Technology can transform teaching and learning by turning models into interactive simulations that learners can investigate. This paper identifies four characteristics of models and simulations that support conceptual learning but misconstrue models and science at a metaconceptual level. Ahistorical models combine the characteristics of several historical models; they conveniently compile ideas but misrepresent the history of science (Gilbert in Int J Sci Math Educ 2(2):115-130, 2004). Teleological models explain behavior in terms of a final cause; they can lead to useful heuristics but imply purpose in processes driven by chance and probability (Talanquer in Int J Sci Educ 29(7):853-870, 2007). Epistemological overreach occurs when models or simulations imply greater certainty and knowledge about phenomena than warranted; conceptualizing nature as being well known (e.g., having a mathematical structure) poses the danger of conflating model and reality or data and theory. Finally, models are inevitably ontologically impoverished. Real-world deviations and many variables are left out of models, as models' role is to simplify. Models and simulations also lose much of the sensory data present in phenomena. Teachers, designers, and professional development designers and facilitators must thus navigate the tension between conceptual and metaconceptual learning when using models and simulations. For each characteristic, examples are provided, along with recommendations for instruction and design. Prompts for explicit reflective activities around models are provided for each characteristic
NASA Astrophysics Data System (ADS)
Hernández, María Isabel; Couso, Digna; Pintó, Roser
2015-04-01
The study we have carried out aims to characterize 15- to 16-year-old students' learning progressions throughout the implementation of a teaching-learning sequence on the acoustic properties of materials. Our purpose is to better understand students' modeling processes about this topic and to identify how the instructional design and actual enactment influences students' learning progressions. This article presents the design principles which elicit the structure and types of modeling and inquiry activities designed to promote students' development of three conceptual models. Some of these activities are enhanced by the use of ICT such as sound level meters connected to data capture systems, which facilitate the measurement of the intensity level of sound emitted by a sound source and transmitted through different materials. Framing this study within the design-based research paradigm, it consists of the experimentation of the designed teaching sequence with two groups of students ( n = 29) in their science classes. The analysis of students' written productions together with classroom observations of the implementation of the teaching sequence allowed characterizing students' development of the conceptual models. Moreover, we could evidence the influence of different modeling and inquiry activities on students' development of the conceptual models, identifying those that have a major impact on students' modeling processes. Having evidenced different levels of development of each conceptual model, our results have been interpreted in terms of the attributes of each conceptual model, the distance between students' preliminary mental models and the intended conceptual models, and the instructional design and enactment.
A conceptual model for vision rehabilitation
Roberts, Pamela S.; Rizzo, John-Ross; Hreha, Kimberly; Wertheimer, Jeffrey; Kaldenberg, Jennifer; Hironaka, Dawn; Riggs, Richard; Colenbrander, August
2017-01-01
Vision impairments are highly prevalent after acquired brain injury (ABI). Conceptual models that focus on constructing intellectual frameworks greatly facilitate comprehension and implementation of practice guidelines in an interprofessional setting. The purpose of this article is to provide a review of the vision literature in ABI, describe a conceptual model for vision rehabilitation, explain its potential clinical inferences, and discuss its translation into rehabilitation across multiple practice settings and disciplines. PMID:27997671
A conceptual model for vision rehabilitation.
Roberts, Pamela S; Rizzo, John-Ross; Hreha, Kimberly; Wertheimer, Jeffrey; Kaldenberg, Jennifer; Hironaka, Dawn; Riggs, Richard; Colenbrander, August
2016-01-01
Vision impairments are highly prevalent after acquired brain injury (ABI). Conceptual models that focus on constructing intellectual frameworks greatly facilitate comprehension and implementation of practice guidelines in an interprofessional setting. The purpose of this article is to provide a review of the vision literature in ABI, describe a conceptual model for vision rehabilitation, explain its potential clinical inferences, and discuss its translation into rehabilitation across multiple practice settings and disciplines.
Navigating Tensions between Conceptual and Metaconceptual Goals in the Use of Models
ERIC Educational Resources Information Center
Delgado, Cesar
2015-01-01
Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in "J Sci Educ Technol" 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build…
A Scoping Review: Conceptualizations and Pedagogical Models of Learning in Nursing Simulation
ERIC Educational Resources Information Center
Poikela, Paula; Teräs, Marianne
2015-01-01
Simulations have been implemented globally in nursing education for years with diverse conceptual foundations. The aim of this scoping review is to examine the literature regarding the conceptualizations of learning and pedagogical models in nursing simulations. A scoping review of peer-reviewed articles published between 2000 and 2013 was…
Conceptualization of preferential flow for hillslope stability assessment
NASA Astrophysics Data System (ADS)
Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip
2018-03-01
This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.
A New Method for Conceptual Modelling of Information Systems
NASA Astrophysics Data System (ADS)
Gustas, Remigijus; Gustiene, Prima
Service architecture is not necessarily bound to the technical aspects of information system development. It can be defined by using conceptual models that are independent of any implementation technology. Unfortunately, the conventional information system analysis and design methods cover just a part of required modelling notations for engineering of service architectures. They do not provide effective support to maintain semantic integrity between business processes and data. Service orientation is a paradigm that can be applied for conceptual modelling of information systems. The concept of service is rather well understood in different domains. It can be applied equally well for conceptualization of organizational and technical information system components. This chapter concentrates on analysis of the differences between service-oriented modelling and object-oriented modelling. Service-oriented method is used for semantic integration of information system static and dynamic aspects.
Implementation of nursing conceptual models: observations of a multi-site research team.
Shea, H; Rogers, M; Ross, E; Tucker, D; Fitch, M; Smith, I
1989-01-01
The general acceptance by nursing of the nursing process as the methodology of practice enabled nurses to have a common grounding for practice, research and theory development in the 1970s. It has become clear, however, that the nursing process is just that--a process. What is sorely needed is the nursing content for that process and consequently in the past 10 years nursing theorists have further developed their particular conceptual models (CM). Three major teaching hospitals in Toronto have instituted a conceptual model (CM) of nursing as a basis of nursing practice. Mount Sinai Hospital has adopted Roy's adaptation model; Sunnybrook Medical Centre, Kings's goal attainment model; and Toronto General Hospital, Orem's self-care deficit theory model. All of these hospitals are affiliated through a series of cross appointments with the Faculty of Nursing at the University of Toronto. Two community hospitals, Mississauga and Scarborough General, have also adopted Orem's model and are related to the University through educational, community and interest groups. A group of researchers from these hospitals and the University of Toronto have proposed a collaborative project to determine what impact using a conceptual model will make on nursing practice. Discussions among the participants of this research group indicate that there are observations associated with instituting conceptual models that can be identified early in the process of implementation. These observations may be of assistance to others contemplating the implementation of conceptually based practice in their institution.
NASA Astrophysics Data System (ADS)
Thomsen, N. I.; Troldborg, M.; McKnight, U. S.; Binning, P. J.; Bjerg, P. L.
2012-04-01
Mass discharge estimates are increasingly being used in the management of contaminated sites. Such estimates have proven useful for supporting decisions related to the prioritization of contaminated sites in a groundwater catchment. Potential management options can be categorised as follows: (1) leave as is, (2) clean up, or (3) further investigation needed. However, mass discharge estimates are often very uncertain, which may hamper the management decisions. If option 1 is incorrectly chosen soil and water quality will decrease, threatening or destroying drinking water resources. The risk of choosing option 2 is to spend money on remediating a site that does not pose a problem. Choosing option 3 will often be safest, but may not be the optimal economic solution. Quantification of the uncertainty in mass discharge estimates can therefore greatly improve the foundation for selecting the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level of information. Parameter uncertainty is quantified using Monte Carlo simulations. For each conceptual model we calculate a transient mass discharge estimate with uncertainty bounds resulting from the parametric uncertainty. To quantify the conceptual uncertainty from a given site, we combine the outputs from the different conceptual models using Bayesian model averaging. The weight for each model is obtained by integrating available data and expert knowledge using Bayesian belief networks. The multi-model approach is applied to a contaminated site. At the site a DNAPL (dense non aqueous phase liquid) spill consisting of PCE (perchloroethylene) has contaminated a fractured clay till aquitard overlaying a limestone aquifer. The exact shape and nature of the source is unknown and so is the importance of transport in the fractures. The result of the multi-model approach is a visual representation of the uncertainty of the mass discharge estimates for the site which can be used to support the management options.
OWL references in ORM conceptual modelling
NASA Astrophysics Data System (ADS)
Matula, Jiri; Belunek, Roman; Hunka, Frantisek
2017-07-01
Object Role Modelling methodology is the fact-based type of conceptual modelling. The aim of the paper is to emphasize a close connection to OWL documents and its possible mutual cooperation. The definition of entities or domain values is an indispensable part of the conceptual schema design procedure defined by the ORM methodology. Many of these entities are already defined in OWL documents. Therefore, it is not necessary to declare entities again, whereas it is possible to utilize references from OWL documents during modelling of information systems.
NASA Astrophysics Data System (ADS)
Zeng, X.
2015-12-01
A large number of model executions are required to obtain alternative conceptual models' predictions and their posterior probabilities in Bayesian model averaging (BMA). The posterior model probability is estimated through models' marginal likelihood and prior probability. The heavy computation burden hinders the implementation of BMA prediction, especially for the elaborated marginal likelihood estimator. For overcoming the computation burden of BMA, an adaptive sparse grid (SG) stochastic collocation method is used to build surrogates for alternative conceptual models through the numerical experiment of a synthetical groundwater model. BMA predictions depend on model posterior weights (or marginal likelihoods), and this study also evaluated four marginal likelihood estimators, including arithmetic mean estimator (AME), harmonic mean estimator (HME), stabilized harmonic mean estimator (SHME), and thermodynamic integration estimator (TIE). The results demonstrate that TIE is accurate in estimating conceptual models' marginal likelihoods. The BMA-TIE has better predictive performance than other BMA predictions. TIE has high stability for estimating conceptual model's marginal likelihood. The repeated estimated conceptual model's marginal likelihoods by TIE have significant less variability than that estimated by other estimators. In addition, the SG surrogates are efficient to facilitate BMA predictions, especially for BMA-TIE. The number of model executions needed for building surrogates is 4.13%, 6.89%, 3.44%, and 0.43% of the required model executions of BMA-AME, BMA-HME, BMA-SHME, and BMA-TIE, respectively.
Harte, P.T.; Mack, Thomas J.
1992-01-01
Hydrogeologic data collected since 1990 were assessed and a ground-water-flow model was refined in this study of the Milford-Souhegan glacial-drift aquifer in Milford, New Hampshire. The hydrogeologic data collected were used to refine estimates of hydraulic conductivity and saturated thickness of the aquifer, which were previously calculated during 1988-90. In October 1990, water levels were measured at 124 wells and piezometers, and at 45 stream-seepage sites on the main stem of the Souhegan River, and on small tributary streams overlying the aquifer to improve an understanding of ground-water-flow patterns and stream-seepage gains and losses. Refinement of the ground-water-flow model included a reduction in the number of active cells in layer 2 in the central part of the aquifer, a revision of simulated hydraulic conductivity in model layers 2 and representing the aquifer, incorporation of a new block-centered finite-difference ground-water-flow model, and incorporation of a new solution algorithm and solver (a preconditioned conjugate-gradient algorithm). Refinements to the model resulted in decreases in the difference between calculated and measured heads at 22 wells. The distribution of gains and losses of stream seepage calculated in simulation with the refined model is similar to that calculated in the previous model simulation. The contributing area to the Savage well, under average pumping conditions, decreased by 0.021 square miles from the area calculated in the previous model simulation. The small difference in the contrib- uting recharge area indicates that the additional data did not enhance model simulation and that the conceptual framework for the previous model is accurate.
Evaluating Conceptual Site Models with Multicomponent Reactive Transport Modeling
NASA Astrophysics Data System (ADS)
Dai, Z.; Heffner, D.; Price, V.; Temples, T. J.; Nicholson, T. J.
2005-05-01
Modeling ground-water flow and multicomponent reactive chemical transport is a useful approach for testing conceptual site models and assessing the design of monitoring networks. A graded approach with three conceptual site models is presented here with a field case of tetrachloroethene (PCE) transport and biodegradation near Charleston, SC. The first model assumed a one-layer homogeneous aquifer structure with semi-infinite boundary conditions, in which an analytical solution of the reactive solute transport can be obtained with BIOCHLOR (Aziz et al., 1999). Due to the over-simplification of the aquifer structure, this simulation cannot reproduce the monitoring data. In the second approach we used GMS to develop the conceptual site model, a layer-cake multi-aquifer system, and applied a numerical module (MODFLOW and RT3D within GMS) to solve the flow and reactive transport problem. The results were better than the first approach but still did not fit the plume well because the geological structures were still inadequately defined. In the third approach we developed a complex conceptual site model by interpreting log and seismic survey data with Petra and PetraSeis. We detected a major channel and a younger channel, through the PCE source area. These channels control the local ground-water flow direction and provide a preferential chemical transport pathway. Results using the third conceptual site model agree well with the monitoring concentration data. This study confirms that the bias and uncertainty from inadequate conceptual models are much larger than those introduced from an inadequate choice of model parameter values (Neuman and Wierenga, 2003; Meyer et al., 2004). Numerical modeling in this case provides key insight into the hydrogeology and geochemistry of the field site for predicting contaminant transport in the future. Finally, critical monitoring points and performance indicator parameters are selected for future monitoring to confirm system performance.
Saengsiri, Aem-orn; Hacker, Eileen Danaher
2015-01-01
Health-related quality of life is an important clinical outcome to measure in patients with cardiovascular disease. International nurse researchers with limited English skills and novice cardiovascular nurse researchers face numerous challenges when conducting quality of life research because of the conceptual ambiguity of the construct and subsequent operationalization issues as well as difficulty identifying conceptual models to guide their quality of life research. The overall purpose of this article was to provide guidance to cardiovascular nurse researchers (using Thailand as an example) who are interested in examining quality of life in their native country but lack access to quality of life conceptual models and instruments because of language barriers. This article will examine definitions of health-related quality of life, selection of a conceptual model to guide quality of life research, use of the conceptual model to guide selection and measurement of variables, and translation of instruments when reliable and valid instruments are not available in the native language. Ferrans' definition of quality of life and the Wilson and Cleary Revised Model of Patient Outcomes were selected to guide the research. Selection of variables/instruments flowed directly from the conceptualization of constructs identified in this model. Our study, "Examining HRQOL in Thai People With Coronary Artery Disease Following Percutaneous Coronary Intervention," serves as an exemplar to illustrate the conceptual and operational challenges associated with conducting quality of life research in Thailand. The ultimate goal of cardiovascular nursing is to help patients achieve their optimal quality of life. Thai clinicians implementing quality of life assessment in clinical practice face similar conceptual and operationalization issues, especially when using instruments that are not well established or easily interpreted. Although quality of life assessment in clinical practice improves communication between patients and healthcare providers, clear guidelines for making changes to treatment strategies based on changes in quality of life must be established.
Scrutinizing UML Activity Diagrams
NASA Astrophysics Data System (ADS)
Al-Fedaghi, Sabah
Building an information system involves two processes: conceptual modeling of the “real world domain” and designing the software system. Object-oriented methods and languages (e.g., UML) are typically used for describing the software system. For the system analysis process that produces the conceptual description, object-oriented techniques or semantics extensions are utilized. Specifically, UML activity diagrams are the “flow charts” of object-oriented conceptualization tools. This chapter proposes an alternative to UML activity diagrams through the development of a conceptual modeling methodology based on the notion of flow.
The conceptualization model problem—surprise
NASA Astrophysics Data System (ADS)
Bredehoeft, John
2005-03-01
The foundation of model analysis is the conceptual model. Surprise is defined as new data that renders the prevailing conceptual model invalid; as defined here it represents a paradigm shift. Limited empirical data indicate that surprises occur in 20-30% of model analyses. These data suggest that groundwater analysts have difficulty selecting the appropriate conceptual model. There is no ready remedy to the conceptual model problem other than (1) to collect as much data as is feasible, using all applicable methods—a complementary data collection methodology can lead to new information that changes the prevailing conceptual model, and (2) for the analyst to remain open to the fact that the conceptual model can change dramatically as more information is collected. In the final analysis, the hydrogeologist makes a subjective decision on the appropriate conceptual model. The conceptualization problem does not render models unusable. The problem introduces an uncertainty that often is not widely recognized. Conceptual model uncertainty is exacerbated in making long-term predictions of system performance. C'est le modèle conceptuel qui se trouve à base d'une analyse sur un modèle. On considère comme une surprise lorsque le modèle est invalidé par des données nouvelles; dans les termes définis ici la surprise est équivalente à un change de paradigme. Des données empiriques limitées indiquent que les surprises apparaissent dans 20 à 30% des analyses effectuées sur les modèles. Ces données suggèrent que l'analyse des eaux souterraines présente des difficultés lorsqu'il s'agit de choisir le modèle conceptuel approprié. Il n'existe pas un autre remède au problème du modèle conceptuel que: (1) rassembler autant des données que possible en utilisant toutes les méthodes applicables—la méthode des données complémentaires peut conduire aux nouvelles informations qui vont changer le modèle conceptuel, et (2) l'analyste doit rester ouvert au fait que le modèle conceptuel peut bien changer lorsque des nouvelles informations apparaissent. Dans l'analyse finale le hydrogéologue prend une décision subjective sur le modèle conceptuel approprié. Le problème du le modèle conceptuel ne doit pas rendre le modèle inutilisable. Ce problème introduit une incertitude qui n'est pas toujours reconnue. Les incertitudes du modèle conceptuel deviennent plus importantes dans les cases de prévisions à long terme dans l'analyse de performance. La base para hacer un análisis de un modelo es el modelo conceptual. Se define aquí la sorpresa como los datos nuevos que convierten en incoherente al modelo conceptual previamente aceptado; tal como se define aquí esto representa un cambio de paradigma. Los datos empíricos limitados indican que estas sorpresas suceden entre un 20 a un 30% de los análisis de modelos. Esto sugiere que los analistas de modelos de agua subterránea tienen dificultades al seleccionar el modelo conceptual apropiado. No hayotra solución disponible a este problema del modelo conceptual diferente de: (1) Recolectar tanta información como sea posible, mediante la utilización de todos los métodos aplicables, lo cual puede resultar en que esta nueva información ayude a cambiar el modelo conceptual vigente, y (2) Que el analista de modelos se mantenga siempre abierto al hecho de que un modelo conceptual puede cambiar de manera total, en la medida en que se colecte mas información. En el análisis final el hidrogeólogo toma una decisión subjetiva en cuanto al modelo conceptual apropiado. El problema de la conceptualización no produce modelos inútiles. El problema presenta una incertidumbre, la cual a menudo no es tenida en cuentade manera adecuada. Esta incertidumbre en los modelos conceptuales se aumenta, cuando se hacen predicciones a largo plazo del comportamiento de un sistema dado.
ERIC Educational Resources Information Center
Tomczak, Ewa; Ewert, Anna
2015-01-01
We examine cross-linguistic influence in the processing of motion sentences by L2 users from an embodied cognition perspective. The experiment employs a priming paradigm to test two hypotheses based on previous action and motion research in cognitive psychology. The first hypothesis maintains that conceptual representations of motion are embodied…
Land management in the American southwest: a state-and-transition approach to ecosystem complexity.
Bestelmeyer, Brandon T; Herrick, Jeffrey E; Brown, Joel R; Trujillo, David A; Havstad, Kris M
2004-07-01
State-and-transition models are increasingly being used to guide rangeland management. These models provide a relatively simple, management-oriented way to classify land condition (state) and to describe the factors that might cause a shift to another state (a transition). There are many formulations of state-and-transition models in the literature. The version we endorse does not adhere to any particular generalities about ecosystem dynamics, but it includes consideration of several kinds of dynamics and management response to them. In contrast to previous uses of state-and-transition models, we propose that models can, at present, be most effectively used to specify and qualitatively compare the relative benefits and potential risks of different management actions (e.g., fire and grazing) and other factors (e.g., invasive species and climate change) on specified areas of land. High spatial and temporal variability and complex interactions preclude the meaningful use of general quantitative models. Forecasts can be made on a case-by-case basis by interpreting qualitative and quantitative indicators, historical data, and spatially structured monitoring data based on conceptual models. We illustrate how science- based conceptual models are created using several rangeland examples that vary in complexity. In doing so, we illustrate the implications of designating plant communities and states in models, accounting for varying scales of pattern in vegetation and soils, interpreting the presence of plant communities on different soils and dealing with our uncertainty about how those communities were assembled and how they will change in the future. We conclude with observations about how models have helped to improve management decision-making.
An integrated operational definition and conceptual model of asthma self-management in teens.
