Organic Laboratory Experiments: Micro vs. Conventional.
ERIC Educational Resources Information Center
Chloupek-McGough, Marge
1989-01-01
Presents relevant statistics accumulated in a fall organic laboratory course. Discusses laboratory equipment setup to lower the amount of waste. Notes decreased solid wastes were produced compared to the previous semester. (MVL)
A Moveable Feast--A Progressive Approach to the Unit Operations Laboratory
ERIC Educational Resources Information Center
Conner, Wm. Curtis, Jr.; Hammond, Karl D.; Laurence, Robert L.
2011-01-01
The authors describe an alternative format for the senior laboratory in which students are allowed--indeed, expected--to communicate with previous groups and build on their results. The effect is a unit operations laboratory in which students are empowered to propose the experiments they wish to do and in which the cumulative experience of the…
Spell, Rachelle M.; Guinan, Judith A.; Miller, Kristen R.; Beck, Christopher W.
2014-01-01
Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are poorly defined. To guide future reform efforts in this area, we conducted a national survey of biology faculty members to determine 1) their definitions of authentic research experiences in laboratory classes, 2) the extent of authentic research experiences currently experienced in their laboratory classes, and 3) the barriers that prevent incorporation of authentic research experiences into these classes. Strikingly, the definitions of authentic research experiences differ among faculty members and tend to emphasize either the scientific process or the discovery of previously unknown data. The low level of authentic research experiences in introductory biology labs suggests that more development and support is needed to increase undergraduate exposure to research experiences. Faculty members did not cite several barriers commonly assumed to impair pedagogical reform; however, their responses suggest that expanded support for development of research experiences in laboratory classes could address the most common barrier. PMID:24591509
Spell, Rachelle M; Guinan, Judith A; Miller, Kristen R; Beck, Christopher W
2014-01-01
Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are poorly defined. To guide future reform efforts in this area, we conducted a national survey of biology faculty members to determine 1) their definitions of authentic research experiences in laboratory classes, 2) the extent of authentic research experiences currently experienced in their laboratory classes, and 3) the barriers that prevent incorporation of authentic research experiences into these classes. Strikingly, the definitions of authentic research experiences differ among faculty members and tend to emphasize either the scientific process or the discovery of previously unknown data. The low level of authentic research experiences in introductory biology labs suggests that more development and support is needed to increase undergraduate exposure to research experiences. Faculty members did not cite several barriers commonly assumed to impair pedagogical reform; however, their responses suggest that expanded support for development of research experiences in laboratory classes could address the most common barrier.
Escobar, Rogelio
2014-11-01
Enrique O. Aragón established the first psychological laboratory in Mexico in 1916. This laboratory was inspired by Wundt's laboratory and by those created afterward in Germany and the United States. It was equipped with state-of-the art instruments imported from Germany in 1902 from Ernst Zimmermann who supplied instruments for Wundt's laboratory. Although previous authors have described the social events leading to the creation of the laboratory, there are limited descriptions of the instruments, their use, and their influence. With the aid of archival resources, the initial location of the laboratory was determined. The analysis of instruments revealed a previously overlooked relation with a previous laboratory of experimental physiology. The influence of the laboratory was traced by describing the careers of 4 students, 3 of them women, who worked with the instruments during the first 2 decades of the 20th century, each becoming accomplished scholars. In addition, this article, by identifying and analyzing the instruments shown in photographs of the psychological laboratory and in 1 motion film, provides information of the class demonstrations and the experiments conducted in this laboratory.
Tracer adsorption in sand-tank experiments of saltwater up-coning
NASA Astrophysics Data System (ADS)
Jakovovic, Danica; Post, Vincent E. A.; Werner, Adrian D.; Männicke, Oliver; Hutson, John L.; Simmons, Craig T.
2012-01-01
SummaryThis study aims to substantiate otherwise unresolved double-peaked plumes produced in recent saltwater up-coning experiments (see Jakovovic et al. (2011), Numerical modelling of saltwater up-coning: Comparison with experimental laboratory observations, Journal of Hydrology 402, 261-273) through additional laboratory testing and numerical modelling. Laboratory experimentation successfully reproduced the double-peaked plume demonstrating that this phenomenon was not an experimental nuance in previous experiments. Numerical modelling by Jakovovic et al. (2011) was extended by considering adsorption effects, which were needed to explain the observed up-coning double peaks of both previous and current laboratory experiments. A linear adsorption isotherm was applied in predicting dye tracer (Rhodamine WT) behaviour in the sand-tank experiments using adsorption parameters obtained experimentally. The same adsorption parameters were tested on all laboratory experiments and it was found that adsorption had insignificant effect on experiments with high pumping rates. However, low pumping rates produced pronounced spatial velocity variations within the dense salt plume beneath the pumping well, with velocities within the plume increasing from the centre of the plume towards the interface. The dye tracer was retarded relative to the salt and was transported preferentially along the higher-velocity paths (i.e. along the edges of the salt plume) towards the well forming double-peaked up-coning patterns. This illustrates the sensitive adsorptive nature of Rhodamine WT and that care should be taken when it is used in similar sand-tank experiments. Observations from this study offer insight into the separation of chemicals in natural systems due to different adsorption characteristics and under conditions of density-dependent flow.
Laboratory Experiments for Network Security Instruction
ERIC Educational Resources Information Center
Brustoloni, Jose Carlos
2006-01-01
We describe a sequence of five experiments on network security that cast students successively in the roles of computer user, programmer, and system administrator. Unlike experiments described in several previous papers, these experiments avoid placing students in the role of attacker. Each experiment starts with an in-class demonstration of an…
Rapid Association Learning in the Primate Prefrontal Cortex in the Absence of Behavioral Reversals
ERIC Educational Resources Information Center
Cromer, Jason A.; Machon, Michelle; Miller, Earl K.
2011-01-01
The PFC plays a central role in our ability to learn arbitrary rules, such as "green means go." Previous experiments from our laboratory have used conditional association learning to show that slow, gradual changes in PFC neural activity mirror monkeys' slow acquisition of associations. These previous experiments required monkeys to repeatedly…
NASA Astrophysics Data System (ADS)
Clark, Stephen; Winske, Dan; Schaeffer, Derek; Everson, Erik; Bondarenko, Anton; Constantin, Carmen; Niemann, Christoph
2014-10-01
We present 3D hybrid simulations of laser produced expanding debris clouds propagating though a magnetized ambient plasma in the context of magnetized collisionless shocks. New results from the 3D code are compared to previously obtained simulation results using a 2D hybrid code. The 3D code is an extension of a previously developed 2D code developed at Los Alamos National Laboratory. It has been parallelized and ported to execute on a cluster environment. The new simulations are used to verify scaling relationships, such as shock onset time and coupling parameter (Rm /ρd), developed via 2D simulations. Previous 2D results focus primarily on laboratory shock formation relevant to experiments being performed on the Large Plasma Device, where the shock propagates across the magnetic field. The new 3D simulations show wave structure and dynamics oblique to the magnetic field that introduce new physics to be considered in future experiments.
ERIC Educational Resources Information Center
Kovack-Lesh, Kristine A.; Horst, Jessica S.; Oakes, Lisa M.
2008-01-01
We examined the effect of 4-month-old infants' previous experience with dogs, cats, or both and their online looking behavior on their learning of the adult-defined category of "cat" in a visual familiarization task. Four-month-old infants' (N = 123) learning in the laboratory was jointly determined by whether or not they had experience…
ERIC Educational Resources Information Center
O'Malley, Shannon; Besner, Derek
2013-01-01
No one would argue with the proposition that how we process events in the world is strongly affected by our experience. Nonetheless, recent experience (e.g., from the previous trial) is typically not considered in the analysis of timed cognitive performance in the laboratory. Masson and Kliegl (2013) reported that, in the context of the lexical…
Using NMR to Probe the Regio- and Stereochemistry of the Hydration of 1-Hexene
ERIC Educational Resources Information Center
Saba, Shahrokh; Clarke, Donald D.; Iwanoski, Christa; Lobasso, Thomas
2010-01-01
This undergraduate organic laboratory experiment complements previously described and popular experiments on hydration of 1-hexene where students experimentally establish the Markovnikov regioselectivity of alkene hydration. In this experiment, students explore not only the regiochemistry but also the stereochemistry of 1-hexene hydration and…
Anodizing Aluminum with Frills.
ERIC Educational Resources Information Center
Doeltz, Anne E.; And Others
1983-01-01
"Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…
NASA Technical Reports Server (NTRS)
Robinson, Julie A.
2011-01-01
The assembly of the International Space Station was completed in early 2011. Its largest research instrument, the Alpha Magnetic Spectrometer is planned for launch in late April. Unlike any previous laboratory in space, the ISS offers a long term platform where scientists can operate experiments rapidly after developing a new research question, and extend their experiments based on early results. This presentation will explain why having a laboratory in orbit is important for a wide variety of experiments that cannot be done on Earth. Some of the most important results from early experiments are already having impacts in areas such as health care, telemedicine, and disaster response. The coming decade of full utilization offers the promise of new understanding of the nature of physical and biological processes and even of matter itself.
NASA Astrophysics Data System (ADS)
Rollnick, Marissa; Dlamini, Betty; Lotz, Sandra; Lubben, Fred
2001-08-01
This paper reports an investigation of the status of procedural knowledge in chemistry amongst students entering into bridging programs at two South African universities. The students answered a questionnaire which investigated their perceived reasons for repeating readings and their ideas about handling data. Students also answered a question on laboratory apparatus which was used to assess their laboratory experience. The overall responses were analysed, as well as their relationship to laboratory experience and home language. The findings show that students overall tend to repeat in order to get a recurring reading. Very few students were able to use a line of best fit for a set of graphical data. There is some relationship between their responses and previous laboratory experiences, but little fundamental difference between the responses of the two main language groups. Some implications for tertiary education in chemistry are discussed.
Dancing Around My Technology Classroom Box (My Second RET Lab)
ERIC Educational Resources Information Center
Carter, Terry
2010-01-01
The laboratory the author had been assigned for his RET (Research Experience for Teachers) at Vanderbilt University is new and different from the one he had previously experienced. This summer he was assigned to the Microfluidics and Lab-on-a-chip laboratory to help research dielectrophoresis. As this is an emerging technology, there was not a lot…
Quantitative Analysis of Nail Polish Remover Using Nuclear Magnetic Resonance Spectroscopy Revisited
ERIC Educational Resources Information Center
Hoffmann, Markus M.; Caccamis, Joshua T.; Heitz, Mark P.; Schlecht, Kenneth D.
2008-01-01
Substantial modifications are presented for a previously described experiment using nuclear magnetic resonance (NMR) spectroscopy to quantitatively determine analytes in commercial nail polish remover. The revised experiment is intended for a second- or third-year laboratory course in analytical chemistry and can be conducted for larger laboratory…
Quiroga, Maria del Mar; Price, Nicholas SC
2016-01-01
Lecture content and practical laboratory classes are ideally complementary. However, the types of experiments that have led to our detailed understanding of sensory neuroscience are often not amenable to classroom experimentation as they require expensive equipment, time-consuming surgeries, specialized experimental techniques, and the use of animals. While sometimes feasible in small group teaching, these experiments are not suitable for large cohorts of students. Previous attempts to expose students to sensory neuroscience experiments include: the use of electrophysiology preparations in invertebrates, data-driven simulations that do not replicate the experience of conducting an experiment, or simply observing an experiment in a research laboratory. We developed an online simulation of a visual neuroscience experiment in which extracellular recordings are made from a motion sensitive neuron. Students have control over stimulation parameters (direction and contrast) and can see and hear the action potential responses to stimuli as they are presented. The simulation provides an intuitive way for students to gain insight into neurophysiology, including experimental design, data collection and data analysis. Our simulation allows large cohorts of students to cost-effectively “experience” the results of animal research without ethical concerns, to be exposed to realistic data variability, and to develop their understanding of how sensory neuroscience experiments are conducted. PMID:27980465
Refinement of pressure calibration for multi-anvil press experiments
NASA Astrophysics Data System (ADS)
Ono, S.
2016-12-01
Accurate characterization of the pressure and temperature environment in high-pressure apparatuses is of essential importance when we apply laboratory data to the study of the Earth's interior. Recently, the synchrotron X-ray source can be used for the high-pressure experiments, and the in situ pressure calibration has been a common technique. However, this technique cannot be used in the laboratory-based experiments. Even now, the conventional pressure calibration is of great interest to understand the Earth's interior. Several high-pressure phase transitions used as the pressure calibrants in the laboratory-based multi-anvil experiments have been investigated. Precise determinations of phase boundaries of CaGeO3 [1], Fe2SiO4 [2], SiO2, and Zr [3] were performed by the multi-anvil press or the diamond anvil cell apparatuses combined with the synchrotron X-ray diffraction technique. The transition pressures in CaGeO3 (garnet-perovskite), Fe2SiO4 (alfa-gamma), and SiO2 (coesite-stishovite) were in general agreement with those reported by previous studies. However, significant discrepancies for the slopes, dP/dT, of these transitions between our and previous studies were confirmed. In the case of Zr study [3], our experimental results elucidate the inconsistency in the transition pressure between omega and beta phase in Zr observed in previous studies. [1] Ono et al. (2011) Phys. Chem. Minerals, 38, 735-740.[2] Ono et al. (2013) Phys. Chem. Minerals, 40, 811-816.[3] Ono & Kikegawa (2015) J. Solid State Chem., 225, 110-113.
Effects of Induction-System Icing on Aircraft-Engine Operating Characteristics
NASA Technical Reports Server (NTRS)
Stevens, Howard C., Jr.
1947-01-01
An investigation was conducted on a multicylinder aircraft engine on a dynamometer stand to determine the effect of induction-system icing on engine operating characteristics and to compare the results with those of a previous laboratory investigation in which only the carburetor and the engine-stage supercharger assembly from the engine were used. The experiments were conducted at simulated glide power, low cruise power, and normal rated power through a range of humidity ratios and air temperatures at approximately sea-level pressure. Induction-system icing was found to occur within approximately the same limits as those established by the previous laboratory investigation after making suitable allowances for the difference in fuel volatility and throttle angles. Rough operation of the engine was experienced when ice caused a marked reduction in the air flow. Photographs of typical ice formations from this investigation indicate close similarity to icing previously observed in the laboratory.
NASA Technical Reports Server (NTRS)
Welch, J. D.
1975-01-01
The preliminary design of an experiment for landmark recognition and tracking from the Shuttle/Advanced Technology Laboratory is described. It makes use of parallel coherent optical processing to perform correlation tests between landmarks observed passively with a telescope and previously made holographic matched filters. The experimental equipment including the optics, the low power laser, the random access file of matched filters and the electro-optical readout device are described. A real time optically excited liquid crystal device is recommended for performing the input non-coherent optical to coherent optical interface function. A development program leading to a flight experiment in 1981 is outlined.
Knutson, Kristopher; Smith, Jennifer; Nichols, Paul; Wallert, Mark A; Provost, Joseph J
2010-09-01
Research-based learning in a teaching environment is an effective way to help bring the excitement and experience of independent bench research to a large number of students. The program described here is the second of a two-semester biochemistry laboratory series. Here, students are empowered to design, execute and analyze their own experiments for the entire semester. This style of laboratory replaces a variety of shorter labs in favor of an in depth research-based learning experience. The concept is to allow students to function in independent research groups. The research projects are focused on a series of wild-type and mutant clones of malate dehydrogenase. A common research theme for the laboratory helps instructors administer the course and is key to delivering a research opportunity to a large number of students. The outcome of this research-based learning laboratory results in students who are much more confident and skilled in critical areas in biochemistry and molecular biology. Students with research experience have significantly higher confidence and motivation than those students without a previous research experience. We have also found that all students performed better in advanced courses and in the workplace. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Miranda, David A.; Sanchez, Melba J.; Forero, Oscar M.
2017-06-01
The implementation of the JiTT (Just in Time Teaching) strategy is presented to increase the previous preparation of students enrolled in the subject Physics Laboratory I offered at the Industrial University of Santander (UIS), Colombia. In this study, a laboratory preparation questionnaire (CPL) was applied as a tool for the implementation of JiTT combined with elements of mediated learning. It was found that the CPL allows to improve the students’ experience regarding the preparation of the laboratory and the development of the experimental session. These questionnaires were implemented in an academic manager (Moodle) and a web application (lab.ciencias.uis.edu.co) was used to publish the contents essential for the preparation of the student before each practical session. The most significant result was that the students performed the experimental session with the basic knowledge to improve their learning experience.
Purser, Gemma; Rochelle, Christopher A; Wallis, Humphrey C; Rosenqvist, Jörgen; Kilpatrick, Andrew D; Yardley, Bruce W D
2014-08-01
A novel titanium reaction cell has been constructed for the study of water-rock-CO2 reactions. The reaction cell has been used within a direct-sampling rocking autoclave and offers certain advantages over traditional "flexible gold/titanium cell" approaches. The main advantage is robustness, as flexible cells are prone to rupture on depressurisation during gas-rich experiments. The reaction cell was tested in experiments during an inter-laboratory comparison study, in which mineral kinetic data were determined. The cell performed well during experiments up to 130 °C and 300 bars pressure. The data obtained were similar to those of other laboratories participating in the study, and also to previously published data.
A new approach to electrophoresis in space
NASA Technical Reports Server (NTRS)
Snyder, Robert S.; Rhodes, Percy H.
1990-01-01
Previous electrophoresis experiments performed in space are reviewed. There is sufficient data available from the results of these experiments to show that they were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. Redesigning laboratory chambers and operating procedures developed on Earth for space without understanding both the advantages and disadvantages of the microgravity environment has yielded poor separations of both cells and proteins. However, electrophoreris is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.
NASA Astrophysics Data System (ADS)
Dallinger, Richard F.
1995-10-01
A previous Journal article [J. Chem. Educ. 1984, 61, 1098--1099] described a potassium tris(oxalato)ferrate(III) trihydrate empirical formula experiment that offered an excellent integrative experience in synthesis and characterization for general chemistry laboratory students. However, we have introduced a fast and accurate spectrophotometric method for the determination of iron in the product that takes the place of the photochemical-gravimetric procedure described in the article. Besides the pedagogic interest of bringing three different types of chemical analysis (titrimetric, gravimetric, and spectrophotometric) to bear on one compound, the new iron determination allows students to complete the experiment in 2, 3-hr laboratory periods rather than the 5 periods allotted in the original experiment.
Enhancements to the Image Analysis Tool for Core Punch Experiments and Simulations (vs. 2014)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogden, John Edward; Unal, Cetin
A previous paper (Hogden & Unal, 2012, Image Analysis Tool for Core Punch Experiments and Simulations) described an image processing computer program developed at Los Alamos National Laboratory. This program has proven useful so developement has been continued. In this paper we describe enhacements to the program as of 2014.
NASA Technical Reports Server (NTRS)
Steffes, P. G.
1986-01-01
The recognition of the need to make laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressure which correspond to the altitudes probed by radio occultation experiments, and over a range of frequencies which correspond to both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. Construction was completed of the outer planets simulator and measurements were conducted of the microwave absorption and refraction from nitrogen under simulated Titan conditions. The results of these and previous laboratory measurements were applied to a wide range of microwave opacity measurements, in order to derive constituent densities and distributions in planetary atmospheres such as Venus.
NASA Astrophysics Data System (ADS)
Pedro Sánchez, Juan; Sáenz, Jacobo; de la Torre, Luis; Carreras, Carmen; Yuste, Manuel; Heradio, Rubén; Dormido, Sebastián
2016-05-01
This work describes two experiments: "study of the diffraction of light: Fraunhofer approximation" and "the photoelectric effect". Both of them count with a virtual, simulated, version of the experiment as well as with a real one which can be operated remotely. The two previous virtual and remote labs (built using Easy Java(script) Simulations) are integrated in UNILabs, a network of online interactive laboratories based on the free Learning Management System Moodle. In this web environment, students can find not only the virtual and remote labs but also manuals with related theory, the user interface description for each application, and so on.
Dosani, Farah; Neuberger, Lindsay
2016-01-01
Medical students begin their education inside a laboratory dissecting cadavers to learn human gross anatomy. Many schools use the course experience as a way to instill empathy and some have begun integrating video and recorded interviews with body donors to humanize the experience, but their impact has yet to be measured. This study examines the effects of a brief documentary film and the initial cadaver encounter on student perceptions and attitudes towards the laboratory experience. A pre-test, exposure, post-test design was used with 77 first-year medical students at the University of Central Florida. A previously validated questionnaire was adapted to measure attitudes, emotions, initial reaction to cadaver, perception of the donor as a person, and impressions of the film. An online questionnaire was completed before the first day of laboratory, in which students watched the film Anatomy and Humanity and handled their respective cadavers (no dissection was performed). The post-test was administered immediately following the activities of the first laboratory day. Results indicate an increase in negative attitudes towards dissection, but a more positive initial reaction to the cadaver than originally anticipated. Students also experienced a decrease in emotions like sadness and guilt regarding anatomy laboratory and were less likely to view the cadaver as a once-living person. Findings suggest a higher comfort level, but also greater detachment toward the cadavers from day one despite the video intervention. These results provide novel insight that may aid other interventions aimed at promoting humanism in the anatomy laboratory experience. © 2015 American Association of Anatomists.
Low-Frequency Surface Backscattering Strengths Measured in the Critical Sea Test Experiments
2017-01-19
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/7160--17-9702 Low-Frequency Surface Backscattering Strengths Measured in the Critical Sea ...LIMITATION OF ABSTRACT Low-Frequency Surface Backscattering Strengths Measured in the Critical Sea Test Experiments Roger C. Gauss1 and Joseph M...significantly- updated results from 55 broadband SUS SSS measurements in 6 Critical Sea Test (CST) experiments. Since the time of the previously
Extension of Gutenberg-Richter distribution to MW -1.3, no lower limit in sight
NASA Astrophysics Data System (ADS)
Boettcher, Margaret S.; McGarr, A.; Johnston, Malcolm
2009-05-01
With twelve years of seismic data from TauTona Gold Mine, South Africa, we show that mining-induced earthquakes follow the Gutenberg-Richter relation with no scale break down to the completeness level of the catalog, at moment magnitude M W -1.3. Events recorded during relatively quiet hours in 2006 indicate that catalog detection limitations, not earthquake source physics, controlled the previously reported minimum magnitude in this mine. Within the Natural Earthquake Laboratory in South African Mines (NELSAM) experiment's dense seismic array, earthquakes that exhibit shear failure at magnitudes as small as M W -3.9 are observed, but we find no evidence that M W -3.9 represents the minimum magnitude. In contrast to previous work, our results imply small nucleation zones and that earthquake processes in the mine can readily be scaled to those in either laboratory experiments or natural faults.
Geochemistry of manganese, iron, uranium, lead-210 and major ions in the Susquehanna River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, D.M.
1976-01-01
The change in water composition accompanying a change in discharge of large streams and the Susquehanna River results from the change in the proportions of the total flow composed of type waters of constant composition. This change in the flow proportions is due to the different hydrologic responses to precipitation inputs of basins underlain by different single rock types. The in-river precipitation of mine-drainage-injected Mn and Fe was studied at a pH of approximately 7. For Mn the removal from solution appears to be first order. The rate constant is 10/sup 3/ times greater than the extrapolated autocatalytic rate constantmore » of previous laboratory experiments. The study of the removal of Fe from solution yields a first order rate constant consistent with previous laboratory experiments. Lead-210 was used as a natural tracer to study the fate of trace metals.« less
Extension of Gutenberg-Richter distribution to Mw -1.3, no lower limit in sight
Boettcher, M.S.; McGarr, A.; Johnston, M.
2009-01-01
[1] With twelve years of seismic data from TauTona Gold Mine, South Africa, we show that mining-induced earthquakes follow the Gutenberg-Richter relation with no scale break down to the completeness level of the catalog, at moment magnitude Mw -1.3. Events recorded during relatively quiet hours in 2006 indicate that catalog detection limitations, not earthquake source physics, controlled the previously reported minimum magnitude in this mine. Within the Natural Earthquake Laboratory in South African Mines (NELSAM) experiment's dense seismic array, earthquakes that exhibit shear failure at magnitudes as small as Mw -3.9 are observed, but we find no evidence that Mw -3.9 represents the minimum magnitude. In contrast to previous work, our results imply small nucleation zones and that earthquake processes in the mine can readily be scaled to those in either laboratory experiments or natural faults.
