Grayscale inhomogeneity correction method for multiple mosaicked electron microscope images
NASA Astrophysics Data System (ADS)
Zhou, Fangxu; Chen, Xi; Sun, Rong; Han, Hua
2018-04-01
Electron microscope image stitching is highly desired to acquire microscopic resolution images of large target scenes in neuroscience. However, the result of multiple Mosaicked electron microscope images may exist severe gray scale inhomogeneity due to the instability of the electron microscope system and registration errors, which degrade the visual effect of the mosaicked EM images and aggravate the difficulty of follow-up treatment, such as automatic object recognition. Consequently, the grayscale correction method for multiple mosaicked electron microscope images is indispensable in these areas. Different from most previous grayscale correction methods, this paper designs a grayscale correction process for multiple EM images which tackles the difficulty of the multiple images monochrome correction and achieves the consistency of grayscale in the overlap regions. We adjust overall grayscale of the mosaicked images with the location and grayscale information of manual selected seed images, and then fuse local overlap regions between adjacent images using Poisson image editing. Experimental result demonstrates the effectiveness of our proposed method.
Correlative Fluorescence and Electron Microscopy in 3D-Scanning Electron Microscope Perspective.
Franks, Jonathan; Wallace, Callen T; Shibata, Masateru; Suga, Mitsuo; Erdman, Natasha; Stolz, Donna B; Watkins, Simon C
2017-04-03
The ability to correlate fluorescence microscopy (FM) and electron microscopy (EM) data obtained on biological (cell and tissue) specimens is essential to bridge the resolution gap between the data obtained by these different imaging techniques. In the past such correlations were limited to either EM navigation in two dimensions to the locations previously highlighted by fluorescence markers, or subsequent high-resolution acquisition of tomographic information using a TEM. We present a novel approach whereby a sample previously investigated by FM is embedded and subjected to sequential mechanical polishing and backscatter imaging by scanning electron microscope. The resulting three dimensional EM tomogram of the sample can be directly correlated to the FM data. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Wanare, S. P.; Kalyankar, V. D.
2018-04-01
Friction stir welding is emerging as a promising technique for joining of lighter metal alloys due to its several advantages over conventional fusion welding processes such as low thermal distortion, good mechanical properties, fine weld joint microstructure, etc. This review article mainly focuses on analysis of microstructure and mechanical properties of friction stir welded joints. Various microstructure characterization techniques used by previous researchers such as optical microscopes, x-ray diffraction, electron probe microscope, transmission electron microscope, scanning electron microscopes with electron back scattered diffraction, electron dispersive microscopy, etc. are thoroughly overviewed and their results are discussed. The effects of friction stir welding process parameters such as tool rotational speed, welding speed, tool plunge depth, axial force, tool shoulder diameter to tool pin diameter ratio, tool geometry etc. on microstructure and mechanical properties of welded joints are studied and critical observations are noted down. The microstructure examination carried out by previous researchers on various zones of welded joints such as weld zone, heat affected zone and base metal are studied and critical remarks have been presented. Mechanical performances of friction stir welded joints based on tensile test, micro-hardness test, etc. are discussed. This article includes exhaustive literature review of standard research articles which may become ready information for subsequent researchers to establish their line of action.
Lo, T Y; Sim, K S; Tso, C P; Nia, M E
2014-01-01
An improvement to the previously proposed adaptive Canny optimization technique for scanning electron microscope image colorization is reported. The additional feature, called pseudo-mapping technique, is that the grayscale markings are temporarily mapped to a set of pre-defined pseudo-color map as a mean to instill color information for grayscale colors in chrominance channels. This allows the presence of grayscale markings to be identified; hence optimization colorization of grayscale colors is made possible. This additional feature enhances the flexibility of scanning electron microscope image colorization by providing wider range of possible color enhancement. Furthermore, the nature of this technique also allows users to adjust the luminance intensities of selected region from the original image within certain extent. © 2014 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Stanley, A. G.; Gauthier, M. K.
1977-01-01
A successful diagnostic technique was developed using a scanning electron microscope (SEM) as a precision tool to determine ionization effects in integrated circuits. Previous SEM methods radiated the entire semiconductor chip or major areas. The large area exposure methods do not reveal the exact components which are sensitive to radiation. To locate these sensitive components a new method was developed, which consisted in successively irradiating selected components on the device chip with equal doses of electrons /10 to the 6th rad (Si)/, while the whole device was subjected to representative bias conditions. A suitable device parameter was measured in situ after each successive irradiation with the beam off.
[Evaluation of the surface of the new intraocular lenses in the scanning electron microscope].
Kałuzny, B J; Szatkowski, J; Kałuzny, J J
2001-01-01
To evaluate the surface of the new PC IOLs commercially available in Poland in 2000. Representative samples of new posterior chamber IOLs produced by 6 different companies (Alcon, Lensita, Medicontur, Opsia, Rayner, Storz), 5 of each, underwent surface examination with Novoscan 30 scanning electron microscope. Although, in general, smooth surface of optic and haptic parts were observed, three samples with irregularities were found. Comparing to previous evaluation performed in 1994, significant improvement in quality of IOLs surface was noted. No considerable differences in this field between above mentioned producers were observed.
Winkelmann, A; Nolze, G; Vespucci, S; Naresh-Kumar, G; Trager-Cowan, C; Vilalta-Clemente, A; Wilkinson, A J; Vos, M
2017-09-01
We analyse the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolour orientation imaging using multiple, angle-resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in-depth theoretical modelling of the energy- and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channelling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocations. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
Cardiac morphology after conditions of microgravity during Cosmos 2044
NASA Technical Reports Server (NTRS)
Goldstein, Margaret A.; Edwards, Robert J.; Schroeter, John P.
1992-01-01
Light- and electron-microscopic studies were performed on cardiac muscle from rats flown on Cosmos 2044 and from four control groups. Average cross-sectional area of myofibers was measured by video analysis of the light-microscopic images of papillary and ventricular muscle samples from all animals. This cross-sectional area was significantly decreased in flight rats (P = 0.03) compared with synchronous controls. Additional findings at the electron microscopic level consistent with this atrophy were obtained by stereological analysis and optical diffraction analysis of papillary muscle samples. Slightly higher mitochondrial volume density values and mitochondria-to-myofibril ratios as well as normal A-band spacings (d1,0) and Z-band spacings of myofibrils were observed in the tail-suspension and flight groups. General morphological features similar to those in ventricular samples from the previous Cosmos 1887 flight were observed.
NASA Astrophysics Data System (ADS)
Salançon, Evelyne; Degiovanni, Alain; Lapena, Laurent; Morin, Roger
2018-04-01
An event-counting method using a two-microchannel plate stack in a low-energy electron point projection microscope is implemented. 15 μm detector spatial resolution, i.e., the distance between first-neighbor microchannels, is demonstrated. This leads to a 7 times better microscope resolution. Compared to previous work with neutrons [Tremsin et al., Nucl. Instrum. Methods Phys. Res., Sect. A 592, 374 (2008)], the large number of detection events achieved with electrons shows that the local response of the detector is mainly governed by the angle between the hexagonal structures of the two microchannel plates. Using this method in point projection microscopy offers the prospect of working with a greater source-object distance (350 nm instead of 50 nm), advancing toward atomic resolution.
Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald
2015-01-01
Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Jones, B J; Murphy, C R
1994-01-01
The field emission gun scanning electron microscope has been used to investigate morphological changes at the macromolecular level in the glycocalyx of rat uterine luminal epithelial cells during early pregnancy. This very high resolution microscope has allowed visualisation at a level previously unobtainable and has enabled us to establish that dramatic alterations occur in this glycocalyx at the time of blastocyst attachment. On d 1 of pregnancy a prominent, filamentous glycocalyx radiates from the microvilli. However, by d 6 of pregnancy when the microvilli have been replaced by irregular cell surface protrusions, the glycocalyceal filaments are completely lost and the plasma membrane appears smooth and covered with a felt-like coating. These morphological observations suggest a major reorganisation in surface carbohydrates during early pregnancy and extend histochemical observations on the uterine epithelial glycocalyx. Images Fig. 1 Fig. 2 Figs. 3 and 4 PMID:7961152
NASA Astrophysics Data System (ADS)
Liu, L.; Wang, J.; Gong, S. K.; Mao, S. X.
2011-04-01
We have observed a new deformation-twinning mechanism using the high resolution transmission electron microscope in polycrystalline Ag films, zero-strain twinning via nucleation, and the migration of a Σ3{112} incoherent twin boundary (ITB). This twinning mechanism produces a near zero macroscopic strain because the net Burgers vectors either equal zero or are equivalent to a Shockley partial dislocation. This observation provides new insight into the understanding of deformation twinning and confirms a previous hypothesis: detwinning could be accomplished via the nucleation and migration of Σ3{112} ITBs. The zero-strain twinning mechanism may be unique to low staking fault energy metals with implications for their deformation behavior.
Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro
2008-02-01
Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.
NASA Technical Reports Server (NTRS)
Edmunson, J.; Gaskin, J. A.; Danilatos, G.; Doloboff, I. J.; Effinger, M. R.; Harvey, R. P.; Jerman, G. A.; Klein-Schoder, R.; Mackie, W.; Magera, B.;
2016-01-01
The Miniaturized Variable Pressure Scanning Electron Microscope(MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Science (ROSES), will build upon previous miniaturized SEM designs for lunar and International Space Station (ISS) applications and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. By the end of the PICASSO work, a prototype of the primary proof-of-concept components (i.e., the electron gun, focusing optics and scanning system)will be assembled and preliminary testing in a Mars analog chamber at the Jet Propulsion Laboratory will be completed to partially fulfill Technology Readiness Level to 5 requirements for those components. The team plans to have Secondary Electron Imaging(SEI), Backscattered Electron (BSE) detection, and Energy Dispersive Spectroscopy (EDS) capabilities through the MVP-SEM.
Science 101: How Does an Electron Microscope Work?
ERIC Educational Resources Information Center
Robertson, Bill
2013-01-01
Contrary to popular opinion, electron microscopes are not used to look at electrons. They are used to look for structure in things that are too small to observe with an optical microscope, or to obtain images that are magnified much more than is obtainable with an optical microscope. To understand how electron microscopes work, it will help to go…
NASA Astrophysics Data System (ADS)
Skinner, C. H.; Kaita, R.; Koel, B. E.; Chrobak, C. P.; Wampler, W. R.
2017-10-01
Tokamak plasma facing components (PFCs) have surface roughness that can cause microscopic spatial variations in erosion and deposition and hence influence material migration. Previous RBS measurements showed indirect evidence for this but the spatial (0.5mm) resolution was insufficient for direct imaging. We will present elemental images at sub-micron resolution of deposition on NSTX-U and DiMES samples that show strong microscopic variations and correlate this with 3D topographical maps of surface irregularities. The elemental imaging is performed with a Scanning Auger Microprobe (SAM) that measures element-specific Auger electrons excited by an SEM electron beam. 3D topographical maps of the samples are performed with a Leica DCM 3D confocal light microscope and compared to the elemental deposition pattern. The initial results appear consistent with erosion at the downstream edges of the surface pores exposed to the incident ion flux, whereas the deeper regions are shadowed and serve as deposition traps. Support was provided through DOE Contract Numbers DE-AC02-09CH11466, DE-FC02-04ER54698 and DE-NA0003525.
Analysis of the interaction of an electron beam with back surface field solar cells
NASA Technical Reports Server (NTRS)
Von Roos, O.; Luke, K. L.
1983-01-01
In this paper the short circuit current Isc induced by the electron beam of a scanning electron microscope in a back surface field solar cell will be determined theoretically. It will be shown that, in a configuration used previously for solar cells with an ohmic back surface, the Isc gives a convenient means for estimating the back surface recombination velocities and thus the quality of back surface field cells. Numerical data will be presented applicable to a point source model for the electron-hole pair generation.
Light and electron microscope observations on Nephroselmis gaoae sp. nov. (Prasinophyceae)
NASA Astrophysics Data System (ADS)
Tseng, C. K.; Jiao-Fen, Chen; Zhe-Fu, Zhang; Hui-Qi, Zhang
1994-09-01
Nephroselmis gaoae sp. nov. is described on the basis of light and electron microscope observations of cultured material originally collected and isolated from seawater of Jiaozhou Bay, Qingdao, China. The periplasts on the cell body and flagella are covered by five types of scales, two types on the flagella and three on the body. Among these, the morphology and the number of spines of large stellate body scales differ remarkably from those of previously described species of Nephroselmis. Apart from these, the unusual fine structure of the eyespot (stigma) is very characteristic. As in the other species of Nephroselmis, the eyespot lies immediately under the two-membraned chloroplast envelope; unlike the others, however, it is not composed of a number of osmiophilic globules, but consists of about 14 curved rod-shaped osmiophilic bodies arranged loosely and randomly. This feature distinguishes the present new species not only from the other species of Nephroselmis but also from the other motile algal species, the eyespots structure of which had been previously described.
NASA Astrophysics Data System (ADS)
Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.
2014-06-01
Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.
2012-01-01
Background While progress has been made to develop automatic segmentation techniques for mitochondria, there remains a need for more accurate and robust techniques to delineate mitochondria in serial blockface scanning electron microscopic data. Previously developed texture based methods are limited for solving this problem because texture alone is often not sufficient to identify mitochondria. This paper presents a new three-step method, the Cytoseg process, for automated segmentation of mitochondria contained in 3D electron microscopic volumes generated through serial block face scanning electron microscopic imaging. The method consists of three steps. The first is a random forest patch classification step operating directly on 2D image patches. The second step consists of contour-pair classification. At the final step, we introduce a method to automatically seed a level set operation with output from previous steps. Results We report accuracy of the Cytoseg process on three types of tissue and compare it to a previous method based on Radon-Like Features. At step 1, we show that the patch classifier identifies mitochondria texture but creates many false positive pixels. At step 2, our contour processing step produces contours and then filters them with a second classification step, helping to improve overall accuracy. We show that our final level set operation, which is automatically seeded with output from previous steps, helps to smooth the results. Overall, our results show that use of contour pair classification and level set operations improve segmentation accuracy beyond patch classification alone. We show that the Cytoseg process performs well compared to another modern technique based on Radon-Like Features. Conclusions We demonstrated that texture based methods for mitochondria segmentation can be enhanced with multiple steps that form an image processing pipeline. While we used a random-forest based patch classifier to recognize texture, it would be possible to replace this with other texture identifiers, and we plan to explore this in future work. PMID:22321695
Comparative study of image contrast in scanning electron microscope and helium ion microscope.
O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C
2017-12-01
Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Effect of Pt and Fe catalysts in the transformation of carbon black into carbon nanotubes
NASA Astrophysics Data System (ADS)
Asokan, Vijayshankar; Myrseth, Velaug; Kosinski, Pawel
2015-06-01
In this research carbon nanotubes and carbon nano onion-like structures were synthesized from carbon black using metal catalysts at 400 °C and 700 °C. Platinum and iron-group metals were used as catalysts for the transformation of CB into graphitized nanocarbon and the effect of both metals was compared. The synthesized products were characterized using X-ray diffraction (XRD), transmission electron microscope (TEM), high resolution transmission electron microscope (HRTEM) and Raman spectroscopy. The characterization shows that this process is very efficient in the synthesis of high quality graphitized products from amorphous carbon black, even though the process temperature was relatively low in comparison with previous studies. Distinguished graphitic walls of the newly formed carbon nanostructures were clearly visible in the HRTEM images. Possible growth difference related to the type of catalyst used is briefly explained with the basis of electron vacancies in d-orbitals of metals.
Thermoluminescent response of LiF:Mg,Ti to 20 keV electrons.
Mercado-Uribe, H; Brandan, M E
2002-01-01
The thermoluminescence response of LiF:Mg,Ti (TLD-100) to 20 keV electrons from a scanning electron microscope has been measured. Radiochromic dye films previously calibrated were used to determine the fluence incident on TLD-100 chips. The procedure for irradiation and glow curve deconvolution was adhered to the protocols previously determined in our laboratory for gamma rays and heavy charged particles. The response at electron fluences higher than 4 x 10(10) cm(-2) is supralinear, due to the increasingly relevant contribution of the high temperature peaks. The relative contribution of the high temperature peaks to the TL signal is abnormally small, about half that observed in gamma irradiation and four times smaller than what has been measured in low-energy X ray exposure.
Construction and Organization of a BSL-3 Cryo-Electron Microscopy Laboratory at UTMB
Sherman, Michael B.; Trujillo, Juan; Leahy, Ian; Razmus, Dennis; DeHate, Robert; Lorcheim, Paul; Czarneski, Mark A.; Zimmerman, Domenica; Newton, Je T’Aime M.; Haddow, Andrew D.; Weaver, Scott C.
2013-01-01
A unique cryo-electron microscopy facility has been designed and constructed at the University of Texas Medical Branch (UTMB) to study the three-dimensional organization of viruses and bacteria classified as select agents at biological safety level (BSL)-3, and their interactions with host cells. A 200 keV high-end cryo-electron microscope was installed inside a BSL-3 containment laboratory and standard operating procedures were developed and implemented to ensure its safe and efficient operation. We also developed a new microscope decontamination protocol based on chlorine dioxide gas with a continuous flow system, which allowed us to expand the facility capabilities to study bacterial agents including spore-forming species. The new unified protocol does not require agent-specific treatment in contrast to the previously used heat decontamination. To optimize the use of the cryo-electron microscope and to improve safety conditions, it can be remotely controlled from a room outside of containment, or through a computer network world-wide. Automated data collection is provided by using JADAS (single particle imaging) and SerialEM (tomography). The facility has successfully operated for more than a year without an incident and was certified as a select agent facility by the Centers for Disease Control. PMID:23274136
Construction and organization of a BSL-3 cryo-electron microscopy laboratory at UTMB.
Sherman, Michael B; Trujillo, Juan; Leahy, Ian; Razmus, Dennis; Dehate, Robert; Lorcheim, Paul; Czarneski, Mark A; Zimmerman, Domenica; Newton, Je T'aime M; Haddow, Andrew D; Weaver, Scott C
2013-03-01
A unique cryo-electron microscopy facility has been designed and constructed at the University of Texas Medical Branch (UTMB) to study the three-dimensional organization of viruses and bacteria classified as select agents at biological safety level (BSL)-3, and their interactions with host cells. A 200keV high-end cryo-electron microscope was installed inside a BSL-3 containment laboratory and standard operating procedures were developed and implemented to ensure its safe and efficient operation. We also developed a new microscope decontamination protocol based on chlorine dioxide gas with a continuous flow system, which allowed us to expand the facility capabilities to study bacterial agents including spore-forming species. The new unified protocol does not require agent-specific treatment in contrast to the previously used heat decontamination. To optimize the use of the cryo-electron microscope and to improve safety conditions, it can be remotely controlled from a room outside of containment, or through a computer network world-wide. Automated data collection is provided by using JADAS (single particle imaging) and SerialEM (tomography). The facility has successfully operated for more than a year without an incident and was certified as a select agent facility by the Centers for Disease Control. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.
Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique.
Effects of Starting Moisture on Characteristics of Oil Roasted Peanut
USDA-ARS?s Scientific Manuscript database
Previous research has shown that the moisture content of peanuts before dry roasting affects the quality of the finished product. This study demonstrates the effects of the starting moisture content of the raw product on peanuts that were oil roasted. Scanning Electron Microscope images taken befo...
Transmission electron microscope CCD camera
Downing, Kenneth H.
1999-01-01
In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.
76 FR 65696 - Battelle Energy Alliance, et al.;
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-24
... of Texas at Austin, Austin, TX 78712. Instrument: Electron Microscope. Manufacturer: FEI Company, the... research or scientific educational uses requiring an electron microscope. We know of no electron microscope...
Densities of 5-15 micron interplanetary dust particles
NASA Technical Reports Server (NTRS)
Love, S. G.; Joswiak, D. J.; Brownlee, D. E.
1993-01-01
We have measured the densities of about 100 5-15 micron stratospheric IDPs. Great care was taken to minimize selection bias in the sample population. Masses were determined using an absolute x-ray analysis technique with a transmission electron microscope, and volumes were found using scanning electron microscope imagery. Unmelted chondritic particles have densities between 0.5 and 6.0 g/cc. Roughly half of the particles have densities below 2 g/cc, indicating appreciable porosity, but porosities greater than about 70 percent are rare. IDPs with densities above 3.5 g/cc usually contain large sulfide grains. We find no evidence of bimodality in the unmelted particle density distribution. Chondritic spherules (melted particles) have densities near 3.5 g/cc, consistent with previous results for deep sea spherules.
NASA Astrophysics Data System (ADS)
Huynh, Toan; Daddysman, Matthew K.; Bao, Ying; Selewa, Alan; Kuznetsov, Andrey; Philipson, Louis H.; Scherer, Norbert F.
2017-05-01
Imaging specific regions of interest (ROIs) of nanomaterials or biological samples with different imaging modalities (e.g., light and electron microscopy) or at subsequent time points (e.g., before and after off-microscope procedures) requires relocating the ROIs. Unfortunately, relocation is typically difficult and very time consuming to achieve. Previously developed techniques involve the fabrication of arrays of features, the procedures for which are complex, and the added features can interfere with imaging the ROIs. We report the Fast and Accurate Relocation of Microscopic Experimental Regions (FARMER) method, which only requires determining the coordinates of 3 (or more) conspicuous reference points (REFs) and employs an algorithm based on geometric operators to relocate ROIs in subsequent imaging sessions. The 3 REFs can be quickly added to various regions of a sample using simple tools (e.g., permanent markers or conductive pens) and do not interfere with the ROIs. The coordinates of the REFs and the ROIs are obtained in the first imaging session (on a particular microscope platform) using an accurate and precise encoded motorized stage. In subsequent imaging sessions, the FARMER algorithm finds the new coordinates of the ROIs (on the same or different platforms), using the coordinates of the manually located REFs and the previously recorded coordinates. FARMER is convenient, fast (3-15 min/session, at least 10-fold faster than manual searches), accurate (4.4 μm average error on a microscope with a 100x objective), and precise (almost all errors are <8 μm), even with deliberate rotating and tilting of the sample well beyond normal repositioning accuracy. We demonstrate this versatility by imaging and re-imaging a diverse set of samples and imaging methods: live mammalian cells at different time points; fixed bacterial cells on two microscopes with different imaging modalities; and nanostructures on optical and electron microscopes. FARMER can be readily adapted to any imaging system with an encoded motorized stage and can facilitate multi-session and multi-platform imaging experiments in biology, materials science, photonics, and nanoscience.
Prange, Micah P.; Xie, YuLong; Campbell, Luke W.; ...
2017-12-20
The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of themore » model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. The details of the Monte Carlo model are presented along with the results for thermalization time and distance distributions. Here, these results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prange, Micah P.; Xie, YuLong; Campbell, Luke W.
2017-12-21
The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of themore » model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. Details of the Monte Carlo model are presented along with results for thermalization time and distance distributions. These results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.« less
NASA Astrophysics Data System (ADS)
Ozawa, Soh-ichiro; Yamanaka, Akira; Kobayashi, Kunio; Tanishiro, Yasumasa; Yagi, Katsumichi
1990-04-01
A new technique of in situ oxygen gas reaction thinning of Si films at around 750-800°C in an ultrahigh-vacuum electron microscope was developed. The technique produced films as thin as 10 to 20 nm. Such a thin film allows us to observe surface atomic steps, out-of-phase boundaries and {1/7 0}, {1/7 1/7} and {2/7 0} spots from the Si(111)7× 7 surface. These spots were not observed in previous studies, having been masked by strong inelastic scattering. The technique is useful not only for detecting clear diffraction spots of kinematical intensity for surface structure analysis but also for observation of high-resolution plan-view structure images of clean and adsorbed surfaces.
Boevé, M H; Vrensen, G F; Willekens, B L; Stades, F C; van der Linde-Sipman, J S
1993-01-01
This study provides scanning electron microscopic observations on the early morphogenesis of persistent hyperplastic tunica vasculosa lentis and primary vitreous (PHTVL/PHPV) in canine fetuses at days 28 35 postcoitum (D28 and D35). From previous studies regarding PHTVL/PHPV it is known that a retrolental plaque of fibrovascular tissue is present in eyes of affected canine fetuses from the D33 stage. The contribution of vitreous cells to the formation of the plaque is supported by the results of this study. The lens capsules at the stages described were not found to contain abnormalities such as transparent (thinner) parts or rents, as have been described for postnatal cases of PHTVL/PHPV. These findings support the hypothesis that the capsular anomalies observed in postnatal patients are secondary entities.
Viladot, D; Véron, M; Gemmi, M; Peiró, F; Portillo, J; Estradé, S; Mendoza, J; Llorca-Isern, N; Nicolopoulos, S
2013-10-01
A recently developed technique based on the transmission electron microscope, which makes use of electron beam precession together with spot diffraction pattern recognition now offers the possibility to acquire reliable orientation/phase maps with a spatial resolution down to 2 nm on a field emission gun transmission electron microscope. The technique may be described as precession-assisted crystal orientation mapping in the transmission electron microscope, precession-assisted crystal orientation mapping technique-transmission electron microscope, also known by its product name, ASTAR, and consists in scanning the precessed electron beam in nanoprobe mode over the specimen area, thus producing a collection of precession electron diffraction spot patterns, to be thereafter indexed automatically through template matching. We present a review on several application examples relative to the characterization of microstructure/microtexture of nanocrystalline metals, ceramics, nanoparticles, minerals and organics. The strengths and limitations of the technique are also discussed using several application examples. ©2013 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
Rickman, John M; Smith, Martin J
2014-11-01
Recent years have seen increasing involvement by forensic anthropologists in the interpretation of skeletal trauma. With regard to ballistic injuries, there is now a large literature detailing gross features of such trauma; however, less attention has been given to microscopic characteristics. This article presents analysis of experimentally induced gunshot trauma in animal bone (Bos taurus scapulae) using full metal jacket (FMJ), soft point (SP), and captive bolt projectiles. The results were examined using scanning electron microscopy (SEM). Additional analysis was conducted on a purported parietal gunshot lesion in a human cranial specimen. A range of features was observed in these samples suggesting that fibrolamellar bone response to projectile impact is analogous to that observed in synthetic composite laminates. The results indicate that direction of bullet travel can be discerned microscopically even when it is ambiguous on gross examination. It was also possible to distinguish SP from FMJ lesions. SEM analysis is therefore recommended as a previously underexploited tool in the analysis of ballistic trauma. © 2014 American Academy of Forensic Sciences.
High-resolution, high-throughput imaging with a multibeam scanning electron microscope.
Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D
2015-08-01
Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Designs for a quantum electron microscope.
Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K
2016-05-01
One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
New developments in electron microscopy for serial image acquisition of neuronal profiles.
Kubota, Yoshiyuki
2015-02-01
Recent developments in electron microscopy largely automate the continuous acquisition of serial electron micrographs (EMGs), previously achieved by laborious manual serial ultrathin sectioning using an ultramicrotome and ultrastructural image capture process with transmission electron microscopy. The new systems cut thin sections and capture serial EMGs automatically, allowing for acquisition of large data sets in a reasonably short time. The new methods are focused ion beam/scanning electron microscopy, ultramicrotome/serial block-face scanning electron microscopy, automated tape-collection ultramicrotome/scanning electron microscopy and transmission electron microscope camera array. In this review, their positive and negative aspects are discussed. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
C.W. McMillin
1974-01-01
In previous research on the process for making groundwood in a double-disk refiner, a theoretical stress analysis indicated that tracheids of Pinus taeda L. may fail while under torsional stress and unwind into ribbonlike elements. Such elements provide the coherence necessary for strength development in these pulps. Depending upon their physical...
75 FR 13486 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... University, One Waterfront Place, PO Box 6024, Morgantown, WV 26506. Instrument: Electron Microscope.... Justification for Duty-Free Entry: There are no domestic manufacturers of this type of electron microscope.... Lawrence University, 23 Romoda Drive, Canton, NY 13617. Instrument: Electron Microscope. Manufacturer: FEI...
Ultrastructural effects of silicone oil on the clear crystalline lens of the human eye.
Soliman, Wael; Sharaf, Mohamed; Abdelazeem, Khaled; El-Gamal, Dalia; Nafady, Allam
2018-03-01
To evaluate light and electron microscopic changes of the anterior capsule and its epithelium after clear lens extraction of vitrectomized myopic eyes with silicone oil tamponade. This prospective, controlled, non-randomized, interventional study included 20 anterior lens capsular specimens that were excised during combined clear lens extraction and silicone oil removal from previously vitrectomized highly myopic patients with silicone oil tamponade for previous retinal detachment surgeries. The specimens were examined via light microscopy and electron microscopy and compared with 20 anterior capsule specimens removed during clear lens extraction of non-vitrectomized highly myopic eyes. Light microscopic examination of clear lens anterior capsule specimens of vitrectomized myopic eyes filled with silicone oil showed relatively more flat cells with irregular outline of lens' epithelial cells with wide intercellular spaces, deeply stained nuclei, and multiple intracytoplasmic vacuoles. Scanning electron microscopy revealed collagenous surfaces filled with multiple pits, depressions, and abnormal deposits. Transmission electron microscopy revealed lens epithelial cells with apoptotic changes, many cytoplasmic vacuoles, and filopodia-like protrusions between lens epithelial cells and the capsule. Epithelial proliferation and multilayering were also observed. silicone oil may play a role in the development of apoptotic and histopathological changes in clear lens epithelial cells. Clarity of the lens at the time of silicone oil removal does not indicate an absence of cataractous changes. We found justification of combined clear lens extraction and silicone oil removal or combined phacovitrectomy when silicone oil injection is planned, but further long-term studies with larger patient groups are required.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... decision consolidated pursuant to Section 6(c) of the Educational, Scientific, and Cultural Materials... 07470. Instrument: Electron Microscope. Manufacturer: Hitachi High Technologies America, Inc., Japan... educational uses requiring an electron microscope. We know of no electron microscope, or any other instrument...
The Design and Construction of a Simple Transmission Electron Microscope for Educational Purposes.
ERIC Educational Resources Information Center
Hearsey, Paul K.
This document presents a model for a simple transmission electron microscope for educational purposes. This microscope could demonstrate thermonic emission, particle acceleration, electron deflection, and flourescence. It is designed to be used in high school science courses, particularly physics, taking into account the size, weight, complexity…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-22
... of Consolidated Decision on Applications for Duty-Free Entry of Electron Microscopes This is a..., Morgantown, WV 26506. Instrument: Electron Microscope. Manufacturer: JEOL, Japan. Intended Use: See notice at... Agency, Cincinnati, OH 45268. Instrument: Electron Microscope. Manufacturer: JEOL, Japan. Intended Use...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-29
....; Notice of Consolidated Decision on Applications for Duty-Free Entry of Electron Microscopes This is a..., Richland, WA 99354. Instrument: Electron Microscope. Manufacturer: FEI Company, the Netherlands. Intended... Rico, San Juan, PR 00936-5067. Instrument: Electron Microscope. Manufacturer: JEOL, Ltd., Japan...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-10
....; Notice of Consolidated Decision on Applications for Duty-Free Entry of Electron Microscopes This is a... Collins, CO 80523. Instrument: Electron Microscope. Manufacturer: JEOL Ltd., Japan. Intended Use: See... 97401-3753. Instrument: Electron Microscope. Manufacturer: FEI Company, Czech Republic. Intended Use...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-20
... Consolidated Decision on Applications for Duty-Free Entry of Electron Microscope This is a decision... 43210. Instrument: Electron Microscope. Manufacturer: FEI Company, Czech Republic. Intended Use: See..., San Antonio, TX 78239-5166. Instrument: Electron Microscope. Manufacturer: FEI Company, Czech Republic...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... Consolidated Decision on Applications for Duty-Free Entry of Electron Microscope This is a decision... 37235. Instrument: Electron Microscope. Manufacturer: FEI Company, the Netherlands. Intended Use: See... Lafayette, IN 47907-2024. Instrument: Electron Microscope. Manufacturer: FEI Company, the Netherlands...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-07
... of Consolidated Decision on Applications for Duty-Free Entry of Electron Microscope This is a... Business Affairs, Fayetteville, AR 72701-1201. Instrument: Electron Microscope. Manufacturer: JEOL Ltd...: Brookhaven National Laboratory, Upton, NY 11973. Instrument: Electron Microscope. Manufacturer: JEOL, Ltd...
Secondary electron imaging of monolayer materials inside a transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cretu, Ovidiu, E-mail: cretu.ovidiu@nims.go.jp; Lin, Yung-Chang; Suenaga, Kazutomo
2015-08-10
A scanning transmission electron microscope equipped with a backscattered and secondary electron detector is shown capable to image graphene and hexagonal boron nitride monolayers. Secondary electron contrasts of the two lightest monolayer materials are clearly distinguished from the vacuum level. A signal difference between these two materials is attributed to electronic structure differences, which will influence the escape probabilities of the secondary electrons. Our results show that the secondary electron signal can be used to distinguish between the electronic structures of materials with atomic layer sensitivity, enhancing its applicability as a complementary signal in the analytical microscope.
Suga, Mitsuo; Nishiyama, Hidetoshi; Konyuba, Yuji; Iwamatsu, Shinnosuke; Watanabe, Yoshiyuki; Yoshiura, Chie; Ueda, Takumi; Sato, Chikara
2011-12-01
Although conventional electron microscopy (EM) requires samples to be in vacuum, most chemical and physical reactions occur in liquid or gas. The Atmospheric Scanning Electron Microscope (ASEM) can observe dynamic phenomena in liquid or gas under atmospheric pressure in real time. An electron-permeable window made of pressure-resistant 100 nm-thick silicon nitride (SiN) film, set into the bottom of the open ASEM sample dish, allows an electron beam to be projected from underneath the sample. A detector positioned below captures backscattered electrons. Using the ASEM, we observed the radiation-induced self-organization process of particles, as well as phenomena accompanying volume change, including evaporation-induced crystallization. Using the electrochemical ASEM dish, we observed tree-like electrochemical depositions on the cathode. In silver nitrate solution, we observed silver depositions near the cathode forming incidental internal voids. The heated ASEM dish allowed observation of patterns of contrast in melting and solidifying solder. Finally, to demonstrate its applicability for monitoring and control of industrial processes, silver paste and solder paste were examined at high throughput. High resolution, imaging speed, flexibility, adaptability, and ease of use facilitate the observation of previously difficult-to-image phenomena, and make the ASEM applicable to various fields. Copyright © 2011 Elsevier B.V. All rights reserved.
Integration of a high-NA light microscope in a scanning electron microscope.
Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P
2013-10-01
We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara
2010-03-01
Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.
Identification of microscopic hole-trapping mechanisms in nitride semiconductors
John L. Lyons; Krishnaswamy, Karthik; Luke Gordon; ...
2015-12-17
Hole trapping has been observed in nitride heterostructure devices, where the Fermi level is in the vicinity of the valence-band maximum. Using hybrid density functional calculations, we examine microscopic mechanisms for hole trapping in GaN and AlN. In a defect-free material, hole trapping does not spontaneously occur, but trapping can occur in the vicinity of impurities, such as C-a common unintentional impurity in nitrides. As a result, using Schrodinger-Poisson simulations, we assess the effects of C-derived hole traps on N-face high-electron mobility transistors, which we find to be more detrimental than the previously proposed interface traps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Sanjoy; Ellman, Brett, E-mail: bellman@kent.edu; Singh, Gautam
We describe a tool for studying the two-dimensional spatial variation in electronic properties of organic semiconductors: the scanning time-of-flight microscope (STOFm). The STOFm simultaneously measures the transmittance of polarized light and time-of-flight current transients with a pixel size <30 μm, making it especially valuable for studies of the correlations of structure with charge generation and transport in liquid crystalline organic semiconductors (LC OSCs). Adapting a previously developed photopolymerization technique, we characterize the instrument using patterned samples of a LC OSC bounded by a non-semiconducting polymer matrix.
Correction of image drift and distortion in a scanning electron microscopy.
Jin, P; Li, X
2015-12-01
Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Yadav, Sher Singh; Bhattar, Rohit; Sharma, Lokesh; Banga, Gautam; Sadasukhi, Trilok Chandra
2017-01-01
To study the ultra structural changes in bladder musculature in cases of BPE and their clinical relevance. In this descriptive longitudinal, controlled, observational study patients were enrolled into three groups, group 1, group 2A and group 2B. Control group (group-1) consisted of age matched normal male patients, who underwent surveillance or diagnostic cystoscopy for microscopic hematuria or irritative symptoms. Case group (group-2) comprised of patients with BPE, undergoing TURP. Case group (group-2) was further classified into: Category 2A (patients not on catheter) and cat-egory 2B (patients on catheter). All relevant clinical parameters like IPSS, prostate size, Qmax, PVR were recorded. Cystoscopy and bladder biopsy were performed in all patients. Various ultrastructural parameters like myocytes, fascicular pattern, interstitial tissue, nerve hypertrophy and cell junction pattern were analyzed under electron microscope and they were clinically correlated using appropriate statistical tests. Control group had significant difference as compared to case group in terms of baseline parameters like IPSS, flow rate and prostate size, both preoperatively and postoperatively, except for PVR, which was seen only preoperatively. There was statistically significant difference in ultrastructural patterns between case and control group in all five electron microscopic patterns. However, no significant difference was found between the subcategories of case groups. BPE is responsible for ultra structural changes in detrusor muscle and these changes remain persistent even after TURP. Nerve hypertrophy, which was not thoroughly discussed in previous studies, is also one of the salient feature of this study. Copyright® by the International Brazilian Journal of Urology.
Shatrov, A B
2003-01-01
The history of the electron microscope investigations in zoology and parasitology in the Zoological Institute of the Russian Academy of Sciences and progress in scanning and transmission electron microscope investigations in this field of biology to the moment are briefly accounted.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-30
... Consolidated Decision on Applications for Duty-Free Entry of Electron Microscopes This is a decision... 30322. Instrument: Electron Microscope. Manufacturer: JEOL, Ltd., Japan. Intended Use: See notice at 75... Department of Health, Menands, NY 12204-2719. Instrument: Electron Microscope. Manufacturer: JEOL Ltd., Japan...
Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří
2016-05-01
This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts. Copyright © 2016 Elsevier Ltd. All rights reserved.
High-resolution, high-throughput imaging with a multibeam scanning electron microscope
EBERLE, AL; MIKULA, S; SCHALEK, R; LICHTMAN, J; TATE, ML KNOTHE; ZEIDLER, D
2015-01-01
Electron–electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. Lay Description The composition of our world and our bodies on the very small scale has always fascinated people, making them search for ways to make this visible to the human eye. Where light microscopes reach their resolution limit at a certain magnification, electron microscopes can go beyond. But their capability of visualizing extremely small features comes at the cost of a very small field of view. Some of the questions researchers seek to answer today deal with the ultrafine structure of brains, bones or computer chips. Capturing these objects with electron microscopes takes a lot of time – maybe even exceeding the time span of a human being – or new tools that do the job much faster. A new type of scanning electron microscope scans with 61 electron beams in parallel, acquiring 61 adjacent images of the sample at the same time a conventional scanning electron microscope captures one of these images. In principle, the multibeam scanning electron microscope’s field of view is 61 times larger and therefore coverage of the sample surface can be accomplished in less time. This enables researchers to think about large-scale projects, for example in the rather new field of connectomics. A very good introduction to imaging a brain at nanometre resolution can be found within course material from Harvard University on http://www.mcb80x.org/# as featured media entitled ‘connectomics’. PMID:25627873
The pressure coefficient of the Curie temperature of ferromagnetic superconductors
NASA Astrophysics Data System (ADS)
Konno, R.; Hatayama, N.
2012-12-01
The pressure coefficient of the Curie temperature of ferromagnetic superconductors is studied numerically. In our previous study the pressure coefficient of the Curie temperature and that of the superconducting transition temperature were shown based on the Hamiltonian derived by Linder et al. within the mean field approximation about the electron-electron interaction analytically. There have been no numerical results of the pressure coefficient of the Curie temperature derived from the microscopic model. In this study the numerical results are reported. These results are qualitatively consistent with the experimental data in UGe2.
NASA Technical Reports Server (NTRS)
Chan, Q. H. S.; Zolensky, M. E.
2015-01-01
We have previously observed the magnetite plaquettes in carbonaceous chondrites using scanning electron microscope (SEM) imaging, examined the crystal orientation of the polished surfaces of magnetite plaquettes in CI Orgueil using electron backscattered diffraction (EBSD) analysis, and concluded that these magnetite plaquettes are likely naturally asymmetric materials. In this study, we expanded our EBSD observation to other magnetite plaquettes in Orgueil, and further examined the internal structure of these remarkable crystals with the use of X-ray computed microtomography.
Yoon, Yeo Hun; Kim, Seung Jae; Kim, Dong Hwan
2015-12-01
The scanning electron microscope is used in various fields to go beyond diffraction limits of the optical microscope. However, the electron pathway should be conducted in a vacuum so as not to scatter electrons. The pretreatment of the sample is needed for use in the vacuum. To directly observe large and fully hydrophilic samples without pretreatment, the atmospheric scanning electron microscope (ASEM) is needed. We developed an electron filter unit and an electron detector unit for implementation of the ASEM. The key of the electron filter unit is that electrons are transmitted while air molecules remain untransmitted through the unit. The electron detector unit collected the backscattered electrons. We conducted experiments using the selected materials with Havar foil, carbon film and SiN film. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Size determination of Acipenser ruthenus spermatozoa in different types of electron microscopy.
Psenicka, Martin; Tesarová, Martina; Tesitel, Jakub; Nebesárová, Jana
2010-07-01
In this study three types of scanning electron microscopes were used for the size determination of spermatozoa of sterlet Acipenser ruthenus - high vacuum scanning electron microscope (SEM, JEOL 6300), environmental scanning electron microscope (ESEM, Quanta 200 FEG), field emission scanning electron microscope (FESEM, JEOL 7401F) with cryoattachment Alto 2500 (Gatan) and transmission electron microscope (TEM, JEOL 1010). The use of particular microscopes was tied with different specimen preparation techniques. The aim of this study was to evaluate to what degree the type of used electron microscope can influence the size of different parts of spermatozoa. For high vacuum SEM the specimen was prepared using two slightly different procedures. After chemical fixation with 2.5% glutaraldehyde in 0.1M phosphate buffer and post-fixation by 1% osmium tetroxide, the specimen was dehydrated by acetone series and dried either by critical point method or by means of t-butylalcohol. For ESEM fresh, unfixed material was used, which was dropped on microscopic copper grids. In FESEM working in cryo-mode the specimen was observed in a frozen state. Ultrathin sections from chemically fixed and Epon embedded specimens were prepared for TEM observation. Distinct parts of sterlet spermatozoa were measured in each microscope and the data obtained was statistically processed. Results confirmed that the classical chemical procedure of specimen preparation for SEM including critical point drying method led to a significant contraction of all measured values, which could deviate up to 30% in comparison with values measured on the fresh chemically untreated specimen in ESEM. Surprisingly sperm dimensions determinated on ultrathin sections by TEM are comparable with values obtained in ESEM or FESEM. Copyright 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Yubin; Li, Qiuying, E-mail: liqy@ecust.edu.cn; Shanghai Key Laboratory Polymeric Materials
In our previous report, raspberry-like carbon black/polystyrene (CB/PS) composite microsphere was prepared through heterocoagulation process. Based on the previous study, in the present work, the morphology of raspberry-like CB/PS particle is tailored through adjusting the polarity and the concentration ratio of CB/PS colloidal suspension with the purpose to prepare particulate film for the fabrication of superhydrophobic surface. Scanning electron microscope (SEM) confirms the morphology of raspberry-like particle and the coverage of CB. Rough surfaces fabricated by raspberry-like particles with proper morphology are observed by SEM and clear evidence of superhydrophobic surface is shown. The structure of raspberry-like particle is analyzedmore » by atom force microscope. The proposed relationship between the hydrophobicity and the structure of CB aggregates on the surface of PS microsphere is discussed in details.« less
Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara
2010-11-01
Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.