Mammen, Jennifer; Rhee, Hyekyun; Norton, Sally A; Butz, Arlene M; Halterman, Jill S; Arcoleo, Kimberly
2018-01-19
A previous definition of adolescent asthma self-management was derived from interviews with clinicians/researchers and published literature; however, it did not incorporate perspectives of teens or parents. Therefore, we conducted in-depth interviews with teens and parents and synthesized present findings with the prior analysis to develop a more encompassing definition and model. Focal concepts were qualitatively extracted from 14-day self-management voice-diaries (n = 14) and 1-hour interviews (n = 42) with teens and parents (28 individuals) along with concepts found in the previous clinical/research oriented analysis. Conceptual structure and relationships were identified and key findings synthesized to develop a revised definition and model of adolescent asthma self-management. There were two primary self-management constructs: processes of self-management and tasks of self-management. Self-management was defined as the iterative process of assessing, deciding, and responding to specific situations in order to achieve personally important outcomes. Clinically relevant asthma self-management tasks included monitoring asthma, managing active issues through pharmacologic and non-pharmacologic strategies, preventing future issues, and communicating with others as needed. Self-management processes were reciprocally influenced by intrapersonal factors (both cognitive and physical), interpersonal factors (family, social and physical environments), and personally relevant asthma and non-asthma outcomes. This is the first definition of asthma self-management incorporating teen, parent, clinician, and researcher perspectives, which suggests that self-management processes and behaviors are influenced by individually variable personal and interpersonal factors, and are driven by personally important outcomes. Clinicians and researchers should investigate teens' symptom perceptions, medication beliefs, current approaches to symptom management, relevant outcomes, and personal priorities.
1990-10-03
9 4.1. Mapping the Conceptual Model to the Implementation ................................................ 9 4.2. Overview of...browser-editor application. Finally, appendix A provides a detailed description of the AdaKNET conceptual model; users of AdaKNET should fami...provide a brief summary of the semantics of the underlying conceptual model implemented by AdaKNET, use of the AdaKNET ADT will require a more thorough
Constructing a Conceptual Model Linking Drivers and Ecosystem Services in Piedmont Streams
2011-04-01
to the Virginia-Maryland border and is bound by the Appalachian Mountains and Blue Ridge to the northwest and the Atlantic Coastal Plain to the south...demand on freshwater ecosystem services, and a growing appreciation for the value of functioning ecosystems, the Appalachian Piedmont has developed a...the model and how it can be adapted and ap - plied for specific projects. A FRAMEWORK FOR CONCEPTUAL MODELING The general approach to conceptual
Shimatani, Ichiro Ken; Yoda, Ken; Katsumata, Nobuhiro; Sato, Katsufumi
2012-01-01
To analyze an animal's movement trajectory, a basic model is required that satisfies the following conditions: the model must have an ecological basis and the parameters used in the model must have ecological interpretations, a broad range of movement patterns can be explained by that model, and equations and probability distributions in the model should be mathematically tractable. Random walk models used in previous studies do not necessarily satisfy these requirements, partly because movement trajectories are often more oriented or tortuous than expected from the models. By improving the modeling for turning angles, this study aims to propose a basic movement model. On the basis of the recently developed circular auto-regressive model, we introduced a new movement model and extended its applicability to capture the asymmetric effects of external factors such as wind. The model was applied to GPS trajectories of a seabird (Calonectris leucomelas) to demonstrate its applicability to various movement patterns and to explain how the model parameters are ecologically interpreted under a general conceptual framework for movement ecology. Although it is based on a simple extension of a generalized linear model to circular variables, the proposed model enables us to evaluate the effects of external factors on movement separately from the animal's internal state. For example, maximum likelihood estimates and model selection suggested that in one homing flight section, the seabird intended to fly toward the island, but misjudged its navigation and was driven off-course by strong winds, while in the subsequent flight section, the seabird reset the focal direction, navigated the flight under strong wind conditions, and succeeded in approaching the island.
Infurna, Frank J.; Mayer, Axel
2015-01-01
Perceived control and health are closely interrelated in adulthood and old age. However, less is known regarding the differential implications of two facets of perceived control, constraints and mastery, for mental and physical health. Furthermore, a limitation of previous research testing the pathways linking perceived control to mental and physical health is that mediation was tested with cross-sectional designs and not in a longitudinal mediation design that accounts for temporal ordering and prior confounds. Using data from the Health and Retirement Study (HRS; n = 7,612, M age = 68, SD = 10.66; 59% women) we examined the effect of constraints and mastery on 4-year changes in mental and physical health and whether physical activity mediated such effects in a longitudinal mediation design. Using confirmatory factor analysis, we modeled the two-factor structure of perceived control that consisted of constraints and mastery. In our longitudinal mediation model, where we accounted for possible confounders (e.g., age, gender, education, neuroticism, conscientiousness, memory, and health conditions), constraints showed a stronger total effect on mental and physical health, than mastery, such that more constraints were associated with 4-year declines in mental and physical health. Physical activity did not mediate the effect of constraints and mastery on mental and physical health (indirect effect). In order to demonstrate the importance of a longitudinal mediation model that accounts for confounders, we also estimated the mediated effect using two models commonly used in the literature: cross-sectional mediation model and longitudinal mediation model without accounting for confounders. These mediation models indicated a spurious indirect effect that cannot be causally interpreted. Our results showcase that constraints and mastery have differential implications for mental and physical health, as well as how a longitudinal mediation design can illustrate (or not) pathways in developmental processes. Our discussion focuses on the conceptual and methodological implications of a two facet model of perceived control and the strengths of longitudinal mediation designs for testing conceptual models of human development. PMID:25938243
Infurna, Frank J; Mayer, Axel
2015-06-01
Perceived control and health are closely interrelated in adulthood and old age. However, less is known regarding the differential implications of 2 facets of perceived control, constraints and mastery, for mental and physical health. Furthermore, a limitation of previous research testing the pathways linking perceived control to mental and physical health is that mediation was tested with cross-sectional designs and not in a longitudinal mediation design that accounts for temporal ordering and prior confounds. Using data from the Health and Retirement Study (HRS; n = 7,612, M age = 68, SD = 10.66; 59% women) we examined the effect of constraints and mastery on 4-year changes in mental and physical health and whether physical activity mediated such effects in a longitudinal mediation design. Using confirmatory factor analysis, we modeled the 2-factor structure of perceived control that consisted of constraints and mastery. In our longitudinal mediation model, where we accounted for possible confounders (e.g., age, gender, education, neuroticism, conscientiousness, memory, and health conditions), constraints showed a stronger total effect on mental and physical health, than mastery, such that more constraints were associated with 4-year declines in mental and physical health. Physical activity did not mediate the effect of constraints and mastery on mental and physical health (indirect effect). To demonstrate the importance of a longitudinal mediation model that accounts for confounders, we also estimated the mediated effect using 2 models commonly used in the literature: cross-sectional mediation model and longitudinal mediation model without accounting for confounders. These mediation models indicated a spurious indirect effect that cannot be causally interpreted. Our results showcase that constraints and mastery have differential implications for mental and physical health, as well as how a longitudinal mediation design can illustrate (or not) pathways in developmental processes. Our discussion focuses on the conceptual and methodological implications of a 2 facet model of perceived control and the strengths of longitudinal mediation designs for testing conceptual models of human development. (c) 2015 APA, all rights reserved.
NDARC NASA Design and Analysis of Rotorcraft. Appendix 5; Theory
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2017-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
NDARC: NASA Design and Analysis of Rotorcraft. Appendix 3; Theory
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2016-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet speci?ed requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft con?gurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates con?guration ?exibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-?delity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy speci?ed design conditions and missions. The analysis tasks can include off-design mission performance calculation, ?ight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft con?gurations is facilitated, while retaining the capability to model novel and advanced concepts. Speci?c rotorcraft con?gurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-?delity attribute models for a component, as well as addition of new components.
NDARC NASA Design and Analysis of Rotorcraft - Input, Appendix 2
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2016-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration exibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tilt-rotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
NDARC NASA Design and Analysis of Rotorcraft. Appendix 6; Input
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2017-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
NDARC NASA Design and Analysis of Rotorcraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne R.
2009-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool intended to support both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility; a hierarchy of models; and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with lowfidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single main-rotor and tailrotor helicopter; tandem helicopter; coaxial helicopter; and tiltrotors. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
NDARC - NASA Design and Analysis of Rotorcraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2015-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
NDARC NASA Design and Analysis of Rotorcraft Theory Appendix 1
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2016-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
ERIC Educational Resources Information Center
Vasilenko, Sara A.; Lefkowitz, Eva S.; Welsh, Deborah P.
2014-01-01
Although research has increasingly emphasized how adolescent sexual behavior may be associated with aspects of health beyond unwanted pregnancy and sexually transmitted infections, no current theoretical or conceptual model fully explains associations between sexual behavior and multiple facets of health. We provide a conceptual model that…
Effects of pore-scale physics on uranium geochemistry in Hanford sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Qinhong; Ewing, Robert P.
Overall, this work examines a key scientific issue, mass transfer limitations at the pore-scale, using both new instruments with high spatial resolution, and new conceptual and modeling paradigms. The complementary laboratory and numerical approaches connect pore-scale physics to macroscopic measurements, providing a previously elusive scale integration. This Exploratory research project produced five peer-reviewed journal publications and eleven scientific presentations. This work provides new scientific understanding, allowing the DOE to better incorporate coupled physical and chemical processes into decision making for environmental remediation and long-term stewardship.
On the Performance of Alternate Conceptual Ecohydrological Models for Streamflow Prediction
NASA Astrophysics Data System (ADS)
Naseem, Bushra; Ajami, Hoori; Cordery, Ian; Sharma, Ashish
2016-04-01
A merging of a lumped conceptual hydrological model with two conceptual dynamic vegetation models is presented to assess the performance of these models for simultaneous simulations of streamflow and leaf area index (LAI). Two conceptual dynamic vegetation models with differing representation of ecological processes are merged with a lumped conceptual hydrological model (HYMOD) to predict catchment scale streamflow and LAI. The merged RR-LAI-I model computes relative leaf biomass based on transpiration rates while the RR-LAI-II model computes above ground green and dead biomass based on net primary productivity and water use efficiency in response to soil moisture dynamics. To assess the performance of these models, daily discharge and 8-day MODIS LAI product for 27 catchments of 90 - 1600km2 in size located in the Murray - Darling Basin in Australia are used. Our results illustrate that when single-objective optimisation was focussed on maximizing the objective function for streamflow or LAI, the other un-calibrated predicted outcome (LAI if streamflow is the focus) was consistently compromised. Thus, single-objective optimization cannot take into account the essence of all processes in the conceptual ecohydrological models. However, multi-objective optimisation showed great strength for streamflow and LAI predictions. Both response outputs were better simulated by RR-LAI-II than RR-LAI-I due to better representation of physical processes such as net primary productivity (NPP) in RR-LAI-II. Our results highlight that simultaneous calibration of streamflow and LAI using a multi-objective algorithm proves to be an attractive tool for improved streamflow predictions.
Dispersion Modeling in Complex Urban Systems
Models are used to represent real systems in an understandable way. They take many forms. A conceptual model explains the way a system works. In environmental studies, for example, a conceptual model may delineate all the factors and parameters for determining how a particle move...
Valder, Joshua F.; McShane, Ryan R.; Barnhart, Theodore B.; Sando, Roy; Carter, Janet M.; Lundgren, Robert F.
2018-03-15
As the demand for energy increases in the United States, so does the demand for water used to produce many forms of that energy. Technological advances, limited access to conventional oil and gas accumulations, and the rise of oil and gas prices resulted in increased development of unconventional oil and gas (UOG) accumulations. Unconventional oil and gas is developed using a method that combines directional drilling and hydraulic fracturing techniques, allowing for greater oil and gas production from previously unrecoverable reservoirs. Quantification of the water resources required for UOG development and production is difficult because of disparate data sources, variable reporting requirements across boundaries (local, State, and national), and incomplete or proprietary datasets.A topical study was started in 2015 under the U.S. Geological Survey’s Water Availability and Use Science Program, as part of the directive in the Secure Water Act for the U.S. Geological Survey to conduct a National Water Census, to better understand the relation between production of UOG resources for energy and the amount of water needed to produce and sustain this type of energy development in the United States. The Water Availability and Use Science Program goal for this topical study is to develop and apply a statistical model to better estimate the water use associated with UOG development, regardless of the location and target geologic formation. As a first step, a conceptual model has been developed to characterize the life cycle of water use in areas of UOG development.Categories of water use and the way water-use data are collected might change over time; therefore, a generic approach was used in developing the conceptual model to allow for greater flexibility in adapting to future changes or newly available data. UOG development can be summarized into four stages: predrilling construction, drilling, hydraulic fracturing, and ongoing production. The water used in UOG production can be categorized further as direct, indirect, or ancillary water use. Direct water use is defined as the water used for drilling and hydraulic fracturing a well and for maintaining the well during ongoing production. Indirect water use is defined as the water used at or near a well pad. The water used for dust abatement also is considered an indirect use but may be applied away from the well pad. Ancillary water use is defined as the additional local or regional water use resulting from a change (for example, population) directly related to UOG development throughout the life cycle that is not used directly in the well or indirectly for any other purpose at the well pad.The conceptual model presented in this report consists of five elements: (1) input data, (2) processes, (3) decisions, (4) output data, and (5) outcomes. The input data requirements for estimating water use associated with UOG development are somewhat onerous, and obtaining suitable datasets can be challenging because local, State, and Federal agencies do not collect data similarly. The quality of a water-use assessment that uses the conceptual model presented in this report is dependent on the quality and quantity of data that are available for a UOG play. The conceptual model can be used for an assessment with sparse data; however, having sparse data likely will result in greater uncertainty in the water-use estimates.The conceptual model presented in this report is designed to be robust to characterize and simulate the data processing to estimate water use associated with UOG development. Although the results of an analysis that includes missing data have greater uncertainty, the analysis still can be insightful because it can establish a baseline estimate of UOG water use that may be refined further as more data become available. Analysis of models that include missing data also could aid in identifying the data most needed for future water-use estimates. Characterizing individual model limitations is important because the conceptual model can be used in future water-use studies to facilitate data compiling, data processing, estimating, and assessing UOG activities regardless of location.
NASA Astrophysics Data System (ADS)
Alfano, Candice A.; Bower, Joanne L.; Cowie, Jennifer; Lau, Simon; Simpson, Richard J.
2018-01-01
Spaceflight to Mars will by far exceed the duration of any previous mission. Although behavioral health risks are routinely highlighted among the most serious threats to crew safety, understanding of specific emotional responses most likely to occur and interfere with mission success has lagged in comparison to other risk domains. Even within the domain of behavioral health, emotional constructs remain to be 'unpacked' to the same extent as other factors such as attention and fatigue. The current paper provides a review of previous studies that have examined emotional responses in isolated, confined, extreme environments (ICE) toward informing a needed research agenda. We include research conducted during space flight, long-duration space simulation analogs, and polar environments and utilize a well-established model of emotion and emotion regulation to conceptualize specific findings. Lastly, we propose four specific directions for future research: (1) use of a guiding theoretical framework for evaluating emotion responses in ICE environments; (2) leveraging multi-method approaches to improve the reliability of subjective reports of emotional health; (3) a priori selection of precise emotional constructs to guide measure selection; and (4) focusing on positive in addition to negative emotion in order to provide a more complete understanding of individual risk and resilience.
Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-2.
Roberts, Mark; Russell, Louise B; Paltiel, A David; Chambers, Michael; McEwan, Phil; Krahn, Murray
2012-01-01
The appropriate development of a model begins with understanding the problem that is being represented. The aim of this article is to provide a series of consensus-based best practices regarding the process of model conceptualization. For the purpose of this series of papers, the authors consider the development of models whose purpose is to inform medical decisions and health-related resource allocation questions. They specifically divide the conceptualization process into two distinct components: the conceptualization of the problem, which converts knowledge of the health care process or decision into a representation of the problem, followed by the conceptualization of the model itself, which matches the attributes and characteristics of a particular modeling type to the needs of the problem being represented. Recommendations are made regarding the structure of the modeling team, agreement on the statement of the problem, the structure, perspective and target population of the model, and the interventions and outcomes represented. Best practices relating to the specific characteristics of model structure, and which characteristics of the problem might be most easily represented in a specific modeling method, are presented. Each section contains a number of recommendations that were iterated among the authors, as well as the wider modeling taskforce, jointly set up by the International Society for Pharmacoeconomics and Outcomes Research and the Society for Medical Decision Making.
Abramoff, Rose; Xu, Xiaofeng; Hartman, Melannie; ...
2017-12-20
Soil organic carbon (SOC) can be defined by measurable chemical and physical pools, such as mineral-associated carbon, carbon physically entrapped in aggregates, dissolved carbon, and fragments of plant detritus. Yet, most soil models use conceptual rather than measurable SOC pools. What would the traditional pool-based soil model look like if it were built today, reflecting the latest understanding of biological, chemical, and physical transformations in soils? We propose a conceptual model—the Millennial model—that defines pools as measurable entities. First, we discuss relevant pool definitions conceptually and in terms of the measurements that can be used to quantify pool size, formation,more » and destabilization. Then, we develop a numerical model following the Millennial model conceptual framework to evaluate against the Century model, a widely-used standard for estimating SOC stocks across space and through time. The Millennial model predicts qualitatively similar changes in total SOC in response to single factor perturbations when compared to Century, but different responses to multiple factor perturbations. Finally, we review important conceptual and behavioral differences between the Millennial and Century modeling approaches, and the field and lab measurements needed to constrain parameter values. Here, we propose the Millennial model as a simple but comprehensive framework to model SOC pools and guide measurements for further model development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramoff, Rose; Xu, Xiaofeng; Hartman, Melannie
Soil organic carbon (SOC) can be defined by measurable chemical and physical pools, such as mineral-associated carbon, carbon physically entrapped in aggregates, dissolved carbon, and fragments of plant detritus. Yet, most soil models use conceptual rather than measurable SOC pools. What would the traditional pool-based soil model look like if it were built today, reflecting the latest understanding of biological, chemical, and physical transformations in soils? We propose a conceptual model—the Millennial model—that defines pools as measurable entities. First, we discuss relevant pool definitions conceptually and in terms of the measurements that can be used to quantify pool size, formation,more » and destabilization. Then, we develop a numerical model following the Millennial model conceptual framework to evaluate against the Century model, a widely-used standard for estimating SOC stocks across space and through time. The Millennial model predicts qualitatively similar changes in total SOC in response to single factor perturbations when compared to Century, but different responses to multiple factor perturbations. Finally, we review important conceptual and behavioral differences between the Millennial and Century modeling approaches, and the field and lab measurements needed to constrain parameter values. Here, we propose the Millennial model as a simple but comprehensive framework to model SOC pools and guide measurements for further model development.« less
Conceptualizing Programme Evaluation
ERIC Educational Resources Information Center
Hassan, Salochana
2013-01-01
The main thrust of this paper deals with the conceptualization of theory-driven evaluation pertaining to a tutor training programme. Conceptualization of evaluation, in this case, is an integration between a conceptualization model as well as a theoretical framework in the form of activity theory. Existing examples of frameworks of programme…
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Perry; R. Youngs
The purpose of this scientific analysis report is threefold: (1) Present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the probabilistic volcanic hazard analysis (PVHA) (CRWMS M&O 1996 [DIRS 100116]). Conceptual models presented in the PVHA are summarized and applied in areas in which new information has been presented. Alternative conceptual models are discussed, as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural featuresmore » of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) Present revised probability calculations based on PVHA outputs for a repository footprint proposed in 2003 (BSC 2003 [DIRS 162289]), rather than the footprint used at the time of the PVHA. This analysis report also calculates the probability of an eruptive center(s) forming within the repository footprint using information developed in the PVHA. Probability distributions are presented for the length and orientation of volcanic dikes located within the repository footprint and for the number of eruptive centers (conditional on a dike intersecting the repository) located within the repository footprint. (3) Document sensitivity studies that analyze how the presence of potentially buried basaltic volcanoes may affect the computed frequency of intersection of the repository footprint by a basaltic dike. These sensitivity studies are prompted by aeromagnetic data collected in 1999, indicating the possible presence of previously unrecognized buried volcanoes in the YMR (Blakely et al. 2000 [DIRS 151881]; O'Leary et al. 2002 [DIRS 158468]). The results of the sensitivity studies are for informational purposes only and are not to be used for purposes of assessing repository performance.« less
Development of a model of the tobacco industry's interference with tobacco control programmes
Trochim, W; Stillman, F; Clark, P; Schmitt, C
2003-01-01
Objective: To construct a conceptual model of tobacco industry tactics to undermine tobacco control programmes for the purposes of: (1) developing measures to evaluate industry tactics, (2) improving tobacco control planning, and (3) supplementing current or future frameworks used to classify and analyse tobacco industry documents. Design: Web based concept mapping was conducted, including expert brainstorming, sorting, and rating of statements describing industry tactics. Statistical analyses used multidimensional scaling and cluster analysis. Interpretation of the resulting maps was accomplished by an expert panel during a face-to-face meeting. Subjects: 34 experts, selected because of their previous encounters with industry resistance or because of their research into industry tactics, took part in some or all phases of the project. Results: Maps with eight non-overlapping clusters in two dimensional space were developed, with importance ratings of the statements and clusters. Cluster and quadrant labels were agreed upon by the experts. Conclusions: The conceptual maps summarise the tactics used by the industry and their relationships to each other, and suggest a possible hierarchy for measures that can be used in statistical modelling of industry tactics and for review of industry documents. Finally, the maps enable hypothesis of a likely progression of industry reactions as public health programmes become more successful, and therefore more threatening to industry profits. PMID:12773723
Conceptual model of the Great Basin carbonate and alluvial aquifer system
Heilweil, Victor M.; Brooks, Lynette E.