NASA Astrophysics Data System (ADS)
Sylvest, Matthew E.; Conway, Susan J.; Patel, Manish R.; Dixon, John C.; Barnes, Adam
2016-12-01
Sublimation is a recognized process by which planetary landscapes can be modified. However, interpretation of whether sublimation is involved in downslope movements on Mars and other bodies is restricted by a lack of empirical data to constrain this mechanism of sediment transport and its influence on landform morphology. Here we present the first set of laboratory experiments under Martian atmospheric conditions which demonstrate that the sublimation of CO2 ice from within the sediment body can trigger failure of unconsolidated, regolith slopes and can measurably alter the landscape. Previous theoretical studies required CO2 slab ice for movements, but we find that only frost is required. Hence, sediment transport by CO2 sublimation could be more widely applicable (in space and time) on Mars than previously thought. This supports recent work suggesting CO2 sublimation could be responsible for recent modification in Martian gullies.
Can music with prosocial lyrics heal the working world? A field intervention in a call center
Niven, Karen
2015-01-01
Music with lyrics about helping is shown to reduce aggression in the laboratory. This paper tests whether the prosocial lyric effect generalizes to reducing customer aggression in the workplace. A field experiment involved changing the hold music played to customers of a call center. The results of a 3 week study suggested that music significantly affected customers, but not in the way suggested by previous laboratory experiments; compared with days when instrumental background music was played, caller anger and employee exhaustion were lower on days when callers were played popular music with neutral, but not prosocial, lyrics. The findings suggest that music influences customer aggression, but that the prosocial lyric effect may not generalize from the laboratory to the call center. PMID:26052159
Can music with prosocial lyrics heal the working world? A field intervention in a call center.
Niven, Karen
2015-03-01
Music with lyrics about helping is shown to reduce aggression in the laboratory. This paper tests whether the prosocial lyric effect generalizes to reducing customer aggression in the workplace. A field experiment involved changing the hold music played to customers of a call center. The results of a 3 week study suggested that music significantly affected customers, but not in the way suggested by previous laboratory experiments; compared with days when instrumental background music was played, caller anger and employee exhaustion were lower on days when callers were played popular music with neutral, but not prosocial, lyrics. The findings suggest that music influences customer aggression, but that the prosocial lyric effect may not generalize from the laboratory to the call center.
Effect of Ethanol Chemistry on SCC of Carbon Steel
DOT National Transportation Integrated Search
2011-02-22
Pipeline companies have a keen interest in assessing the feasibility of transporting fuel grade ethanol (FGE) and ethanol blends in existing pipelines. Previous field experience and laboratory research, funded by PRCI and API, has shown that steel ca...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
...) using real-world crash data. Previous work on this subject included laboratory experiments that suggest... pairs. Procedural Matters How can I influence NHTSA's thinking on this subject? NHTSA welcomes public...
Experimental Determination of pK[subscript a] Values by Use of NMR Chemical Shifts, Revisited
ERIC Educational Resources Information Center
Gift, Alan D.; Stewart, Sarah M.; Bokashanga, Patrick Kwete
2012-01-01
This laboratory experiment, using proton NMR spectroscopy to determine the dissociation constant for heterocyclic bases, has been modified from a previously described experiment. A solution of a substituted pyridine is prepared using deuterium oxide (D[subscript 2]O) as the solvent. The pH of the solution is adjusted and proton NMR spectra are…
Testing the Foundations of Relativity Using Cryogenic Optical Resonators
NASA Astrophysics Data System (ADS)
Müller, H.; Braxmaier, C.; Herrmann, S.; Pradl, O.; Lämmerzahl, C.; Mlynek, J.; Schiller, S.; Peters, A.
We present a new generation of experiments using cryogenic optical resonators(COREs) to test the foundations of relativity. The experiments test the isotropy of the speed of light (Michelson-Morley experiment), the independece of the speed of light from the velocity of the laboratory (Kennedy-Thorndike experiments), and the gravitational redshift for clocks based on an electronic transition. Compared with the best previous results, our tests have already yielded improvements up to a factor of three. Future versions promise significant improvements.
Urhan, A Utku; Brodin, Anders
2015-05-01
Scatter hoarding birds are known for their accurate spatial memory. In a previous experiment, we tested the retrieval accuracy in marsh tits in a typical laboratory set-up for this species. We also tested the performance of humans in this experimental set-up. Somewhat unexpectedly, humans performed much better than marsh tits. In the first five attempts, humans relocated almost 90 % of the caches they had hidden 5 h earlier. Marsh tits only relocated 25 % in the first five attempts and just above 40 % in the first ten attempts. Typically, in this type of experiment, the birds will be caching and retrieving many times in the same sites in the same experimental room. This is very different from the conditions in nature where hoarding parids only cache once in a caching site. Hence, it is possible that memories from previous sessions will disturb the formation of new memories. If there is such proactive interference, the prediction is that success should decay over sessions. Here, we have designed an experiment to investigate whether there is such memory interference in this type of experiment. We allowed marsh tits and humans to cache and retrieve in three repeated sessions without prior experience of the arena. The performance did not change over sessions, and on average, marsh tits correctly visited around 25 % of the caches in the first five attempts. The corresponding success in humans was constant across sessions, and it was around 90 % on average. We conclude that the somewhat poor performance of the marsh tits did not depend on proactive memory interference. We also discuss other possible reasons for why marsh tits in general do not perform better in laboratory experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luther, Erik Paul; Leckie, Rafael M.; Dombrowski, David E.
This supplemental report describes fuel fabrication efforts conducted for the Idaho National Laboratory Trade Study for the TREAT Conversion project that is exploring the replacement of the HEU (Highly Enriched Uranium) fuel core of the TREAT reactor with LEU (Low Enriched Uranium) fuel. Previous reports have documented fabrication of fuel by the “upgrade” process developed at Los Alamos National Laboratory. These experiments supplement an earlier report that describes efforts to increase the graphite content of extruded fuel and minimize cracking.
Laboratory Study of Wave Generation Near Dipolarization Fronts
NASA Astrophysics Data System (ADS)
Tejero, E. M.; Enloe, C. L.; Amatucci, B.; Crabtree, C. E.; Ganguli, G.; Malaspina, D.
2017-12-01
Experiments conducted in the Space Physics Simulation Chamber at the Naval Research Laboratory (NRL) create plasma equilibria that replicate those found in dipolarization fronts. These experiments were designed to study the dynamics of boundary layers, such as dipolarization fronts, and it was found that there are instabilities generated by highly inhomogeneous plasma flows. It has previously been shown that these highly inhomogeneous flows can generate waves in the lower hybrid frequency range. Analysis of satellite observations indicate that the sheared flows are a plausible explanation for the observed lower hybrid waves at dipolarization fronts since they can generate longer wavelengths compared to the electron gyroradius, which is consistent with observations. Recent experiments at NRL have demonstrated that these flows can also generate electromagnetic waves in the whistler band. These waves are large amplitude, bursty waves that exhibit frequency chirps similar to whistler mode chorus. Recent results from these experiments and comparisons to in situ observations will be presented. * Work supported by the Naval Research Laboratory Base Program and NASA Grant No. NNH17AE70I.
Hydrogen milestone could help lower fossil fuel refining costs
McGraw, Jennifer
2017-12-27
Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, laboratory fellow and technical director of the INL High Temperature Electrolysis team, today announced that the latest fuel cell modification has set a new mark in endurance. The group's Integrated Laboratory Scale experiment has now operated continuously for 2,583 hours at higher efficiencies than previously attained. Learn more about INL research at http://www.facebook.com/idahonationallaboratory.
The principal Hugoniot of Mg2SiO4 to 950 GPa
NASA Astrophysics Data System (ADS)
Townsend, J. P.; Root, S.; Shulenburger, L.; Lemke, R. W.; Kraus, R. G.; Jacobsen, S. B.; Spaulding, D.; Davies, E.; Stewart, S. T.
2017-12-01
We present new measurements and ab-initio calculations of the principal Hugoniot states of forsterite Mg2SiO4 in the liquid regime between 200-950 GPa.Forsterite samples were shock compressed along the principal Hugoniot using plate-impact shock compression experiments on the Sandia National Laboratories Z machine facility.In order to gain insight into the physical state of the liquid, we performed quantum molecular dynamics calculations of the Hugoniot and compare the results to experiment.We show that the principal Hugoniot is consistent with that of a single molecular fluid phase of Mg2SiO4, and compare our results to previous dynamic compression experiments and QMD calculations.Finally, we discuss how the results inform planetary accretion and impact models.Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates
Ikari, Matt J.; Kopf, Achim J.
2017-01-01
The near-surface areas of major faults commonly contain weak, phyllosilicate minerals, which, based on laboratory friction measurements, are assumed to creep stably. However, it is now known that shallow faults can experience tens of meters of earthquake slip and also host slow and transient slip events. Laboratory experiments are generally performed at least two orders of magnitude faster than plate tectonic speeds, which are the natural driving conditions for major faults; the absence of experimental data for natural driving rates represents a critical knowledge gap. We use laboratory friction experiments on natural fault zone samples at driving rates of centimeters per year to demonstrate that there is abundant evidence of unstable slip behavior that was not previously predicted. Specifically, weak clay-rich fault samples generate slow slip events (SSEs) and have frictional properties favorable for earthquake rupture. Our work explains growing field observations of shallow SSE and surface-breaking earthquake slip, and predicts that such phenomena should be more widely expected. PMID:29202027
Radionuclide migration: laboratory experiments with isolated fractures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundberg, R.S.; Thompson, J.L.; Maestas, S.
Laboratory experiments examining flow and element migration in rocks containing isolated fractures have been initiated at the Los Alamos National Laboratory. Techniques are being developed to establish simple fracture flow systems which are appropriate to models using analytical solutions to the matrix diffusion-flow equations, such as those of I. Neretnieks [I. Neretnieks, Diffusion in the Rock Matrix: An Important Factor in Radionuclide Retardation? J. Geophys. Res. 85, 4379 (1980).] These experiments are intended to be intermediate steps toward larger scale field experiments where it may become more difficult to establish and control the parameters important to nuclide migration in fracturedmore » media. Laboratory experiments have been run on fractures ranging in size from 1 to 20 cm in length. The hydraulic flow in these fractures was studied to provide the effective apertures. The flows established in these fracture systems are similar to those in the granite fracture flow experiments of Witherspoon et al. [P.A. Witherspoon, J.S.Y. Wang, K. Iwai, and J.E. Gale, Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture, Lawrence Berkeley Laboratory report LBL-9557 (October 1979).] Traced solutions containing {sup 85}Sr and {sup 137}Cs were flowed through fractures in Climax Stock granite and welded tuff (Bullfrog and Tram members, Yucca Mountain, Nevada Test Site). The results of the elutions through granite agree with the matrix diffusion calculations based on independent measurements of K/sub d/. The results of the elutions through tuff, however, agree only if the K/sub d/ values used in the calculations are lower than the K/sub d/ values measured using a batch technique. This trend has been previously observed in chromatographic column experiments with tuff. 5 figures, 3 tables.« less
NASA Astrophysics Data System (ADS)
Stewart, Sarah
2017-06-01
Shock-induced vaporization was a common process during the end stages of terrestrial planet formation and transient features in extra-solar systems are attributed to recent giant impacts. At the Sandia Z Machine, my collaborators and I are conducting experiments to study the shock Hugoniot and release to the liquid-vapor phase boundary of major minerals in rocky planets. Current work on forsterite, enstatite and bronzite and previous results on silica, iron and periclase demonstrate that shock-induced vaporization played a larger role during planet formation than previously thought. I will provide an overview of the experimental results and describe how the data have changed our views of planetary impact events in our solar system and beyond. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work is supported by the Z Fundamental Science Program at Sandia National Laboratories, DOE-NNSA Grant DE- NA0002937, NASA Grant # NNX15AH54G, and UC Multicampus-National Lab Collaborative Research and Training Grant #LFR-17-449059.
Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes.
Vloet, Rianka P M; Vogels, Chantal B F; Koenraadt, Constantianus J M; Pijlman, Gorben P; Eiden, Martin; Gonzales, Jose L; van Keulen, Lucien J M; Wichgers Schreur, Paul J; Kortekaas, Jeroen
2017-12-01
Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus of the genus Phlebovirus that is highly pathogenic to ruminants and humans. The disease is currently confined to Africa and the Arabian Peninsula, but globalization and climate change may facilitate introductions of the virus into currently unaffected areas via infected animals or mosquitoes. The consequences of such an introduction will depend on environmental factors, the availability of susceptible ruminants and the capacity of local mosquitoes to transmit the virus. We have previously demonstrated that lambs native to the Netherlands are highly susceptible to RVFV and we here report the vector competence of Culex (Cx.) pipiens, the most abundant and widespread mosquito species in the country. Vector competence was first determined after artificial blood feeding of laboratory-reared mosquitoes using the attenuated Clone 13 strain. Subsequently, experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs were performed. Finally, the transmission of RVFV from viremic lambs to mosquitoes was studied. Artificial feeding experiments using Clone 13 demonstrated that indigenous, laboratory-reared Cx. pipiens mosquitoes are susceptible to RVFV and that the virus can be transmitted via their saliva. Experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs confirmed the vector competence of Cx. pipiens mosquitoes from the Netherlands. To subsequently investigate transmission of the virus under more natural conditions, mosquitoes were allowed to feed on RVFV-infected lambs during the viremic period. We found that RVFV is efficiently transmitted from lambs to mosquitoes, although transmission was restricted to peak viremia. Interestingly, in the mosquito-exposed skin samples, replication of RVFV was detected in previously unrecognized target cells. We here report the vector competence of Cx. pipiens mosquitoes from the Netherlands for RVFV. Both laboratory-reared mosquitoes and well as those hatched from field-collected eggs were found to be competent vectors. Moreover, RVFV was transmitted efficiently from indigenous lambs to mosquitoes, although the duration of host infectivity was found to be shorter than previously assumed. Interestingly, analysis of mosquito-exposed skin samples revealed previously unidentified target cells of the virus. Our findings underscore the value of including natural target species in vector competence experiments.
Variations in rupture process with recurrence interval in a repeated small earthquake
Vidale, J.E.; Ellsworth, W.L.; Cole, A.; Marone, Chris
1994-01-01
In theory and in laboratory experiments, friction on sliding surfaces such as rock, glass and metal increases with time since the previous episode of slip. This time dependence is a central pillar of the friction laws widely used to model earthquake phenomena. On natural faults, other properties, such as rupture velocity, porosity and fluid pressure, may also vary with the recurrence interval. Eighteen repetitions of the same small earthquake, separated by intervals ranging from a few days to several years, allow us to test these laboratory predictions in situ. The events with the longest time since the previous earthquake tend to have about 15% larger seismic moment than those with the shortest intervals, although this trend is weak. In addition, the rupture durations of the events with the longest recurrence intervals are more than a factor of two shorter than for the events with the shortest intervals. Both decreased duration and increased friction are consistent with progressive fault healing during the time of stationary contact.In theory and in laboratory experiments, friction on sliding surfaces such as rock, glass and metal increases with time since the previous episode of slip. This time dependence is a central pillar of the friction laws widely used to model earthquake phenomena. On natural faults, other properties, such as rupture velocity, porosity and fluid pressure, may also vary with the recurrence interval. Eighteen repetitions of the same small earthquake, separated by intervals ranging from a few days to several years, allow us to test these laboratory predictions in situ. The events with the longest time since the previous earthquake tend to have about 15% larger seismic moment than those with the shortest intervals, although this trend is weak. In addition, the rupture durations of the events with the longest recurrence intervals are more than a factor of two shorter than for the events with the shortest intervals. Both decreased duration and increased friction are consistent with progressive fault healing during the time of stationary contact.
Schulz, Daniel; Grumann, Dorothee; Trübe, Patricia; Pritchett-Corning, Kathleen; Johnson, Sarah; Reppschläger, Kevin; Gumz, Janine; Sundaramoorthy, Nandakumar; Michalik, Stephan; Berg, Sabine; van den Brandt, Jens; Fister, Richard; Monecke, Stefan; Uy, Benedict; Schmidt, Frank; Bröker, Barbara M; Wiles, Siouxsie; Holtfreter, Silva
2017-01-01
Whether mice are an appropriate model for S. aureus infection and vaccination studies is a matter of debate, because they are not considered as natural hosts of S. aureus . We previously identified a mouse-adapted S. aureus strain, which caused infections in laboratory mice. This raised the question whether laboratory mice are commonly colonized with S. aureus and whether this might impact on infection experiments. Publicly available health reports from commercial vendors revealed that S. aureus colonization is rather frequent, with rates as high as 21% among specific-pathogen-free mice. In animal facilities, S. aureus was readily transmitted from parents to offspring, which became persistently colonized. Among 99 murine S. aureus isolates from Charles River Laboratories half belonged to the lineage CC88 (54.5%), followed by CC15, CC5, CC188, and CC8. A comparison of human and murine S. aureus isolates revealed features of host adaptation. In detail, murine strains lacked hlb -converting phages and superantigen-encoding mobile genetic elements, and were frequently ampicillin-sensitive. Moreover, murine CC88 isolates coagulated mouse plasma faster than human CC88 isolates. Importantly, S. aureus colonization clearly primed the murine immune system, inducing a systemic IgG response specific for numerous S. aureus proteins, including several vaccine candidates. Phospholipase C emerged as a promising test antigen for monitoring S. aureus colonization in laboratory mice. In conclusion, laboratory mice are natural hosts of S. aureus and therefore, could provide better infection models than previously assumed. Pre-exposure to the bacteria is a possible confounder in S. aureus infection and vaccination studies and should be monitored.
Schulz, Daniel; Grumann, Dorothee; Trübe, Patricia; Pritchett-Corning, Kathleen; Johnson, Sarah; Reppschläger, Kevin; Gumz, Janine; Sundaramoorthy, Nandakumar; Michalik, Stephan; Berg, Sabine; van den Brandt, Jens; Fister, Richard; Monecke, Stefan; Uy, Benedict; Schmidt, Frank; Bröker, Barbara M.; Wiles, Siouxsie; Holtfreter, Silva
2017-01-01
Whether mice are an appropriate model for S. aureus infection and vaccination studies is a matter of debate, because they are not considered as natural hosts of S. aureus. We previously identified a mouse-adapted S. aureus strain, which caused infections in laboratory mice. This raised the question whether laboratory mice are commonly colonized with S. aureus and whether this might impact on infection experiments. Publicly available health reports from commercial vendors revealed that S. aureus colonization is rather frequent, with rates as high as 21% among specific-pathogen-free mice. In animal facilities, S. aureus was readily transmitted from parents to offspring, which became persistently colonized. Among 99 murine S. aureus isolates from Charles River Laboratories half belonged to the lineage CC88 (54.5%), followed by CC15, CC5, CC188, and CC8. A comparison of human and murine S. aureus isolates revealed features of host adaptation. In detail, murine strains lacked hlb-converting phages and superantigen-encoding mobile genetic elements, and were frequently ampicillin-sensitive. Moreover, murine CC88 isolates coagulated mouse plasma faster than human CC88 isolates. Importantly, S. aureus colonization clearly primed the murine immune system, inducing a systemic IgG response specific for numerous S. aureus proteins, including several vaccine candidates. Phospholipase C emerged as a promising test antigen for monitoring S. aureus colonization in laboratory mice. In conclusion, laboratory mice are natural hosts of S. aureus and therefore, could provide better infection models than previously assumed. Pre-exposure to the bacteria is a possible confounder in S. aureus infection and vaccination studies and should be monitored. PMID:28512627
Parisi, Victoria A.; Brubaker, Gaylen R.; Zenker, Matthew J.; Prince, Roger C.; Gieg, Lisa M.; Da Silva, Marcio L.B.; Alvarez, Pedro J. J.; Suflita, Joseph M.
2009-01-01
Summary Field metabolomics and laboratory assays were used to assess the in situ anaerobic attenuation of hydrocarbons in a contaminated aquifer underlying a former refinery. Benzene, ethylbenzene, 2‐methylnaphthalene, 1,2,4‐ and 1,3,5‐trimethylbenzene were targeted as contaminants of greatest regulatory concern (COC) whose intrinsic remediation has been previously reported. Metabolite profiles associated with anaerobic hydrocarbon decay revealed the microbial utilization of alkylbenzenes, including the trimethylbenzene COC, PAHs and several n‐alkanes in the contaminated portions of the aquifer. Anaerobic biodegradation experiments designed to mimic in situ conditions showed no loss of exogenously amended COC; however, a substantive rate of endogenous electron acceptor reduction was measured (55 ± 8 µM SO4 day−1). An assessment of hydrocarbon loss in laboratory experiments relative to a conserved internal marker revealed that non‐COC hydrocarbons were being metabolized. Purge and trap analysis of laboratory assays showed a substantial loss of toluene, m‐ and o‐xylene, as well as several alkanes (C6–C12). Multiple lines of evidence suggest that benzene is persistent under the prevailing site anaerobic conditions. We could find no in situ benzene intermediates (phenol or benzoate), the parent molecule proved recalcitrant in laboratory assays and low copy numbers of Desulfobacterium were found, a genus previously implicated in anaerobic benzene biodegradation. This study also showed that there was a reasonable correlation between field and laboratory findings, although with notable exception. Thus, while the intrinsic anaerobic bioremediation was clearly evident at the site, non‐COC hydrocarbons were preferentially metabolized, even though there was ample literature precedence for the biodegradation of the target molecules. PMID:21261914
An experimental study of geyser-like flows induced by a pressurized air pocket
NASA Astrophysics Data System (ADS)
Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.
2015-12-01
Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.
Cost analysis of life sciences experiments and subsystems. [to be carried in the Spacelab
NASA Technical Reports Server (NTRS)
Yakut, M. M.
1975-01-01
Cost estimates for experiments and subsystems flown in the Spacelab were established. Ten experiments were cost analyzed. Estimated cost varied from $650,000 for the hardware development of the SPE water electrolysis experiment to $78,500,000 for the development and operation of a representative life sciences laboratory program. The cost of subsystems for thermal, atmospheric and trace contaminants control of the Spacelab internal atmosphere was also estimated. Subsystem cost estimates were based on the utilization of existing components developed in previous space programs whenever necessary.
Miniature whirlwinds produced in the laboratory by high-voltage electrical discharges.
Ryan, R T; Vonnegut, B
1970-06-12
Laboratory experiments showed that under certain conditions of vorticity the electrical heatinig produced by a high-voltage discharge at atmospheric pressure can cause the formation of a miniature tornado-like vortex. Once it forms, this vortex stabilizes the electrical discharge along its axis and changes its character from that of a spark to high-pressure variety of a glow discharge. Electrical and dynamic parameters were measured. By relating observations and measurements made in these experiments to previous work and to analogous situations in nature, it is concluded that the heating produced by electrical discharges in a large storm may play a significant role in forming and maintaining natural tornadoes.
Mineback Stimulation Research Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.
The objective of the Mineback Stimulation Research Experiments is to improve hydraulic fracture stimulation technology by providing an in situ laboratory where basic processes and mechanisms that control and influence fracture propagation can be observed, measured and understood. While previous tests have been instrumental in providing an understanding of the mechanisms controlling fracture height, current experiments are focused on fluid flow through the created fracture and the associated pressure drops and crack widths. Work performed, accomplishments and future plans are presented. 7 refs., 2 figs.
Leaky gut and mycotoxins: Aflatoxin B1 does not increase gut permeability in broiler chickens
USDA-ARS?s Scientific Manuscript database
Previous studies conducted in our laboratory have demonstrated that intestinal barrier function can be adversely affected by diet ingredients or feed restriction, resulting in increased intestinal inflammation-associated permeability. Two experiments were conducted in broilers to evaluate the effect...
NASA Astrophysics Data System (ADS)
Calantoni, J.; Landry, B. J.