Brodusch, Nicolas; Trudeau, Michel; Michaud, Pierre; Rodrigue, Lisa; Boselli, Julien; Gauvin, Raynald
2012-12-01
Aluminum-lithium alloys are widespread in the aerospace industry. The new 2099 and 2199 alloys provide improved properties, but their microstructure and texture are not well known. This article describes how state-of-the-art field-emission scanning electron microscopy (FE-SEM) can contribute to the characterization of the 2099 aluminum-lithium alloy and metallic alloys in general. Investigations were carried out on bulk and thinned samples. Backscattered electron imaging at 3 kV and scanning transmission electron microscope imaging at 30 kV along with highly efficient microanalysis permitted correlation of experimental and expected structures. Although our results confirm previous studies, this work points out possible substitutions of Mg and Zn with Li, Al, and Cu in the T1 precipitates. Zinc and magnesium are also present in "rice grain"-shaped precipitates at the grain boundaries. The versatility of the FE-SEM is highlighted as it provides information in the macro- and microscales with relevant details. Its ability to probe the distribution of precipitates from nano- to microsizes throughout the matrix makes FE-SEM an essential technique for the characterization of metallic alloys.
An electron microscope for the aberration-corrected era.
Krivanek, O L; Corbin, G J; Dellby, N; Elston, B F; Keyse, R J; Murfitt, M F; Own, C S; Szilagyi, Z S; Woodruff, J W
2008-02-01
Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown.
Scholl, A; Marcus, M A; Doran, A; Nasiatka, J R; Young, A T; MacDowell, A A; Streubel, R; Kent, N; Feng, J; Wan, W; Padmore, H A
2018-05-01
Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when using x-rays. We demonstrate this improved performance by imaging test patterns employing element and magnetic contrast. Published by Elsevier B.V.
A new apparatus for electron tomography in the scanning electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morandi, V., E-mail: morandi@bo.imm.cnr.it; Maccagnani, P.; Masini, L.
2015-06-23
The three-dimensional reconstruction of a microscopic specimen has been obtained by applying the tomographic algorithm to a set of images acquired in a Scanning Electron Microscope. This result was achieved starting from a series of projections obtained by stepwise rotating the sample under the beam raster. The Scanning Electron Microscope was operated in the scanning-transmission imaging mode, where the intensity of the transmitted electron beam is a monotonic function of the local mass-density and thickness of the specimen. The detection strategy has been implemented and tailored in order to maintain the projection requirement over the large tilt range, as requiredmore » by the tomographic workflow. A Si-based electron detector and an eucentric-rotation specimen holder have been specifically developed for the purpose.« less
Brama, Elisabeth; Peddie, Christopher J; Wilkes, Gary; Gu, Yan; Collinson, Lucy M; Jones, Martin L
2016-12-13
In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.
Shiloh, Roy; Remez, Roei; Lu, Peng-Han; Jin, Lei; Lereah, Yossi; Tavabi, Amir H; Dunin-Borkowski, Rafal E; Arie, Ady
2018-06-01
Nearly eighty years ago, Scherzer showed that rotationally symmetric, charge-free, static electron lenses are limited by an unavoidable, positive spherical aberration. Following a long struggle, a major breakthrough in the spatial resolution of electron microscopes was reached two decades ago by abandoning the first of these conditions, with the successful development of multipole aberration correctors. Here, we use a refractive silicon nitride thin film to tackle the second of Scherzer's constraints and demonstrate an alternative method for correcting spherical aberration in a scanning transmission electron microscope. We reveal features in Si and Cu samples that cannot be resolved in an uncorrected microscope. Our thin film corrector can be implemented as an immediate low cost upgrade to existing electron microscopes without re-engineering of the electron column or complicated operation protocols and can be extended to the correction of additional aberrations. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Quantitative three-dimensional ice roughness from scanning electron microscopy
NASA Astrophysics Data System (ADS)
Butterfield, Nicholas; Rowe, Penny M.; Stewart, Emily; Roesel, David; Neshyba, Steven
2017-03-01
We present a method for inferring surface morphology of ice from scanning electron microscope images. We first develop a novel functional form for the backscattered electron intensity as a function of ice facet orientation; this form is parameterized using smooth ice facets of known orientation. Three-dimensional representations of rough surfaces are retrieved at approximately micrometer resolution using Gauss-Newton inversion within a Bayesian framework. Statistical analysis of the resulting data sets permits characterization of ice surface roughness with a much higher statistical confidence than previously possible. A survey of results in the range -39°C to -29°C shows that characteristics of the roughness (e.g., Weibull parameters) are sensitive not only to the degree of roughening but also to the symmetry of the roughening. These results suggest that roughening characteristics obtained by remote sensing and in situ measurements of atmospheric ice clouds can potentially provide more facet-specific information than has previously been appreciated.
Scanning electron microscope observation of dislocations in semiconductor and metal materials.
Kuwano, Noriyuki; Itakura, Masaru; Nagatomo, Yoshiyuki; Tachibana, Shigeaki
2010-08-01
Scanning electron microscope (SEM) image contrasts have been investigated for dislocations in semiconductor and metal materials. It is revealed that single dislocations can be observed in a high contrast in SEM images formed by backscattered electrons (BSE) under the condition of a normal configuration of SEM. The BSE images of dislocations were compared with those of the transmission electron microscope and scanning transmission electron microscope (STEM) and the dependence of BSE image contrast on the tilting of specimen was examined to discuss the origin of image contrast. From the experimental results, it is concluded that the BSE images of single dislocations are attributed to the diffraction effect and related with high-angle dark-field images of STEM.
Flexible high-voltage supply for experimental electron microscope
NASA Technical Reports Server (NTRS)
Chapman, G. L.; Jung, E. A.; Lewis, R. N.; Van Loon, L. S.; Welter, L. M.
1969-01-01
Scanning microscope uses a field-emission tip for the electron source, an electron gun that simultaneously accelerates and focuses electrons from the source, and one auxiliary lens to produce a final probe size at the specimen on the order of angstroms.
Masters, Robert C; Pearson, Andrew J; Glen, Tom S; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M; Lidzey, David G; Rodenburg, Cornelia
2015-04-24
The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials.
Scanning-electron-microscope used in real-time study of friction and wear
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1975-01-01
Small friction and wear apparatus built directly into scanning-electron-microscope provides both dynamic observation and microscopic view of wear process. Friction and wear tests conducted using this system have indicated that considerable information can readily be gained.
NASA Technical Reports Server (NTRS)
Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy
1989-01-01
Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.
Brodusch, N; Demers, H; Gauvin, R
2013-04-01
A charge-coupled device camera of an electron backscattered diffraction system in a scanning electron microscope was positioned below a thin specimen and transmission Kikuchi patterns were collected. Contrary to electron backscattered diffraction, transmission electron forward scatter diffraction provides phase identification and orientation mapping at the nanoscale. The minimum Pd particle size for which a Kikuchi diffraction pattern was detected and indexed reliably was 5.6 nm. An orientation mapping resolution of 5 nm was measured at 30 kV. The resolution obtained with transmission electron forward scatter diffraction was of the same order of magnitude than that reported in electron nanodiffraction in the transmission electron microscope. An energy dispersive spectrometer X-ray map and a transmission electron forward scatter diffraction orientation map were acquired simultaneously. The high-resolution chemical, phase and orientation maps provided at once information on the chemical form, orientation and coherency of precipitates in an aluminium-lithium 2099 alloy. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Dynamic Architecture of Eukaryotic DNA Replication Forks In Vivo, Visualized by Electron Microscopy.
Zellweger, Ralph; Lopes, Massimo
2018-01-01
The DNA replication process can be heavily perturbed by several different conditions of genotoxic stress, particularly relevant for cancer onset and therapy. The combination of psoralen crosslinking and electron microscopy has proven instrumental to reveal the fine architecture of in vivo DNA replication intermediates and to uncover their remodeling upon specific conditions of genotoxic stress. The replication structures are stabilized in vivo (by psoralen crosslinking) prior to extraction and enrichment procedures, allowing their visualization at the transmission electron microscope. This chapter outlines the procedures required to visualize and interpret in vivo replication intermediates of eukaryotic genomic DNA, and includes an improved method for enrichment of replication intermediates, compared to previously used BND-cellulose columns.
Scanning electron microscope fine tuning using four-bar piezoelectric actuated mechanism
NASA Astrophysics Data System (ADS)
Hatamleh, Khaled S.; Khasawneh, Qais A.; Al-Ghasem, Adnan; Jaradat, Mohammad A.; Sawaqed, Laith; Al-Shabi, Mohammad
2018-01-01
Scanning Electron Microscopes are extensively used for accurate micro/nano images exploring. Several strategies have been proposed to fine tune those microscopes in the past few years. This work presents a new fine tuning strategy of a scanning electron microscope sample table using four bar piezoelectric actuated mechanisms. The introduced paper presents an algorithm to find all possible inverse kinematics solutions of the proposed mechanism. In addition, another algorithm is presented to search for the optimal inverse kinematic solution. Both algorithms are used simultaneously by means of a simulation study to fine tune a scanning electron microscope sample table through a pre-specified circular or linear path of motion. Results of the study shows that, proposed algorithms were able to minimize the power required to drive the piezoelectric actuated mechanism by a ratio of 97.5% for all simulated paths of motion when compared to general non-optimized solution.
de Souza, Wanderley; Attias, Marcia
2015-07-01
The Helium Ion Microscope (HIM) is a new technology that uses a highly focused helium ion beam to scan and interact with the sample, which is not coated. The images have resolution and depth of field superior to field emission scanning electron microscopes. In this paper, we used HIM to study LLC-MK2 cells infected with Toxoplasma gondii. These samples were chemically fixed and, after critical point drying, were scraped with adhesive tape to expose the inner structure of the cell and parasitophorous vacuoles. We confirmed some of the previous findings made by field emission-scanning electron microscopy and showed that the surface of the parasite is rich in structures suggestive of secretion, that the nanotubules of the intravacuolar network (IVN) are not always straight, and that bifurcations are less frequent than previously thought. Fusion of the tubules with the parasite membrane or the parasitophorous vacuole membrane (PVM) was also infrequent. Tiny adhesive links were observed for the first time connecting the IVN tubules. The PVM showed openings of various sizes that even allowed the observation of endoplasmic reticulum membranes in the cytoplasm of the host cell. These findings are discussed in relation to current knowledge on the cell biology of T. gondii. Copyright © 2015 Elsevier Inc. All rights reserved.
Davis, Richard; Koelle, George B.
1967-01-01
By means of the gold-thiocholine (AuThCh) and gold-thiolacetic acid (AuThAc) methods, it has been demonstrated electron microscopically that acetylcholinesterase (AChE) is located at the prejunctional axoplasmic membrane and the postjunctional sarcoplasmic membrane, including the full lengths of its invaginations, at the motor end plate of mouse intercostal muscle. Nonspecific cholinesterase (ChE) is present in relatively low concentrations at the same sites, and in greater concentrations in the teloglial Schwann sheath cells. Significant amounts of reaction product appeared in the junctional cleft only after prolonged incubation with both methods. The identification of AChE and ChE was confirmed by the use of appropriate concentrations of several selective inhibitors. In confirmation of previous studies by light microscopy, the AuThCh method is more specific for AChE and ChE, whereas the AuThAc method allows greater accuracy of localization. PMID:6033530
Abouna, Sylvie; Gonzalez-Rizzo, Silvina; Grimonprez, Adrien; Gros, Olivier
2015-01-01
Since the discovery of thioautotrophic bacterial symbiosis in the giant tubeworm Riftia pachyptila, there has been great impetus to investigate such partnerships in other invertebrates. In this study, we present the occurrence of a sulphur-oxidizing symbiosis in a metazoan belonging to the phylum Cnidaria in which this event has never been described previously. Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) observations and Energy-dispersive X-ray spectroscopy (EDXs) analysis, were employed to unveil the presence of prokaryotes population bearing elemental sulphur granules, growing on the body surface of the metazoan. Phylogenetic assessments were also undertaken to identify this invertebrate and microorganisms in thiotrophic symbiosis. Our results showed the occurrence of a thiotrophic symbiosis in a cnidarian identified as Cladonema sp. This is the first report describing the occurrence of a sulphur-oxidizing symbiosis in a cnidarian. Furthermore, of the two adult morphologies, the polyp and medusa, this mutualistic association was found restricted to the polyp form of Cladonema sp.
Towards native-state imaging in biological context in the electron microscope
Weston, Anne E.; Armer, Hannah E. J.
2009-01-01
Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context. PMID:19916039
Purchase of a Transmission Electron Microscope for Xavier University of Louisiana
2015-05-15
imaging facility on the second floor of the Pharmacy Addition at Xavier University that already includes two scanning electron microscopes. The new TEM...is now in use. Xavier University has formally pledged to provide funds for the 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...for Public Release; Distribution Unlimited Final Report: Purchase of a Transmission Electron Microscope for Xavier University of Louisiana The views
Suzuki, Michio; Nakayama, Seiji; Nagasawa, Hiromichi; Kogure, Toshihiro
2013-02-01
Although the formation mechanism of calcite crystals in the prismatic layer has been studied well in many previous works, the initial state of calcite formation has not been observed in detail using electron microscopes. In this study, we report that the soft prismatic layer with transparent color (the thin prismatic layer) in the tip of the fresh shell of Pinctada fucata was picked up to observe the early calcification phase. A scanning electron microscope (SEM) image showed that the growth tip of the thin prismatic layer was covered by the periostracum, which was also where the initial formation of calcite crystals began. A cross-section containing the thin calcite crystals in the thin prismatic layer with the periostracum was made using a focused ion beam (FIB) system. In a transmission electron microscope (TEM) observation, the thin calcite crystal (thickness is about 1μm) on the periostracum was found to be a single crystal with the c-axis oriented perpendicular to the shell surface. On the other hand, many aggregated small particles consisting of bassanite crystals were observed in the periostracum suggesting the possibility that not only organic sulfate but also inorganic sulfates exist in the prismatic layer. These discoveries in the early calcification phase of the thin prismatic layer may help to clarify the mechanism of regulating the nucleation and orientation of the calcite crystal in the shell. Copyright © 2012 Elsevier Ltd. All rights reserved.
Masters, Robert C.; Pearson, Andrew J.; Glen, Tom S.; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M.; Lidzey, David G.; Rodenburg, Cornelia
2015-01-01
The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials. PMID:25906738
Miyai, K; Abraham, J L; Linthicum, D S; Wagner, R M
1976-10-01
Several methods of tissue preparation and different modes of operation of the scanning electron microscope were used to study the ultrastructure of rat liver. Rat livers were perfusion fixed with buffered 2 per cent paraformaldehyde or a mixture of 1.5 per cent paraformaldehyde and 1 per cent glutaraldehyde and processed as follows. Tissue blocks were postfixed in buffered 2 per cent osmium tetroxide followed sequentially by the ligand-mediated osmium binding technique, dehydration and cryofracture in ethanol, and critical point drying. They were then examined without metal coating in the scanning electron microscope operating in the secondary electron and backscattered electron modes. Fifty-micrometer sections were cut with a tissue sectioner, stained with lead citrate, postfixed with osmium, dehydrated, critical point dried, and examined in the secondary electron and back-scattered electron modes. Frozen sections (0.25 to 0.75 mum. thick) were cut by the method of Tokuyasu (Toluyasu KT: J Cell Biol 57:551, 1973) and their scanning transmission electron microscope images were examined either with a scanning transmission electron microscope detector or with a conversion stub using the secondary electron detector. Secondary electron images of the liver prepared by ligand-mediated osmium binding and subsequent cryofracture revealed such intracellular structures as cisternae of the endoplasmic reticulum, lysosomes, mitochondria, lipid droplets, nucleolus and nuclear chromatin, as well as the usual surface morphology, Lipocytes in the perisinusoidal space were readily identified. Backscattered electron images. Unembedded frozen sections had little drying artifact and were virtually free of freezing damage. The scanning transmission electron microscope image revealed those organelles visualized by the secondary electron mode in the ligand-mediated osmium binding-treated tissue.
Electron Microscope Center Opens at Berkeley.
ERIC Educational Resources Information Center
Robinson, Arthur L.
1981-01-01
A 1.5-MeV High Voltage Electron Microscope has been installed at the Lawrence Berkeley Laboratory which will help materials scientists and biologists study samples in more true-to-life situations. A 1-MeV Atomic Resolution Microscope will be installed at the same location in two years which will allow scientists to distinguish atoms. (DS)
Specimen Holder for Analytical Electron Microscopes
NASA Technical Reports Server (NTRS)
Clanton, U. S.; Isaacs, A. M.; Mackinnon, I.
1985-01-01
Reduces spectral contamination by spurious X-ray. Specimen holder made of compressed carbon, securely retains standard electron microscope grid (disk) 3 mm in diameter and absorbs backscattered electrons that otherwise generate spurious X-rays. Since holder inexpensive, dedicated to single specimen when numerous samples examined.
Microcrack closure in rocks under stress - Direct observation
NASA Technical Reports Server (NTRS)
Batzle, M. L.; Simmons, G.; Siegfried, R. W.
1980-01-01
Direct observations of the closure of microcracks in rocks under increasing stress are reported. Uniaxial stresses up to 300 bars were applied to untreated and previously heated samples of Westerly granite and Frederick diabase by a small hydraulic press which fit entirely within a scanning electron microscope. Crack closure characteristics are found to depend on crack orientation, with cracks perpendicular to the applied stress closing and those parallel tending to open, as well as crack aspect ratio, crack intersection properties, stress concentrations and surface roughness. Uniaxial and hydrostatic stress measurements are found to be strongly dependent on fracture content as observed by SEM, and the observed hysteresis in strain measurements in the first stress cycles is also related to microscopic processes
CYTOPLASMIC DNA SYNTHESIS IN AMOEBA PROTEUS
Wolstenholme, D. R.; Plaut, W.
1964-01-01
The application of electron microscope autoradiography to Amoeba proteus cells labeled with tritiated thymidine has permitted the identification of morphologically distinct particles in the cytoplasm as the sites of incorporated DNA precursor. The particles correspond to those previously described from light microscope studies, with respect to both H3Tdr incorporation and distribution in centrifugally stratified amoebae. Ingested bacteria differ from the particles, in morphology as well as in the absence of associated label. Attempts to introduce a normal particle labeling pattern by incubating amoebae with labeled sediment derived from used amoeba medium failed. The resultant conclusion, that the particles are maintained in the amoeba by self-duplication, is supported by the presence of particles in configurations suggestive of division. PMID:14208356
Imaging electron motion in graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandari, Sagar; Westervelt, Robert M.
A cooled scanning probe microscope (SPM) is an ideal tool to image electronic motion in graphene: the SPM tip acts as a scanning gate, which interacts with the electron gas below. We introduce the technique using our group's previous work on imaging electron flow from a quantum point contact in a GaAs 2DEG and tuning an InAs quantum dot in an InAs/InP nanowire. Carriers in graphene have very different characteristics: electrons and holes travel at a constant speed with no bandgap, and they pass through potential barriers via Klein tunneling. In this paper, we review the extension of SPM imagingmore » techniques to graphene. We image the cyclotron orbits passing between two narrow contacts in a single-atomic-layer graphene device in a perpendicular magnetic field. Magnetic focusing produces a peak in transmission between the contacts when the cyclotron diameter is equal to the contact spacing. The charged SPM tip deflects electrons passing from one contact to the other, changing the transmission when it interrupts the flow. By displaying the change in transmission as the tip is raster scanned above the sample, an image of flow is obtained. In addition, we have developed a complementary technique to image electronic charge using a cooled scanning capacitance microscope (SCM) that uses a sensitive charge preamplifier near the SPM tip to achieve a charge noise level 0.13 e Hz -1/2 with high spatial resolution 100 nm. The cooled SPM and SCM can be used to probe the motion of electrons on the nanoscale in graphene devices.« less
Imaging electron motion in graphene
Bhandari, Sagar; Westervelt, Robert M.
2017-01-05
A cooled scanning probe microscope (SPM) is an ideal tool to image electronic motion in graphene: the SPM tip acts as a scanning gate, which interacts with the electron gas below. We introduce the technique using our group's previous work on imaging electron flow from a quantum point contact in a GaAs 2DEG and tuning an InAs quantum dot in an InAs/InP nanowire. Carriers in graphene have very different characteristics: electrons and holes travel at a constant speed with no bandgap, and they pass through potential barriers via Klein tunneling. In this paper, we review the extension of SPM imagingmore » techniques to graphene. We image the cyclotron orbits passing between two narrow contacts in a single-atomic-layer graphene device in a perpendicular magnetic field. Magnetic focusing produces a peak in transmission between the contacts when the cyclotron diameter is equal to the contact spacing. The charged SPM tip deflects electrons passing from one contact to the other, changing the transmission when it interrupts the flow. By displaying the change in transmission as the tip is raster scanned above the sample, an image of flow is obtained. In addition, we have developed a complementary technique to image electronic charge using a cooled scanning capacitance microscope (SCM) that uses a sensitive charge preamplifier near the SPM tip to achieve a charge noise level 0.13 e Hz -1/2 with high spatial resolution 100 nm. The cooled SPM and SCM can be used to probe the motion of electrons on the nanoscale in graphene devices.« less
Bongianni, Wayne L.
1984-01-01
A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers.
Simultaneous specimen and stage cleaning device for analytical electron microscope
Zaluzec, Nestor J.
1996-01-01
An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.
Bongianni, W.L.
1984-04-17
A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers. 7 figs.
Adaniya, Hidehito; Cheung, Martin; Cassidy, Cathal; Yamashita, Masao; Shintake, Tsumoru
2018-05-01
A new SEM-based in-line electron holography microscope has been under development. The microscope utilizes conventional SEM and BF-STEM functionality to allow for rapid searching of the specimen of interest, seamless interchange between SEM, BF-STEM and holographic imaging modes, and makes use of coherent low-energy in-line electron holography to obtain low-dose, high-contrast images of light element materials. We report here an overview of the instrumentation and first experimental results on gold nano-particles and carbon nano-fibers for system performance tests. Reconstructed images obtained from the holographic imaging mode of the new microscope show substantial image contrast and resolution compared to those acquired by SEM and BF-STEM modes, demonstrating the feasibility of high-contrast imaging via low-energy in-line electron holography. The prospect of utilizing the new microscope to image purified biological specimens at the individual particle level is discussed and electron optical issues and challenges to further improve resolution and contrast are considered. Copyright © 2018 Elsevier B.V. All rights reserved.
EBSD and TEM characterization of high burn-up mixed oxide fuel
NASA Astrophysics Data System (ADS)
Teague, Melissa; Gorman, Brian; Miller, Brandon; King, Jeffrey
2014-01-01
Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to ∼1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had ∼2.5× higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice ∼25 μm cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel.
EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teague, Melissa C.; Gorman, Brian P.; Miller, Brandon D.
2014-01-01
Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken frommore » the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... Research, et al.; Notice of Consolidated Decision on Applications for Duty-Free Entry of Electron...: National Center for Toxicological Research, (USFDA), Jefferson, AK 72079. Instrument: Electron Microscope.... Applicant: University of Virginia, Charlottesville, VA 22903. Instrument: Electron Microscope. Manufacturer...
Gilloteaux, J
1975-08-27
Studies on the intrinsic innervation of the anterior byssal retractor muscle (ABRM) in Mytilus edulis L. were continued at the ultrastructural level. Electron micrographs show nerve processes ensheathed by glio-interstitial cells running between muscle fibers. The glio-interstitial cells may represent all the types of osmiophilic cells previously described by the light microscopic ZIO technique in the anterior byssal retractor muscle.
1981-06-01
sessile marine inverte- brates in Monterey harbor. Veliger 17 (supplement): 1-35. 1977. The nature of primary organic films in the marine environment and...I A10A4h 605 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/S 11/3 SCANING ELECTRON MICROSCOPE OBSERVATIONS OF MARINE MICROORANI-E-C(U) UNLSSIFIED N*2...Scanning Electron Microscope Observations Master’s thesis; of Marine Microorganisms on Surfaces June 1981 Coated with Ant ifouling Paints 6.PERFORMING
Electron microscope aperture system
NASA Technical Reports Server (NTRS)
Heinemann, K. (Inventor)
1976-01-01
An electron microscope including an electron source, a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen, and an objective lens having an annular objective aperture, for focusing electrons passing through the specimen onto an image plane are described. The invention also entails a method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques.
Choice and maintenance of equipment for electron crystallography.
Mills, Deryck J; Vonck, Janet
2013-01-01
The choice of equipment for an electron crystallography laboratory will ultimately be determined by the available budget; nevertheless, the ideal lab will have two electron microscopes: a dedicated 300 kV cryo-EM with a field emission gun and a smaller LaB(6) machine for screening. The high-end machine should be equipped with photographic film or a very large CCD or CMOS camera for 2D crystal data collection; the screening microscope needs a mid-size CCD for rapid evaluation of crystal samples. The microscope room installations should provide adequate space and a special environment that puts no restrictions on the collection of high-resolution data. Equipment for specimen preparation includes a carbon coater, glow discharge unit, light microscope, plunge freezer, and liquid nitrogen containers and storage dewars. When photographic film is to be used, additional requirements are a film desiccator, dark room, optical diffractometer, and a film scanner. Having the electron microscopes and ancillary equipment well maintained and always in optimum condition facilitates the production of high-quality data.
Vibrational spectroscopy in the electron microscope.
Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A
2014-10-09
Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.
Ultrastructural Study of Some Pollen Grains of Prairie Flowers
ERIC Educational Resources Information Center
Kozar, Frank
1973-01-01
Discusses the importance of the electron microscope, and in particular the scanning electron microscope, in studying the surface topography, sectional substructures, and patterns of development of pollen grains. The production, dispersal methods, and structure of pollen grains are described and illustrated with numerous electron micrographs. (JR)
Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials (abstract)
NASA Astrophysics Data System (ADS)
Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June
2009-04-01
Titanic materials were synthesized by hydrothermal method of TiO2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130° C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77° K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.
Design and performance of a beetle-type double-tip scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaschinsky, Philipp; Coenen, Peter; Pirug, Gerhard
2006-09-15
A combination of a double-tip scanning tunneling microscope with a scanning electron microscope in ultrahigh vacuum environment is presented. The compact beetle-type design made it possible to integrate two independently driven scanning tunneling microscopes in a small space. Moreover, an additional level for coarse movement allows the decoupling of the translation and approach of the tunneling tip. The position of the two tips can be controlled from the millimeter scale down to 50 nm with the help of an add-on electron microscope. The instrument is capable of atomic resolution imaging with each tip.
Development of Scanning Ultrafast Electron Microscope Capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Kimberlee Chiyoko; Talin, Albert Alec; Chandler, David W.
Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratoriesmore » based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.« less
Kubota, Y; Leung, E; Vincent, S R
1992-01-01
The ultrastructure of choline acetyltransferase (ChAT)-immunoreactive neurons in the laterodorsal tegmental nucleus (TLD) of the rat was investigated by immunohistochemical techniques. The immunoreactive neurons were medium to large in size, with a few elongated dendrites, contained well-developed cytoplasm, and a nucleus with deep infoldings. They received many nonimmunoreactive, mostly asymmetric synaptic inputs on their soma and dendrites. ChAT-immunoreactive, usually myelinated, axons were occasionally seen in TLD. Only one immunoreactive axon terminal was observed within TLD, and it made synaptic contact with a nonimmunoreactive neuronal perikaryon. The synaptic interactions between ChAT-immunoreactive neurons and tyrosine hydroxylase (TH)-immunoreactive fibers in the TLD were investigated with a double immunohistochemical staining method. ChAT-immunoreactivity detected with a beta-galactosidase method was light blue-green in the light microscope and formed dot-like electron dense particles at the electron microscopic level. TH-immunoreactivity, visualized with a nickel-enhanced immunoperoxidase method, was dark blue-black in the light microscope and diffusely opaque in the electron microscope. Therefore, the difference between these two kinds of immunoreactivity could be quite easily distinguished at both light and electron microscopic levels. In the light microscope, TH-positive fibers were often closely apposed to ChAT-immunoreactive cell bodies and dendrites in TLD. In the electron microscope, the cell soma and proximal dendrites of ChAT-immunoreactive neurons received synaptic contacts from TH-immunoreactive axon terminals. These results provide a morphological basis for catecholaminergic regulation of the cholinergic reticular system.
Thermodynamic aspect in using modified Boltzmann model as an acoustic probe for URu2Si2
NASA Astrophysics Data System (ADS)
Kwang-Hua, Chu Rainer
2018-05-01
The approximate system of equations describing ultrasonic attenuation propagating in many electrons of the heavy-fermion materials URu2Si2 under high magnetic fields were firstly derived and then calculated based on the modified Boltzmann model considering the microscopic contributions due to electronic fluids. A system of nonlinear partial differential coupled with integral equations were linearized firstly and approximately solved considering the perturbed thermodynamic equilibrium states. Our numerical data were compared with previous measurements using non-dimensional or normalized physical values. The rather good fit of our numerical calculations with experimental measurements confirms our present approach.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-04
... Consolidated Decision on Applications for Duty-Free Entry of Electron Microscope This is a decision... Stocker Center, Athens, OH 45701. Instrument: Electron Microscope. Manufacturer: JEOL Ltd., Japan... North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403-5915. Instrument: Electron...
Influence of mechanical noise inside a scanning electron microscope.
de Faria, Marcelo Gaudenzi; Haddab, Yassine; Le Gorrec, Yann; Lutz, Philippe
2015-04-01
The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to the identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.
Microcircuit testing and fabrication, using scanning electron microscopes
NASA Technical Reports Server (NTRS)
Nicolas, D. P.
1975-01-01
Scanning electron microscopes are used to determine both user-induced damages and manufacturing defects subtle enough to be missed by conventional light microscopy. Method offers greater depth of field and increased working distances.
Method of forming aperture plate for electron microscope
NASA Technical Reports Server (NTRS)
Heinemann, K. (Inventor)
1974-01-01
An electron microscope is described with an electron source a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen. It also has objective lens with an annular objective aperture, for focusing electrons passing through the specimen onto an image plane. A method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques is included.
Development of scanning electron and x-ray microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Tomokazu, E-mail: tomokzau.matsumura@etd.hpk.co.jp; Hirano, Tomohiko, E-mail: tomohiko.hirano@etd.hpk.co.jp; Suyama, Motohiro, E-mail: suyama@etd.hpk.co.jp
We have developed a new type of microscope possessing a unique feature of observing both scanning electron and X-ray images under one unit. Unlike former X-ray microscopes using SEM [1, 2], this scanning electron and X-ray (SELX) microscope has a sample in vacuum, thus it enables one to observe a surface structure of a sample by SEM mode, to search the region of interest, and to observe an X-ray image which transmits the region. For the X-ray observation, we have been focusing on the soft X-ray region from 280 eV to 3 keV to observe some bio samples and softmore » materials. The resolutions of SEM and X-ray modes are 50 nm and 100 nm, respectively, at the electron energy of 7 keV.« less
An EBIC equation for solar cells. [Electron Beam Induced Current
NASA Technical Reports Server (NTRS)
Luke, K. L.; Von Roos, O.
1983-01-01
When an electron beam of a scanning electron microscope (SEM) impinges on an N-P junction, the generation of electron-hole pairs by impact ionization causes a characteristic short circuit current I(sc) to flow. The I(sc), i.e., EBIC (electron beam induced current) depends strongly on the configuration used to investigate the cell's response. In this paper the case where the plane of the junction is perpendicular to the surface is considered. An EBIC equation amenable to numerical computations is derived as a function of cell thickness, source depth, surface recombination velocity, diffusion length, and distance of the junction to the beam-cell interaction point for a cell with an ohmic contact at its back surface. It is shown that the EBIC equation presented here is more general and easier to use than those previously reported. The effects of source depth, ohmic contact, and diffusion length on the normalized EBIC characteristic are discussed.
NASA Astrophysics Data System (ADS)
Goulielmakis, Eleftherios
2017-04-01
Laser-driven generation of coherent radiation in bulk solids extending up to the extreme ultraviolet part of the spectrum has recently open up completely new possibilities for study of electronic phenomena which lie beyond the scope of standard condensed phase physics spectroscopies. I will present how previous and new tools of attosecond metrology can now allow us to gain detailed insight into the fundamental microscopic processes responsible for the EUV emission in solids. We will show that this emission is in reality a macroscopic probe of nanoscale intraband coherent electric currents the frequency of which is extending into multiPetahertz range. On the basis of these findings, I will try to persuade you that we are now entering the realm of coherent electronics. A regime in which electronic circuitry can be conceived on the atomic level and where electronic properties of materials can be accessed and controlled on attosecond time scales.
Examination of Surveyor 3 parts with the scanning electron microscope and electron microprobe
NASA Technical Reports Server (NTRS)
Chodos, A. A.; Devaney, J. R.; Evens, K. C.
1972-01-01
Two screws and two washers, several small chips of tubing, and a fiber removed from a third screw were examined with the scanning electron microscope and the electron microprobe. The purpose of the examination was to determine the nature of the material on the surface of these samples and to search for the presence of meteoritic material.
A compilation of cold cases using scanning electron microscopy at the University of Rhode Island
NASA Astrophysics Data System (ADS)
Platek, Michael J.; Gregory, Otto J.
2015-10-01
Scanning electron microscopy combined with microchemical analysis has evolved into one of the most widely used instruments in forensic science today. In particular, the environmental scanning electron microscope (SEM) in conjunction with energy dispersive spectroscopy (EDS), has created unique opportunities in forensic science in regard to the examination of trace evidence; i.e. the examination of evidence without altering the evidence with conductive coatings, thereby enabling criminalists to solve cases that were previously considered unsolvable. Two cold cases were solved at URI using a JEOL 5900 LV SEM in conjunction with EDS. A cold case murder and a cold missing person case will be presented from the viewpoint of the microscopist and will include sample preparation, as well as image and chemical analysis of the trace evidence using electron microscopy and optical microscopy.
Multi-pass transmission electron microscopy
Juffmann, Thomas; Koppell, Stewart A.; Klopfer, Brannon B.; ...
2017-05-10
Feynman once asked physicists to build better electron microscopes to be able to watch biology at work. While electron microscopes can now provide atomic resolution, electron beam induced specimen damage precludes high resolution imaging of sensitive materials, such as single proteins or polymers. Here, we use simulations to show that an electron microscope based on a multi-pass measurement protocol enables imaging of single proteins, without averaging structures over multiple images. While we demonstrate the method for particular imaging targets, the approach is broadly applicable and is expected to improve resolution and sensitivity for a range of electron microscopy imaging modalities,more » including, for example, scanning and spectroscopic techniques. The approach implements a quantum mechanically optimal strategy which under idealized conditions can be considered interaction-free.« less
Shi, Chun-Lin; Butenko, Melinka A
2018-01-01
Scanning electron microscope (SEM) is a type of electron microscope which produces detailed images of surface structures. It has been widely used in plants and animals to study cellular structures. Here, we describe a detailed protocol to prepare samples of floral abscission zones (AZs) for SEM, as well as further image analysis. We show that it is a powerful tool to detect morphologic changes at the cellular level during the course of abscission in wild-type plants and to establish the details of phenotypic alteration in abscission mutants.
Marovitz, W F; Khan, K M
1977-01-01
A method for removal, fixation, microdissection, and drying of early rat otocyst for examination by the scanning electron microscope is elaborated. Tissues were dissected, fixed as for conventional transmission electron microscopy and dried by critical point evaporation using amylacetate as the transitional fluid and carbon dioxide as the pressure head. Otocysts were either dissected at the time of initial fixation, or subsequent to drying. The otocyst of the 12th postcoital day was used as a model system in this preliminary report. Critical point drying retained the overall configuration and the fine ultrastructural detail of the otocyst. The interior otocystic surface was visualized and cilia bearing cells of the luminal surface were identified. Most if not all of these cells had a comspicuous, but short kinocillum which terminated in an ovoid bulb. The scanning electron microscopic appearance was correlated to the transmission electron microscopic image seen in the second paper in this Supplement.
Atmospheric scanning electron microscope for correlative microscopy.
Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J
2012-01-01
The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juffmann, Thomas; Koppell, Stewart A.; Klopfer, Brannon B.
Feynman once asked physicists to build better electron microscopes to be able to watch biology at work. While electron microscopes can now provide atomic resolution, electron beam induced specimen damage precludes high resolution imaging of sensitive materials, such as single proteins or polymers. Here, we use simulations to show that an electron microscope based on a multi-pass measurement protocol enables imaging of single proteins, without averaging structures over multiple images. While we demonstrate the method for particular imaging targets, the approach is broadly applicable and is expected to improve resolution and sensitivity for a range of electron microscopy imaging modalities,more » including, for example, scanning and spectroscopic techniques. The approach implements a quantum mechanically optimal strategy which under idealized conditions can be considered interaction-free.« less
Hirata, Kei; Ishida, Yoichi; Akashi, Tetsuya; Shindo, Daisuke; Tonomura, Akira
2012-01-01
The magnetic domain structure of the writer poles of perpendicular magnetic recording heads was studied using electron holography. Although the domain structure of a 100-nm-thick writer pole could be observed with a 300 kV transmission electron microscope, that of the 250-nm-thick writer pole could not be analyzed due to the limited transmission capability of the instrument. On the other hand, the detailed domain structure of the 250-nm-thick writer pole was successfully analyzed by a 1 MV electron microscope using its high transmission capability. The thickness and material dependency of the domain structure of a writer pole were discussed.
Morishita, Shigeyuki; Ishikawa, Ryo; Kohno, Yuji; Sawada, Hidetaka; Shibata, Naoya; Ikuhara, Yuichi
2018-02-01
The achievement of a fine electron probe for high-resolution imaging in scanning transmission electron microscopy requires technological developments, especially in electron optics. For this purpose, we developed a microscope with a fifth-order aberration corrector that operates at 300 kV. The contrast flat region in an experimental Ronchigram, which indicates the aberration-free angle, was expanded to 70 mrad. By using a probe with convergence angle of 40 mrad in the scanning transmission electron microscope at 300 kV, we attained the spatial resolution of 40.5 pm, which is the projected interatomic distance between Ga-Ga atomic columns of GaN observed along [212] direction.
Optics of high-performance electron microscopes*
Rose, H H
2008-01-01
During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described. PMID:27877933
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rau, E. I.; Orlikovskiy, N. A.; Ivanova, E. S.
A new highly efficient design for semiconductor detectors of intermediate-energy electrons (1-50 keV) for application in scanning electron microscopes is proposed. Calculations of the response function of advanced detectors and control experiments show that the efficiency of the developed devices increases on average twofold, which is a significant positive factor in the operation of modern electron microscopes in the mode of low currents and at low primary electron energies.
WOLSTENHOLME, D R; PLAUT, W
1964-09-01
The application of electron microscope autoradiography to Amoeba proteus cells labeled with tritiated thymidine has permitted the identification of morphologically distinct particles in the cytoplasm as the sites of incorporated DNA precursor. The particles correspond to those previously described from light microscope studies, with respect to both H(3)Tdr incorporation and distribution in centrifugally stratified amoebae. Ingested bacteria differ from the particles, in morphology as well as in the absence of associated label. Attempts to introduce a normal particle labeling pattern by incubating amoebae with labeled sediment derived from used amoeba medium failed. The resultant conclusion, that the particles are maintained in the amoeba by self-duplication, is supported by the presence of particles in configurations suggestive of division.
Using the scanning electron microscope on the production line to assure quality semiconductors
NASA Technical Reports Server (NTRS)
Adolphsen, J. W.; Anstead, R. J.
1972-01-01
The use of the scanning electron microscope to detect metallization defects introduced during batch processing of semiconductor devices is discussed. A method of determining metallization integrity was developed which culminates in a procurement specification using the scanning microscope on the production line as a quality control tool. Batch process control of the metallization operation is monitored early in the manufacturing cycle.
Influence of mechanical noise inside a scanning electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudenzi de Faria, Marcelo; Haddab, Yassine, E-mail: yassine.haddab@femto-st.fr; Le Gorrec, Yann
The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to themore » identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... 94305. Instrument: Titan 80-300 Environmental Transmission Electron Microscope. Manufacturer: FEI Co.../Scanning Electron Microscope. Manufacturer: FEI Co., the Netherlands. Intended Use: See notice at 77 FR...
Akerman, M; Willén, H; Carlén, B; Mandahl, N; Mertens, F
1996-06-01
A retrospective study of 25 FNAs (11 aspirates from primary tumours and 14 from recurrencies and metastases) from 15 synovial sarcomas was performed. The cytological findings were correlated with the histopathology and the value of immunohistochemical and electron microscopic examination as well as DNA-ploidy and cytogenetic analysis for diagnosis were assessed. A reproducible cellular pattern with a reliable diagnosis of spindle cell sarcoma was possible provided that the aspirates were cell rich. However, a true biphasic pattern indicative of synovial sarcoma was only seen in one of the 25 specimens. Electron microscopic examination of the aspirates was a valuable adjunctive diagnostic method, whereas immunocytochemistry and DNA-ploidy analysis were not. Immunohistochemical, electron microscopic and cytogenetic analysis were all valuable ancillary methods when performed on surgical specimens. Malignant haemangiopericytoma and fibrosarcoma were the most important differential diagnoses in the FNA specimens.
A two-dimensional Dirac fermion microscope
NASA Astrophysics Data System (ADS)
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-01-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots. PMID:28598421
Scanning Microscopes Using X Rays and Microchannels
NASA Technical Reports Server (NTRS)
Wang, Yu
2003-01-01
Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the image sensor consists predominantly of radiation that was launched along the longitudinal direction of the microchannels. Therefore, most of the radiation arriving at each pixel on the sensor must have traveled along a straight line from a corresponding location on the specimen. Thus, there is a one-to-one mapping from a point on a specimen to a pixel in the image sensor, so that the output of the image sensor contains image information equivalent to that from a microscope.
Development of the field of structural physiology
FUJIYOSHI, Yoshinori
2015-01-01
Electron crystallography is especially useful for studying the structure and function of membrane proteins — key molecules with important functions in neural and other cells. Electron crystallography is now an established technique for analyzing the structures of membrane proteins in lipid bilayers that closely simulate their natural biological environment. Utilizing cryo-electron microscopes with helium-cooled specimen stages that were developed through a personal motivation to understand the functions of neural systems from a structural point of view, the structures of membrane proteins can be analyzed at a higher than 3 Å resolution. This review covers four objectives. First, I introduce the new research field of structural physiology. Second, I recount some of the struggles involved in developing cryo-electron microscopes. Third, I review the structural and functional analyses of membrane proteins mainly by electron crystallography using cryo-electron microscopes. Finally, I discuss multifunctional channels named “adhennels” based on structures analyzed using electron and X-ray crystallography. PMID:26560835
Development of an environmental high-voltage electron microscope for reaction science.
Tanaka, Nobuo; Usukura, Jiro; Kusunoki, Michiko; Saito, Yahachi; Sasaki, Katuhiro; Tanji, Takayoshi; Muto, Shunsuke; Arai, Shigeo
2013-02-01
Environmental transmission electron microscopy and ultra-high resolution electron microscopic observation using aberration correctors have recently emerged as topics of great interest. The former method is an extension of the so-called in situ electron microscopy that has been performed since the 1970s. Current research in this area has been focusing on dynamic observation with atomic resolution under gaseous atmospheres and in liquids. Since 2007, Nagoya University has been developing a new 1-MV high voltage (scanning) transmission electron microscope that can be used to observe nanomaterials under conditions that include the presence of gases, liquids and illuminating lights, and it can be also used to perform mechanical operations to nanometre-sized areas as well as electron tomography and elemental analysis by electron energy loss spectroscopy. The new instrument has been used to image and analyse various types of samples including biological ones.
Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy.