2011-01-01
A conceptual model of the Great Basin carbonate and alluvial aquifer system (GBCAAS) was developed by the U.S. Geological Survey (USGS) for a regional assessment of groundwater availability as part of a national water census. The study area is an expansion of a previous USGS Regional Aquifer Systems Analysis (RASA) study conducted during the 1980s and 1990s of the carbonate-rock province of the Great Basin. The geographic extent of the study area is 110,000 mi2, predominantly in eastern Nevada and western Utah, and includes 165 hydrographic areas (HAs) and 17 regional groundwater flow systems.A three-dimensional hydrogeologic framework was constructed that defines the physical geometry and rock types through which groundwater moves. The diverse sedimentary units of the GBCAAS study area are grouped into hydrogeologic units (HGUs) that are inferred to have reasonably distinct hydrologic properties due to their physical characteristics. These HGUs are commonly disrupted by large-magnitude offset thrust, strike-slip, and normal faults, and locally affected by caldera formation. The most permeable aquifer materials within the study area include Cenozoic unconsolidated sediments and volcanic rocks, along with Mesozoic and Paleozoic carbonate rocks. The framework was built by extracting and combining information from digital elevation models, geologic maps, cross sections, drill hole logs, existing hydrogeologic frameworks, and geophysical data.
Identifying Hydrologic Processes in Agricultural Watersheds Using Precipitation-Runoff Models
Linard, Joshua I.; Wolock, David M.; Webb, Richard M.T.; Wieczorek, Michael
2009-01-01
Understanding the fate and transport of agricultural chemicals applied to agricultural fields will assist in designing the most effective strategies to prevent water-quality impairments. At a watershed scale, the processes controlling the fate and transport of agricultural chemicals are generally understood only conceptually. To examine the applicability of conceptual models to the processes actually occurring, two precipitation-runoff models - the Soil and Water Assessment Tool (SWAT) and the Water, Energy, and Biogeochemical Model (WEBMOD) - were applied in different agricultural settings of the contiguous United States. Each model, through different physical processes, simulated the transport of water to a stream from the surface, the unsaturated zone, and the saturated zone. Models were calibrated for watersheds in Maryland, Indiana, and Nebraska. The calibrated sets of input parameters for each model at each watershed are discussed, and the criteria used to validate the models are explained. The SWAT and WEBMOD model results at each watershed conformed to each other and to the processes identified in each watershed's conceptual hydrology. In Maryland the conceptual understanding of the hydrology indicated groundwater flow was the largest annual source of streamflow; the simulation results for the validation period confirm this. The dominant source of water to the Indiana watershed was thought to be tile drains. Although tile drains were not explicitly simulated in the SWAT model, a large component of streamflow was received from lateral flow, which could be attributed to tile drains. Being able to explicitly account for tile drains, WEBMOD indicated water from tile drains constituted most of the annual streamflow in the Indiana watershed. The Nebraska models indicated annual streamflow was composed primarily of perennial groundwater flow and infiltration-excess runoff, which conformed to the conceptual hydrology developed for that watershed. The hydrologic processes represented in the parameter sets resulting from each model were comparable at individual watersheds, but varied between watersheds. The models were unable to show, however, whether hydrologic processes other than those included in the original conceptual models were major contributors to streamflow. Supplemental simulations of agricultural chemical transport could improve the ability to assess conceptual models.
Modelling in Primary School: Constructing Conceptual Models and Making Sense of Fractions
ERIC Educational Resources Information Center
Shahbari, Juhaina Awawdeh; Peled, Irit
2017-01-01
This article describes sixth-grade students' engagement in two model-eliciting activities offering students the opportunity to construct mathematical models. The findings show that students utilized their knowledge of fractions including conceptual and procedural knowledge in constructing mathematical models for the given situations. Some students…
Conceptual Models and the Future of Special Education
ERIC Educational Resources Information Center
Kauffman, James M.
2007-01-01
A medical model has advantages over a legal model in thinking about special education, especially in responding supportively to difference, meeting individual needs, and practicing prevention. The legal conceptual model now dominates thinking about special education, but a medical model promises a brighter future for special education and for…
Shallow groundwater in the Matanuska-Susitna Valley, Alaska—Conceptualization and simulation of flow
Kikuchi, Colin P.
2013-01-01
The Matanuska-Susitna Valley is in the Upper Cook Inlet Basin and is currently undergoing rapid population growth outside of municipal water and sewer service areas. In response to concerns about the effects of increasing water use on future groundwater availability, a study was initiated between the Alaska Department of Natural Resources and the U.S. Geological Survey. The goals of the study were (1) to compile existing data and collect new data to support hydrogeologic conceptualization of the study area, and (2) to develop a groundwater flow model to simulate flow dynamics important at the regional scale. The purpose of the groundwater flow model is to provide a scientific framework for analysis of regional-scale groundwater availability. To address the first study goal, subsurface lithologic data were compiled into a database and were used to construct a regional hydrogeologic framework model describing the extent and thickness of hydrogeologic units in the Matanuska-Susitna Valley. The hydrogeologic framework model synthesizes existing maps of surficial geology and conceptual geochronologies developed in the study area with the distribution of lithologies encountered in hundreds of boreholes. The geologic modeling package Geological Surveying and Investigation in Three Dimensions (GSI3D) was used to construct the hydrogeologic framework model. In addition to characterizing the hydrogeologic framework, major groundwater-budget components were quantified using several different techniques. A land-surface model known as the Deep Percolation Model was used to estimate in-place groundwater recharge across the study area. This model incorporates data on topography, soils, vegetation, and climate. Model-simulated surface runoff was consistent with observed streamflow at U.S. Geological Survey streamgages. Groundwater withdrawals were estimated on the basis of records from major water suppliers during 2004-2010. Fluxes between groundwater and surface water were estimated during field investigations on several small streams. Regional groundwater flow patterns were characterized by synthesizing previous water-table maps with a synoptic water-level measurement conducted during 2009. Time-series water-level data were collected at groundwater and lake monitoring stations over the study period (2009–present). Comparison of historical groundwater-level records with time-series groundwater-level data collected during this study showed similar patterns in groundwater-level fluctuation in response to precipitation. Groundwater-age data collected during previous studies show that water moves quickly through the groundwater system, suggesting that the system responds quickly to changes in climate forcing. Similarly, the groundwater system quickly returns to long-term average conditions following variability due to seasonal or interannual changes in precipitation. These analyses indicate that the groundwater system is in a state of dynamic equilibrium, characterized by water-level fluctuation about a constant average state, with no long-term trends in aquifer-system storage. To address the second study goal, a steady-state groundwater flow model was developed to simulate regional groundwater flow patterns. The groundwater flow model was bounded by physically meaningful hydrologic features, and appropriate internal model boundaries were specified on the basis of conceptualization of the groundwater system resulting in a three-layer model. Calibration data included 173 water‑level measurements and 18 measurements of streamflow gains and losses along small streams. Comparison of simulated and observed heads and flows showed that the model accurately simulates important regional characteristics of the groundwater flow system. This model is therefore appropriate for studying regional-scale groundwater availability. Mismatch between model-simulated and observed hydrologic quantities is likely because of the coarse grid size of the model and seasonal transient effects. Next steps towards model refinement include the development of a transient groundwater flow model that is suitable for analysis of seasonal variability in hydraulic heads and flows. In addition, several important groundwater budget components remain poorly quantified—including groundwater outflow to the Matanuska River, Little Susitna River, and Knik Arm.
NASA Astrophysics Data System (ADS)
Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.
2014-11-01
Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.
Mirror neurons and imitation: a computationally guided review.
Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael
2006-04-01
Neurophysiology reveals the properties of individual mirror neurons in the macaque while brain imaging reveals the presence of 'mirror systems' (not individual neurons) in the human. Current conceptual models attribute high level functions such as action understanding, imitation, and language to mirror neurons. However, only the first of these three functions is well-developed in monkeys. We thus distinguish current opinions (conceptual models) on mirror neuron function from more detailed computational models. We assess the strengths and weaknesses of current computational models in addressing the data and speculations on mirror neurons (macaque) and mirror systems (human). In particular, our mirror neuron system (MNS), mental state inference (MSI) and modular selection and identification for control (MOSAIC) models are analyzed in more detail. Conceptual models often overlook the computational requirements for posited functions, while too many computational models adopt the erroneous hypothesis that mirror neurons are interchangeable with imitation ability. Our meta-analysis underlines the gap between conceptual and computational models and points out the research effort required from both sides to reduce this gap.
An introduction to the multisystem model of knowledge integration and translation.
Palmer, Debra; Kramlich, Debra
2011-01-01
Many nurse researchers have designed strategies to assist health care practitioners to move evidence into practice. While many have been identified as "models," most do not have a conceptual framework. They are unidirectional, complex, and difficult for novice research users to understand. These models have focused on empirical knowledge and ignored the importance of practitioners' tacit knowledge. The Communities of Practice conceptual framework allows for the integration of tacit and explicit knowledge into practice. This article describes the development of a new translation model, the Multisystem Model of Knowledge Integration and Translation, supported by the Communities of Practice conceptual framework.
NASA Astrophysics Data System (ADS)
Ahmad, Sabrina; Jalil, Intan Ermahani A.; Ahmad, Sharifah Sakinah Syed
2016-08-01
It is seldom technical issues which impede the process of eliciting software requirements. The involvement of multiple stakeholders usually leads to conflicts and therefore the need of conflict detection and resolution effort is crucial. This paper presents a conceptual model to further improve current efforts. Hence, this paper forwards an improved conceptual model to assist the conflict detection and resolution effort which extends the model ability and improves overall performance. The significant of the new model is to empower the automation of conflicts detection and its severity level with rule-based reasoning.
NASA Astrophysics Data System (ADS)
Ryu, Suna; Han, Yuhwha; Paik, Seoung-Hey
2015-04-01
The present study explores how engaging in modeling practice, along with argumentation, leverages students' epistemic and conceptual understanding in an afterschool science/math class of 16 tenth graders. The study also explores how students used mobile Internet phones (smart phones) productively to support modeling practices. As the modeling practices became more challenging, student discussion occurred more often, from what to model to providing explanations for the phenomenon. Students came to argue about evidence that supported their model and how the model could explain target and related phenomena. This finding adds to the literature that modeling practice can help students improve conceptual understanding of subject knowledge as well as epistemic understanding.
CADDIS Volume 5. Causal Databases: Interactive Conceptual Diagrams (ICDs)
In Interactive Conceptual Diagram (ICD) section of CADDIS allows users to create conceptual model diagrams, search a literature-based evidence database, and then attach that evidence to their diagrams.
Evaluation of a distributed catchment scale water balance model
NASA Technical Reports Server (NTRS)
Troch, Peter A.; Mancini, Marco; Paniconi, Claudio; Wood, Eric F.
1993-01-01
The validity of some of the simplifying assumptions in a conceptual water balance model is investigated by comparing simulation results from the conceptual model with simulation results from a three-dimensional physically based numerical model and with field observations. We examine, in particular, assumptions and simplifications related to water table dynamics, vertical soil moisture and pressure head distributions, and subsurface flow contributions to stream discharge. The conceptual model relies on a topographic index to predict saturation excess runoff and on Philip's infiltration equation to predict infiltration excess runoff. The numerical model solves the three-dimensional Richards equation describing flow in variably saturated porous media, and handles seepage face boundaries, infiltration excess and saturation excess runoff production, and soil driven and atmosphere driven surface fluxes. The study catchments (a 7.2 sq km catchment and a 0.64 sq km subcatchment) are located in the North Appalachian ridge and valley region of eastern Pennsylvania. Hydrologic data collected during the MACHYDRO 90 field experiment are used to calibrate the models and to evaluate simulation results. It is found that water table dynamics as predicted by the conceptual model are close to the observations in a shallow water well and therefore, that a linear relationship between a topographic index and the local water table depth is found to be a reasonable assumption for catchment scale modeling. However, the hydraulic equilibrium assumption is not valid for the upper 100 cm layer of the unsaturated zone and a conceptual model that incorporates a root zone is suggested. Furthermore, theoretical subsurface flow characteristics from the conceptual model are found to be different from field observations, numerical simulation results, and theoretical baseflow recession characteristics based on Boussinesq's groundwater equation.
System Level Uncertainty Assessment for Collaborative RLV Design
NASA Technical Reports Server (NTRS)
Charania, A. C.; Bradford, John E.; Olds, John R.; Graham, Matthew
2002-01-01
A collaborative design process utilizing Probabilistic Data Assessment (PDA) is showcased. Given the limitation of financial resources by both the government and industry, strategic decision makers need more than just traditional point designs, they need to be aware of the likelihood of these future designs to meet their objectives. This uncertainty, an ever-present character in the design process, can be embraced through a probabilistic design environment. A conceptual design process is presented that encapsulates the major engineering disciplines for a Third Generation Reusable Launch Vehicle (RLV). Toolsets consist of aerospace industry standard tools in disciplines such as trajectory, propulsion, mass properties, cost, operations, safety, and economics. Variations of the design process are presented that use different fidelities of tools. The disciplinary engineering models are used in a collaborative engineering framework utilizing Phoenix Integration's ModelCenter and AnalysisServer environment. These tools allow the designer to join disparate models and simulations together in a unified environment wherein each discipline can interact with any other discipline. The design process also uses probabilistic methods to generate the system level output metrics of interest for a RLV conceptual design. The specific system being examined is the Advanced Concept Rocket Engine 92 (ACRE-92) RLV. Previous experience and knowledge (in terms of input uncertainty distributions from experts and modeling and simulation codes) can be coupled with Monte Carlo processes to best predict the chances of program success.
An integrated conceptual framework for evaluating and improving 'understanding' in informed consent.
Bossert, Sabine; Strech, Daniel
2017-10-17
The development of understandable informed consent (IC) documents has proven to be one of the most important challenges in research with humans as well as in healthcare settings. Therefore, evaluating and improving understanding has been of increasing interest for empirical research on IC. However, several conceptual and practical challenges for the development of understandable IC documents remain unresolved. In this paper, we will outline and systematize some of these challenges. On the basis of our own experiences in empirical user testing of IC documents as well as the relevant literature on understanding in IC, we propose an integrated conceptual model for the development of understandable IC documents. The proposed conceptual model integrates different methods for the participatory improvement of written information, including IC, as well as quantitative methods for measuring understanding in IC. In most IC processes, understandable written information is an important prerequisite for valid IC. To improve the quality of IC documents, a conceptual model for participatory procedures of testing, revising, and retesting can be applied. However, the model presented in this paper needs further theoretical and empirical elaboration and clarification of several conceptual and practical challenges.
Conceptual astronomy: A novel model for teaching postsecondary science courses
NASA Astrophysics Data System (ADS)
Zeilik, Michael; Schau, Candace; Mattern, Nancy; Hall, Shannon; Teague, Kathleen W.; Bisard, Walter
1997-10-01
An innovative, conceptually based instructional model for teaching large undergraduate astronomy courses was designed, implemented, and evaluated in the Fall 1995 semester. This model was based on cognitive and educational theories of knowledge and, we believe, is applicable to other large postsecondary science courses. Major components were: (a) identification of the basic important concepts and their interrelationships that are necessary for connected understanding of astronomy in novice students; (b) use of these concepts and their interrelationships throughout the design, implementation, and evaluation stages of the model; (c) identification of students' prior knowledge and misconceptions; and (d) implementation of varied instructional strategies targeted toward encouraging conceptual understanding in students (i.e., instructional concept maps, cooperative small group work, homework assignments stressing concept application, and a conceptually based student assessment system). Evaluation included the development and use of three measures of conceptual understanding and one of attitudes toward studying astronomy. Over the semester, students showed very large increases in their understanding as assessed by a conceptually based multiple-choice measure of misconceptions, a select-and-fill-in concept map measure, and a relatedness-ratings measure. Attitudes, which were slightly positive before the course, changed slightly in a less favorable direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rheinstaedter, Maikel C.; Enderle, Mechthild; Kloepperpieper, Axel
2005-01-01
Methanol-{beta}-hydroquinone clathrate has been established as a model system for dielectric ordering and fluctuations and is conceptually close to magnetic spin systems. In x-ray and neutron diffraction experiments, we investigated the ordered structure, the one-dimensional (1D) and the three-dimensional critical scattering in the paraelectric phase, and the temperature dependence of the lattice constants. Our results can be explained by microscopic models of the methanol pseudospin in the hydroquinone cage network, in consistency with previous dielectric investigations. A coupling of the 1D fluctuations to local strains leads to an anomalous temperature dependence of the 1D lattice parameter in the paraelectric regime.
Zeng, Liang; Proctor, Robert W; Salvendy, Gavriel
2011-06-01
This research is intended to empirically validate a general model of creative product and service development proposed in the literature. A current research gap inspired construction of a conceptual model to capture fundamental phases and pertinent facilitating metacognitive strategies in the creative design process. The model also depicts the mechanism by which design creativity affects consumer behavior. The validity and assets of this model have not yet been investigated. Four laboratory studies were conducted to demonstrate the value of the proposed cognitive phases and associated metacognitive strategies in the conceptual model. Realistic product and service design problems were used in creativity assessment to ensure ecological validity. Design creativity was enhanced by explicit problem analysis, whereby one formulates problems from different perspectives and at different levels of abstraction. Remote association in conceptual combination spawned more design creativity than did near association. Abstraction led to greater creativity in conducting conceptual expansion than did specificity, which induced mental fixation. Domain-specific knowledge and experience enhanced design creativity, indicating that design can be of a domain-specific nature. Design creativity added integrated value to products and services and positively influenced customer behavior. The validity and value of the proposed conceptual model is supported by empirical findings. The conceptual model of creative design could underpin future theory development. Propositions advanced in this article should provide insights and approaches to facilitate organizations pursuing product and service creativity to gain competitive advantage.
An Integrative-Interactive Conceptual Model for Curriculum Development.
ERIC Educational Resources Information Center
Al-Ibrahim, Abdul Rahman H.
1982-01-01
The Integrative-Interactive Conceptual Model for Curriculum Development calls for curriculum reform and innovation to be cybernetic so that all aspects of curriculum planning get adequate attention. (CJ)
Evaluating the Functionality of Conceptual Models
NASA Astrophysics Data System (ADS)
Mehmood, Kashif; Cherfi, Samira Si-Said
Conceptual models serve as the blueprints of information systems and their quality plays decisive role in the success of the end system. It has been witnessed that majority of the IS change-requests results due to deficient functionalities in the information systems. Therefore, a good analysis and design method should ensure that conceptual models are functionally correct and complete, as they are the communicating mediator between the users and the development team. Conceptual model is said to be functionally complete if it represents all the relevant features of the application domain and covers all the specified requirements. Our approach evaluates the functional aspects on multiple levels of granularity in addition to providing the corrective actions or transformation for improvement. This approach has been empirically validated by practitioners through a survey.
Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.
The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and to identify aspects about which additional information needed to effectively support remedy decisions.more » this document summarizes the conceptual model of iodine behavior relevant to iodine in the subsurface environment at the Hanford site.« less
A conceptual network model of the air transportation system. the basic level 1 model.
DOT National Transportation Integrated Search
1971-04-01
A basic conceptual model of the entire Air Transportation System is being developed to serve as an analytical tool for studying the interactions among the system elements. The model is being designed to function in an interactive computer graphics en...
Neumann, Rebecca B.; Blazewicz, Steven J.; Conaway, Christopher H.; ...
2015-12-16
Quantifying rates of microbial carbon transformation in peatlands is essential for gaining mechanistic understanding of the factors that influence methane emissions from these systems, and for predicting how emissions will respond to climate change and other disturbances. In this study, we used porewater stable isotopes collected from both the edge and center of a thermokarst bog in Interior Alaska to estimate in situ microbial reaction rates. We expected that near the edge of the thaw feature, actively thawing permafrost and greater abundance of sedges would increase carbon, oxygen and nutrient availability, enabling faster microbial rates relative to the center ofmore » the thaw feature. We developed three different conceptual reaction networks that explained the temporal change in porewater CO2, CH4, δ13C-CO2 and δ13C-CH4. All three reaction-network models included methane production, methane oxidation and CO2 production, and two of the models included homoacetogenesis — a reaction not previously included in isotope-based porewater models. All three models fit the data equally well, but rates resulting from the models differed. Most notably, inclusion of homoacetogenesis altered the modeled pathways of methane production when the reaction was directly coupled to methanogenesis, and it decreased gross methane production rates by up to a factor of five when it remained decoupled from methanogenesis. The ability of all three conceptual reaction networks to successfully match the measured data indicate that this technique for estimating in-situ reaction rates requires other data and information from the site to confirm the considered set of microbial reactions. Despite these differences, all models indicated that, as expected, rates were greater at the edge than in the center of the thaw bog, that rates at the edge increased more during the growing season than did rates in the center, and that the ratio of acetoclastic to hydrogenotrophic methanogenesis was greater at the edge than in the center. In both locations, modeled rates (excluding methane oxidation) increased with depth. A puzzling outcome from the effort was that none of the models could fit the porewater dataset without generating “fugitive” carbon (i.e., methane or acetate generated by the models but not detected at the field site), indicating that either our conceptualization of the reactions occurring at the site remains incomplete or our site measurements are missing important carbon transformations and/or carbon fluxes. This model–data discrepancy will motivate and inform future research efforts focused on improving our understanding of carbon cycling in permafrost wetlands.« less
Comprehension and retrieval of failure cases in airborne observatories
NASA Technical Reports Server (NTRS)
Alvarado, Sergio J.; Mock, Kenrick J.