2010-12-01
The dynamics of sand ripples are vital to understanding numerous coastal processes such as sediment transport, wave attenuation, boundary layer development, and seafloor acoustic properties. Though significant laboratory research has been conducted to elucidate oscillatory flow morphodynamics under various constant and transient forcing conditions, the majority of the previous experiments were conducted only for beds with unimodal size distributions of sediment. Recent oscillatory flow experiments as well as past laboratory observations in uniform flows suggest that the presence of heterogeneous size sand compositions may significantly impact ripple morphology, resulting in a variety of observable effects (e.g., sediment sorting, bed armoring, and altered transport rates). Experimental work was conducted in a small oscillatory flow tunnel at the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center. Three different monochromatic oscillatory forcings having velocity asymmetry were used to study sand ripple dynamics over five bimodal and two unimodal sediment beds. The seven different mixtures were composed using two unimodal sands of different colors (blue/white) and median grain diameters (d=0.31 mm / d=0.65 mm) combined into various mixtures by mass (i.e., 0/100; 10/90; 25/75; 50/50; 75/25; 90/10; and 100/0 which denotes mass percentage of blue/white sand, respectively, within each mixture). High-definition video of the sediment bed profile was acquired in conjunction with sediment trap measurements to resolve differences in ripple geometries, migration and evolution rates due to the different sediment mixtures and flow conditions. Observational findings clearly illustrate sediment stratification within ripple crests and the depth of the active mixing layer in addition to supporting sediment sorting in previous research on symmetric oscillatory flows in which the larger grains collect on top of ripple crests and smaller grains in the troughs. Preliminary quantitative results illuminate variations in equilibrium ripple geometry, ripple migration rates, and transition time scales between equilibrium states, all as functions of the sediment size mixture and flow forcing.
An investigative, cooperative learning approach to the general microbiology laboratory.
Seifert, Kyle; Fenster, Amy; Dilts, Judith A; Temple, Louise
2009-01-01
Investigative- and cooperative-based learning strategies have been used effectively in a variety of classrooms to enhance student learning and engagement. In the General Microbiology laboratory for juniors and seniors at James Madison University, these strategies were combined to make a semester-long, investigative, cooperative learning experience involving culture and identification of microbial isolates that the students obtained from various environments. To assess whether this strategy was successful, students were asked to complete a survey at the beginning and at the end of the semester regarding their comfort level with a variety of topics. For most of the topics queried, the students reported that their comfort had increased significantly during the semester. Furthermore, this group of students thought that the quality of this investigative lab experience was much better than that of any of their previous lab experiences.
An Investigative, Cooperative Learning Approach to the General Microbiology Laboratory
Seifert, Kyle; Fenster, Amy; Dilts, Judith A.
2009-01-01
Investigative- and cooperative-based learning strategies have been used effectively in a variety of classrooms to enhance student learning and engagement. In the General Microbiology laboratory for juniors and seniors at James Madison University, these strategies were combined to make a semester-long, investigative, cooperative learning experience involving culture and identification of microbial isolates that the students obtained from various environments. To assess whether this strategy was successful, students were asked to complete a survey at the beginning and at the end of the semester regarding their comfort level with a variety of topics. For most of the topics queried, the students reported that their comfort had increased significantly during the semester. Furthermore, this group of students thought that the quality of this investigative lab experience was much better than that of any of their previous lab experiences. PMID:19487504
Capraro, Valerio; Cococcioni, Giorgia
2015-01-01
Recent studies suggest that cooperative decision-making in one-shot interactions is a history-dependent dynamic process: promoting intuition versus deliberation typically has a positive effect on cooperation (dynamism) among people living in a cooperative setting and with no previous experience in economic games on cooperation (history dependence). Here, we report on a laboratory experiment exploring how these findings transfer to a non-cooperative setting. We find two major results: (i) promoting intuition versus deliberation has no effect on cooperative behaviour among inexperienced subjects living in a non-cooperative setting; (ii) experienced subjects cooperate more than inexperienced subjects, but only under time pressure. These results suggest that cooperation is a learning process, rather than an instinctive impulse or a self-controlled choice, and that experience operates primarily via the channel of intuition. Our findings shed further light on the cognitive basis of human cooperative decision-making and provide further support for the recently proposed social heuristics hypothesis. PMID:26156762
Estimating the outcome of a pregnancy test: women's judgements in foresight and hindsight.
Pennington, D C; Rutter, D R; McKenna, K; Morley, I E
1980-11-01
Previous research on judgement under uncertainty has suggested that, when we know the outcome of some event, we perceive that outcome as more likely than when we do not have outcome knowledge. That is, in comparison with judgements made in foresight, judgements made in hindsight are biased in the direction of the outcome the judge believes to have happened. While the effect appears to be robust in the laboratory, it has very seldom been tested in real life. This experiment therefore went outside the laboratory, and examined women's estimates of the outcome of a pregnacy test. It was predicted that those who knew the result of their test (hindsight) would perceive that outcome as more likely than those asked to make the estimate before they knew the result (foresight). The prediction was supported only for women whose result was positive and, furthermore, the positive group made consistently higher estimates than the negative group, both in hindsight and foresight. The findings were therefore less marked and more complex than in previous laboratory research, and support the argument that experiments and materials must be constructed with salience for the subjects. The findings are interpreted in the light ot Tversky & Kahneman's (1974) work on heuristic rules of thinking.
CHEMICAL DESTRUCTION OF MTBE USING FENTON'S REAGENT: EFFECT OF FERROUS IRON/HYDROGEN PEROXIDE RATIO
In previous laboratory experiments Fenton's Reagent (FR) was successfully used as the source of hydroxyl radicals (OH*) for chemical treatment of low concentrations of methyl tert-butyl ether (MTBE) in water. Although under certain conditions MTBE degradation levels as high as 99...
Previous studies from this laboratory have demonstrated significant deficits in cardiovascular function in rats exposed to the pesticide chlordimeform (CDM) when body core temperature (Tco) was maintained at 37oC. o investigate the role of Tco on CDM toxicity, similar experiments...
NASA Astrophysics Data System (ADS)
Chirskaia, Natalia; Novikov, Lev; Voronina, Ekaterina
2016-07-01
Atomic oxygen (AO) of the upper atmosphere is one of the most important space factors that can cause degradation of spacecraft surface. In our previous mathematical model the Monte Carlo method and the "large particles" approximation were used for simulating processes of polymer etching under the influence of AO [1]. The interaction of enlarged AO particles with the polymer was described in terms of probabilities of reactions such as etching of polymer and specular and diffuse scattering of the AO particles on polymer. The effects of atomic oxygen on protected polymers and microfiller containing composites were simulated. The simulation results were in quite good agreement with the results of laboratory experiments on magnetoplasmadynamic accelerator of the oxygen plasma of SINP MSU [2]. In this paper we present a new model that describes the reactions of AO interactions with polymeric materials in more detail. Reactions of formation and further emission of chemical compounds such as CO, CO _{2}, H _{2}O, etc. cause the modification of the chemical composition of the polymer and change the probabilities of its consequent interaction with the AO. The simulation results are compared with the results of previous simulation and with the results of laboratory experiments. The reasons for the differences between the results of natural experiments on spacecraft, laboratory experiments and simulations are discussed. N. Chirskaya, M. Samokhina, Computer modeling of polymer structures degradation under the atomic oxygen exposure, WDS'12 Proceedings of Contributed Papers: Part III - Physics, Matfyzpress Prague, 2012, pp. 30-35. E. Voronina, L. Novikov, V. Chernik, N. Chirskaya, K. Vernigorov, G. Bondarenko, and A. Gaidar, Mathematical and experimental simulation of impact of atomic oxygen of the earth's upper atmosphere on nanostructures and polymer composites, Inorganic Materials: Applied Research, 2012, vol. 3, no. 2, pp. 95-101.
Bifurcation of rotating liquid drops: Results from USML-1 experiments in space
NASA Technical Reports Server (NTRS)
Wang, Taylor G.; Anilkumar, A. V.; Lee, C. P.; Lin, K. C.
1994-01-01
Experiments on rotational bifurcation of liquid drops, in which the drops were levitated and spun using acoustic fields in a low-gravity environment, were conducted during the first United States Microgravity Laboratory (USML-1) Space Shuttle flight. The experiments have successfully resolved the discrepancies existing between the previous experimental results and the theoretical predictions. In the case of a spherical drop, for which theory exists, the results agree well with the predictions. In the case of flattened drops, the experiments have extablished a family of curves, with the spherical drop as the limiting case.
Experience of maintaining laboratory educational website's sustainability
Dimenstein, Izak B.
2016-01-01
Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular “niche of knowledge.” This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining “Grossing Technology in Surgical Pathology” (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal. PMID:27688928
Experience of maintaining laboratory educational website's sustainability.
Dimenstein, Izak B
2016-01-01
Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular "niche of knowledge." This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining "Grossing Technology in Surgical Pathology" (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal.
NASA Astrophysics Data System (ADS)
Wang, Kaiwei; Wang, Xiaoping
2017-08-01
In order to enhance the practical education and hands-on experience of optoelectronics and eliminate the overlapping contents that previously existed in the experiments section adhering to several different courses, a lab course of "Applied Optoelectronics Laboratory" has been established in the College of Optical Science and Engineering, Zhejiang University. The course consists of two sections, i.e., basic experiments and project design. In section 1, basic experiments provide hands-on experience with most of the fundamental concept taught in the corresponding courses. These basic experiments including the study of common light sources such as He-Ne laser, semiconductor laser and solid laser and LED; the testing and analysis of optical detectors based on effects of photovoltaic effect, photoconduction effect, photo emissive effect and array detectors. In section 2, the course encourages students to build a team and establish a stand-alone optical system to realize specific function by taking advantage of the basic knowledge learned from section 1. Through these measures, students acquired both basic knowledge and the practical application skills. Moreover, interest in science has been developed among students.
Case-study experiments in the introductory physics curriculum
NASA Astrophysics Data System (ADS)
Arion, D. N.; Crosby, K. M.; Murphy, E. A.
2000-09-01
Carthage College added inquiry-based case study activities to the traditional introductory physics laboratory. Student teams designed, constructed, and executed their own experiments to study real-world phenomena, through which they gained understanding both of physic principles and methods of physics research. Assessment results and student feedback through teacher evaluations indicate that these activities improved student attitudes about physics as well as their ability to solve physics problems relative to previous course offerings that did not include case study.
Previous experiments have shown that viable hatch of winter flounder eggs is reduced when the eggs are buried by as little as one half of one egg diameter (approximately 0.5 mm of sediment). This sensitivity to burial has resulted in seasonal banning of dredging in several north...
Treatment of the Cerro Prieto I brines for use in reinjection. 2. Results of the pilot plant tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtado J, R.; Mercado G, S.; Rocha C, E.
Silica removal experiments have been carried out both in the laboratory and in pilot scale tests. The results obtained to date are presented, with special emphasis on the pilot tests with or without the use of flocculants. Previous studies on brine treatment are described briefly.
Laboratory simulation of energetic flows of magnetospheric planetary plasma
NASA Astrophysics Data System (ADS)
Shaikhislamov, I. F.; Posukh, V. G.; Melekhov, A. V.; Boyarintsev, E. L.; Zakharov, Yu P.; Prokopov, P. A.; Ponomarenko, A. G.
2017-01-01
Dynamic interaction of super-sonic counter-streaming plasmas moving in dipole magnetic dipole is studied in laboratory experiment. First, a quasi-stationary flow is produced by plasma gun which forms a magnetosphere around the magnetic dipole. Second, explosive plasma expanding from inner dipole region outward is launch by laser beams focused at the surface of the dipole cover. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. Probe measurements showed that far from the initially formed magnetosphere laser plasma carries within itself a magnetic field of the same direction but order of magnitude larger in value than the vacuum dipole field at considered distances. Because no compression of magnetic field at the front of laser plasma was observed, the realized interaction is different from previous experiments and theoretical models of laser plasma expansion into uniform magnetized background. It was deduced based on the obtained data that laser plasma while expanding through inner magnetosphere picks up a magnetized shell formed by background plasma and carries it for large distances beyond previously existing magnetosphere.
Simulations of the National Ignition Facility Opacity Sample
NASA Astrophysics Data System (ADS)
Martin, M. E.; London, R. A.; Heeter, R. F.; Dodd, E. S.; Devolder, B. G.; Opachich, Y. P.; Liedahl, D. A.; Perry, T. S.
2017-10-01
A platform to study the opacity of high temperature materials at the National Ignition Facility has been developed. Experiments to study the opacity of materials relevant to inertial confinement fusion and stellar astrophysics are being conducted. The initial NIF experiments are focused on reaching the same plasma conditions (T >150 eV and Ne >= 7 ×1021 cm-3) , for iron, as those achieved in previous experiments at Sandia National Laboratories' (SNL) Z-facility which have shown discrepancies between opacity theory and experiment. We developed a methodology, using 1D HYDRA simulations, to study the effects of tamper thickness on the conditions of iron-magnesium samples. We heat the sample using an x-ray drive from 2D LASNEX hohlraum simulations. We also use this methodology to predict sample uniformity and expansion for comparison with experimental data. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.
Virtual geotechnical laboratory experiments using a simulator
NASA Astrophysics Data System (ADS)
Penumadu, Dayakar; Zhao, Rongda; Frost, David
2000-04-01
The details of a test simulator that provides a realistic environment for performing virtual laboratory experimentals in soil mechanics is presented. A computer program Geo-Sim that can be used to perform virtual experiments, and allow for real-time observations of material response is presented. The results of experiments, for a given set of input parameters, are obtained with the test simulator using well-trained artificial neural-network-based soil models for different soil types and stress paths. Multimedia capabilities are integrated in Geo-Sim, using software that links and controls a laser disc player with a real-time parallel processing ability. During the simulation of a virtual experiment, relevant portions of the video image of a previously recorded test on an actual soil specimen are dispalyed along with the graphical presentation of response from the feedforward ANN model predictions. The pilot simulator developed to date includes all aspects related to performing a triaxial test on cohesionless soil under undrained and drained conditions. The benefits of the test simulator are also presented.
MISSE 1 and 2 Tray Temperature Measurements
NASA Technical Reports Server (NTRS)
Harvey, Gale A.; Kinard, William H.
2006-01-01
The Materials International Space Station Experiment (MISSE 1 & 2) was deployed August 10,2001 and retrieved July 30,2005. This experiment is a co-operative endeavor by NASA-LaRC. NASA-GRC, NASA-MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials. The MISSE 1 & 2 had autonomous temperature data loggers to measure the temperature of each of the four experiment trays. The MISSE tray-temperature data loggers have one external thermistor data channel, and a 12 bit digital converter. The MISSE experiment trays were exposed to the ISS space environment for nearly four times the nominal design lifetime for this experiment. Nevertheless, all of the data loggers provided useful temperature measurements of MISSE. The temperature measurement system has been discussed in a previous paper. This paper presents temperature measurements of MISSE payload experiment carriers (PECs) 1 and 2 experiment trays.
Experiential learning in control systems laboratories and engineering project management
NASA Astrophysics Data System (ADS)
Reck, Rebecca Marie
Experiential learning is a process by which a student creates knowledge through the insights gained from an experience. Kolb's model of experiential learning is a cycle of four modes: (1) concrete experience, (2) reflective observation, (3) abstract conceptualization, and (4) active experimentation. His model is used in each of the three studies presented in this dissertation. Laboratories are a popular way to apply the experiential learning modes in STEM courses. Laboratory kits allow students to take home laboratory equipment to complete experiments on their own time. Although students like laboratory kits, no previous studies compared student learning outcomes on assignments using laboratory kits with existing laboratory equipment. In this study, we examined the similarities and differences between the experiences of students who used a portable laboratory kit and students who used the traditional equipment. During the 2014- 2015 academic year, we conducted a quasi-experiment to compare students' achievement of learning outcomes and their experiences in the instructional laboratory for an introductory control systems course. Half of the laboratory sections in each semester used the existing equipment, while the other sections used a new kit. We collected both quantitative data and qualitative data. We did not identify any major differences in the student experience based on the equipment they used. Course objectives, like research objectives and product requirements, help provide clarity and direction for faculty and students. Unfortunately, course and laboratory objectives are not always clearly stated. Without a clear set of objectives, it can be hard to design a learning experience and determine whether students are achieving the intended outcomes of the course or laboratory. In this study, I identified a common set of laboratory objectives, concepts, and components of a laboratory apparatus for undergraduate control systems laboratories. During the summer of 2015, a panel of 40 control systems faculty members, from a variety of institutions, completed a multi-round Delphi survey in order to bring them toward consensus on the common aspects of their laboratories. The following winter, 45 additional faculty members and practitioners from the control systems community completed a follow-up survey to gather feedback on the results of the Delphi survey. During the Delphi study, the panelists identified 15 laboratory objectives, 26 concepts, and 15 components that were common in their laboratories. Then in both the Delphi survey and follow-up survey each participant rated the importance of each of these items. While the average ratings differed slightly between the two groups, the order of each set of items was compared with two different tests and the order was found to be similar. Some of the common and important learning objectives include connecting theory to what is implemented and observed in the laboratory, designing controllers, and modeling and simulating systems. The most common component in both groups was Math-Works software. Some of the common concepts include block diagrams, stability, and PID control. Defining common aspects of undergraduate control systems laboratories enables common development, detailed comparisons, and simplified adaptation of equipment and experiments between campuses and programs. Throughout an undergraduate program in engineering, there are multiple opportunities for hands-on laboratory experiences that are related to course content. However, a similarly immersive experience for project management graduate students is harder to incorporate for all students in a course at once. This study explores an experiential learning opportunity for graduate students in engineering management or project management programs. The project management students enroll in a project management course. Undergraduate students interested in working on a project with a real customer enroll in a different projects course. Two students from the project management course function as project managers and lead a team of undergraduate students in the second course through a project. I studied how closely the project management experience in these courses aligns with engineering project management in industry. In the spring of 2015, I enrolled in the project management course at a large Midwestern university. I used analytic autoethnography to compare my experiences in the course with my experiences as a project engineer at a large aerospace company. I found that the experience in the course provided an authentic and comprehensive opportunity to practice most of the skills listed in the Project Management Book of Knowledge (an industry standard) as necessary for project managers. Some components of the course that made it successful: I was the project manager for the whole term, I worked with a real client, and the team defined and delivered the project before the end of the semester.
Laboratory observations of fault strength in response to changes in normal stress
Kilgore, Brian D.; Lozos, Julian; Beeler, Nicholas M.; Oglesby, David
2012-01-01
Changes in fault normal stress can either inhibit or promote rupture propagation, depending on the fault geometry and on how fault shear strength varies in response to the normal stress change. A better understanding of this dependence will lead to improved earthquake simulation techniques, and ultimately, improved earthquake hazard mitigation efforts. We present the results of new laboratory experiments investigating the effects of step changes in fault normal stress on the fault shear strength during sliding, using bare Westerly granite samples, with roughened sliding surfaces, in a double direct shear apparatus. Previous experimental studies examining the shear strength following a step change in the normal stress produce contradictory results: a set of double direct shear experiments indicates that the shear strength of a fault responds immediately, and then is followed by a prolonged slip-dependent response, while a set of shock loading experiments indicates that there is no immediate component, and the response is purely gradual and slip-dependent. In our new, high-resolution experiments, we observe that the acoustic transmissivity and dilatancy of simulated faults in our tests respond immediately to changes in the normal stress, consistent with the interpretations of previous investigations, and verify an immediate increase in the area of contact between the roughened sliding surfaces as normal stress increases. However, the shear strength of the fault does not immediately increase, indicating that the new area of contact between the rough fault surfaces does not appear preloaded with any shear resistance or strength. Additional slip is required for the fault to achieve a new shear strength appropriate for its new loading conditions, consistent with previous observations made during shock loading.
Seals, Ryan; Gustowski, Sharon M; Kominski, Carol; Li, Feiming
2016-11-01
Instructional videos for osteopathic manipulative treatment (OMT) are a potentially valuable resource for novice learners. To evaluate student experiences and the effectiveness of instructional videos in lieu of live faculty demonstration in a second-year osteopathic manipulative medicine course. Faculty created and produced written instructions and videos for selected Still and facilitated positional release techniques. These materials incorporated curricular design principles and psychomotor skills development strategies. During a second-year OMT skills laboratory session, students used the videos as the primary source for technique demonstration and instruction. Table trainers monitored and assisted students per their request or if errors were observed. Students completed surveys regarding their previous experiences in the OMT skills laboratory sessions (presession survey) and the video-based instructional one (postsession survey). One month after the survey, students were also asked to complete a postexamination survey. Student scores on the skills competency examination were compared with scores from the previous year. Of the 230 students, 162 (70%), 135 (59%), and 86 (37%) responded to the presession, postsession, and postexamination surveys, respectively. The majority of students indicated that the OMT videos helped them feel more prepared (98%) and more confident for their examination (78%), were a valuable addition to learning (97%), and would help increase confidence in using osteopathic manipulative medicine on patients (84%). Two-thirds of students indicated that the videos were superior to faculty demonstration from the stage. Compared with students from the previous year, no statistically significant improvement was noted on the total clinical competency examination scores. The faculty-created videos for teaching OMT techniques did not improve scores on the clinical competency examination but had subjective benefits as part of the OMT laboratory sessions. Instructional videos can serve as an alternative to live demonstration to allow more time in the laboratory for assessment and feedback.
Delivering a lab experience to students in remote road-less locations in Alaska
NASA Astrophysics Data System (ADS)
Spencer, Vanessa; Solie, Daniel
2010-02-01
Bush Physics is a pilot physics course offered by the University of Alaska, Fairbanks. Taught both as a distance delivery course for rural students and as a traditional course to students in Fairbanks, it is designed to prepare rural (predominantly Alaska Native) students for success in STEM programs. While the lecture portion is successfully distance-delivered using teleconference, delivering the laboratory portion effectively has been more challenging. Bush Physics has been taught twice previously to a total of 24 students who otherwise would not have had access to physics instruction. Methods utilized to help distance education students complete the laboratory credit include mailing equipment kits, emailing pictures and video descriptions, travel to certain villages to do experiments during weekends and utilizing on-site mentors. Past results and feedback have improved the laboratory section for spring 2010. We plan to use testing and student surveys to begin to quantify improvement in student mathematical ability and reasoning. )
NASA Technical Reports Server (NTRS)
Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.
1986-01-01
Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.
Vandervoort, Kurt; Brelles-Mariño, Graciela
2013-01-01
NUE funded work at California State Polytechnic University involved development and implementation of nanotechnology modules for physics courses spanning all levels of the undergraduate curriculum, from freshman service courses to senior level laboratories and independent research projects. These modules demonstrate the application of fundamental physics at the nanoscale that complement macroscopic investigations. The introductory level and some of the advanced level modules have been described previously in journal papers and will be outlined briefly here. The main focus of this article, however, is to describe some newer work involving nanoscale experiments that have been developed for senior level laboratories and independent research. These experiments involve applications as diverse as tunneling diodes, gas discharge plasmas for biofilm inactivation, and quantized conductance in gold nanowires. PMID:24163716
Vandervoort, Kurt; Brelles-Mariño, Graciela
2013-06-01
NUE funded work at California State Polytechnic University involved development and implementation of nanotechnology modules for physics courses spanning all levels of the undergraduate curriculum, from freshman service courses to senior level laboratories and independent research projects. These modules demonstrate the application of fundamental physics at the nanoscale that complement macroscopic investigations. The introductory level and some of the advanced level modules have been described previously in journal papers and will be outlined briefly here. The main focus of this article, however, is to describe some newer work involving nanoscale experiments that have been developed for senior level laboratories and independent research. These experiments involve applications as diverse as tunneling diodes, gas discharge plasmas for biofilm inactivation, and quantized conductance in gold nanowires.