Mankos, Marian; Persson, Henrik H J; N'Diaye, Alpha T; Shadman, Khashayar; Schmid, Andreas K; Davis, Ronald W
2016-01-01
DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectron and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. Both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging.
Sim, Kok Swee; NorHisham, Syafiq
2016-11-01
A technique based on linear Least Squares Regression (LSR) model is applied to estimate signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images. In order to test the accuracy of this technique on SNR estimation, a number of SEM images are initially corrupted with white noise. The autocorrelation function (ACF) of the original and the corrupted SEM images are formed to serve as the reference point to estimate the SNR value of the corrupted image. The LSR technique is then compared with the previous three existing techniques known as nearest neighbourhood, first-order interpolation, and the combination of both nearest neighborhood and first-order interpolation. The actual and the estimated SNR values of all these techniques are then calculated for comparison purpose. It is shown that the LSR technique is able to attain the highest accuracy compared to the other three existing techniques as the absolute difference between the actual and the estimated SNR value is relatively small. SCANNING 38:771-782, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Wang, X; Chauvat, M-P; Ruterana, P; Walther, T
2017-12-01
We have applied our previous method of self-consistent k*-factors for absorption correction in energy-dispersive X-ray spectroscopy to quantify the indium content in X-ray maps of thick compound InGaN layers. The method allows us to quantify the indium concentration without measuring the sample thickness, density or beam current, and works even if there is a drastic local thickness change due to sample roughness or preferential thinning. The method is shown to select, point-by-point in a two-dimensional spectrum image or map, the k*-factor from the local Ga K/L intensity ratio that is most appropriate for the corresponding sample geometry, demonstrating it is not the sample thickness measured along the electron beam direction but the optical path length the X-rays have to travel through the sample that is relevant for the absorption correction. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Abouna, Sylvie; Gonzalez-Rizzo, Silvina; Grimonprez, Adrien; Gros, Olivier
2015-01-01
Background Since the discovery of thioautotrophic bacterial symbiosis in the giant tubeworm Riftia pachyptila, there has been great impetus to investigate such partnerships in other invertebrates. In this study, we present the occurrence of a sulphur-oxidizing symbiosis in a metazoan belonging to the phylum Cnidaria in which this event has never been described previously. Methodology/Principal Findings Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) observations and Energy-dispersive X-ray spectroscopy (EDXs) analysis, were employed to unveil the presence of prokaryotes population bearing elemental sulphur granules, growing on the body surface of the metazoan. Phylogenetic assessments were also undertaken to identify this invertebrate and microorganisms in thiotrophic symbiosis. Our results showed the occurrence of a thiotrophic symbiosis in a cnidarian identified as Cladonema sp. Conclusions/Significance This is the first report describing the occurrence of a sulphur-oxidizing symbiosis in a cnidarian. Furthermore, of the two adult morphologies, the polyp and medusa, this mutualistic association was found restricted to the polyp form of Cladonema sp. PMID:26011278
The first report of new species: Trichuris landak n. sp
Purwaningsih, Endang
2013-01-01
Objective To study nematode parasites morphology of Hystrix javanica (H. javanica), both through the feces and internal organs. Methods Feces were observed by direct smear method, internal organs were observed after dissecting the host. Specimens for light microscopy examination were fixed with 70% warm alcohol, cleared and mounted in lactophenol for wet mounting. Specimens for SEM examination were postfixed in cacodylate buffer and glutaraldehyde, dehydrated through a graded series of alcohol and freeze dried. The specimens were attached to stubs with double cello-tape, coated with gold and observed with a JSM5310 LV electron microscope. Figures were made with the aid of a drawing tube attached to Olympus compound microscope, other figures were photographs of scanning electron microscope images. Measurements were given in micrometers as the mean followed by the range in parentheses, unless otherwise stated. Results The nematode species found in the intestine of H. javanica are Gireterakis girardi and a new species, Trihuris landak. The new species differs with previously reported species from Hystrix because of having stylet and short cervical alae. The pattern of bacillary band is closed to Trichuris trichiurus, the species that infect human, but differs because the surface of its vulva is not covered with densely spine. Conclusions The species of nematodes found on H. javanica were Gireterakis girardi and a new species Trichuris landak n.sp. Those two species are newly recorded in Indonesia. PMID:23593584
The first report of new species: Trichuris landak n. sp.
Purwaningsih, Endang
2013-02-01
To study nematode parasites morphology of Hystrix javanica (H. javanica), both through the feces and internal organs. Feces were observed by direct smear method, internal organs were observed after dissecting the host. Specimens for light microscopy examination were fixed with 70% warm alcohol, cleared and mounted in lactophenol for wet mounting. Specimens for SEM examination were postfixed in cacodylate buffer and glutaraldehyde, dehydrated through a graded series of alcohol and freeze dried. The specimens were attached to stubs with double cello-tape, coated with gold and observed with a JSM5310 LV electron microscope. Figures were made with the aid of a drawing tube attached to Olympus compound microscope, other figures were photographs of scanning electron microscope images. Measurements were given in micrometers as the mean followed by the range in parentheses, unless otherwise stated. The nematode species found in the intestine of H. javanica are Gireterakis girardi and a new species, Trihuris landak. The new species differs with previously reported species from Hystrix because of having stylet and short cervical alae. The pattern of bacillary band is closed to Trichuris trichiurus, the species that infect human, but differs because the surface of its vulva is not covered with densely spine. The species of nematodes found on H. javanica were Gireterakis girardi and a new species Trichuris landak n.sp. Those two species are newly recorded in Indonesia.
High-resolution electron microscope
NASA Technical Reports Server (NTRS)
Nathan, R.
1977-01-01
Employing scanning transmission electron microscope as interferometer, relative phases of diffraction maximums can be determined by analysis of dark field images. Synthetic aperture technique and Fourier-transform computer processing of amplitude and phase information provide high resolution images at approximately one angstrom.
75 FR 9867 - University of Pittsburgh, et al
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
... DEPARTMENT OF COMMERCE International Trade Administration University of Pittsburgh, et al.; Notice of Consolidated Decision on Applications for Duty-Free Entry of Electron Microscopes This is a...: University of Pittsburgh, Pittsburgh, PA 15260. Instrument: Electron Microscope. Manufacturer: JEOL, Ltd...
Development of a miniature scanning electron microscope for in-flight analysis of comet dust
NASA Technical Reports Server (NTRS)
Conley, J. M.; Bradley, J. G.; Giffin, C. E.; Albee, A. L.; Tomassian, A. D.
1983-01-01
A description is presented of an instrument which was developed with the original goal of being flown on the International Comet Mission, scheduled for a 1985 launch. The Scanning Electron Microscope and Particle Analyzer (SEMPA) electron miniprobe is a miniaturized electrostatically focused electron microscope and energy dispersive X-ray analyzer for in-flight analysis of comet dust particles. It was designed to be flown on board a comet rendezvous spacecraft. Other potential applications are related to asteroid rendezvous and planetary lander missions. According to the development objectives, SEMPA miniprobe is to have the capability for imaging and elemental analysis of particles in the size range of 0.25 microns and larger.
Profiling with the electron microscope.
NASA Technical Reports Server (NTRS)
Vedder, J. F.; Lem, H. Y.
1972-01-01
Discussion of a profiling technique using a scanning electron microscope for obtaining depth information on a single micrograph of a small specimen. A stationary electron beam is used to form a series of contamination spots in a line across the specimen. Micrographs obtained by this technique are useful as a means of projection and display where stereo viewers are not practical.
Miniature Variable Pressure Scanning Electron Microscope for In-Situ Imaging and Chemical Analysis
NASA Technical Reports Server (NTRS)
Gaskin, Jessica A.; Jerman, Gregory; Gregory, Don; Sampson, Allen R.
2012-01-01
NASA Marshall Space Flight Center (MSFC) is leading an effort to develop a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for in-situ imaging and chemical analysis of uncoated samples. This instrument development will be geared towards operation on Mars and builds on a previous MSFC design of a mini-SEM for the moon (funded through the NASA Planetary Instrument Definition and Development Program). Because Mars has a dramatically different environment than the moon, modifications to the MSFC lunar mini-SEM are necessary. Mainly, the higher atmospheric pressure calls for the use of an electron gun that can operate at High Vacuum, rather than Ultra-High Vacuum. The presence of a CO2-rich atmosphere also allows for the incorporation of a variable pressure system that enables the in-situ analysis of nonconductive geological specimens. Preliminary testing of Mars meteorites in a commercial Environmental SEM(Tradmark) (FEI) confirms the usefulness of lowcurrent/low-accelerating voltage imaging and highlights the advantages of using the Mars atmosphere for environmental imaging. The unique capabilities of the MVP-SEM make it an ideal tool for pursuing key scientific goals of NASA's Flagship Mission Max-C; to perform in-situ science and collect and cache samples in preparation for sample return from Mars.
NASA Technical Reports Server (NTRS)
Edmunson, J.; Gaskin, J. A.; Jerman, G. A.; Harvey, R. P.; Doloboff, I. J.; Neidholdt, E. L.
2016-01-01
The Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Sciences (ROSES), will build upon previous miniaturized SEM designs and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. This project is a collaboration between NASA Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), electron gun and optics manufacturer Applied Physics Technologies, and small vacuum system manufacturer Creare. Dr. Ralph Harvery and environmental SEM (ESEM) inventor Dr. Gerry Danilatos serve as advisors to the team. Variable pressure SEMs allow for fine (nm-scale) resolution imaging and micron-scale chemical study of materials without sample preparation (e.g., carbon or gold coating). Charging of a sample is reduced or eliminated by the gas surrounding the sample. It is this property of ESEMs that make them ideal for locations where sample preparation is not yet feasible, such as the surface of Mars. In addition, the lack of sample preparation needed here will simplify the sample acquisition process and allow caching of the samples for future complementary payload use.
Electron spin relaxation in two polymorphic structures of GaN
NASA Astrophysics Data System (ADS)
Kang, Nam Lyong
2015-03-01
The relaxation process of electron spin in systems of electrons interacting with piezoelectric deformation phonons that are mediated through spin-orbit interactions was interpreted from a microscopic point of view using the formula for the electron spin relaxation times derived by a projection-reduction method. The electron spin relaxation times in two polymorphic structures of GaN were calculated. The piezoelectric material constant for the wurtzite structure obtained by a comparison with a previously reported experimental result was {{P}pe}=1.5 × {{10}29} eV {{m}-1}. The temperature and magnetic field dependence of the relaxation times for both wurtzite and zinc-blende structures were similar, but the relaxation times in zinc-blende GaN were smaller and decreased more rapidly with increasing temperature and magnetic field than that in wurtzite GaN. This study also showed that the electron spin relaxation for wurtzite GaN at low density could be explained by the Elliot-Yafet process but not for zinc-blende GaN in the metallic regime.
Classification of Streptomyces Spore Surfaces into Five Groups
Dietz, Alma; Mathews, John
1971-01-01
Streptomyces spores surfaces have been classified into five groups, smooth, warty, spiny, hairy, and rugose, by examination of carbon replicas of spores with the transmission electron microscope and by direct examination of spores with the scanning electron microscope. Images PMID:4928607
COLONIAL GROWTH OF MYCOPLASMA GALLISEPTICUM OBSERVED WITH THE ELECTRON MICROSCOPE
Shifrine, Moshe; Pangborn, Jack; Adler, Henry E.
1962-01-01
Shifrine, Moshe (University of California, Davis), Jack Pangborn, and Henry E. Adler. Colonial growth of Mycoplasma gallisepticum observed with the electron microscope. J. Bacteriol. 83:187–192. 1962.—Mycoplasma gallisepticum strain S6 was grown on collodion film on solid medium. Samples were removed every few hours, fixed, washed, shadowed, and observed with the electron microscope. Three distinct forms of growth were observed: elementary cells (hexagonally shaped), platycytes, and exoblasts. A tentative mode of growth was postulated. The significance of the angular morphology to the relation between mycoplasmas and L-forms of bacteria is discussed. Images PMID:13911868
In situ electronic probing of semiconducting nanowires in an electron microscope.
Fauske, V T; Erlbeck, M B; Huh, J; Kim, D C; Munshi, A M; Dheeraj, D L; Weman, H; Fimland, B O; Van Helvoort, A T J
2016-05-01
For the development of electronic nanoscale structures, feedback on its electronic properties is crucial, but challenging. Here, we present a comparison of various in situ methods for electronically probing single, p-doped GaAs nanowires inside a scanning electron microscope. The methods used include (i) directly probing individual as-grown nanowires with a sharp nano-manipulator, (ii) contacting dispersed nanowires with two metal contacts and (iii) contacting dispersed nanowires with four metal contacts. For the last two cases, we compare the results obtained using conventional ex situ litho-graphy contacting techniques and by in situ, direct-write electron beam induced deposition of a metal (Pt). The comparison shows that 2-probe measurements gives consistent results also with contacts made by electron beam induced deposition, but that for 4-probe, stray deposition can be a problem for shorter nanowires. This comparative study demonstrates that the preferred in situ method depends on the required throughput and reliability. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
NASA Technical Reports Server (NTRS)
Derrickson, J. H.; Dake, S.; Dong, B. L.; Eby, P. B.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Iyono, A.; King, D. T.
1989-01-01
Recently, new calculations were made of the direct Coulomb pair cross section that rely less in arbitrary parameters. More accurate calculations of the cross section down to low pair energies were made. New measurements of the total direct electron pair yield, and the energy and angular distribution of the electron pairs in emulsion were made for O-16 at 60 and 200 GeV/amu at S-32 at 200 GeV/amu which give satisfactory agreement with the new calculations. These calculations and measurements are presented along with previous accelerator measurements made of this effect during the last 40 years. The microscope scanning criteria used to identify the direct electron pairs is described. Prospects for application of the pair method to cosmic ray energy measurements in the region 10 (exp 13) to 10 (exp 15) eV/amu are discussed.
Structure and Dynamics with Ultrafast Electron Microscopes
NASA Astrophysics Data System (ADS)
Siwick, Bradley
In this talk I will describe how combining ultrafast lasers and electron microscopes in novel ways makes it possible to directly `watch' the time-evolving structure of condensed matter, both at the level of atomic-scale structural rearrangements in the unit cell and at the level of a material's nano- microstructure. First, I will briefly describe my group's efforts to develop ultrafast electron diffraction using radio- frequency compressed electron pulses in the 100keV range, a system that rivals the capabilities of xray free electron lasers for diffraction experiments. I will give several examples of the new kinds of information that can be gleaned from such experiments. In vanadium dioxide we have mapped the detailed reorganization of the unit cell during the much debated insulator-metal transition. In particular, we have been able to identify and separate lattice structural changes from valence charge density redistribution in the material on the ultrafast timescale. In doing so we uncovered a previously unreported optically accessible phase/state of vanadium dioxide that has monoclinic crystallography like the insulator, but electronic structure and properties that are more like the rutile metal. We have also combined these dynamic structural measurements with broadband ultrafast spectroscopy to make detailed connections between structure and properties for the photoinduced insulator to metal transition. Second, I will show how dynamic transmission electron microscopy (DTEM) can be used to make direct, real space images of nano-microstructural evolution during laser-induced crystallization of amorphous semiconductors at unprecedented spatio-temporal resolution. This is a remarkably complex process that involves several distinct modes of crystal growth and the development of intricate microstructural patterns on the nanosecond to ten microsecond timescales all of which can be imaged directly with DTEM.
Transmission electron microscope studies of extraterrestrial materials
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.
1995-01-01
Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.
Song, Can-Li; Wang, Yi-Lin; Jiang, Ye-Ping; Li, Zhi; Wang, Lili; He, Ke; Chen, Xi; Hoffman, Jennifer E; Ma, Xu-Cun; Xue, Qi-Kun
2014-02-07
Scanning tunneling spectroscopy has been used to reveal signatures of a bosonic mode in the local quasiparticle density of states of superconducting FeSe films. The mode appears below Tc as a "dip-hump" feature at energy Ω∼4.7kBTc beyond the superconducting gap Δ. Spectra on strained regions of the FeSe films reveal simultaneous decreases in Δ and Ω. This contrasts with all previous reports on other high-Tc superconductors, where Δ locally anticorrelates with Ω. A local strong coupling model is found to reconcile the discrepancy well, and to provide a unified picture of the electron-boson coupling in unconventional superconductors.
Cryoglobulinemic neuropathy: a pathological study.
Vallat, J M; Desproges-Gotteron, R; Leboutet, M J; Loubet, A; Gualde, N; Treves, R
1980-08-01
A 53-year-old woman developed symmetrical polyneuropathy of the lower limbs a few months after she was found to have myeloma with cryoglobulinemia. In musculocutaneous nerve biopsy material, electron microscopy showed both axonal degeneration and demyelination. The most striking finding was the presence, in the endoneurial space, of numerous masses of closely packed tubular structures. These masses also were found in the walls of all the vasa nervorum and within the lumen of some vessels. The morphological features and dimensions of the deposits within nerve were identical to those of cryoprecipitates extracted from serum and examined with the electron microscope. An example of myeloma neuropathy with cryoglobulin deposits within the endoneurial space has not been reported previously.
2017-06-29
Accurate Virus Quantitation Using a Scanning Transmission Electron Microscopy (STEM) Detector in a Scanning Electron Microscope Candace D Blancett1...L Norris2, Cynthia A Rossi4 , Pamela J Glass3, Mei G Sun1,* 1 Pathology Division, United States Army Medical Research Institute of Infectious...Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Maryland, 21702 2Biostatistics Division, United States Army Medical Research Institute of
Damage-free vibrational spectroscopy of biological materials in the electron microscope
Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L.; Dellby, Niklas; Lovejoy, Tracy C.; Wolf, Sharon G.; Cohen, Hagai
2016-01-01
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be ‘safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope. PMID:26961578
Damage-free vibrational spectroscopy of biological materials in the electron microscope.
Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai
2016-03-10
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be 'safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.
Damage-free vibrational spectroscopy of biological materials in the electron microscope
Rez, Peter; Aoki, Toshihiro; March, Katia; ...
2016-03-10
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof’ electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies o1 eV can be ‘safely’ investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with nomore » observable radiation damage. Furthermore, the technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ~10nm, simultaneously combined with imaging in the electron microscope.« less
Damage-free vibrational spectroscopy of biological materials in the electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rez, Peter; Aoki, Toshihiro; March, Katia
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof’ electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies o1 eV can be ‘safely’ investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with nomore » observable radiation damage. Furthermore, the technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ~10nm, simultaneously combined with imaging in the electron microscope.« less
U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.
2016-10-01
The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.
U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.
2016-03-30
The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.
A Student-Built Scanning Tunneling Microscope
ERIC Educational Resources Information Center
Ekkens, Tom
2015-01-01
Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…
78 FR 2659 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-14
..., 2201 West End Ave., Nashville, TN 37235. Instrument: Electron Microscope. Manufacturer: FEI Company... St., West Lafayette, IN 47907-2024. Instrument: Electron Microscope. Manufacturer: FEI Company, the..., microorganisms, nanomaterials, and chemical compounds. Justification for Duty-Free Entry: There are no...
Nazin, G. V.; Wu, S. W.; Ho, W.
2005-01-01
The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends. PMID:15956189
Nazin, G V; Wu, S W; Ho, W
2005-06-21
The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.
NASA Astrophysics Data System (ADS)
Dai, Zhongwei; Jin, Wencan; Grady, Maxwell; Sadowski, Jerzy T.; Dadap, Jerry I.; Osgood, Richard M.; Pohl, Karsten
2017-06-01
We have used selected area low energy electron diffraction intensity-voltage (μLEED-IV) analysis to investigate the surface structure of crystalline 2H molybdenum disulfide (MoS2) and mechanically exfoliated and suspended monolayer MoS2. Our results show that the surface structure of bulk 2H-MoS2 is distinct from its bulk and that it has a slightly smaller surface relaxation at 320 K than previously reported at 95 K. We concluded that suspended monolayer MoS2 shows a large interlayer relaxation compared to the MoS2 sandwich layer terminating the bulk surface. The Debye temperature of MoS2 was concluded to be about 600 K, which agrees with a previous theoretical study. Our work has shown that the dynamical μLEED-IV analysis performed with a low energy electron microscope (LEEM) is a powerful technique for determination of the local atomic structures of currently extensively studied two-dimensional (2-D) materials.
Dai, Zhongwei; Jin, Wencan; Grady, Maxwell; ...
2017-02-10
Here, we used selected area low energy electron diffraction intensity-voltage (μLEED-IV) analysis to investigate the surface structure of crystalline 2H molybdenum disulfide (MoS 2) and mechanically exfoliated and suspended monolayer MoS 2. Our results show that the surface structure of bulk 2H-MoS 2 is distinct from its bulk and that it has a slightly smaller surface relaxation at 320 K than previously reported at 95 K. We concluded that suspended monolayer MoS 2 shows a large interlayer relaxation compared to the MoS 2 sandwich layer terminating the bulk surface. The Debye temperature of MoS 2 was concluded to be aboutmore » 600 K, which agrees with a previous theoretical study. Our work has shown that the dynamical μLEED-IV analysis performed with a low energy electron microscope (LEEM) is a powerful technique for determination of the local atomic structures of currently extensively studied two-dimensional (2-D) materials.« less
Makhov, Alexander M; Sen, Anindito; Yu, Xiong; Simon, Martha N; Griffith, Jack D; Egelman, Edward H
2009-02-20
Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments is approximately 250 A, with approximately 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing approximately 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhov, A.M.; Simon, M.; Sen, A.
2009-02-20
Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments ismore » {approx} 250 {angstrom}, with {approx} 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing {approx} 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions.« less
Overview of Athena Microscopic Imager Results
NASA Technical Reports Server (NTRS)
Herkenhoff, K.; Squyres, S.; Arvidson, R.; Bass, D.; Bell, J., III; Bertelsen, P.; Cabrol, N.; Ehlmann, B.; Farrand, W.; Gaddis, L.
2005-01-01
The Athena science payload on the Mars Exploration Rovers (MER) includes the Microscopic Imager (MI). The MI is a fixed-focus camera mounted on an extendable arm, the Instrument Deployment Device (IDD). The MI acquires images at a spatial resolution of 31 microns/pixel over a broad spectral range (400 - 700 nm). The MI uses the same electronics design as the other MER cameras but its optics yield a field of view of 32 32 mm across a 1024 1024 pixel CCD image. The MI acquires images using only solar or skylight illumination of the target surface. The MI science objectives, instrument design and calibration, operation, and data processing were described by Herkenhoff et al. Initial results of the MI experiment on both MER rovers (Spirit and Opportunity) have been published previously. Highlights of these and more recent results are described.
Microcellular nanocomposite injection molding process
Mingjun Yuan; Lih-Sheng Turng; Rick Spindler; Daniel Caulfield; Chris Hunt
2003-01-01
This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The molded parts produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, and Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Dynamic Mechanical...
The microscopic world: A demonstration of electron microscopy for younger students
NASA Technical Reports Server (NTRS)
Horton, Linda L.
1992-01-01
The purpose is to excite students about the importance of scientific investigation and demonstrate why they should look at things in greater detail, extending beyond superficial examination. The topics covered include: microscopy, scanning electron microscopes, high magnification, and the scientific method.
NASA Astrophysics Data System (ADS)
Zając, Magdalena; Rudowicz, Czesław; Ohta, Hitoshi; Sakurai, Takahiro
2018-03-01
Utilizing the package MSH/VBA, based on the microscopic spin Hamiltonian (MSH) approach, spectroscopic and magnetic properties of Fe2+ (3d6; S = 2) ions at (nearly) orthorhombic sites in Fe(NH4)2(SO4)2·6H2O (FASH) are modeled. The zero-field splitting (ZFS) parameters and the Zeeman electronic (Ze) factors are predicted for wide ranges of values of the microscopic parameters, i.e. the spin-orbit (λ), spin-spin (ρ) coupling constants, and the crystal-field (ligand-field) energy levels (Δi) within the 5D multiplet. This enables to consider the dependence of the ZFS parameters bkq (in the Stevens notation), or the conventional ones (e.g., D and E), and the Zeeman factors gi on λ, ρ, and Δi. By matching the theoretical SH parameters and the experimental ones measured by electron magnetic resonance (EMR), the values of λ, ρ, and Δi best describing Fe2+ ions in FASH are determined. The novel aspect is prediction of the fourth-rank ZFS parameters and the ρ(spin-spin)-related contributions, not considered in previous studies. The higher-order contributions to the second- and fourth-rank ZFSPs are found significant. The MSH predictions provide guidance for high-magnetic field and high-frequency EMR (HMF-EMR) measurements and enable assessment of suitability of FASH for application as high-pressure probes for HMF-EMR studies. The method employed here and the present results may be also useful for other structurally related Fe2+ (S = 2) systems.
Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankos, Marian; Persson, Henrik H. J.; N’Diaye, Alpha T.
DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectronmore » and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. In conclusion, both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging.« less
Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy
Mankos, Marian; Persson, Henrik H. J.; N’Diaye, Alpha T.; ...
2016-05-05
DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectronmore » and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. In conclusion, both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging.« less
A next generation positron microscope and a survey of candidate samples for future positron studies
NASA Astrophysics Data System (ADS)
Dull, Terry Lou
A positron microscope has been constructed and is nearing the conclusion of its assembly and testing. The instrument is designed to perform positron and electron microscopy in both scanning and magnifying modes. In scanning mode, a small beam of particles is rastered across the target and the amplitude of a positron or electron related signal is recorded as a function of position. For positrons this signal may come from Doppler Broadening Spectroscopy, Reemitted Positron Spectroscopy or Positron Annihilation Lifetime Spectroscopy. For electrons this signal may come from the number of secondary electrons or Auger Electron Spectroscopy. In magnifying mode an incident beam of particles is directed onto the target and emitted particles, either secondary electrons or reemitted positrons, are magnified to form an image. As a positron microscope the instrument will primarily operate in magnifying mode, as a positron reemission microscope. As an electron microscope the instrument will be able to operate in both magnifying and scanning modes. Depth-profiled Doppler Broadening Spectroscopy studies using a non-microscopic low-energy positron beam have also been performed on a series of samples to ascertain the applicability of positron spectroscopies and/or microscopy to their study. All samples have sub-micron film and/or feature size and thus are only susceptible to positron study with low-energy beams. Several stoichiometries and crystallinities of chalcogenide thin films (which can be optically reversibly switched between crystalline states) were studied and a correlation was found to exist between the amorphous/FCC S-parameter difference and the amorphous/FCC switching time. Amorphous silicon films were studied in an attempt to observe the well-established Staebler-Wronski effect as well as the more controversial photodilatation effect. However, DBS was not able to detect either effect. The passive oxide films on titanium and aluminum were studied in an attempt to verify the Point Defect Model, a detailed, but as yet microscopically unconfirmed, theory of the corrosive breakdown of passive films. DBS results supportive of the PDM were observed. Graphitic carbon fibers were also studied and DBS indicated the presence of a 200 nm thick outer fiber skin possibly characterized by a high degree of graphitic crystallite alignment.
Microscopic Electron Variations Measured Simultaneously By The Cluster Spacecraft
NASA Astrophysics Data System (ADS)
Buckley, A. M.; Carozzi, T. D.; Gough, M. P.; Beloff, N.
Data is used from the Particle Correlator experiments running on each of the four Cluster spacecraft so as to determine common microscopic behaviour in the elec- tron population observed over the macroscopic Cluster separations. The Cluster par- ticle correlator experiments operate by forming on board Auto Correlation Functions (ACFs) generated from short time series of electron counts obtained, as a function of electron energy, from the PEACE HEEA sensor. The information on the microscopic variation of the electron flux covers the frequency range DC up to 41 kHz (encom- passing typical electron plasma frequencies and electron gyro frequencies and their harmonics), the electron energy range is that covered by the PEACE HEEA sensor (within the range 1 eV to 26 keV). Results are presented of coherent electron struc- tures observed simultaneously by the four spacecraft in the differing plasma interac- tion regions and boundaries encountered by Cluster. As an aid to understanding the plasma interactions, use is made of numerical simulations which model both the un- derlying statistical properties of the electrons and also the manner in which particle correlator experiments operate.
Harada, Ken; Akashi, Tetsuya; Niitsu, Kodai; Shimada, Keiko; Ono, Yoshimasa A; Shindo, Daisuke; Shinada, Hiroyuki; Mori, Shigeo
2018-01-17
Advanced electron microscopy technologies have made it possible to perform precise double-slit interference experiments. We used a 1.2-MV field emission electron microscope providing coherent electron waves and a direct detection camera system enabling single-electron detections at a sub-second exposure time. We developed a method to perform the interference experiment by using an asymmetric double-slit fabricated by a focused ion beam instrument and by operating the microscope under a "pre-Fraunhofer" condition, different from the Fraunhofer condition of conventional double-slit experiments. Here, pre-Fraunhofer condition means that each single-slit observation was performed under the Fraunhofer condition, while the double-slit observations were performed under the Fresnel condition. The interference experiments with each single slit and with the asymmetric double slit were carried out under two different electron dose conditions: high-dose for calculation of electron probability distribution and low-dose for each single electron distribution. Finally, we exemplified the distribution of single electrons by color-coding according to the above three types of experiments as a composite image.
NASA Astrophysics Data System (ADS)
Kislitsyn, Dmitry Anatolevich
This dissertation presents results of a project bringing Scanning Tunneling Microscope (STM) into a regime of unlimited operational time at cryogenic conditions. Freedom from liquid helium consumption was achieved and technical characteristics of the instrument are reported, including record low noise for a scanning probe instrument coupled to a close-cycle cryostat, which allows for atomically resolved imaging, and record low thermal drift. Subsequent studies showed that the new STM opened new prospects in nanoscience research by enabling Scanning Tunneling Spectroscopic (STS) spatial mapping to reveal details of the electronic structure in real space for molecules and low-dimensional nanomaterials, for which this depth of investigation was previously prohibitively expensive. Quantum-confined electronic states were studied in single-walled carbon nanotubes (SWCNTs) deposited on the Au(111) surface. Localization on the nanometer-scale was discovered to produce a local vibronic manifold resulting from the localization-enhanced electron-vibrational coupling. STS showed the vibrational overtones, identified as D-band Kekule vibrational modes and K-point transverse out-of plane phonons. This study experimentally connected the properties of well-defined localized electronic states to the properties of associated vibronic states. Electronic structures of alkyl-substituted oligothiophenes with different backbone lengths were studied and correlated with torsional conformations assumed on the Au(111) surface. The molecules adopted distinct planar conformations with alkyl ligands forming cis- or trans-mutual orientations and at higher coverage self-assembled into ordered structures, binding to each other via interdigitated alkyl ligands. STS maps visualized, in real space, particle-in-a-box-like molecular orbitals. Shorter quaterthiophenes have substantially varying orbital energies because of local variations in surface reactivity. Different conformers of longer oligothiophenes with significant geometrical distortions of the oligothiophene backbones surprisingly exhibited similar electronic structures, indicating insensitivity of interaction with the surface to molecular conformation. Electronic states for annealed ligand-free lead sulfide nanocrystals were investigated, as well as hydrogen-passivated silicon nanocrystals, supported on the Au(111) surface. Delocalized quantum-confined states and localized defect-related states were identified, for the first time, via STS spatial mapping. Physical mechanisms, involving surface reconstruction or single-atom defects, were proposed for surface state formation to explain the observed spatial behavior of the electronic density of states. This dissertation includes previously published co-authored material.
Pre-microscope tunnelling — Inspiration or constraint?
NASA Astrophysics Data System (ADS)
Walmsley, D. G.
1987-03-01
Before the microscope burst upon the scene, tunnelling had established for itself a substantial niche in the repertoire of the solid state physicist. Over a period of 20 years it has contributed importantly to our understanding of many systems. It elucidated the superconducting state, first by a direct display of the energy gap then by providing detailed information on the phonon spectra and electron-phonon coupling strength in junction electrodes. Its use as a phonon spectrometer was subsequently extended to semiconductors and to the oxides of insulating barriers. Eventually the vibrational spectra of monolayer organic and inorganic adsorbates became amenable with rich scientific rewards. In a few cases electronic transitions have been observed. Plasmon excitation by tunnelling electrons led to insights on the electron loss function in metals at visible frequencies and provided along the way an intriguing light emitting device. With the advent of the microscope it is now appropriate to enquire how much of this experience can profitably be carried over to the new environment. Are we constrained just to repeat the experiments in a new configuration? Happily no. The microscope offers us topographical and spectroscopic information of a new order. One might next ask how great is the contact between the two disciplines? We explore this question and seek to establish where the pre-microscope experience can be helpful in inspiring our use of this marvellous new facility that we know as the scanning tunnelling microscope.
Electronic structure and microscopic model of V(2)GeO(4)F(2)-a quantum spin system with S = 1.
Rahaman, Badiur; Saha-Dasgupta, T
2007-07-25
We present first-principles density functional calculations and downfolding studies of the electronic and magnetic properties of the oxide-fluoride quantum spin system V(2)GeO(4)F(2). We discuss explicitly the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modelling based on analysis of the electronic structure of this systems puts it in the interesting class of weakly coupled alternating chain S = 1 systems. Based on the microscopic model, we make inferrences about its spin excitation spectra, which needs to be tested by rigorous experimental study.
Miniature self-contained vacuum compatible electronic imaging microscope
Naulleau, Patrick P.; Batson, Phillip J.; Denham, Paul E.; Jones, Michael S.
2001-01-01
A vacuum compatible CCD-based microscopic camera with an integrated illuminator. The camera can provide video or still feed from the microscope contained within a vacuum chamber. Activation of an optional integral illuminator can provide light to illuminate the microscope subject. The microscope camera comprises a housing with a objective port, modified objective, beam-splitter, CCD camera, and LED illuminator.
Börrnert, Felix; Renner, Julian; Kaiser, Ute
2018-05-21
The electron source brightness is an important parameter in an electron microscope. Reliable and easy brightness measurement routes are not easily found. A determination method for the illumination semi-angle distribution in transmission electron microscopy is even less well documented. Herein, we report a simple measurement route for both entities and demonstrate it on a state-of-the-art instrument. The reduced axial brightness of the FEI X-FEG with a monochromator was determined to be larger than 108 A/(m2 sr V).
An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bormann, Reiner; Strauch, Stefanie; Schäfer, Sascha, E-mail: schaefer@ph4.physik.uni-goettingen.de
We experimentally and numerically investigate the performance of an advanced ultrafast electron source, based on two-photon photoemission from a tungsten needle cathode incorporated in an electron microscope gun geometry. Emission properties are characterized as a function of the electrostatic gun settings, and operating conditions leading to laser-triggered electron beams of very low emittance (below 20 nm mrad) are identified. The results highlight the excellent suitability of optically driven nano-cathodes for the further development of ultrafast transmission electron microscopy.
NASA Technical Reports Server (NTRS)
Ware, Jacqueline; Hammond, Ernest C., Jr.
1989-01-01
The compound, 2-(2,4-dinitrobenzyl) pyridine, was synthesized in the laboratory; an introductory level electron microscopy study of the macro-crystalline structure was conducted using the scanning electron microscope (SEM). The structure of these crystals was compared with the macrostructure of the crystal of 2-(2,4-dinitrobenzyl) pyridinium bromide, the hydrobromic salt of the compound which was also synthesized in the laboratory. A scanning electron microscopy crystal study was combined with a study of the principle of the electron microscope.
NASA Astrophysics Data System (ADS)
Hao, Qing-Hai; You, Yu-Wei; Kong, Xiang-Shan; Liu, C. S.
2013-03-01
The microscopic structure and dynamics of liquid MgxBi1-x(x = 0.5, 0.6, 0.7) alloys together with pure liquid Mg and Bi metals were investigated by means of ab initio molecular dynamics simulations. We present results of structure properties including pair correlation function, structural factor, bond-angle distribution function and bond order parameter, and their composition dependence. The dynamical and electronic properties have also been studied. The structure factor and pair correlation function are in agreement with the available experimental data. The calculated bond-angle distribution function and bond order parameter suggest that the stoichiometric composition Mg3Bi2 exhibits a different local structure order compared with other concentrations, which help us understand the appearance of the minimum electronic conductivity at this composition observed in previous experiments.
Atomic resolution study of the interfacial bonding at Si3N4/CeO2-δ grain boundaries
NASA Astrophysics Data System (ADS)
Walkosz, W.; Klie, R. F.; Öǧüt, S.; Borisevich, A.; Becher, P. F.; Pennycook, S. J.; Idrobo, J. C.
2008-08-01
Using a combination of atomic-resolution Z-contrast imaging and electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope, we examine the atomic and electronic structures at the interface between Si3N4 (101¯0) and CeO2-d intergranular film (IGF). Ce atoms are observed to segregate to the interface in a two-layer periodic arrangement, which is significantly different from the structure observed in a previous study. Our EELS experiments show (i) oxygen in direct contact with the terminating Si3N4 open-ring structures, (ii) a change in the Ce valence from a nominal oxidation state of +3 to almost +4 moving from the interface into the IGF, and (iii) a uniform concentration of Si in the film.
Electron beam assisted field evaporation of insulating nanowires/tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, N. P., E-mail: nicholas.blanchard@univ-lyon1.fr; Niguès, A.; Choueib, M.
2015-05-11
We demonstrate field evaporation of insulating materials, specifically BN nanotubes and undoped Si nanowires, assisted by a convergent electron beam. Electron irradiation leads to positive charging at the nano-object's apex and to an important increase of the local electric field thus inducing field evaporation. Experiments performed both in a transmission electron microscope and in a scanning electron microscope are presented. This technique permits the selective evaporation of individual nanowires in complex materials. Electron assisted field evaporation could be an interesting alternative or complementary to laser induced field desorption used in atom probe tomography of insulating materials.
The contributions of Otto Scherzer (1909-1982) to the development of the electron microscope.
Marko, Michael; Rose, Harald
2010-08-01
Otto Scherzer was one of the pioneers of theoretical electron optics. He was coauthor of the first comprehensive book on electron optics and was the first to understand that round electron lenses could not be combined to correct aberrations, as is the case in light optics. He subsequently was the first to describe several alternative means to correct spherical and chromatic aberration of electron lenses. These ideas were put into practice by his laboratory and students at Darmstadt and their successors, leading to the fully corrected electron microscopes now in operation.
Beier, K; Fahimi, H D
1987-01-01
The feasibility of the application of a television-based image analyzer, the Texture Analysis System (TAS, Leitz Wetzlar, FRG) in conjunction with a light microscope for morphometric studies of hepatic peroxisomes has been investigated. Rat liver peroxisomes were stained with the alkaline-DAB method for localization of catalase and semithin (0.25 and 1 micron) sections of plastic-embedded material were examined under an oil immersion objective. The TAS detected the peroxisomal profiles selectively and determined their morphometric parameters automatically. The same parameters were obtained also by morphometric analysis of electron micrographs from the same material. The volume density of peroxisomes determined by TAS in semithin sections of normal liver, after correction for section thickness, is quite close to the corresponding value obtained by morphometry of electron micrographs. The difference is approximately 20%. In animals treated with the hypolipidemic drug bezafibrate, which causes proliferation of peroxisomes, TAS detected readily the increase in volume density of peroxisomes in semithin sections. In comparison with electron microscopy, however, the light-microscopic approach seems to underestimate the proliferation. The lower resolution of the light microscope and overlapping of neighbouring particles in relatively thick sections used for light-microscopic analysis may account for the differences. The present study has demonstrated the usefulness of automatic image analysis in conjunction with selective cytochemical staining of peroxisomes for morphometry of this organelle in rat liver. The light-microscopic approach is not only faster but is also extremely economical by obviating the use of an electron microscope.
Electron beam induced deposition of silicon nanostructures from a liquid phase precursor.
Liu, Yin; Chen, Xin; Noh, Kyong Wook; Dillon, Shen J
2012-09-28
This work demonstrates electron beam induced deposition of silicon from a SiCl(4) liquid precursor in a transmission electron microscope and a scanning electron microscope. Silicon nanodots of tunable size are reproducibly grown in controlled geometries. The volume of these features increases linearly with deposition time. The results indicate that secondary electrons generated at the substrate surface serve as the primary source of silicon reduction. However, at high current densities the influence of the primary electrons is observed to retard growth. The results demonstrate a new approach to fabricating silicon nanostructures and provide fundamental insights into the mechanism for liquid phase electron beam induced deposition.
Electron beam induced deposition of silicon nanostructures from a liquid phase precursor
NASA Astrophysics Data System (ADS)
Liu, Yin; Chen, Xin; Noh, Kyong Wook; Dillon, Shen J.
2012-09-01
This work demonstrates electron beam induced deposition of silicon from a SiCl4 liquid precursor in a transmission electron microscope and a scanning electron microscope. Silicon nanodots of tunable size are reproducibly grown in controlled geometries. The volume of these features increases linearly with deposition time. The results indicate that secondary electrons generated at the substrate surface serve as the primary source of silicon reduction. However, at high current densities the influence of the primary electrons is observed to retard growth. The results demonstrate a new approach to fabricating silicon nanostructures and provide fundamental insights into the mechanism for liquid phase electron beam induced deposition.
Transmission Electron Microscope Measures Lattice Parameters
NASA Technical Reports Server (NTRS)
Pike, William T.
1996-01-01
Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.
Ponderomotive phase plate for transmission electron microscopes
Reed, Bryan W [Livermore, CA
2012-07-10
A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.
Steiner, M; Schöfer, C; Mosgoeller, W
1994-12-01
A simple and reliable method has been developed for the in situ LR White embedding of cell monolayers grown on glass cover-slips. Combined with cytochemical or immunological procedures, this technique allows light and/or electron microscopy investigations of a large number of cells in the same horizontal plane within a relatively short period of time. It can be applied to cells grown on microgrid finder cover-slips which allows a distinct site of even an individual cell of a monolayer to be studied at first at the light microscope level and subsequently at the electron microscope level. Hence, it is also suitable for controlling manipulation of single cells, followed by their serial sectioning after relocation in the electron microscope.
Mars Life? - Microscopic Tubular Structures
1996-08-09
This electron microscope image shows extremely tiny tubular structures that are possible microscopic fossils of bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. http://photojournal.jpl.nasa.gov/catalog/PIA00285
Mars Life? - Microscopic Egg-shaped Structures
1996-08-09
This electron microscope image shows egg-shaped structures, some of which may be possible microscopic fossils of Martian origin as discussed by NASA research published in the Aug. 16, 1996. http://photojournal.jpl.nasa.gov/catalog/PIA00286
CHARACTERISTICS OF INDIVIDUAL PARTICLES AT A RURAL SITE IN THE EASTERN UNITED STATES
To determine the nature of aerosol particles in a rural area of the eastern United States, aerosol samples were collected at Deep Creek Lake, Maryland, on various substrates and analyzed by a scanning electron microscope (SEM) and a transmission electron microscope (TEM). SEM ana...
Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes
USDA-ARS?s Scientific Manuscript database
Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-06
... DEPARTMENT OF COMMERCE International Trade Administration The Regents of the University of...: Washington University in St. Louis, Saint Louis, MO 63130. Instrument: Electron Microscope. Manufacturer: FEI.... Applicant: The Regents of the University of California, Berkeley, CA 94720. Instrument: Electron Microscope...
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM). PMID:29568263
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM).
Itakura, Masaru; Kuwano, Noriyuki; Sato, Kaoru; Tachibana, Shigeaki
2010-08-01
Image contrasts of Si-based semiconducting materials have been investigated by using the latest scanning electron microscope with various detectors under a range of experimental conditions. Under a very low accelerating voltage (500 V), we obtained a good image contrast between crystalline SiGe whiskers and the amorphous matrix using an in-lens secondary electron (SE) detector, while the conventional topographic SE image and the compositional backscattered electron (BSE) image gave no distinct contrast. By using an angular-selective BSE (AsB) detector for wide-angle scattered BSE, on the other hand, the crystal grains in amorphous matrix can be clearly visualized as 'channelling contrast'. The image contrast is very similar to that of their transmission electron microscope image. The in-lens SE (true SE falling dots SE1) and the AsB (channelling) contrasts are quite useful to distinguish crystalline parts from amorphous ones.