1995-01-01
This paper describes research dealing with the computational problem of analyzing and repairing failures of electronic and mechanical systems of telescopes in NASA's airborne observatories, such as KAO (Kuiper Airborne Observatory) and SOFIA (Stratospheric Observatory for Infrared Astronomy). The research has resulted in the development of an experimental system that acquires knowledge of failure analysis from input text, and answers questions regarding failure detection and correction. The system's design builds upon previous work on text comprehension and question answering, including: knowledge representation for conceptual analysis of failure descriptions, strategies for mapping natural language into conceptual representations, case-based reasoning strategies for memory organization and indexing, and strategies for memory search and retrieval. These techniques have been combined into a model that accounts for: (a) how to build a knowledge base of system failures and repair procedures from descriptions that appear in telescope-operators' logbooks and FMEA (failure modes and effects analysis) manuals; and (b) how to use that knowledge base to search and retrieve answers to questions about causes and effects of failures, as well as diagnosis and repair procedures. This model has been implemented in FANSYS (Failure ANalysis SYStem), a prototype text comprehension and question answering program for failure analysis.
An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer
NASA Astrophysics Data System (ADS)
Jiao, Jiu Jimmy; Tang, Zhonghua
1999-03-01
An analytical solution is derived to investigate the influence of leakage on tidal response in a coastal leaky confined aquifer system. The analytical solution developed here is more general than the traditional solution obtained by Ferris [1951], which can be regarded as a special case of the solution presented in this paper. This solution is based on a conceptual model under the assumption that the groundwater level in the confined aquifer fluctuates in response to sea tide while that of the overlying unconfined aquifer remains constant. This conceptual model is supported by numerous field studies by previous researchers which have demonstrated that the tidal response in an unconfined aquifer may be negligible compared to that in a confined aquifer. The leakage has a significant impact on the tidal behavior of the confined aquifer. Hypothetical studies indicate that both tidal amplitude of groundwater head in the aquifer and the distance over which the aquifer can be disturbed by the sea tide will be considerably reduced because of the existence of leakage. This analytical solution is used to investigate the tidal and piezometer data at the Chek Lap Kok airport, Hong Kong Special Administrative Region, People's Republic of China.
Comprehension and retrieval of failure cases in airborne observatories
NASA Astrophysics Data System (ADS)
Alvarado, Sergio J.; Mock, Kenrick J.
1995-05-01
This paper describes research dealing with the computational problem of analyzing and repairing failures of electronic and mechanical systems of telescopes in NASA's airborne observatories, such as KAO (Kuiper Airborne Observatory) and SOFIA (Stratospheric Observatory for Infrared Astronomy). The research has resulted in the development of an experimental system that acquires knowledge of failure analysis from input text, and answers questions regarding failure detection and correction. The system's design builds upon previous work on text comprehension and question answering, including: knowledge representation for conceptual analysis of failure descriptions, strategies for mapping natural language into conceptual representations, case-based reasoning strategies for memory organization and indexing, and strategies for memory search and retrieval. These techniques have been combined into a model that accounts for: (a) how to build a knowledge base of system failures and repair procedures from descriptions that appear in telescope-operators' logbooks and FMEA (failure modes and effects analysis) manuals; and (b) how to use that knowledge base to search and retrieve answers to questions about causes and effects of failures, as well as diagnosis and repair procedures. This model has been implemented in FANSYS (Failure ANalysis SYStem), a prototype text comprehension and question answering program for failure analysis.
Conceptual model for partnership and sustainability in global health.
Leffers, Jeanne; Mitchell, Emma
2011-01-01
Although nursing has a long history of service to the global community, the profession lacks a theoretical and empirical base for nurses to frame their global practice. A study using grounded theory methodology to investigate partnership and sustainability for global health led to the development of a conceptual model. Interviews were conducted with 13 global health nurse experts. Themes from the interviews were: components for engagement, mutual goal setting, cultural bridging, collaboration, capacity building, leadership, partnership, ownership, and sustainability. Next, the identified themes were reviewed in the literature in order to evaluate their conceptual relationships. Finally, careful comparison of the interview transcripts and the supporting literature led to the Conceptual Framework for Partnership and Sustainability in Global Health Nursing. The model posits that engagement and partnership must precede any planning and intervention in order to create sustainable interventions. This conceptual framework will offer nurses important guidance for global health nursing practice. © 2010 Wiley Periodicals, Inc.
Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research
Carter-Harris, Lisa; Davis, Lorie L.; Rawl, Susan M.
2017-01-01
Purpose To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Methods Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Results Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. Conclusion This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development. PMID:28304262
Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research.
Carter-Harris, Lisa; Davis, Lorie L; Rawl, Susan M
2016-11-01
To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development.
PDES Logical Layer Initiation Task.
1986-04-28
surface. We have heard such expressions as "topology sits on tcp of geometry." We choose to avoid subordinating one to the other by bringing them together...a mapping from Discipline model to Global model. 38 A~A g d ip . t ~ P A1 / /oaefZ - - 6jOM#AL Mat&mft9 We have attempted to group basqd on the...FIGURE PHASE 2: Conceptualization and Integration. In this phase conceptual entities and relationships are discovered. An integrated conceptual modelO
Nagy, Balázs; Setyawan, Juliana; Coghill, David; Soroncz-Szabó, Tamás; Kaló, Zoltán; Doshi, Jalpa A
2017-06-01
Models incorporating long-term outcomes (LTOs) are not available to assess the health economic impact of attention-deficit/hyperactivity disorder (ADHD). Develop a conceptual modelling framework capable of assessing long-term economic impact of ADHD therapies. Literature was reviewed; a conceptual structure for the long-term model was outlined with attention to disease characteristics and potential impact of treatment strategies. The proposed model has four layers: i) multi-state short-term framework to differentiate between ADHD treatments; ii) multiple states being merged into three core health states associated with LTOs; iii) series of sub-models in which particular LTOs are depicted; iv) outcomes collected to be either used directly for economic analyses or translated into other relevant measures. This conceptual model provides a framework to assess relationships between short- and long-term outcomes of the disease and its treatment, and to estimate the economic impact of ADHD treatments throughout the course of the disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorne, P.D.; Chamness, M.A.; Vermeul, V.R.
This report documents work conducted during the fiscal year 1994 to development an improved three-dimensional conceptual model of ground-water flow in the unconfined aquifer system across the Hanford Site Ground-Water Surveillance Project, which is managed by Pacific Northwest Laboratory. The main objective of the ongoing effort to develop an improved conceptual model of ground-water flow is to provide the basis for improved numerical report models that will be capable of accurately predicting the movement of radioactive and chemical contaminant plumes in the aquifer beneath Hanford. More accurate ground-water flow models will also be useful in assessing the impacts of changesmore » in facilities and operations. For example, decreasing volumes of operational waste-water discharge are resulting in a declining water table in parts of the unconfined aquifer. In addition to supporting numerical modeling, the conceptual model also provides a qualitative understanding of the movement of ground water and contaminants in the aquifer.« less
Biofilm community succession: a neutral perspective.
Woodcock, Stephen; Sloan, William T
2017-05-22
Although biofilms represent one of the dominant forms of life in aqueous environments, our understanding of the assembly and development of their microbial communities remains relatively poor. In recent years, several studies have addressed this and have extended the concepts of succession theory in classical ecology into microbial systems. From these datasets, niche-based conceptual models have been developed explaining observed biodiversity patterns and their dynamics. These models have not, however, been formulated mathematically and so remain untested. Here, we further develop spatially resolved neutral community models and demonstrate that these can also explain these patterns and offer alternative explanations of microbial succession. The success of neutral models suggests that stochastic effects alone may have a much greater influence on microbial community succession than previously acknowledged. Furthermore, such models are much more readily parameterised and can be used as the foundation of more complex and realistic models of microbial community succession.
Incorporating learning goals about modeling into an upper-division physics laboratory experiment
NASA Astrophysics Data System (ADS)
Zwickl, Benjamin M.; Finkelstein, Noah; Lewandowski, H. J.
2014-09-01
Implementing a laboratory activity involves a complex interplay among learning goals, available resources, feedback about the existing course, best practices for teaching, and an overall philosophy about teaching labs. Building on our previous work, which described a process of transforming an entire lab course, we now turn our attention to how an individual lab activity on the polarization of light was redesigned to include a renewed emphasis on one broad learning goal: modeling. By using this common optics lab as a concrete case study of a broadly applicable approach, we highlight many aspects of the activity development and show how modeling is used to integrate sophisticated conceptual and quantitative reasoning into the experimental process through the various aspects of modeling: constructing models, making predictions, interpreting data, comparing measurements with predictions, and refining models. One significant outcome is a natural way to integrate an analysis and discussion of systematic error into a lab activity.
Theoretical results on the tandem junction solar cell based on its Ebers-Moll transistor model
NASA Technical Reports Server (NTRS)
Goradia, C.; Vaughn, J.; Baraona, C. R.
1980-01-01
A one-dimensional theoretical model of the tandem junction solar cell (TJC) with base resistivity greater than about 1 ohm-cm and under low level injection has been derived. This model extends a previously published conceptual model which treats the TJC as an npn transistor. The model gives theoretical expressions for each of the Ebers-Moll type currents of the illuminated TJC and allows for the calculation of the spectral response, I(sc), V(oc), FF and eta under variation of one or more of the geometrical and material parameters and 1MeV electron fluence. Results of computer calculations based on this model are presented and discussed. These results indicate that for space applications, both a high beginning of life efficiency, greater than 15% AM0, and a high radiation tolerance can be achieved only with thin (less than 50 microns) TJC's with high base resistivity (greater than 10 ohm-cm).
Walsh, M M; Darby, M
1993-01-01
In summary, the theories of Maslow and of Yura and Walsh have been highlighted as background for understanding the human needs conceptual model of dental hygiene. In addition, 11 human needs have been identified and defined as being especially related to dental hygiene care, and a sample evaluation tool for their clinical assessment and a dental hygiene care plan have been presented. The four concepts of client, environment, health/oral health, and dental hygiene actions explained in terms of human need theory, and the 11 human needs related to dental hygiene care constitute the human needs conceptual model of dental hygiene. Within the framework of the human needs conceptual model of dental hygiene, the dental hygiene process is a systematic approach to dental hygiene care that involves assessment of the 11 human needs related to dental hygiene care; analysis of deficits in these needs; determination of the dental hygiene care plan based on identified deficits; implementation of dental hygiene interventions stated in the care plan; and evaluation of the effectiveness of dental hygiene interventions in achieving specific goals, including subsequent reassessment and revision of the dental hygiene care plan. This human needs conceptual model for dental hygiene provides a guide for comprehensive and humanistic client care. This model allows the dental hygienist to view each client (whether an individual or a group) holistically to prevent oral disease and to promote health and wellness. Dental hygiene theorists are encouraged to expand this model or to develop additional conceptual models based on dental hygiene's paradigm.
Force-directed visualization for conceptual data models
NASA Astrophysics Data System (ADS)
Battigaglia, Andrew; Sutter, Noah
2017-03-01
Conceptual data models are increasingly stored in an eXtensible Markup Language (XML) format because of its portability between different systems and the ability of databases to use this format for storing data. However, when attempting to capture business or design needs, an organized graphical format is preferred in order to facilitate communication to receive as much input as possible from users and subject-matter experts. Existing methods of achieving this conversion suffer from problems of not being specific enough to capture all of the needs of conceptual data modeling and not being able to handle a large number of relationships between entities. This paper describes an implementation for a modeling solution to clearly illustrate conceptual data models stored in XML formats in well organized and structured diagrams. A force layout with several different parameters is applied to the diagram to create both compact and easily traversable relationships between entities.
A Conceptual Model To Assist Educational Leaders Manage Change.
ERIC Educational Resources Information Center
Cochren, John R.
This paper presents a conceptual model to help school leaders manage change effectively. The model was developed from a literature review of theory development and model construction. Specifically, the paper identifies the major components that inhibit organizational change, and synthesizes the most salient features of these components through a…
Conceptual Modeling Framework for E-Area PA HELP Infiltration Model Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, J. A.
A conceptual modeling framework based on the proposed E-Area Low-Level Waste Facility (LLWF) closure cap design is presented for conducting Hydrologic Evaluation of Landfill Performance (HELP) model simulations of intact and subsided cap infiltration scenarios for the next E-Area Performance Assessment (PA).
Conceptual size in developmental dyscalculia and dyslexia.
Gliksman, Yarden; Henik, Avishai
2018-02-01
People suffering from developmental dyscalculia (DD) are known to have impairment in numerical abilities and have been found to have weaker processing of countable magnitudes. However, not much research was done on their abilities to process noncountable magnitudes. An example of noncountable magnitude is conceptual size (e.g., mouse is small and elephant is big). Recently, we found that adults process conceptual size automatically. The current study examined automatic processing of conceptual size in students with DD and developmental dyslexia. Conceptual and physical sizes were manipulated orthogonally to create congruent (e.g., a physically small apple compared to a physically large violin) and incongruent (e.g., a physically large apple compared to a physically small violin) conditions. Participants were presented with 2 objects and had to choose the larger one. Each trial began with an instruction to respond to the physical or to the conceptual dimension. Control and the dyslexic groups presented automatic processing of both conceptual and physical sizes. The dyscalculic group presented automatic processing of physical size but not automaticity of processing conceptual size. Our results fit with previous findings of weaker magnitude representation in those with DD, specifically regarding noncountable magnitudes, and support theories of a shared neurocognitive substrate for different types of magnitudes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Parametric Inlet Tested in Glenn's 10- by 10-Foot Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Slater, John W.; Davis, David O.; Solano, Paul A.
2005-01-01
The Parametric Inlet is an innovative concept for the inlet of a gas-turbine propulsion system for supersonic aircraft. The concept approaches the performance of past inlet concepts, but with less mechanical complexity, lower weight, and greater aerodynamic stability and safety. Potential applications include supersonic cruise aircraft and missiles. The Parametric Inlet uses tailored surfaces to turn the incoming supersonic flow inward toward an axis of symmetry. The terminal shock spans the opening of the subsonic diffuser leading to the engine. The external cowl area is smaller, which reduces cowl drag. The use of only external supersonic compression avoids inlet unstart--an unsafe shock instability present in previous inlet designs that use internal supersonic compression. This eliminates the need for complex mechanical systems to control unstart, which reduces weight. The conceptual design was conceived by TechLand Research, Inc. (North Olmsted, OH), which received funding through NASA s Small-Business Innovation Research program. The Boeing Company (Seattle, WA) also participated in the conceptual design. The NASA Glenn Research Center became involved starting with the preliminary design of a model for testing in Glenn s 10- by 10-Foot Supersonic Wind Tunnel (10 10 SWT). The inlet was sized for a speed of Mach 2.35 while matching requirements of an existing cold pipe used in previous inlet tests. The parametric aspects of the model included interchangeable components for different cowl lip, throat slot, and sidewall leading-edge shapes and different vortex generator configurations. Glenn researchers used computational fluid dynamics (CFD) tools for three-dimensional, turbulent flow analysis to further refine the aerodynamic design.
Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--2.
Roberts, Mark; Russell, Louise B; Paltiel, A David; Chambers, Michael; McEwan, Phil; Krahn, Murray
2012-01-01
The appropriate development of a model begins with understanding the problem that is being represented. The aim of this article was to provide a series of consensus-based best practices regarding the process of model conceptualization. For the purpose of this series of articles, we consider the development of models whose purpose is to inform medical decisions and health-related resource allocation questions. We specifically divide the conceptualization process into two distinct components: the conceptualization of the problem, which converts knowledge of the health care process or decision into a representation of the problem, followed by the conceptualization of the model itself, which matches the attributes and characteristics of a particular modeling type with the needs of the problem being represented. Recommendations are made regarding the structure of the modeling team, agreement on the statement of the problem, the structure, perspective, and target population of the model, and the interventions and outcomes represented. Best practices relating to the specific characteristics of model structure and which characteristics of the problem might be most easily represented in a specific modeling method are presented. Each section contains a number of recommendations that were iterated among the authors, as well as among the wider modeling taskforce, jointly set up by the International Society for Pharmacoeconomics and Outcomes Research and the Society for Medical Decision Making. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
An, Gary
2009-01-01
The sheer volume of biomedical research threatens to overwhelm the capacity of individuals to effectively process this information. Adding to this challenge is the multiscale nature of both biological systems and the research community as a whole. Given this volume and rate of generation of biomedical information, the research community must develop methods for robust representation of knowledge in order for individuals, and the community as a whole, to "know what they know." Despite increasing emphasis on "data-driven" research, the fact remains that researchers guide their research using intuitively constructed conceptual models derived from knowledge extracted from publications, knowledge that is generally qualitatively expressed using natural language. Agent-based modeling (ABM) is a computational modeling method that is suited to translating the knowledge expressed in biomedical texts into dynamic representations of the conceptual models generated by researchers. The hierarchical object-class orientation of ABM maps well to biomedical ontological structures, facilitating the translation of ontologies into instantiated models. Furthermore, ABM is suited to producing the nonintuitive behaviors that often "break" conceptual models. Verification in this context is focused at determining the plausibility of a particular conceptual model, and qualitative knowledge representation is often sufficient for this goal. Thus, utilized in this fashion, ABM can provide a powerful adjunct to other computational methods within the research process, as well as providing a metamodeling framework to enhance the evolution of biomedical ontologies.
A Conceptual Model for Episodes of Acute, Unscheduled Care.
Pines, Jesse M; Lotrecchiano, Gaetano R; Zocchi, Mark S; Lazar, Danielle; Leedekerken, Jacob B; Margolis, Gregg S; Carr, Brendan G
2016-10-01
We engaged in a 1-year process to develop a conceptual model representing an episode of acute, unscheduled care. Acute, unscheduled care includes acute illnesses (eg, nausea and vomiting), injuries, or exacerbations of chronic conditions (eg, worsening dyspnea in congestive heart failure) and is delivered in emergency departments, urgent care centers, and physicians' offices, as well as through telemedicine. We began with a literature search to define an acute episode of care and to identify existing conceptual models used in health care. In accordance with this information, we then drafted a preliminary conceptual model and collected stakeholder feedback, using online focus groups and concept mapping. Two technical expert panels reviewed the draft model, examined the stakeholder feedback, and discussed ways the model could be improved. After integrating the experts' comments, we solicited public comment on the model and made final revisions. The final conceptual model includes social and individual determinants of health that influence the incidence of acute illness and injury, factors that affect care-seeking decisions, specific delivery settings where acute care is provided, and outcomes and costs associated with the acute care system. We end with recommendations for how researchers, policymakers, payers, patients, and providers can use the model to identify and prioritize ways to improve acute care delivery. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Valente, Riccardo; Valera Pertegas, Sergi
2018-03-01
Perception of insecurity arises as a complex social phenomenon affected by factors that go beyond actual crime rates. Previous contributions to the field of fear of crime studies have shown, for instance, that the perception of social and physical disorder may generate insecurity among residents even in contexts where crime is comparatively low. Meanwhile, sociological approaches have led to a conceptualization of insecurity as an umbrella sentiment grounded in a wider feeling of unease. Building further on this assumption, data gathered in a large-scale survey in Italy (n = 15,428) were analysed by implementing exploratory and confirmatory factor analysis with the objective of assessing the validity of a model of "ontological insecurity". The results of our analysis support a conceptualization of insecurity where socially constructed anxieties (due to health and financial precariousness), as well as ethnic, sexual and religious-based stigmatization, play a prominent role in determining an individual's feeling of insecurity. Copyright © 2017 Elsevier Inc. All rights reserved.
Dugdale, Stephanie; Elison, Sarah; Davies, Glyn; Ward, Jonathan
2017-06-01
There is insufficient research examining the implementation of complex novel interventions within health care. This may be due to a lack of qualitative research providing subjective insights into these implementation processes. The authors investigate the advantages of applying behavior change theories to conceptualize qualitative data describing the processes of implementation of complex interventions. Breaking Free Online (BFO), a digital treatment intervention for substance misuse, is described as an example of a complex intervention. The authors review previous qualitative research which explored initial diffusion, or spread, of the BFO program, and its subsequent normalization as part of standard treatment for substance misuse within the health and social care charity, "Change, Grow, Live" (CGL). The use of behavior change models to structure qualitative interview findings enabled identification of facilitators and barriers to the use of BFO within CGL. These findings have implications for the development of implementation research in novel health care interventions.