Phase Transitions in Aluminum Under Shockless Compression at the Z Machine
NASA Astrophysics Data System (ADS)
Davis, Jean-Paul; Brown, Justin; Shulenburger, Luke; Knudson, Marcus
2017-06-01
Aluminum 6061 alloy has been used extensively as an electrode material in shockless ramp-wave experiments at the Z Machine. Previous theoretical work suggests that the principal quasi-isentrope in aluminum should pass through two phase transitions at multi-megabar pressures, first from the ambient fcc phase to hcp at around 200 GPa, then to bcc at around 320 GPa. Previous static measurements in a diamond-anvil cell have detected the hcp phase above 200 GPa along the room-temperature isentherm. Recent laser-based dynamic compression experiments have observed both the hcp and bcc phases using X-ray diffraction. Here we present high-accuracy velocity waveform data taken on pure and alloy aluminum materials at the Z Machine under shockless compression with 200-ns rise-time to 400 GPa using copper electrodes and lithium-fluoride windows. These are compared to recent EOS tables developed at Los Alamos National Laboratory, to our own results from diffusion quantum Monte-Carlo calculations, and to multi-phase EOS models with phase-transition kinetics. We find clear evidence of a fast transition around 200 GPa as expected, and a possible suggestion of a slower transition at higher pressure. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE AC04-94AL85000.
Preliminary SAGE Simulations of Volcanic Jets Into a Stratified Atmosphere
NASA Astrophysics Data System (ADS)
Peterson, A. H.; Wohletz, K. H.; Ogden, D. E.; Gisler, G. R.; Glatzmaier, G. A.
2007-12-01
The SAGE (SAIC Adaptive Grid Eulerian) code employs adaptive mesh refinement in solving Eulerian equations of complex fluid flow desirable for simulation of volcanic eruptions. The goal of modeling volcanic eruptions is to better develop a code's predictive capabilities in order to understand the dynamics that govern the overall behavior of real eruption columns. To achieve this goal, we focus on the dynamics of underexpended jets, one of the fundamental physical processes important to explosive eruptions. Previous simulations of laboratory jets modeled in cylindrical coordinates were benchmarked with simulations in CFDLib (Los Alamos National Laboratory), which solves the full Navier-Stokes equations (includes viscous stress tensor), and showed close agreement, indicating that adaptive mesh refinement used in SAGE may offset the need for explicit calculation of viscous dissipation.We compare gas density contours of these previous simulations with the same initial conditions in cylindrical and Cartesian geometries to laboratory experiments to determine both the validity of the model and the robustness of the code. The SAGE results in both geometries are within several percent of the experiments for position and density of the incident (intercepting) and reflected shocks, slip lines, shear layers, and Mach disk. To expand our study into a volcanic regime, we simulate large-scale jets in a stratified atmosphere to establish the code's ability to model a sustained jet into a stable atmosphere.
Capraro, Valerio; Cococcioni, Giorgia
2015-07-22
Recent studies suggest that cooperative decision-making in one-shot interactions is a history-dependent dynamic process: promoting intuition versus deliberation typically has a positive effect on cooperation (dynamism) among people living in a cooperative setting and with no previous experience in economic games on cooperation (history dependence). Here, we report on a laboratory experiment exploring how these findings transfer to a non-cooperative setting. We find two major results: (i) promoting intuition versus deliberation has no effect on cooperative behaviour among inexperienced subjects living in a non-cooperative setting; (ii) experienced subjects cooperate more than inexperienced subjects, but only under time pressure. These results suggest that cooperation is a learning process, rather than an instinctive impulse or a self-controlled choice, and that experience operates primarily via the channel of intuition. Our findings shed further light on the cognitive basis of human cooperative decision-making and provide further support for the recently proposed social heuristics hypothesis. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Estimation and uncertainty analysis of dose response in an inter-laboratory experiment
NASA Astrophysics Data System (ADS)
Toman, Blaza; Rösslein, Matthias; Elliott, John T.; Petersen, Elijah J.
2016-02-01
An inter-laboratory experiment for the evaluation of toxic effects of NH2-polystyrene nanoparticles on living human cancer cells was performed with five participating laboratories. Previously published results from nanocytoxicity assays are often contradictory, mostly due to challenges related to producing a reliable cytotoxicity assay protocol for use with nanomaterials. Specific challenges include reproducibility preparing nanoparticle dispersions, biological variability from testing living cell lines, and the potential for nano-related interference effects. In this experiment, such challenges were addressed by developing a detailed experimental protocol and using a specially designed 96-well plate layout which incorporated a range of control measurements to assess multiple factors such as nanomaterial interference, pipetting accuracy, cell seeding density, and instrument performance. Detailed data analysis of these control measurements showed that good control of the experiments was attained by all participants in most cases. The main measurement objective of the study was the estimation of a dose response relationship between concentration of the nanoparticles and metabolic activity of the living cells, under several experimental conditions. The dose curve estimation was achieved by imbedding a three parameter logistic curve in a three level Bayesian hierarchical model, accounting for uncertainty due to all known experimental conditions as well as between laboratory variability in a top-down manner. Computation was performed using Markov Chain Monte Carlo methods. The fit of the model was evaluated using Bayesian posterior predictive probabilities and found to be satisfactory.
Fleuriet, A
1981-02-01
It has been shown previously that a polymorphism for two alleles of the ref(2)P locus is a regular feature of French natural populations of Drosophila melanogaster and that this is maintained in laboratory populations raised in cages. In this paper, an experimental population and egg-collection experiments are reported. Differential survival of the three genotypes would be the main factor leading to the equilibrium frequencies, working only in drastic conditions of larval competition.
Guzel, Omer; Guner, Ebru Ilhan
2009-03-01
Medical laboratories are the key partners in patient safety. Laboratory results influence 70% of medical diagnoses. Quality of laboratory service is the major factor which directly affects the quality of health care. The clinical laboratory as a whole has to provide the best patient care promoting excellence. International Standard ISO 15189, based upon ISO 17025 and ISO 9001 standards, provides requirements for competence and quality of medical laboratories. Accredited medical laboratories enhance credibility and competency of their testing services. Our group of laboratories, one of the leading institutions in the area, had previous experience with ISO 9001 and ISO 17025 Accreditation at non-medical sections. We started to prepared for ISO 15189 Accreditation at the beginning of 2006 and were certified in March, 2007. We spent more than a year to prepare for accreditation. Accreditation scopes of our laboratory were as follows: clinical chemistry, hematology, immunology, allergology, microbiology, parasitology, molecular biology of infection serology and transfusion medicine. The total number of accredited tests is 531. We participate in five different PT programs. Inter Laboratory Comparison (ILC) protocols are performed with reputable laboratories. 82 different PT Program modules, 277 cycles per year for 451 tests and 72 ILC program organizations for remaining tests have been performed. Our laboratory also organizes a PT program for flow cytometry. 22 laboratories participate in this program, 2 cycles per year. Our laboratory has had its own custom made WEB based LIS system since 2001. We serve more than 500 customers on a real time basis. Our quality management system is also documented and processed electronically, Document Management System (DMS), via our intranet. Preparatory phase for accreditation, data management, external quality control programs, personnel related issues before, during and after accreditation process are presented. Every laboratory has to concentrate on patient safety issues related to laboratory testing and should perform quality improvement projects.
Does juvenile competition explain displacement of a native crayfish by an introduced crayfish?
Larson, E.R.; Magoulick, D.D.
2009-01-01
The coldwater crayfish Orconectes eupunctus is endemic to the Spring and Eleven Point Rivers of Arkansas and Missouri, and appears to have been displaced from a portion of its range by the recently introduced ringed crayfish Orconectes neglectus. We examined competition among juveniles as a potential mechanism for this crayfish species displacement through laboratory and field experiments. Orconectes eupunctus juveniles survived and grew in stream cages in their former range, implicating biotic interactions rather than habitat degradation in the displacement. Laboratory experiments revealed O. neglectus juveniles were dominant in the presence of limited food, whereas size rather than species determined occupancy of limited shelter. In a field competition experiment using stream cages, O. neglectus juveniles did not inhibit growth or reduce survival of O. eupunctus juveniles. Consequently, laboratory evidence of O. neglectus dominance did not correspond with competition under field conditions. Combined with previous studies examining the effects of O. neglectus on O. eupunctus, these results suggest that competition may not be a factor in this crayfish species displacement. Alternate mechanisms for the apparent displacement of O. eupunctus by O. neglectus, such as differential predation or reproductive interference, should be investigated. ?? 2008 Springer Science+Business Media B.V.
Optimization of the tungsten oxide technique for measurement of atmospheric ammonia
NASA Technical Reports Server (NTRS)
Brown, Kenneth G.
1987-01-01
Hollow tubes coated with tungstic acid have been shown to be of value in the determination of ammonia and nitric acid in ambient air. Practical application of this technique was demonstrated utilizing an automated sampling system for in-flight collection and analysis of atmospheric samples. Due to time constraints these previous measurements were performed on tubes that had not been well characterized in the laboratory. As a result the experimental precision could not be accurately estimated. Since the technique was being compared to other techniques for measuring these compounds, it became necessary to perform laboratory tests which would establish the reliability of the technique. This report is a summary of these laboratory experiments as they are applied to the determination of ambient ammonia concentration.
NASA Technical Reports Server (NTRS)
Bartkus, Tadas; Tsao, Jen-Ching; Struk, Peter
2017-01-01
This paper builds on previous work that compares numerical simulations of mixed-phase icing clouds with experimental data. The model couples the thermal interaction between ice particles and water droplets of the icing cloud with the flowing air of an icing wind tunnel for simulation of NASA Glenn Research Centers (GRC) Propulsion Systems Laboratory (PSL). Measurements were taken during the Fundamentals of Ice Crystal Icing Physics Tests at the PSL tunnel in March 2016. The tests simulated ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines.
Reactions of PO(x)Cl(y)-ions with O(2)(a1-delta-g), H(2)O, and Cl(2) at 298 K
2008-03-10
branching ratio values calculated in this way for the 02(X) reaction differ slightly from the previous SIFT measurement [17]. However, the difference is...been measured in a selected ion flow tube (SIFT) at 298 K. A mixture of 02(a’Ag) in 02 has been produced using a recently designed chemical singlet...oxygen generator (sparger) with an emission detection scheme adopted previously in our laboratory. The experiments continue a series of investigations
Gypsum-wallboard formaldehyde-sorption model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silberstein, S.
1989-11-01
Gypsum wallboard was shown to absorb formaldehyde in a prototype house and in a measuring chamber, as reported previously by researchers at Oak Ridge National Laboratory (ORNL). Also as reported previously, formaldehyde concentrations attained equilibrium in two phases in response to a change in the air exchange rate or to the removal of the formaldehyde source. A rapid initial phase was followed by a slow phase lasting several days. A formaldehyde sorption model that accounts for the biphasic concentration pattern is presented here. Experiments for testing the predictability of the model are proposed.
Centralization of a regional clinical microbiology service: The Calgary experience
Church, Deirdre L; Hall, Paula
1999-01-01
Diagnostic laboratory services in Alberta have been dramatically restructured over the past five years. In 1994, Alberta Health embarked on an aggressive laboratory restructuring that cut back approximately 30% of the overall monies previously paid to the laboratory service sector in Calgary. A unique service delivery model consolidated all institutional and community-based diagnostic testing in a company called Calgary Laboratory Services (CLS) in late 1996. CLS was formed by a public/private partnership between the Calgary Regional Health Care Authority (CRHA) and MDS-Kasper Laboratories. By virtue of its customer service base and scope of testing, CLS provides comprehensive regional laboratory services to the entire populace. Regional microbiology services within CLS have been successfully consolidated over the past three years into a centralized high volume laboratory (HVL). Because the HVL is not located in a hospital, rapid response laboratories (RRLs) are operated at each acute care site. Although the initial principle behind the proposed test menus for the RRLs was that only procedures requiring a clinical turnaround time of more than 2 h stay on-site, many other principles had to be used to develop and implement an efficient and clinically relevant RRL model for microbiology. From these guiding principles, a detailed assessment of the needs of each institution and extensive networking with user groups, the functions of the microbiology RRLs were established and a detailed implementation plan drawn up. The experience at CLS with regards to restructuring a regional microbiology service is described herein. A post-hoc analysis provides the pros and cons of directing and operating a regionalized microbiology service. PMID:22346397
Chow, Tiffany E; Westphal, Andrew J; Rissman, Jesse
2018-04-11
Studies of autobiographical memory retrieval often use photographs to probe participants' memories for past events. Recent neuroimaging work has shown that viewing photographs depicting events from one's own life evokes a characteristic pattern of brain activity across a network of frontal, parietal, and medial temporal lobe regions that can be readily distinguished from brain activity associated with viewing photographs from someone else's life (Rissman, Chow, Reggente, and Wagner, 2016). However, it is unclear whether the neural signatures associated with remembering a personally experienced event are distinct from those associated with recognizing previously encountered photographs of an event. The present experiment used a novel functional magnetic resonance imaging (fMRI) paradigm to investigate putative differences in brain activity patterns associated with these distinct expressions of memory retrieval. Eighteen participants wore necklace-mounted digital cameras to capture events from their everyday lives over the course of three weeks. One week later, participants underwent fMRI scanning, where on each trial they viewed a sequence of photographs depicting either an event from their own life or from another participant's life and judged their memory for this event. Importantly, half of the trials featured photographic sequences that had been shown to participants during a laboratory session administered the previous day. Multi-voxel pattern analyses assessed the sensitivity of two brain networks of interest-as identified by a meta-analysis of prior autobiographical and laboratory-based memory retrieval studies-to the original source of the photographs (own life or other's life) and their experiential history as stimuli (previewed or non-previewed). The classification analyses revealed a striking dissociation: activity patterns within the autobiographical memory network were significantly more diagnostic than those within the laboratory-based network as to whether photographs depicted one's own personal experience (regardless of whether they had been previously seen), whereas activity patterns within the laboratory-based memory network were significantly more diagnostic than those within the autobiographical memory network as to whether photographs had been previewed (regardless of whether they were from the participant's own life). These results, also apparent in whole-brain searchlight classifications, provide evidence for dissociable patterns of activation across two putative memory networks as a function of whether real-world photographs trigger the retrieval of firsthand experiences or secondhand event knowledge. Copyright © 2018 Elsevier Inc. All rights reserved.
Development of Solvent Extraction Approach to Recycle Enriched Molybdenum Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tkac, Peter; Brown, M. Alex; Sen, Sujat
2016-06-01
Argonne National Laboratory, in cooperation with Oak Ridge National Laboratory and NorthStar Medical Technologies, LLC, is developing a recycling process for a solution containing valuable Mo-100 or Mo-98 enriched material. Previously, Argonne had developed a recycle process using a precipitation technique. However, this process is labor intensive and can lead to production of large volumes of highly corrosive waste. This report discusses an alternative process to recover enriched Mo in the form of ammonium heptamolybdate by using solvent extraction. Small-scale experiments determined the optimal conditions for effective extraction of high Mo concentrations. Methods were developed for removal of ammonium chloridemore » from the molybdenum product of the solvent extraction process. In large-scale experiments, very good purification from potassium and other elements was observed with very high recovery yields (~98%).« less
The Age Prospective Memory Paradox: Young Adults May Not Give Their Best outside of the Lab
ERIC Educational Resources Information Center
Aberle, Ingo; Rendell, Peter G.; Rose, Nathan S.; McDaniel, Mark A.; Kliegel, Matthias
2010-01-01
Previous research has identified the age prospective memory paradox of age-related declines in laboratory settings in contrast to age benefits in naturalistic settings. Various factors are assumed to account for this paradox, yet empirical evidence on this issue is scarce. In 2 experiments, the present study examined the effect of task setting in…
On making laboratory report work more meaningful through criterion-based evaluation.
Naeraa, N
1987-05-01
The purpose of this work was to encourage students to base their laboratory report work on guidelines reflecting a quality criterion set, previously derived from the functional role of the various sections in scientific papers. The materials were developed by a trial-and-error approach and comprise learning objectives, a parallel structure of manual and reports, general and specific report guidelines and a new common starting experiment. The principal contents are presented, followed by an account of the author's experience with them. Most of the author's students now follow the guidelines. Their conclusions are affected by difficulties in adjusting expected results with due regard to the specific conditions of the experimental subject or to their own deviations from the experimental or analytical procedures prescribed in the manual. Also, problems in interpreting data unbiased by explicit expectations are evident, although a clear distinction between expected and actual results has been helpful for them in seeing the relationship between experiments and textbook contents more clearly, and thus in understanding the hypothetico-deductive approach.
Hadziioannou, Céline; Larose, Eric; Coutant, Olivier; Roux, Philippe; Campillo, Michel
2009-06-01
Previous studies have shown that small changes can be monitored in a scattering medium by observing phase shifts in the coda. Passive monitoring of weak changes through ambient noise correlation has already been applied to seismology, acoustics, and engineering. Usually, this is done under the assumption that a properly reconstructed Green function (GF), as well as stable background noise sources, is necessary. In order to further develop this monitoring technique, a laboratory experiment was performed in the 2.5 MHz range in a gel with scattering inclusions, comparing an active (pulse-echo) form of monitoring to a passive (correlation) one. Present results show that temperature changes in the medium can be observed even if the GF of the medium is not reconstructed. Moreover, this article establishes that the GF reconstruction in the correlations is not a necessary condition: The only condition to monitoring with correlation (passive experiment) is the relative stability of the background noise structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanian, R.; Mazzoleni, Claudio
2016-08-31
Over the course of this project, we have analyzed data and samples from the CARES and ClearfLo campaigns, as well as conducted or participated in laboratory experiments designed to better understand black carbon mixing state and climate-relevant properties. The laboratory campaigns took place at PNNL and CMU to study various climate-relevant aerosol properties of different sources of soot mixing with secondary organic aerosol precursors. The DMT photoacoustic extinctiometers (PAXs) procured by CMU through this grant were deployed for these experiments, as well as experiments characterizing the optical properties of cookstove soot emissions at Colorado State University (CSU). Results from somemore » of these activities were summarized in the previous progress report. This final report presents the manuscripts that have been published (many in the period since the last progress report), lists presentations at different conferences based on grant-related activities, and presents some results that are likely to be submitted for publication in 2016.« less
NASA Technical Reports Server (NTRS)
Alhorn, D. C.; Polites, M. E.
1994-01-01
Rotating unbalanced-mass (RUM) devices are a new way to scan space-based, balloon-borne, and ground-based gimbaled payloads, like x-ray and gamma-ray telescopes. They can also be used to scan free-flying spacecraft. Circular scans, linear scans, and raster scans can be generated. A pair of RUM devices generates the basic scan motion and an auxiliary control system using torque motors, control moment gyros, or reaction wheels keeps the scan centered on the target and produces some complementary motion for raster scanning. Previous analyses and simulation results show that this approach offers significant power savings compared to scanning only with the auxiliary control system, especially with large payloads and high scan frequencies. However, these claims have never been proven until now. This paper describes a laboratory experiment which tests the concept of scanning a gimbaled payload with RUM devices. A description of the experiment is given and test results that prove the concept are presented. The test results are compared with those from a computer simulation model of the experiment and the differences are discussed.
[Activities of Colorado University
NASA Technical Reports Server (NTRS)
Snow, Theodore P.; Bierbaum, Veronica
2003-01-01
During the report period we completed several studies and embarked on a new set of laboratory experiments. We also hired a new post-doctoral Research Associate, Momir Stepanovic, who has gradually assumed leadership in the laboratory work. The other person involved has been graduate student Brian Eichelberger, who will complete his Ph.D. based on this work by late spring of this year. We have also continued to collaborate with our previous postdoctoral Research Associate, Valery Le Page, through a consulting arrangement. In the following sections we summarize work that has been completed and either in print, in press, or in final stages of preparation for publication; current work being carried out in the laboratory; and plans for the coming year. Work completed in 2002: 1. Modeling the physical and chemical states of PAHs in the diffuse interstellar medium. 2. Hydrogenation and charge states of polycyclic aromatic hydrocarbons in diffuse clouds. 3. Laboratory studies of chemical reactions involving carbon chain anions.
Hemolysis from a nurses' standpoint--survey from four Croatian hospitals.
Dorotić, Adrijana; Antončić, Dragana; Biljak, Vanja Radišić; Nedić, Dara; Beletić, Andjelo
2015-01-01
Hemolysis can occur during sample collection, handling and transport. It is more frequent when the non-laboratory staff performs sampling. The aim of this study was to assess nurses' knowledge on the causes of hemolysis and consequential impact on the laboratory tests results. Additionally, the differences in knowledge, related to work experience, professional degree and previous education about hemolysis were explored. An anonymus survey, containing 11 questions on demographics, causes of hemolysis, its impact on biochemical parameters and nurses' attitude towards additional education in preanalytics, was conducted in four Croatian hospitals. The answers were compared by Chi-squared and Fischer exact test. In total, 562 survey results were collected. Majority of nurses declared familiarity with the term "hemolysis" (99.6%). There were 77% of correct answers regarding questions about the causes of hemolysis, but only 50% when it comes to questions about interference in biochemical tests. The percentage of correct answers about causes was significantly lower (P=0.029) among more experienced nurses, and higher (P=0.027) in those with higher professional degree, while influence of previous education was not significant. Also, higher percentage of correct answers about interferences was encountered in nurses with longer work experience (P=0.039). More than 70% of nurses declared that additional education about preanalytical factors would be beneficial. Croatian nurses are familiar with the definition of hemolysis, but a lack of knowledge about causes and influence on laboratory test results is evident. Nurses are eager to improve their knowledge in this field of preanalytical phase.
Fleuriet, Annie
1981-01-01
It has been shown previously that a polymorphism for two alleles of the ref(2)P locus is a regular feature of French natural populations of Drosophila melanogaster and that this is maintained in laboratory populations raised in cages. In this paper, an experimental population and egg-collection experiments are reported. Differential survival of the three genotypes would be the main factor leading to the equilibrium frequencies, working only in drastic conditions of larval competition. PMID:6791986
View of the Life Sciences Laboratory Equipment (LSLE) Incubator - Lymphocite Proliferation
1984-10-18
S84-43683 (26 Nov 1984) --- This vertically positioned rectangular piece of hardware, scheduled to fly on the science module of Spacelab Life Sciences-1, is important to the immunology investigation on the mission. Called Lymphocyte Proliferation in Weightlessness (Experiment 240), the test was developed by Dr. Augosto Cogoli of the Institute of Biotechnology, Gruppe Weltraum Biologie, in Zurich, Switzerland. It represents a continuation of previous Spacelab experiments by examining the effects of weightlessness on lymphocyte activation. Cultures will be grown in the microgravity incubators on the pictured hardware.
Strategies for the assessment of competence in laboratory animal science courses.
Hansen, Axel Kornerup; Sørensen, Dorte Bratbo
2014-10-01
Evaluation of skills, knowledge and competencies is an essential part of education in laboratory animal science. In Europe, a greater emphasis will be placed on such evaluations going forward, because the European Union will base its education and training framework on learning outcomes rather than on course time and syllabuses, as done previously. The authors present their experiences administering different written, oral and practical examinations for Federation of European Laboratory Animal Science Associations categories B, C and D courses. Examinations can be administered online as well as on campus, if time constraints are provided to compensate for the advantage of being able to use external resources. Overall, students benefit from exposure to multiple types of exams over the course of their education because each type prepares students for different situations.
A study of single and binary ion plasma expansion into laboratory-generated plasma wakes
NASA Technical Reports Server (NTRS)
Wright, Kenneth Herbert, Jr.
1988-01-01
Plasma expansion into the wake of a large rectangular plate immersed in a collisionless, supersonic plasma was investigated in laboratory experiments. The experimental conditions address both single ion and binary ion plasma flows for the case of a body whose size is large in comparison with the Debye length, when the potential difference between the body and the plasma is relatively small. A new plasma source was developed to generate equi-velocity, binary ion plasma flows, which allows access to new parameter space that have previously been unavailable for laboratory studies. Specifically, the new parameters are the ionic mass ratio and the ionic component density ratio. In a series of experiments, a krypton-neon plasma is employed where the ambient density ratio of neon to krypton is varied more than an order of magnitude. The expansion in both the single ion and binary ion plasma cases is limited to early times, i.e., a few ion plasma periods, by the combination of plasma density, plasma drift speed, and vacuum chamber size, which prevented detailed comparison with self-similar theory.
Medium resolution spectra of the shuttle glow in the visible region of the spectrum
NASA Technical Reports Server (NTRS)
Viereck, R. A.; Murad, E.; Pike, C. P.; Mende, S. B.; Swenson, G. R.; Culbertson, F. L.; Springer, B. C.