Dynamic imaging with electron microscopy
Campbell, Geoffrey; McKeown, Joe; Santala, Melissa
2018-02-13
Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.
Grzelakowski, Krzysztof P
2016-05-01
Since its introduction the importance of complementary k||-space (LEED) and real space (LEEM) information in the investigation of surface science phenomena has been widely demonstrated over the last five decades. In this paper we report the application of a novel kind of electron spectromicroscope Dual Emission Electron spectroMicroscope (DEEM) with two independent electron optical channels for reciprocal and real space quasi-simultaneous imaging in investigation of a Cs covered Mo(110) single crystal by using the 800eV electron beam from an "in-lens" electron gun system developed for the sample illumination. With the DEEM spectromicroscope it is possible to observe dynamic, irreversible processes at surfaces in the energy-filtered real space and in the corresponding energy-filtered kǁ-space quasi-simultaneously in two independent imaging columns. The novel concept of the high energy electron beam sample illumination in the cathode lens based microscopes allows chemically selective imaging and analysis under laboratory conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Schneider, Gerd; Guttmann, Peter; Rehbein, Stefan; Werner, Stephan; Follath, Rolf
2012-02-01
X-ray imaging offers a new 3-D view into cells. With its ability to penetrate whole hydrated cells it is ideally suited for pairing fluorescence light microscopy and nanoscale X-ray tomography. In this paper, we describe the X-ray optical set-up and the design of the cryo full-field transmission X-ray microscope (TXM) at the electron storage ring BESSY II. Compared to previous TXM set-ups with zone plate condenser monochromator, the new X-ray optical layout employs an undulator source, a spherical grating monochromator and an elliptically shaped glass capillary mirror as condenser. This set-up improves the spectral resolution by an order of magnitude. Furthermore, the partially coherent object illumination improves the contrast transfer of the microscope compared to incoherent conditions. With the new TXM, cells grown on flat support grids can be tilted perpendicular to the optical axis without any geometrical restrictions by the previously required pinhole for the zone plate monochromator close to the sample plane. We also developed an incorporated fluorescence light microscope which permits to record fluorescence, bright field and DIC images of cryogenic cells inside the TXM. For TXM tomography, imaging with multi-keV X-rays is a straightforward approach to increase the depth of focus. Under these conditions phase contrast imaging is necessary. For soft X-rays with shrinking depth of focus towards 10nm spatial resolution, thin optical sections through a thick specimen might be obtained by deconvolution X-ray microscopy. As alternative 3-D X-ray imaging techniques, the confocal cryo-STXM and the dual beam cryo-FIB/STXM with photoelectron detection are proposed. Copyright © 2012 Elsevier Inc. All rights reserved.
Generation of dense statistical connectomes from sparse morphological data
Egger, Robert; Dercksen, Vincent J.; Udvary, Daniel; Hege, Hans-Christian; Oberlaender, Marcel
2014-01-01
Sensory-evoked signal flow, at cellular and network levels, is primarily determined by the synaptic wiring of the underlying neuronal circuitry. Measurements of synaptic innervation, connection probabilities and subcellular organization of synaptic inputs are thus among the most active fields of research in contemporary neuroscience. Methods to measure these quantities range from electrophysiological recordings over reconstructions of dendrite-axon overlap at light-microscopic levels to dense circuit reconstructions of small volumes at electron-microscopic resolution. However, quantitative and complete measurements at subcellular resolution and mesoscopic scales to obtain all local and long-range synaptic in/outputs for any neuron within an entire brain region are beyond present methodological limits. Here, we present a novel concept, implemented within an interactive software environment called NeuroNet, which allows (i) integration of sparsely sampled (sub)cellular morphological data into an accurate anatomical reference frame of the brain region(s) of interest, (ii) up-scaling to generate an average dense model of the neuronal circuitry within the respective brain region(s) and (iii) statistical measurements of synaptic innervation between all neurons within the model. We illustrate our approach by generating a dense average model of the entire rat vibrissal cortex, providing the required anatomical data, and illustrate how to measure synaptic innervation statistically. Comparing our results with data from paired recordings in vitro and in vivo, as well as with reconstructions of synaptic contact sites at light- and electron-microscopic levels, we find that our in silico measurements are in line with previous results. PMID:25426033
Development of a secondary electron energy analyzer for a transmission electron microscope.
Magara, Hideyuki; Tomita, Takeshi; Kondo, Yukihito; Sato, Takafumi; Akase, Zentaro; Shindo, Daisuke
2018-04-01
A secondary electron (SE) energy analyzer was developed for a transmission electron microscope. The analyzer comprises a microchannel plate (MCP) for detecting electrons, a coil for collecting SEs emitted from the specimen, a tube for reducing the number of backscattered electrons incident on the MCP, and a retarding mesh for selecting the energy of SEs incident on the MCP. The detection of the SEs associated with charging phenomena around a charged specimen was attempted by performing electron holography and SE spectroscopy using the energy analyzer. The results suggest that it is possible to obtain the energy spectra of SEs using the analyzer and the charging states of a specimen by electron holography simultaneously.
NASA Astrophysics Data System (ADS)
Jiang, N.; Deguchi, M.; Wang, C. L.; Won, J. H.; Jeon, H. M.; Mori, Y.; Hatta, A.; Kitabatake, M.; Ito, T.; Hirao, T.; Sasaki, T.; Hiraki, A.
1997-04-01
A transmission electron microscope (TEM) study of ion-implanted chemical-vapor-deposited (CVD) diamond is presented. CVD diamond used for transmission electron microscope observation was directly deposited onto Mo TEM grids. As-deposited specimens were irradiated by C (100 keV) ions at room temperature with a wide range of implantation doses (10 12-10 17/cm 2). Transmission electron diffraction (TED) patterns indicate that there exists a critical dose ( Dc) for the onset of amorphization of CVD diamond as a result of ion induced damage and the value of critical dose is confirmed to be about 3 × 10 15/cm 2. The ion-induced transformation process is clearly revealed by high resolution electron microscope (HREM) images. For a higher dose implantation (7 × 10 15/cm 2) a large amount of diamond phase is transformed into amorphous carbon and many tiny misoriented diamond blocks are found to be left in the amorphous solid. The average size of these misoriented diamond blocks is only about 1-2 nm. Further bombardment (10 17/cm 2) almost kills all of the diamond phase within the irradiated volume and moreover leads to local formation of micropolycrystalline graphite.
An investigation of nitride precipitates in archaeological iron artefacts from Poland.
Kedzierski, Z; Stepiński, J; Zielińska-Lipiec, A
2010-03-01
The paper describes the investigations of nitride precipitates in a spearhead and a sword found in the territory of Poland, in cremation graveyards of the Przeworsk Culture, dated to the Roman Period. Three different techniques of the examination of nitride precipitates were employed: optical microscope, scanning electron microscope (scanning electron microscope with energy dispersive X-ray spectrometer) and transmission electron microscope. Two types of precipitates have been observed, and their plate-like shape was demonstrated. The large precipitate has been confirmed to be gamma'-Fe(4)N, whereas the small one has been identified as alpha''-Fe(16)N(2). The origin of nitride precipitates in archaeological iron artefacts from Poland is probably a result of the manufacturing process or cremation as part of burial rites. An examination of available iron artefacts indicates that nitride precipitates (have only limited effect on mechanical properties) influence the hardness of metal only to a very limited degree.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki, E-mail: toshiaki.tanigaki.mv@hitachi.com
2015-02-16
Atomic-resolution electromagnetic field observation is critical to the development of advanced materials and to the unveiling of their fundamental physics. For this purpose, a spherical-aberration corrected 1.2-MV cold field-emission transmission electron microscope has been developed. The microscope has the following superior properties: stabilized accelerating voltage, minimized electrical and mechanical fluctuation, and coherent electron emission. These properties have enabled to obtain 43-pm information transfer. On the bases of these performances, a 43-pm resolution has been obtained by correcting lens aberrations up to the third order. Observations of GaN [411] thin crystal showed a projected atomic locations with a separation of 44 pm.
Indentation-Enabled In Situ Mechanical Characterization of Micro/Nanopillars in Electron Microscopes
NASA Astrophysics Data System (ADS)
Guo, Qiang; Fu, Xidan; Guo, Xiaolei; Liu, Zhiying; Shi, Yan; Zhang, Di
2018-04-01
Indentation-enabled micro/nanomechanical characterization of small-scale specimens provides powerful new tools for probing materials properties that were once unattainable by conventional experimental methods. Recent advancement in instrumentation further allows mechanical testing to be carried out in situ in electron microscopes, with high spatial and temporal resolution. This review discusses the recent development of nanoindentation-enabled in situ mechanical testing in electron microscopes, with an emphasis on the study of micro/nanopillars. Focus is given to novel applications beyond simple compressive and tensile testing that have been developed in the past few years, and limitations and possible future research directions in this field are proposed and discussed.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2010-06-29
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2009-11-10
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2007-12-11
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2010-07-13
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2009-10-27
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
A case of generalized argyria after ingestion of colloidal silver solution.
Kim, Yangho; Suh, Ho Seok; Cha, Hee Jeong; Kim, Suk Hwan; Jeong, Kyoung Sook; Kim, Dong Hoon
2009-03-01
A 58-year-old woman was referred to our hospital due to progressive skin darkening, which began 5 months previously. The patient had strikingly diffuse blue-gray discoloration of the skin, most prominent in sun-exposed areas, especially her face and hands. The oral mucosa, tongue, gums, eye conjunctiva, ears, nail beds, and trunk were also involved. Bluish-gray discoloration of all nails was aggravated by cold weather. She had ingested 1 L of colloidal silver solution daily for approximately 16 months as a traditional remedy. Her serum silver concentration was 381 ng/ml which was a very high (reference level: <15 ng/ml). Light microscopic examination of a punch biopsy specimen from her nose revealed fine, minute, round, and brown-black granules deposited in the basement membrane of hair follicular epithelium. Scanning electron microscopic examination showed electron-dense granules deposited in the intercellular space of sweat glands. Energy disperse X-ray spectrometry analysis demonstrated peaks for silver and sulfur in the dense black deposits. The ingestion of colloidal silver appears to be an increasing practice among patients using alternative health practices. All silver-containing products including colloidal silver should be labeled with a clear warning to prevent argyria, especially in alternative health practices.
Bao, Mianmian; Liu, Ying; Wang, Xiaoyan; Yang, Lei; Li, Shengyi; Ren, Jing; Qin, Gaowu; Zhang, Erlin
2018-03-01
Previous study has shown that Ti-3Cu alloy shows good antibacterial properties (>90% antibacterial rate), but the mechanical properties still need to be improved. In this paper, a series of heat-treatment processes were selected to adjust the microstructure in order to optimize the properties of Ti-3Cu alloy. Microstructure, mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy at different conditions was systematically investigated by X-ray diffraction, optical microscope, scanning electron microscope, transmission electron microscopy, electrochemical measurements, tensile test, fatigue test and antibacterial test. Heat treatment could significantly improve the mechanical properties, corrosion resistance and antibacterial rate due to the redistribution of copper elements and precipitation of Ti 2 Cu phase. Solid solution treatment increased the yield strength from 400 to 740 MPa and improved the antibacterial rate from 33% to 65.2% while aging treatment enhanced the yield strength to 800-850 MPa and antibacterial rate (>91.32%). It was demonstrated that homogeneous distribution and fine Ti 2 Cu phase plays a very important role in mechanical properties, corrosion resistance and antibacterial properties.
Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Ateeq, Muhammad; Raza Shah, Muhammad; Kulsoom, Huma; Khan, Naveed Ahmed
2015-01-01
Light microscopy and electron microscopy have been successfully used in the study of microbes, as well as free-living protists. Unlike light microscopy, which enables us to observe living organisms or the electron microscope which provides a two-dimensional image, atomic force microscopy provides a three-dimensional surface profile. Here, we observed two free-living amoebae, Acanthamoeba castellanii and Balamuthia mandrillaris under the phase contrast inverted microscope, transmission electron microscope and atomic force microscope. Although light microscopy was of lower magnification, it revealed functional biology of live amoebae such as motility and osmoregulation using contractile vacuoles of the trophozoite stage, but it is of limited value in defining the cyst stage. In contrast, transmission electron microscopy showed significantly greater magnification and resolution to reveal the ultra-structural features of trophozoites and cysts including intracellular organelles and cyst wall characteristics but it only produced a snapshot in time of a dead amoeba cell. Atomic force microscopy produced three-dimensional images providing detailed topographic description of shape and surface, phase imaging measuring boundary stiffness, and amplitude measurements including width, height and length of A. castellanii and B. mandrillaris trophozoites and cysts. These results demonstrate the importance of the application of various microscopic methods in the biological and structural characterization of the whole cell, ultra-structural features, as well as surface components and cytoskeleton of protist pathogens. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.
Scanning electron microscope view of iron crystal growing on pyroxene crystal
NASA Technical Reports Server (NTRS)
1972-01-01
A scanning electron microscope photograph of a four-micron size iron crystal growing on a pyroxene crystal (calcium-magnesium-iron silicate) from the Apollo 15 Hadley-Apennino lunar landing site. The well developed crystal faces indicate that the crystal was formed from a hot vapor as the rock was cooling.
Arc-melting preparation of single crystal LaB.sub.6 cathodes
Gibson, Edwin D.; Verhoeven, John D.
1977-06-21
A method for preparing single crystals of lanthanum hexaboride (LaB.sub.6) by arc melting a rod of compacted LaB.sub.6 powder. The method is especially suitable for preparing single crystal LaB.sub.6 cathodes for use in scanning electron microscopes (SEM) and scanning transmission electron microscopes (STEM).
Deciphering the physics and chemistry of perovskites with transmission electron microscopy.
Polking, Mark J
2016-03-28
Perovskite oxides exhibit rich structural complexity and a broad range of functional properties, including ferroelectricity, ferromagnetism, and superconductivity. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, electron holography, and other techniques has fueled rapid progress in the understanding of the physics and chemistry of these materials. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, chemistry, electrostatics, and dynamics of perovskite oxides are then explored in detail, with a particular focus on ferroelectric materials.
High-yield transfer printing of metal-insulator-metal nanodiodes.
Bareiss, Mario; Ante, Frederik; Kälblein, Daniel; Jegert, Gunther; Jirauschek, Christian; Scarpa, Giuseppe; Fabel, Bernhard; Nelson, Edward M; Timp, Gregory; Zschieschang, Ute; Klauk, Hagen; Porod, Wolfgang; Lugli, Paolo
2012-03-27
Nanoscale metal-insulator-metal (MIM) diodes represent important devices in the fields of electronic circuits, detectors, communication, and energy, as their cutoff frequencies may extend into the "gap" between the electronic microwave range and the optical long-wave infrared regime. In this paper, we present a nanotransfer printing method, which allows the efficient and simultaneous fabrication of large-scale arrays of MIM nanodiode stacks, thus offering the possibility of low-cost mass production. In previous work, we have demonstrated the successful transfer and electrical characterization of macroscopic structures. Here, we demonstrate for the first time the fabrication of several millions of nanoscale diodes with a single transfer-printing step using a temperature-enhanced process. The electrical characterization of individual MIM nanodiodes was performed using a conductive atomic force microscope (AFM) setup. Our analysis shows that the tunneling current is the dominant conduction mechanism, and the electrical measurement data agree well with experimental data on previously fabricated microscale diodes and numerical simulations. © 2012 American Chemical Society
Zhang, Lingxin; Carpenter, Danielle; Dehner, Louis P
2016-01-01
A 30-year-old man with past medical history of atrial fibrillation/flutter passed away after presenting with sudden-onset cardiac dysfunction. The postmortem examination revealed cardiac tamponade secondary to rupture of a 7.2-cm pericardial perivascular epithelioid cell tumor (PEComa). The tumor grossly appeared to arise from the transverse pericardial sinus and focally penetrated the epicardium of the right atrium. Microscopically, it was composed of predominately spindle cells with low nuclear grade, no pleomorphism, or readily apparent mitoses. Immunohistochemistry revealed cytoplasmic reactivity for HMB-45, desmin, and smooth muscle actin. Electron microscopic findings were characterized by melanosome-like structures intermixed with intermediate filaments and abundant stacked endoplasmic reticulum. The present case is unique among previously reported pericardial/myocardial PEComas as a first example resulting in unexpected cardiac tamponade and sudden cardiac death. Copyright © 2016 Elsevier Inc. All rights reserved.
Morphology of Er:YAG-laser-treated root surfaces
NASA Astrophysics Data System (ADS)
Keller, Ulrich; Stock, Karl; Hibst, Raimund
1997-12-01
From previous studies it could be demonstrated that an efficient ablation of dental calculus is possible using an Er:YAG laser with a special contact fiber tip. After improving of the design and the efficiency of light transmission of the contact tip laser treated tooth root surfaces were investigated due to morphological changes in comparison to conventional root scaling and planing. Surface modifications were observed histologically under the light microscope and by means of a Scanning Electron Microscope. During laser treatment the intrapulpal temperature increase was measured. The results show that the improved contact tip a microstructured surface can be generated, which shows no signs of thermal effects even when a laser pulse repetition rate of 15 Hz was used. Temperature increase was limited to 4 K at a repetition rate of 10 Hz and to 5.5 K at a repetition rate of 15 Hz.
Time-resolved electric force microscopy of charge traps in polycrystalline pentacene films
NASA Astrophysics Data System (ADS)
Jaquith, Michael; Muller, Erik; Marohn, John
2006-03-01
The microscopic mechanisms by which charges trap in organic electronic materials are poorly understood. Muller and Marohn recently showed that electric force microscopy (EFM) can be used to image trapped charge in working pentacene thin-film transistors [E. M. Muller et al, Adv. Mater. 17 1410 (2005)]. We have extended their work by imaging trapped charge in pentacene films with much larger grains. In contrast to the previous study in which charge was found to trap inhomogeneously throughout the transistor gap, we find microscopic evidence for a new trapping mechanism in which charges trap predominantly at the pentacene/metal interface in large-grained devices. We have also made localized measurements of the trap growth over time by performing pulsed-gate EFM experiments. Integrated-rate kinetics data supports a charge trap mechanism which is second order in holes, e.g., holes trap in pairs, although the charge-trapping rate appears to depend on gate voltage.
Source brightness and useful beam current of carbon nanotubes and other very small emitters
NASA Astrophysics Data System (ADS)
Kruit, P.; Bezuijen, M.; Barth, J. E.
2006-01-01
The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ``brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed.
Walther, Paul; Schmid, Eberhard; Höhn, Katharina
2013-01-01
Using an electron microscope's scanning transmission mode (STEM) for collection of tomographic datasets is advantageous compared to bright field transmission electron microscopic (TEM). For image formation, inelastic scattering does not cause chromatic aberration, since in STEM mode no image forming lenses are used after the beam has passed the sample, in contrast to regular TEM. Therefore, thicker samples can be imaged. It has been experimentally demonstrated that STEM is superior to TEM and energy filtered TEM for tomography of samples as thick as 1 μm. Even when using the best electron microscope, adequate sample preparation is the key for interpretable results. We adapted protocols for high-pressure freezing of cultivated cells from a physiological state. In this chapter, we describe optimized high-pressure freezing and freeze substitution protocols for STEM tomography in order to obtain high membrane contrast.
Transmission environmental scanning electron microscope with scintillation gaseous detection device.
Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios
2015-03-01
A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.
Self-assembly of chlorophenols in water
Rogalska, Ewa; Rogalski, Marek; Gulik-Krzywicki, Tadeusz; Gulik, Annette; Chipot, Christophe
1999-01-01
In saturated solutions of some di- and trichlorophenols, structures with complex morphologies, consisting of thin, transparent sheets often coiling into helices and ultimately twisting into filaments, were observed under the optical microscope. Freeze-fracture electron microscopy, x-ray diffraction, phase diagrams, and molecular modeling were performed to elucidate the observed phenomena. Here, we present evidence that the chlorophenols studied, when interacting with water, self-assemble into bilayers. The fact that some chlorophenols form the same supramolecular structures as those described previously for structurally nonrelated surfactants sheds light on the mechanisms of self-assembly. PMID:10359753
Guillery, R W; Cavalcante, L A
1995-03-01
The rates at which the crossed and the uncrossed components of the retinofugal pathway degenerate in Didelphis has been studied by light and electron microscopical methods. We have found that in Didelphis, as in Monodelphis the two components can be clearly distinguished at the level of the chiasm. However, in contrast to the situation previously described for Monodelphis, where the uncrossed component degenerates more rapidly than the crossed, both components degenerate at the same rate.
Chen, Xiaodong; Ren, Liqiang; Zheng, Bin; Liu, Hong
2013-01-01
The conventional optical microscopes have been used widely in scientific research and in clinical practice. The modern digital microscopic devices combine the power of optical imaging and computerized analysis, archiving and communication techniques. It has a great potential in pathological examinations for improving the efficiency and accuracy of clinical diagnosis. This chapter reviews the basic optical principles of conventional microscopes, fluorescence microscopes and electron microscopes. The recent developments and future clinical applications of advanced digital microscopic imaging methods and computer assisted diagnosis schemes are also discussed.
Liu, Jing; Zhang, Hai-Bo
2014-12-01
The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Yuan; Wang, Joseph
2017-03-01
This paper presents a fully kinetic particle particle-in-cell simulation study on the emission of a collisionless plasma plume consisting of cold beam ions and thermal electrons. Results are presented for both the two-dimensional macroscopic plume structure and the microscopic electron kinetic characteristics. We find that the macroscopic plume structure exhibits several distinctive regions, including an undisturbed core region, an electron cooling expansion region, and an electron isothermal expansion region. The properties of each region are determined by microscopic electron kinetic characteristics. The division between the undisturbed region and the cooling expansion region approximately matches the Mach line generated at the edge of the emission surface, and that between the cooling expansion region and the isothermal expansion region approximately matches the potential well established in the beam. The interactions between electrons and the potential well lead to a new, near-equilibrium state different from the initial distribution for the electrons in the isothermal expansion region. The electron kinetic characteristics in the plume are also very anisotropic. As the electron expansion process is mostly non-equilibrium and anisotropic, the commonly used assumption that the electrons in a collisionless, mesothermal plasma plume may be treated as a single equilibrium fluid in general is not valid.
Analysis with electron microscope of multielement samples using pure element standards
King, Wayne E.
1987-01-01
A method and modified analytical electron microscope for determining the concentration of elements in a multielement sample by exposing samples with differing thicknesses for each element to a beam of electrons, simultaneously measuring the electron dosage and x-ray intensities for each sample of element to determine a "K.sub.AB " value to be used in the equation ##EQU1## where I is intensity and C is concentration for elements A and B, and exposing the multielement sample to determine the concentrations of the elements in the sample.
Yannopoulos, Fredrik S; Arvola, Oiva; Haapanen, Henri; Herajärvi, Johanna; Miinalainen, Ilkka; Jensen, Hanna; Kiviluoma, Kai; Juvonen, Tatu
2014-03-01
Remote ischaemic preconditioning and its neuroprotective abilities are currently under investigation and the method has shown significant effects in several small and large animal studies. In our previous studies, leucocyte filtration during cardiopulmonary bypass reduced cerebrocortical adherent leucocyte count and mitigated cerebral damage after hypothermic circulatory arrest (HCA) in piglets. This study aimed to obtain and assess direct visual data of leucocyte behaviour in cerebral vessels after hypothermic circulatory arrest following remote ischaemic preconditioning. Twelve native stock piglets were randomized into a remote ischaemic preconditioning group (n = 6) and a control group (n = 6). The intervention group underwent hind-leg ischaemia, whereas the control group received a sham-treatment before a 60-min period of hypothermic circulatory arrest. An intravital microscope was used to obtain measurements from the cerebrocortical vessel in vivo. It included three sets of filters: a violet filter to visualize microvascular perfusion and vessel diameter, a green filter for visualization of rhodamine-labelled leucocytes and an ultraviolet filter for reduced nicotinamide adenine dinucleotide (NADH) analysis. The final magnification on the microscope was 400. After the experiment, cerebral and cerebellar biopsies were collected and analysed with transmission electron microscope by a blinded analyst. In the transmission electron microscope analysis, the entire intervention group had normal, unaffected rough endoplasmic reticulum's in their cerebellar tissue, whereas the control group had a mean score of 1.06 (standard deviation 0.41) (P = 0.026). The measured amount of adherent leucocytes was lower in the remote ischaemic preconditioning group. The difference was statistically significant at 5, 15 and 45 min after circulatory arrest. Statistically significant differences were seen also in the recovery phase at 90 and 120 min after reperfusion. Nicotinamide adenine dinucleotide autofluorescence had statistically significant differences at 10 min after cooling and at 120 and 180 min after hypothermic circulatory arrest. Remote ischaemic preconditioning seems to provide better mitochondrial respiratory chain function as indicated by the higher NADH content. It simultaneously provides a reduction of adherent leucocytes in cerebral vessels after hypothermic circulatory arrest. Additionally, it might provide some degree of cellular organ preservation as implied by the electron microscopy results.
Yang, Jijin; Ferranti, David C; Stern, Lewis A; Sanford, Colin A; Huang, Jason; Ren, Zheng; Qin, Lu-Chang; Hall, Adam R
2011-07-15
We report the formation of solid-state nanopores using a scanning helium ion microscope. The fabrication process offers the advantage of high sample throughput along with fine control over nanopore dimensions, producing single pores with diameters below 4 nm. Electronic noise associated with ion transport through the resultant pores is found to be comparable with levels measured on devices made with the established technique of transmission electron microscope milling. We demonstrate the utility of our nanopores for biomolecular analysis by measuring the passage of double-strand DNA.
Intrinsic instability of aberration-corrected electron microscopes.
Schramm, S M; van der Molen, S J; Tromp, R M
2012-10-19
Aberration-corrected microscopes with subatomic resolution will impact broad areas of science and technology. However, the experimentally observed lifetime of the corrected state is just a few minutes. Here we show that the corrected state is intrinsically unstable; the higher its quality, the more unstable it is. Analyzing the contrast transfer function near optimum correction, we define an "instability budget" which allows a rational trade-off between resolution and stability. Unless control systems are developed to overcome these challenges, intrinsic instability poses a fundamental limit to the resolution practically achievable in the electron microscope.
In situ nanomechanical testing of twinned metals in a transmission electron microscope
Li, Nan; Wang, Jiangwei; Mao, Scott; ...
2016-04-01
This paper focuses on in situ transmission electron microscope (TEM) characterization to explore twins in face-centered-cubic and body-centered-cubic monolithic metals, and their impact on the overall mechanical performance. Taking advantage of simultaneous nanomechanical deformation and nanoscale imaging using versatile in situ TEM tools, direct correlation of these unique microscopic defects with macroscopic mechanical performance becomes possible. This article summarizes recent evidence to support the mechanisms related to strengthening and plasticity in metals, including nanotwinned Cu, Ni, Al, Au, and others in bulk, thin film, and nanowire forms.
In situ nanomechanical testing of twinned metals in a transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nan; Wang, Jiangwei; Mao, Scott
This paper focuses on in situ transmission electron microscope (TEM) characterization to explore twins in face-centered-cubic and body-centered-cubic monolithic metals, and their impact on the overall mechanical performance. Taking advantage of simultaneous nanomechanical deformation and nanoscale imaging using versatile in situ TEM tools, direct correlation of these unique microscopic defects with macroscopic mechanical performance becomes possible. This article summarizes recent evidence to support the mechanisms related to strengthening and plasticity in metals, including nanotwinned Cu, Ni, Al, Au, and others in bulk, thin film, and nanowire forms.
NASA Technical Reports Server (NTRS)
Ochoa, Ozden O.
2004-01-01
Accurate determination of the transverse properties of carbon fibers is important for assessment and prediction of local material as well as global structural response of composite components. However the measurements are extremely difficult due to the very small diameters of the fibers (few microns only) and must be conducted within a microscope. In this work, environmental scanning electron microscope (ESEM) and transmission electron microscope (TEM) are used to determine the transverse coefficient of thermal expansion of different carbon fibers as a function of temperature.
Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode.
Bücker, K; Picher, M; Crégut, O; LaGrange, T; Reed, B W; Park, S T; Masiel, D J; Banhart, F
2016-12-01
High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. Copyright © 2016 Elsevier B.V. All rights reserved.
Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope.
Johnston-Peck, Aaron C; DuChene, Joseph S; Roberts, Alan D; Wei, Wei David; Herzing, Andrew A
2016-11-01
Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO 2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. Published by Elsevier B.V.
Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope
Johnston-Peck, Aaron C.; DuChene, Joseph S.; Roberts, Alan D.; Wei, Wei David; Herzing, Andrew A.
2016-01-01
Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300 keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. PMID:27469265
Qualitative and quantitative interpretation of SEM image using digital image processing.
Saladra, Dawid; Kopernik, Magdalena
2016-10-01
The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Defect-Enabled Electrical Current Leakage in Ultraviolet Light-Emitting Diodes
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2015-04-13
The AlGaN materials system offers a tunable, ultra-wide bandgap that is exceptionally useful for high-power electronics and deep ultraviolet optoelectronics. Moseley et al. (pp. 723–726) investigate a structural defect known as an open-core threading dislocation or ''nanopipe'' that is particularly detrimental to devices that employ these materials. Furthermore, an AlGaN thin film was synthesized using metal-organic chemical-vapor deposition. Electrical current leakage is detected at a discrete point using a conductive atomic-force microscope (CAFM). However, no physical feature or abnormality at this location was visible by an optical microscope. The AlGaN thin film was then etched in hot phosphoric acid, andmore » the same location that was previously analyzed was revisited with the CAFM. The point that previously exhibited electrical current leakage had been decorated with a 1.1 μm wide hexagonal pit, which identified the site of electrical current leakage as a nanopipe and allows these defects to be easily observed by optical microscopy. Moreover, with this nanopipe identification and quantification strategy, the authors were able to correlate decreasing ultraviolet light-emitting diode optical output power with increasing nanopipe density.« less
Quantitative comparison of simulated and measured signals in the STEM mode of a SEM
NASA Astrophysics Data System (ADS)
Walker, C. G. H.; Konvalina, I.; Mika, F.; Frank, L.; Müllerová, I.
2018-01-01
The transmission of electrons with energies 15 keV and 30 keV through Si and Au films of 100 nm thickness each have been studied in a Scanning Transmission Electron Microscope. The electrons that were transmitted through the films were detected using a multi-annular photo-detector consisting of a central Bright Field (BF) and several Dark Field (DF) detectors. For the experiment the detector was gradually offset from the axis and the signal from the central BF detector was studied as a function of the offset distance and compared with MC simulations. The experiment showed better agreement between experiment and several different MC simulations as compared to previous results, but differences were still found particularly for low angle scattering from Si. Data from Au suggest that high energy secondary electrons contribute to the signal on the central BF detector for low primary beam energies, when the STEM detector is in its usual central position.
[Microscopic investigation of vessel wall after endovascular catheter atherectomy].
Tsygankov, V N; Khovalkin, R G; Chekmareva, I A; Kalinin, D V; Filippova, E M
2014-01-01
Endovascular target catheter atherectomy (ETCA) - method of artery patency allowing to obtain occlusion substrate. Given the high destructive effect of atherectome's elements on tissue the objective was determination possibility of histological and electron microscopic investigation of this substrate after atherectomy. The research included 8 patients who underwent ETCA of legs arteries. It was observed substrate removal from broken stent in 1 case. 2 of 8 patients had diabetes. Obtained substrate was available for histological and electron microscopic investigation. Atherosclerosis was confirmed in all cases. It was not observed substrate significant morphological changes in patients with presence or absence of diabetes. Microscopic investigation of substrate from broken stent shows pronounced development of granulation tissue that was regarded as special form of reparative regeneration. Finding internal elastic membrane during microscopic investigation in some cases proves radical intervention. The authors consider that microscopic investigation of substrate after ETCA may be used for diagnosis verification, thorough analysis of morphological changes in lesion area and radicalism of atherectomy.
NASA Astrophysics Data System (ADS)
Wang, Baoming; Haque, M. A.
2015-08-01
With atomic-scale imaging and analytical capabilities such as electron diffraction and energy-loss spectroscopy, the transmission electron microscope has allowed access to the internal microstructure of materials like no other microscopy. It has been mostly a passive or post-mortem analysis tool, but that trend is changing with in situ straining, heating and electrical biasing. In this study, we design and demonstrate a multi-functional microchip that integrates actuators, sensors, heaters and electrodes with freestanding electron transparent specimens. In addition to mechanical testing at elevated temperatures, the chip can actively control microstructures (grain growth and phase change) of the specimen material. Using nano-crystalline aluminum, nickel and zirconium as specimen materials, we demonstrate these novel capabilities inside the microscope. Our approach of active microstructural control and quantitative testing with real-time visualization can influence mechanistic modeling by providing direct and accurate evidence of the fundamental mechanisms behind materials behavior.
Isotope analysis in the transmission electron microscope.
Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani
2016-10-10
The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.
Scanning Electron Microscopy (SEM) Procedure for HE Powders on a Zeiss Sigma HD VP SEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaka, F.
This method describes the characterization of inert and HE materials by the Zeiss Sigma HD VP field emission Scanning Electron Microscope (SEM). The SEM uses an accelerated electron beam to generate high-magnification images of explosives and other materials. It is fitted with five detectors (SE, Inlens, STEM, VPSE, HDBSD) to enable imaging of the sample via different secondary electron signatures, angles, and energies. In addition to imaging through electron detection, the microscope is also fitted with two Oxford Instrument Energy Dispersive Spectrometer (EDS) 80 mm detectors to generate elemental constituent spectra and two-dimensional maps of the material being scanned.
Microscopic investigation of cavitation erosion damage in metals
NASA Technical Reports Server (NTRS)
Hackworh, J. V.; Adler, W. F.
1974-01-01
The results of research to identify the cavitation erosion damage mechanisms at the microscopic level for three metals (aluminum, stainless steel, and titanium) representing a range of properties and microstructure are presented. The metals were exposed to cavitation generated in distilled water by a 20-kHz ultrasonic facility operating at a vibration amplitude of 2 mils. Representative properties of the metals and experimental details are summarized. Replicas of the eroded surfaces of the specimens obtained periodically during exposure were examined with a transmission electron microscope to follow progression of the erosion damage and identify dominant erosion mechanisms as a function of exposure time. Eroded surfaces of selected specimens were also examined with a scanning electron microscope to assist in the interpretation.
de Jonge, Niels [Oak Ridge, TN
2010-08-17
A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.
Electron microscope phase enhancement
Jin, Jian; Glaeser, Robert M.
2010-06-15
A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.
NASA Astrophysics Data System (ADS)
Mouchi, Vincent; Vonlanthen, Pierre; Verrecchia, Eric P.; Crowley, Quentin G.
2016-04-01
Lophelia pertusa is a cold-water coral, which may form reefs by the association of multiple coralites within which a polyp lives. Each individual polyp builds an aragonite skeleton by an initial phase of early mineralization (traditionally referred to as centres of calcification) from which aragonite fibres grow in thickening deposits. The skeleton wall features successive optically opaque and translucent bands previously attributed to different regimes of growth as either uniform in crystal orientation (translucent bands) or with a chaotic organization (opaque bands). The processes involved in any organizational changes are still unknown. Microlayers in the coral wall, which represent separate periods of skeletal growth, have been recently identified and described. These growth patterns are readily visible under scanning electron microscope (SEM) after etching in dilute formic acid, but they do not necessarily form continuously visible structures. Here we present high quality SEM images and electron backscatter diffraction (EBSD) maps to study aragonite fibre orientation across the wall of L. pertusa. Both microlayers and opaque and translucent bands are compared to the crystallographic orientation of the aragonite fibres. EBSD maps and SEM images indicate that aragonite fibres do not exhibit a chaotic orientation, even in opaque bands. The absence of continuity of microlayers is partially explained by an association of multiple crystallographic preferred orientations of aragonite fibres. In the case of L. pertusa, careful textural characterisation is necessary prior to elemental or isotope analysis in order to select a skeletal transect representing a linear and continuous time period.
Mars Life? - Microscopic Structures
1996-08-09
In the center of this electron microscope image of a small chip from a meteorite are several tiny structures that are possible microscopic fossils of primitive, bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. http://photojournal.jpl.nasa.gov/catalog/PIA00283
Concurrent in situ ion irradiation transmission electron microscope
Hattar, K.; Bufford, D. C.; Buller, D. L.
2014-08-29
An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.
Confirmation of thalamosubthalamic projections by electron microscopic autoradiography.
Sugimoto, T; Hattori, T
1983-05-16
Direct projections from the centre median-parafascicular complex (CM-Pf) to the subthalamic nucleus(STN) were confirmed by electron microscopic autoradiography. [3H]Leucine injections into the rat CM-Pf produced preferential labeling of Gray's type I boutons containing round vesicles in the ipsilateral STN. Further results strongly suggested the existence of some common CM-Pf projections to both the striatum and STN.
Collection and Analysis of Aircraft Emitted Particles
NASA Technical Reports Server (NTRS)
Wilson, James Charles
1999-01-01
The University of Denver Aerosol Group proposed to adapt an impactor system for the collection of particles emitted by aircraft. The collection substrates were electron microscope grids which were analyzed by Dr. Pat Sheridan using a transmission electron microscope. The impactor was flown in the SNIFF behind aircraft and engine emissions were sampled. This report details the results of that work.
Foucault imaging by using non-dedicated transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken
2012-08-27
An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.
Electron microscopic evaluation of a gold glaucoma micro shunt after explantation.
Berk, Thomas A; Tam, Diamond Y; Werner, Liliana; Mamalis, Nick; Ahmed, Iqbal Ike K
2015-03-01
We present a case of an explanted gold glaucoma micro shunt (GMS Plus) and the subsequent light and electron microscopic analyses. The shunt was implanted in a patient with medically refractive glaucoma. The intraocular pressure (IOP) was stable at 12 mm Hg 6 months postoperatively but spiked to 26 mm Hg 6 months later; membranous growth was visible on the implant gonioscopically. A second gold micro shunt was placed 2 years after the first. The IOP was 7 mm Hg 1 week postoperatively but increased to 23 mm Hg 3 weeks later; similar membranous growth was visible on this implant. One of the shunts was explanted, and light and scanning electron microscopic analyses revealed encapsulation around the shunt exterior and connective tissue invasion of the microstructure. This represents the first electron microscopic analysis of an explanted gold glaucoma micro shunt and the first unequivocal images of the fibrotic pseudo-capsule traversing its microchannels and fenestrations. Dr. Ahmed is a consultant to and has received research grants from Solx, Inc. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Review of current progress in nanometrology with the helium ion microscope
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Vladár, András; Archie, Charles; Ming, Bin
2011-02-01
Scanning electron microscopy has been employed as an imaging and measurement tool for more than 50 years and it continues as a primary tool in many research and manufacturing facilities across the world. A new challenger to this work is the helium ion microscope (HIM). The HIM is a new imaging and metrology technology. Essentially, substitution of the electron source with a helium ion source yields a tool visually similar in function to the scanning electron microscope, but very different in the fundamental imaging and measurement process. The imaged and measured signal originates differently than in the scanning electron microscope and that fact and its single atom source diameter may be able to push the obtainable resolution lower, provide greater depth-of-field and ultimately improve the metrology. Successful imaging and metrology with this instrument entails understanding and modeling of new ion beam/specimen interaction physics. As a new methodology, HIM is beginning to show promise and the abundance of potentially advantageous applications for nanometrology has yet to be fully exploited. This paper discusses some of the progress made at NIST in collaboration with IBM to understand the science behind this new technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Singh, M. N.
The plasmonic responses of silver nanoparticle grating structures of different periods made on silver halide based electron microscope film are investigated. Raster scan of the conventional scanning electron microscope (SEM) is used to carry out electron beam lithography for fabricating the plasmonic nanoparticle grating (PNG) structures. Morphological characterization of the PNG structures, carried out by the SEM and the atomic force microscope, indicates that the depth of the groove decreases with a decrease in the grating period. Elemental characterization performed by the energy dispersive spectroscopy and the x-ray diffraction shows the presence of nanoparticles of silver in the PNG grating.more » The optical characterization of the gratings shows that the localized surface plasmon resonance peak shifts from 366 to 378 nm and broadens with a decrease in grating period from 10 to 2.5 μm. The surface enhanced Raman spectroscopy of the Rhodamine-6G dye coated PNG structure shows the maximum enhancement by two orders of magnitude in comparison to the randomly distributed silver nanoparticles having similar size and shape as the PNG structure.« less
High-pressure, high-temperature synthesis of superhard boron suboxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubert, H.; Garvie, L.A.J.; Leinenweber, K.
A multianvil device was used to investigate the formation of B{sub x}O phases produced in the 2 to 10 GPa pressure range with temperatures between 1,000 and 1,800 C. Amorphous and crystalline B and BP were oxidized using B{sub 2}O{sub 3} and CrO{sub 3}. Using powder X-ray diffraction and parallel electron energy-loss spectroscopy (PEELS), the authors were unable to detect graphitic or diamond-structured B{sub 2}O, reported in previous studies. The refractory boride B{sub 6}O, which has the {alpha}-rhombohedral boron structure, is the dominant suboxide in the P and T range of the investigation. PEELS with a transmission electron microscope wasmore » used to characterize the boron oxides.« less
Choi, Jeong-Seok; Kim, Nahn Ju; Klemuk, Sarah; Jang, Yun Ho; Park, In Suh; Ahn, Kyung Hyun; Lim, Jae-Yol; Kim, Young-Mo
2012-09-01
To compare the rheological characteristics of structurally different hyaluronic acid (HA)-based biomaterials that are presently used for phonosurgery and to investigate their influence on the viscoelastic properties of vocal folds after implantation in an in vivo rabbit model. In vitro and in vivo rheometric investigation. Experimental laboratory, Inha and Seoul National Universities. Viscoelastic shear properties of 3 HA-based biomaterials (Rofilan, Restylane, and Reviderm) were measured with a strain-controlled rheometer. These biomaterials were injected into the deep layers of rabbit vocal folds, and viscoelastic moduli of the injected vocal folds were determined 2 months after the injection. The vocal fold specimens were observed using a light microscope and a transmission electron microscope. All HA-based biomaterials showed similar levels of shear viscosity, which were slightly higher than that of human vocal folds reported in previous studies. Compared with noninjected control vocal folds, there were no significant differences in the magnitudes of both elastic shear modulus (G') and viscous modulus (G") of injected vocal folds among all of the materials. Light microscopic images showed that all materials were observed in the deep layers of vocal folds and electron scanning images revealed that injected HA particles were homogeneously distributed in regions of collagenous fibers. HA-based biomaterials could preserve the viscoelastic properties of the vocal folds, when they were injected into vocal folds in an in vivo rabbit model. However, further studies on the influence of the biomaterials on the viscoelasticity of human vocal folds in ECM surroundings are still needed.
Preparation of polymeric Janus particles by directional UV-induced reactions.
Liu, Lianying; Ren, Mingwei; Yang, Wantai
2009-09-15
Polymeric Janus particles are obtained by UV-induced selective surface grafting polymerizations and coupling reactions, in virtue of the light-absorption of photoreactive materials such as the immobilized photoinitiator and spread photoinitiator solution on the surfaces exposed to UV light and the sheltering of densely arrayed immovable particles from light. Varying the monomers or macromolecules applied in photografting polymerization or coupling reaction, and choosing diverse polymeric particles of various size, bicolor and amphiphilic Janus particles could be successfully achieved. Observations by fluorescence microscope, scanning electron microscope ,and transmission electron microscope confirmed the asymmetrical morphology of the resultant Janus particles.