A Russian version of the State-Trait Anger Expression Inventory: preliminary data.
Eckhardt, C I; Kassinove, H; Tsytsarev, S V; Sukhodolsky, D G
1995-06-01
Spielberger's (1988) State-Trait Anger Expression Inventory represents a conceptual advance over previous anger measures. It measures both immediate anger experiences and longer term dispositions to experience anger, as well as modes of anger expression. In American samples, the inventory has been shown to be both internally consistent and conceptually valid. This study presents initial data on a Russian version of the inventory. Our subjects were 120 students from St. Petersburg University and 31 psychiatric patients from the St. Petersburg Top Security Hospital. The results provide initial support for Spielberger's factorial model of anger in a Russian sample. All of the scales, with the exception of Anger-In, showed good alpha coefficients, and the means were generally similar to those found in American subgroups. Russian men scored higher on Anger-Out than did Russian women. Determination of subgroup norms in larger samples will allow us to explore further the cross-national similarity of anger in Russia and America.
Veillette, Anne-Marie; Fillion, Lise; Wilson, Donna M; Thomas, Roger; Dumont, Serge
2010-01-01
An ethnographic study was undertaken in two rural areas of Quebec to conceptualize the good death. The findings reveal that a good quality of life for the dying person and his or her family and friends is essential for a good death. The resulting conceptual model emphasized four dimensions: physical, spiritual, social, and emotiona/psychological. These dimensions were determined to be similar to those discovered through a previous urban study, indicating that there may be considerable overlap between good deaths in rural and urban areas. Some findings of this Quebec French-language rural study were similar to those of an Alberta English-language rural study, indicating that rural people may have some common needs and interests with regard to the good death. As such, there could be some common elements of the good death that transcend culture or ethnicity. Chief among these is the desire of rural people to die at home or in their home communities.
Implications of conceptual channel representation on SWAT streamflow and sediment modeling
USDA-ARS?s Scientific Manuscript database
Hydrologic modeling outputs are influenced by how a watershed system is represented. Channel routing is a typical example of the mathematical conceptualization of watershed landscape and processes in hydrologic modeling. We investigated the sensitivity of accuracy, equifinality, and uncertainty of...
ITE CHARACTERIZATION TO SUPPORT CONCEPTUAL MODEL DEVELOPMENT FOR SUBSURFACE RADIONUCLIDE TRANSPORT
Remediation of radionuclide contaminants in ground water often begins with the development of conceptual and analytical models that guide our understanding of the processes controlling radionuclide transport. The reliability of these models is often predicated on the collection o...
Carter, Stephen R; Moles, Rebekah; White, Lesley; Chen, Timothy F
2015-01-01
Research has shown that consumers prefer a pharmacist who is skilled in communication and pays particular attention to friendliness, empathy and attentiveness. Medication management interviews tend to be more time consuming than other patient-pharmacist interactions. The extra time for these interviews provides patients with an opportunity to evaluate the quality of interpersonal care provided by the pharmacist. Patient evaluations of pharmacists may influence their intentions to use medication management services. In previous studies, a conceptual model based on information-seeking theory was developed and used to explain a significant amount of the variation in consumers' and caregivers' willingness to use Australia's Home Medicines Review (HMR) service. The aim of this paper was to extend the conceptual model to include the influence of patients' evaluation of interpersonal care provided. We aimed to test the hypothesis that patients' perceptions of how well the pharmacist listened to them during their most recent HMR interview (Listening) would increase their willingness to re-use HMR (Willingness). Patients (N = 595) who had experienced Australia's Home Medicines Review (HMR) within the previous 6 months completed questionnaires. Exploratory and confirmatory factor analyzes were used to validate the measurement scales. Structural equation modeling was used to test the model. The structural model provided a reasonable fit to the data and explained 53% of the variation in Willingness. The structural model revealed that Listening increased patients' perceptions that the HMR provided positive outcomes (Outcomes) (β = 0.37, P < 0.05) and directly and indirectly increased Willingness (β = 0.61, P < 0.05). These results suggest that patients' willingness to use a medication management service in the future is strongly influenced by their perceptions of how well the pharmacist listened to them during their last medication review interview. Improving pharmacist listening skills may be explored as a strategy for improving patient engagement with pharmacy services. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Evaluating quantitative and conceptual models of speech production: how does SLAM fare?
Walker, Grant M; Hickok, Gregory
2016-04-01
In a previous publication, we presented a new computational model called SLAM (Walker & Hickok, Psychonomic Bulletin & Review doi: 10.3758/s13423-015-0903 ), based on the hierarchical state feedback control (HSFC) theory (Hickok Nature Reviews Neuroscience, 13(2), 135-145, 2012). In his commentary, Goldrick (Psychonomic Bulletin & Review doi: 10.3758/s13423-015-0946-9 ) claims that SLAM does not represent a theoretical advancement, because it cannot be distinguished from an alternative lexical + postlexical (LPL) theory proposed by Goldrick and Rapp (Cognition, 102(2), 219-260, 2007). First, we point out that SLAM implements a portion of a conceptual model (HSFC) that encompasses LPL. Second, we show that SLAM accounts for a lexical bias present in sound-related errors that LPL does not explain. Third, we show that SLAM's explanatory advantage is not a result of approximating the architectural or computational assumptions of LPL, since an implemented version of LPL fails to provide the same fit improvements as SLAM. Finally, we show that incorporating a mechanism that violates some core theoretical assumptions of LPL-making it more like SLAM in terms of interactivity-allows the model to capture some of the same effects as SLAM. SLAM therefore provides new modeling constraints regarding interactions among processing levels, while also elaborating on the structure of the phonological level. We view this as evidence that an integration of psycholinguistic, neuroscience, and motor control approaches to speech production is feasible and may lead to substantial new insights.
NASA Astrophysics Data System (ADS)
Xu, Chong-yu; Tunemar, Liselotte; Chen, Yongqin David; Singh, V. P.
2006-06-01
Sensitivity of hydrological models to input data errors have been reported in the literature for particular models on a single or a few catchments. A more important issue, i.e. how model's response to input data error changes as the catchment conditions change has not been addressed previously. This study investigates the seasonal and spatial effects of precipitation data errors on the performance of conceptual hydrological models. For this study, a monthly conceptual water balance model, NOPEX-6, was applied to 26 catchments in the Mälaren basin in Central Sweden. Both systematic and random errors were considered. For the systematic errors, 5-15% of mean monthly precipitation values were added to the original precipitation to form the corrupted input scenarios. Random values were generated by Monte Carlo simulation and were assumed to be (1) independent between months, and (2) distributed according to a Gaussian law of zero mean and constant standard deviation that were taken as 5, 10, 15, 20, and 25% of the mean monthly standard deviation of precipitation. The results show that the response of the model parameters and model performance depends, among others, on the type of the error, the magnitude of the error, physical characteristics of the catchment, and the season of the year. In particular, the model appears less sensitive to the random error than to the systematic error. The catchments with smaller values of runoff coefficients were more influenced by input data errors than were the catchments with higher values. Dry months were more sensitive to precipitation errors than were wet months. Recalibration of the model with erroneous data compensated in part for the data errors by altering the model parameters.
A beginner's guide to writing the nursing conceptual model-based theoretical rationale.
Gigliotti, Eileen; Manister, Nancy N
2012-10-01
Writing the theoretical rationale for a study can be a daunting prospect for novice researchers. Nursing's conceptual models provide excellent frameworks for placement of study variables, but moving from the very abstract concepts of the nursing model to the less abstract concepts of the study variables is difficult. Similar to the five-paragraph essay used by writing teachers to assist beginning writers to construct a logical thesis, the authors of this column present guidelines that beginners can follow to construct their theoretical rationale. This guide can be used with any nursing conceptual model but Neuman's model was chosen here as the exemplar.
NASA Astrophysics Data System (ADS)
Knoben, Wouter; Woods, Ross; Freer, Jim
2016-04-01
Conceptual hydrologic models consist of a certain arrangement of spatial and temporal dynamics consisting of stores, fluxes and transformation functions, depending on the modeller's choices and intended use. They have the advantages of being computationally efficient, being relatively easy model structures to reconfigure and having relatively low input data demands. This makes them well-suited for large-scale and large-sample hydrology, where appropriately representing the dominant hydrologic functions of a catchment is a main concern. Given these requirements, the number of parameters in the model cannot be too high, to avoid equifinality and identifiability issues. This limits the number and level of complexity of dominant hydrologic processes the model can represent. Specific purposes and places thus require a specific model and this has led to an abundance of conceptual hydrologic models. No structured overview of these models exists and there is no clear method to select appropriate model structures for different catchments. This study is a first step towards creating an overview of the elements that make up conceptual models, which may later assist a modeller in finding an appropriate model structure for a given catchment. To this end, this study brings together over 30 past and present conceptual models. The reviewed model structures are simply different configurations of three basic model elements (stores, fluxes and transformation functions), depending on the hydrologic processes the models are intended to represent. Differences also exist in the inner workings of the stores, fluxes and transformations, i.e. the mathematical formulations that describe each model element's intended behaviour. We investigate the hypothesis that different model structures can produce similar behavioural simulations. This can clarify the overview of model elements by grouping elements which are similar, which can improve model structure selection.
Triad Issue Paper: Using Geophysical Tools to Develop the Conceptual Site Model
This technology bulletin explains how hazardous-waste site professionals can use geophysical tools to provide information about subsurface conditions to create a more representative conceptual site model (CSM).
Supporting user-defined granularities in a spatiotemporal conceptual model
Khatri, V.; Ram, S.; Snodgrass, R.T.; O'Brien, G. M.
2002-01-01
Granularities are integral to spatial and temporal data. A large number of applications require storage of facts along with their temporal and spatial context, which needs to be expressed in terms of appropriate granularities. For many real-world applications, a single granularity in the database is insufficient. In order to support any type of spatial or temporal reasoning, the semantics related to granularities needs to be embedded in the database. Specifying granularities related to facts is an important part of conceptual database design because under-specifying the granularity can restrict an application, affect the relative ordering of events and impact the topological relationships. Closely related to granularities is indeterminacy, i.e., an occurrence time or location associated with a fact that is not known exactly. In this paper, we present an ontology for spatial granularities that is a natural analog of temporal granularities. We propose an upward-compatible, annotation-based spatiotemporal conceptual model that can comprehensively capture the semantics related to spatial and temporal granularities, and indeterminacy without requiring new spatiotemporal constructs. We specify the formal semantics of this spatiotemporal conceptual model via translation to a conventional conceptual model. To underscore the practical focus of our approach, we describe an on-going case study. We apply our approach to a hydrogeologic application at the United States Geologic Survey and demonstrate that our proposed granularity-based spatiotemporal conceptual model is straightforward to use and is comprehensive.
Simulated discharge trends indicate robustness of hydrological models in a changing climate
NASA Astrophysics Data System (ADS)
Addor, Nans; Nikolova, Silviya; Seibert, Jan
2016-04-01
Assessing the robustness of hydrological models under contrasted climatic conditions should be part any hydrological model evaluation. Robust models are particularly important for climate impact studies, as models performing well under current conditions are not necessarily capable of correctly simulating hydrological perturbations caused by climate change. A pressing issue is the usually assumed stationarity of parameter values over time. Modeling experiments using conceptual hydrological models revealed that assuming transposability of parameters values in changing climatic conditions can lead to significant biases in discharge simulations. This raises the question whether parameter values should to be modified over time to reflect changes in hydrological processes induced by climate change. Such a question denotes a focus on the contribution of internal processes (i.e., catchment processes) to discharge generation. Here we adopt a different perspective and explore the contribution of external forcing (i.e., changes in precipitation and temperature) to changes in discharge. We argue that in a robust hydrological model, discharge variability should be induced by changes in the boundary conditions, and not by changes in parameter values. In this study, we explore how well the conceptual hydrological model HBV captures transient changes in hydrological signatures over the period 1970-2009. Our analysis focuses on research catchments in Switzerland undisturbed by human activities. The precipitation and temperature forcing are extracted from recently released 2km gridded data sets. We use a genetic algorithm to calibrate HBV for the whole 40-year period and for the eight successive 5-year periods to assess eventual trends in parameter values. Model calibration is run multiple times to account for parameter uncertainty. We find that in alpine catchments showing a significant increase of winter discharge, this trend can be captured reasonably well with constant parameter values over the whole reference period. Further, preliminary results suggest that some trends in parameter values do not reflect changes in hydrological processes, as reported by others previously, but instead might stem from a modeling artifact related to the parameterization of evapotranspiration, which is overly sensitive to temperature increase. We adopt a trading-space-for-time approach to better understand whether robust relationships between parameter values and forcing can be established, and to critically explore the rationale behind time-dependent parameter values in conceptual hydrological models.
2014-01-01
Background Recruitment is a major challenge for many trials; just over half reach their targets and almost a third resort to grant extensions. The economic and societal implications of this shortcoming are significant. Yet, we have a limited understanding of the processes that increase the probability that recruitment targets will be achieved. Accordingly, there is an urgent need to bring analytical rigour to the task of improving recruitment, thereby increasing the likelihood that trials reach their recruitment targets. This paper presents a conceptual framework that can be used to improve recruitment to clinical trials. Methods Using a case-study approach, we reviewed the range of initiatives that had been undertaken to improve recruitment in the txt2stop trial using qualitative (semi-structured interviews with the principal investigator) and quantitative (recruitment) data analysis. Later, the txt2stop recruitment practices were compared to a previous model of marketing a trial and to key constructs in social marketing theory. Results Post hoc, we developed a recruitment optimisation model to serve as a conceptual framework to improve recruitment to clinical trials. A core premise of the model is that improving recruitment needs to be an iterative, learning process. The model describes three essential activities: i) recruitment phase monitoring, ii) marketing research, and iii) the evaluation of current performance. We describe the initiatives undertaken by the txt2stop trial and the results achieved, as an example of the use of the model. Conclusions Further research should explore the impact of adopting the recruitment optimisation model when applied to other trials. PMID:24886627
Galli, Leandro; Knight, Rosemary; Robertson, Steven; Hoile, Elizabeth; Oladapo, Olubukola; Francis, David; Free, Caroline
2014-05-22
Recruitment is a major challenge for many trials; just over half reach their targets and almost a third resort to grant extensions. The economic and societal implications of this shortcoming are significant. Yet, we have a limited understanding of the processes that increase the probability that recruitment targets will be achieved. Accordingly, there is an urgent need to bring analytical rigour to the task of improving recruitment, thereby increasing the likelihood that trials reach their recruitment targets. This paper presents a conceptual framework that can be used to improve recruitment to clinical trials. Using a case-study approach, we reviewed the range of initiatives that had been undertaken to improve recruitment in the txt2stop trial using qualitative (semi-structured interviews with the principal investigator) and quantitative (recruitment) data analysis. Later, the txt2stop recruitment practices were compared to a previous model of marketing a trial and to key constructs in social marketing theory. Post hoc, we developed a recruitment optimisation model to serve as a conceptual framework to improve recruitment to clinical trials. A core premise of the model is that improving recruitment needs to be an iterative, learning process. The model describes three essential activities: i) recruitment phase monitoring, ii) marketing research, and iii) the evaluation of current performance. We describe the initiatives undertaken by the txt2stop trial and the results achieved, as an example of the use of the model. Further research should explore the impact of adopting the recruitment optimisation model when applied to other trials.
An intervention study to test Locker's conceptual framework of oral health in edentulous elders.
Yamaga, Eijiro; Sato, Yusuke; Minakuchi, Shunsuke
2018-06-01
To test a previously described conceptual framework of oral health in edentulous elders using an intervention study that included complete denture replacement. Confirmatory factor analysis (CFA) was also conducted to substantiate construct validity. To date, the model proposed by Locker has been tested on edentulous elders using structural equation model (SEM) analysis. However, cross-sectional designs and the Short-Form Oral Health Impact Profile (OHIP-14) cannot adequately express cause-effect relationships and distribution in edentulous patients. Accordingly, the authors investigated Locker's model using an interventional design that included complete denture replacement using the OHIP for edentulous subjects (OHIP-EDENT). A total of 265 edentulous participants who visited the Dental Hospital of Tokyo Medical and Dental University (Tokyo, Japan) for new complete dentures were recruited. Locker's model was investigated, and CFA was performed using the change in subscale scores in the Japanese version of the OHIP-EDENT before and after complete denture replacement. CFA demonstrated an excellent model fit after adding several covariates. The Locker model also met the criteria of fit in all indices after 1 nonsignificant path was omitted. All path coefficients were significant. The findings of the present interventional study demonstrated an empirical fit to Locker's model in edentulous elders using SEM analysis, which included complete denture replacement. It is anticipated that clarification of causal mechanisms of oral health-related quality of life will lead to improvement of overall quality of life, thus maintaining or improving the activities of normal daily life for edentulous elders. © 2018 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Jones, Steven R.
2015-01-01
This study aims to broadly examine how commonly various conceptualizations of the definite integral are drawn on by students as they attempt to explain the meaning of integral expressions. Previous studies have shown that certain conceptualizations, such as the area under a curve or the values of an anti-derivative, may be less productive in…
A Conceptual Model for Analysing Management Development in the UK Hospitality Industry
ERIC Educational Resources Information Center
Watson, Sandra
2007-01-01
This paper presents a conceptual, contingent model of management development. It explains the nature of the UK hospitality industry and its potential influence on MD practices, prior to exploring dimensions and relationships in the model. The embryonic model is presented as a model that can enhance our understanding of the complexities of the…
ERIC Educational Resources Information Center
Tarhini, Ali; Elyas, Tariq; Akour, Mohammad Ali; Al-Salti, Zahran
2016-01-01
The main aim of this paper is to develop an amalgamated conceptual model of technology acceptance that explains how individual, social, cultural and organizational factors affect the students' acceptance and usage behaviour of the Web-based learning systems. More specifically, the proposed model extends the Technology Acceptance Model (TAM) to…
Symbolic, Nonsymbolic and Conceptual: An Across-Notation Study on the Space Mapping of Numerals.
Zhang, Yu; You, Xuqun; Zhu, Rongjuan
2016-07-01
Previous studies suggested that there are interconnections between two numeral modalities of symbolic notation and nonsymbolic notation (array of dots), differences and similarities of the processing, and representation of the two modalities have both been found in previous research. However, whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation is still uninvestigated. The present study aims to examine whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation; especially how zero, as both a symbolic magnitude numeral and a nonsymbolic conceptual numeral, mapping onto space; and if the mapping happens automatically at an early stage of the numeral information processing. Results of the two experiments demonstrate that the low-level processing of symbolic numerals including zero and nonsymbolic numerals except zero can mapping onto space, whereas the low-level processing of nonsymbolic zero as a semantic conceptual numeral cannot mapping onto space, which indicating the specialty of zero in the numeral domain. The present study indicates that the processing of non-semantic numerals can mapping onto space, whereas semantic conceptual numerals cannot mapping onto space. © The Author(s) 2016.
Casey, Erin; Carlson, Juliana; Two Bulls, Sierra; Yager, Aurora
2018-04-01
Engaging men and boys as participants and stakeholders in gender-based violence (GBV) prevention initiatives is an increasingly institutionalized component of global efforts to end GBV. Accordingly, evidence of the impact of men's engagement endeavors is beginning to emerge, particularly regarding interventions aimed at fostering gender equitable and nonviolent attitudes and behaviors among men. This developing evidence base suggests that prevention programs with a "gender transformative" approach, or an explicit focus on questioning gender norms and expectations, show particular promise in achieving GBV prevention outcomes. Interventions targeting attitude and behavior change, however, represent just one kind of approach within a heterogeneous collection of prevention efforts around the globe, which can also include community mobilization, policy change, and social activism. The degree to which gender transformative principles inform this broader spectrum of men's engagement work is unclear. The goals of this article are twofold. First, we offer a conceptual model that captures and organizes a broader array of men's antiviolence activities in three distinct but interrelated domains: (1) initial outreach and recruitment of previously unengaged males, (2) interventions intended to promote gender-equitable attitudes and behavior among men, and (3) gender equity-related social action aimed at eradicating GBV, inclusive of all genders' contributions. Second, we review empirical literature in each of these domains. Across these two goals, we critically assess the degree to which gender transformative principles inform efforts within each domain, and we offer implications for the continuing conceptualization and assessment of efforts to increase men's participation in ending GBV.
Taylor, Kirsten I.; Devereux, Barry J.; Acres, Kadia; Randall, Billi; Tyler, Lorraine K.