1992-01-01
Recent spectral measurements of the visible shuttle glow (lambda = 400 - 800 nm) at medium resolution (1 nm) reveal the same featureless continuum with a maximum near 680 nm that was reported previously. This is also in good agreement with recent laboratory experiments that attribute the glow to the emissions of NO2 formed by the recombination of O + NO. The data that are presented were taken from the aft flight deck with a hand-held spectrograph and from the shuttle bay with a low-light-level television camera. Shuttle glow images and spectra are presented and compared with laboratory data and theory.
Dornburg, Courtney C; Stevens, Susan M; Hendrickson, Stacey M L; Davidson, George S
2009-08-01
An experiment was conducted to compare the effectiveness of individual versus group electronic brainstorming to address difficult, real-world challenges. Although industrial reliance on electronic communications has become ubiquitous, empirical and theoretical understanding of the bounds of its effectiveness have been limited. Previous research using short-term laboratory experiments have engaged small groups of students in answering questions irrelevant to an industrial setting. The present experiment extends current findings beyond the laboratory to larger groups of real-world employees addressing organization-relevant challenges during the course of 4 days. Employees and contractors at a national laboratory participated, either in a group setting or individually, in an electronic brainstorm to pose solutions to a real-world problem. The data demonstrate that (for this design) individuals perform at least as well as groups in producing quantity of electronic ideas, regardless of brainstorming duration. However, when judged with respect to quality along three dimensions (originality, feasibility, and effectiveness), the individuals significantly (p < .05) outperformed the group. When quality is used to benchmark success, these data indicate that work-relevant challenges are better solved by aggregating electronic individual responses rather than by electronically convening a group. This research suggests that industrial reliance on electronic problem-solving groups should be tempered, and large nominal groups may be more appropriate corporate problem-solving vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reedlunn, Benjamin
Room D was an in-situ, isothermal, underground experiment conducted at the Waste Isolation Pilot Plant between 1984 and 1991. The room was carefully instrumented to measure the horizontal and vertical closure immediately upon excavation and for several years thereafter. Early finite element simulations of salt creep around Room D under-predicted the vertical closure by 4.5×, causing investigators to explore a series of changes to the way Room D was modeled. Discrepancies between simulations and measurements were resolved through a series of adjustments to model parameters, which were openly acknowledged in published reports. Interest in Room D has been rekindled recentlymore » by the U.S./German Joint Project III and Project WEIMOS, which seek to improve the predictions of rock salt constitutive models. Joint Project participants calibrate their models solely against laboratory tests, and benchmark the models against underground experiments, such as room D. This report describes updating legacy Room D simulations to today’s computational standards by rectifying several numerical issues. Subsequently, the constitutive model used in previous modeling is recalibrated two different ways against a suite of new laboratory creep experiments on salt extracted from the repository horizon of the Waste Isolation Pilot Plant. Simulations with the new, laboratory-based, calibrations under-predict Room D vertical closure by 3.1×. A list of potential improvements is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reedlunn, Benjamin
Room D was an in-situ, isothermal, underground experiment conducted at theWaste Isolation Pilot Plant between 1984 and 1991. The room was carefully instrumented to measure the horizontal and vertical closure immediately upon excavation and for several years thereafter. Early finite element simulations of salt creep around Room D under predicted the vertical closure by 4.5×, causing investigators to explore a series of changes to the way Room D was modeled. Discrepancies between simulations and measurements were resolved through a series of adjustments to model parameters, which were openly acknowledged in published reports. Interest in Room D has been rekindled recentlymore » by the U.S./German Joint Project III and Project WEIMOS, which seek to improve the predictions of rock salt constitutive models. Joint Project participants calibrate their models solely against laboratory tests, and benchmark the models against underground experiments, such as room D. This report describes updating legacy Room D simulations to today’s computational standards by rectifying several numerical issues. Subsequently, the constitutive model used in previous modeling is recalibrated two different ways against a suite of new laboratory creep experiments on salt extracted from the repository horizon of the Waste Isolation Pilot Plant. Simulations with the new, laboratory-based, calibrations under predict Room D vertical closure by 3.1×. A list of potential improvements is discussed.« less
NASA Astrophysics Data System (ADS)
Kaldonski, Nicolas; Lagrue, Clément; Motreuil, Sébastien; Rigaud, Thierry; Bollache, Loïc
2008-09-01
Predation is often considered as one of the most important biotic factor determining the success of exotic species. The freshwater amphipod Gammarus roeseli has widely colonized Western Europe, where it is frequently found in sympatry with the native species ( Gammarus pulex). Previous laboratory experiments revealed that G. roeseli may have an advantage over G. pulex through differential predation by native fish (brown trout). Morphological anti-predator defences (spines) were found responsible for lower rates of predation on the invasive G. roeseli. Here, using both field surveys and laboratory experiments, we tested if a differential of predation exists with other fish predators naturally encountered by gammarids. The main predators present in our field site were nocturnal benthic feeders (mainly bullheads, Cottus gobio). Fish diet analysis showed that, compared to its global availability in the river, G. roeseli was less consumed than G. pulex. In the field, however, G. roeseli was found mainly in the aquatic vegetation whereas G. pulex was found in all habitat types. Laboratory experiments in microcosms revealed that G. roeseli was less prone to predation by C. gobio only when vegetation was present. Depending on the type of predator, the differential of predation could therefore be mediated by antipredator behaviour, and a better usage of refuges, rather than by morphological defences.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1989-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. Work performed has shown that laboratory measurements of the millimeter-wave opacity of ammonia between 7.5 mm and 9.3 mm and also at the 3.2 mm wavelength require a different lineshape to be used in the theoretical prediction for millimeter-wave ammonia opacity than was previously used. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.
ERIC Educational Resources Information Center
McClellan, Michael J.; Cass, Marion E.
2015-01-01
This communication is a collection of additions and modifications to two previously published classic inorganic synthesis laboratory experiments. The experimental protocol for the synthesis and isolation of enantiomerically enriched ?- (or ?-)Co(en)[subscript 3]I[subscript 3] has been modified to increase reproducibility, yield, and enantiomeric…
ERIC Educational Resources Information Center
Lindh, Jacob; Annerstedt, Claes; Besier, Thor; Matheson, Gordon O.; Rydmark, Martin
2016-01-01
Under a previous grant (2005-08), researchers and teachers at Stanford University (SU) and the University of Gothenburg (GU) co-designed a ten-week interdisciplinary, research-based laboratory course in human biology to be taught online to undergraduate students. Essentials in the subject were taught during the first four weeks of this course.…
2013-12-30
MIT Lincoln Laboratory in cooperation with Edgewood Chemical Biological Center (ECBC). These events explored the utility of a short-term “ hack day...conceived as an experiment applying a short “ hack day” format to bioinformatics problems of interest to DTRA. Participants of diverse technical...organizers took note of different types of previous hack day formats that had been very open-ended (i.e., gave participants a collection of hardware or
Squires, Allison J; Dubé, Monique G; Rozon-Ramilo, Lisa D
2013-03-01
The Athabasca River basin, located in Alberta, Canada, covers 157, 000 km(2) and holds significant cultural and economic importance. Recent research assessed changes in several water quality and quantity parameters that have changed both spatially (along the river continuum) and temporally (pre-development and present day) in the Athabasca River Basin. In particular, parameters such as salinity and dissolved sulphate have changed significantly across the Athabasca River mainstem over the past five decades. Further laboratory testing has linked concentrations of these parameters to changes in fathead minnow reproduction. Research is required to determine whether these changes observed in the laboratory can be applied to actual in-river conditions. The objectives of the present study were to twofold: assess changes in fathead minnow response metrics (i.e., condition, liver and gonad size, egg production, and gill histology) associated with increasing concentrations of salinity and dissolved sulphate and determine whether sublethal effect thresholds established in laboratory experiments correspond to actual in-river concentrations using water from the mouth and headwaters of the Athabasca River. Three dose-response experiments (NaCl, SO4, and water sampled from the mouth of the Athabasca River) were conducted at Jasper National Park, Alberta, Canada. Significant increases in mean eggs per female per day occurred at the 50% treatment for the mouth experiment and thresholds previously developed in the laboratory were verified. Copyright © 2012 SETAC.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1997-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurements completed under this grant (NAGW-533), have shown that the opacity from, SO2 under simulated Venus conditions is best described by a different lineshape than was previously used in theoretical predictions. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.
Validity of thermally-driven small-scale ventilated filling box models
NASA Astrophysics Data System (ADS)
Partridge, Jamie L.; Linden, P. F.
2013-11-01
The majority of previous work studying building ventilation flows at laboratory scale have used saline plumes in water. The production of buoyancy forces using salinity variations in water allows dynamic similarity between the small-scale models and the full-scale flows. However, in some situations, such as including the effects of non-adiabatic boundaries, the use of a thermal plume is desirable. The efficacy of using temperature differences to produce buoyancy-driven flows representing natural ventilation of a building in a small-scale model is examined here, with comparison between previous theoretical and new, heat-based, experiments.
Barrett, Frederick S; Johnson, Matthew W; Griffiths, Roland R
2015-11-01
The 30-item revised Mystical Experience Questionnaire (MEQ30) was previously developed within an online survey of mystical-type experiences occasioned by psilocybin-containing mushrooms. The rated experiences occurred on average eight years before completion of the questionnaire. The current paper validates the MEQ30 using data from experimental studies with controlled doses of psilocybin. Data were pooled and analyzed from five laboratory experiments in which participants (n=184) received a moderate to high oral dose of psilocybin (at least 20 mg/70 kg). Results of confirmatory factor analysis demonstrate the reliability and internal validity of the MEQ30. Structural equation models demonstrate the external and convergent validity of the MEQ30 by showing that latent variable scores on the MEQ30 positively predict persisting change in attitudes, behavior, and well-being attributed to experiences with psilocybin while controlling for the contribution of the participant-rated intensity of drug effects. These findings support the use of the MEQ30 as an efficient measure of individual mystical experiences. A method to score a "complete mystical experience" that was used in previous versions of the mystical experience questionnaire is validated in the MEQ30, and a stand-alone version of the MEQ30 is provided for use in future research. © The Author(s) 2015.
Rocket and laboratory studies in astronomy
NASA Technical Reports Server (NTRS)
Feldman, P. D.
1993-01-01
This report covers the period from September 1, 1992 to August 31, 1993. During the reporting period we launched the Faint Object Telescope to measure absolute fluxes of two hot dwarf stars in the spectral range below 1200 A. Although all systems worked normally, a higher than anticipated pressure in the detector led to ion-feedback that masked the useable data from the source. We have identified the source of the problem and are preparing for a reflight in the Fall of 1993. Our laboratory program for the evaluation of the ultraviolet performance of charge-coupled-detector (CCD) arrays continued with the aim of including a UV-sensitive CCD in a payload to be flown in 1994, and we have begun the assembly of this payload. Work has continued on the analysis of data from previous rocket experiments and from the UVX experiment which flew on STS-61C in January 1986.
The Midland fiber-optic analog transmission system development project (FATS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgart, J.S.; Anaya, R.; Morris, G.
1988-07-01
This report was written to document the overall effort related to the development and testing of the various components comprising the fiber optic analog transmission system (FATS) and to the validation of the FATS itself. The overall project was approached as a joint effort between the Los Alamos National Laboratory; the Atomic Weapons Research Establishment (AWRE); and EGandG Energy Measurements. The ultimate goal of the project was to develop a system, based on laser diodes and a streak camera system, to measure alpha. Although the FATS was not fielded on the MIDLAND event, in the course of the project wemore » did in fact answer technology questions identified on previous experiments and develop a better understanding of system needs. We hope that the information contained in this report will provide a basis for planning future experiments, as well as defining the direction for additional laboratory measurements. 94 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weise, David; Johnson, Timothy J.; Reardon, James
Management of smoke from prescribed fires requires knowledge of fuel quantity and the amount and composition of the smoke produced by the fire to minimize adverse impacts on human health. A five-year study produced new emissions information for more than 100 trace gases and particulate matter in smoke for fuel types found in the southern United States of America using state-of-the-art instrumentation in both laboratory and field experiments. Emission factors for flaming, smoldering, and residual smoldering were developed. Agreement between laboratory and field-derived emission factors was generally good in most cases. Reference spectra of over 50 wildland fire gas-phase smokemore » components were added to a publicly-available database to support identification via infrared spectroscopy. Fuel loading for the field experiments was similar to previously measured fuels. This article summarizes the results of a five-year study to better understand the composition of smoke during all phases of burning for such forests.« less
The Muon $g$-$2$ Experiment at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohn, Wesley
A new measurement of the anomalous magnetic moment of the muon,more » $$a_{\\mu} \\equiv (g-2)/2$$, will be performed at the Fermi National Accelerator Laboratory with data taking beginning in 2017. The most recent measurement, performed at Brookhaven National Laboratory (BNL) and completed in 2001, shows a 3.5 standard deviation discrepancy with the standard model value of $$a_\\mu$$. The new measurement will accumulate 21 times the BNL statistics using upgraded magnet, detector, and storage ring systems, enabling a measurement of $$a_\\mu$$ to 140 ppb, a factor of 4 improvement in the uncertainty the previous measurement. This improvement in precision, combined with recent improvements in our understanding of the QCD contributions to the muon $g$-$2$, could provide a discrepancy from the standard model greater than 7$$\\sigma$$ if the central value is the same as that measured by the BNL experiment, which would be a clear indication of new physics.« less
A 13-week research-based biochemistry laboratory curriculum.
Lefurgy, Scott T; Mundorff, Emily C
2017-09-01
Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with mutations designed by the students. Ideal enzymes for this curriculum are able to be structurally modeled, solubly expressed, and monitored for activity by UV/Vis spectroscopy, and an example curriculum for haloalkane dehalogenase is given. Unique to this curriculum is a successful implementation of saturation mutagenesis and high-throughput screening of enzyme function, along with bioinformatics analysis, homology modeling, structural analysis, protein expression and purification, polyacrylamide gel electrophoresis, UV/Vis spectroscopy, and enzyme kinetics. Each of these techniques is carried out using a novel student-designed mutant library or enzyme variant unique to the lab team and, importantly, not described previously in the literature. Use of a well-established set of protocols promotes student data quality. Publication may result from the original student-generated hypotheses and data, either from the class as a whole or individual students that continue their independent projects upon course completion. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):437-448, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Lai, Canhai; Marcy, Peter William
2017-05-01
A challenging problem in designing pilot-scale carbon capture systems is to predict, with uncertainty, the adsorber performance and capture efficiency under various operating conditions where no direct experimental data exist. Motivated by this challenge, we previously proposed a hierarchical framework in which relevant parameters of physical models were sequentially calibrated from different laboratory-scale carbon capture unit (C2U) experiments. Specifically, three models of increasing complexity were identified based on the fundamental physical and chemical processes of the sorbent-based carbon capture technology. Results from the corresponding laboratory experiments were used to statistically calibrate the physical model parameters while quantifying some of theirmore » inherent uncertainty. The parameter distributions obtained from laboratory-scale C2U calibration runs are used in this study to facilitate prediction at a larger scale where no corresponding experimental results are available. In this paper, we first describe the multiphase reactive flow model for a sorbent-based 1-MW carbon capture system then analyze results from an ensemble of simulations with the upscaled model. The simulation results are used to quantify uncertainty regarding the design’s predicted efficiency in carbon capture. In particular, we determine the minimum gas flow rate necessary to achieve 90% capture efficiency with 95% confidence.« less
Kim, Sang-Bog; Roche, Jennifer
2013-08-01
Organically bound tritium (OBT) is an important tritium species that can be measured in most environmental samples, but has only recently been recognized as a species of tritium in these samples. Currently, OBT is not routinely measured by environmental monitoring laboratories around the world. There are no certified reference materials (CRMs) for environmental samples. Thus, quality assurance (QA), or verification of the accuracy of the OBT measurement, is not possible. Alternatively, quality control (QC), or verification of the precision of the OBT measurement, can be achieved. In the past, there have been differences in OBT analysis results between environmental laboratories. A possible reason for the discrepancies may be differences in analytical methods. Therefore, inter-laboratory OBT comparisons among the environmental laboratories are important and would provide a good opportunity for adopting a reference OBT analytical procedure. Due to the analytical issues, only limited information is available on OBT measurement. Previously conducted OBT inter-laboratory practices are reviewed and the findings are described. Based on our experiences, a few considerations were suggested for the international OBT inter-laboratory comparison exercise to be completed in the near future. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Rotational energy in a physical pendulum
NASA Astrophysics Data System (ADS)
Monteiro, Martín; Cabeza, Cecilia; Marti, Arturo C.
2014-03-01
Smartphone usage has expanded dramatically in recent years worldwide. This revolution also has impact in undergraduate laboratories where different experiences are facilitated by the use of the sensors usually included in these devices. Recently, in several articles published in the literature, the use of smartphones has been proposed for several physics experiments. Although most previous articles focused on mechanical experiments, an aspect that has received less attention is the use of rotation sensors or gyroscopes. Indeed, the use of these sensors paves the way for new experiments enabling the measurement of angular velocities. In a very recent paper the conservation of the angular momentum is considered using rotation sensors.3 In this paper we present an analysis of the rotational energy of a physical pendulum.
Laboratory constraints on models of earthquake recurrence
Beeler, Nicholas M.; Tullis, Terry; Junger, Jenni; Kilgore, Brian D.; Goldsby, David L.
2014-01-01
In this study, rock friction ‘stick-slip’ experiments are used to develop constraints on models of earthquake recurrence. Constant-rate loading of bare rock surfaces in high quality experiments produces stick-slip recurrence that is periodic at least to second order. When the loading rate is varied, recurrence is approximately inversely proportional to loading rate. These laboratory events initiate due to a slip rate-dependent process that also determines the size of the stress drop [Dieterich, 1979; Ruina, 1983] and as a consequence, stress drop varies weakly but systematically with loading rate [e.g., Gu and Wong, 1991; Karner and Marone, 2000; McLaskey et al., 2012]. This is especially evident in experiments where the loading rate is changed by orders of magnitude, as is thought to be the loading condition of naturally occurring, small repeating earthquakes driven by afterslip, or low-frequency earthquakes loaded by episodic slip. As follows from the previous studies referred to above, experimentally observed stress drops are well described by a logarithmic dependence on recurrence interval that can be cast as a non-linear slip-predictable model. The fault’s rate dependence of strength is the key physical parameter. Additionally, even at constant loading rate the most reproducible laboratory recurrence is not exactly periodic, unlike existing friction recurrence models. We present example laboratory catalogs that document the variance and show that in large catalogs, even at constant loading rate, stress drop and recurrence co-vary systematically. The origin of this covariance is largely consistent with variability of the dependence of fault strength on slip rate. Laboratory catalogs show aspects of both slip and time predictability and successive stress drops are strongly correlated indicating a ‘memory’ of prior slip history that extends over at least one recurrence cycle.
Validation of the revised Mystical Experience Questionnaire in experimental sessions with psilocybin
Barrett, Frederick S; Johnson, Matthew W; Griffiths, Roland R
2016-01-01
The 30-item revised Mystical Experience Questionnaire (MEQ30) was previously developed within an online survey of mystical-type experiences occasioned by psilocybin-containing mushrooms. The rated experiences occurred on average eight years before completion of the questionnaire. The current paper validates the MEQ30 using data from experimental studies with controlled doses of psilocybin. Data were pooled and analyzed from five laboratory experiments in which participants (n=184) received a moderate to high oral dose of psilocybin (at least 20 mg/70 kg). Results of confirmatory factor analysis demonstrate the reliability and internal validity of the MEQ30. Structural equation models demonstrate the external and convergent validity of the MEQ30 by showing that latent variable scores on the MEQ30 positively predict persisting change in attitudes, behavior, and well-being attributed to experiences with psilocybin while controlling for the contribution of the participant-rated intensity of drug effects. These findings support the use of the MEQ30 as an efficient measure of individual mystical experiences. A method to score a “complete mystical experience” that was used in previous versions of the mystical experience questionnaire is validated in the MEQ30, and a stand-alone version of the MEQ30 is provided for use in future research. PMID:26442957
Survival of Campylobacter spp. in bovine faeces on pasture.
Gilpin, B J; Robson, B; Scholes, P; Nourozi, F; Sinton, L W
2009-02-01
To determine the survival on pasture of Campylobacter spp. naturally present in bovine faeces and compare this with a previously published study using laboratory-cultured Campylobacter spp. Ten freshly collected cow pats were deposited on pasture during summer, and Campylobacter spp. were enumerated by enrichment broth culture. The counts in three pats were below detection limits. Counts of Campylobacter spp. in the other seven pats fell below detection limits within 14 days. The geometric means of the counts up to 7 days produced a T(90) of 2.2 days. Characterization of Campylobacter spp. by PCR and pulsed field gel electrophoresis indicated the presence of at least six genotypes of Campylobacter jejuni, Campylobacter coli and Campylobacter lari. Campylobacter spp. naturally present in cow faeces exhibited a similar survival rate to that previously determined using laboratory-cultured strains. The highly variable counts of naturally occurring Campylobacter spp., and the predominance of lower counts, also support the earlier decision to use laboratory-cultured strains in survival experiments. This study reaffirms the short survival of Campylobacter spp. in cow faeces deposited on pasture. This information will be incorporated into a 'reservoir model' for Campylobacter spp. in cow pats on New Zealand pastures.
Capillary Discharge Soft X-ray Laser Experiments at Air Force Research Laboratory
NASA Astrophysics Data System (ADS)
Ruden, E. L.; Gale, D. G.
1997-11-01
The Air Force Research Laboratory (previously Phillips Laboratory) is presently attempting to reproduce the high gain laser results of J.J. Rocca's capillary discharge z-pinch pumped 46.9 nm Ne-like Ar laser. This poster presents progress to date at measuring our laser's intensity and gain. The capillary circuit consists of a low inductance 3 nH water capacitor discharged by a coaxial spark gap into a 12 cm long, 4 mm ID plastic capillary. The capillary is supplied with 39 kA of current with a 20 ns risetime. The principle radiation diagnostic consists of a VUV monochrometer coupled to a custom high speed vacuum X-ray diode with an aluminum cathode. The signal is recorded on a fast transient digitizer (Tektronix SCD 5000). The total detector system's analog bandwidth is about 3 GHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Max; Lystig, Ted; Beard, Jonathan
Purpose. To compare the learning of endovascular interventional skills by training on pig models versus virtual reality simulators. Methods. Twelve endovascular novices participated in a study consisting of a pig laboratory (P-Lab) and a virtual reality laboratory (VR-Lab). Subjects were stratified by experience and randomized into four training groups. Following 1 hr of didactic instruction, all attempted an iliac artery stenosis (IAS) revascularization in both laboratories. Onsite proctors evaluated performances using task-specific checklists and global rating scales, yielding a Total Score. Participants completed two training sessions of 3 hr each, using their group's assigned method (P-Lab x 2, P-Lab +more » VR-Lab, VR-Lab + P-Lab, or VR-Lab x 2) and were re-evaluated in both laboratories. A panel of two highly experienced interventional radiologists performed assessments from video recordings. ANCOVA analysis of Total Score against years of surgical, interventional radiology (IR) experience and cumulative number of P-Lab or VR-Lab sessions was conducted. Inter-rater reliability (IRR) was determined by comparing proctored scores with the video assessors in only the VR-Lab. Results. VR-Lab sessions improved the VR-Lab Total Score ({beta} 3.029, p = 0.0015) and P-Lab Total Score ({beta} = 1.814, p = 0.0452). P-Lab sessions increased the P-Lab Total Score ({beta} = 4.074, p < 0.0001) but had no effect on the VR-Lab Total Score. In the general statistical model, both P-Lab sessions ({beta} = 2.552, p = 0.0010) and VR-Lab sessions ({beta} 2.435, p = 0.0032) significantly improved Total Score. Neither previous surgical experience nor IR experience predicted Total Score. VR-Lab scores were consistently higher than the P-Lab scores ({delta} = 6.659, p < 0.0001). VR-Lab IRR was substantial (r = 0.649, p < 0.0008). Conclusions. Endovascular skills learned in the virtual environment may be transferable to the real catheterization laboratory as modeled in the P-Lab.« less
Four experimental demonstrations of active vibration control for flexible structures
NASA Technical Reports Server (NTRS)
Phillips, Doug; Collins, Emmanuel G., Jr.