Li, Yongquan; Li, Hongyu
2014-03-01
Studies on Acidithiobacillus ferrooxidans accepting electrons from Fe(II) have previously focused on cytochrome c. However, we have discovered that, besides cytochrome c, type IV pili (Tfp) can transfer electrons. Here, we report conduction by Tfp of A. ferrooxidans analyzed with a conducting-probe atomic force microscope (AFM). The results indicate that the Tfp of A. ferrooxidans are highly conductive. The genome sequence of A. ferrooxidans ATCC 23270 contains two genes, pilV and pilW, which code for pilin domain proteins with the conserved amino acids characteristic of Tfp. Multiple alignment analysis of the PilV and PilW (pilin) proteins indicated that pilV is the adhesin gene while pilW codes for the major protein element of Tfp. The likely function of Tfp is to complete the circuit between the cell surface and Fe(II) oxides. These results indicate that Tfp of A. ferrooxidans might serve as biological nanowires transferring electrons from the surface of Fe(II) oxides to the cell surface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interaction of electrons with light metal hydrides in the transmission electron microscope.
Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei
2014-12-01
Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Simulation of transmission electron microscope images of biological specimens.
Rullgård, H; Ofverstedt, L-G; Masich, S; Daneholt, B; Oktem, O
2011-09-01
We present a new approach to simulate electron cryo-microscope images of biological specimens. The framework for simulation consists of two parts; the first is a phantom generator that generates a model of a specimen suitable for simulation, the second is a transmission electron microscope simulator. The phantom generator calculates the scattering potential of an atomic structure in aqueous buffer and allows the user to define the distribution of molecules in the simulated image. The simulator includes a well defined electron-specimen interaction model based on the scalar Schrödinger equation, the contrast transfer function for optics, and a noise model that includes shot noise as well as detector noise including detector blurring. To enable optimal performance, the simulation framework also includes a calibration protocol for setting simulation parameters. To test the accuracy of the new framework for simulation, we compare simulated images to experimental images recorded of the Tobacco Mosaic Virus (TMV) in vitreous ice. The simulated and experimental images show good agreement with respect to contrast variations depending on dose and defocus. Furthermore, random fluctuations present in experimental and simulated images exhibit similar statistical properties. The simulator has been designed to provide a platform for development of new instrumentation and image processing procedures in single particle electron microscopy, two-dimensional crystallography and electron tomography with well documented protocols and an open source code into which new improvements and extensions are easily incorporated. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
Revealing the 1 nm/s extensibility of nanoscale amorphous carbon in a scanning electron microscope.
Zhang, Wei
2013-01-01
In an ultra-high vacuum scanning electron microscope, the edged branches of amorphous carbon film (∼10 nm thickness) can be continuously extended with an eye-identifying speed (on the order of ∼1 nm/s) under electron beam. Such unusual mobility of amorphous carbon may be associated with deformation promoted by the electric field, which resulted from an inner secondary electron potential difference from the main trunk of carbon film to the tip end of branches under electron beam. This result demonstrates importance of applying electrical effects to modify properties of carbon materials. It may have positive implications to explore some amorphous carbon as electron field emission device. © Wiley Periodicals, Inc.
Low-voltage electron microscopy of polymer and organic molecular thin films.
Drummy, Lawrence F; Yang, Junyan; Martin, David C
2004-06-01
We have demonstrated the capabilities of a novel low-voltage electron microscope (LVEM) for imaging polymer and organic molecular thin films. The LVEM can operate in transmission electron microscopy, scanning transmission electron microscopy, scanning electron microscopy, and electron diffraction modes. The microscope operates at a nominal accelerating voltage of 5 kV and fits on a tabletop. A detailed discussion of the electron-sample interaction processes is presented, and the mean free path for total electron scattering was calculated to be 15 nm for organic samples at 5 kV. The total end point dose for the destruction of crystallinity at 5 kV was estimated at 5 x 10(-4) and 3.5 x 10(-2) C/cm2 for polyethylene and pentacene, respectively. These values are significantly lower than those measured at voltages greater than 100 kV. A defocus series of colloidal gold particles allowed us to estimate the experimental contrast transfer function of the microscope. Images taken of several organic materials have shown high contrast for low atomic number elements and a resolution of 2.5 nm. The materials studied here include thin films of the organic semiconductor pentacene, triblock copolymer films, single-molecule dendrimers, electrospun polymer fibers and gold nanoparticles. Copyright 2004 Elsevier B.V.
Ippolitov, E V; Didenko, L V; Tzarev, V N
2015-12-01
The study was carried out to analyze morphology of biofilm of periodontium and to develop electronic microscopic criteria of differentiated diagnostic of inflammatory diseases of gums. The scanning electronic microscopy was applied to analyze samples of bioflm of periodont from 70 patients. Including ten patients with every nosologic form of groups with chronic catarrhal periodontitis. of light, mean and severe degree, chronic catarrhal gingivitis, Candida-associated paroperiodontitis and 20 healthy persons with intact periodontium. The analysis was implemented using dual-beam scanning electronic microscope Quanta 200 3D (FEI company, USA) and walk-through electronic micJEM 100B (JEOL, Japan). To detect marker DNA of periodont pathogenic bacteria in analyzed samples the kit of reagentsfor polymerase chain reaction "MultiDent-5" ("GenLab", Russia). The scanning electronic microscopy in combination with transmission electronic microscopy and polymerase chain reaction permits analyzing structure, composition and degree of development of biofilm of periodontium and to apply differentiated diagnostic of different nosologic forms of inflammatory diseases of periodontium, including light form of chronic periodontitis and gingivitis. The electronic microscopical indications of diseases ofperiodontium of inflammatory character are established: catarrhal gingivitis, (coccal morphological alternate), chronic periodontitis (bacillary morphological alternate), Candida-associated periodontitis (Candida morphological alternate of biofilm ofperiodontium).
Brodusch, Nicolas; Demers, Hendrix; Trudeau, Michel; Gauvin, Raynald
2013-01-01
Transmission electron forward scatter diffraction (t-EFSD) is a new technique providing crystallographic information with high resolution on thin specimens by using a conventional electron backscatter diffraction (EBSD) system in a scanning electron microscope. In this study, the impact of tilt angle, working distance, and detector distance on the Kikuchi pattern quality were investigated in a cold-field emission scanning electron microscope (CFE-SEM). We demonstrated that t-EFSD is applicable for tilt angles ranging from -20° to -40°. Working distance (WD) should be optimized for each material by choosing the WD for which the EBSD camera screen illumination is the highest, as the number of detected electrons on the screen is directly dependent on the scattering angle. To take advantage of the best performances of the CFE-SEM, the EBSD camera should be close to the sample and oriented towards the bottom to increase forward scattered electron collection efficiency. However, specimen chamber cluttering and beam/mechanical drift are important limitations in the CFE-SEM used in this work. Finally, the importance of t-EFSD in materials science characterization was illustrated through three examples of phase identification and orientation mapping. © Wiley Periodicals, Inc.
Direction-division multiplexed holographic free-electron-driven light sources
NASA Astrophysics Data System (ADS)
Clarke, Brendan P.; MacDonald, Kevin F.; Zheludev, Nikolay I.
2018-01-01
We report on a free-electron-driven light source with a controllable direction of emission. The source comprises a microscopic array of plasmonic surface-relief holographic domains, each tailored to direct electron-induced light emission at a selected wavelength into a collimated beam in a prescribed direction. The direction-division multiplexed source is tested by driving it with the 30 kV electron beam of a scanning electron microscope: light emission, at a wavelength of 800 nm in the present case, is switched among different output angles by micron-scale repositioning of the electron injection point among domains. Such sources, with directional switching/tuning possible at picosecond timescales, may be applied to field-emission and surface-conduction electron-emission display technologies, optical multiplexing, and charged-particle-beam position metrology.
Houdellier, F; Caruso, G M; Weber, S; Kociak, M; Arbouet, A
2018-03-01
We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.
Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope
NASA Astrophysics Data System (ADS)
Qian, Hui; Egerton, Ray F.
2017-11-01
Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.
Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.
Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun
2016-08-01
We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.
A comparative study of modern and fossil cone scales and seeds of conifers: A geochemical approach
Artur, Stankiewicz B.; Mastalerz, Maria; Kruge, M.A.; Van Bergen, P. F.; Sadowska, A.
1997-01-01
Modern cone scales and seeds of Pinus strobus and Sequoia sempervirens, and their fossil (Upper Miocene, c. 6 Mar) counterparts Pinus leitzii and Sequoia langsdorfi have been studied using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), electron-microprobe and scanning electron microscopy. Microscopic observations revealed only minor microbial activity and high-quality structural preservation of the fossil material. The pyrolysates of both modern genera showed the presence of ligno-cellulose characteristic of conifers. However, the abundance of (alkylated)phenols and 1,2-benzenediols in modern S. sempervirens suggests the presence of non-hydrolysable tannins or abundant polyphenolic moieties not previously reported in modern conifers. The marked differences between the pyrolysis products of both modern genera are suggested to be of chemosystematic significance. The fossil samples also contained ligno-cellulose which exhibited only partial degradation, primarily of the carbohydrate constituents. Comparison between the fossil cone scale and seed pyrolysates indicated that the ligno-cellulose complex present in the seeds is chemically more resistant than that in the cone scales. Principal component analysis (PCA) of the pyrolysis data allowed for the determination of the discriminant functions used to assess the extent of degradation and the chemosystematic differences between both genera and between cone scales and seeds. Elemental composition (C, O, S), obtained using electron-microprobe, corroborated the pyrolysis results. Overall, the combination of chemical, microscopic and statistical methods allowed for a detailed characterization and chemosystematic interpretations of modern and fossil conifer cone scales and seeds.
Micro-buffy coats of whole blood: a method for the electron microscopic study of mononuclear cells.
Nunes, J F; Soares, J O; Alves de Matos, A P
1979-09-01
A method for the electron microscopic study of human peripheral lymphocytes by which very small buffy coats are obtained through centrifugation of heparinized whole blood in glass or plastic microhematocrit tubes is presented. This method is time saving and efficient, yielding well preserved material and a comparatively large number of mononuclear cells (mainly lymphocytes) in each thin section.
Practical application of HgI2 detectors to a space-flight scanning electron microscope
NASA Technical Reports Server (NTRS)
Bradley, J. G.; Conley, J. M.; Albee, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.
1989-01-01
Mercuric iodide X-ray detectors have been undergoing tests in a prototype scanning electron microscope system being developed for unmanned space flight. The detector program addresses the issues of geometric configuration in the SEM, compact packaging that includes separate thermoelectric coolers for the detector and FET, X-ray transparent hermetic encapsulation and electrical contacts, and a clean vacuum environment.
Automated in-chamber specimen coating for serial block-face electron microscopy.
Titze, B; Denk, W
2013-05-01
When imaging insulating specimens in a scanning electron microscope, negative charge accumulates locally ('sample charging'). The resulting electric fields distort signal amplitude, focus and image geometry, which can be avoided by coating the specimen with a conductive film prior to introducing it into the microscope chamber. This, however, is incompatible with serial block-face electron microscopy (SBEM), where imaging and surface removal cycles (by diamond knife or focused ion beam) alternate, with the sample remaining in place. Here we show that coating the sample after each cutting cycle with a 1-2 nm metallic film, using an electron beam evaporator that is integrated into the microscope chamber, eliminates charging effects for both backscattered (BSE) and secondary electron (SE) imaging. The reduction in signal-to-noise ratio (SNR) caused by the film is smaller than that caused by the widely used low-vacuum method. Sample surfaces as large as 12 mm across were coated and imaged without charging effects at beam currents as high as 25 nA. The coatings also enabled the use of beam deceleration for non-conducting samples, leading to substantial SNR gains for BSE contrast. We modified and automated the evaporator to enable the acquisition of SBEM stacks, and demonstrated the acquisition of stacks of over 1000 successive cut/coat/image cycles and of stacks using beam deceleration or SE contrast. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Onouchi, Takanori; Shiogama, Kazuya; Mizutani, Yasuyoshi; Takaki, Takashi; Tsutsumi, Yutaka
2016-01-01
Neutrophil extracellular traps (NETs) released from dead neutrophils at the site of inflammation represent webs of neutrophilic DNA stretches dotted with granule-derived antimicrobial proteins, including lactoferrin, and play important roles in innate immunity against microbial infection. We have shown the coexistence of NETs and fibrin meshwork in varied fibrinopurulent inflammatory lesions at both light and electron microscopic levels. In the present study, correlative light and electron microscopy (CLEM) employing confocal laser scanning microscopy and scanning electron microscopy was performed to bridge light and electron microscopic images of NETs and fibrin fibrils in formalin-fixed, paraffin-embedded, autopsied lung sections of legionnaire’s pneumonia. Lactoferrin immunoreactivity and 4'-6-diamidino-2-phenylindole (DAPI) reactivity were used as markers of NETs, and fibrin was probed by fibrinogen gamma chain. Of note is that NETs light microscopically represented as lactoferrin and DAPI-colocalized dots, 2.5 μm in diameter. CLEM gave super-resolution images of NETs and fibrin fibrils: “Dotted” NETs were ultrastructurally composed of fine filaments and masses of 58 nm-sized globular materials. A fibrin fibril consisted of clusters of smooth-surfaced filaments. NETs filaments (26 nm in diameter) were significantly thinner than fibrin filaments (295 nm in diameter). Of note is that CLEM was applicable to formalin-fixed, paraffin-embedded sections of autopsy material. PMID:27917008
NASA Astrophysics Data System (ADS)
Stach, Thomas
2013-12-01
Pterobranchs have been interpreted as "missing links" combining primitive invertebrate features with advanced vertebrate-like characteristics. The first detailed morphological description of an ontogenetic stage of a pterobranch, based on digital 3D-reconstruction at electron microscopic resolution, reveals a triploblastic animal with monociliated epithelia, an extensive coelomic cavity, a through gut with an asymmetrically developed gill slit but no signs of planktonic specializations, such as ciliated bands. Therefore, this crawling larva supports the hypothesis proposed in previous molecular phylogenetic studies that pterobranchs could be derived within enteropneusts rather than being "missing links".
Measurement of the Elastic Modulus of a Single Boron Nitride Nanotube
NASA Astrophysics Data System (ADS)
Chopra, Nasreen G.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A.
1997-03-01
In situ transmission electron microscope (TEM) measurements of thermally-excited vibrational characteristics of boron nitride (BN) nanotubes are used to extract the elastic modulus. We find BN nanotubes to have a higher axial Young's modulus, 1.2 TPa, than any other insulating fiber. This value is consistent with theoretical predictions and confirms previous TEM observations of the high degree of crystallinity of these structures. This work was supported by the U. S. Department of Energy under contract No. DE-AC03-76-SF00098 and the Office of Naval Research, Order No. N00014-95-F-0099
Lifetime experimental study of graphite cathode for relativistic backward wave oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun
2016-07-21
Graphite cathodes are widely used due to their good emission properties, especially their long lifetime. Some previous papers have researched their lifetime under certain conditions and uncovered some important phenomena. This paper is dedicated to research the lifetime of the graphite cathode under higher power. In the lifetime test, the voltage and current amplitudes are about 970 kV and 9.7 kA, respectively. The repetition rate is 20 Hz. An X-band relativistic backward wave oscillator is used to generate high power microwave by utilizing the electron beam energy. The experimental results demonstrate that the emission property of the graphite cathode remains quite stable duringmore » 10{sup 5} pulses, despite some slight deteriorations regarding the beam and microwave parameters. The macroscopic morphology change of the cathode blade due to material evaporation is observed by a laser microscope. The mass loss of the graphite cathode is about 60 μg/C. Meanwhile, the observation by a scanning electron microscope uncovers that the original numerous flaky micro-structures are totally replaced by a relatively smooth surface at the mid region of the cathode blade and a large number of new micro-protrusions at the blade edges during the lifetime test.« less
Electron Microscopic Observations of the Carotid Body of the Cat
Ross, Leonard L.
1959-01-01
Carotid bodies were removed from cats, fixed in buffered 1 per cent osmic acid, embedded in deaerated, nitrogenated methacrylate, and cut into thin sections for electron microscopic study. The carotid body is seen to be composed of islands of chemoreceptor and sustentacular cells surrounded by wide irregular sinusoids. These cells are separated from the sinusoids by relatively broad interstitial spaces which are filled with collagen, fibroblasts, and many unmyelinated nerve fibers with their Schwann cell sheaths. The chemoreceptor cells are surrounded by the flattened, multiprocessed sustentacular cells which serve to convey the axons from an interstitial to a pericellular location. These sustentacular cells are assumed to be lemmoblastic in origin. Relatively few axons are seen to abut on the chemoreceptor cells. The cytoplasm of the chemoreceptor cell is characterized by numerous small mitochondria, units of granular endoplasmic reticulum, a small Golgi complex, and a variety of vesicles. There are many small vesicles diffusely scattered throughout the cytoplasm. In addition, there is a small number of dark-cored vesicles of the type which has been previously described in the adrenal medulla. These are usually associated with the Golgi complex. These findings are discussed in relation to the concepts of the origin of the chemoreceptor cell and the nature of the synapse. PMID:14439171
Disentangling specific versus generic doping mechanisms in oxide heterointerfaces
NASA Astrophysics Data System (ADS)
Gabel, J.; Zapf, M.; Scheiderer, P.; Schütz, P.; Dudy, L.; Stübinger, M.; Schlueter, C.; Lee, T.-L.; Sing, M.; Claessen, R.
2017-05-01
More than a decade after the discovery of the two-dimensional electron system (2DES) at the interface between the band insulators LaAlO3 (LAO) and SrTiO3 (STO) its microscopic origin is still under debate. Several explanations have been proposed, the main contenders being electron doping by oxygen vacancies and electronic reconstruction, i.e., the redistribution of electrons to the interface to minimize the electrostatic energy in the polar LAO film. However, no experiment thus far could provide unambiguous information on the microscopic origin of the interfacial charge carriers. Here we utilize a novel experimental approach combining photoelectron spectroscopy (PES) with highly brilliant synchrotron radiation and apply it to a set of samples with varying key parameters that are thought to be crucial for the emergence of interfacial conductivity. Based on microscopic insight into the electronic structure, we obtain results tipping the scales in favor of polar discontinuity as a generic, robust driving force for the 2DES formation. Likewise, other functionalities such as magnetism or superconductivity might be switched in all-oxide devices by polarity-driven charge transfer.
Iwasaki, S; Asami, T; Wanichanon, C
1996-04-01
Various species of turtles are adapted to different environments, such as freshwater, seawater, and terrestrial habitats. Comparisons of histological and ultrastructural features of the tongue of the juvenile Hawksbill turtle, Eretmochelys imbricata bissa, with those of freshwater turtles should reveal some aspects of the relationship between the structure of the lingual epithelium and the environment. The light microscope, scanning electron microscope and transmission electron microscope were used. Light microscopy revealed that the mucosal epithelium of the tongue was of the keratinized, stratified squamous type. Under the scanning electron microscope, no lingual papillae were visible on the dorsal surface of the tongue. Micropits and the thickening of cell margins were clearly seen on the surface of cells located on the outermost side. The transmission electron microscope revealed that the cells in the intermediate layer were gradually flattened from the basal side to the surface side, as were their nuclei. In the shallow intermediate layer, the cells were significantly flattened, and their nuclei were condensed or had disappeared. The cytoplasm contained keratohyalin granules, tonofibrils, free ribosomes, mitochondria, and rough endoplasmic reticulum. Numerous free ribosomes were attached to the surface of small keratohyalin granules. The cells of the keratinized layer were significantly flattened, and their nuclei had completely disappeared. Most of cytoplasm was filled with keratin fibers of high electron density. Keratin fibers of the shedding cells, which were located on the outermost side of the keratinized layer, appeared looser, and each fiber, which was somewhat thicker than the tonofibrils and tonofilaments, was clearly distinguishable. The lingual epithelium of the juvenile Hawksbill turtle differs significantly from that of the adult freshwater turtle, in spite of the similarity in gross morphology of the tongues of these species.
Terrestrial Clay under Microscope
2008-09-30
A scanning electron microscope captured this image of terresterial soil containing a phyllosilicate mineral from Koua Bocca, Ivory Coast, West Africa. This soil shares some similarities with Martian soil scooped by NASA Phoenix Lander.
Characterization of quantum well structures using a photocathode electron microscope
NASA Technical Reports Server (NTRS)
Spencer, Michael G.; Scott, Craig J.
1989-01-01
Present day integrated circuits pose a challenge to conventional electronic and mechanical test methods. Feature sizes in the submicron and nanometric regime require radical approaches in order to facilitate electrical contact to circuits and devices being tested. In addition, microwave operating frequencies require careful attention to distributed effects when considering the electrical signal paths within and external to the device under test. An alternative testing approach which combines the best of electrical and optical time domain testing is presented, namely photocathode electron microscope quantitative voltage contrast (PEMQVC).
The free-electron laser - Maxwell's equations driven by single-particle currents
NASA Technical Reports Server (NTRS)
Colson, W. B.; Ride, S. K.
1980-01-01
It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.
Analysis with electron microscope of multielement samples using pure element standards
King, W.E.
1986-01-06
This disclosure describes a method and modified analytical electron microscope for determining the concentration of elements in a multielement sample by exposing samples with differing thicknesses for each element to a beam of electrons. Simultaneously the electron dosage and x-ray intensities are measured for each sample of element to determine a ''K/sub AB/'' value to be used in the equation (I/sub A/I/sub B/) = K/sub AB/ (C/sub A//C/sub B/), where I is intensity and C is concentration for elements A and B. The multielement sample is exposed to determine the concentrations of the elements in the sample.
NASA Technical Reports Server (NTRS)
Young, S. G.
1973-01-01
The NASA nickel-base alloy WAZ-20 was analyzed by advanced metallographic techniques to qualitatively and quantitatively characterize its phases and stability. The as-cast alloy contained primary gamma-prime, a coarse gamma-gamma prime eutectic, a gamma-fine gamma prime matrix, and MC carbides. A specimen aged at 870 C for 1000 hours contained these same constituents and a few widely scattered high W particles. No detrimental phases (such as sigma or mu) were observed. Scanning electron microscope, light metallography, and replica electron microscope methods are compared. The value of quantitative electron microprobe techniques such as spot and area analysis is demonstrated.
Krausko, Ján; Runštuk, Jiří; Neděla, Vilém; Klán, Petr; Heger, Dominik
2014-05-20
Observation of a uranyl-salt brine layer on an ice surface using backscattered electron detection and ice surface morphology using secondary-electron detection under equilibrium conditions was facilitated using an environmental scanning electron microscope (ESEM) at temperatures above 250 K and pressures of hundreds of Pa. The micrographs of a brine layer over ice grains prepared by either slow or shock freezing provided a complementary picture of the contaminated ice grain boundaries. Fluorescence spectroscopy of the uranyl ions in the brine layer confirmed that the species exists predominately in the solvated state under experimental conditions of ESEM.
Liddelow, Shane A; Dziegielewska, Katarzyna M; Ek, C Joakim; Habgood, Mark D; Bauer, Hannelore; Bauer, Hans-Christian; Lindsay, Helen; Wakefield, Matthew J; Strazielle, Nathalie; Kratzer, Ingrid; Møllgård, Kjeld; Ghersi-Egea, Jean-François; Saunders, Norman R
2013-01-01
We provide comprehensive identification of embryonic (E15) and adult rat lateral ventricular choroid plexus transcriptome, with focus on junction-associated proteins, ionic influx transporters and channels. Additionally, these data are related to new structural and previously published permeability studies. Results reveal that most genes associated with intercellular junctions are expressed at similar levels at both ages. In total, 32 molecules known to be associated with brain barrier interfaces were identified. Nine claudins showed unaltered expression, while two claudins (6 and 8) were expressed at higher levels in the embryo. Expression levels for most cytoplasmic/regulatory adaptors (10 of 12) were similar at the two ages. A few junctional genes displayed lower expression in embryos, including 5 claudins, occludin and one junctional adhesion molecule. Three gap junction genes were enriched in the embryo. The functional effectiveness of these junctions was assessed using blood-delivered water-soluble tracers at both the light and electron microscopic level: embryo and adult junctions halted movement of both 286Da and 3kDa molecules into the cerebrospinal fluid (CSF). The molecular identities of many ion channel and transporter genes previously reported as important for CSF formation and secretion in the adult were demonstrated in the embryonic choroid plexus (and validated with immunohistochemistry of protein products), but with some major age-related differences in expression. In addition, a large number of previously unidentified ion channel and transporter genes were identified for the first time in plexus epithelium. These results, in addition to data obtained from electron microscopical and physiological permeability experiments in immature brains, indicate that exchange between blood and CSF is mainly transcellular, as well-formed tight junctions restrict movement of small water-soluble molecules from early in development. These data strongly indicate the brain develops within a well-protected internal environment and the exchange between the blood, brain and CSF is transcellular and not through incomplete barriers.
Highly dispersible diamond nanoparticles for pretreatment of diamond films on Si substrate
NASA Astrophysics Data System (ADS)
Zhao, Shenjie; Huang, Jian; Zhou, Xinyu; Ren, Bing; Tang, Ke; Xi, Yifan; Wang, Lin; Wang, Linjun; Lu, Yicheng
2018-03-01
High quality diamond film on Si substrate was synthesized by coating diamond nanoparticles prepared by polyglycerol grafting (ND-PG) dispersion as pre-treatment method. Transmission electron microscope indicates that ND-PG is much more dispersible than untreated nanoparticles in organic solvents. The surface morphology was characterized by scanning electron microscope while atomic force microscope was conducted to measure the surface roughness. Microstructure properties were carried out by Raman spectroscopy and X-ray diffraction. The results revealed an increase in nucleation density, an acceleration of growth rate and an improvement of film crystalline quality by using spin-coating ND-PG pretreatment.
Development of 1500mm Wide Wrought Magnesium Alloys by Twin Roll Casting Technique in Turkey
NASA Astrophysics Data System (ADS)
Duygulu, Ozgur; Ucuncuoglu, Selda; Oktay, Gizem; Temur, Deniz Sultan; Yucel, Onuralp; Kaya, Ali Arslan
Magnesium alloy AZ31, AZ61, AZ91, AM50 and AM60 sheets were produced by twin roll casting first time in Turkey. Sheets of 4.5-6.5mm thick and 1500mm width were successfully achieved. Microstructure of the sheet was analyzed by optical microscope, scanning electron microscope (SEM) and transmission electron microscope (TEM). Semi-quantitative analyses were performed by SEM-EDS. In addition, X-ray studies were performed for both characterization and texture purposes. Mechanical properties were investigated by tensile tests and also hardness measurements. Homogenization and annealing heat treatments were performed on the produced sheets.
Electron microscopy study of the iron meteorite Santa Catharina
NASA Technical Reports Server (NTRS)
Zhang, J.; Williams, D. B.; Goldstein, J. I.; Clarke, R. S., Jr.
1990-01-01
A characterization of the microstructural features of Santa Catharina (SC) from the millimeter to submicron scale is presented. The same specimen was examined using an optical microscope, a scanning electron microscope, an electron probe microanalyzer, and an analytical electron microscope. Findings include the fact that SC metal nodules may have different bulk Ni values, leading to different microstructures upon cooling; that SC USNM 6293 is the less corroded sample, as tetrataenite exists as less than 10 nm ordered domains throughout the entire fcc matrix (it is noted that this structure is the same as that of the Twin City meteorite and identical to clear taenite II in the retained taenite regions of the octahedrites); that SC USNM 3043 has a more complicated microstructure due to corrosion; and that the low Ni phase of the cloudy zone was selectively corroded in some areas and formed the dark regions, indicating that the SC meteorite corrosion process was electrochemical in nature and may involve Cl-containing akaganeite.
NASA Technical Reports Server (NTRS)
Nittler, Larry R.
2003-01-01
This grant furnished funds to purchase a state-of-the-art scanning electron microscope (SEM) to support our analytical facilities for extraterrestrial samples. After evaluating several instruments, we purchased a JEOL 6500F thermal field emission SEM with the following analytical accessories: EDAX energy-dispersive x-ray analysis system with fully automated control of instrument and sample stage; EDAX LEXS wavelength-dispersive x-ray spectrometer for high sensitivity light-element analysis; EDAX/TSL electron backscatter diffraction (EBSD) system with software for phase identification and crystal orientation mapping; Robinson backscatter electron detector; and an in situ micro-manipulator (Kleindiek). The total price was $550,000 (with $150,000 of the purchase supported by Carnegie institution matching funds). The microscope was delivered in October 2002, and most of the analytical accessories were installed by January 2003. With the exception of the wavelength spectrometer (which has been undergoing design changes) everything is working well and the SEM is in routine use in our laboratory.
Progress on PEEM3 -- An Aberration Corrected X-Ray Photoemission Electron Microscope at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDowell, A. A.; Feng, J.; DeMello, A.
2007-01-19
A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less
Progress on PEEM3 - An Aberration Corrected X-Ray PhotoemissionElectron Microscope at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDowell, Alastair A.; Feng, J.; DeMello, A.
2006-05-20
A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less
Grief, C; Galler, R; Côrtes, L M; Barth, O M
1997-01-01
Non-isotopic in situ hybridisation was used at the electron microscope level to determine the localisation of viral RNA in dengue-2 infected mosquito cells at 14, 24, 48 and 72 h post-infection. In situ hybridisation was carried out on sections of dengue-2 infected mosquito cells using a digoxigenin-labelled DNA probe to the envelope protein gene sequence of the virus. Viral RNA was consistently localised over the rough endoplasmic reticulum and the virus-induced smooth membrane structures which form within the endoplasmic reticulum. During the later stages of infection electron-dense areas were observed to develop in close proximity to the smooth membrane structures. Electron microscopic in situ hybridisation showed that these denser areas contained both viral RNA and virus particles. Our results show that in dengue-2 infected mosquito cells the smooth membrane structures are an important site for the concentration of dengue viral RNA and its possible subsequent encapsidation into virus particles.
Copper Decoration of Carbon Nanotubes and High Resolution Electron Microscopy
NASA Astrophysics Data System (ADS)
Probst, Camille
A new process of decorating carbon nanotubes with copper was developed for the fabrication of nanocomposite aluminum-nanotubes. The process consists of three stages: oxidation, activation and electroless copper plating on the nanotubes. The oxidation step was required to create chemical function on the nanotubes, essential for the activation step. Then, catalytic nanoparticles of tin-palladium were deposited on the tubes. Finally, during the electroless copper plating, copper particles with a size between 20 and 60 nm were uniformly deposited on the nanotubes surface. The reproducibility of the process was shown by using another type of carbon nanotube. The fabrication of nanocomposites aluminum-nanotubes was tested by aluminum vacuum infiltration. Although the infiltration of carbon nanotubes did not produce the expected results, an interesting electron microscopy sample was discovered during the process development: the activated carbon nanotubes. Secondly, scanning transmitted electron microscopy (STEM) imaging in SEM was analysed. The images were obtained with a new detector on the field emission scanning electron microscope (Hitachi S-4700). Various parameters were analysed with the use of two different samples: the activated carbon nanotubes (previously obtained) and gold-palladium nanodeposits. Influences of working distance, accelerating voltage or sample used on the spatial resolution of images obtained with SMART (Scanning Microscope Assessment and Resolution Testing) were analysed. An optimum working distance for the best spatial resolution related to the sample analysed was found for the imaging in STEM mode. Finally, relation between probe size and spatial resolution of backscattered electrons (BSE) images was studied. An image synthesis method was developed to generate the BSE images from backscattered electrons coefficients obtained with CASINO software. Spatial resolution of images was determined using SMART. The analysis shown that using a probe size smaller than the size of the observed object (sample features) does not improve the spatial resolution. In addition, the effects of the accelerating voltage, the current intensity and the sample geometry and composition were analysed.
NASA Astrophysics Data System (ADS)
Xu, M.; Yang, J. Y.; Liu, L. H.
2016-07-01
The macroscopic physical properties of solids are fundamentally determined by the interactions among microscopic electrons, phonons and photons. In this work, the thermal conductivity and infrared-visible-ultraviolet dielectric functions of alkali chlorides and their temperature dependence are fully investigated at the atomic level, seeking to unveil the microscopic quantum interactions beneath the macroscopic properties. The microscopic phonon-phonon interaction dominates the thermal conductivity which can be investigated by the anharmonic lattice dynamics in combination with Peierls-Boltzmann transport equation. The photon-phonon and electron-photon interaction intrinsically induce the infrared and visible-ultraviolet dielectric functions, respectively, and such microscopic processes can be simulated by first-principles molecular dynamics without empirical parameters. The temperature influence on dielectric functions can be effectively included by choosing the thermally equilibrated configurations as the basic input to calculate the total dipole moment and electronic band structure. The overall agreement between first-principles simulations and literature experiments enables us to interpret the macroscopic thermal conductivity and dielectric functions of solids in a comprehensive way.
Murray, Harry M; Hill, Stephen J; Ang, Keng P
2016-07-01
The description and application of a modified Scanning Electron Microscope preparation technique using hexamethyldisilazane for small parasitic copepods was demonstrated though a high resolution depiction of individuals of Ergasilus labracis sampled from three spined stickleback (Gasterosteus aculeatus) in Bay D'Espoir, Newfoundland during summer 2015 and from archival samples retrieved from Atlantic salmon par (Salmo salar) stored at the Atlantic reference centre, St. Andrews, New Brunswick. The specimens were very well preserved showing high quality detail of important features and verifying those previously described using light microscopy by Hogans. Additionally the technique allowed excellent in situ demonstrations of mouth parts, swimming legs, and unusual and previously undescribed features of the second antenna including prominent striations and pore-like structures found to define the claw. It is thought that this technique will become a quick and efficient tool for describing important taxonomic features of small parasitic copepods like E. labracis or other similar small aquatic organisms. Microsc. Res. Tech. 79:657-663, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Scanning electron microscope view of iron crystal
NASA Technical Reports Server (NTRS)
1972-01-01
A scanning electron microscope photograph of iron crystals which grow in a small vug or cavity in a recrystallized breccia (fragmented rock) from the Apollo 15 Hadley-Apennino lunar landing site. The largest crystal is three microns across. Perfectly developed crystals such as these indicate slow formation from a hot vapor as the rock was cooling. The crystals are resting on an interlocking lattice of pyroxene (calsium-magnesium-iron silicate).
Scanning electron microscope view of iron crystal
1972-11-10
A scanning electron microscope photograph of iron crystals which grow in a small vug or cavity in a recrystallized breccia (fragmented rock) from the Apollo 15 Hadley-Apennino lunar landing site. The largest crystal is three microns across. Perfectly developed crystals such as these indicate slow formation from a hot vapor as the rock was cooling. The crystals are resting on an interlocking lattice of pyroxene (calsium-magnesium-iron silicate).
Electron microscope evidence of virus infection in cultured marine fish
NASA Astrophysics Data System (ADS)
Sun, Xiu-Qin; Zhang, Jin-Xing; Qu, Ling-Yun
2000-09-01
Electron microscope investigation on the red sea bream ( Pagrosomus major), bastard halibut ( Paralichthys olivaceus) and stone flounder ( Kareius bicoloratus) in North China revealed virus infection in the bodies of the dead and diseased fish. These viruses included the lymphocystis disease virus (LDV), parvovirus, globular virus, and a kind of baculavirus which was not discovered and reported before and is now tentatively named baculavirus of stone flounder ( Kareius bicoloratus).
Murphy's law-if anything can go wrong, it will: Problems in phage electron microscopy.
Ackermann, Hans-W; Tiekotter, Kenneth L
2012-04-01
The quality of bacteriophage electron microscopy appears to be on a downward course since the 1980s. This coincides with the introduction of digital electron microscopes and a general lowering of standards, possibly due to the disappearance of several world-class electron microscopists The most important problem seems to be poor contrast. Positive staining is frequently not recognized as an undesirable artifact. Phage parts, bacterial debris, and aberrant or damaged phage particles may be misdiagnosed as bacterial viruses. Digital electron microscopes often seem to be operated without magnification control because this is difficult and inconvenient. In summary, most phage electron microscopy problems may be attributed to human failure. Journals are a last-ditch defense and have a heavy responsibility in selecting competent reviewers and rejecting, or not, unsatisfactory articles.
Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes
NASA Technical Reports Server (NTRS)
Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.
2017-01-01
In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.
Wang, Qing; Kitaura, Ryo; Suzuki, Shoji; Miyauchi, Yuhei; Matsuda, Kazunari; Yamamoto, Yuta; Arai, Shigeo; Shinohara, Hisanori
2016-01-26
Edge-dependent electronic properties of graphene nanoribbons (GNRs) have attracted intense interests. To fully understand the electronic properties of GNRs, the combination of precise structural characterization and electronic property measurement is essential. For this purpose, two experimental techniques using free-standing GNR devices have been developed, which leads to the simultaneous characterization of electronic properties and structures of GNRs. Free-standing graphene has been sculpted by a focused electron beam in transmission electron microscope (TEM) and then purified and narrowed by Joule heating down to several nanometer width. Structure-dependent electronic properties are observed in TEM, and significant increase in sheet resistance and semiconducting behavior become more salient as the width of GNR decreases. The narrowest GNR width we obtained with the present method is about 1.6 nm with a large transport gap of 400 meV.
Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke
We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than themore » size of the incident electron beam.« less
NASA Technical Reports Server (NTRS)
Christoffersen, Roy; Cintala, M. J.; Keller, L. P.; See, T. H.; Horz, F.
2013-01-01
On the Moon, the energetics of smaller impactors and the physical/chemical characteristics of the granular regolith target combine to form a key product of lunar space weathering: chemically reduced shock melts containing optically-active nanophase Fe metal grains (npFe0) [1]. In addition to forming the optically dark glassy matrix phase in lunar agglutinitic soil particles [1], these shock melts are becoming increasingly recognized for their contribution to optically active patina coatings on a wide range of exposed rock and grain surfaces in the lunar regolith [2]. In applying the lessons of lunar space weathering to asteroids, the potential similarities and differences in regolith-hosted shock melts on the Moon compared to those on asteroids has become a topic of increasing interest [3,4]. In a series of impact experiments performed at velocities applicable to the asteroid belt [5], Horz et al. [6] and See and Horz [7] have previously shown that repeated impacts into a gabbroic regolith analog target can produce melt-welded grain aggregates morphologically very similar to lunar agglutinates [6,7]. Although these agglutinate-like particles were extensively analyzed by electron microprobe and scanning electron microscopy (SEM) as part of the original study [7], a microstructural and compositional comparison of these aggregates to lunar soil agglutinates at sub-micron scales has yet to be made. To close this gap, we characterized a representative set of these aggregates using a JEOL 7600 field-emission scanning electron microscope (FE-SEM), and JEOL 2500SE field-emission scanning transmission electron microscope (FE-STEM) both optimized for energy dispersive X-ray spectroscopy (EDX) compositional spectrum imaging at respective analytical spatial resolutions of 0.5 to 1 micron, and 2 to 4 nm.
Collective Poisson process with periodic rates: applications in physics from micro-to nanodevices.
da Silva, Roberto; Lamb, Luis C; Wirth, Gilson Inacio
2011-01-28
Continuous reductions in the dimensions of semiconductor devices have led to an increasing number of noise sources, including random telegraph signals (RTS) due to the capture and emission of electrons by traps at random positions between oxide and semiconductor. The models traditionally used for microscopic devices become of limited validity in nano- and mesoscale systems since, in such systems, distributed quantities such as electron and trap densities, and concepts like electron mobility, become inadequate to model electrical behaviour. In addition, current experimental works have shown that RTS in semiconductor devices based on carbon nanotubes lead to giant current fluctuations. Therefore, the physics of this phenomenon and techniques to decrease the amplitudes of RTS need to be better understood. This problem can be described as a collective Poisson process under different, but time-independent, rates, τ(c) and τ(e), that control the capture and emission of electrons by traps distributed over the oxide. Thus, models that consider calculations performed under time-dependent periodic capture and emission rates should be of interest in order to model more efficient devices. We show a complete theoretical description of a model that is capable of showing a noise reduction of current fluctuations in the time domain, and a reduction of the power spectral density in the frequency domain, in semiconductor devices as predicted by previous experimental work. We do so through numerical integrations and a novel Monte Carlo Markov chain (MCMC) algorithm based on microscopic discrete values. The proposed model also handles the ballistic regime, relevant in nano- and mesoscale devices. Finally, we show that the ballistic regime leads to nonlinearity in the electrical behaviour.
Yaghoubi, Ali; Pourjam, Ebrahim; Álvarez-Ortega, Sergio; Liébanas, Gracia; Atighi, Mohammad Reza; Pedram, Majid
2016-09-01
Discopersicus iranicus n. gen., n. comb., previously described from Iran as a new species under the genus Discotylenchus , is illustrated using light microscope and scanning electron microscope (SEM) observations and further studied using molecular characters. SEM studies revealed the newly proposed genus has oblique amphidial apertures on the lateral sides of the lip region. SEM images are also provided for two species of Discotylenchus , namely D. discretus and D. brevicaudatus , as the first SEM study of the genus . These results confirmed longitudinal amphidial aperture type on lateral sides of the lip region in genus Discotylenchus , as noted by Siddiqi while erecting the genus with D. discretus as the type species . Molecular phylogenetic analyses using partial small subunit (SSU) and large subunit (LSU) rDNA sequences revealed the affinity of the genus Discopersicus n. gen. with members of the subfamily Boleodorinae, as supported by morphological characters (mainly, the oblique amphidial opening).
Light Microscopy at Maximal Precision
NASA Astrophysics Data System (ADS)
Bierbaum, Matthew; Leahy, Brian D.; Alemi, Alexander A.; Cohen, Itai; Sethna, James P.
2017-10-01
Microscopy is the workhorse of the physical and life sciences, producing crisp images of everything from atoms to cells well beyond the capabilities of the human eye. However, the analysis of these images is frequently little more accurate than manual marking. Here, we revolutionize the analysis of microscopy images, extracting all the useful information theoretically contained in a complex microscope image. Using a generic, methodological approach, we extract the information by fitting experimental images with a detailed optical model of the microscope, a method we call parameter extraction from reconstructing images (PERI). As a proof of principle, we demonstrate this approach with a confocal image of colloidal spheres, improving measurements of particle positions and radii by 10-100 times over current methods and attaining the maximum possible accuracy. With this unprecedented accuracy, we measure nanometer-scale colloidal interactions in dense suspensions solely with light microscopy, a previously impossible feat. Our approach is generic and applicable to imaging methods from brightfield to electron microscopy, where we expect accuracies of 1 nm and 0.1 pm, respectively.
Atomically Resolved STM Characterization of the 3-D Dirac Semimetal Cd3As2
NASA Astrophysics Data System (ADS)
Butler, Christopher; Tseng, Yi; Hsing, Cheng-Rong; Wu, Yu-Mi; Sankar, Raman; Wang, Mei-Fang; Wei, Ching-Ming; Chou, Fang-Cheng; Lin, Minn-Tsong
Dirac semimetals such as Cd3As2 are a recently discovered class of materials which host three-dimensional linear dispersion around point-like band crossings in the bulk Brillouin zone, and hence represent three-dimensional analogues of graphene. This electronic phase is enabled by specific crystal symmetries: In the case of Cd3As2, a C4 rotational symmetry associated with its peculiar corkscrew arrangement of systematic Cd vacancies. Although this arrangement underpins the current crystallographic understanding of Cd3As2, and all its theoretical implications, it is strangely absent in surface microscopic investigations reported previously. Here we use a combined approach of scanning tunneling microscopy and ab initio calculations to show that the currently held crystallographic model of Cd3As2 is indeed predictive of a periodic zig-zag superstructure at the (112) surface, which we observe in scanning tunneling microscopy images. This helps to reconcile the current state of microscopic surface observations with the prevailing crystallographic and theoretical models.
Experimental evaluation of environmental scanning electron microscopes at high chamber pressure.