2013-01-01
Conceptual representations are at the heart of our mental lives, involved in every aspect of cognitive functioning. Despite their centrality, a long-standing debate persists as to how the meanings of concepts are represented and processed. Many accounts agree that the meanings of concrete concepts are represented by their individual features, but disagree about the importance of different feature-based variables: some views stress the importance of the information carried by distinctive features in conceptual processing, others the features which are shared over many concepts, and still others the extent to which features co-occur. We suggest that previously disparate theoretical positions and experimental findings can be unified by an account which claims that task demands determine how concepts are processed in addition to the effects of feature distinctiveness and co-occurrence. We tested these predictions in a basic-level naming task which relies on distinctive feature information (Experiment 1) and a domain decision task which relies on shared feature information (Experiment 2). Both used large-scale regression designs with the same visual objects, and mixed-effects models incorporating participant, session, stimulus-related and feature statistic variables to model the performance. We found that concepts with relatively more distinctive and more highly correlated distinctive relative to shared features facilitated basic-level naming latencies, while concepts with relatively more shared and more highly correlated shared relative to distinctive features speeded domain decisions. These findings demonstrate that the feature statistics of distinctiveness (shared vs. distinctive) and correlational strength, as well as the task demands, determine how concept meaning is processed in the conceptual system. PMID:22137770
O'Connor, Teresia M; Mâsse, Louise C; Tu, Andrew W; Watts, Allison W; Hughes, Sheryl O; Beauchamp, Mark R; Baranowski, Tom; Pham, Truc; Berge, Jerica M; Fiese, Barbara; Golley, Rebecca; Hingle, Melanie; Kremers, Stef P J; Rhee, Kyung E; Skouteris, Helen; Vaughn, Amber
2017-09-11
Parents are an important influence on children's dietary intake and eating behaviors. However, the lack of a conceptual framework and inconsistent assessment of food parenting practices limits our understanding of which food parenting practices are most influential on children. The aim of this study was to develop a food parenting practice conceptual framework using systematic approaches of literature reviews and expert input. A previously completed systematic review of food parenting practice instruments and a qualitative study of parents informed the development of a food parenting practice item bank consisting of 3632 food parenting practice items. The original item bank was further reduced to 110 key food parenting concepts using binning and winnowing techniques. A panel of 32 experts in parenting and nutrition were invited to sort the food parenting practice concepts into categories that reflected their perceptions of a food parenting practice conceptual framework. Multi-dimensional scaling produced a point map of the sorted concepts and hierarchical cluster analysis identified potential solutions. Subjective modifications were used to identify two potential solutions, with additional feedback from the expert panel requested. The experts came from 8 countries and 25 participated in the sorting and 23 provided additional feedback. A parsimonious and a comprehensive concept map were developed based on the clustering of the food parenting practice constructs. The parsimonious concept map contained 7 constructs, while the comprehensive concept map contained 17 constructs and was informed by a previously published content map for food parenting practices. Most of the experts (52%) preferred the comprehensive concept map, while 35% preferred to present both solutions. The comprehensive food parenting practice conceptual map will provide the basis for developing a calibrated Item Response Modeling (IRM) item bank that can be used with computerized adaptive testing. Such an item bank will allow for more consistency in measuring food parenting practices across studies to better assess the impact of food parenting practices on child outcomes and the effect of interventions that target parents as agents of change.
[Impact of small-area context on health: proposing a conceptual model].
Voigtländer, S; Mielck, A; Razum, O
2012-11-01
Recent empirical studies stress the impact of features related to the small-area context on individual health. However, so far there exists no standard explanatory model that integrates the different kinds of such features and that conceptualises their relation to individual characteristics of social inequality. A review of theoretical publications on the relationship between social position and health as well as existing conceptual models for the impact of features related to the small-area context on health was undertaken. In the present article we propose a conceptual model for the health impact of the small-area context. This model conceptualises the location of residence as one dimension of social inequality that affects health through the resources as well as stressors which are inherent in the small-area context. The proposed conceptual model offers an orientation for future empirical studies and can serve as a basis for further discussions concerning the health relevance of the small-area context. © Georg Thieme Verlag KG Stuttgart · New York.
The development of conceptual and predictive models is an important tool to guide site characterization in support of monitoring contaminants in ground water. The accuracy of predictive models is limited by the adequacy of the input data and the assumptions made to constrain mod...
Thoughts About Nursing Conceptual Models and the "Medical Model".
Fawcett, Jacqueline
2017-01-01
This essay, written to celebrate the 30th anniversary of Nursing Science Quarterly, focuses on the distinctions between the discipline of nursology and the trade of medicine. The distinctions are drawn from content found in nursing conceptual models and from literature about the elusive content of the so-called "medical model."
Models of borderline personality disorder: recent advances and new perspectives.
D'Agostino, Alessandra; Rossi Monti, Mario; Starcevic, Vladan
2018-01-01
The purpose of this article is to review the most relevant conceptual models of borderline personality disorder (BPD), with a focus on recent developments in this area. Several conceptual models have been proposed with the aim of better understanding BPD: the borderline personality organization, emotion dysregulation, reflective (mentalization) dysfunction, interpersonal hypersensitivity and hyperbolic temperament models. These models have all been supported to some extent and their common components include disorganized attachment and traumatic early experiences, emotion dysregulation, interpersonal sensitivity and difficulties with social cognition. An attempt to integrate some components of the conceptual models of BPD has resulted in an emerging new perspective, the interpersonal dysphoria model, which emphasizes dysphoria as an overarching phenomenon that connects the dispositional and situational aspects of BPD. Various conceptual models have expanded our understanding of BPD, but it appears that further development entails theoretical integration. More research is needed to better understand interactions between various components of BPD, including the situational factors that activate symptoms of BPD. This will help develop therapeutic approaches that are more tailored to the heterogeneous psychopathology of BPD.
Conceptual ecological models to guide integrated landscape monitoring of the Great Basin
Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.
2010-01-01
The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.
[Design of a conceptual model on the transference of public health research results in Honduras].
Macías-Chapula, César A
2012-01-01
To design a conceptual model on the transference of public health research results at the local, context level. Using systems thinking concepts, a soft systems approach (SSM) was used to analyse and solve what was perceived as a problem situation related to the transference of research results within Honduras public health system. A bibliometric analysis was also conducted to enrich the problem situation. Six root definitions were defined and modeled as relevant to the expressed problem situation. This led to the development of the conceptual model. The model obtained identified four levels of resolution as derived from the human activities involved in the transference of research results: 1) those of the researchers; 2) the information/documentation professionals; 3) health staff; and 4) the population/society. These actors/ clients and their activities were essential to the functioning of the model since they represent what the model is and does. SSM helped to design the conceptual model. The bibliometric analysis was relevant to construct the rich image of the problem situation.
NASA Astrophysics Data System (ADS)
Cullis, J. D.; Gillis, C.; Bothwell, M.; Kilroy, C.; Packman, A. I.; Hassan, M. A.
2010-12-01
The nuisance diatom Didymosphenia geminata (didymo) presents an ecological paradox. How can this benthic algae produce such large amounts of biomass in cold, fast flowing, low nutrient streams? The aim of this paper is to present a conceptual model for the growth, persistence, and blooming behavior of this benthic mat-forming diatom that may help to explain this paradox. The conceptual model highlights the importance of distinguishing between mat thickness and cell growth. It presents evidence gathered from a range of existing studies around the world to support the proposed relationship between growth and light, nutrients and temperature as well as the importance of flood events and bed disturbance in mat removal. It is anticipated that this conceptual model will not only help in identifying the key controlling variables and set a framework for future studies but also support the future management of this nuisance algae. Summary of the conceptual model for didymo growth showing the proposed relationships for the growth of cells and mats with nutrients, radiation and water temperature and the dependence of removal on bed shear stress and the potential for physical bed disturbance.
Simple and detailed conceptual model diagram and associated narrative for ammonia, dissolved oxygen, flow alteration, herbicides, insecticides, ionic strength, metals, nutrients, ph, physical habitat, sediments, temperature, unspecified toxic chemicals.
Fulton, John W.; Koerkle, Edward H.; McAuley, Steven D.; Hoffman, Scott A.; Zarr, Linda F.
2005-01-01
The Spring Creek Basin, Centre County, Pa., is experiencing some of the most rapid growth and development within the Commonwealth. This trend has resulted in land-use changes and increased water use, which will affect the quantity and quality of stormwater runoff, surface water, ground water, and aquatic resources within the basin. The U.S. Geological Survey (USGS), in cooperation with the ClearWater Conservancy (CWC), Spring Creek Watershed Community (SCWC), and Spring Creek Watershed Commission (SCWCm), has developed a Watershed Plan (Plan) to assist decision makers in water-resources planning. One element of the Plan is to provide a summary of the basin characteristics and a conceptual model that incorporates the hydrogeologic characteristics of the basin. The report presents hydrogeologic data for the basin and presents a conceptual model that can be used as the basis for simulating surface-water and ground-water flow within the basin. Basin characteristics; sources of data referenced in this text; physical characteristics such as climate, physiography, topography, and land use; hydrogeologic characteristics; and water-quality characteristics are discussed. A conceptual model is a simplified description of the physical components and interaction of the surface- and ground-water systems. The purpose for constructing a conceptual model is to simplify the problem and to organize the available data so that the system can be analyzed accurately. Simplification is necessary, because a complete accounting of a system, such as Spring Creek, is not possible. The data and the conceptual model could be used in development of a fully coupled numerical model that dynamically links surface water, ground water, and land-use changes. The model could be used by decision makers to manage water resources within the basin and as a prototype that is transferable to other watersheds.
A Conceptual Framework Curriculum Evaluation Electrical Engineering Education
ERIC Educational Resources Information Center
Imansari, Nurulita; Sutadji, Eddy
2017-01-01
This evaluation is a conceptual framework that has been analyzed in the hope that can help research related an evaluation of the curriculum. The Model of evaluation used was CIPPO model. CIPPO Model consists of "context," "input," "process," "product," and "outcomes." On the dimension of the…
Tucker, Carole A.; Bevans, Katherine B.; Teneralli, Rachel E.; Smith, Ashley Wilder; Bowles, Heather R; Forrest, Christopher B.
2014-01-01
Purpose Children's physical activity (PA) levels are commonly assessed in pediatric clinical research, but rigorous self-report assessment tools for children are scarce, and computer adaptive test implementations are rare. Our objective was to improve pediatric self-report measures of activity using semi-structured interviews with experts and children for conceptualization of a child-informed framework. Methods Semi-structured interviews were conducted to conceptualize physical activity, sedentary behaviors, and strengthening activities. We performed systematic literature reviews to identify item-level concepts used to assess these 3 domains. Results We developed conceptual frameworks for each domain using words and phrases identified by children as relevant. Conclusions Semi-structured interview methods provide valuable information of children's perspectives and the ways children recall previous activities. Conceptualized domains of physical activity are based on the literature and expert views that also reflect children's experiences and understanding providing a basis for pediatric self-report instruments. PMID:25251789
NASA Astrophysics Data System (ADS)
Menon, Deepika
Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. This study used a mixed-methods approach to investigate the changes in preservice elementary teachers' science self-efficacy beliefs and the factors associated in a specialized elementary physics content course. In addition, the study is one of few to investigate the relationship between the changes in science self-efficacy beliefs and changes in physical science conceptual understanding. Participants included fifty-one preservice elementary teachers enrolled in two term of the physical science content course. Data collection and analysis procedures included both qualitative and quantitative measures. Data collection included implementation of Science Teaching Efficacy Belief Instrument-B (STEBI-B) (Bleicher, 2004) and Physical Science Concept Test as pre- and post-test, two semi-structured interviews with 18 participants (nine each semester), classroom observations and artifacts. A pre-post, repeated measures multivariate analysis of variance (MANOVA) design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs on both scales of STEBI-B - personal science teaching beliefs and outcome expectancy beliefs. Additionally, a positive moderate relationship between science conceptual understandings and personal science teaching efficacy beliefs was found. Post-hoc analysis of the STEBI-B data was used to select 18 participants for interviews. The participants belonged to each group representing the low, medium and high initial levels of self-efficacy beliefs. Participants' responses indicated positive shifts in their science teacher self-image and confidence to teach science in future. Four categories that represented the course-related factors contributing towards science self-efficacy beliefs included: (1) enhanced science conceptual understandings, (2) active learning experiences, (3) teaching strategies, and (4) instructor as a role-model. Findings suggest that despite of the nature of prior science experiences preservice elementary teachers previously had, an exposure to a course that integrates relevant science content along with modeled instructional strategies can positively impact science self-efficacy beliefs. While some course elements such as active learning experiences and teaching models seemed to impact all groups positively, the low group participants were particularly influenced by the multiple representations of the content and the course instructor as a role model. These findings have important implications for preservice science teacher preparation programs.
ERIC Educational Resources Information Center
Hrepic, Zdeslav; Zollman, Dean A.; Rebello, N. Sanjay
2010-01-01
We investigated introductory physics students' mental models of sound propagation. We used a phenomenographic method to analyze the data in the study. In addition to the scientifically accepted Wave model, students used the "Entity" model to describe the propagation of sound. In this latter model sound is a self-standing entity,…
Focusing on Concepts by Covering Them Simultaneously
NASA Astrophysics Data System (ADS)
Schwartz, Pete
2017-05-01
"Parallel" pedagogy covers the four mechanics concepts of momentum, energy, forces, and kinematics simultaneously instead of building each concept on an understanding of the previous one. Course content is delivered through interactive videos, allowing class time for group work and student-centered activities. We start with simple examples, building complexity throughout the course with the introduction of springs, two dimensions, vectors, energy diagrams, universal gravitation, and rotation. Success means that students ponder underlying physics concepts rather than hunt for formulas. Surveys indicate that students accept this learning model well and have considerable improvement in applied conceptual understanding.
Integration of Rotor Aerodynamic Optimization with the Conceptual Design of a Large Civil Tiltrotor
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.
2010-01-01
Coupling of aeromechanics analysis with vehicle sizing is demonstrated with the CAMRAD II aeromechanics code and NDARC sizing code. The example is optimization of cruise tip speed with rotor/wing interference for the Large Civil Tiltrotor (LCTR2) concept design. Free-wake models were used for both rotors and the wing. This report is part of a NASA effort to develop an integrated analytical capability combining rotorcraft aeromechanics, structures, propulsion, mission analysis, and vehicle sizing. The present paper extends previous efforts by including rotor/wing interference explicitly in the rotor performance optimization and implicitly in the sizing.
Wali, Arvin R; Brandel, Michael G; Santiago-Dieppa, David R; Rennert, Robert C; Steinberg, Jeffrey A; Hirshman, Brian R; Murphy, James D; Khalessi, Alexander A
2018-05-01
OBJECTIVE Markov modeling is a clinical research technique that allows competing medical strategies to be mathematically assessed in order to identify the optimal allocation of health care resources. The authors present a review of the recently published neurosurgical literature that employs Markov modeling and provide a conceptual framework with which to evaluate, critique, and apply the findings generated from health economics research. METHODS The PubMed online database was searched to identify neurosurgical literature published from January 2010 to December 2017 that had utilized Markov modeling for neurosurgical cost-effectiveness studies. Included articles were then assessed with regard to year of publication, subspecialty of neurosurgery, decision analytical techniques utilized, and source information for model inputs. RESULTS A total of 55 articles utilizing Markov models were identified across a broad range of neurosurgical subspecialties. Sixty-five percent of the papers were published within the past 3 years alone. The majority of models derived health transition probabilities, health utilities, and cost information from previously published studies or publicly available information. Only 62% of the studies incorporated indirect costs. Ninety-three percent of the studies performed a 1-way or 2-way sensitivity analysis, and 67% performed a probabilistic sensitivity analysis. A review of the conceptual framework of Markov modeling and an explanation of the different terminology and methodology are provided. CONCLUSIONS As neurosurgeons continue to innovate and identify novel treatment strategies for patients, Markov modeling will allow for better characterization of the impact of these interventions on a patient and societal level. The aim of this work is to equip the neurosurgical readership with the tools to better understand, critique, and apply findings produced from cost-effectiveness research.
CONCEPTUAL MODEL DEVELOPMENT AND INFORMATION MANAGEMENT FRAMEWORK FOR DIAGNOSTICS RESEARCH
Conceptual model development will focus on the effects of habitat alteration, nutrients,suspended and bedded sediments, and toxic chemicals on appropriate endpoints (individuals, populations, communities, ecosystems) across spatial scales (habitats, water body, watershed, region)...
D'Agnese, Frank A.; O'Brien, G. M.; Faunt, C.C.; Belcher, W.R.; San Juan, C.
2002-01-01
In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this 'second-generation' regional model was to enhance the knowledge an understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-state representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration. The Death Valley regional ground-water flow system is situated within the southern Great Basin, a subprovince of the Basin and Range physiographic province, bounded by latitudes 35 degrees north and 38 degrees 15 minutes north and by longitudes 115 and 118 degrees west. Hydrology in the region is a result of both the arid climatic conditions and the complex geology. Ground-water flow generally can be described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the flow system, ground water flows through zones of high transmissivity that have resulted from regional faulting and fracturing. The conceptual model of the Death Valley regional ground-water flow system used for this study is adapted from the two previous ground-water modeling studies. The three-dimensional digital hydrogeologic framework model developed for the region also contains elements of both of the hydrogeologic framework models used in the previous investigations. As dictated by project scope, very little reinterpretation and refinement were made where these two framework models disagree; therefore, limitations in the hydrogeologic representation of the flow system exist. Despite limitations, the framework model provides the best representation to date of the hydrogeologic units and structures that control regional ground-water flow and serves as an important information source used to construct and calibrate the predevelopment, steady-state flow model. In addition to the hydrogeologic framework, a complex array of mechanisms accounts for flow into, through, and out of the regional ground-water flow system. Natural discharges from the regional ground-water flow system occur by evapotranspiration, springs, and subsurface outflow. In this study, evapotranspiration rates were adapted from a related investigation that developed maps of evapotranspiration areas and computed rates from micrometeorological data collected within the local area over a multiyear period. In some cases, historical spring flow records were used to derive ground-water discharge rates for isolated regional springs. For this investigation, a process-based, numerical model was developed to estimat
Brown, T A
1997-10-01
To examine the nature and conceptualization of generalized anxiety disorder (GAD) and chronic worry as well as data bearing on the validity of GAD as a distinct diagnosis. Narrative literature review. Although a wealth of data have been obtained on the epidemiology, genetics, and nature of GAD, many important questions remain regarding the validity of current conceptual models of pathological worry and the discriminability of GAD from certain emotional disorders (for instance, mood disorders) and higher-order trait vulnerability dimensions (for example, negative affect). Because the constituent features of GAD are salient to current conceptual models of emotional disorders (for example, models that implicate negative affect or worry/anxious apprehension as vulnerability factors), research on the nature of GAD and its associated features should provide important information on the pathogenesis, course, and co-occurrence of the entire range of anxiety and mood disorders.
The Prince Edward Island Conceptual Model for Nursing: a nursing perspective of primary health care.
Munro, M; Gallant, M; MacKinnon, M; Dell, G; Herbert, R; MacNutt, G; McCarthy, M J; Murnaghan, D; Robertson, K
2000-06-01
The philosophy of primary health care (PHC) recognizes that health is a product of individual, social, economic, and political factors and that people have a right and a duty, individually and collectively, to participate in the course of their own health. The majority of nursing models cast the client in a dependent role and do not conceptualize health in a social, economic, and political context. The Prince Edward Island Conceptual Model for Nursing is congruent with the international move towards PHC. It guides the nurse in practising in the social and political environment in which nursing and health care take place. This model features a nurse/client partnership, the goal being to encourage clients to act on their own behalf. The conceptualization of the environment as the collective influence of the determinants of health gives both nurse and client a prominent position in the sociopolitical arena of health and health care.
Nakajima, Toshiyuki
2015-12-01
Higher animals act in the world using their external reality models to cope with the uncertain environment. Organisms that have not developed such information-processing organs may also have external reality models built in the form of their biochemical, physiological, and behavioral structures, acquired by natural selection through successful models constructed internally. Organisms subject to illusions would fail to survive in the material universe. How can organisms, or living systems in general, determine the external reality from within? This paper starts with a phenomenological model, in which the self constitutes a reality model developed through the mental processing of phenomena. Then, the it-from-bit concept is formalized using a simple mathematical model. For this formalization, my previous work on an algorithmic process is employed to constitute symbols referring to the external reality, called the inverse causality, with additional improvements to the previous work. Finally, as an extension of this model, the cognizers system model is employed to describe the self as one of many material entities in a world, each of which acts as a subject by responding to the surrounding entities. This model is used to propose a conceptual framework of information theory that can deal with both the qualitative (semantic) and quantitative aspects of the information involved in biological processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Rea-Ramirez, Mary Anne; Ramirez, Tina M.
2017-01-01
Purpose: The purpose is to demonstrate that conceptual change theory and strategies can be applied to areas of the social science, such as human rights education on FORB. Design/methodology/approach: The theoretical scope of this paper is conceptual change theory and is intended to introduce the theory and practice of conceptual change in teaching…
Teaching for Hot Conceptual Change: Towards a New Model, beyond the Cold and Warm Ones
ERIC Educational Resources Information Center
Kural, Mehmet; Kocakülah, M. Sabri
2016-01-01
At the beginning of the 1980s, one of the most striking explanations of conceptual change was made by Posner, Strike, Hewson & Gertzog (1982) with a Conceptual Change Theory based on a Scientific Revolution Theory of Kuhn (1970). In Conceptual Change Theory, learning was explained with the Piaget (1970)'s concepts such as assimilation and…
NASA Astrophysics Data System (ADS)
Neuberg, J. W.; Thomas, M.; Pascal, K.; Karl, S.