1990-01-01
Laboratory experiments designed to test prototype active-vibration-control systems under development for future flexible space structures are described, summarizing previously reported results. The control-synthesis technique employed for all four experiments was the maximum-entropy optimal-projection (MEOP) method (Bernstein and Hyland, 1988). Consideration is given to: (1) a pendulum experiment on large-amplitude LF dynamics; (2) a plate experiment on broadband vibration suppression in a two-dimensional structure; (3) a multiple-hexagon experiment combining the factors studied in (1) and (2) to simulate the complexity of a large space structure; and (4) the NASA Marshall ACES experiment on a lightweight deployable 45-foot beam. Extensive diagrams, drawings, graphs, and photographs are included. The results are shown to validate the MEOP design approach, demonstrating that good performance is achievable using relatively simple low-order decentralized controllers.
NASA Astrophysics Data System (ADS)
Rothman, Stephen; Edwards, Rhys; Vogler, Tracy J.; Furnish, M. D.
2012-03-01
Velocity-time histories of free- or windowed-surfaces have been used to calculate wave speeds and hence deduce the shear moduli for materials at high pressure. This is important to high velocity impact phenomena, e.g. shaped-charge jets, long rod penetrators, and other projectile/armour interactions. Historically the shock overtake method has required several experiments with different depths of material to account for the effect of the surface on the arrival time of the release. A characteristics method, previously used for analysis of isentropic compression experiments, has been modified to account for the effect of the surface interactions, thus only one depth of material is required. This analysis has been applied to symmetric copper impacts performed at Sandia National Laboratory's Star Facility. A shear modulus of 200GPa, at a pressure of ~180GPa, has been estimated. These results are in broad agreement with previous work by Hayes et al.
NASA Astrophysics Data System (ADS)
Rothman, Stephen; Edwards, Rhys; Vogler, Tracy; Furnish, Mike
2011-06-01
Velocity-time histories of free- or windowed-surfaces have been used to calculate wave speeds and hence deduce the shear modulus for materials at high pressure. This is important to high velocity impact phenomena, e.g. shaped-charge jets, long rod penetrators, and other projectile/armour interactions. Historically the shock overtake method has required several experiments with different depths of material to account for the effect of the surface on the arrival time of the release. A characteristics method, previously used for analysis of isentropic compression experiments, has been modified to account for the effect of the surface interactions, thus only one depth of material is required. This analysis has been applied to symmetric copper impacts performed at Sandia National Laboratory's Star Facility. A shear modulus of 200Gpa, at a pressure of ~180GPa, has been estimated. These results are in broad agreement with previous work by Hayes et al.
Sub-ion scale plasmoids during collisionless reconnection on TREX
NASA Astrophysics Data System (ADS)
Olson, Joseph; Egedal, Jan; Myers, Rachel; Greess, Sam; Clark, Mike; Wallace, John; Forest, Cary; Wisconsin Plasma Astrophysics Laboratory Collaboration
2016-10-01
The Terrestrial Reconnection Experiment (TREX), operating at the Wisconsin Plasma Astrophysics Laboratory, is able to explore a collisionless regime inaccessible to previous reconnection experiments. To date, TREX has already achieved Lundquist numbers up to 104 where kinetic effects, such as electron pressure anisotropy, become important to the reconnection dynamics. During a recent run campaign in this collisionless regime, the spontaneous formation of magnetic islands (plasmoids) inside the ion diffusion region was observed. It is known that long current layers are susceptible to tearing, leading to the formation of plasmoids, and that these plasmoids have strong effects on the reconnection rate and particle energization. However, contrary to theoretical and numerical predictions, the TREX experiments show that the plasmoid instability is active even when the current layer is less than one di long. Analysis of these events shows that smaller plasmoids occur at a higher rate than larger ones, suggesting that magnetic islands could be seeded in plasmas more effectively than previously thought.
NASA Astrophysics Data System (ADS)
Oz, Imri; Shalev, Eyal; Yechieli, Yoseph; Gavrieli, Ittai; Gvirtzman, Haim
2014-04-01
This paper examines the transient development and the steady-state configuration of groundwater within a coastal aquifer adjacent to a stratified saltwater body. Such systems consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. The dynamics, location and the geometry of the interfaces and the density-driven circulation flows that develop in the aquifer are examined using laboratory experiments and numerical modeling at the same scale. The results show that the transient intrusion of the different water bodies into the aquifer takes place at different rates, and that the locations of the interfaces between them change with time, before reaching steady-state. Under steady-state conditions both the model and the experiments show the existence of three interfaces between the three water types. The numerical model, which is calibrated against the salinity distribution and groundwater discharge rate in the laboratory experiments, allows the quantification of the flow rates and flow patterns within the aquifer. These flow patterns, which cannot be derived from laboratory experiments, show the transient development of three circulation cells which are confined between the three interfaces. These results confirm the hypothesis that has been previously suggested based solely on a steady-state numerical modeling defined by a conceptual understanding. Parametric analysis shows that the creation of three circulation cells and three interfaces is limited to certain conditions and defines the ranges for the creation of this unique system.
ERIC Educational Resources Information Center
Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin
2011-01-01
Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Elizabeth James Kistin; Warren, Drake; Hess, Marguerite Evelyn
This study examines the structure and impact of state-funded technology maturation programs that leverage research institutions for economic development throughout the United States. The lessons learned and practices identified from previous experiences will inform Sandia National Laboratories' Government Relations and Technology Partnerships teams as they participate in near-term discussions about the proposed Technology Readiness Gross Receipts Tax Credit and Program, and continue to shape longer-term program and partnership opportunities. This Page Intentionally Left Blank
Wilson, Preston S; Dunton, Kenneth H
2009-04-01
Previous in situ investigations of seagrass have revealed acoustic phenomena that depend on plant density, tissue gas content, and free bubbles produced by photosynthetic activity, but corresponding predictive models that could be used to optimize acoustic remote sensing, shallow water sonar, and mine hunting applications have not appeared. To begin to address this deficiency, low frequency (0.5-2.5 kHz) acoustic laboratory experiments were conducted on three freshly collected Texas Gulf Coast seagrass species. A one-dimensional acoustic resonator technique was used to assess the biomass and effective acoustic properties of the leaves and rhizomes of Thalassia testudinum (turtle grass), Syringodium filiforme (manatee grass), and Halodule wrightii (shoal grass). Independent biomass and gas content estimates were obtained via microscopic cross-section imagery. The acoustic results were compared to model predictions based on Wood's equation for a two-phase medium. The effective sound speed in the plant-filled resonator was strongly dependent on plant biomass, but the Wood's equation model (based on tissue gas content alone) could not predict the effective sound speed for the low irradiance conditions of the experiment, in which no free bubbles were generated by photosynthesis. The results corroborate previously published results obtained in situ for another seagrass species, Posidonia oceanica.
Symmetron dark energy in laboratory experiments.
Upadhye, Amol
2013-01-18
The symmetron scalar field is a matter-coupled dark energy candidate which effectively decouples from matter in high-density regions through a symmetry restoration. We consider a previously unexplored regime, in which the vacuum mass μ~2.4×10(-3) eV of the symmetron is near the dark energy scale, and the matter coupling parameter M~1 TeV is just beyond standard model energies. Such a field will give rise to a fifth force at submillimeter distances which can be probed by short-range gravity experiments. We show that a torsion pendulum experiment such as Eöt-Wash can exclude symmetrons in this regime for all self-couplings λ is < or approximately equal to 7.5.
Rocket-triggered lightning strikes and forest fire ignition
NASA Technical Reports Server (NTRS)
Fenner, James H.
1989-01-01
Background information on the rocket-triggered lightning project at Kennedy Space Center (KSC), a summary of the forecasting problem there, the facilities and equipment available for undertaking field experiments at KSC, previous research activity performed, a description of the atmospheric science field laboratory near Mosquito Lagoon on the KSC complex, methods of data acquisition, and present results are discussed. New sources of data for the 1989 field experiment include measuring the electric field in the lower few thousand feet of the atmosphere by suspending field measuring devices below a tethered balloon. Problems encountered during the 1989 field experiment are discussed. Future prospects for both triggered lightning and lightning-kindled forest fire research at KSC are listed.
Hemolysis from a nurses’ standpoint – survey from four Croatian hospitals
Dorotić, Adrijana; Antončić, Dragana; Biljak, Vanja Radišić; Nedić, Dara; Beletić, Andjelo
2015-01-01
Introduction Hemolysis can occur during sample collection, handling and transport. It is more frequent when the non-laboratory staff performs sampling. The aim of this study was to assess nurses’ knowledge on the causes of hemolysis and consequential impact on the laboratory tests results. Additionally, the differences in knowledge, related to work experience, professional degree and previous education about hemolysis were explored. Materials and methods An anonymus survey, containing 11 questions on demographics, causes of hemolysis, its impact on biochemical parameters and nurses’ attitude towards additional education in preanalytics, was conducted in four Croatian hospitals. The answers were compared by Chi-squared and Fischer exact test. Results In total, 562 survey results were collected. Majority of nurses declared familiarity with the term “hemolysis” (99.6%). There were 77% of correct answers regarding questions about the causes of hemolysis, but only 50% when it comes to questions about interference in biochemical tests. The percentage of correct answers about causes was significantly lower (P = 0.029) among more experienced nurses, and higher (P = 0.027) in those with higher professional degree, while influence of previous education was not significant. Also, higher percentage of correct answers about interferences was encountered in nurses with longer work experience (P = 0.039). More than 70% of nurses declared that additional education about preanalytical factors would be beneficial. Conclusion Croatian nurses are familiar with the definition of hemolysis, but a lack of knowledge about causes and influence on laboratory test results is evident. Nurses are eager to improve their knowledge in this field of preanalytical phase. PMID:26525069
NASA Astrophysics Data System (ADS)
Nakamura, Akiko M.; Yamane, Fumiya; Okamoto, Takaya; Takasawa, Susumu
2015-03-01
The outcome of collision between small solid bodies is characterized by the threshold energy density Q*s, the specific energy to shatter, that is defined as the ratio of projectile kinetic energy to the target mass (or the sum of target and projectile) needed to produce the largest intact fragment that contains one half the target mass. It is indicated theoretically and by numerical simulations that the disruption threshold Q*s decreases with target size in strength-dominated regime. The tendency was confirmed by laboratory impact experiments using non-porous rock targets (Housen and Holsapple, 1999; Nagaoka et al., 2014). In this study, we performed low-velocity impact disruption experiments on porous gypsum targets with porosity of 65-69% and of three different sizes to examine the size dependence of the disruption threshold for porous material. The gypsum specimens were shown to have a weaker volume dependence on static tensile strength than do the non-porous rocks. The disruption threshold had also a weaker dependence on size scale as Q*s ∝D-γ , γ ≤ 0.25 - 0.26, while the previous laboratory studies showed γ=0.40 for the non-porous rocks. The measurements at low-velocity lead to a value of about 100 J kg-1 for Q*s which is roughly one order of magnitude lower than the value of Q*s for the gypsum targets of 65% porosity but impacted by projectiles with higher velocities. Such a clear dependence on the impact velocity was also shown by previous studies of gypsum targets with porosity of 50%.
Exceedance statistics of accelerations resulting from thruster firings on the Apollo-Soyuz mission
NASA Technical Reports Server (NTRS)
Fichtl, G. H.; Holland, R. L.
1983-01-01
Spacecraft acceleration resulting from firings of vernier control system thrusters is an important consideration in the design, planning, execution and post-flight analysis of laboratory experiments in space. In particular, scientists and technologists involved with the development of experiments to be performed in space in many instances required statistical information on the magnitude and rate of occurrence of spacecraft accelerations. Typically, these accelerations are stochastic in nature, so that it is useful to characterize these accelerations in statistical terms. Statistics of spacecraft accelerations are summarized. Previously announced in STAR as N82-12127
Qualifying for the Green500: Experience with the newest generation of supercomputers at LANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yilk, Todd
The High Performance Computing Division of Los Alamos National Laboratory recently brought four new supercomputing platforms on line: Trinity with separate partitions built around the Haswell and Knights Landing CPU architectures for capability computing and Grizzly, Fire, and Ice for capacity computing applications. The power monitoring infrastructure of these machines is significantly enhanced over previous supercomputing generations at LANL and all were qualified at the highest level of the Green500 benchmark. Here, this paper discusses supercomputing at LANL, the Green500 benchmark, and notes on our experience meeting the Green500's reporting requirements.
Qualifying for the Green500: Experience with the newest generation of supercomputers at LANL
Yilk, Todd
2018-02-17
The High Performance Computing Division of Los Alamos National Laboratory recently brought four new supercomputing platforms on line: Trinity with separate partitions built around the Haswell and Knights Landing CPU architectures for capability computing and Grizzly, Fire, and Ice for capacity computing applications. The power monitoring infrastructure of these machines is significantly enhanced over previous supercomputing generations at LANL and all were qualified at the highest level of the Green500 benchmark. Here, this paper discusses supercomputing at LANL, the Green500 benchmark, and notes on our experience meeting the Green500's reporting requirements.
Lurking in the Shadows: Emerging Rodent Infectious Diseases
Besselsen, David G.; Franklin, Craig L.; Livingston, Robert S.; Riley, Lela K.
2013-01-01
Rodent parvoviruses, Helicobacter spp., murine norovirus, and several other previously unknown infectious agents have “emerged” in laboratory rodents relatively recently. These agents have been discovered serendipitously or through active investigation of atypical serology results, cell culture contamination, unexpected histopathology, or previously unrecognized clinical disease syndromes. The potential research impact of these agents is not fully known. Infected rodents have demonstrated immunomodulation, tumor suppression, clinical disease (particularly in immunodeficient rodents), and histopathology. Perturbations of organismal and cellular physiology also likely occur. These agents posed unique challenges to laboratory animal resource programs once discovered; it was necessary to develop specific diagnostic assays and an understanding of their epidemiology and transmission routes before attempting eradication, and then evaluate eradication methods for efficacy. Even then management approaches varied significantly, from apathy to total exclusion, and such inconsistency has hindered the sharing and transfer of rodents among institutions, particularly for genetically modified rodent models that may not be readily available. As additional infectious agents are discovered in laboratory rodents in coming years, much of what researchers have learned from experiences with the recently identified pathogens will be applicable. This article provides an overview of the discovery, detection, and research impact of infectious agents recently identified in laboratory rodents. We also discuss emerging syndromes for which there is a suspected infectious etiology, and the unique challenges of managing newly emerging infectious agents. PMID:18506061
NASA Technical Reports Server (NTRS)
Stone, N. H.; Samir, Uri
1986-01-01
Attempts to gain an understanding of spacecraft plasma dynamics via experimental investigation of the interaction between artificially synthesized, collisionless, flowing plasmas and laboratory test bodies date back to the early 1960's. In the past 25 years, a number of researchers have succeeded in simulating certain limited aspects of the complex spacecraft-space plasma interaction reasonably well. Theoretical treatments have also provided limited models of the phenomena. Several active experiments were recently conducted from the space shuttle that specifically attempted to observe the Orbiter-ionospheric interaction. These experiments have contributed greatly to an appreciation for the complexity of spacecraft-space plasma interaction but, so far, have answered few questions. Therefore, even though the plasma dynamics of hypersonic spacecraft is fundamental to space technology, it remains largely an open issue. A brief overview is provided of the primary results from previous ground-based experimental investigations and the preliminary results of investigations conducted on the STS-3 and Spacelab 2 missions. In addition, several, as yet unexplained, aspects of the spacecraft-space plasma interaction are suggested for future research.
NASA Astrophysics Data System (ADS)
Ito, T. M.; Adamek, E. R.; Callahan, N. B.; Choi, J. H.; Clayton, S. M.; Cude-Woods, C.; Currie, S.; Ding, X.; Fellers, D. E.; Geltenbort, P.; Lamoreaux, S. K.; Liu, C.-Y.; MacDonald, S.; Makela, M.; Morris, C. L.; Pattie, R. W.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Sharapov, E. I.; Sjue, S.; Sprow, A. P.; Tang, Z.; Weaver, H. L.; Wei, W.; Young, A. R.
2018-01-01
The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was 184 (32 ) UCN /cm3 , a fourfold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be 39 (7 ) UCN /cm3 , which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ (dn) =3 ×10-27e cm .
Organic Carbon Mobilisation Mechanisms: Evidence from Globally Distributed Stalagmite Records
NASA Astrophysics Data System (ADS)
Baldini, J. U. L.; Fairchild, I. J.; Wynn, P.; Bourdin, C.; Muller, W.; Hartland, A.; Perrette, Y.; Worrall, F.; Bartlett, R.
2017-12-01
Identifying the cause of widespread increases in surface water dissolved organic carbon (DOC) concentrations in recent years is the subject of a contentious debate. Although DOC trends may partially reflect climate change, in many catchments they may also result from increased soil carbon solubility associated with decreases in acid rain due to lower atmospheric sulphur emissions. However, the lack of long-term DOC records hampers constraining climate's role in modulating DOC trends versus that of recovery from acidification. Here we help clarify the causes of recent DOC increases by using a combination of laboratory soil experiments and new stalagmite geochemical data. Laboratory experiments with soils sampled from above several key caves simulate the effect of acidity, temperature, and soil microbial processes on DOC release. These experiments are used to inform records of DOC encoded within several stalagmites from currently acidified, previously acidified, and unacidified sites, and which collectively yield insights into the timing of DOC change in the past. These records of stalagmite DOC concentration and composition are discussed within the context of the ongoing debate regarding the mechanism responsible for DOC release.
The snowmaker: nature identical snow production in the laboratory
NASA Astrophysics Data System (ADS)
Schleef, S.; Jaggi, M.; Loewe, H.; Schneebeli, M.
2013-12-01
Using natural snow for laboratory experiments can be tricky due to shortage of winter periods and snowfall, difficulties of sample casting and transport, and the great variability of natural snow due to the varying conditions of crystal growth in the clouds. This hinders repeatable laboratory experiments with reproducible specimen and microstructural characteristics. To minimize experimental uncertainties we designed an improved machine called snowmaker, which enables us to produce nature-identical snow in a cold laboratory under well defined conditions. The snowmaker is based on well-known principles: warm humid air from a heated water basin is advected into a cold nucleation chamber where the vapor resublimates on stretched Nylon wires. Crystals are automatically harvested by a motor driven brush rack and collected in a box, thereby several kilograms of snow can be produced per day with minimum maintenance. The excess vapor is collected in a moisture trap to avoid frost in the laboratory. The entire construction is designed as a rolling, modular assembly system which can easily carried out of the laboratory for defrosting. In addition to previous attempts we focus on the reproducibility of the samples and the comparison to natural snow down to the microscale. We show that the settings of water temperature and cold laboratory temperature facilitates the production of different crystal shapes like dendrites and needles in a reproducible way. Besides photography, we analyzed the microstructure of snowmaker crystals in aggregated specimen by X-ray microtomography. Depending on the settings we can create reproducible samples with density of 50-170 kg/m3 and specific surface areas of 50-80 mm-1. We briefly touch similarities between artificial and natural snow samples with respect to crystal habit, microstructural parameters and short-time metamorphism.
PaR-PaR Laboratory Automation Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linshiz, G; Stawski, N; Poust, S
2013-05-01
Labor-intensive multistep biological tasks, such as the construction and cloning of DNA molecules, are prime candidates for laboratory automation. Flexible and biology-friendly operation of robotic equipment is key to its successful integration in biological laboratories, and the efforts required to operate a robot must be much smaller than the alternative manual lab work. To achieve these goals, a simple high-level biology-friendly robot programming language is needed. We have developed and experimentally validated such a language: Programming a Robot (PaR-PaR). The syntax and compiler for the language are based on computer science principles and a deep understanding of biological workflows. PaR-PaRmore » allows researchers to use liquid-handling robots effectively, enabling experiments that would not have been considered previously. After minimal training, a biologist can independently write complicated protocols for a robot within an hour. Adoption of PaR-PaR as a standard cross-platform language would enable hand-written or software-generated robotic protocols to be shared across laboratories.« less
PaR-PaR laboratory automation platform.
Linshiz, Gregory; Stawski, Nina; Poust, Sean; Bi, Changhao; Keasling, Jay D; Hillson, Nathan J
2013-05-17
Labor-intensive multistep biological tasks, such as the construction and cloning of DNA molecules, are prime candidates for laboratory automation. Flexible and biology-friendly operation of robotic equipment is key to its successful integration in biological laboratories, and the efforts required to operate a robot must be much smaller than the alternative manual lab work. To achieve these goals, a simple high-level biology-friendly robot programming language is needed. We have developed and experimentally validated such a language: Programming a Robot (PaR-PaR). The syntax and compiler for the language are based on computer science principles and a deep understanding of biological workflows. PaR-PaR allows researchers to use liquid-handling robots effectively, enabling experiments that would not have been considered previously. After minimal training, a biologist can independently write complicated protocols for a robot within an hour. Adoption of PaR-PaR as a standard cross-platform language would enable hand-written or software-generated robotic protocols to be shared across laboratories.
Vogler, Amy J.; Nottingham, Roxanne; Busch, Joseph D.; Sahl, Jason W.; Shuey, Megan M.; Foster, Jeffrey T.; Schupp, James M.; Smith, Susan; Rocke, Tonie E.; Klein, Paul; Wagner, David M.
2016-01-01
Underlying mutation rates and other evolutionary forces shape the population structure of bacteria in nature. Although easily overlooked, similar forces are at work in the laboratory and may influence observed mutations. Here, we investigated tissue samples and Yersinia pestis isolates from a rodent laboratory challenge with strain CO92 using whole genome sequencing and multi-locus variable-number tandem repeat (VNTR) analysis (MLVA). We identified six VNTR mutations that were found to have occurred in vitro during laboratory cultivation rather than in vivo during the rodent challenge. In contrast, no single nucleotide polymorphism (SNP) mutations were observed, either in vivo or in vitro. These results were consistent with previously published mutation rates and the calculated number of Y. pestis generations that occurred during the in vitro versus the in vivo portions of the experiment. When genotyping disease outbreaks, the potential for in vitro mutations should be considered, particularly when highly variable genetic markers such as VNTRs are used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackwell, David D.; Walker, David N.; Amatucci, William E.
2010-01-15
In previous papers, early whistler propagation measurements were presented [W. E. Amatucci et al., IEEE Trans. Plasma Sci. 33, 637 (2005)] as well as antenna impedance measurements [D. D. Blackwell et al., Phys. Plasmas 14, 092106 (2007)] performed in the Naval Research Laboratory Space Physics Simulation Chamber (SPSC). Since that time there have been major upgrades in the experimental capabilities of the laboratory in the form of improvement of both the plasma source and antennas. This has allowed access to plasma parameter space that was previously unattainable, and has resulted in measurements that provide a significantly clearer picture of whistlermore » propagation in the laboratory environment. This paper presents some of the first whistler experimental results from the upgraded SPSC. Whereas previously measurements were limited to measuring the cyclotron resonance cutoff and elliptical polarization indicative of the whistler mode, now it is possible to experimentally plot the dispersion relation itself. The waves are driven and detected using balanced dipole and loop antennas connected to a network analyzer, which measures the amplitude and phase of the wave in two dimensions (r and z). In addition the frequency of the signals is also swept over a range of several hundreds of megahertz, providing a comprehensive picture of the near and far field antenna radiation patterns over a variety of plasma conditions. The magnetic field is varied from a few gauss to 200 G, with the density variable over at least 3 decades from 10{sup 7} to 10{sup 10} cm{sup -3}. The waves are shown to lie on the dispersion surface for whistler waves, with observation of resonance cones in agreement with theoretical predictions. The waves are also observed to propagate without loss of amplitude at higher power, a result in agreement with previous experiments and the notion of ducted whistlers.« less
Intercomparison of analytical methods for arsenic speciation in human urine.
Crecelius, E; Yager, J
1997-06-01
An intercomparison exercise was conducted for the quantification of arsenic species in spiked human urine. The primary objective of the exercise was to determine the variance among laboratories in the analysis of arsenic species such as inorganic As (As+3 and As+5), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Laboratories that participated had previous experience with arsenic speciation analysis. The results of this interlaboratory comparison are encouraging. There is relatively good agreement on the concentrations of these arsenic species in urine at concentrations that are relevant to research on the metabolism of arsenic in humans and other mammals. Both the accuracy and precision are relatively poor for arsenic concentrations of less than about 5 micrograms/l.