Fitzek, H; Schroettner, H; Wagner, J; Hofer, F; Rattenberger, J
2015-11-01
In environmental scanning electron microscopy (ESEM) high pressure applications have become increasingly important. Wet or biological samples can be investigated without time-consuming sample preparation and potential artefacts from this preparation can be neglected. Unfortunately, the signal-to-noise ratio strongly decreases with increasing chamber pressure. To evaluate the high pressure performance of ESEM and to compare different electron microscopes, information about spatial resolution and detector type is not enough. On the one hand, the scattering of the primary electron beam increases, which vanishes the contrast in images; and on the other hand, the secondary electrons (SE) signal amplification decreases. The stagnation gas thickness (effective distance the beam has to travel through the imaging gas) as well as the SE detection system depend on the microscope and for a complete and serious evaluation of an ESEM or low vacuum SEM it is necessary to specify these two parameters. A method is presented to determine the fraction of scattered and unscattered electrons and to calculate the stagnation gas thickness (θ). To evaluate the high pressure performance of the SE detection system, a method is presented that allows for an analysis of a single image and the calculation of the signal-to-noise ratio of this image. All investigations are performed on an FEI ESEM Quanta 600 (field emission gun) and an FEI ESEM Quanta 200 (thermionic gun). These methods and measurements should represent opportunities for evaluating the high pressure performance of an ESEM. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Ortiz, L.; Varona, S.; Viyuela, O.; Martin-Delgado, M. A.
2018-02-01
We study the localization and oscillation properties of the Majorana fermions that arise in a two-dimensional electron gas (2DEG) with spin-orbit coupling (SOC) and a Zeeman field coupled with a d -wave superconductor. Despite the angular dependence of the d -wave pairing, localization and oscillation properties are found to be similar to the ones seen in conventional s -wave superconductors. In addition, we study a microscopic lattice version of the previous system that can be characterized by a topological invariant. We derive its real space representation that involves nearest and next-to-nearest-neighbors pairing. Finally, we show that the emerging chiral Majorana fermions are indeed robust against static disorder. This analysis has potential applications to quantum simulations and experiments in high-Tc superconductors.
gA-driven shapes of electron spectra of forbidden β decays in the nuclear shell model
NASA Astrophysics Data System (ADS)
Kostensalo, Joel; Suhonen, Jouni
2017-08-01
The evolution of the shape of the electron spectra of 16 forbidden β- decays as a function of gA was studied using the nuclear shell model in appropriate single-particle model spaces with established, well-tested nuclear Hamiltonians. The β spectra of 94Nb(6+) →94Mo(4+) and 98Tc(6+) →98Ru(4+) were found to depend strongly on gA, which makes them excellent candidates for the determination of the effective value of gA with the spectrum-shape method (SSM). A strong gA dependence is also seen in the spectrum of 96Zr(0+) →96Nb(6+) . This decay could be used for determining the quenching of gA in sixth-forbidden decays in the future, when the measurement of the spectrum becomes experimentally feasible. The calculated shell-model electron spectra of the ground-state-to-ground-state decays of 87Rb, 99Tc, and 137Cs and the decay of 137Cs to the isomeric 11 /2- state in 137Ba were found to be in excellent agreement with the spectra previously calculated using the microscopic quasiparticle-phonon model. This is further evidence of the robust nature of the SSM observed in the previous studies.
Vise holds specimens for microscope
NASA Technical Reports Server (NTRS)
Greule, W. N.
1980-01-01
Convenient, miniature, spring-loaded clamp holds specimens for scanning electron microscope. Clamp is made out of nesting sections of studded angle-aluminum. Specimens are easier to mount and dismount with vise than with conductive adhesive or paint.
Mars Life? - Microscopic Tubular Structures
1996-08-09
This electron microscope image shows tubular structures of likely Martian origin. These structures are very similar in size and shape to extremely tiny microfossils found in some Earth rocks. http://photojournal.jpl.nasa.gov/catalog/PIA00287
Tuning Charge and Correlation Effects for a Single Molecule on a Graphene Device
NASA Astrophysics Data System (ADS)
Tsai, Hsin-Zon; Wickenburg, Sebastian; Lu, Jiong; Lischner, Johannes; Omrani, Arash A.; Riss, Alexander; Karrasch, Christoph; Jung, Han Sae; Khajeh, Ramin; Wong, Dillon; Watanabe, Kenji; Taniguchi, Takashi; Zettl, Alex; Louie, Steven G.; Crommie, Michael F.
Controlling electronic devices down to the single molecule level is a grand challenge of nanotechnology. Single-molecules have been integrated into devices capable of tuning electronic response, but a drawback for these systems is that their microscopic structure remains unknown due to inability to image molecules in the junction region. Here we present a combined STM and nc-AFM study demonstrating gate-tunable control of the charge state of individual F4TCNQ molecules at the surface of a graphene field effect transistor. This is different from previous studies in that the Fermi level of the substrate was continuously tuned across the molecular orbital energy level. Using STS we have determined the resulting energy level evolution of the LUMO, its associated vibronic modes, and the graphene Dirac point (ED). We show that the energy difference between ED and the LUMO increases as EF is moved away from ED due to electron-electron interactions that renormalize the molecular quasiparticle energy. This is attributed to gate-tunable image-charge screening in graphene and corroborated by ab initio calculations.
Atomic Resolution Study of the Interfacial Bonding at Si3N4/CeO2-δ Grain Boundaries
NASA Astrophysics Data System (ADS)
Klie, Robert F.; Walkosz, Weronika; Ogut, Serdar; Borisevich, A.; Becher, Paul F.; Pennycook, Steve J.; Idrobo, Juan C.
2008-03-01
Using a combination of atomic resolution Z-contrast imaging and electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope, we examine the atomic and electronic structures at the interface between Si3N4 (10 10) and CeO2-δ inter-granular film (IGF). Ce atoms are observed to segregate to the interface in a two-layer periodic arrangement, which is significantly different compared to the structure observed in a previous study. Our EELS experiments show that (i) oxygen is present at the interface in direct contact with the terminating Si3N4 open-ring structures, (ii) the Ce valence state changes from +3 to +4 in going from the interface into the IGF, and (iii) while the N concentration decreases away from the Si3N4 grains into the IGF, the Si concentration remains uniform across the whole width of the IGF. Possible reasons for these observed structural and electronic variations at the interface and their implications for future studies on Si3N4/rare-earth oxide interfaces are briefly discussed.
Scanning electron microscopy of echinoid podia.
Florey, E; Cahill, M A
1982-01-01
Tube feet of the sea urchin Strongylocentrotus franciscanus were studied with the scanning electron microscope (SEM). By use of fractured preparations it was possible to obtain views of all components of the layered tube-foot wall. The outer epithelium was found to bear tufts of cilia possibly belonging to sensory cells. The nerve plexus was clearly revealed as being composed of bundles of varicose axons. The basal lamina, which covers the outer and inner surfaces of the connective tissue layer, was found to be a mechanically resistant and elastic membrane. The connective tissue appears as dense bundles of (collagen) fibers. The luminal epithelium (coelothelium) is a single layer of flagellated collar cells. There is no indication that the muscle fibers, which insert on the inner basal lamina of the connective tissue layer are innervated by axons from the basi-epithelial nerve plexus. The results agree with previous conclusions concerning tube-foot structure based on transmission electron microscopy, and provide additional information, particularly with regard to the outer and inner epithelia.
NASA Astrophysics Data System (ADS)
Garvie, Laurence A. J.; Baumgardner, Grant; Buseck, Peter R.
2008-05-01
Carbonaceous nanoglobules are ubiquitous in carbonaceous chondrite (CC) meteorites. The Tagish Lake (C2) meteorite is particularly intriguing in containing an abundance of nanoglobules, with a wider range of forms and sizes than encountered in other CC meteorites. Previous studies by transmission electron microscopy (TEM) have provided a wealth of information on chemistry and structure. In this study low voltage scanning electron microscopy (SEM) was used to characterize the globule forms and external structures. The internal structure of the globules was investigated after sectioning by focused ion beam (FIB) milling. The FIB-SEM analysis shows that the globules range from solid to hollow. Some hollow globules show a central open core, with adjoining smaller cores. The FIB with an SEM is a valuable tool for the analysis of extraterrestrial materials, even of sub-micron-sized "soft" carbonaceous particles. The rapid site-specific cross-sectioning capabilities of the FIB allow the preservation of the internal morphology of the nanoglobules, with minimal damage or alteration of the unsectioned areas.
Maldonado, J; Solé, A; Puyen, Z M; Esteve, I
2011-07-01
Lead (Pb) is a metal that is non-essential to any metabolic process and, moreover, highly deleterious to life. In microbial mats - benthic stratified ecosystems - located in coastal areas, phototrophic microorganisms (algae and oxygenic phototrophic bacteria) are the primary producers and they are exposed to pollution by metals. In this paper we describe the search for bioindicators among phototrophic populations of Ebro delta microbial mats, using high-resolution microscopic techniques that we have optimized in previous studies. Confocal laser scanning microscopy coupled to a spectrofluorometric detector (CLSM-λscan) to determine in vivo sensitivity of different cyanobacteria to lead, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM), both coupled to energy dispersive X-ray microanalysis (EDX), to determine the extra- and intracellular sequestration of this metal in cells, were the techniques used for this purpose. Oscillatoria sp. PCC 7515, Chroococcus sp. PCC 9106 and Spirulina sp. PCC 6313 tested in this paper could be considered bioindicators for lead pollution, because all of these microorganisms are indigenous, have high tolerance to high concentrations of lead and are able to accumulate this metal externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Experiments made with microcosms demonstrated that Phormidium-like and Lyngbya-like organisms selected themselves at the highest concentrations of lead assayed. In the present study it is shown that all cyanobacteria studied (both in culture and in microcosms) present PP inclusions in their cytoplasm and that these increase in number in lead polluted cultures and microcosms. We believe that the application of these microscopic techniques open up broad prospects for future studies of metal ecotoxicity. Copyright © 2011 Elsevier B.V. All rights reserved.
Moore, Jayma A; Payne, Scott A
2012-01-01
Fungi often are found within plant tissues where they cannot be visualized with the scanning electron microscope (SEM). We present a simple way to reveal cell interiors while avoiding many common causes of artifact. Freeze-fracture of leaf tissue using liquid nitrogen during the 100% ethanol step of the dehydration process just before critical point drying is useful in exposing intracellular fungi to the SEM.
Clinical Investigation Program Report Control Symbol MED 300.
1983-10-01
13 Agent Induced Delay of Gastric Emptying. (0) (PR) (P) 1979 The Experimental Fat Embolism Syndrome: An Electron 15 Microscopic Study of Lung in...1981 Investigation of Chronic Phantom Pain. (0) (PR) (P) 25 v Year Page Initiated 1981 Experimental Fat Embolism Syndrome: Basic Studies and 26...14 Detail Summary Sheet Date 3 Oct 83 Prot No.: 79-21 Status: Ongoing Title: The Experimental Fat Embolism Syndrome: An Electron Microscopic Study of
High-resolution, cryogenic, side-entry type specimen stage
King, Wayne E.; Merkle, Karl L.
1979-01-01
A high-resolution, cryogenic side-entry type specimen stage includes a copper block within which a specimen can be positioned in the electron beam of an electron microscope, one end of the copper block constituting a specimen heat exchanger, means for directing a flow of helium at cryogenic temperature into the heat exchanger, and electrical leads running from the specimen to the exterior of the microscope for four point D.C. electrical resistivity measurements.
The Enhanced Driver’s License: Collateral Gains or Collateral Damage?
2012-12-01
fact, are only detectible under a high- powered electron microscope. The indication, thus, is that the improvements made to the driver’s license...security environment, say airport security, there is no time to analyze driver’s licenses under a high- powered electron microscope to ensure they are...95 Advancements in recent decades have reduced the size and cost of RFID technology and as such, have increased the number of purposes ( supply
Low Voltage Electron Beam Lithography
1994-01-01
September 1970 (Societe Franaise do Microscopic Elecuouique, Plaris, 1970) Vol. 2, p. 55. [31 H . C. Pfeiffer, "Basic limitations of probefonning systems...USA (editors: 0. Jobari and I. Corvin). [4) T. Groves, D. L Hunmond, H . Kuo, ’Elecmnm-beam broadening effct caused by discreteness of space charge...Electron Microscope Gun". Br. J. Appi. Phys.. February 1952, pp. 40-46. M. E. Haine, P. A. Einstein, and P. H . Brocherd. "Resistance Bias
Linear, Single-Stranded Deoxyribonucleic Acid Isolated from Kilham Rat Virus
Salzman, Lois Ann; White, Wesley L.; Kakefuda, Tsuyoshi
1971-01-01
Kilham rat virus (KRV) was grown in a rat nephroma cell line and was purified by two isopycnic centrifugations in cesium chloride. The virus contains single-stranded deoxyribonucleic acid (DNA) with a molecular weight of approximately 1.6 × 106. The DNA was extracted from the virion by both phenol extraction and by 2% sodium dodecyl sulfate at 50 C. KRV DNA, extracted by both procedures, was observed in an electron microscope by using a cytochrome c or diethylaminoethyldextran monolayer. The DNA was also exposed to exonuclease I, an enzyme which hydrolyzes specifically linear, single-stranded DNA. Hydrolysis of 70 to 80% of the DNA was observed. Both the enzymatic and the electron microscope studies support the conclusion that extracted KRV DNA is a single-stranded, linear molecule. The length of the DNA was measured in the electron microscope and determined to be 1.505 ± 0.206 μm. Images PMID:4327590
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henn, T.; Kiessling, T., E-mail: tobias.kiessling@physik.uni-wuerzburg.de; Ossau, W.
We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast “white light” supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables themore » investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.« less
A densitometric analysis of commercial 35mm films
NASA Technical Reports Server (NTRS)
Hammond, Ernest C., Jr.; Ruffin, Christopher, III
1989-01-01
IIaO films have been subjected to various sensitometric tests. The have included thermal and aging effects and reciprocity failure studies. In order to compare the special IIaO film with popular brands of 35 mm films and their possible use in astrophotography, Agfa, Fuji and Kodak print and slide formats, as well as black and white and color formats, were subjected to sensitometric, as well as densitometric analysis. A scanning electron microscope was used to analyze grain structure size, and shape as a function of both speed and brand. Preliminary analysis of the grain structure using an ISI-SS40 scanning electron microscope indicates that the grain sizes for darker densities are much larger than the grain size for lighter densities. Researchers analyze the scanning electron microscope findings of the various grains versus densities as well as enhancement of the grains, using the IP-8500 Digital Image Processor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Zhanwei; Xie Huimin; Fang Daining
2007-03-15
In this article, a novel artificial submicro- or nanometer speckle fabricating technique is proposed by taking advantage of submicro or nanometer particles. In the technique, submicron or nanometer particles were adhered to an object surface by using ultrasonic dispersing technique. The particles on the object surface can be regarded as submicro or nanometer speckle by using a scanning electronic microscope at a special magnification. In addition, an electron microscope speckle photography (EMSP) method is developed to measure in-plane submicron or nanometer deformation of the object coated with the artificial submicro or nanometer speckles. The principle of artificial submicro or nanometermore » speckle fabricating technique and the EMSP method are discussed in detail in this article. Some typical applications of this method are offered. The experimental results verified that the artificial submicro or nanometer speckle fabricating technique and EMSP method is feasible.« less
Guinel, M J-F; Brodusch, N; Verde-Gómez, Y; Escobar-Morales, B; Gauvin, R
2013-10-01
Carbon nanotubes (CNTs) decorated with platinum (Pt) nanoparticles (NPs) have been characterized using a cold field-emission scanning electron microscope (SEM) and a high resolution field-emission transmission electron microscope (TEM). With this particular composite material, the complementary nature of the two instruments was demonstrated. Although the long CNTs were found to be mostly bent and defective in some parts, the nucleation of Pt occurred randomly and uniformly covered the CNTs. The NPs displayed a large variation in size, were sometimes defective with twins and stacking faults, and were found to be faceted with the presence of surface steps. The shape and size of the NPs and the presence of defects may have significant consequences on the activity of the Pt catalyst material. Also, thin layers of platinum oxide were identified on the surface of some NPs. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
In situ microscopy of rapidly heated nano-Al and nano-Al/WO{sub 3} thermites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Kyle T.; Zachariah, Michael R.; Chiou, Wen-An
2010-09-27
The initiation and reaction mechanism of nano-Al and nano-Al thermites in rapid heating environments is investigated in this work. A semiconductor-based grid/stage was used, capable of in situ heating of a sample from room temperature to 1473 K, and at a rate of 10{sup 6} K/s, inside an electron microscope. Nano-Al was rapidly heated in a transmission electron microscope, and before and after images indicate that the aluminum migrates through the shell, consistent with a diffusion-based mechanism. A nano-Al/WO{sub 3} composite was then heated in a scanning electron microscope. The results indicate that a reactive sintering mechanism is occurring formore » the nano-Al/WO{sub 3} thermite, as the products are found to be in surface contact and significantly deformed after the heating pulse.« less
Zhuang, Kaiwen; Ran, Xin; Lei, Song; Zhang, Chaoliang; Lama, Jebina; Ran, Yuping
2014-01-01
Trichophyton violaceum is a pathogen of tinea capitis and usually cause infection of scalp and hair in children. To investigate the parasitic form of T. violaceum in the human hair tissue, the infected hair strands were collected from a 9-year-old boy with tinea capitis due to T. violaceum and observed under both the scanning electron microscope (SEM) and transmission electron microscope (TEM). The SEM and TEM findings revealed that T. violaceum parasitically lives in the hair shaft in various forms and the morphological transformation of the fungus from hyphae into arthrospores was noted. The involved hair shaft was damaged to the great extent and its ultrastructural changes were evident. Those morphological characteristics of T. violaceum and the three-dimensional ultastructure changes of infected hairs give a better knowledge about the host-fungus relationship in tinea capitis. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ubic, Rick; Butt, Darryl; Windes, William
2014-03-13
An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarlymore » characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.« less
NASA Astrophysics Data System (ADS)
Hamers, M. F.; Pennock, G. M.; Drury, M. R.
2017-04-01
The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.
Structure of IgG and IgY molecules in ribosome-antibody complexes as studied by electron microscopy.
Noll, F; Lutsch, G; Bielka, H
1982-03-01
The overall shape and dimensions of IgG (rabbit) and IgY (chicken) antibodies against ribosomal proteins have been studied in electron micrographs of ribosome-antibody complexes. The antibodies appear as Y-shaped molecules with an angle of about 90 degrees between their Fab arms. The length of one Fab arm amounts to about 10 nm. No differences between the IgG and IgY molecules could be detected electron microscopically. The data obtained on the shape of IgG and IgY correlate with those of earlier electron microscopic studies while the determined size of the Fab arms is in the range found by scattering methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorut, F.; Imbert, G.; Roggero, A.
In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, withmore » a densification of the layer and a loss of carbon and hydrogen elements being observed.« less
The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory
NASA Astrophysics Data System (ADS)
Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark
2011-06-01
Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.
The PC9A Filter Screening Tool
2016-02-01
conjunction with an optical microscope for identification of other important debris such as glass beads. The FST has now been installed at RAAF East...conservative screening limits need to be sent for detailed laboratory analysis. Laboratory analysis has traditionally involved a manual microscopic ...Electron Microscope with Energy Dispersive Spectroscopy (SEM EDS) to determine the composition and likely source. The Engine Maintenance Manual
Three dimensional profile measurement using multi-channel detector MVM-SEM
NASA Astrophysics Data System (ADS)
Yoshikawa, Makoto; Harada, Sumito; Ito, Keisuke; Murakawa, Tsutomu; Shida, Soichi; Matsumoto, Jun; Nakamura, Takayuki
2014-07-01
In next generation lithography (NGL) for the 1x nm node and beyond, the three dimensional (3D) shape measurements such as side wall angle (SWA) and height of feature on photomask become more critical for the process control. Until today, AFM (Atomic Force Microscope), X-SEM (cross-section Scanning Electron Microscope) and TEM (Transmission Electron Microscope) tools are normally used for 3D measurements, however, these techniques require time-consuming preparation and observation. And both X-SEM and TEM are destructive measurement techniques. This paper presents a technology for quick and non-destructive 3D shape analysis using multi-channel detector MVM-SEM (Multi Vision Metrology SEM), and also reports its accuracy and precision.
Song, Dongsheng; Tavabi, Amir H.; Li, Zi-An; Kovács, András; Rusz, Ján; Huang, Wenting; Richter, Gunther; Dunin-Borkowski, Rafal E.; Zhu, Jing
2017-01-01
Electron energy-loss magnetic chiral dichroism is a powerful technique that allows the local magnetic properties of materials to be measured quantitatively with close-to-atomic spatial resolution and element specificity in the transmission electron microscope. Until now, the technique has been restricted to measurements of the magnetic circular dichroism signal in the electron beam direction. However, the intrinsic magnetization directions of thin samples are often oriented in the specimen plane, especially when they are examined in magnetic-field-free conditions in the transmission electron microscope. Here, we introduce an approach that allows in-plane magnetic signals to be measured using electron magnetic chiral dichroism by selecting a specific diffraction geometry. We compare experimental results recorded from a cobalt nanoplate with simulations to demonstrate that an electron magnetic chiral dichroism signal originating from in-plane magnetization can be detected successfully. PMID:28504267
Direct imaging detectors for electron microscopy
NASA Astrophysics Data System (ADS)
Faruqi, A. R.; McMullan, G.
2018-01-01
Electronic detectors used for imaging in electron microscopy are reviewed in this paper. Much of the detector technology is based on the developments in microelectronics, which have allowed the design of direct detectors with fine pixels, fast readout and which are sufficiently radiation hard for practical use. Detectors included in this review are hybrid pixel detectors, monolithic active pixel sensors based on CMOS technology and pnCCDs, which share one important feature: they are all direct imaging detectors, relying on directly converting energy in a semiconductor. Traditional methods of recording images in the electron microscope such as film and CCDs, are mentioned briefly along with a more detailed description of direct electronic detectors. Many applications benefit from the use of direct electron detectors and a few examples are mentioned in the text. In recent years one of the most dramatic advances in structural biology has been in the deployment of the new backthinned CMOS direct detectors to attain near-atomic resolution molecular structures with electron cryo-microscopy (cryo-EM). The development of direct detectors, along with a number of other parallel advances, has seen a very significant amount of new information being recorded in the images, which was not previously possible-and this forms the main emphasis of the review.
Electron-hole collision limited transport in charge-neutral bilayer graphene
NASA Astrophysics Data System (ADS)
Nam, Youngwoo; Ki, Dong-Keun; Soler-Delgado, David; Morpurgo, Alberto F.
2017-12-01
Ballistic transport occurs whenever electrons propagate without collisions deflecting their trajectory. It is normally observed in conductors with a negligible concentration of impurities, at low temperature, to avoid electron-phonon scattering. Here, we use suspended bilayer graphene devices to reveal a new regime, in which ballistic transport is not limited by scattering with phonons or impurities, but by electron-hole collisions. The phenomenon manifests itself in a negative four-terminal resistance that becomes visible when the density of holes (electrons) is suppressed by gate-shifting the Fermi level in the conduction (valence) band, above the thermal energy. For smaller densities, transport is diffusive, and the measured conductivity is reproduced quantitatively, with no fitting parameters, by including electron-hole scattering as the only process causing velocity relaxation. Experiments on a trilayer device show that the phenomenon is robust and that transport at charge neutrality is governed by the same physics. Our results provide a textbook illustration of a transport regime that had not been observed previously and clarify the nature of conduction through charge-neutral graphene under conditions in which carrier density inhomogeneity is immaterial. They also demonstrate that transport can be limited by a fully electronic mechanism, originating from the same microscopic processes that govern the physics of Dirac-like plasmas.
Impact of electron-captures on nuclei near N = 50 on core-collapse supernovae
NASA Astrophysics Data System (ADS)
Titus, R.; Sullivan, C.; Zegers, R. G. T.; Brown, B. A.; Gao, B.
2018-01-01
The sensitivity of the late stages of stellar core collapse to electron-capture rates on nuclei is investigated, with a focus on electron-capture rates on 74 nuclei with neutron number close to 50, just above doubly magic 78Ni. It is demonstrated that variations in key characteristics of the evolution, such as the lepton fraction, electron fraction, entropy, stellar density, and in-fall velocity are about 50% due to uncertainties in the electron-capture rates on nuclei in this region, although thousands of nuclei are included in the simulations. The present electron-capture rate estimates used for the nuclei in this high-sensitivity region of the chart of isotopes are primarily based on a simple approximation, and it is shown that the estimated rates are likely too high, by an order of magnitude or more. Electron-capture rates based on Gamow-Teller strength distributions calculated in microscopic theoretical models will be required to obtain better estimates. Gamow-Teller distributions extracted from charge-exchange experiments performed at intermediate energies serve to guide the development and benchmark the models. A previously compiled weak-rate library that is used in the astrophysical simulations was updated as part of the work presented here, by adding additional rate tables for nuclei near stability for mass numbers between 60 and 110.
Electron beam analysis of particulate cometary material
NASA Technical Reports Server (NTRS)
Bradley, John
1989-01-01
Electron microscopy will be useful for characterization of inorganic dust grains in returned comet nucleus samples. The choice of instrument(s) will depend primarily on the nature of the samples, but ultimately a variety of electron-beam methods could be employed. Scanning and analytical (transmission) electron microscopy are the logical choise for morphological, mineralogical, and bulk chemical analyses of dust grains removed from ices. It may also be possible to examine unmelted ice/dust mixtures using an environmental scanning electron microscope equipped with a cryo-transfer unit and a cold stage. Electron microscopic observations of comet nuclei might include: (1) porosities of dust grains; (2) morphologies and microstructures of individual mineral grains; (3) relative abundances of olivine, pyroxene, and glass; and (4) the presence of phases that might have resulted from aqueous alteration (layer silicates, carbonates, sulfates).
Microscopy with slow electrons: from LEEM to XPEEM
Bauer, Ernst [Arizona State University, Phoenix, Arizona, United States
2017-12-09
The short penetration and escape depth of electrons with energies below 1 keV make them ideally suited for the study of surfaces and ultrathin films. The combination of the low energy electrons and the high lateral resolution of a microscope produces a powerful method for the characterization of nanostructures on bulk samples, in particular if the microscope is equipped with an imaging energy filter and connected to a synchrotron radiation source. Comprehensive characterization by imaging, diffraction, and spectroscope of the structural, chemical, and magnetic properties is then possible. The Talk will describe the various imaging techniques in using reflected and emitted electrons in low-energy electron microscopy (LEEM) and x-ray photoemission electron microscopy (XPEEM), with an emphasis on magnetic materials with spin-polarized LEEM and x-ray magnetic circular dichroism PEEM. The talk with end with an outlook on future possibilities.
Phase contrast in high resolution electron microscopy
Rose, H.H.
1975-09-23
This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)
High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Huang, Yao-Ting; Chang, Pi-Bai
2006-10-01
The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.
A versatile atomic force microscope integrated with a scanning electron microscope.
Kreith, J; Strunz, T; Fantner, E J; Fantner, G E; Cordill, M J
2017-05-01
A versatile atomic force microscope (AFM), which can be installed in a scanning electron microscope (SEM), is introduced. The flexible design of the instrument enables correlated analysis for different experimental configurations, such as AFM imaging directly after nanoindentation in vacuum. In order to demonstrate the capabilities of the specially designed AFM installed inside a SEM, slip steps emanating around nanoindents in single crystalline brass were examined. This example showcases how the combination of AFM and SEM imaging can be utilized for quantitative dislocation analysis through the measurement of the slip step heights without the hindrance of oxide formation. Finally, an in situ nanoindentation technique is introduced, illustrating the use of AFM imaging during indentation experiments to examine plastic deformation occurring under the indenter tip. The mechanical indentation data are correlated to the SEM and AFM images to estimate the number of dislocations emitted to the surface.
KLASS: Kennedy Launch Academy Simulation System
NASA Technical Reports Server (NTRS)
Garner, Lesley C.
2007-01-01
Software provides access to many sophisticated scientific instrumentation (Scanning Electron Microscope (SEM), a Light Microscope, a Scanning Probe Microscope (covering Scanning Tunneling, Atomic Force, and Magnetic Force microscopy), and an Energy Dispersive Spectrometer for the SEM). Flash animation videos explain how each of the instruments work. Videos on how they are used at NASA and the sample preparation. Measuring and labeling tools provided with each instrument. Hands on experience of controlling the virtual instrument to conduct investigations, much like the real scientists at NASA do. Very open architecture. Open source on SourceForge. Extensive use of XML Target audience is high school and entry-level college students. "Many beginning students never get closer to an electron microscope than the photos in their textbooks. But anyone can get a sense of what the instrument can do by downloading this simulator from NASA's Kennedy Space Center." Science Magazine, April 8th, 2005
A Monte Carlo model of hot electron trapping and detrapping in SiO2
NASA Astrophysics Data System (ADS)
Kamocsai, R. L.; Porod, W.
1991-02-01
High-field stressing and oxide degradation of SiO2 are studied using a microscopic model of electron heating and charge trapping and detrapping. Hot electrons lead to a charge buildup in the oxide according to the dynamic trapping-detrapping model by Nissan-Cohen and co-workers [Y. Nissan-Cohen, J. Shappir, D. Frohman-Bentchkowsky, J. Appl. Phys. 58, 2252 (1985)]. Detrapping events are modeled as trap-to-band impact ionization processes initiated by high energy conduction electrons. The detailed electronic distribution function obtained from Monte Carlo transport simulations is utilized for the determination of the detrapping rates. We apply our microscopic model to the calculation of the flat-band voltage shift in silicon dioxide as a function of the electric field, and we show that our model is able to reproduce the experimental results. We also compare these results to the predictions of the empirical trapping-detrapping model which assumes a heuristic detrapping cross section. Our microscopic theory accounts for the nonlocal nature of impact ionization which leads to a dark space close to the injecting cathode, which is unaccounted for in the empirical model.
Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems.
Kluczyk, Katarzyna; Jacak, Lucjan; Jacak, Witold; David, Christin
2018-06-25
Nanoparticles—regularly patterned or randomly dispersed—are a key ingredient for emerging technologies in photonics. Of particular interest are scattering and field enhancement effects of metal nanoparticles for energy harvesting and converting systems. An often neglected aspect in the modeling of nanoparticles are light interaction effects at the ultimate nanoscale beyond classical electrodynamics. Those arise from microscopic electron dynamics in confined systems, the accelerated motion in the plasmon oscillation and the quantum nature of the free electron gas in metals, such as Coulomb repulsion and electron diffusion. We give a detailed account on free electron phenomena in metal nanoparticles and discuss analytic expressions stemming from microscopic (Random Phase Approximation—RPA) and semi-classical (hydrodynamic) theories. These can be incorporated into standard computational schemes to produce more reliable results on the optical properties of metal nanoparticles. We combine these solutions into a single framework and study systematically their joint impact on isolated Au, Ag, and Al nanoparticles as well as dimer structures. The spectral position of the plasmon resonance and its broadening as well as local field enhancement show an intriguing dependence on the particle size due to the relevance of additional damping channels.
3D-measurement using a scanning electron microscope with four Everhart-Thornley detectors
NASA Astrophysics Data System (ADS)
Vynnyk, Taras; Scheuer, Renke; Reithmeier, Eduard
2011-06-01
Due to the emerging degree of miniaturization in microstructures, Scanning-Electron-Microscopes (SEM) have become important instruments in the quality assurance of chip manufacturing. With a two- or multiple detector system for secondary electrons, a SEM can be used for the reconstruction of three dimensional surface profiles. Although there are several projects dealing with the reconstruction of three dimensional surfaces using electron microscopes with multiple Everhart-Thornley detectors (ETD), there is no profound knowledge of the behaviour of emitted electrons. Hence, several values, which are used for reconstruction algorithms, such as the photometric method, are only estimates; for instance, the exact collection efficiency of the ETD, which is still unknown. This paper deals with the simulation of electron trajectories in a one-, two- and four-detector system with varying working distances and varying grid currents. For each detector, the collection efficiency is determined by taking the working distance and grid current into account. Based on the gathered information, a new collection grid, which provides a homogenous emission signal for each detector of a multiple detector system, is developed. Finally, the results of the preceding tests are utilized for a reconstruction of a three dimensional surface using the photometric method with a non-lambert intensity distribution.
NASA Astrophysics Data System (ADS)
Zhang, Yuanbo
2009-03-01
We have successfully performed atomically-resolved scanning tunneling microscopy and spectroscopy (STS) on mechanically exfoliated graphene samples having tunable back-gates. We have discovered that the tunneling spectra of graphene flakes display an unexpected gap-like feature that is pinned to the Fermi level for different gate voltages, and which coexists with another depression in density-of-states that moves with gate voltage. Extensive tests and careful analysis show that the gap-feature is due to phonon-assisted inelastic tunneling, and the depression directly marks the location of the graphene Dirac point. Using tunneling spectroscopy as a new tool, we further probe the local energetic variations of the graphene charge neutral point (Dirac point) to map out spatial electron density inhomogeneities in graphene. Such measurements are two orders of magnitude higher in resolution than previous experiments, and they can be directly correlated with nanometer scale topographic features. Based on our observation of energy-dependent periodic electronic interference patterns, our measurements also reveal the nature of impurity scattering of Dirac fermions in graphene. These results are significant for understanding the sources of electron density inhomogeneity and electron scattering in graphene, and the microscopic causes of graphene electron mobility.
Clabbers, M T B; van Genderen, E; Wan, W; Wiegers, E L; Gruene, T; Abrahams, J P
2017-09-01
Three-dimensional nanometre-sized crystals of macromolecules currently resist structure elucidation by single-crystal X-ray crystallography. Here, a single nanocrystal with a diffracting volume of only 0.14 µm 3 , i.e. no more than 6 × 10 5 unit cells, provided sufficient information to determine the structure of a rare dimeric polymorph of hen egg-white lysozyme by electron crystallography. This is at least an order of magnitude smaller than was previously possible. The molecular-replacement solution, based on a monomeric polyalanine model, provided sufficient phasing power to show side-chain density, and automated model building was used to reconstruct the side chains. Diffraction data were acquired using the rotation method with parallel beam diffraction on a Titan Krios transmission electron microscope equipped with a novel in-house-designed 1024 × 1024 pixel Timepix hybrid pixel detector for low-dose diffraction data collection. Favourable detector characteristics include the ability to accurately discriminate single high-energy electrons from X-rays and count them, fast readout to finely sample reciprocal space and a high dynamic range. This work, together with other recent milestones, suggests that electron crystallography can provide an attractive alternative in determining biological structures.
Protein structure determination by electron diffraction using a single three-dimensional nanocrystal
Clabbers, M. T. B.; van Genderen, E.; Wiegers, E. L.; Gruene, T.; Abrahams, J. P.
2017-01-01
Three-dimensional nanometre-sized crystals of macromolecules currently resist structure elucidation by single-crystal X-ray crystallography. Here, a single nanocrystal with a diffracting volume of only 0.14 µm3, i.e. no more than 6 × 105 unit cells, provided sufficient information to determine the structure of a rare dimeric polymorph of hen egg-white lysozyme by electron crystallography. This is at least an order of magnitude smaller than was previously possible. The molecular-replacement solution, based on a monomeric polyalanine model, provided sufficient phasing power to show side-chain density, and automated model building was used to reconstruct the side chains. Diffraction data were acquired using the rotation method with parallel beam diffraction on a Titan Krios transmission electron microscope equipped with a novel in-house-designed 1024 × 1024 pixel Timepix hybrid pixel detector for low-dose diffraction data collection. Favourable detector characteristics include the ability to accurately discriminate single high-energy electrons from X-rays and count them, fast readout to finely sample reciprocal space and a high dynamic range. This work, together with other recent milestones, suggests that electron crystallography can provide an attractive alternative in determining biological structures. PMID:28876237
Zhang, Hai-Bo; Zhang, Xiang-Liang; Wang, Yong; Takaoka, Akio
2007-01-01
The possibility of utilizing high-energy electron tomography to characterize the micron-scale three dimensional (3D) structures of integrated circuits has been demonstrated experimentally. First, electron transmission through a tilted SiO(2) film was measured with an ultrahigh-voltage electron microscope (ultra-HVEM) and analyzed from the point of view of elastic scattering of electrons, showing that linear attenuation of the logarithmic electron transmission still holds valid for effective specimen thicknesses up to 5 microm under 2 MV accelerating voltages. Electron tomography of a micron-order thick integrated circuit specimen including the Cu/via interconnect was then tried with 3 MeV electrons in the ultra-HVEM. Serial projection images of the specimen tilted at different angles over the range of +/-90 degrees were acquired, and 3D reconstruction was performed with the images by means of the IMOD software package. Consequently, the 3D structures of the Cu lines, via and void, were revealed by cross sections and surface rendering.
Advanced Electron Holography Applied to Electromagnetic Field Study in Materials Science.
Shindo, Daisuke; Tanigaki, Toshiaki; Park, Hyun Soon
2017-07-01
Advances and applications of electron holography to the study of electromagnetic fields in various functional materials are presented. In particular, the development of split-illumination electron holography, which introduces a biprism in the illumination system of a holography electron microscope, enables highly accurate observations of electromagnetic fields and the expansion of the observable area. First, the charge distributions on insulating materials were studied by using split-illumination electron holography and including a mask in the illumination system. Second, the three-dimensional spin configurations of skyrmion lattices in a helimagnet were visualized by using a high-voltage holography electron microscope. Third, the pinning of the magnetic flux lines in a high-temperature superconductor YBa 2 Cu 3 O 7-y was analyzed by combining electron holography and scanning ion microscopy. Finally, the dynamic accumulation and collective motions of electrons around insulating biomaterial surfaces were observed by utilizing the amplitude reconstruction processes of electron holography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultra low signals in ballistic electron emission microscopy
NASA Astrophysics Data System (ADS)
Heller, Eric
The extension of Scanning Tunneling Microscopy known as Ballistic Electron Emission Microscopy (BEEM) was expanded to allow useful data collection at lower signal levels than previously possible, and a critical BEEM shortcoming was discovered and quantified. As a separate effort, a new method for measuring SB-type step energies on Si(001) SA-type steps that under some circumstances is more accurate than previous methods was used and will be presented. Finally, extensive modifications to a Scanning Tunneling Microscope used for most of this research will be presented. First, it will be shown theoretically and experimentally that by amplifying the hot BEEM electrons that make up the useful BEEM signal before they are thermalized, internal gain can be applied specifically to these electrons without amplifying standard BEEM noise sources. It will be shown that BEEM with single hot electron sensitivity (approximately a factor of 1000 improvement in the minimum detectable BEEM signal) is attainable with modified commercially existing avalanche photodiodes. With this new low-signal capability, it was obvious that a new BEEM-like signal was being detected. We have discovered that photons generated by STM tunneling will create a false signal in most BEEM samples. Furthermore, we have characterized this effect which we call "STM-PC" and it will be demonstrated with Pd/SiO2/Si and Au/SiO2/Si samples that this false signal closely mimics BEEM and is easily confused for BEEM. We will discuss ways to separate real BEEM from this new effect. Separately, thermally generated kinks on A-type steps on the Si(001) surface were counted and analyzed to find the SB-type step energy. Previous work by others was extended by counting a new type of feature, the "switch" kink, to allow a more accurate determination of the energy of SB-steps in the presence of defects that can bow steps and cause non-thermal kinks. Considerable data collection along with this new extension allowed a more accurate determination of the SB-type kink energy than before and the first experimental evidence that it increases with tensile strain on the Si(001) surface. Modifications to an Omicron Variable Temperature Scanning Tunneling Microscope (VT-STM) will be presented. The VT-STM will be moved to the Electrical Engineering Department cleanroom of The Ohio State University and will allow in-situ studies of Molecular Beam Epitaxy (MBE) grown samples. Modifications, repairs, and operating procedures will be discussed for the VT-STM and supporting hardware. Last, work on Low Temperature Grown Gallium Arsenide (LTG-GaAs) will be presented. The ultimate goal of detecting mm-scale arsenic precipitates that form with annealing using BEEM was not successful. Precipitates were imaged with atomic force microscopy, but these same precipitates are not seen with BEEM under some conditions.
Scanning Electron Microscopic Evaluation of Several Resharpening Techniques.
1982-08-19
AD-AI20 320 ARMY INST OF DENTAL RESEARCH WASHINGTON OC F/6 6/5 SCANNING ELECTRON MICROSCOPIC EVALUATION OF SEVERAL RESHARPENIN-ETC(U) UNLASSIFIE D...NIT NUMBERS US Army Institute of Dental Research Walter Reed Army Medical Center N/A Washington, DC 20012 it. CONTROLLING OFFICE NAME AND ADORESS I...several resharpening techniques by Donald J. DeNucci, DDS, MS and Carson L. Mader, DMD, MSD United States Army Institute of Dental Research Walter Reed
A Transmission Electron Microscope Investigation of Space Weathering Effects in Hayabusa Samples
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.; Berger, Eve L.
2014-01-01
The Hayabusa mission to asteroid 25143 Itokawa successfully returned the first direct samples of the regolith from the surface of an asteroid. The Hayabusa samples thus present a special opportunity to directly investigate the evolution of asteroidal surfaces, from the development of the regolith to the study of the more complex effects of space weathering. Here we describe the mineralogy, microstructure and composition of three Hayabusa mission particles using transmission electron microscope (TEM) techniques
Bajt, Sasa
2003-07-08
A highly sensitive and high resolution magnetic microscope images magnetic properties quantitatively. Imaging is done with a modified transmission electron microscope that allows imaging of the sample in a zero magnetic field. Two images from closely spaced planes, one in focus and one slightly out of focus, are sufficient to calculate the absolute values of the phase change imparted to the electrons, and hence obtain the magnetization vector field distribution.
Applications of the Analytical Electron Microscope to Materials Science
NASA Technical Reports Server (NTRS)
Goldstein, J. I.
1992-01-01
In the last 20 years, the analytical electron microscope (AEM) as allowed investigators to obtain chemical and structural information from less than 50 nanometer diameter regions in thin samples of materials and to explore problems where reactions occur at boundaries and interfaces or within small particles or phases in bulk samples. Examples of the application of the AEM to materials science problems are presented in this paper and demonstrate the usefulness and the future potential of this instrument.
A 25% tannic acid solution as a root canal irrigant cleanser: a scanning electron microscope study.
Bitter, N C
1989-03-01
A scanning electron microscope was used to evaluate the cleansing properties of a 25% tannic acid solution on the dentinal surface in the pulp chamber of endodontically prepared teeth. This was compared with the amorphous smear layer of the canal with the use of hydrogen peroxide and sodium hypochlorite solution as an irrigant. The tannic acid solution removed the smear layer more effectively than the regular cleansing agent.
Zeiss ΣIGMA VP-FE-SEM User Guide
User guide for analyzing carbon based nanomaterials on a Zeiss Sigma microscope. The guide includes helpful steps for sample preparation and loading. Specific topics utilizing the scanning electron microscope are instrumentation startup and imagining. A variety of detectors in...
Rachel, R; Bettstetter, M; Hedlund, B P; Häring, M; Kessler, A; Stetter, K O; Prangishvili, D
2002-12-01
Electron microscopic studies of the viruses in two hot springs (85 degrees C, pH 1.5-2.0, and 75-93 degrees C, pH 6.5) in Yellowstone National Park revealed particles with twelve different morphotypes. This diversity encompassed known viruses of hyperthermophilic archaea, filamentous Lipothrixviridae, rod-shaped Rudiviridae, and spindle-shaped Fuselloviridae, and novel morphotypes previously not observed in nature. Two virus types resembled head-and-tail bacteriophages from the families Siphoviridae and Podoviridae, and constituted the first observation of these viruses in a hydrothermal environment. Viral hosts in the acidic spring were members of the hyperthermophilic archaeal genus Acidianus.