2012-04-01
Geophysical datasets are essential to guide particularly short-term forecasting of volcanic activity. Key parameters are derived from these datasets and interpreted in different ways, however, the biggest impact on the interpretation is not determined by the range of parameters but controlled through the parameterisation and the underlying conceptual model of the volcanic process. On the other hand, the increasing number of sophisticated geophysical models need to be constrained by monitoring data, to transform a merely numerical exercise into a useful forecasting tool. We utilise datasets from the "big three", seismology, deformation and gas emissions, to gain insight in the mutual relationship between conceptual models and constraining data. We show that, e.g. the same seismic dataset can be interpreted with respect to a wide variety of different models with very different implications to forecasting. In turn, different data processing procedures lead to different outcomes even though they are based on the same conceptual model. Unsurprisingly, the most reliable interpretation will be achieved by employing multi-disciplinary models with overlapping constraints.
Tidal oscillation of sediment between a river and a bay: A conceptual model
Ganju, N.K.; Schoellhamer, D.H.; Warner, J.C.; Barad, M.F.; Schladow, S.G.
2004-01-01
A conceptual model of fine sediment transport between a river and a bay is proposed, based on observations at two rivers feeding the same bay. The conceptual model consists of river, transitional, and bay regimes. Within the transitional regime, resuspension, advection, and deposition create a mass of sediment that oscillates landward and seaward. While suspended, this sediment mass forms an estuarine turbidity maximum. At slack tides this sediment mass temporarily deposits on the bed, creating landward and seaward deposits. Tidal excursion and slack tide deposition limit the range of the sediment mass. To verify this conceptual model, data from two small tributary rivers of San Pablo Bay are presented. Tidal variability of suspended-sediment concentration markedly differs between the landward and seaward deposits, allowing interpretation of the intratidal movement of the oscillating sediment mass. Application of this model in suitable estuaries will assist in numerical model calibration as well as in data interpretation. A similar model has been applied to some larger-scale European estuaries, which bear a geometric resemblance to the systems analyzed in this study. ?? 2004 Elsevier Ltd. All rights reserved.
A Study of Child Variance, Volume 1: Conceptual Models; Conceptual Project in Emotional Disturbance.
ERIC Educational Resources Information Center
Rhodes, William C.; Tracy, Michael L.
Presented are 11 papers discussing the following six models of emotional disturbance in children: biophysical, behavioral, psychodynamic, sociological, and ecological, models, and counter theory. Emotional disturbance is defined as a distinctive human state having multiple manifestations and involving disability, deviance, and alienation. All the…
A Conceptual Framework for Institutional Research in Community Colleges.
ERIC Educational Resources Information Center
Alfred, Richard L.; Ivens, Stephen H.
This paper defines a conceptual model for institutional research in the community college and identifies sources of information, programs, and services that provide data necessary for implementation of the model. The model contains four specific subsystems: goal setting, program development, program review, and cost effectiveness. Each subsystem…
Re-Conceptualizing Intimacy and Distance in Instructional Models
ERIC Educational Resources Information Center
Ketterer, John J.
2006-01-01
The idea that distance education lacks intimacy and is therefore inferior is based on an embedded metaphor that sustains a restricted and limiting mental model of ideal instruction. The authors analyze alternative conceptualizations of intimacy, space, and place as factors in the development of effective instructional models. They predict that the…
ERIC Educational Resources Information Center
Wang, Chia-Yu; Barrow, Lloyd H.
2013-01-01
The purpose of the study was to explore students' conceptual frameworks of models of atomic structure and periodic variations, chemical bonding, and molecular shape and polarity, and how these conceptual frameworks influence their quality of explanations and ability to shift among chemical representations. This study employed a purposeful sampling…
Developing a News Media Literacy Scale
ERIC Educational Resources Information Center
Ashley, Seth; Maksl, Adam; Craft, Stephanie
2013-01-01
Using a framework previously applied to other areas of media literacy, this study developed and assessed a measurement scale focused specifically on critical news media literacy. Our scale appears to successfully measure news media literacy as we have conceptualized it based on previous research, demonstrated through assessments of content,…
Meeks, Derek W; Takian, Amirhossein; Sittig, Dean F; Singh, Hardeep; Barber, Nick
2014-01-01
Objective The intersection of electronic health records (EHR) and patient safety is complex. To examine the applicability of two previously developed conceptual models comprehensively to understand safety implications of EHR implementation in the English National Health Service (NHS). Methods We conducted a secondary analysis of interview data from a 30-month longitudinal, prospective, case study-based evaluation of EHR implementation in 12 NHS hospitals. We used a framework analysis approach to apply conceptual models developed by Sittig and Singh to understand better EHR implementation and use: an eight-dimension sociotechnical model and a three-phase patient safety model (safe technology, safe use of technology, and use of technology to improve safety). Results The intersection of patient safety and EHR implementation and use was characterized by risks involving technology (hardware and software, clinical content, and human–computer interfaces), the interaction of technology with non-technological factors, and improper or unsafe use of technology. Our data support that patient safety improvement activities as well as patient safety hazards change as an organization evolves from concerns about safe EHR functionality, ensuring safe and appropriate EHR use, to using the EHR itself to provide ongoing surveillance and monitoring of patient safety. Discussion We demonstrate the face validity of two models for understanding the sociotechnical aspects of safe EHR implementation and the complex interactions of technology within a healthcare system evolving from paper to integrated EHR. Conclusions Using sociotechnical models, including those presented in this paper, may be beneficial to help stakeholders understand, synthesize, and anticipate risks at the intersection of patient safety and health information technology. PMID:24052536
Meeks, Derek W; Takian, Amirhossein; Sittig, Dean F; Singh, Hardeep; Barber, Nick
2014-02-01
The intersection of electronic health records (EHR) and patient safety is complex. To examine the applicability of two previously developed conceptual models comprehensively to understand safety implications of EHR implementation in the English National Health Service (NHS). We conducted a secondary analysis of interview data from a 30-month longitudinal, prospective, case study-based evaluation of EHR implementation in 12 NHS hospitals. We used a framework analysis approach to apply conceptual models developed by Sittig and Singh to understand better EHR implementation and use: an eight-dimension sociotechnical model and a three-phase patient safety model (safe technology, safe use of technology, and use of technology to improve safety). The intersection of patient safety and EHR implementation and use was characterized by risks involving technology (hardware and software, clinical content, and human-computer interfaces), the interaction of technology with non-technological factors, and improper or unsafe use of technology. Our data support that patient safety improvement activities as well as patient safety hazards change as an organization evolves from concerns about safe EHR functionality, ensuring safe and appropriate EHR use, to using the EHR itself to provide ongoing surveillance and monitoring of patient safety. We demonstrate the face validity of two models for understanding the sociotechnical aspects of safe EHR implementation and the complex interactions of technology within a healthcare system evolving from paper to integrated EHR. Using sociotechnical models, including those presented in this paper, may be beneficial to help stakeholders understand, synthesize, and anticipate risks at the intersection of patient safety and health information technology.
Integrating biogeochemistry with multiomic sequence information in a model oxygen minimum zone
Hawley, Alyse K.; Katsev, Sergei; Torres-Beltran, Monica; Bhatia, Maya P.; Kheirandish, Sam; Michiels, Céline C.; Capelle, David; Lavik, Gaute; Doebeli, Michael; Crowe, Sean A.; Hallam, Steven J.
2016-01-01
Microorganisms are the most abundant lifeform on Earth, mediating global fluxes of matter and energy. Over the past decade, high-throughput molecular techniques generating multiomic sequence information (DNA, mRNA, and protein) have transformed our perception of this microcosmos, conceptually linking microorganisms at the individual, population, and community levels to a wide range of ecosystem functions and services. Here, we develop a biogeochemical model that describes metabolic coupling along the redox gradient in Saanich Inlet—a seasonally anoxic fjord with biogeochemistry analogous to oxygen minimum zones (OMZs). The model reproduces measured biogeochemical process rates as well as DNA, mRNA, and protein concentration profiles across the redox gradient. Simulations make predictions about the role of ubiquitous OMZ microorganisms in mediating carbon, nitrogen, and sulfur cycling. For example, nitrite “leakage” during incomplete sulfide-driven denitrification by SUP05 Gammaproteobacteria is predicted to support inorganic carbon fixation and intense nitrogen loss via anaerobic ammonium oxidation. This coupling creates a metabolic niche for nitrous oxide reduction that completes denitrification by currently unidentified community members. These results quantitatively improve previous conceptual models describing microbial metabolic networks in OMZs. Beyond OMZ-specific predictions, model results indicate that geochemical fluxes are robust indicators of microbial community structure and reciprocally, that gene abundances and geochemical conditions largely determine gene expression patterns. The integration of real observational data, including geochemical profiles and process rate measurements as well as metagenomic, metatranscriptomic and metaproteomic sequence data, into a biogeochemical model, as shown here, enables holistic insight into the microbial metabolic network driving nutrient and energy flow at ecosystem scales. PMID:27655888
Integrating biogeochemistry with multiomic sequence information in a model oxygen minimum zone.
Louca, Stilianos; Hawley, Alyse K; Katsev, Sergei; Torres-Beltran, Monica; Bhatia, Maya P; Kheirandish, Sam; Michiels, Céline C; Capelle, David; Lavik, Gaute; Doebeli, Michael; Crowe, Sean A; Hallam, Steven J
2016-10-04
Microorganisms are the most abundant lifeform on Earth, mediating global fluxes of matter and energy. Over the past decade, high-throughput molecular techniques generating multiomic sequence information (DNA, mRNA, and protein) have transformed our perception of this microcosmos, conceptually linking microorganisms at the individual, population, and community levels to a wide range of ecosystem functions and services. Here, we develop a biogeochemical model that describes metabolic coupling along the redox gradient in Saanich Inlet-a seasonally anoxic fjord with biogeochemistry analogous to oxygen minimum zones (OMZs). The model reproduces measured biogeochemical process rates as well as DNA, mRNA, and protein concentration profiles across the redox gradient. Simulations make predictions about the role of ubiquitous OMZ microorganisms in mediating carbon, nitrogen, and sulfur cycling. For example, nitrite "leakage" during incomplete sulfide-driven denitrification by SUP05 Gammaproteobacteria is predicted to support inorganic carbon fixation and intense nitrogen loss via anaerobic ammonium oxidation. This coupling creates a metabolic niche for nitrous oxide reduction that completes denitrification by currently unidentified community members. These results quantitatively improve previous conceptual models describing microbial metabolic networks in OMZs. Beyond OMZ-specific predictions, model results indicate that geochemical fluxes are robust indicators of microbial community structure and reciprocally, that gene abundances and geochemical conditions largely determine gene expression patterns. The integration of real observational data, including geochemical profiles and process rate measurements as well as metagenomic, metatranscriptomic and metaproteomic sequence data, into a biogeochemical model, as shown here, enables holistic insight into the microbial metabolic network driving nutrient and energy flow at ecosystem scales.
A Conceptual Model of Career Development to Enhance Academic Motivation
ERIC Educational Resources Information Center
Collins, Nancy Creighton
2010-01-01
The purpose of this study was to develop, refine, and validate a conceptual model of career development to enhance the academic motivation of community college students. To achieve this end, a straw model was built from the theoretical and empirical research literature. The model was then refined and validated through three rounds of a Delphi…
ERIC Educational Resources Information Center
Hidiroglu, Çaglar Naci; Bukova Güzel, Esra
2013-01-01
The aim of the present study is to conceptualize the approaches displayed for validation of model and thought processes provided in mathematical modeling process performed in technology-aided learning environment. The participants of this grounded theory study were nineteen secondary school mathematics student teachers. The data gathered from the…
Moving from Victim to Survivor of Cultural Violence: A Conceptual Model
ERIC Educational Resources Information Center
Salazar, Carmen F.; Casto, Challon
2008-01-01
The authors propose the Moving From Victim to Survivor of Cultural Violence model, using the stages of D. W. Sue and D. Sue's (1999) Racial/Cultural Identity Development model. This conceptual model describes the process of first overcoming internalized sexism, domestic abuse, sexual harassment, rape, and other forms of oppression and then healing…
Toward a Stress Process Model of Children's Exposure to Physical Family and Community Violence
ERIC Educational Resources Information Center
Foster, Holly; Brooks-Gunn, Jeanne
2009-01-01
Theoretically informed models are required to further the comprehensive understanding of children's ETV. We draw on the stress process paradigm to forward an overall conceptual model of ETV (ETV) in childhood and adolescence. Around this conceptual model, we synthesize research in four dominant areas of the literature which are detailed but often…
A Conceptual View of the Officer Procurement Model (TOPOPS). Technical Report No. 73-73.
ERIC Educational Resources Information Center
Akman, Allan; Nordhauser, Fred
This report presents the conceptual design of a computer-based linear programing model of the Air Force officer procurement system called TOPOPS. The TOPOPS model is an aggregate model which simulates officer accession and training and is directed at optimizing officer procurement in terms of either minimizing cost or maximizing accession quality…
Development of a Conceptual Chum Salmon Emergence Model for Ives Island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Christopher J.; Geist, David R.; Arntzen, Evan V.
2011-02-09
The objective of the study described herein was to develop a conceptual model of chum salmon emergence that was based on empirical water temperature of the riverbed and river in specific locations where chum salmon spawn in the Ives Island area. The conceptual model was developed using water temperature data that have been collected in the past and are currently being collected in the Ives Island area. The model will be useful to system operators who need to estimate the complete distribution of chum salmon emergence (first emergence through final emergence) in order to balance chum salmon redd protection andmore » power system operation.« less
Abraham, Anna; Rutter, Barbara; Bantin, Trisha; Hermann, Christiane
2018-05-05
The aims of this fMRI study were two-fold. The first objective of the study was to verify whether the findings associated with a previous fMRI study could be replicated in which a novel event-related experimental design was developed which rendered it possible to investigate the brain basis of creative conceptual expansion. The ability to widen the boundaries of conceptual structures is integral to creative idea generation, which makes conceptual expansion a core component of creative cognition. Creative conceptual expansion led to the engagement of brain regions that are known to be involved in the access, storage and relational integration of conceptual knowledge in the original study. These included the anterior inferior frontal gyrus, the temporal poles and the lateral frontal pole. These findings in relation to the brain basis of creative conceptual expansion were replicated in the current study. The second objective of this study was to evaluate the brain basis of individual differences in creative conceptual expansion. The high creative group relative to the low creative group was shown to exhibit greater activity in regions of the semantic cognition network as well as the salience network during creative conceptual expansion. The findings are discussed from the point of view of classical hypotheses about information processing biases that explain individual differences in creativity including flat associative hierarchies, defocused attention and cognitive disinhibition. Copyright © 2018 Elsevier Ltd. All rights reserved.
Early warning signal for interior crises in excitable systems.
Karnatak, Rajat; Kantz, Holger; Bialonski, Stephan
2017-10-01
The ability to reliably predict critical transitions in dynamical systems is a long-standing goal of diverse scientific communities. Previous work focused on early warning signals related to local bifurcations (critical slowing down) and nonbifurcation-type transitions. We extend this toolbox and report on a characteristic scaling behavior (critical attractor growth) which is indicative of an impending global bifurcation, an interior crisis in excitable systems. We demonstrate our early warning signal in a conceptual climate model as well as in a model of coupled neurons known to exhibit extreme events. We observed critical attractor growth prior to interior crises of chaotic as well as strange-nonchaotic attractors. These observations promise to extend the classes of transitions that can be predicted via early warning signals.
The Role of System Thinking Development and Experiential Learning on Enterprise Transformation
NASA Astrophysics Data System (ADS)
Lopez, Gabriel
The recent economic downturn has had global repercussions in all businesses alike. Competition is fierce and a survival of the fittest model is always present; fast delivery times and innovative designs ultimately translate into the enterprises' bottom line. In such market conditions, enterprises have to find ways to develop and train their workforce in a manner that enhances the innovative capabilities of the enterprise. Additionally, if companies are to stay competitive, they have to ensure critical skills in their workforce are transferred from generation to generation. This study builds on recent research on system-thinking development via experiential learning methodologies. First, a conceptual framework model was developed. This conceptual model captures a methodology to construct a system-thinking apprenticeship program suitable for system engineers. Secondly, a survey of system engineering professionals was conducted in order to assess and refine the proposed conceptual model. This dissertation captures the findings of the conceptual model and the implications of the study for enterprises and for system engineering organizations.
NASA Astrophysics Data System (ADS)
Toapanta, Moisés; Mafla, Enrique; Orizaga, Antonio
2017-08-01
We analyzed the problems of security of the information of the civil registries and identification at world level that are considered strategic. The objective is to adopt the appropriate security protocols in a conceptual model in the identity management for the Civil Registry of Ecuador. In this phase, the appropriate security protocols were determined in a Conceptual Model in Identity Management with Authentication, Authorization and Auditing (AAA). We used the deductive method and exploratory research to define the appropriate security protocols to be adopted in the identity model: IPSec, DNSsec, Radius, SSL, TLS, IEEE 802.1X EAP, Set. It was a prototype of the location of the security protocols adopted in the logical design of the technological infrastructure considering the conceptual model for Identity, Authentication, Authorization, and Audit management. It was concluded that the adopted protocols are appropriate for a distributed database and should have a direct relationship with the algorithms, which allows vulnerability and risk mitigation taking into account confidentiality, integrity and availability (CIA).
Ontology-Driven Business Modelling: Improving the Conceptual Representation of the REA Ontology
NASA Astrophysics Data System (ADS)
Gailly, Frederik; Poels, Geert
Business modelling research is increasingly interested in exploring how domain ontologies can be used as reference models for business models. The Resource Event Agent (REA) ontology is a primary candidate for ontology-driven modelling of business processes because the REA point of view on business reality is close to the conceptual modelling perspective on business models. In this paper Ontology Engineering principles are employed to reengineer REA in order to make it more suitable for ontology-driven business modelling. The new conceptual representation of REA that we propose uses a single representation formalism, includes a more complete domain axiomatizat-ion (containing definitions of concepts, concept relations and ontological axioms), and is proposed as a generic model that can be instantiated to create valid business models. The effects of these proposed improvements on REA-driven business modelling are demonstrated using a business modelling example.
Model averaging techniques for quantifying conceptual model uncertainty.
Singh, Abhishek; Mishra, Srikanta; Ruskauff, Greg
2010-01-01
In recent years a growing understanding has emerged regarding the need to expand the modeling paradigm to include conceptual model uncertainty for groundwater models. Conceptual model uncertainty is typically addressed by formulating alternative model conceptualizations and assessing their relative likelihoods using statistical model averaging approaches. Several model averaging techniques and likelihood measures have been proposed in the recent literature for this purpose with two broad categories--Monte Carlo-based techniques such as Generalized Likelihood Uncertainty Estimation or GLUE (Beven and Binley 1992) and criterion-based techniques that use metrics such as the Bayesian and Kashyap Information Criteria (e.g., the Maximum Likelihood Bayesian Model Averaging or MLBMA approach proposed by Neuman 2003) and Akaike Information Criterion-based model averaging (AICMA) (Poeter and Anderson 2005). These different techniques can often lead to significantly different relative model weights and ranks because of differences in the underlying statistical assumptions about the nature of model uncertainty. This paper provides a comparative assessment of the four model averaging techniques (GLUE, MLBMA with KIC, MLBMA with BIC, and AIC-based model averaging) mentioned above for the purpose of quantifying the impacts of model uncertainty on groundwater model predictions. Pros and cons of each model averaging technique are examined from a practitioner's perspective using two groundwater modeling case studies. Recommendations are provided regarding the use of these techniques in groundwater modeling practice.
Prospective elementary teachers' perceptions of the processes of modeling: A case study
NASA Astrophysics Data System (ADS)
Fazio, Claudio; di Paola, Benedetto; Guastella, Ivan
2012-06-01
In this paper we discuss a study on the approaches to modeling of students of the 4-year elementary school teacher program at the University of Palermo, Italy. The answers to a specially designed questionnaire are analyzed on the basis of an a priori analysis made using a general scheme of reference on the epistemology of mathematics and physics. The study is performed by using quantitative data analysis methods, i.e. factorial analysis of the correspondences and implicative analysis. A qualitative analysis of key words and terms used by students during interviews is also used to examine some aspects that emerged from the quantitative analysis. The students have been classified on the basis of their different epistemological approaches to knowledge construction, and implications between different conceptual strategies used to answer the questionnaire have been highlighted. The study’s conclusions are consistent with previous research, but the use of quantitative data analysis allowed us to classify the students into three “profiles” related to different epistemological approaches to knowledge construction, and to show the implications of the different conceptual strategies used to answer the questionnaire, giving an estimation of the classification or implication “strength.” Some hints on how a course for elementary school physics and mathematics education can be planned to orient the future teachers to the construction of models of explanation are reported.