The Critical Mass Laboratory at Rocky Flats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothe, Robert E
2003-10-15
The Critical Mass Laboratory (CML) at Rocky Flats northwest of Denver, Colorado, was built in 1964 and commissioned to conduct nuclear experiments on January 28, 1965. It was built to attain more accurate and precise experimental data to ensure nuclear criticality safety at the plant than were previously possible. Prior to its construction, safety data were obtained from long extrapolations of subcritical data (called in situ experiments), calculated parameters from reactor engineering 'models', and a few other imprecise methods. About 1700 critical and critical-approach experiments involving several chemical forms of enriched uranium and plutonium were performed between then and 1988.more » These experiments included single units and arrays of fissile materials, reflected and 'bare' systems, and configurations with various degrees of moderation, as well as some containing strong neutron absorbers. In 1989, a raid by the Federal Bureau of Investigation (FBI) caused the plant as a whole to focus on 'resumption' instead of further criticality safety experiments. Though either not recognized or not admitted for a few years, that FBI raid did sound the death knell for the CML. The plant's optimistic goal of resumption evolved to one of deactivation, decommissioning, and plantwide demolition during the 1990s. The once-proud CML facility was finally demolished in April of 2002.« less
Miller, Nathan A; Chen, Xi; Stillman, Jonathon H
2014-01-01
In biological systems energy serves as the ultimate commodity, often determining species distributions, abundances, and interactions including the potential impact of invasive species on native communities. The Asian clam Potamocorbula amurensis invaded the San Francisco Estuary (SFE) in 1986 and is implicated in the decline of native fish species through resource competition. Using a combined laboratory/field study we examined how energy expenditure in this clam is influenced by salinity, temperature and food availability. Measures of metabolism were made at whole organism (metabolic rate) and biochemical (pyruvate kinase (PK) and citrate synthase (CS) enzyme activities) levels. We found in the field, over the course of a year, the ratio of PK to CS was typically 1.0 suggesting that aerobic and fermentative metabolism were roughly equivalent, except for particular periods characterized by low salinity, higher temperatures, and intermediate food availabilities. In a 30-day laboratory acclimation experiment, however, neither metabolic rate nor PK:CS ratio was consistently influenced by the same variables, though the potential for fermentative pathways did predominate. We conclude that in field collected animals, the addition of biochemical measures of energetic state provide little additional information to the previously measured whole organism metabolic rate. In addition, much of the variation in the laboratory remained unexplained and additional variables, including reproductive stage or body condition may influence laboratory-based results. Further study of adult clams must consider the role of organismal condition, especially reproductive state, in comparisons of laboratory experiments and field observations.
Deetz, C O; Scott, M G; Ladenson, J H; Seyoum, M; Hassan, A; Kreisel, F H; Nguyen, T T; Frater, J L
2013-02-01
With proper logistical support and sponsorship, a laboratory in an industrialized nation might be able to act as a reference laboratory for clinicians based in a developing country. We built on previous experience in the clinical laboratory to see whether a specialized histopathology service (hematopathology) could be provided to a developing country without the expertise or experience to do it in country. Over an 13-year period, 582 cases from 579 individuals were analyzed. Principal pathologic findings included acute leukemia in 84 cases (14%), dyspoiesis in one or more of the hematopoietic lineages in 65 cases (11%, including three cases with high-grade myelodysplasia), 23 cases (4%) with findings suspicious for a chronic myeloproliferative disorder, 35 cases (6%) with findings suspicious for a lymphoproliferative disorder, and infectious organisms (presumably Leishmania in most instances) in 9 (1%) of cases. Specimens from 45 cases (8%) were unsatisfactory owing to extreme hemodilution and/or specimen degeneration. With proper support, a medical laboratory in an industrialized nation may serve as a reference facility for a developing nation. The use of existing infrastructure may be remarkably effective to achieve optimal turnaround time. Although the lack of ancillary studies and follow-up biopsies limit the ability to achieve a definitive diagnosis in many cases, this must be viewed in the context of the limited ability to diagnose or manage hematopoietic neoplasia in developing nations. © 2012 Blackwell Publishing Ltd.
Educating Laboratory Science Learners at a Distance Using Interactive Television
ERIC Educational Resources Information Center
Reddy, Christopher
2014-01-01
Laboratory science classes offered to students learning at a distance require a methodology that allows for the completion of tactile activities. Literature describes three different methods of solving the distance laboratory dilemma: kit-based laboratory experience, computer-based laboratory experience, and campus-based laboratory experience,…
Increased Biodiversity in the Environment Improves the Humoral Response of Rats
Pi, Cinthia; Allott, Emma H.; Ren, Daniel; Poulton, Susan; Lee, S. Y. Ryan; Perkins, Sarah; Everett, Mary Lou; Holzknecht, Zoie E.; Lin, Shu S.; Parker, William
2015-01-01
Previous studies have compared the immune systems of wild and of laboratory rodents in an effort to determine how laboratory rodents differ from their naturally occurring relatives. This comparison serves as an indicator of what sorts of changes might exist between modern humans living in Western culture compared to our hunter-gatherer ancestors. However, immunological experiments on wild-caught animals are difficult and potentially confounded by increased levels of stress in the captive animals. In this study, the humoral immune responses of laboratory rats in a traditional laboratory environment and in an environment with enriched biodiversity were examined following immunization with a panel of antigens. Biodiversity enrichment included colonization of the laboratory animals with helminths and co-housing the laboratory animals with wild-caught rats. Increased biodiversity did not apparently affect the IgE response to peanut antigens following immunization with those antigens. However, animals housed in the enriched biodiversity setting demonstrated an increased mean humoral response to T-independent and T-dependent antigens and increased levels of “natural” antibodies directed at a xenogeneic protein and at an autologous tissue extract that were not used as immunogens. PMID:25853852
NASA Technical Reports Server (NTRS)
Szuszczewicz, E. P.; Bateman, T. T.
1996-01-01
We have conducted a laboratory investigation into the physics of plasma expansions and their associated energization processes. We studied single- and multi-ion plasma processes in self-expansions, and included light and heavy ions and heavy/light mixtures to encompass the phenomenological regimes of the solar and polar winds and the AMPTE and CRRES chemical release programs. The laboratory experiments provided spatially-distributed time-dependent measurements of total plasma density, temperature, and density fluctuation power spectra with the data confirming the long-theorized electron energization process in an expanding cloud - a result that was impossible to determine in spaceborne experiments (as e.g., in the CRRES program). These results provided the missing link in previous laboratory and spaceborne programs. confirming important elements in our understanding of such solar-terrestrial processes as manifested in expanding plasmas in the solar wind (e.g., CMES) and in ionospheric outflow in plasmaspheric fluctuate refilling after a storm. The energization signatures were seen in an entire series of runs that varied the ion species (Ar', Xe', Kr' and Ne'), and correlative studies included spectral analyses of electrostatic waves collocated with the energized electron distributions. In all cases wave energies were most intense during the times in which the suprathermal populations were present, with wave intensity increasing with the intensity of the suprathermal electron population. This is consistent with theoretical expectations wherein the energization process is directly attributable to wave particle interactions. No resonance conditions were observed, in an overall framework in which the general wave characteristics were broadband with power decreasing with increasing frequency.
NASA Astrophysics Data System (ADS)
Zammit, Mark; Fursa, Dmitry; Savage, Jeremy; Bray, Igor
2016-09-01
Vibrational excitation and vibrationally resolved electronic excitation cross sections of positron-H2 scattering have been calculated using the single-centre molecular convergent close-coupling (CCC) method. The adiabatic-nuclei approximation was utilized to model the above scattering processes and obtain the vibrationally resolved positron-H2 scattering length. As previously demonstrated, the CCC results are converged and accurately account for virtual and physical positronium formation by coupling basis functions with large orbital angular momentum. Here vibrationally resolved integrated and differential cross sections are presented over a wide energy range and compared with previous calculations and available experiments. Los Alamos National Laboratory and Curtin University.
NASA Astrophysics Data System (ADS)
Laughton, C.
2008-12-01
For the last half century the physics community has increasingly turned to the use of underground space to conduct basic research. The community is currently planning to conduct a new generation of underground experiments at the Deep Underground Science and Engineering Laboratory (DUSEL). DUSEL will be constructed within the footprint of the defunct Homestake Gold Mine, located in Lead, South Dakota. Physics proposals call for the construction of new caverns in which to conduct major new experiments. Some of the proposed laboratory facilities will be significantly larger and deeper than any previously constructed. The talk will highlight possible opportunities for integrating multi-disciplinary research in to the cavern construction program, and will stress the need to work closely with design and construction contractors to ensure that research goals can be achieve with minimal impact on project work. The constructors of large caverns should be particularly receptive to, and encouraging of geoscience research that could improve the engineering characterization of the rock mass. An improved understanding of the rock mass, as the host construction material, would result in a more reliable cavern design and construction process, and a reduced construction risk to the Project.
Pre-Nursing Students Perceptions of Traditional and Inquiry Based Chemistry Laboratories
NASA Astrophysics Data System (ADS)
Rogers, Jessica
This paper describes a process that attempted to meet the needs of undergraduate students in a pre-nursing chemistry class. The laboratory was taught in traditional verification style and students were surveyed to assess their perceptions of the educational goals of the laboratory. A literature review resulted in an inquiry based method and analysis of the needs of nurses resulted in more application based activities. This new inquiry format was implemented the next semester, the students were surveyed at the end of the semester and results were compared to the previous method. Student and instructor response to the change in format was positive. Students in the traditional format placed goals concerning technique above critical thinking and felt the lab was easy to understand and carry out. Students in the inquiry based lab felt they learned more critical thinking skills and enjoyed the independence of designing experiments and answering their own questions.
TARDIS: An Automation Framework for JPL Mission Design and Navigation
NASA Technical Reports Server (NTRS)
Roundhill, Ian M.; Kelly, Richard M.
2014-01-01
Mission Design and Navigation at the Jet Propulsion Laboratory has implemented an automation framework tool to assist in orbit determination and maneuver design analysis. This paper describes the lessons learned from previous automation tools and how they have been implemented in this tool. In addition this tool has revealed challenges in software implementation, testing, and user education. This paper describes some of these challenges and invites others to share their experiences.
A Comparison of Computational Cognitive Models: Agent-Based Systems Versus Rule-Based Architectures
2003-03-01
Java™ How To Program , Prentice Hall, 1999. Friedman-Hill, E., Jess, The Expert System Shell for the Java Platform, Sandia National Laboratories, 2001...transition from the descriptive NDM theory to a computational model raises several questions: Who is an experienced decision maker? How do you model the...progression from being a novice to an experienced decision maker? How does the model account for previous experiences? Are there situations where
Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors
2011-04-15
funded by Mitsubishi Electric Research Laboratories. †ICTEAM Institute, ELEN Department, Université catholique de Louvain (UCL), B-1348 Louvain-la-Neuve...reduced to a simple comparator that tests for values above or below zero, enabling extremely simple, efficient, and fast quantization. A 1-bit quantizer is...these two terms appears to be significantly different, according to the previously discussed experiments. To test the hypothesis that this term is the key
Discovering New Light States at Neutrino Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essig, Rouven; /SLAC; Harnik, Roni
2011-08-11
Experiments designed to measure neutrino oscillations also provide major opportunities for discovering very weakly coupled states. In order to produce neutrinos, experiments such as LSND collide thousands of Coulombs of protons into fixed targets, while MINOS and MiniBooNE also focus and then dump beams of muons. The neutrino detectors beyond these beam dumps are therefore an excellent arena in which to look for long-lived pseudoscalars or for vector bosons that kinetically mix with the photon. We show that these experiments have significant sensitivity beyond previous beam dumps, and are able to partially close the gap between laboratory experiments and supernovaemore » constraints on pseudoscalars. Future upgrades to the NuMI beamline and Project X will lead to even greater opportunities for discovery. We also discuss thin target experiments with muon beams, such as those available in COMPASS, and show that they constitute a powerful probe for leptophilic PNGBs.« less
Electrohydrodynamic Stability of a Liquid Bridge: The "ALEX" Experiment
NASA Technical Reports Server (NTRS)
Burcham, C. L.; Sanakaran, S.; Saville, D. A.
1999-01-01
To provide insight into the roles of electrical forces, experiments on the stability of a liquid bridge were carried out during the 1996 Life And Microgravity Science Mission on the space shuttle Columbia. In terrestrial laboratories a Plateau configuration (where the bridge is surrounded by a matched density liquid) is necessary to avoid deformation due to buoyancy. This complicates the electrical boundary conditions, since charge is transported across the liquid-liquid interface. In the microgravity environment, a cylindrical bridge can be deployed in a gas which considerably simplifies the boundary condition. Nevertheless, to provide a tie-in to terrestrial experiments, two-phase experiments were carried out. The agreement with previous work was excellent. Then several experiments were conducted with a bridge deployed in a dielectric gas, SF6. In experiments with steady fields, it was found that the bridge was less stable than predicted by a linearized stability analysis using the Taylor-Melcher leaky dielectric model.
Feature binding and attention in working memory: a resolution of previous contradictory findings.
Allen, Richard J; Hitch, Graham J; Mate, Judit; Baddeley, Alan D
2012-01-01
We aimed to resolve an apparent contradiction between previous experiments from different laboratories, using dual-task methodology to compare effects of a concurrent executive load on immediate recognition memory for colours or shapes of items or their colour-shape combinations. Results of two experiments confirmed previous evidence that an irrelevant attentional load interferes equally with memory for features and memory for feature bindings. Detailed analyses suggested that previous contradictory evidence arose from limitations in the way recognition memory was measured. The present findings are inconsistent with an earlier suggestion that feature binding takes place within a multimodal episodic buffer Baddeley, ( 2000 ) and support a subsequent account in which binding takes place automatically prior to information entering the episodic buffer Baddeley, Allen, & Hitch, ( 2011 ). Methodologically, the results suggest that different measures of recognition memory performance (A', d', corrected recognition) give a converging picture of main effects, but are less consistent in detecting interactions. We suggest that this limitation on the reliability of measuring recognition should be taken into account in future research so as to avoid problems of replication that turn out to be more apparent than real.
Homogeneous Freezing of Water Droplets and its Dependence on Droplet Size
NASA Astrophysics Data System (ADS)
Schmitt, Thea; Möhler, Ottmar; Höhler, Kristina; Leisner, Thomas
2014-05-01
The formulation and parameterisation of microphysical processes in tropospheric clouds, such as phase transitions, is still a challenge for weather and climate models. This includes the homogeneous freezing of supercooled water droplets, since this is an important process in deep convective systems, where almost pure water droplets may stay liquid until homogeneous freezing occurs at temperatures around 238 K. Though the homogeneous ice nucleation in supercooled water is considered to be well understood, recent laboratory experiments with typical cloud droplet sizes showed one to two orders of magnitude smaller nucleation rate coefficients than previous literature results, including earlier results from experiments with single levitated water droplets and from cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. This motivated us to re-analyse homogeneous droplet freezing experiments conducted during the previous years at the AIDA cloud chamber. This cloud chamber has a volume of 84m3 and operates under atmospherically relevant conditions within wide ranges of temperature, pressure and humidity, whereby investigations of both tropospheric mixed-phase clouds and cirrus clouds can be realised. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. According to our new results and their comparison to the results from single levitated droplet experiments, the homogeneous freezing of water droplets seems to be a volume-dependent process, at least for droplets as small as a few micrometers in diameter. A contribution of surface induced freezing can be ruled out, in agreement to previous conclusions from the single droplet experiments. The obtained volume nucleation rate coefficients are in good agreement, within error bars, with some previous literature data, including our own results from earlier AIDA experiments, but they do not agree with recently published lower volume nucleation rate coefficients. This contribution will show the results from the re-analysis of AIDA homogeneous freezing experiments with pure water droplets and will discuss the comparison to the literature data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whizin, Akbar D.; Colwell, Joshua E.; Blum, Jürgen, E-mail: Akbar.Whizin@ucf.edu
2017-02-10
We performed laboratory experiments colliding 0.8–1.0 mm and 1.0–1.6 mm SiO{sub 2} dust aggregates with loosely bound centimeter-sized agglomerates of those aggregates in microgravity. This work builds on previous microgravity laboratory experiments examining the collisional properties of porous loosely bound dust aggregates. In centimeter-sized aggregates, surface forces dominate self-gravity and may play a large role in aggregate growth beyond this size range. We characterize the properties of protoplanetary aggregate analogs to help place constraints on initial formation mechanisms and environments. We determined several important physical characteristics of these aggregates in a large number of low-velocity collisions. We observed low coefficientsmore » of restitution and fragmentation thresholds near 1 m s{sup −1} for 1–2 cm agglomerates, which are in good agreement with previous findings in the literature. We find the accretion efficiency for agglomerates of loosely bound aggregates to be higher than that for just aggregates themselves. We find sticking thresholds of 6.6 ± 2 cm s{sup −1}, somewhat higher than those in similar studies, which have observed few aggregates stick at speeds of under 3 cm s{sup −1}. Even with highly dissipative collisions, loosely bound agglomerates have difficulty accreting beyond centimeter-sized bodies at typical collision speeds in the disk. Our results indicate agglomerates of porous aggregates have slightly higher sticking thresholds than previously thought, allowing possible growth to decimeter-sized bodies if velocities are low enough.« less
O'Malley, Shannon; Besner, Derek
2013-07-01
No one would argue with the proposition that how we process events in the world is strongly affected by our experience. Nonetheless, recent experience (e.g., from the previous trial) is typically not considered in the analysis of timed cognitive performance in the laboratory. Masson and Kliegl (2013) reported that, in the context of the lexical decision task, the nature of the previous trial strongly modulates the joint effects of word frequency and stimulus quality-a joint effect that is widely reported to be additive when averaged over trial history. In particular, their analysis suggests there may be no genuine additivity of these factors. Here we extended this line of investigation by reanalyzing data reported by O'Malley and Besner (2008) in which subjects read words and nonwords aloud, with word frequency and stimulus quality as manipulated factors. These factors are additive on reaction time in the standard analysis of variance. Contrary to Masson and Kliegl's finding for lexical decision, when previous trial history is taken into consideration, these 2 factors still do not interact. This suggests that, at least in the context of reading aloud, previous trial does not modulate how the effects of these 2 factors combine. Some implications are briefly noted. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Introducing Clicker Training as a Cognitive Enrichment for Laboratory Mice.
Leidinger, Charlotte; Herrmann, Felix; Thöne-Reineke, Christa; Baumgart, Nadine; Baumgart, Jan
2017-03-06
Establishing new refinement strategies in laboratory animal science is a central goal in fulfilling the requirements of Directive 2010/63/EU. Previous research determined a profound impact of gentle handling protocols on the well-being of laboratory mice. By introducing clicker training to the keeping of mice, not only do we promote the amicable treatment of mice, but we also enable them to experience cognitive enrichment. Clicker training is a form of positive reinforcement training using a conditioned secondary reinforcer, the "click" sound of a clicker, which serves as a time bridge between the strengthened behavior and an upcoming reward. The effective implementation of the clicker training protocol with a cohort of 12 BALB/c inbred mice of each sex proved to be uncomplicated. The mice learned rather quickly when challenged with tasks of the clicker training protocol, and almost all trained mice overcame the challenges they were given (100% of female mice and 83% of male mice). This study has identified that clicker training for mice strongly correlates with reduced fear in the mice during human-mice interactions, as shown by reduced anxiety-related behaviors (e.g., defecation, vocalization, and urination) and fewer depression-like behaviors (e.g., floating). By developing a reliable protocol that can be easily integrated into the daily routine of the keeping of laboratory mice, the lifetime experience of welfare in the mice can be improved substantially.
Automated Microbial Metabolism Laboratory
NASA Technical Reports Server (NTRS)
1971-01-01
The effect of several environmental parameters on previously developed life detection systems is explored. Initial attempts were made to conduct all the experiments in a moist mode (high soil volume to water volume ratio). However, only labeled release and measurement of ATP were found to be feasible under conditions of low moisture. Therefore, these two life detection experiments were used for most of the environmental effects studies. Three soils, Mojave (California desert), Wyaconda (Maryland, sandy loam) and Victoria Valley (Antarctic desert) were generally used throughout. The environmental conditions studied included: incubation temperature 3 C to 80 C, ultraviolet irradiation of soils, variations in soil/liquid ratio, specific atmospheric gases, various antimetabolites, specific substrates, and variation in pH. An experiment designed to monitor nitrogen metabolism was also investigated.
The National Ignition Facility: Transition to a User Facility
NASA Astrophysics Data System (ADS)
Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.
2016-03-01
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.
NASA Astrophysics Data System (ADS)
Liu, S. K.; Yue, Q.; Kang, K. J.; Cheng, J. P.; Wong, H. T.; Li, Y. J.; Li, H. B.; Lin, S. T.; Chang, J. P.; Chen, J. H.; Chen, N.; Chen, Q. H.; Chen, Y. H.; Deng, Z.; Du, Q.; Gong, H.; He, H. J.; He, Q. J.; Huang, H. X.; Jiang, H.; Li, J. M.; Li, J.; Li, J.; Li, X.; Li, X. Q.; Li, X. Y.; Li, Y. L.; Lin, F. K.; Lü, L. C.; Ma, H.; Ma, J. L.; Mao, S. J.; Qin, J. Q.; Ren, J.; Ren, J.; Ruan, X. C.; Sharma, V.; Shen, M. B.; Singh, L.; Singh, M. K.; Soma, A. K.; Su, J.; Tang, C. J.; Wang, J. M.; Wang, L.; Wang, Q.; Wu, S. Y.; Wu, Y. C.; Wu, Y. C.; Xianyu, Z. Z.; Xiao, R. Q.; Xing, H. Y.; Xu, F. Z.; Xu, Y.; Xu, X. J.; Xue, T.; Yang, C. W.; Yang, L. T.; Yang, S. W.; Yi, N.; Yu, C. X.; Yu, H.; Yu, X. Z.; Zeng, X. H.; Zeng, Z.; Zhang, L.; Zhang, Y. H.; Zhao, M. G.; Zhao, W.; Zhou, Z. Y.; Zhu, J. J.; Zhu, W. B.; Zhu, X. Z.; Zhu, Z. H.; CDEX Collaboration
2017-03-01
We report the results of searches for solar axions and galactic dark matter axions or axionlike particles with the CDEX-1 experiment at the China Jinping Underground Laboratory, using 335.6 kg days of data from a p -type point-contact germanium detector. The data are compatible with the background model, and no excess signals are observed. Limits of solar axions on the model-independent coupling gA e<2.5 ×10-11 from Compton, bremsstrahlung, atomic-recombination, and deexcitation channels and gAN eff×gA e<6.4 ×10-17 from a 57Fe M1 transition at 90% confidence level are derived. Within the framework of the Dine-Fischler-Srednicki-Zhitnitskiy and Kim-Shifman-Vainshtein-Zakharov models, our results exclude the axion mass heavier than 0.9 and 177 eV /c2 , respectively. The derived constraints for dark matter axions below 1 keV improve over the previous results.
Cellular telephone use during free-living walking significantly reduces average walking speed.
Barkley, Jacob E; Lepp, Andrew
2016-03-31
Cellular telephone (cell phone) use decreases walking speed in controlled laboratory experiments and there is an inverse relationship between free-living walking speed and heart failure risk. The purpose of this study was to examine the impact of cell phone use on walking speed in a free-living environment. Subjects (n = 1142) were randomly observed walking on a 50 m University campus walkway. The time it took each subject to walk 50 m was recorded and subjects were coded into categories: cell phone held to the ear (talking, n = 95), holding and looking at the cell phone (texting, n = 118), not visibly using the cell phone (no use, n = 929). Subjects took significantly (p < 0.001) longer traversing the walkway when talking (39.3 s) and texting (37.9 s) versus no use (35.3 s). As was the case with the previous laboratory experiments, cell phone use significantly reduces average speed during free-living walking.