NASA Astrophysics Data System (ADS)
Mai, Wenjie; Zhang, Long; Gu, Yudong; Huang, Shiqing; Zhang, Zongfu; Lao, Changshi; Yang, Peihua; Qiang, Pengfei; Chen, Zhongwei
2012-08-01
With assistance from a nano-manipulator system inside a scanning electron microscope chamber, mechanical and electrical properties of ZnO nanorings were investigated. The change of a fractured nanoring to nearly straight nanobelts was strong evidence to support the previously proposed electrostatic-force-induced self-coiling model, and our computational simulation results indicated the fracture force was 25-30 μN. The contact between a tungsten tip of the manipulator and a ZnO nanoring was confirmed as the Schottky type; therefore, the change of I-V curves of the nanoring under compression was attributed to the Schottky barrier height changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banu, Afreen; Rathod, Vandana, E-mail: drvandanarathod@rediffmail.com; Ranganath, E.
Highlights: {yields} Silver nanoparticle production by using Rhizopus stolonifer. {yields} Antibacterial activity of silver nanoparticles against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae. {yields} Synergistic effect of antibiotics with silver nanoparticles towards ESBL-strains. {yields} Characterization of silver nanoparticles made by UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, atomic force microscopy (AFM). -- Abstract: This report focuses on the synthesis of silver nanoparticles using the fungus, Rhizopus stolonifer and its antimicrobial activity. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Characterization of newly synthesized silvermore » nanoparticles was made by UV-visible absorption spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and atomic force microscope (AFM). TEM micrograph revealed the formation of spherical nanoparticles with size ranging between 3 and 20 nm. The biosynthesized silver nanoparticles (AgNPs) showed excellent antibacterial activity against ESBL-strains which includes E. coli, Proteus. sp. and Klebsiella sp.« less
1986-01-01
A technique has been developed for localizing hybrids formed in situ on semi-thin and ultrathin sections of Lowicryl K4M-embedded tissue. Biotinylated dUTP (Bio-11-dUTP and/or Bio-16-dUTP) was incorporated into mitochondrial rDNA and small nuclear U1 probes by nick- translation. The probes were hybridized to sections of Drosophila ovaries and subsequently detected with an anti-biotin antibody and protein A-gold complex. On semi-thin sections, probe detection was achieved by amplification steps with anti-protein A antibody and protein A-gold with subsequent silver enhancement. At the electron microscope level, specific labeling was obtained over structures known to be the site of expression of the appropriate genes (i.e., either over mitochondria or over nuclei). The labeling pattern at the light microscope level (semi-thin sections) was consistent with that obtained at the electron microscope level. The described nonradioactive procedures for hybrid detection on Lowicryl K4M-embedded tissue sections offer several advantages: rapid signal detection: superior morphological preservation and spatial resolution; and signal-to-noise ratios equivalent to radiolabeling. PMID:3084498
NASA Astrophysics Data System (ADS)
Huang, Hongfeng; Jiang, Feng; Zhou, Jiang; Wei, Lili; Qu, Jiping; Liu, Lele
2015-11-01
The mechanical properties and microstructures of Al-6Mg-0.25Sc-0.1Zr alloy (wt.%) during annealing were investigated by means of uniaxial tensile testing, optical microscope, scanning electron microscope, transmission electron microscope, and high-resolution transmission electron microscope. The results show that a large number of micro and grain-scale shear bands form in this alloy after cold rolling. As the tensile-loading force rises, strain softening would generate in shear bands, resulting in the occurrence of shear banding fracture in cold-rolled Al-Mg-Sc-Zr alloys. Recrystallization takes place preferentially in shear bands during annealing. Due to the formation of coarse-grain bands constructed by new subgrains, recrystallization softening tends to occur in these regions. During low-temperature annealing, recrystallization is inhibited by nano-scale Al3(Sc,Zr) precipitates which exert significant coherency strengthening and modulus hardening. However, the strengthening effect of Al3(Sc,Zr) decreases with the increasing of particle diameter at elevated annealing temperature. The mechanical properties of the recrystallized Al-Mg-Sc-Zr alloy decrease to a minimum level, and the fracture plane exhibits pure ductile fracture characteristics.
Baghaie, Ahmadreza; Pahlavan Tafti, Ahmad; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun
2017-01-01
Scanning Electron Microscope (SEM) as one of the major research and industrial equipment for imaging of micro-scale samples and surfaces has gained extensive attention from its emerge. However, the acquired micrographs still remain two-dimensional (2D). In the current work a novel and highly accurate approach is proposed to recover the hidden third-dimension by use of multi-view image acquisition of the microscopic samples combined with pre/post-processing steps including sparse feature-based stereo rectification, nonlocal-based optical flow estimation for dense matching and finally depth estimation. Employing the proposed approach, three-dimensional (3D) reconstructions of highly complex microscopic samples were achieved to facilitate the interpretation of topology and geometry of surface/shape attributes of the samples. As a byproduct of the proposed approach, high-definition 3D printed models of the samples can be generated as a tangible means of physical understanding. Extensive comparisons with the state-of-the-art reveal the strength and superiority of the proposed method in uncovering the details of the highly complex microscopic samples.
Electronic structure of polycrystalline CVD-graphene revealed by Nano-ARPES
NASA Astrophysics Data System (ADS)
Chen, Chaoyu; Avila, José; Asensio, Maria C.
2017-06-01
The ability to explore electronic structure and their role in determining material’s macroscopic behaviour is essential to explain and engineer functions of material and device. Since its debut in 2004, graphene has attracted global research interest due to its unique properties. Chemical vapor deposition (CVD) has emerged as an important method for the massive preparation and production of graphene for various applications. Here by employing angle-resolved photoemission spectroscopy with nanoscale spatial resolution ˜ 100 nm (Nano-ARPES), we describe the approach to measure the electronic structure of polycrystalline graphene on copper foils, demonstrating the power of Nano-ARPES to detect the electronic structure of microscopic single crystalline domains, being fully compatible with conventional ARPES. Similar analysis could be employed to other microscopic materials
Electron microscopy of whole cells in liquid with nanometer resolution
de Jonge, N.; Peckys, D. B.; Kremers, G. J.; Piston, D. W.
2009-01-01
Single gold-tagged epidermal growth factor (EGF) molecules bound to cellular EGF receptors of fixed fibroblast cells were imaged in liquid with a scanning transmission electron microscope (STEM). The cells were placed in buffer solution in a microfluidic device with electron transparent windows inside the vacuum of the electron microscope. A spatial resolution of 4 nm and a pixel dwell time of 20 μs were obtained. The liquid layer was sufficiently thick to contain the cells with a thickness of 7 ± 1 μm. The experimental findings are consistent with a theoretical calculation. Liquid STEM is a unique approach for imaging single molecules in whole cells with significantly improved resolution and imaging speed over existing methods. PMID:19164524
NASA Astrophysics Data System (ADS)
Thomas, Ch; Joachimsthaler, I.; Heiderhoff, R.; Balk, L. J.
2004-10-01
In this work electron-beam-induced potentials are analysed theoretically and experimentally for semiconductors. A theoretical model is developed to describe the surface potential distribution produced by an electron beam. The distribution of generated carriers is calculated using semiconductor equations. This distribution causes a local change in surface potential, which is derived with the help of quasi-Fermi energies. The potential distribution is simulated using the model developed and measured with a scanning probe microscope (SPM) built inside a scanning electron microscope (SEM), for different samples, for different beam excitations and for different cantilever voltages of SPM. In the end, some fields of application are shown where material properties can be determined using an SEM/SPM hybrid system.
Two Further Experiments on Electron Interference
ERIC Educational Resources Information Center
Matteucci, G.; Pozzi, G.
1978-01-01
Presents the results of two experiments concerning the phenomena of the interference of probabilities and of the so called Aharonov-Bohm effect. An electron biprism and a standard electron microscope have been used for the experiments. (Author/GA)
Dai, Wei; Fu, Caroline; Khant, Htet A; Ludtke, Steven J; Schmid, Michael F; Chiu, Wah
2014-11-01
Advances in electron cryotomography have provided new opportunities to visualize the internal 3D structures of a bacterium. An electron microscope equipped with Zernike phase-contrast optics produces images with markedly increased contrast compared with images obtained by conventional electron microscopy. Here we describe a protocol to apply Zernike phase plate technology for acquiring electron tomographic tilt series of cyanophage-infected cyanobacterial cells embedded in ice, without staining or chemical fixation. We detail the procedures for aligning and assessing phase plates for data collection, and methods for obtaining 3D structures of cyanophage assembly intermediates in the host by subtomogram alignment, classification and averaging. Acquiring three or four tomographic tilt series takes ∼12 h on a JEM2200FS electron microscope. We expect this time requirement to decrease substantially as the technique matures. The time required for annotation and subtomogram averaging varies widely depending on the project goals and data volume.
Wan, Weishi; Yu, Lei; Zhu, Lin; Yang, Xiaodong; Wei, Zheng; Liu, Jefferson Zhe; Feng, Jun; Kunze, Kai; Schaff, Oliver; Tromp, Ruud; Tang, Wen-Xin
2017-03-01
We describe the design and commissioning of a novel aberration-corrected low energy electron microscope (AC-LEEM). A third magnetic prism array (MPA) is added to the standard AC-LEEM with two prism arrays, allowing the incorporation of an ultrafast spin-polarized electron source alongside the standard cold field emission electron source, without degrading spatial resolution. The high degree of symmetries of the AC-LEEM are utilized while we design the electron optics of the ultrafast spin-polarized electron source, so as to minimize the deleterious effect of time broadening, while maintaining full control of electron spin. A spatial resolution of 2nm and temporal resolution of 10ps (ps) are expected in the future time resolved aberration-corrected spin-polarized LEEM (TR-AC-SPLEEM). The commissioning of the three-prism AC-LEEM has been successfully finished with the cold field emission source, with a spatial resolution below 2nm. Copyright © 2017 Elsevier B.V. All rights reserved.
Colonization of cashew plants by Lasiodiplodia theobromae: Microscopical features
USDA-ARS?s Scientific Manuscript database
Lasiodiplodia theobromae is a phytopathogenic fungus causing gummosis, a threatening disease for cashew plants in Brazil. In an attempt to investigate the ultrastructural features of the pathogen colonization and its response to immunofluorescence labeling, light, confocal and electron microscope st...
"Reticular" and "Areticular" Nissl Bodies in Sympathetic Neurons of a Lizard
Smith, Stuart W.
1959-01-01
Sympathetic ganglia of the horned lizard, Phrynosoma cornutum, were fixed in OsO4 and imbedded in methacrylate. Thin sections were cut for electron microscopy. Some adjacent thick sections were cut for light microscopy and were stained in acidified, dilute thionine both before and after digestion by RNase. In the light microscope two types of Nissl bodies are found, both removable by RNase: (1) a deep, diffuse, indistinctly bounded, metachromatic variety, and (2) a superficial, dense, sharply delimited, orthochromatic sort. Electron microscopically, the former ("reticular" Nissl bodies) corresponds to the granulated endoplasmic reticular structure of Nissl material previously described by others, whereas the latter ("areticular" Nissl bodies) comprises compact masses of particles of varying internal density and devoid of elements of endoplasmic reticulum. The constituent particles of the areticular Nissl material are 4 to 8 x the diameter of single ribonucleoprotein granules of the reticular Nissl substance and seem, near zones of junction with the reticular type, to arise by clustering of such granules with subsequent partial dispersion of the substance of the granules into an added, less dense material. It is suggested that the observed orthochromasia of the areticular Nissl substance is due to accumulation of a large amount of protein bound to RNA and, further, that these Nissl bodies may represent storage depots of RNA and protein. PMID:13673051
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, V.V.; Stearner, S.P.; Dimitrievich, G.S.
1977-04-01
Cell aggregates in increased numbers appear along blood vessel walls within a few days after local x irradiation of the tissue within rabbit ear chambers. At 7 days after irradiation with 400 or 700 rad of 250 kVp of x rays, electron microscopic studies of the microvasculature were carried out to determine the morphological characteristics of the cell types involved in the aggregates and the relation of these cells to vascular repair. The cell aggregates usually occur in the interstitial region subjacent to the endothelium. The cells that make up the aggregates show morphological characteristics of relatively undifferentiated mesenchymal cells;more » they have an irregularly rounded shape and contain large amounts of rough endoplasmic reticulum, Golgi vesicles, and mitochondria. In a few instances, cells of similar morphology also occur as part of the lining of the blood vessels. The perivascular cell aggregates may originate from the pericyte population or from undifferentiated mesenchymal cells that occur in the interstitial region surrounding blood vessels; it is improbable that they are dedifferentiated smooth muscle cells. It is suggested that the cells that make up these aggregates contribute to the repair of the microvasculation after radiation injury. The radiosensitivity of vascular endothelium reported by previous investigators seems to preclude endothelial proliferation as the principal repair mechanism at higher radiation doses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Xueguang, E-mail: xue.g.ren@ptb.de; Pflüger, Thomas; Weyland, Marvin
The ionization and fragmentation of methane induced by low-energy (E{sub 0} = 66 eV) electron-impact is investigated using a reaction microscope. The momentum vectors of all three charged final state particles, two outgoing electrons, and one fragment ion, are detected in coincidence. Compared to the earlier study [Xu et al., J. Chem. Phys. 138, 134307 (2013)], considerable improvements to the instrumental mass and energy resolutions have been achieved. The fragment products CH{sub 4}{sup +}, CH{sub 3}{sup +}, CH{sub 2}{sup +}, CH{sup +}, and C{sup +} are clearly resolved. The binding energy resolution of ΔE = 2.0 eV is a factormore » of three better than in the earlier measurements. The fragmentation channels are investigated by measuring the ion kinetic energy distributions and the binding energy spectra. While being mostly in consistence with existing photoionization studies the results show differences including missing fragmentation channels and previously unseen channels.« less
Bowlan, P.; Trugman, S. A.; Bowlan, J.; ...
2016-09-26
Here, we demonstrate an approach for directly tracking antiferromagnetic (AFM) spin dynamics by measuring ultrafast changes in a magnon resonance. We also test this idea on the multiferroic HoMnO 3 by optically photoexciting electrons, after which changes in the spin order are probed with a THz pulse tuned to a magnon resonance. This reveals a photoinduced change in the magnon line shape that builds up over 5–12 picoseconds, which we show to be the spin-lattice thermalization time, indicating that electrons heat the spins via phonons. We compare our results to previous studies of spin-lattice thermalization in ferromagnetic manganites, giving insightmore » into fundamental differences between the two systems. Finally, our work sheds light on the microscopic mechanism governing spin-phonon interactions in AFMs and demonstrates a powerful approach for directly monitoring ultrafast spin dynamics.« less
Quantum decrease of capacitance in a nanometer-sized tunnel junction
NASA Astrophysics Data System (ADS)
Untiedt, C.; Saenz, G.; Olivera, B.; Corso, M.; Sabater, C.; Pascual, J. I.
2013-03-01
We have studied the capacitance of the tunnel junction defined by the tip and sample of a Scanning Tunnelling Microscope through the measurement of the electrostatic forces and impedance of the junction. A decrease of the capacitance when a tunnel current is present has shown to be a more general phenomenon as previously reported in other systems. On another hand, an unexpected reduction of the capacitance is also observed when increasing the applied voltage above the work function energy of the electrodes to the Field Emission (FE) regime, and the decrease of capacitance due to a single FE-Resonance has been characterized. All these effects should be considered when doing measurements of the electronic characteristics of nanometer-sized electronic devices and have been neglected up to date. Spanish government (FIS2010-21883-C02-01, CONSOLIDER CSD2007-0010), Comunidad Valenciana (ACOMP/2012/127 and PROMETEO/2012/011)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowlan, P.; Trugman, S. A.; Bowlan, J.
Here, we demonstrate an approach for directly tracking antiferromagnetic (AFM) spin dynamics by measuring ultrafast changes in a magnon resonance. We also test this idea on the multiferroic HoMnO 3 by optically photoexciting electrons, after which changes in the spin order are probed with a THz pulse tuned to a magnon resonance. This reveals a photoinduced change in the magnon line shape that builds up over 5–12 picoseconds, which we show to be the spin-lattice thermalization time, indicating that electrons heat the spins via phonons. We compare our results to previous studies of spin-lattice thermalization in ferromagnetic manganites, giving insightmore » into fundamental differences between the two systems. Finally, our work sheds light on the microscopic mechanism governing spin-phonon interactions in AFMs and demonstrates a powerful approach for directly monitoring ultrafast spin dynamics.« less
Parmenter, Christopher D J; Fay, Michael W; Hartfield, Cheryl; Eltaher, Hoda M
2016-04-01
The preparation of thinned lamellae from bulk samples for transmission electron microscopy (TEM) analysis has been possible in the focussed ion beam scanning electron microscope (FIB-SEM) for over 20 years via the in situ lift-out method. Lift-out offers a fast and site specific preparation method for TEM analysis, typically in the field of materials science. More recently it has been applied to a low-water content biological sample (Rubino 2012). This work presents the successful lift-out of high-water content lamellae, under cryogenic conditions (cryo-FIB lift-out) and using a nanomanipulator retaining its full range of motion, which are advances on the work previously done by Rubino (2012). Strategies are explored for maintaining cryogenic conditions, grid attachment using cryo-condensation of water and protection of the lamella when transferring to the TEM. © 2016 Wiley Periodicals, Inc.
A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution
Zastrau, U.; Rodel, C.; Nakatsutsumi, M.; ...
2018-02-05
We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Here, imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense mattermore » studies of micrometer-sized samples in laser-plasma experiments.« less
A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zastrau, U.; Rodel, C.; Nakatsutsumi, M.
We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Here, imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense mattermore » studies of micrometer-sized samples in laser-plasma experiments.« less
NASA Astrophysics Data System (ADS)
Hameed, M. Shahul; Princice, J. Joseph; Babu, N. Ramesh; Zahirullah, S. Syed; Deshmukh, Sampat G.; Arunachalam, A.
2018-05-01
Transparent conductive Sn doped ZnO nanorods have been deposited at various doping level by spray pyrolysis technique on glass substrate. The structural, surface morphological and optical properties of these films have been investigated with the help of X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and UV-Vis spectrophotometer respectively. XRD patterns revealed a successful high quality growth of single crystal ZnO nanorods with hexagonal wurtzite structure having (002) preferred orientation. The scanning electron microscope (SEM) image of the prepared films exposed the uniform distribution of Sn doped ZnO nanorod shaped grains. All these films were highly transparent in the visible region with average transmittance of 90%.
Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua; Jia, Jin-Feng
2015-05-01
Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO3 surface.
Micromorphology of trichomes of Thymus malyi (Lamiaceae).
Marin, M; Koko, V; Duletić-Lausević, S; Marin, P D
2008-12-01
Micromorphological, ultrastructural and morphometric investigations of the trichomes of Thymus malyi were carried out using a light microscope, a scanning electron microscope and a transmission electron microscope. Unbranched non-glandular trichomes, peltate and capitate glandular trichomes were described. The leaves of Thymus malyi bear non-glandular and glandular trichomes on both sides. Estimates of the volume density (i.e. their volume fraction per unit volume) of non-glandular trichomes were higher as compared to volume density of peltate and capitate glandular trichomes. Estimates of the number of these trichomes per area on sections showed that the capitate trichomes were the most abundant. Ultrastructural analyses of cell inner structure have shown numerous mitochondria, big nuclei and plastids with lipid globules and starch grains.
Fixation methods for electron microscopy of human and other liver
Wisse, Eddie; Braet, Filip; Duimel, Hans; Vreuls, Celien; Koek, Ger; Olde Damink, Steven WM; van den Broek, Maartje AJ; De Geest, Bart; Dejong, Cees HC; Tateno, Chise; Frederik, Peter
2010-01-01
For an electron microscopic study of the liver, expertise and complicated, time-consuming processing of hepatic tissues and cells is needed. The interpretation of electron microscopy (EM) images requires knowledge of the liver fine structure and experience with the numerous artifacts in fixation, embedding, sectioning, contrast staining and microscopic imaging. Hence, the aim of this paper is to present a detailed summary of different methods for the preparation of hepatic cells and tissue, for the purpose of preserving long-standing expertise and to encourage new investigators and clinicians to include EM studies of liver cells and tissue in their projects. PMID:20556830
ELECTRON MICROSCOPIC OBSERVATIONS OF AMOEBA PROTEUS IN GROWTH AND INANITION
Cohen, Adolph I.
1957-01-01
Electron microscopic observations have been made on growing and dividing specimens of Amoeba proteus and also on starving animals. Structures presumably corresponding to the mitochondria, alpha particles, vacuoles, and Golgi material are described. A new entity, designated as a foamy particle, is noted. Descriptions are given of the cytoplasmic and nuclear membranes. During division the inner, thick nuclear membrane component is seen to vanish and the outer membrane persist. Measurements suggest a gradual reappearance of the inner component with growth. Starving animals show a loss of cytoplasmic granularity and an increase in the electron density of mitochondria, presumably due to lipide accumulation. PMID:13481020
Electron microscopic observations of amoeba proteus in growth and inanition.
COHEN, A I
1957-11-25
Electron microscopic observations have been made on growing and dividing specimens of Amoeba proteus and also on starving animals. Structures presumably corresponding to the mitochondria, alpha particles, vacuoles, and Golgi material are described. A new entity, designated as a foamy particle, is noted. Descriptions are given of the cytoplasmic and nuclear membranes. During division the inner, thick nuclear membrane component is seen to vanish and the outer membrane persist. Measurements suggest a gradual reappearance of the inner component with growth. Starving animals show a loss of cytoplasmic granularity and an increase in the electron density of mitochondria, presumably due to lipide accumulation.
NASA Technical Reports Server (NTRS)
Fernandez-Moran, H.; Pritzker, A. N.
1974-01-01
Improved instrumentation and preparation techniques for high resolution, high voltage cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens are reported. Computer correlated ultrastructural and biochemical work on hydrated and dried cell membranes and related biological systems provided information on membrane organization, ice crystal formation and ordered water, RNA virus linked to cancer, lunar rock samples, and organometallic superconducting compounds. Apollo 11, 12, 14, and 15 specimens were analyzed
2008-01-01
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD...microscopy ( AEM ), to characterize a variety of III-V semiconductor thin films. The materials investigated include superlattices based on the InAs- GaSb...technique. TEM observations were performed using a Philips-CM 200 FEG transmission electron microscope equipped with a field emission gun, operated at an
Diffusion length measurements using the scanning electron microscope. [in semiconductor devices
NASA Technical Reports Server (NTRS)
Weizer, V. G.
1975-01-01
A measurement technique employing the scanning electron microscope is described in which values of the true bulk diffusion length are obtained. It is shown that surface recombination effects can be eliminated through the application of highly doped surface field layers. The influence of high injection level effects and low-high junction current generation on the resulting measurement was investigated. Close agreement is found between the diffusion lengths measured by this method and those obtained using a penetrating radiation technique.
Local dynamic range compensation for scanning electron microscope imaging system.
Sim, K S; Huang, Y H
2015-01-01
This is the extended project by introducing the modified dynamic range histogram modification (MDRHM) and is presented in this paper. This technique is used to enhance the scanning electron microscope (SEM) imaging system. By comparing with the conventional histogram modification compensators, this technique utilizes histogram profiling by extending the dynamic range of each tile of an image to the limit of 0-255 range while retains its histogram shape. The proposed technique yields better image compensation compared to conventional methods. © Wiley Periodicals, Inc.
Kim, Kyung-Il; Lee, Seonghyun; Jin, Xuelin; Kim, Su Ji; Jo, Kyubong; Lee, Jung Heon
2017-01-01
Synthesis of smooth and continuous DNA nanowires, preserving the original structure of native DNA, and allowing its analysis by scanning electron microscope (SEM), is demonstrated. Gold nanoparticles densely assembled on the DNA backbone via thiol-tagged DNA binding peptides work as seeds for metallization of DNA. This method allows whole analysis of DNA molecules with entangled 3D features. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabrication and electric measurements of nanostructures inside transmission electron microscope.
Chen, Qing; Peng, Lian-Mao
2011-06-01
Using manipulation holders specially designed for transmission electron microscope (TEM), nanostructures can be characterized, measured, modified and even fabricated in-situ. In-situ TEM techniques not only enable real-time study of structure-property relationships of materials at atomic scale, but also provide the ability to control and manipulate materials and structures at nanoscale. This review highlights in-situ electric measurements and in-situ fabrication and structure modification using manipulation holder inside TEM. Copyright © 2011 Elsevier B.V. All rights reserved.
Computer measurement of particle sizes in electron microscope images
NASA Technical Reports Server (NTRS)
Hall, E. L.; Thompson, W. B.; Varsi, G.; Gauldin, R.
1976-01-01
Computer image processing techniques have been applied to particle counting and sizing in electron microscope images. Distributions of particle sizes were computed for several images and compared to manually computed distributions. The results of these experiments indicate that automatic particle counting within a reasonable error and computer processing time is feasible. The significance of the results is that the tedious task of manually counting a large number of particles can be eliminated while still providing the scientist with accurate results.
Plasmon-mediated circularly polarized luminescence of GaAs in a scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mühlenberend, Svenja; Gruyters, Markus; Berndt, Richard, E-mail: berndt@physik.uni-kiel.de
2015-12-14
The electroluminescence from p-type GaAs(110) in a scanning tunneling microscope has been investigated at 6 K. Unexpectedly, high degrees of circular polarization have often been observed with ferromagnetic Ni tips and also with paramagnetic W and Ag tips. The data are interpreted in terms of two distinct excitation mechanisms. Electron injection generates intense luminescence with low polarization. Plasmon-mediated generation of electron-hole pairs leads to less intense emission, which, however, is highly polarized for many tips.
Hair follicle nevus occurring in frontonasal dysplasia: an electron microscopic observation.
Kuwahara, H; Lao, L M; Kiyohara, T; Kumakiri, M; Igawa, H
2001-06-01
We report a rare hair follicle nevus that occurred in a three-month-old Japanese boy with mild frontonasal dysplasia. It had been present since birth. Histologically, numerous tiny vellus hair follicles were found within the dermis. The constituent cells of these follicles showed the features of follicular germ cells under the electron microscope. The fibroblasts around the follicles were active and merged with the colloid substance. Many myofibroblasts were found in a collagenous stroma in the atrophic lesion of the frontonasal dysplasia.
Tannic acid for smear layer removal: pilot study with scanning electron microscope.
Bitter, N C
1989-04-01
The effects of a 25% tannic acid solution applied to the surface of prepared dentin was compared with untreated prepared dentin surfaces. The following results were demonstrated by electron microscope observation: (1) cavity preparations created an amorphous dentinal smear layer, (2) placement of a 25% tannic acid solution for 15 seconds removed the smear layer, (3) the contents of the dentinal tubules were not removed and no enlargement of dentinal tubules was found, and (3) a clean dentinal surface was observed.
Analytical electron microscopic studies and positron lifetime measurements in Al-doped MgO crystals
NASA Astrophysics Data System (ADS)
Pedrosa, M. A.; Pareja, R.; González, R.; Abraham, M. M.
1987-07-01
MgO crystals intentionally doped with Al were characterized by analytical electron microscopic examinations and positron lifetime measurements. Large spinel (MgO Al2O3) precipitates were observed in samples with high contents of Al. A well-defined crystallographic relationship between the precipitates and the matrix was found. The characteristics of positron lifetime spectra appear to depend on the valence state of the different impurities in the MgO lattice suggesting that positrons are trapped by vacancy impurity complexes.
Electronic structure and microscopic model of CoNb2O6
NASA Astrophysics Data System (ADS)
Molla, Kaimujjaman; Rahaman, Badiur
2018-05-01
We present the first principle density functional calculations to figure out the underlying spin model of CoNb2O6. The first principles calculations define the main paths of superexchange interaction between Co spins in this compound. We discuss the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modeling based on analysis of the electronic structure of this system puts it in the interesting class of weakly couple geometrically frustrated isosceles triangular Ising antiferromagnet.
A simple way to obtain backscattered electron images in a scanning transmission electron microscope.
Tsuruta, Hiroki; Tanaka, Shigeyasu; Tanji, Takayoshi; Morita, Chiaki
2014-08-01
We have fabricated a simple detector for backscattered electrons (BSEs) and incorporated the detector into a scanning transmission electron microscope (STEM) sample holder. Our detector was made from a 4-mm(2) Si chip. The fabrication procedure was easy, and similar to a standard transmission electron microscopy (TEM) sample thinning process based on ion milling. A TEM grid containing particle objects was fixed to the detector with a silver paste. Observations were carried out using samples of Au and latex particles at 75 and 200 kV. Such a detector provides an easy way to obtain BSE images in an STEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Microscopic description of orbital-selective spin ordering in BaMn2As2
NASA Astrophysics Data System (ADS)
Craco, L.; Carara, S. S.
2018-05-01
Using generalized gradient approximation+dynamical mean-field theory, we provide a microscopic description of orbital-selective spin ordering in the tetragonal manganese pnictide BaMn2As2 . We demonstrate the coexistence of local moments and small band-gap electronic states in the parent compound. We also explore the role played by electron/hole doping, showing that the Mott insulating state is rather robust to small removal of electron charge carriers similar to cuprate oxide superconductors. Good qualitative accord between theory and angle-resolved photoemission as well as electrical transport provides support to our view of orbital-selective spin ordering in BaMn2As2 . Our proposal is expected to be an important step to understanding the emergent correlated electronic structure of materials with persisting ordered localized moments coexisting with Coulomb reconstructed nonmagnetic electronic states.
Mars Life? - Microscopic Egg-shaped Structures
NASA Technical Reports Server (NTRS)
1996-01-01
This electron microscope image shows egg-shaped structures, some of which may be possible microscopic fossils of Martian origin as discussed by NASA research published in the Aug. 16, 1996, issue of the journal Science. A two-year investigation found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.
Micropaleontological studies of lunar and terrestrial precambrian materials
NASA Technical Reports Server (NTRS)
Schope, J. W.
1974-01-01
Optical microscopic and scanning electron microscopic studies of rock chips and dust returned by Apollo 14, 15, 16, and 17 are analyzed along with optical microscopic studies of petrographic thin sections of breccias and basalts returned by Apollo 14, 15, and 16. Results show no evidence of modern or fossil lunar organisms. The lunar surface is now, and apparently has been throughout the geologic past, inimical to known biologic systems.
The Scanning Optical Microscope: An Overview
NASA Astrophysics Data System (ADS)
Kino, G. S.; Corte, T. R.; Xiao, G. Q.
1988-07-01
In the last few years there has been a resurgence in research on optical microscopes. One reason stems from the invention of the acoustic microscope by Quate and Lemons,1 and the realization that some of the same principles could be applied to the optical microscope. The acoustic microscope has better transverse definition for the same wavelength than the standard optical microscope and at the same time has far better range definition. Consequently, Kompfner, who was involved with the work on the early acoustic microscope, decided to try out similar scanning microscope principles with optics, and started a group with Wilson and Sheppard to carry out such research at Oxford.2 Sometime earlier, Petran et a13 had invented the tandem scanning microscope which used many of the same principles. Now, in our laboratory at Stanford, these ideas on the tandem scanning microscope and the scanning optical microscope are converging. Another aspect of this work, which stems from the earlier experience with the acoustic microscope, involves measurement of both phase and amplitude of the optical beam. It is also possible to use scanned optical microscopy for other purposes. For instance, an optical beam can be used to excite electrons and holes in semiconductors, and the generated current can be measured. By scanning the optical beam over the semiconductor, an image can be obtained of the regions where there is strong or weak electron hole generation. This type of microscope is called OBIC (Optical Beam Induced Current). A second application involves fluorescent imaging of biological materials. Here we have the excellent range definition of a scanning optical microscope which eliminates unwanted glare from regions of the material where the beam is unfocused.3 A third application is focused on the heating effect of the light beam. With such a system, images can be obtained which are associated with changes in the thermal properties of a material, changes in recombination rates in semiconductors, and differences in material properties associated with either acoustic or thermal effects.4,5 Thus, the range of scanning optical microscopy applications is very large. In the main, the most important applications have been to semiconductors and to biology.
Kaymakçı, Mustafa; Acar, Mustafa; Burukoglu, Dilek; Kutlu, Hatice Mehtap; Shojaolsadati, Paria; Cingi, Cemal; Bayar Muluk, Nuray
2015-04-01
In this prospective experimental study, we investigated the preventive effects of 2-aminoethyl diphenylborinate (2-APB) in rats exposed to acoustic trauma (AT). Light microscopic, transmission electron microscopic (TEM), and scanning electron microscopic (SEM) examinations were performed. Eighteen healthy Wistar albino rats were divided into the following three groups: groups 1 (control), 2 (AT), and 3 (AT+APB). The rats in groups 2 and 3 were exposed to AT; in group 3 rats, 2-APB at 2 mg/kg was also administered, initially transperitoneally, after 10 min. During the light microscopic, TEM, and SEM examinations, the structures of the cochlear hair cells, stereocilia, and Deiter's cells were normal in the control group. In the AT group, the organ of Corti and proximate structures were damaged according to the light microscopic examination. During the TEM examination, intense cellular damage and stereocilia loss were detected, while during the SEM examination, extensive damage and stereocilia loss were observed. Decreased damage with preserved cochlear structure was detected during the light microscopic examination in the AT+APB group than in the AT group. During the TEM and SEM examinations, although stereocilia loss occurred in the AT+APB group, near-normal cell, cilia, and tectorial membrane structures were also observed in the AT+APB group compared with the AT group. 2-APB may have protective effects against AT damage of the cochlea. The main mechanism underlying this effect is the inhibition of the vasoconstriction of the cochlear spiral modiolar artery, thereby improving cochlear blood flow. We conclude that 2-APB may also be effective if used immediately following AT.
Optimising electron microscopy experiment through electron optics simulation.
Kubo, Y; Gatel, C; Snoeck, E; Houdellier, F
2017-04-01
We developed a new type of electron trajectories simulation inside a complete model of a modern transmission electron microscope (TEM). Our model incorporates the precise and real design of each element constituting a TEM, i.e. the field emission (FE) cathode, the extraction optic and acceleration stages of a 300kV cold field emission gun, the illumination lenses, the objective lens, the intermediate and projection lenses. Full trajectories can be computed using magnetically saturated or non-saturated round lenses, magnetic deflectors and even non-cylindrical symmetry elements like electrostatic biprism. This multi-scale model gathers nanometer size components (FE tip) with parts of meter length (illumination and projection systems). We demonstrate that non-trivial TEM experiments requiring specific and complex optical configurations can be simulated and optimized prior to any experiment using such model. We show that all the currents set in all optical elements of the simulated column can be implemented in the real column (I2TEM in CEMES) and used as starting alignment for the requested experiment. We argue that the combination of such complete electron trajectory simulations in the whole TEM column with automatic optimization of the microscope parameters for optimal experimental data (images, diffraction, spectra) allows drastically simplifying the implementation of complex experiments in TEM and will facilitate the development of advanced use of the electron microscope in the near future. Copyright © 2017 Elsevier B.V. All rights reserved.
Ahn, Kang-Ho; Kim, Sun-Man; Jung, Hae-Jin; Lee, Mi-Jung; Eom, Hyo-Jin; Maskey, Shila; Ro, Chul-Un
2010-10-01
In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.
Yuan, Weimin; Wu, Xiaoqin; Ye, Jianren; Tian, Xiaojing
2011-08-01
The pine wood nematode, Bursaphlenchus xylophilus, morphologically similar to B. mucronatus, is the pathogen of pine wilt disease. This study was focused on the endophytic bacteria present in these nematodes. Detailed observations were made on sections of all parts of the two types of nematodes by transmission electron microscope. The nematodes were surface-sterilized by soaking in 1% mercuric chloride and antibiotic mixture, and then ground and cultured on nutrient agar plate. The physiological and biochemical characteristics combined with molecular characterization of bacteria were analyzed and identified. Endophytic bacteria were found in intestines of the two nematodes by transmission electron microscope observations. On the basis of surface sterilization, total three bacteria strains were obtained from B. xylophilus and B. mucronatus. These bacteria belong to Stenotrophomonas and Ewingella. It confirms the presence of endophytic bacteria in Bursaphelenchus xylophilus and B. mucronatus and these bacteria may play a physical and ecological roles in nematodes.
Investigation of Microstructural Features Determining the Toughness of 980 MPa Bainitic Weld Metal
NASA Astrophysics Data System (ADS)
Cao, R.; Zhang, X. B.; Wang, Z.; Peng, Y.; Du, W. S.; Tian, Z. L.; Chen, J. H.
2014-02-01
The microstructural features that control the impact toughness of weld metals of a 980 MPa 8 pct Ni high-strength steel are investigated using instrumented Charpy V tester, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), electron back-scattered diffraction (EBSD), and finite-element method (FEM) calculation. The results show that the critical event for cleavage fracture in this high-strength steel and weld metals is the propagation of a bainite packet-sized crack across the packet boundary into contiguous packets, and the bainitic packet sizes control the impact toughness. The high-angle misorientation boundaries detected in a bainite packet by EBSD form fine tear ridges on fracture surfaces. However, they are not the decisive factors controlling the cleavage fracture. The effects of Ni content are essential factors for improving the toughness. The extra large cleavage facets seriously deteriorate the toughness, which are formed on the interfaces of large columnar crystals growing in welding pools with high heat input.
Sabel, Nina; Klingberg, Gunilla; Dietz, Wolfram; Nietzsche, Sandor; Norén, Jörgen G
2010-01-01
Enamel hypoplasia is a developmental disturbance during enamel formation, defined as a macroscopic defect in the enamel, with a reduction of the enamel thickness with rounded, smooth borders. Information on the microstructural level is still limited, therefore further studies are of importance to better understand the mechanisms behind enamel hypoplasia. To study enamel hypoplasia in primary teeth by means of polarized light microscopy and scanning electron microscopy. Nineteen primary teeth with enamel hypoplasia were examined in a polarized light microscope and in a scanning electron microscope. The cervical and incisal borders of the enamel hypoplasia had a rounded appearance, as the prisms in the rounded cervical area of the hypoplasia were bent. The rounded borders had a normal surface structure whereas the base of the defects appeared rough and porous. Morphological findings in this study indicate that the aetiological factor has a short duration and affects only certain ameloblasts. The bottom of the enamel hypoplasia is porous and constitutes possible pathways for bacteria into the dentin.
NASA Astrophysics Data System (ADS)
Zahoor, Ahmad; Teng, Qiu; Wang, Haiqiao; Choudhry, M. A.; Li, Xiaoyu
2011-06-01
Ag@polycarbazole coaxial nanocables (CNCs) have been successfully fabricated by the oxidative polymerization of carbazole over Ag nanowires (NWs) in acetonitrile. The morphology of Ag NWs and CNCs was studied by employing a transmission electron microscope (TEM) and a scanning electron microscope (SEM), which showed them to be a monodisperse material. The thickness of the polymer sheath was found to be 5 nm to 8 nm by observation under a high-resolution transmission electron microscope (HR-TEM). Energy dispersive X-ray spectroscopy (EDS), FT-IR and Raman measurements were used to characterize the polymer sheath, which demonstrated it to be a carbon material in polycarbazole form. X-ray photoelectron spectroscopy (XPS) was used for an interfacial study, which revealed that Ag surface atoms remained intact during polymer growth. In the end, zeta potential showed that the dispersion stability of Ag NWs increased due to polymer encapsulation, which is significant to obtain a particular alignment for anisotropic measurement of electrical conductivity.
Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy
Brooker, Gary; Siegel, Nisan; Wang, Victor; Rosen, Joseph
2011-01-01
Fresnel Incoherent Correlation Holography (FINCH) enables holograms and 3D images to be created from incoherent light with just a camera and spatial light modulator (SLM). We previously described its application to microscopic incoherent fluorescence wherein one complex hologram contains all the 3D information in the microscope field, obviating the need for scanning or serial sectioning. We now report experiments which have led to the optimal optical, electro-optic, and computational conditions necessary to produce holograms which yield high quality 3D images from fluorescent microscopic specimens. An important improvement from our previous FINCH configurations capitalizes on the polarization sensitivity of the SLM so that the same SLM pixels which create the spherical wave simulating the microscope tube lens, also pass the plane waves from the infinity corrected microscope objective, so that interference between the two wave types at the camera creates a hologram. This advance dramatically improves the resolution of the FINCH system. Results from imaging a fluorescent USAF pattern and a pollen grain slide reveal resolution which approaches the Rayleigh limit by this simple method for 3D fluorescent microscopic imaging. PMID:21445140
New trend in electron holography
NASA Astrophysics Data System (ADS)
Tanigaki, Toshiaki; Harada, Ken; Murakami, Yasukazu; Niitsu, Kodai; Akashi, Tetsuya; Takahashi, Yoshio; Sugawara, Akira; Shindo, Daisuke
2016-06-01
Electron holography using a coherent electron wave is a promising technique for high-resolution visualization of electromagnetic fields in and around objects. The capability of electron holography has been enhanced by the development of new technologies and has thus become an even more powerful tool for exploring scientific frontiers. This review introduces these technologies including split-illumination electron holography and vector-field electron tomography. Split-illumination electron holography, which uses separated coherent waves, overcomes the limits imposed by the lateral coherence requirement for electron waves in electron holography. Areas that are difficult to observe using conventional electron holography are now observable. Exemplified applications include observing a singular magnetic domain wall in electrical steel sheets, local magnetizations at anti-phase boundaries, and electrostatic potentials in metal-oxide-semiconductor field-effect transistors. Vector-field electron tomography can be used to visualize magnetic vectors in three dimensions. Two components of the vectors are reconstructed using dual-axis tomography, and the remaining one is calculated using div B = 0. A high-voltage electron microscope can be used to achieve precise magnetic reconstruction. For example, magnetic vortices have been visualized using a 1 MV holography electron microscope.
NASA Astrophysics Data System (ADS)
Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Suematsu, Kenichi; Terao, Kenji
2016-03-01
Novel projection electron microscope optics have been developed and integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code) , and the resulting system shows promise for application to half-pitch (hp) 16-nm node extreme ultraviolet lithography (EUVL) patterned mask inspection. To improve the system's inspection throughput for 11-nm hp generation defect detection, a new electron-sensitive area image sensor with a high-speed data processing unit, a bright and stable electron source, and an image capture area deflector that operates simultaneously with the mask scanning motion have been developed. A learning system has been used for the mask inspection tool to meet the requirements of hp 11-nm node EUV patterned mask inspection. Defects are identified by the projection electron microscope system using the "defectivity" from the characteristics of the acquired image. The learning system has been developed to reduce the labor and costs associated with adjustment of the detection capability to cope with newly-defined mask defects. We describe the integration of the developed elements into the inspection tool and the verification of the designed specification. We have also verified the effectiveness of the learning system, which shows enhanced detection capability for the hp 11-nm node.
Contributed review: Review of integrated correlative light and electron microscopy.
Timmermans, F J; Otto, C
2015-01-01
New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.