Development and Testing of a Conceptual Model Regarding Men's Access to Health Care.
Leone, James E; Rovito, Michael J; Mullin, Elizabeth M; Mohammed, Shan D; Lee, Christina S
2017-03-01
Epidemiologic data suggest men often experience excessive morbidity and early mortality, possibly compromising family and community health over the lifespan. Moreover, the negative financial/economic consequences affected by poor male health outcomes also has been of great concern in the United States and abroad. Early and consistent access to preventative health care may improve health outcomes; however, men are far less likely to access these services. The purpose of this study was to understand what factors preclude men from accessing health care. We surveyed 485 participants using a 58-item online survey built from a conceptual model previously developed by the researchers using hegemonic masculinity theory, the theory of normative contentment, and the health belief model. For men, three items significantly ( ps < .05) predicted whether they had seen a health care provider in the past year: "I/Men do not access healthcare because I do not think there is anything wrong with me," "My health is only about me," and "I/Men do not access healthcare because most men in my family do not access healthcare." Other correlations of practical significance also were noted. Results suggest gender norms and masculine ideals may play a primary role in how men access preventative health care. Future programming targeting males should consider barriers and plan programs that are gender-sensitive in addition to being gender-specific. Clinical implications are discussed.
Transforming Undergraduate Education Through the use of Analytical Reasoning (TUETAR)
NASA Astrophysics Data System (ADS)
Bishop, M. P.; Houser, C.; Lemmons, K.
2015-12-01
Traditional learning limits the potential for self-discovery, and the use of data and knowledge to understand Earth system relationships, processes, feedback mechanisms and system coupling. It is extremely difficult for undergraduate students to analyze, synthesize, and integrate quantitative information related to complex systems, as many concepts may not be mathematically tractable or yet to be formalized. Conceptual models have long served as a means for Earth scientists to organize their understanding of Earth's dynamics, and have served as a basis for human analytical reasoning and landscape interpretation. Consequently, we evaluated the use of conceptual modeling, knowledge representation and analytical reasoning to provide undergraduate students with an opportunity to develop and test geocomputational conceptual models based upon their understanding of Earth science concepts. This study describes the use of geospatial technologies and fuzzy cognitive maps to predict desertification across the South-Texas Sandsheet in an upper-level geomorphology course. Students developed conceptual models based on their understanding of aeolian processes from lectures, and then compared and evaluated their modeling results against an expert conceptual model and spatial predictions, and the observed distribution of dune activity in 2010. Students perceived that the analytical reasoning approach was significantly better for understanding desertification compared to traditional lecture, and promoted reflective learning, working with data, teamwork, student interaction, innovation, and creative thinking. Student evaluations support the notion that the adoption of knowledge representation and analytical reasoning in the classroom has the potential to transform undergraduate education by enabling students to formalize and test their conceptual understanding of Earth science. A model for developing and utilizing this geospatial technology approach in Earth science is presented.
Vakil, E; Sigal, J
1997-07-01
Twenty-four closed-head-injured (CHI) and 24 control participants studied two word lists under shallow (i.e., nonsemantic) and deep (i.e., semantic) encoding conditions. They were then tested on free recall, perceptual priming (i.e., perceptual partial word identification) and conceptual priming (i.e., category production) tasks. Previous findings have demonstrated that memory in CHI is characterized by inefficient conceptual processing of information. It was thus hypothesized that the CHI participants would perform more poorly than the control participants on the explicit and on the conceptual priming tasks. On these tasks the CHI group was expected to benefit to a lesser degree from prior deep encoding, as compared to controls. The groups were not expected to significantly differ from each other on the perceptual priming task. Prior deep encoding was not expected to improve the perceptual priming performance of either group. All findings were as predicted, with the exception that a significant effect was not found between groups for deep encoding in the conceptual priming task. The results are discussed (1) in terms of their theoretical contribution in further validating the dissociation between perceptual and conceptual priming; and (2) in terms of the contribution in differentiating between amnesic and CHI patients. Conceptual priming is preserved in amnesics but not in CHI patients.
Conceptual Modeling Techniques for Use Within the DoD Acquisition Community
2013-02-14
auditory, or kinesthetic information, but are there people more naturally adept at thinking conceptually? For those who showed greater conceptually...thinking ability, does being a visual, auditory, or kinesthetic learner correlate to this in any statistically significant manner? Does field
The Trans-Contextual Model of Autonomous Motivation in Education
Hagger, Martin S.; Chatzisarantis, Nikos L. D.
2015-01-01
The trans-contextual model outlines the processes by which autonomous motivation toward activities in a physical education context predicts autonomous motivation toward physical activity outside of school, and beliefs about, intentions toward, and actual engagement in, out-of-school physical activity. In the present article, we clarify the fundamental propositions of the model and resolve some outstanding conceptual issues, including its generalizability across multiple educational domains, criteria for its rejection or failed replication, the role of belief-based antecedents of intentions, and the causal ordering of its constructs. We also evaluate the consistency of model relationships in previous tests of the model using path-analytic meta-analysis. The analysis supported model hypotheses but identified substantial heterogeneity in the hypothesized relationships across studies unattributed to sampling and measurement error. Based on our meta-analysis, future research needs to provide further replications of the model in diverse educational settings beyond physical education and test model hypotheses using experimental methods. PMID:27274585
Framework for Uncertainty Assessment - Hanford Site-Wide Groundwater Flow and Transport Modeling
NASA Astrophysics Data System (ADS)
Bergeron, M. P.; Cole, C. R.; Murray, C. J.; Thorne, P. D.; Wurstner, S. K.
2002-05-01
Pacific Northwest National Laboratory is in the process of development and implementation of an uncertainty estimation methodology for use in future site assessments that addresses parameter uncertainty as well as uncertainties related to the groundwater conceptual model. The long-term goals of the effort are development and implementation of an uncertainty estimation methodology for use in future assessments and analyses being made with the Hanford site-wide groundwater model. The basic approach in the framework developed for uncertainty assessment consists of: 1) Alternate conceptual model (ACM) identification to identify and document the major features and assumptions of each conceptual model. The process must also include a periodic review of the existing and proposed new conceptual models as data or understanding become available. 2) ACM development of each identified conceptual model through inverse modeling with historical site data. 3) ACM evaluation to identify which of conceptual models are plausible and should be included in any subsequent uncertainty assessments. 4) ACM uncertainty assessments will only be carried out for those ACMs determined to be plausible through comparison with historical observations and model structure identification measures. The parameter uncertainty assessment process generally involves: a) Model Complexity Optimization - to identify the important or relevant parameters for the uncertainty analysis; b) Characterization of Parameter Uncertainty - to develop the pdfs for the important uncertain parameters including identification of any correlations among parameters; c) Propagation of Uncertainty - to propagate parameter uncertainties (e.g., by first order second moment methods if applicable or by a Monte Carlo approach) through the model to determine the uncertainty in the model predictions of interest. 5)Estimation of combined ACM and scenario uncertainty by a double sum with each component of the inner sum (an individual CCDF) representing parameter uncertainty associated with a particular scenario and ACM and the outer sum enumerating the various plausible ACM and scenario combinations in order to represent the combined estimate of uncertainty (a family of CCDFs). A final important part of the framework includes identification, enumeration, and documentation of all the assumptions, which include those made during conceptual model development, required by the mathematical model, required by the numerical model, made during the spatial and temporal descretization process, needed to assign the statistical model and associated parameters that describe the uncertainty in the relevant input parameters, and finally those assumptions required by the propagation method. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy under Contract DE-AC06-76RL01830.
A process-model based approach to prospective memory impairment in Parkinson's disease.
Kliegel, Matthias; Altgassen, Mareike; Hering, Alexandra; Rose, Nathan S
2011-07-01
The present review discusses the current state of research on the clinical neuropsychology of prospective memory in Parkinson's disease. To do so the paper is divided in two sections. In the first section, we briefly outline key features of the (partly implicit) rationale underlying the available literature on the clinical neuropsychology of prospective memory. Here, we present a conceptual model that guides our approach to the clinical neuropsychology of prospective memory in general and to the effects of Parkinson's disease on prospective memory in particular. In the second section, we use this model to guide our review of the available literature and suggest some open issues and future directions motivated by previous findings and the proposed conceptual model. The review suggests that certain phases of the prospective memory process (intention formation und initiation) are particularly impaired by Parkinson's disease. In addition, it is argued that prospective memory may be preserved when tasks involve specific features (e.g., focal cues) that reduce the need for strategic monitoring processes. In terms of suggestions for future directions, it is noted that intervention studies are needed which target the specific phases of the prospective memory process that are impaired in Parkinson's disease, such as planning interventions. Moreover, it is proposed that prospective memory deficits in Parkinson's disease should be explored in the context of a general impairment in the ability to form an intention and plan or coordinate an appropriate series of actions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Problem of time in slightly inhomogeneous cosmology
NASA Astrophysics Data System (ADS)
Anderson, Edward
2016-07-01
The problem of time (PoT) is a multi-faceted conceptual incompatibility between various areas of Theoretical Physics. While usually stated as between GR and QM, in fact 8/9ths of it is already present at the classical level. Thus we adopt a ‘top-down’ classical and then quantum approach. I consider a local resolution to the PoT that is Machian, which was previously realized for relational triangle and minisuperspace models. This resolution has three levels: classical, semiclassical and combined semiclassical-histories-records. This article’s specific model is a slightly inhomogeneous cosmology considered for now at the classical level. This is motivated by how the inhomogeneous fluctuations that underlie structure formation—galaxies and CMB hotspots—might have been seeded by quantum cosmological fluctuations, as magnified by some inflationary mechanism. In particular, I consider the perturbations about {{{S}}}3 case of this involving up to second order, which has a number of parallels with the Halliwell-Hawking model but has a number of conceptual differences and useful upgrades. The article’s main features are that the elimination part of the model’s thin sandwich is straightforward, but the modewise split of the constraints fail to be first-class constraints. Thus the elimination part only arises as an intermediate geometry between superspace and Riem. The reduced geometries have surprising singularities influenced by the matter content of the Universe, though the N-body problem anticipates these with its collinear singularities. I also give a ‘basis set’ of Kuchař beables for this model arena.
Outcome following therapeutic abortion.
Payne, E C; Kravitz, A R; Notman, M T; Anderson, J V
1976-06-01
Psychological outcome of abortion was studied in 102 patients, measuring multiple variables over four time intervals. Five measured affects--anxiety, depression, anger, guilt, and shame-were significantly lower six months after the preabortion period. The following variables describe subgroups of patients with significant variations in patterns of responses as indicated by changes in affects: marital status, personality diagnosis, character of object relations, past psychopathologic factors, relationship to husband or lover, relationship to mother, ambivalence about abortion, religion, and previous parity. A complex multivariate model, based on conflict and conflict resolution, is appropriate to conceptualize, the unwanted pregnancy and abortion experience. Data suggest that women most vulnerable to conflict are those who are single and nulliparous, those with previous history of serious emotional problems, conflictual relationships to lovers, past negative relationships to mother, strong ambivalence toward abortion, or negative religious or cultural attitudes about abortion.
Emotion regulation in the workplace: a new way to conceptualize emotional labor.
Grandey, A A
2000-01-01
The topic of emotions in the workplace is beginning to garner closer attention by researchers and theorists. The study of emotional labor addresses the stress of managing emotions when the work role demands that certain expressions be shown to customers. However, there has been no overarching framework to guide this work, and the previous studies have often disagreed on the definition and operationalization of emotional labor. The purposes of this article are as follows: to review and compare previous perspectives of emotional labor, to provide a definition of emotional labor that integrates these perspectives, to discuss emotion regulation as a guiding theory for understanding the mechanisms of emotional labor, and to present a model of emotional labor that includes individual differences (such as emotional intelligence) and organizational factors (such as supervisor support).
ERIC Educational Resources Information Center
Sackes, Mesut
2010-01-01
This study seeks to explore and describe the role of cognitive, metacognitive, and motivational variables in conceptual change. More specifically, the purposes of the study were (1) to investigate the predictive ability of a learning model that was developed based on the intentional conceptual change perspective in predicting change in conceptual…
NADM Conceptual Model 1.0 -- A Conceptual Model for Geologic Map Information
,
2004-01-01
Executive Summary -- The NADM Data Model Design Team was established in 1999 by the North American Geologic Map Data Model Steering Committee (NADMSC) with the purpose of drafting a geologic map data model for consideration as a standard for developing interoperable geologic map-centered databases by state, provincial, and federal geological surveys. The model is designed to be a technology-neutral conceptual model that can form the basis for a web-based interchange format using evolving information technology (e.g., XML, RDF, OWL), and guide implementation of geoscience databases in a common conceptual framework. The intended purpose is to allow geologic information sharing between geologic map data providers and users, independent of local information system implementation. The model emphasizes geoscience concepts and relationships related to information presented on geologic maps. Design has been guided by an informal requirements analysis, documentation of existing databases, technology developments, and other standardization efforts in the geoscience and computer-science communities. A key aspect of the model is the notion that representation of the conceptual framework (ontology) that underlies geologic map data must be part of the model, because this framework changes with time and understanding, and varies between information providers. The top level of the model distinguishes geologic concepts, geologic representation concepts, and metadata. The geologic representation part of the model provides a framework for representing the ontology that underlies geologic map data through a controlled vocabulary, and for establishing the relationships between this vocabulary and a geologic map visualization or portrayal. Top-level geologic classes in the model are Earth material (substance), geologic unit (parts of the Earth), geologic age, geologic structure, fossil, geologic process, geologic relation, and geologic event.
NASA Astrophysics Data System (ADS)
Clark, Martyn P.; Kavetski, Dmitri
2010-10-01
A major neglected weakness of many current hydrological models is the numerical method used to solve the governing model equations. This paper thoroughly evaluates several classes of time stepping schemes in terms of numerical reliability and computational efficiency in the context of conceptual hydrological modeling. Numerical experiments are carried out using 8 distinct time stepping algorithms and 6 different conceptual rainfall-runoff models, applied in a densely gauged experimental catchment, as well as in 12 basins with diverse physical and hydroclimatic characteristics. Results show that, over vast regions of the parameter space, the numerical errors of fixed-step explicit schemes commonly used in hydrology routinely dwarf the structural errors of the model conceptualization. This substantially degrades model predictions, but also, disturbingly, generates fortuitously adequate performance for parameter sets where numerical errors compensate for model structural errors. Simply running fixed-step explicit schemes with shorter time steps provides a poor balance between accuracy and efficiency: in some cases daily-step adaptive explicit schemes with moderate error tolerances achieved comparable or higher accuracy than 15 min fixed-step explicit approximations but were nearly 10 times more efficient. From the range of simple time stepping schemes investigated in this work, the fixed-step implicit Euler method and the adaptive explicit Heun method emerge as good practical choices for the majority of simulation scenarios. In combination with the companion paper, where impacts on model analysis, interpretation, and prediction are assessed, this two-part study vividly highlights the impact of numerical errors on critical performance aspects of conceptual hydrological models and provides practical guidelines for robust numerical implementation.
The intersection of disability and healthcare disparities: a conceptual framework.
Meade, Michelle A; Mahmoudi, Elham; Lee, Shoou-Yih
2015-01-01
This article provides a conceptual framework for understanding healthcare disparities experienced by individuals with disabilities. While health disparities are the result of factors deeply rooted in culture, life style, socioeconomic status, and accessibility of resources, healthcare disparities are a subset of health disparities that reflect differences in access to and quality of healthcare and can be viewed as the inability of the healthcare system to adequately address the needs of specific population groups. This article uses a narrative method to identify and critique the main conceptual frameworks that have been used in analyzing disparities in healthcare access and quality, and evaluating those frameworks in the context of healthcare for individuals with disabilities. Specific models that are examined include the Aday and Anderson Model, the Grossman Utility Model, the Institute of Medicine (IOM)'s models of Access to Healthcare Services and Healthcare Disparities, and the Cultural Competency model. While existing frameworks advance understandings of disparities in healthcare access and quality, they fall short when applied to individuals with disabilities. Specific deficits include a lack of attention to cultural and contextual factors (Aday and Andersen framework), unrealistic assumptions regarding equal access to resources (Grossman's utility model), lack of recognition or inclusion of concepts of structural accessibility (IOM model of Healthcare Disparities) and exclusive emphasis on supply side of the healthcare equation to improve healthcare disparities (Cultural Competency model). In response to identified gaps in the literature and short-comings of current conceptualizations, an integrated model of disability and healthcare disparities is put forth. We analyzed models of access to care and disparities in healthcare to be able to have an integrated and cohesive conceptual framework that could potentially address issues related to access to healthcare among individuals with disabilities. The Model of Healthcare Disparities and Disability (MHDD) provides a framework for conceptualizing how healthcare disparities impact disability and specifically, how a mismatch between personal and environmental factors may result in reduced healthcare access and quality, which in turn may lead to reduced functioning, activity and participation among individuals with impairments and chronic health conditions. Researchers, health providers, policy makers and community advocate groups who are engaged in devising interventions aimed at reducing healthcare disparities would benefit from the discussions. Implications for Rehabilitation Evaluates the main models of healthcare disparity and disability to create an integrated framework. Provides a comprehensive conceptual model of healthcare disparity that specifically targets issues related to individuals with disabilities. Conceptualizes how personal and environmental factors interact to produce disparities in access to healthcare and healthcare quality. Recognizes and targets modifiable factors to reduce disparities between and within individuals with disabilities.
The Clinical Teacher for Special Education. Final Report: Volume II; Evaluating the Model.
ERIC Educational Resources Information Center
Schwartz, Louis; Oseroff, Andrew
Effectiveness of the clinical teaching model (CTM) developed at Florida State University is documented in Volume II of the project's final report. Reviewed is literature related to teacher effectiveness and conceptual changes, conceptual models and instructional systems, and evaluation research in education. Research design and procedures are…
Modeling Rare and Unique Documents: Using FRBR[subscript OO]/CIDOC CRM
ERIC Educational Resources Information Center
Le Boeuf, Patrick
2012-01-01
Both the library and the museum communities have developed conceptual models for the information they produce about the collections they hold: FRBR (Functional Requirements for Bibliographic Records) and CIDOC CRM (Conceptual Reference Model). But neither proves perfectly adequate when it comes to some specific types of rare and unique materials:…
The Conceptualization of the Mathematical Modelling Process in Technology-Aided Environment
ERIC Educational Resources Information Center
Hidiroglu, Çaglar Naci; Güzel, Esra Bukova
2017-01-01
The aim of the study is to conceptualize the technology-aided mathematical modelling process in the frame of cognitive modelling perspective. The grounded theory approach was adopted in the study. The research was conducted with seven groups consisting of nineteen prospective mathematics teachers. The data were collected from the video records of…
ERIC Educational Resources Information Center
Gill, Susan E.; Marcum-Dietrich, Nanette; Becker-Klein, Rachel
2014-01-01
The Model My Watershed (MMW) application, and associated curricula, provides students with meaningful opportunities to connect conceptual understanding of watersheds to real-world decision making. The application uses an authentic hydrologic model, TR-55 (developed by the U.S. Natural Resources Conservation Service), and real data applied in…
What Is FRBR? A Conceptual Model for the Bibliographic Universe
ERIC Educational Resources Information Center
Tillett, Barbara
2005-01-01
From 1992 to 1995 the IFLA Study Group on Functional Requirements for Bibliographic Records (FRBR) developed an entity relationship model as a generalised view of the bibliographic universe, intended to be independent of any cataloguing code or implementation. The FRBR report itself includes a description of the conceptual model (the entities,…
Introductory Biology Students' Conceptual Models and Explanations of the Origin of Variation
ERIC Educational Resources Information Center
Bray Speth, Elena; Shaw, Neil; Momsen, Jennifer; Reinagel, Adam; Le, Paul; Taqieddin, Ranya; Long, Tammy
2014-01-01
Mutation is the key molecular mechanism generating phenotypic variation, which is the basis for evolution. In an introductory biology course, we used a model-based pedagogy that enabled students to integrate their understanding of genetics and evolution within multiple case studies. We used student-generated conceptual models to assess…
Geographers in the Post-Industrial Age: A Conceptual Curriculum Model for Geography.
ERIC Educational Resources Information Center
Verduin-Muller, Henriette
The document describes a conceptual curriculum model for designing original geographical curriculum materials. The model emanated from a series of research projects at the Geographical Institute's Department of Geography for Education at the Rijksuniversiteit of Utrecht, the Netherlands. The objective of the research was to gain insight into the…
Using Analogy and Model to Enhance Conceptual Change in Thai Middle School Students
ERIC Educational Resources Information Center
Wichaidit, Sittichai; Wongyounoi, Somson; Dechsri, Precharn; Chaivisuthangkura, Parin
2011-01-01
This study examined conceptual change of Thai middle school students after learning photosynthesis with analogy and model. The analogy mapped key features from the analog (cooking food) to the target concept (photosynthesis). Modeling photosynthesis activity provided the opportunity for students to understand how plants use sugar to synthesize…