Direct observation of the actin filament by tip-scan atomic force microscopy
Narita, Akihiro; Usukura, Eiji; Yagi, Akira; Tateyama, Kiyohiko; Akizuki, Shogo; Kikumoto, Mahito; Matsumoto, Tomoharu; Maéda, Yuichiro; Ito, Shuichi; Usukura, Jiro
2016-01-01
Actin filaments, the actin–myosin complex and the actin–tropomyosin complex were observed by a tip-scan atomic force microscope (AFM), which was recently developed by Olympus as the AFM part of a correlative microscope. This newly developed AFM uses cantilevers of similar size as stage-scan AFMs to improve substantially the spatial and temporal resolution. Such an approach has previously never been possible by a tip-scan system, in which a cantilever moves in the x, y and z directions. We evaluated the performance of this developed tip-scan AFM by observing the molecular structure of actin filaments and the actin–tropomyosin complex. In the image of the actin filament, the molecular interval of the actin subunits (∼5.5 nm) was clearly observed as stripes. From the shape of the stripes, the polarity of the actin filament was directly determined and the results were consistent with the polarity determined by myosin binding. In the image of the actin–tropomyosin complex, each tropomyosin molecule (∼2 nm in diameter) on the actin filament was directly observed without averaging images of different molecules. Each tropomyosin molecule on the actin filament has never been directly observed by AFM or electron microscopy. Thus, our developed tip-scan AFM offers significant potential in observing purified proteins and cellular structures at nanometer resolution. Current results represent an important step in the development of a new correlative microscope to observe nm-order structures at an acceptable frame rate (∼10 s/frame) by AFM at the position indicated by the fluorescent dye observed under a light microscope. PMID:27242058
Code of Federal Regulations, 2012 CFR
2012-04-01
.... (a) Examples of electronic products which may emit x-rays and other ionizing electromagnetic radiation, electrons, neutrons, and other particulate radiation include: Ionizing electromagnetic radiation... radiation and ionizing electromagnetic radiation: Electron microscopes. Neutron generators. (b) Examples of...
Code of Federal Regulations, 2010 CFR
2010-04-01
.... (a) Examples of electronic products which may emit x-rays and other ionizing electromagnetic radiation, electrons, neutrons, and other particulate radiation include: Ionizing electromagnetic radiation... radiation and ionizing electromagnetic radiation: Electron microscopes. Neutron generators. (b) Examples of...
Code of Federal Regulations, 2011 CFR
2011-04-01
.... (a) Examples of electronic products which may emit x-rays and other ionizing electromagnetic radiation, electrons, neutrons, and other particulate radiation include: Ionizing electromagnetic radiation... radiation and ionizing electromagnetic radiation: Electron microscopes. Neutron generators. (b) Examples of...
Code of Federal Regulations, 2014 CFR
2014-04-01
.... (a) Examples of electronic products which may emit x-rays and other ionizing electromagnetic radiation, electrons, neutrons, and other particulate radiation include: Ionizing electromagnetic radiation... radiation and ionizing electromagnetic radiation: Electron microscopes. Neutron generators. (b) Examples of...
Code of Federal Regulations, 2013 CFR
2013-04-01
.... (a) Examples of electronic products which may emit x-rays and other ionizing electromagnetic radiation, electrons, neutrons, and other particulate radiation include: Ionizing electromagnetic radiation... radiation and ionizing electromagnetic radiation: Electron microscopes. Neutron generators. (b) Examples of...
Vajda, E G; Skedros, J G; Bloebaum, R D
1998-10-01
Backscattered electron (BSE) imaging has proven to be a useful method for analyzing the mineral distribution in microscopic regions of bone. However, an accepted method of standardization has not been developed, limiting the utility of BSE imaging for truly quantitative analysis. Previous work has suggested that BSE images can be standardized by energy-dispersive x-ray spectrometry (EDX). Unfortunately, EDX-standardized BSE images tend to underestimate the mineral content of bone when compared with traditional ash measurements. The goal of this study is to investigate the nature of the deficit between EDX-standardized BSE images and ash measurements. A series of analytical standards, ashed bone specimens, and unembedded bone specimens were investigated to determine the source of the deficit previously reported. The primary source of error was found to be inaccurate ZAF corrections to account for the organic phase of the bone matrix. Conductive coatings, methylmethacrylate embedding media, and minor elemental constituents in bone mineral introduced negligible errors. It is suggested that the errors would remain constant and an empirical correction could be used to account for the deficit. However, extensive preliminary testing of the analysis equipment is essential.
Guinel, M J-F; Brodusch, N; Sha, G; Shandiz, M A; Demers, H; Trudeau, M; Ringer, S P; Gauvin, R
2014-09-01
Precipitates (ppts) in new generation aluminum-lithium alloys (AA2099 and AA2199) were characterised using scanning and transmission electron microscopy and atom probe tomography. Results obtained on the following ppts are reported: Guinier-Preston zones, T1 (Al2 CuLi), β' (Al3 Zr) and δ' (Al3 Li). The focus was placed on their composition and the presence of minor elements. X-ray energy-dispersive spectrometry in the electron microscopes and mass spectrometry in the atom probe microscope showed that T1 ppts were enriched in zinc (Zn) and magnesium up to about 1.9 and 3.5 at.%, respectively. A concentration of 2.5 at.% Zn in the δ' ppts was also measured. Unlike Li and copper, Zn in the T1 ppts could not be detected using electron energy-loss spectroscopy in the transmission electron microscope because of its too low concentration and the small sizes of these ppts. Indeed, Monte Carlo simulations of EEL spectra for the Zn L2,3 edge showed that the signal-to-noise ratio was not high enough and that the detection limit was at least 2.5 at.%, depending on the probe current. Also, the simulation of X-ray spectra confirmed that the detection limit was exceeded for the Zn Kα X-ray line because the signal-to-noise ratio was high enough in that case, which is in agreement with our observations. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Verification of otolith identity used by fisheries scientists for aging channel catfish
Long, James M.; Stewart, David R.
2010-01-01
Previously published studies of the age estimation of channel catfish Ictalurus punctatus based on otoliths have reported using the sagittae, whereas it is likely they were actually using the lapilli. This confusion may have resulted because in catfishes (ostariophyseans) the lapilli are the largest of the three otoliths, whereas in nonostariophysean fish the sagittae are the largest. Based on (1) scanning electron microscope microphotographs of channel catfish otoliths, (2) X-ray computed tomography scans of a channel catfish head, (3) descriptions of techniques used to removed otoliths from channel catfish reported in the literature, and (4) a sample of channel catfish otoliths received from fisheries biologists from around the country, it is clear that lapilli are most often used for channel catfish aging studies, not sagittae, as has been previously reported. Fisheries scientists who obtain otoliths from channel catfish can use the information in this paper to correctly identify otolith age.
Low-Temperature Dielectric Anisotropy Driven by an Antiferroelectric Mode in SrTiO3
NASA Astrophysics Data System (ADS)
Casals, Blai; Schiaffino, Andrea; Casiraghi, Arianna; Hämäläinen, Sampo J.; López González, Diego; van Dijken, Sebastiaan; Stengel, Massimiliano; Herranz, Gervasi
2018-05-01
Strontium titanate (SrTiO3 ) is the quintessential material for oxide electronics. One of its hallmark features is the transition, driven by antiferrodistortive (AFD) lattice modes, from a cubic to a ferroelastic low-temperature phase. Here we investigate the evolution of the ferroelastic twin walls upon application of an electric field. Remarkably, we find that the dielectric anisotropy of tetragonal SrTiO3 , rather than the intrinsic domain wall polarity, is the main driving force for the motion of the twins. Based on a combined first-principles and Landau-theory analysis, we show that such anisotropy is dominated by a trilinear coupling between the polarization, the AFD lattice tilts, and a previously overlooked antiferroelectric (AFE) mode. We identify the latter AFE phonon with the so-called "R mode" at ˜440 cm-1 , which was previously detected in IR experiments, but whose microscopic nature was unknown.
Megalocytivirus infection in cultured Nile tilapia Oreochromis niloticus.
Subramaniam, Kuttichantran; Gotesman, Michael; Smith, Charlie E; Steckler, Natalie K; Kelley, Karen L; Groff, Joseph M; Waltzek, Thomas B
2016-05-26
Megalocytiviruses, such as infectious spleen and kidney necrosis virus (ISKNV), induce lethal systemic diseases in both ornamental and food fish species. In this study, we investigated an epizootic affecting Nile tilapia Oreochromis niloticus cultured in the US Midwest. Diseased fish displayed lethargy, gill pallor, and distension of the coelomic cavity due to ascites. Histopathological examination revealed a severe systemic abundance of intravascular megalocytes that were especially prominent in the gills, kidney, spleen, liver, and intestinal submucosa. Transmission electron microscopic examination revealed abundant intracytoplasmic polygonal virions consistent with iridovirus infection. Comparison of the full-length major capsid protein nucleotide sequences from a recent outbreak with a remarkably similar case that occurred at the same facility many years earlier revealed that both epizootics were caused by ISKNV. A comparison of this case with previous reports suggests that ISKNV may represent a greater threat to tilapia aquaculture than previously realized.
Asbestos Testing: Is the EPA Misleading You?
ERIC Educational Resources Information Center
Levins, Hoag
1983-01-01
Experts warn that only electron microscopes can see the smaller fibers of asbestos that are known to cause the most cancers, though the Environmental Protection Agency still endorses optical microscopes for asbestos removal verification. Asbestos testing methods are explained and sources of information are provided. (MLF)
Colello, Raymond J; Tozer, Jordan; Henderson, Scott C
2012-01-01
Photoconversion, the method by which a fluorescent dye is transformed into a stable, osmiophilic product that can be visualized by electron microscopy, is the most widely used method to enable the ultrastructural analysis of fluorescently labeled cellular structures. Nevertheless, the conventional method of photoconversion using widefield fluorescence microscopy requires long reaction times and results in low-resolution cell targeting. Accordingly, we have developed a photoconversion method that ameliorates these limitations by adapting confocal laser scanning microscopy to the procedure. We have found that this method greatly reduces photoconversion times, as compared to conventional wide field microscopy. Moreover, region-of-interest scanning capabilities of a confocal microscope facilitate the targeting of the photoconversion process to individual cellular or subcellular elements within a fluorescent field. This reduces the area of the cell exposed to light energy, thereby reducing the ultrastructural damage common to this process when widefield microscopes are employed. © 2012 by John Wiley & Sons, Inc.
Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide.
Adhikari, Puja; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Steinmetz, Nicole F; Podgornik, Rudolf; Ching, Wai-Yim
2014-07-08
Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.
76 FR 58245 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-20
... Laboratory, 480 Cornell Avenue, Upton, New York 11973. Instrument: Electron Microscope. Manufacturer: JEOL... of energy-related matter including superconductors and thermoelectric materials, using electron...
Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva
2017-05-01
We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2016 Elsevier B.V. All rights reserved.
Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva
2017-02-01
We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2017 Elsevier B.V. All rights reserved.
Chong, Christian; Mishra, Haritosh; Boukheddaden, Kamel; Denise, Stéphane; Bouchez, Guillaume; Collet, Eric; Ameline, Jean-Claude; Naik, Anil D; Garcia, Yann; Varret, François
2010-02-11
The colorimetric analysis of images recorded with an optical microscope during the onset of the spin crossover transformation allows monitoring separately the involved electronic and structural aspects, through the separation of resonant absorption and scattering effects. Complementary information can also be obtained by using the polarized modes of the microscope. These potentialities are illustrated by the observation of [Fe(ptz)(6)](BF(4))(2) single crystals during the onset of the thermal transitions in the 110-140 K range. We characterized the interplay between the electronic (HS <--> LS) and structural (order <--> disorder) transformations. Elastic stresses and mechanical effects (hopping, self-cleavage) generated by the volume change upon electronic transition are also illustrated, with their impact on the photoswitching properties of the crystals.
NASA Astrophysics Data System (ADS)
Granerød, Cecilie S.; Galeckas, Augustinas; Johansen, Klaus Magnus; Vines, Lasse; Prytz, Øystein
2018-04-01
The optical band gap of ZnO has been measured as a function of temperature using Electron Energy-Loss Spectroscopy (EELS) in a (Scanning) Transmission Electron Microscope ((S)TEM) from approximately 100 K up towards 1000 K. The band gap narrowing shows a close to linear dependency for temperatures above 250 K and is accurately described by Varshni, Bose-Einstein, Pässler and Manoogian-Woolley models. Additionally, the measured band gap is compared with both optical absorption measurements and photoluminescence data. STEM-EELS is here shown to be a viable technique to measure optical band gaps at elevated temperatures, with an available temperature range up to 1500 K and the benefit of superior spatial resolution.
What transmission electron microscopes can visualize now and in the future.
Müller, Shirley A; Aebi, Ueli; Engel, Andreas
2008-09-01
Our review concentrates on the progress made in high-resolution transmission electron microscopy (TEM) in the past decade. This includes significant improvements in sample preparation by quick-freezing aimed at preserving the specimen in a close-to-native state in the high vacuum of the microscope. Following advances in cold stage and TEM vacuum technology systems, the observation of native, frozen hydrated specimens has become a widely used approach. It fostered the development of computer guided, fully automated low-dose data acquisition systems allowing matched pairs of images and diffraction patterns to be recorded for electron crystallography, and the collection of entire tilt-series for electron tomography. To achieve optimal information transfer to atomic resolution, field emission electron guns combined with acceleration voltages of 200-300 kV are now routinely used. The outcome of these advances is illustrated by the atomic structure of mammalian aquaporin-O and by the pore-forming bacterial cytotoxin ClyA resolved to 12 A. Further, the Yersinia injectisome needle, a bacterial pseudopilus and the binding of phalloidin to muscle actin filaments were chosen to document the advantage of the high contrast offered by dedicated scanning transmission electron microscopy (STEM) and/or the STEM's ability to measure the mass of protein complexes and directly link this to their shape. Continued progress emerging from leading research laboratories and microscope manufacturers will eventually enable us to determine the proteome of a single cell by electron tomography, and to more routinely solve the atomic structure of membrane proteins by electron crystallography.
Rickmann, M; Siklós, L; Joó, F; Wolff, J R
1990-09-01
An interface for IBM XT/AT-compatible computers is described which has been designed to read the actual specimen stage position of electron microscopes. The complete system consists of (i) optical incremental encoders attached to the x- and y-stage drivers of the microscope, (ii) two keypads for operator input, (iii) an interface card fitted to the bus of the personal computer, (iv) a standard configuration IBM XT (or compatible) personal computer optionally equipped with a (v) HP Graphic Language controllable colour plotter. The small size of the encoders and their connection to the stage drivers by simple ribbed belts allows an easy adaptation of the system to most electron microscopes. Operation of the interface card itself is supported by any high-level language available for personal computers. By the modular concept of these languages, the system can be customized to various applications, and no computer expertise is needed for actual operation. The present configuration offers an inexpensive attachment, which covers a wide range of applications from a simple notebook to high-resolution (200-nm) mapping of tissue. Since section coordinates can be processed in real-time, stereological estimations can be derived directly "on microscope". This is exemplified by an application in which particle numbers were determined by the disector method.
Rad, Maryam Alsadat; Ahmad, Mohd Ridzuan; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio
2017-01-01
The preparation and observations of spheroplast W303 cells are described with Environmental Scanning Electron Microscope (ESEM). The spheroplasting conversion was successfully confirmed qualitatively, by the evaluation of the morphological change between the normal W303 cells and the spheroplast W303 cells, and quantitatively, by determining the spheroplast conversion percentage based on the OD 800 absorbance data. From the optical microscope observations as expected, the normal cells had an oval shape whereas spheroplast cells resemble a spherical shape. This was also confirmed under four different mediums, that is, yeast peptone-dextrose (YPD), sterile water, sorbitol-EDTA-sodium citrate buffer (SCE), and sorbitol-Tris-Hcl-CaCl 2 (CaS). It was also observed that the SCE and CaS mediums had a higher number of spheroplast cells as compared to the YPD and sterile water mediums. The OD 800 absorbance data also showed that the whole W303 cells were fully converted to the spheroplast cells after about 15 minutes. The observations of the normal and the spheroplast W303 cells were then performed under an environmental scanning electron microscope (ESEM). The normal cells showed a smooth cell surface whereas the spheroplast cells had a bleb-like surface after the loss of its integrity when removing the cell wall.
NASA Astrophysics Data System (ADS)
Rechmann, Peter; Hennig, Thomas
1996-12-01
During prior studies it could be demonstrated that engaging a frequency double Alexandrite-laser allows a fast and strictly selective ablation of supra- and subgingival calculus. Furthermore, the removal of unstained microbial plaque was observed. First conclusions were drawn following light microscopic investigations on undecalcified sections of irradiated teeth. In the present study the cementum surface after irradiation with a frequency doubled Alexandrite-laser was observed by means of a scanning electron microscope. After irradiation sections of teeth were dried in alcohol and sputtered with gold. In comparison irradiated cementum surfaces of unerupted operatively removed wisdom teeth and tooth surfaces after the selective removal of calculus were investigated. A complete removal of calculus was observed as well as a remaining smooth surface of irradiated cementum.
Iancu, Violeta; Hla, Saw-Wai
2006-01-01
Single chlorophyll-a molecules, a vital resource for the sustenance of life on Earth, have been investigated by using scanning tunneling microscope manipulation and spectroscopy on a gold substrate at 4.6 K. Chlorophyll-a binds on Au(111) via its porphyrin unit while the phytyl-chain is elevated from the surface by the support of four CH3 groups. By injecting tunneling electrons from the scanning tunneling microscope tip, we are able to bend the phytyl-chain, which enables the switching of four molecular conformations in a controlled manner. Statistical analyses and structural calculations reveal that all reversible switching mechanisms are initiated by a single tunneling-electron energy-transfer process, which induces bond rotation within the phytyl-chain. PMID:16954201
Bimurzaev, S B; Aldiyarov, N U; Yakushev, E M
2017-10-01
The paper describes the principle of operation of a relatively simple aberration corrector for the transmission electron microscope objective lens. The electron-optical system of the aberration corrector consists of the two main elements: an electrostatic mirror with rotational symmetry and a magnetic deflector formed by the round-shaped magnetic poles. The corrector operation is demonstrated by calculations on the example of correction of basic aberrations of the well-known objective lens with a bell-shaped distribution of the axial magnetic field. Two of the simplest versions of the corrector are considered: a corrector with a two-electrode electrostatic mirror and a corrector with a three-electrode electrostatic mirror. It is shown that using the two-electrode mirror one can eliminate either spherical or chromatic aberration of the objective lens, without changing the value of its linear magnification. Using a three-electrode mirror, it is possible to eliminate spherical and chromatic aberrations of the objective lens simultaneously, which is especially important in designing electron microscopes with extremely high resolution. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers: Microscopic Approach
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)
2001-01-01
Starting from the microscopic semiconductor Bloch equations (SBEs) including the Boltzmann transport terms in the distribution function equations for electrons and holes, we derived a closed set of diffusion equations for carrier densities and temperatures with self-consistent coupling to Maxwell's equation and to an effective optical polarization equation. The coherent many-body effects are included within the screened Hartree-Fock approximation, while scatterings are treated within the second Born approximation including both the in- and out-scatterings. Microscopic expressions for electron-hole (e-h) and carrier-LO (c-LO) phonon scatterings are directly used to derive the momentum and energy relaxation rates. These rates expressed as functions of temperatures and densities lead to microscopic expressions for self- and mutual-diffusion coefficients in the coupled density-temperature diffusion equations. Approximations for reducing the general two-component description of the electron-hole plasma (EHP) to a single-component one are discussed. In particular, we show that a special single-component reduction is possible when e-h scattering dominates over c-LO phonon scattering. The ambipolar diffusion approximation is also discussed and we show that the ambipolar diffusion coefficients are independent of e-h scattering, even though the diffusion coefficients of individual components depend sensitively on the e-h scattering rates. Our discussions lead to new perspectives into the roles played in the single-component reduction by the electron-hole correlation in momentum space induced by scatterings and the electron-hole correlation in real space via internal static electrical field. Finally, the theory is completed by coupling the diffusion equations to the lattice temperature equation and to the effective optical polarization which in turn couples to the laser field.
Automated SEM Modal Analysis Applied to the Diogenites
NASA Technical Reports Server (NTRS)
Bowman, L. E.; Spilde, M. N.; Papike, James J.
1996-01-01
Analysis of volume proportions of minerals, or modal analysis, is routinely accomplished by point counting on an optical microscope, but the process, particularly on brecciated samples such as the diogenite meteorites, is tedious and prone to error by misidentification of very small fragments, which may make up a significant volume of the sample. Precise volume percentage data can be gathered on a scanning electron microscope (SEM) utilizing digital imaging and an energy dispersive spectrometer (EDS). This form of automated phase analysis reduces error, and at the same time provides more information than could be gathered using simple point counting alone, such as particle morphology statistics and chemical analyses. We have previously studied major, minor, and trace-element chemistry of orthopyroxene from a suite of diogenites. This abstract describes the method applied to determine the modes on this same suite of meteorites and the results of that research. The modal abundances thus determined add additional information on the petrogenesis of the diogenites. In addition, low-abundance phases such as spinels were located for further analysis by this method.
Time Resolved Microscopy of Charge Trapping in Polycrystalline Pentacene
NASA Astrophysics Data System (ADS)
Jaquith, Michael; Muller, Erik; Marohn, John
2007-03-01
The microscopic mechanisms by which charges trap in organic electronic materials are poorly understood. Muller and Marohn recently showed that electric force microscopy (EFM) can be used to image trapped charge in working pentacene thin-film transistors [E. M. Muller et al., Adv. Mater. 17 1410 (2005)]. We have made a new discovery by imaging trapped charge in pentacene films with much larger grains. In contrast to the previous study in which charge was found to trap inhomogeneously throughout the transistor gap, we find microscopic evidence for a new trapping mechanism in which charges trap predominantly at the pentacene/metal interface in large-grained devices. We conclude that at least two charge trapping mechanisms are at play in polycrystalline pentacene. We have made localized measurements of the trap growth over time by performing pulsed-gate EFM experiments. Trap formation is not instantaneous, taking up to a second to complete. Furthermore, the charge-trapping rate depends strongly on gate voltage (or hole concentration). This kinetics data is consistent with the hypothesis that traps form by chemical reaction.
NASA Astrophysics Data System (ADS)
Rodrigues, Manuel J.; Fernandes, David E.; Silveirinha, Mário G.; Falcão, Gabriel
2018-01-01
This work introduces a parallel computing framework to characterize the propagation of electron waves in graphene-based nanostructures. The electron wave dynamics is modeled using both "microscopic" and effective medium formalisms and the numerical solution of the two-dimensional massless Dirac equation is determined using a Finite-Difference Time-Domain scheme. The propagation of electron waves in graphene superlattices with localized scattering centers is studied, and the role of the symmetry of the microscopic potential in the electron velocity is discussed. The computational methodologies target the parallel capabilities of heterogeneous multi-core CPU and multi-GPU environments and are built with the OpenCL parallel programming framework which provides a portable, vendor agnostic and high throughput-performance solution. The proposed heterogeneous multi-GPU implementation achieves speedup ratios up to 75x when compared to multi-thread and multi-core CPU execution, reducing simulation times from several hours to a couple of minutes.
NASA Astrophysics Data System (ADS)
Newbury, Dale E.; Ritchie, Nicholas W. M.
2015-10-01
X-ray spectra suffer significantly degraded spatial resolution when measured in the variable-pressure scanning electron microscope (VPSEM, chamber pressure 1 Pa to 2500 Pa) as compared to highvacuum SEM (operating pressure < 10 mPa). Depending on the gas path length, electrons that are scattered hundreds of micrometers outside the focused beam can contribute 90% or more of the measured spectrum. Monte Carlo electron trajectory simulation, available in NIST DTSA-II, models the gas scattering and simulates mixed composition targets, e.g., particle on substrate. The impact of gas scattering at the major (C > 0.1 mass fraction), minor (0.01 <= C <= 0.1), and trace (C < 0.01) constituent levels can be estimated. NIST DTSA-II for Java-platforms is available free at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).
Use of reciprocal lattice layer spacing in electron backscatter diffraction pattern analysis
Michael; Eades
2000-03-01
In the scanning electron microscope using electron backscattered diffraction, it is possible to measure the spacing of the layers in the reciprocal lattice. These values are of great use in confirming the identification of phases. The technique derives the layer spacing from the higher-order Laue zone rings which appear in patterns from many materials. The method adapts results from convergent-beam electron diffraction in the transmission electron microscope. For many materials the measured layer spacing compares well with the calculated layer spacing. A noted exception is for higher atomic number materials. In these cases an extrapolation procedure is described that requires layer spacing measurements at a range of accelerating voltages. This procedure is shown to improve the accuracy of the technique significantly. The application of layer spacing measurements in EBSD is shown to be of use for the analysis of two polytypes of SiC.
Direct in situ observation of the electron-driven synthesis of Ag filaments on α-Ag2WO4 crystals
Longo, E.; Cavalcante, L. S.; Volanti, D. P.; Gouveia, A. F.; Longo, V. M.; Varela, J. A.; Orlandi, M. O.; Andrés, J.
2013-01-01
In this letter, we report, for the first time, the real-time in situ nucleation and growth of Ag filaments on α-Ag2WO4 crystals driven by an accelerated electron beam from an electronic microscope under high vacuum. We employed several techniques to characterise the material in depth. By using these techniques combined with first-principles modelling based on density functional theory, a mechanism for the Ag filament formation followed by a subsequent growth process from the nano- to micro-scale was proposed. In general, we have shown that an accelerated electron beam from an electronic microscope under high vacuum enables in situ visualisation of Ag filaments with subnanometer resolution and offers great potential for addressing many fundamental issues in materials science, chemistry, physics and other fields of science. PMID:23591807
In-line three-dimensional holography of nanocrystalline objects at atomic resolution
Chen, F.-R.; Van Dyck, D.; Kisielowski, C.
2016-01-01
Resolution and sensitivity of the latest generation aberration-corrected transmission electron microscopes allow the vast majority of single atoms to be imaged with sub-Ångstrom resolution and their locations determined in an image plane with a precision that exceeds the 1.9-pm wavelength of 300 kV electrons. Such unprecedented performance allows expansion of electron microscopic investigations with atomic resolution into the third dimension. Here we report a general tomographic method to recover the three-dimensional shape of a crystalline particle from high-resolution images of a single projection without the need for sample rotation. The method is compatible with low dose rate electron microscopy, which improves on signal quality, while minimizing electron beam-induced structure modifications even for small particles or surfaces. We apply it to germanium, gold and magnesium oxide particles, and achieve a depth resolution of 1–2 Å, which is smaller than inter-atomic distances. PMID:26887849
Tao, J.; Sun, K.; Yin, W. -G.; ...
2016-11-22
The ground-state electronic order in doped manganites is frequently associated with a lattice modulation, contributing to their many interesting properties. However, measuring the thermal evolution of the lattice superstructure with reciprocal-space probes alone can lead to ambiguous results with competing interpretations. Here, we provide direct observations of the evolution of the superstructure in La 1/3Ca 2/3MnO 3 in real space, as well as reciprocal space, using transmission electron microscopic (TEM) techniques. We show that the transitions are the consequence of a proliferation of dislocations plus electronic phase separation. The resulting states are well described by the symmetries associated with electronic-liquid-crystalmore » (ELC) phases. Furthermore, our results resolve the long-standing controversy over the origin of the incommensurate superstructure and suggest a new structural model that is consistent with recent theoretical calculations.« less
Horne, R W; Wildy, P
1979-09-01
A brief historical account of the development and applications of the negative staining techniques to the study of the structure of viruses and their components as observed in the electron microscope is presented. Although the basic method of surrounding or embedding specimens in opaque dyes was used in light microscopy dating from about 1884, the equivalent preparative techniques applied to electron microscopy were comparatively recent. The combination of experiments on a sophisticated bacterial virus and the installation of a high resolution electron microscope in the Cavendish Laboratory, Cambridge, during 1954, subsequently led to the analysis of several important morphological features of animal, plant and bacterial viruses. The implications of the results from these early experiments on viruses and recent developments in negative staining methods for high resolution image analysis of electron micrographs are also discussed.
Analysis of FIB-induced damage by electron channelling contrast imaging in the SEM.
Gutierrez-Urrutia, Ivan
2017-01-01
We have investigated the Ga + ion-damage effect induced by focused ion beam (FIB) milling in a [001] single crystal of a 316 L stainless steel by the electron channelling contrast imaging (ECCI) technique. The influence of FIB milling on the characteristic electron channelling contrast of surface dislocations was analysed. The ECCI approach provides sound estimation of the damage depth produced by FIB milling. For comparison purposes, we have also studied the same milled surface by a conventional electron backscatter diffraction (EBSD) approach. We observe that the ECCI approach provides further insight into the Ga + ion-damage phenomenon than the EBSD technique by direct imaging of FIB artefacts in the scanning electron microscope. We envisage that the ECCI technique may be a convenient tool to optimize the FIB milling settings in applications where the surface crystal defect content is relevant. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Mossotti, Victor G.; Eldeeb, A. Raouf
2000-01-01
Turcotte, 1997, and Barton and La Pointe, 1995, have identified many potential uses for the fractal dimension in physicochemical models of surface properties. The image-analysis program described in this report is an extension of the program set MORPH-I (Mossotti and others, 1998), which provided the fractal analysis of electron-microscope images of pore profiles (Mossotti and Eldeeb, 1992). MORPH-II, an integration of the modified kernel of the program MORPH-I with image calibration and editing facilities, was designed to measure the fractal dimension of the exposed surfaces of stone specimens as imaged in cross section in an electron microscope.
The Wavelength-Dispersive Spectrometer and Its Proposed Use in the Analytical Electron Microscope
NASA Technical Reports Server (NTRS)
Goldstein, Joseph I.; Lyman, Charles E.; Williams, David B.
1989-01-01
The Analytical Electron Microscope (AEM) equipped with a wavelength-dispersive spectrometer (WDS) should have the ability to resolve peaks which normally overlap in the spectra from an energy-dispersive spectrometer (EDS). With a WDS it should also be possible to measure lower concentrations of elements in thin foils due to the increased peak-to-background ratio compared with EDS. The WDS will measure X-ray from the light elements (4 less than Z less than 1O) more effectively. This paper addresses the possibility of interfacing a compact WDS with a focussing circle of approximately 4 cm to a modem AEM with a high-brightness (field emission) source of electrons.
Lewis, Brett B.; Mound, Brittnee A.; Srijanto, Bernadeta; ...
2017-10-12
Here, nanomechanical measurements of platinum–carbon 3D nanoscale architectures grown via focused electron beam induced deposition (FEBID) were performed using a nanoindentation system in a scanning electron microscope (SEM) for simultaneous in situ imaging.
USDA-ARS?s Scientific Manuscript database
Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the palm aphid, Cerataphis brasiliensis, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures...
Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar
2018-04-01
Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.
Rizzo, N W; Duncan, K E; Bourett, T M; Howard, R J
2016-08-01
We have refined methods for biological specimen preparation and low-voltage backscattered electron imaging in the scanning electron microscope that allow for observation at continuous magnifications of ca. 130-70 000 X, and documentation of tissue and subcellular ultrastructure detail. The technique, based upon early work by Ogura & Hasegawa (1980), affords use of significantly larger sections from fixed and resin-embedded specimens than is possible with transmission electron microscopy while providing similar data. After microtomy, the sections, typically ca. 750 nm thick, were dried onto the surface of glass or silicon wafer and stained with heavy metals-the use of grids avoided. The glass/wafer support was then mounted onto standard scanning electron microscopy sample stubs, carbon-coated and imaged directly at an accelerating voltage of 5 kV, using either a yttrium aluminum garnet or ExB backscattered electron detector. Alternatively, the sections could be viewed first by light microscopy, for example to document signal from a fluorescent protein, and then by scanning electron microscopy to provide correlative light/electron microscope (CLEM) data. These methods provide unobstructed access to ultrastructure in the spatial context of a section ca. 7 × 10 mm in size, significantly larger than the typical 0.2 × 0.3 mm section used for conventional transmission electron microscopy imaging. Application of this approach was especially useful when the biology of interest was rare or difficult to find, e.g. a particular cell type, developmental stage, large organ, the interface between cells of interacting organisms, when contextual information within a large tissue was obligatory, or combinations of these factors. In addition, the methods were easily adapted for immunolocalizations. © 2015 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society.
Mars Life? - Microscopic Structures
NASA Technical Reports Server (NTRS)
1996-01-01
In the center of this electron microscope image of a small chip from a meteorite are several tiny structures that are possible microscopic fossils of primitive, bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.
Electric field stimulated growth of Zn whiskers
NASA Astrophysics Data System (ADS)
Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana
2016-07-01
We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.
NASA Astrophysics Data System (ADS)
Okada, Tomoko; Ogura, Toshihiko
2017-02-01
Nanometre-scale-resolution imaging technologies for liquid-phase specimens are indispensable tools in various scientific fields. In biology, observing untreated living cells in a medium is essential for analysing cellular functions. However, nanoparticles that bind living cells in a medium are hard to detect directly using traditional optical or electron microscopy. Therefore, we previously developed a novel scanning electron-assisted dielectric microscope (SE-ADM) capable of nanoscale observations. This method enables observation of intact cells in aqueous conditions. Here, we use this SE-ADM system to clearly observe antibody-binding nanobeads in liquid-phase. We also report the successful direct detection of streptavidin-conjugated nanobeads binding to untreated cells in a medium via a biotin-conjugated anti-CD44 antibody. Our system is capable of obtaining clear images of cellular organelles and beads on the cells at the same time. The direct observation of living cells with nanoparticles in a medium allowed by our system may contribute the development of carriers for drug delivery systems (DDS).
Atomic Scale Studies of Magnetic Multilayers
NASA Astrophysics Data System (ADS)
Plisch, M. J.; Muller, D. A.; Katine, J. A.; Silcox, J.; Buhrman, R. A.
1998-03-01
The structure of interfaces in magnetic multilayers plays a crucial role in determining their transport properties(S.S.P. Parkin, Phys. Rev. Lett. 71), 1641 (1993).. A scanning transmission electron microscope (STEM) which can focus a 100 kV electron beam down to 2Åis used to make spatially resolved measurements across magnetic multilayers. Previous x-ray absorption measurements suggest that the Cu d electrons play a large role in coupling the Co layers(M.G. Samant, et. al., Phys. Rev. Lett. 72), 1112 (1994).. With electon energy loss spectroscopy (EELS), information on the spatial variation of Cu d states can be obtained. Interfacial structure and bonding have been examined in multilayers with 80 ÅCu/50 ÅCo periods (with no GMR) and 9 ÅCu/13 ÅCo periods (with greater than 50% GMR). A heteroepitaxial grain structure persisting across many multilayer periods has been seen in the short period structure, but not in the long period structure. There is mixing at the Cu/Co interface and the Cu d states near the interface are significantly modified by the Co. Fe/Cr multilayers have also been examined.
Fabrication of Subnanometer-Precision Nanopores in Hexagonal Boron Nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, S. Matt; Dunn, Gabriel; Azizi, Amin
Here, we demonstrate the fabrication of individual nanopores in hexagonal boron nitride (h-BN) with atomically precise control of the pore shape and size. Previous methods of pore production in other 2D materials typically create pores with irregular geometry and imprecise diameters. In contrast, other studies have shown that with careful control of electron irradiation, defects in h-BN grow with pristine zig-zag edges at quantized triangular sizes, but they have failed to demonstrate production and control of isolated defects. In this work, we combine these techniques to yield a method in which we can create individual size-quantized triangular nanopores through anmore » h-BN sheet. The pores are created using the electron beam of a conventional transmission electron microscope; which can strip away multiple layers of h-BN exposing single-layer regions, introduce single vacancies, and preferentially grow vacancies only in the single-layer region. We further demonstrate how the geometry of these pores can be altered beyond triangular by changing beam conditions. Precisely size- and geometry-tuned nanopores could find application in molecular sensing, DNA sequencing, water desalination, and molecular separation.« less
Fabrication of Subnanometer-Precision Nanopores in Hexagonal Boron Nitride
Gilbert, S. Matt; Dunn, Gabriel; Azizi, Amin; ...
2017-11-08
Here, we demonstrate the fabrication of individual nanopores in hexagonal boron nitride (h-BN) with atomically precise control of the pore shape and size. Previous methods of pore production in other 2D materials typically create pores with irregular geometry and imprecise diameters. In contrast, other studies have shown that with careful control of electron irradiation, defects in h-BN grow with pristine zig-zag edges at quantized triangular sizes, but they have failed to demonstrate production and control of isolated defects. In this work, we combine these techniques to yield a method in which we can create individual size-quantized triangular nanopores through anmore » h-BN sheet. The pores are created using the electron beam of a conventional transmission electron microscope; which can strip away multiple layers of h-BN exposing single-layer regions, introduce single vacancies, and preferentially grow vacancies only in the single-layer region. We further demonstrate how the geometry of these pores can be altered beyond triangular by changing beam conditions. Precisely size- and geometry-tuned nanopores could find application in molecular sensing, DNA sequencing, water desalination, and molecular separation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, V.; Chawla, G.; Kumar, V.
1987-04-01
Pathomorphological changes in the skin was noticed under the scanning electron microscope in fish fingerlings (Cirrhina mrigala) exposed to 0.005 ppm (25% of the LC50) concentration to linear alkyl benzene sulfonate. The epithelial cells present in the epidermis of the skin were found to secrete more mucus with linear alkyl benzene sulfonate (LAS) than did controls. The presence or deposition of mucus on the surface of skin indicated likely molecular interaction between constituents of mucus and LAS.
Environmental scanning electron microscopy of personal and household products.
Hoyberg, K
1997-03-01
The ability to forego sample preparation and to make observation directly in the environmental scanning electron microscope has benefited both household and personal product research at Unilever Research. Product efficacy on biological materials such as microcomedones was easily ascertained. Skin biopsies were examined in a moist state with no sample preparation. Effects of relative humidity on detergents were visually determined by recreating the necessary conditions in the microscope. Effects of cooling rates on the morphology of softener sheet actives that remained on polyester fabric were characterized via dynamic experimentation.
Nong, Xiang; Zeng, Xuemei; Yang, Yaojun; Liang, Zi; Tang, Mei; Liao, Lejuan; Luo, Chaobing
2017-11-01
Both leica microscopic camera system and scanning electron microscopy was used to observe and characterize the feet, back, abdomen, antennae and mouthparts of the Pseudoregma bambucicola from the bamboo, Bambusa multiplex . The possible functions of all the external morphological characteristics of the P. bambucicola were described and discussed in detail, which offers a basis for further enriching the biology, phylogeny and ecological niche of the P. bambucicola . Moreover, the morphological results should contribute to morphological identification and differentiation of the P. bambucicola from other aphids in the same family.
Electron microscopic and optical studies of prism faces of synthetic quartz
NASA Technical Reports Server (NTRS)
Buzek, B. C.; Vagh, A. S.
1977-01-01
Application of electron and optical microscopic techniques to the study of growth spirals on quartz crystal faces is described. Attention is centered on the centers of the spirals and on screw ledges; overhanging kinks are revealed on one side of the spiral centers. The possibility that these special features may have developed after growth of the crystals went to completion is explored. The conjecture is raised that such structures might result from adsorption of growth-inhibiting impurities at the center of the growth spiral on the quartz habit faces.
Characteristics of different frequency ranges in scanning electron microscope images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sim, K. S., E-mail: kssim@mmu.edu.my; Nia, M. E.; Tan, T. L.
2015-07-22
We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement.
Electron microscope detection of an endogenous infection of retrovirus-like particles in L20B cells.
Roberts, Jason A; Thorley, Bruce R; Bruggink, Leesa D; Marshall, John A
2013-08-01
L20B cells are a cell line commonly used for the isolation of poliovirus. The current study indicates that L20B cells are chronically infected with a retrovirus-like particle that replicates in the cytoplasm and buds through the plasma membrane. The findings indicate that care is needed in the use of L20B cells for certain virus isolation studies and emphasize the importance of electron microscope studies as an adjunct to the development of diagnostic virology protocols.
2014-01-01
Substantial silver-embedded aluminum/silica nanospheres with uniform diameter and morphology were successfully synthesized by sol-gel technique. After various annealing temperatures, the surface mechanisms of each sample were analyzed using scanning electron microscope, transmission electron microscope, and X-ray photoelectron spectroscopy. The chemical durability examinations and antibacterial tests of each sample were also carried out for the confirmation of its practical usage. Based on the result of the above analyses, the silver-embedded aluminum/silica nanospheres are eligible for fabricating antibacterial utensils. PMID:25136275
Ballistic-Electron-Emission Microscope
NASA Technical Reports Server (NTRS)
Kaiser, William J.; Bell, L. Douglas
1990-01-01
Ballistic-electron-emission microscope (BEEM) employs scanning tunneling-microscopy (STM) methods for nondestructive, direct electrical investigation of buried interfaces, such as interface between semiconductor and thin metal film. In BEEM, there are at least three electrodes: emitting tip, biasing electrode, and collecting electrode, receiving current crossing interface under investigation. Signal-processing device amplifies electrode signals and converts them into form usable by computer. Produces spatial images of surface by scanning tip; in addition, provides high-resolution images of buried interface under investigation. Spectroscopic information extracted by measuring collecting-electrode current as function of one of interelectrode voltages.
Effect of CO2 laser on Class V cavities of human molar teeth under a scanning electron microscope.
Watanabe, I; Lopes, R A; Brugnera, A; Katayama, A Y; Gardini, A E
1996-01-01
The purpose of this study was to evaluate the effects of CO2 laser on dentin of class V cavities of extracted human molar teeth using a scanning electron microscope. SEM showed a smooth area with concentric lines formed by melting with subsequent recrystallization of dentin, areas of granulation, vitrified surface, numerous cracks, and irregular areas of descamative dentin. These data indicate that CO2 laser (4 and 6 watts) produces dentin alterations and limit its clinical applications.
Magnetic lens apparatus for a low-voltage high-resolution electron microscope
Crewe, Albert V.
1996-01-01
A lens apparatus in which a beam of charged particles of low accelerating voltage is brought to a focus by a magnetic field, the lens being situated behind the target position. The lens comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. The lens apparatus comprises the sole focusing lens for high-resolution imaging in a low-voltage scanning electron microscope.
NASA Astrophysics Data System (ADS)
Wainwright, Milton; Rose, Christopher E.; Baker, Alexander J.; Wickramasinghe, N. Chandra
Biological entities were isolated, at a height of between 22-27 km in the stratosphere. Sampling of this region was carried out in the UK in July 2013 using a relatively simple low-cost balloon-borne sampler carrying aseptically clean scanning electron microscope stubs onto which aerosols were directly captured. The entities varied from a presumptive colony of ultra small bacteria to two unusual individual organisms and part of a diatom frustule. Biological entities of this nature have not previously been reported occurring in the stratosphere; their likely origin is discussed and we provide arguments to support our view that such biological entities may have arrived from space.
Silicon in Imperata cylindrica (L.) P. Beauv: content, distribution, and ultrastructure.
Rufo, Lourdes; Franco, Alejandro; de la Fuente, Vicenta
2014-07-01
Silicon concentration, distribution, and ultrastructure of silicon deposits in the Poaceae Imperata cylindrica (L.) P. Beauv. have been studied. This grass, known for its medicinal uses and also for Fe hyperaccumulation and biomineralization capacities, showed a concentration of silicon of 13,705 ± 9,607 mg/kg dry weight. Silicon was found as an important constituent of cell walls of the epidermis of the whole plant. Silica deposits were found in silica bodies, endodermis, and different cells with silicon-collapsed lumen as bulliforms, cortical, and sclerenchyma cells. Transmission electron microscope observations of these deposits revealed an amorphous material of an ultrastructure similar to that previously reported in silica bodies of other Poaceae.
Specialized cell surface structures in cellulolytic bacteria.
Lamed, R; Naimark, J; Morgenstern, E; Bayer, E A
1987-01-01
The cell surface topology of various gram-negative and -positive, anaerobic and aerobic, mesophilic and thermophilic, cellulolytic and noncellulolytic bacteria was investigated by scanning electron microscopic visualization using cationized ferritin. Characteristic protuberant structures were observed on cells of all cellulolytic strains. These structures appeared to be directly related to the previously described exocellular cellulase-containing polycellulosomes of Clostridium thermocellum YS (E. A. Bayer and R. Lamed, J. Bacteriol. 167:828-836, 1986). Immunochemical evidence and lectin-binding studies suggested a further correlation on the molecular level among cellulolytic bacteria. The results indicate that such cell surface cellulase-containing structures may be of general consequence to the bacterial interaction with and degradation of cellulose. Images PMID:3301817