Low order physical models of vertical axis wind turbines
NASA Astrophysics Data System (ADS)
Craig, Anna; Dabiri, John; Koseff, Jeffrey
2016-11-01
In order to examine the ability of low-order physical models of vertical axis wind turbines to accurately reproduce key flow characteristics, experiments were conducted on rotating turbine models, rotating solid cylinders, and stationary porous flat plates (of both uniform and non-uniform porosities). From examination of the patterns of mean flow, the wake turbulence spectra, and several quantitative metrics, it was concluded that the rotating cylinders represent a reasonably accurate analog for the rotating turbines. In contrast, from examination of the patterns of mean flow, it was found that the porous flat plates represent only a limited analog for rotating turbines (for the parameters examined). These findings have implications for both laboratory experiments and numerical simulations, which have previously used analogous low order models in order to reduce experimental/computational costs. NSF GRF and SGF to A.C; ONR N000141211047 and the Gordon and Betty Moore Foundation Grant GBMF2645 to J.D.; and the Bob and Norma Street Environmental Fluid Mechanics Laboratory at Stanford University.
X-ray burst studies with the JENSA gas jet target
NASA Astrophysics Data System (ADS)
Schmidt, Konrad; Chipps, Kelly A.; Ahn, Sunghoon; Allen, Jacob M.; Ayoub, Sara; Bardayan, Daniel W.; Blackmon, Jeffrey C.; Blankstein, Drew; Browne, Justin; Cha, Soomi; Chae, Kyung YUK; Cizewski, Jolie; Deibel, Catherine M.; Deleeuw, Eric; Gomez, Orlando; Greife, Uwe; Hager, Ulrike; Hall, Matthew R.; Jones, Katherine L.; Kontos, Antonios; Kozub, Raymond L.; Lee, Eunji; Lepailleur, Alex; Linhardt, Laura E.; Matos, Milan; Meisel, Zach; Montes, Fernando; O'Malley, Patrick D.; Ong, Wei Jia; Pain, Steven D.; Sachs, Alison; Schatz, Hendrik; Schmitt, Kyle T.; Smith, Karl; Smith, Michael S.; Soares de Bem, Natã F.; Thompson, Paul J.; Toomey, Rebecca; Walter, David
2018-01-01
When a neutron star accretes hydrogen and helium from the outer layers of its companion star, thermonuclear burning enables the αp-process as a break out mechanism from the hot CNO cycle. Model calculations predict (α, p) reaction rates significantly affect both the light curves and elemental abundances in the burst ashes. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target enables the direct measurement of previously inaccessible (α,p) reactions with radioactive beams provided by the rare isotope re-accelerator ReA3 at the National Superconducting Cyclotron Laboratory (NSCL), USA. JENSA is going to be the main target for the Recoil Separator for Capture Reactions (SECAR) at the Facility for Rare Isotope Beams (FRIB). Commissioning of JENSA and first experiments at Oak Ridge National Laboratory (ORNL) showed a highly localized, pure gas target with a density of ˜1019 atoms per square centimeter. Preliminary results are presented from the first direct cross section measurement of the 34Ar(α, p)37 K reaction at NSCL.
Determination of Phosphorus in Cola Drinks
NASA Astrophysics Data System (ADS)
Lozano-Calero, Diego; Martìn-Palomeque, Pilar; Madueño-Lorguillo, Silvia
1996-12-01
Laboratory experiments can improve student interest in science. However, the contrary effect could occur if they are not well designed and seem tedious, too laborious, and disconnected from daily life. Cola beverages are one of the most widely consumed drinks and are most popular among students. Much attention is being paid to possible consequences of excessive consumption for human health. Intensive efforts are being made to assess the erosive potential for teeth because of the beverages' acidity (1, 2); adverse effects secondary to high caffeine intake (e.g., hypertension, allergic reactions, gastrointestinal disturbances) (3 - 5); and adverse effects on calcium metabolism due to their high phosphoric acid content, which combined with low dietary calcium intake could increase the risk of suffering from bone diseases (6 - 9). We propose here the quantification of the phosphorus content in this kind of drinks by a different procedure from that previously described by Murphy in this Journal (10). We think this laboratory experiment will seem very interesting to students.
NASA Technical Reports Server (NTRS)
Traub, W. A.
1984-01-01
The first physical demonstration of the principle of image reconstruction using a set of images from a diffraction-blurred elongated aperture is reported. This is an optical validation of previous theoretical and numerical simulations of the COSMIC telescope array (coherent optical system of modular imaging collectors). The present experiment utilizes 17 diffraction blurred exposures of a laboratory light source, as imaged by a lens covered by a narrow-slit aperture; the aperture is rotated 10 degrees between each exposure. The images are recorded in digitized form by a CCD camera, Fourier transformed, numerically filtered, and added; the sum is then filtered and inverse Fourier transformed to form the final image. The image reconstruction process is found to be stable with respect to uncertainties in values of all physical parameters such as effective wavelength, rotation angle, pointing jitter, and aperture shape. Future experiments will explore the effects of low counting rates, autoguiding on the image, various aperture configurations, and separated optics.
Affordable proteomics: the two-hybrid systems.
Gillespie, Marc
2003-06-01
Numerous proteomic methodologies exist, but most require a heavy investment in expertise and technology. This puts these approaches out of reach for many laboratories and small companies, rarely allowing proteomics to be used as a pilot approach for biomarker or target identification. Two proteomic approaches, 2D gel electrophoresis and the two-hybrid systems, are currently available to most researchers. The two-hybrid systems, though accommodating to large-scale experiments, were originally designed as practical screens, that by comparison to current proteomics tools were small-scale, affordable and technically feasible. The screens rapidly generated data, identifying protein interactions that were previously uncharacterized. The foundation for a two-hybrid proteomic investigation can be purchased as separate kits from a number of companies. The true power of the technique lies not in its affordability, but rather in its portability. The two-hybrid system puts proteomics back into laboratories where the output of the screens can be evaluated by researchers with experience in the particular fields of basic research, cancer biology, toxicology or drug development.
Laboratory Studies of Vibrational Relaxation: Important Insights for Mesospheric OH
NASA Astrophysics Data System (ADS)
Kalogerakis, K. S.; Matsiev, D.
2016-12-01
The hydroxyl radical has a key role in the chemistry and energetics of the Earth's middle atmosphere. A detailed knowledge of the rate constants and relevant pathways for OH(high v) vibrational relaxation by atomic and molecular oxygen and their temperature dependence is absolutely critical for understanding mesospheric OH and extracting reliable chemical heating rates from atmospheric observations. We have developed laser-based experimental approaches to study the complex collisional energy transfer processes involving the OH radical and other relevant atmospheric species. Previous work in our laboratory indicated that the total removal rate constant for OH(v = 9) + O at room temperature is more than one order of magnitude larger than that for removal by O2. Thus, O atoms are expected to significantly influence the intensity and vibrational distribution extracted from the Meinel OH(v) emissions. We will report our most recent laboratory experiments that corroborate the aforementioned result for fast OH(v = 9) + O and provide important new insights on the mechanistic pathways involved. We will also highlight relevant atmospheric implications, including warranted revisions of current mesospheric OH models. Research supported by SRI International Internal R&D and NSF Aeronomy grant AGS-1441896. Previously supported by NASA Geospace Science grant NNX12AD09G.
Results on decay with emission of two neutrinos or Majorons in Ge from GERDA Phase I
NASA Astrophysics Data System (ADS)
Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.
2015-09-01
A search for neutrinoless decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN (Italy). Processes with spectral indices were searched for. No signals were found and lower limits of the order of 10 yr on their half-lives were derived, yielding substantially improved results compared to previous experiments with Ge. A new result for the half-life of the neutrino-accompanied decay of Ge with significantly reduced uncertainties is also given, resulting in yr.
A new gun facility dedicated to performing shock physics and terminal ballistics experiments
NASA Astrophysics Data System (ADS)
Zakraysek, Alan J.; Sutherland, Gerrit T.; Sandusky, Harold D.; Strange, David
2000-04-01
A new building has been constructed to house various powder and single-stage and two-stage gas guns at the Naval Surface Warfare Center, Indian Head Division. Guns previously located at the Naval Research Laboratory and the former White Oak Site of the Naval Surface Warfare Center have been relocated here. Most of the guns are mounted on moveable pedestals to allow them to be shot into various chambers. The facility includes a concrete blast chamber, a target chamber/catch tank for flyer plate experiments, and a target chamber outfitted for terminal ballistics measurements. This paper will discuss the capabilities of this new facility.
Shock recovery of a magnesium-silicate spinelloid
NASA Astrophysics Data System (ADS)
Tschauner, O. D.; Asimow, P. D.; Ahrens, T. J.; Kostandova, N.
2009-12-01
Previously it was believed that some high pressure polymorphs (e.g. of framework silicates) form under shock via growth from shock-induced precursor microscopic melt zones. Since diffusion in the melt was assumed to control crystallization rates, absence of shock recovery of any of those minerals was attributed to the short duration of laboratory shock (0.1 to 1 microsecond) experiments. In contrast to laboratory experiments, grains of high pressure polymorphs of 1 - 100 micrometer diameter have been found in melt veins of shocked meteorites and were widely believed to have formed via diffusion-controlled growth that occurred over seconds to minute time scales. Recently we reported formation of wadsleyite from a shock-generated melt in a laboratory shock experiment by analysis of the recovery products [1]. The growth rate of wadsleyite crystals at the experimental temperature of 2000 to 3000 K was estimated to be several m/s suggesting that diffusion was not the dominant factor in this ultra-rapid crystal growth. Consequently, S6 shock events in chondrites may not always be related to long shock duration and large impactors. Here we report formation of another high-pressure magnesium silicate polymorph in a shock experiment. The starting materials for this 30 GPa shot was single-crystal synthetic forsterite in a NIST 1157 tool-steel chamber. The recovered material was analyzed by micro-Raman spectroscopy and by synchrotron-based micro-X ray diffraction. Diffraction experiments were conducted in Gandolfi-geometry at station B2, CHESS, using a MAR345 image plate detector and a primary beam of 25 keV energy. Melted regions of the sample contained a spinelloid isotypic to a magnesium-gallium germanate spinelloid synthesized at ambient pressure [2]. As in the previous study [1] we observe oxidation of iron from melted metal of the recovery chamber wall entrained by the silicate melt while silicon is partially reduced. The new high-pressure silicate may have formed at less than the peak pressure experienced by the sample. [1]: O.Tschauner, P.D. Asimow, N. Kostandova,T.J. Ahrens, C. Ma, S. Sinogeikin, Z. Liu, S. Fakra, N. Tamura, Proc. Nat. Acad. Sci. USA 106, 13691-5 (2009) , [2]: Barbier, J., Hyde, B.G.,Acta Cryst. B 43, 34-40 (1987).
Garrett, Teresa A; Osmundson, Joseph; Isaacson, Marisa; Herrera, Jennifer
2015-01-01
In traditional introductory biochemistry laboratory classes students learn techniques for protein purification and analysis by following provided, established, step-by-step procedures. Students are exposed to a variety of biochemical techniques but are often not developing procedures or collecting new, original data. In this laboratory module, students develop research skills through work on an original research project and gain confidence in their ability to design and execute an experiment while faculty can enhance their scholarly pursuits through the acquisition of original data in the classroom laboratory. Students are prepared for a 6-8 week discovery-driven project on the purification of the Escherichia coli cytidylate kinase (CMP kinase) through in class problems and other laboratory exercises on bioinformatics and protein structure analysis. After a minimal amount of guidance on how to perform the CMP kinase in vitro enzyme assay, SDS-PAGE, and the basics of protein purification, students, working in groups of three to four, develop a protein purification protocol based on the scientific literature and investigate some aspect of CMP kinase that interests them. Through this process, students learn how to implement a new but perhaps previously worked out procedure to answer their research question. In addition, they learn the importance of keeping a clear and thorough laboratory notebook and how to interpret their data and use that data to inform the next set of experiments. Following this module, students had increased confidence in their ability to do basic biochemistry techniques and reported that the "self-directed" nature of this lab increased their engagement in the project. © 2015 The International Union of Biochemistry and Molecular Biology.
Newingham, B.A.; Belnap, J.
2006-01-01
Bromus tectorum L. is a non-native, annual grass that has invaded western North America. In SE Utah, B. tectorum generally occurs in grasslands dominated by the native perennial grass, Hilaria jamesii (Torr.) Benth. and rarely where the natives Stipa hymenoides Roem. and Schult. and S. comata Trin. & Rupr. are dominant. This patchy invasion is likely due to differences in soil chemistry. Previous laboratory experiments investigated using soil amendments that would allow B. tectorum to germinate but would reduce B. tectorum emergence without affecting H. jamesii. For this study we selected the most successful treatments (CaCl2, MgCl2, NaCl and zeolite) from a previous laboratory study and applied them in the field in two different years at B. tectorum-dominated field sites. All amendments except the lowest level of CaCl2 and zeolite negatively affected B. tectorum emergence and/or biomass. No amendments negatively affected the biomass of H. jamesii but NaCl reduced emergence. Amendment effectiveness depended on year of application and the length of time since application. The medium concentration of zeolite had the strongest negative effect on B. tectorum with little effect on H. jamesii. We conducted a laboratory experiment to determine why zeolite was effective and found it released large amounts of Na+, adsorbed Ca2+, and increased Zn2+, Fe2+, Mn2+, Cu2+, exchangeable Mg2+, exchangeable K, and NH 4+ in the soil. Our results suggest several possible amendments to control B. tectorum. However, variability in effectiveness due to abiotic factors such as precipitation and soil type must be accounted for when establishing management plans. ?? Springer 2006.
NASA Astrophysics Data System (ADS)
Fedoseev, G.; Chuang, K.-J.; van Dishoeck, E. F.; Ioppolo, S.; Linnartz, H.
2016-08-01
The laboratory work presented here simulates the chemistry on icy dust grains as typical for the `CO freeze-out stage' in dark molecular clouds. It differs from previous studies in that solid-state hydrogenation and vacuum UV photoprocessing are applied simultaneously to co-depositing molecules. In parallel, the reactions at play are described for fully characterized laboratory conditions. The focus is on the formation of molecules containing both carbon and nitrogen atoms, starting with NO in CO-, H2CO-, and CH3OH-rich ices at 13 K. The experiments yield three important conclusions. (1) Without UV processing hydroxylamine (NH2OH) is formed, as reported previously. (2) With UV processing (energetic) NH2 is formed through photodissociation of NH2OH. This radical is key in the formation of species with an N-C bond. (3) The formation of three N-C bearing species, HNCO, OCN-, and NH2CHO, is observed. The experiments put a clear chemical link between these species; OCN- is found to be a direct derivative of HNCO and the latter is shown to have the same precursor as formamide (NH2CHO). Moreover, the addition of VUV competing channels decreases the amount of NO molecules converted into NH2OH by at least one order of magnitude. Consequently, this decrease in NH2OH formation yield directly influences the amount of NO molecules that can be converted into HNCO, OCN-, and NH2CHO.
Analytical Solution for Reactive Solute Transport Considering Incomplete Mixing
NASA Astrophysics Data System (ADS)
Bellin, A.; Chiogna, G.
2013-12-01
The laboratory experiments of Gramling et al. (2002) showed that incomplete mixing at the pore scale exerts a significant impact on transport of reactive solutes and that assuming complete mixing leads to overestimation of product concentration in bimolecular reactions. We consider here the family of equilibrium reactions for which the concentration of the reactants and the product can be expressed as a function of the mixing ratio, the concentration of a fictitious non reactive solute. For this type of reactions we propose, in agreement with previous studies, to model the effect of incomplete mixing at scales smaller than the Darcy scale assuming that the mixing ratio is distributed within an REV according to a Beta distribution. We compute the parameters of the Beta model by imposing that the mean concentration is equal to the value that the concentration assumes at the continuum Darcy scale, while the variance decays with time as a power law. We show that our model reproduces the concentration profiles of the reaction product measured in the Gramling et al. (2002) experiments using the transport parameters obtained from conservative experiments and an instantaneous reaction kinetic. The results are obtained applying analytical solutions both for conservative and for reactive solute transport, thereby providing a method to handle the effect of incomplete mixing on multispecies reactive solute transport, which is simpler than other previously developed methods. Gramling, C. M., C. F. Harvey, and L. C. Meigs (2002), Reactive transport in porous media: A comparison of model prediction with laboratory visualization, Environ. Sci. Technol., 36(11), 2508-2514.
Intercomparison of analytical methods for arsenic speciation in human urine.
Crecelius, E; Yager, J
1997-01-01
An intercomparison exercise was conducted for the quantification of arsenic species in spiked human urine. The primary objective of the exercise was to determine the variance among laboratories in the analysis of arsenic species such as inorganic As (As+3 and As+5), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Laboratories that participated had previous experience with arsenic speciation analysis. The results of this interlaboratory comparison are encouraging. There is relatively good agreement on the concentrations of these arsenic species in urine at concentrations that are relevant to research on the metabolism of arsenic in humans and other mammals. Both the accuracy and precision are relatively poor for arsenic concentrations of less than about 5 micrograms/l. PMID:9288500
Toxic Hazards Research Unit Annual Technical Report: 1975
1975-10-01
by different sampling rates 160 21 Particle size distribution curves 167 22 Effect of 03 or N02 concentrations on rat lung weight 177 23 Relationship...previously, consisted of female C57 black/6 mice obtained from Jackson Laboratories, male CDF (Fischer 344 derived) albino rats from Charles River...the exposure phase of the study but made at the conclusion of the 5 ppm and 0. 5 ppm experiments were: Blood urea nitrogen SGOT Chloride Prothrombin
Bartlow, Noel M.; Lockner, David A.; Beeler, Nicholas M.
2012-01-01
The physical mechanism by which the low-frequency earthquakes (LFEs) that make up portions of tectonic (also called non-volcanic) tremor are created is poorly understood. In many areas of the world, tectonic tremor and LFEs appear to be strongly tidally modulated, whereas ordinary earthquakes are not. Anomalous seismic wave speeds, interpreted as high pore fluid pressure, have been observed in regions that generate tremor. Here we build upon previous laboratory studies that investigated the response of stick-slip on artificial faults to oscillatory, tide-like loading. These previous experiments were carried out using room-dry samples of Westerly granite, at one effective stress. Here we augment these results with new experiments on Westerly granite, with the addition of varying effective stress using pore fluid at two pressures. We find that raising pore pressure, thereby lowering effective stress can significantly increase the degree of correlation of stick-slip to oscillatory loading. We also find other pore fluid effects that become important at higher frequencies, when the period of oscillation is comparable to the diffusion time of pore fluid into the fault. These results help constrain the conditions at depth that give rise to tidally modulated LFEs, providing confirmation of the effective pressure law for triggering and insights into why tremor is tidally modulated while earthquakes are at best only weakly modulated.
Learned helplessness in the rat: effect of response topography in a within-subject design.
dos Santos, Cristiano Valerio; Gehm, Tauane; Hunziker, Maria Helena Leite
2011-02-01
Three experiments investigated learned helplessness in rats manipulating response topography within-subject and different intervals between treatment and tests among groups. In Experiment 1, rats previously exposed to inescapable shocks were tested under an escape contingency where either jumping or nose poking was required to terminate shocks; tests were run either 1, 14 or 28 days after treatment. Most rats failed to jump, as expected, but learned to nose poke, regardless of the interval between treatment and tests and order of testing. The same results were observed in male and female rats from a different laboratory (Experiment 2) and despite increased exposure to the escape contingencies using a within-subject design (Experiment 3). Furthermore, no evidence of helplessness reversal was observed, since animals failed to jump even after having learned to nose-poke in a previous test session. These results are not consistent with a learned helplessness hypothesis, which claims that shock (un)controllability is the key variable responsible for the effect. They are nonetheless consistent with the view that inescapable shocks enhance control by irrelevant features of the relationship between the environment and behavior. Copyright © 2010 Elsevier B.V. All rights reserved.
Chaplin, Vernon H; Bellan, Paul M
2015-07-01
An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.
Memory skills mediating superior memory in a world-class memorist.
Ericsson, K Anders; Cheng, Xiaojun; Pan, Yafeng; Ku, Yixuan; Ge, Yi; Hu, Yi
2017-10-01
Laboratory studies have investigated how individuals with normal memory spans attained digit spans over 80 digits after hundreds of hours of practice. Experimental analyses of their memory skills suggested that their attained memory spans were constrained by the encoding time, for the time needed will increase if the length of digit sequences to be memorised becomes longer. These constraints seemed to be violated by a world-class memorist, Feng Wang (FW), who won the World Memory Championship by recalling 300 digits presented at 1 digit/s. In several studies we examined FW's memory skills underlying his exceptional performance. First FW reproduced his superior memory span of 200 digits under laboratory condition, and we obtained his retrospective reports describing his encoding/retrieval processes (Experiment 1). Further experiments used self-paced memorisation to identify temporal characteristics of encoding of digits in 4-digit clusters (Experiment 2), and explored memory encoding at presentation speeds much faster than 1 digit/s (Experiment 3). FW's superiority over previous digit span experts is explained by his acquisition of well-known mnemonic techniques and his training that focused on rapid memorisation. His memory performance supports the feasibility of acquiring memory skills for improved working memory based on storage in long-term memory.
DuBois, A M; Arnold, I; Thomas, E; Tejero, E; Amatucci, W E
2013-04-01
The Auburn Linear EXperiment for Instability Studies (ALEXIS) is a laboratory plasma physics experiment used to study spatially inhomogeneous flows in a magnetized cylindrical plasma column that are driven by crossed electric (E) and magnetic (B) fields. ALEXIS was recently upgraded to include a small, secondary plasma source for a new dual source, interpenetrating plasma experiment. Using two plasma sources allows for highly localized electric fields to be made at the boundary of the two plasmas, inducing strong E × B velocity shear in the plasma, which can give rise to a regime of instabilities that have not previously been studied in ALEXIS. The dual plasma configuration makes it possible to have independent control over the velocity shear and the density gradient. This paper discusses the recent addition of the secondary plasma source to ALEXIS, as well as the plasma diagnostics used to measure electric fields and electron densities.
Eight year experience in open ended instrumentation laboratory
NASA Astrophysics Data System (ADS)
Marques, Manuel B.; Rosa, Carla C.; Marques, Paulo V. S.
2015-10-01
When designing laboratory courses in a Physics Major we consider a range of objectives: teaching Physics; developing lab competencies; instrument control and data acquisition; learning about measurement errors and error propagation; an introduction to project management; team work skills and scientific writing. But nowadays we face pressure to decrease laboratory hours due to the cost involved. Many universities are replacing lab classes for simulation activities, hiring PhD. and master students to give first year lab classes, and reducing lab hours. This leads to formatted lab scripts and poor autonomy of the students, and failure to enhance creativity and autonomy. In this paper we present our eight year experience with a laboratory course that is mandatory in the third year of Physics and Physical Engineering degrees. Since the students had previously two standard laboratory courses, we focused on teaching instrumentation and giving students autonomy. The course is divided in two parts: one third is dedicated to learn computer controlled instrumentation and data acquisition (based in LabView); the final 2/3 is dedicated to a group project. In this project, the team (2 or 3 students) must develop a project and present it in a typical conference format at the end of the semester. The project assignments are usually not very detailed (about two or three lines long), giving only general guidelines pointing to a successful project (students often recycle objectives putting forward a very personal project); all of them require assembling some hardware. Due to our background, about one third of the projects are related to Optics.
Jezova, D; Hlavacova, N; Dicko, I; Solarikova, P; Brezina, I
2016-07-01
Repeated or chronic exposure to stressors is associated with changes in neuroendocrine responses depending on the type, intensity, number and frequency of stress exposure as well as previous stress experience. The aim of the study was to test the hypothesis that salivary cortisol and cardiovascular responses to real-life psychosocial stressors related to public performance can cross-adapt with responses to psychosocial stress induced by public speech under laboratory setting. The sample consisted of 22 healthy male volunteers, which were either actors, more precisely students of dramatic arts or non-actors, students of other fields. The stress task consisted of 15 min anticipatory preparation phase and 15 min of public speech on an emotionally charged topic. The actors, who were accustomed to public speaking, responded with a rise in salivary cortisol as well as blood pressure to laboratory public speech. The values of salivary cortisol, systolic blood pressure and state anxiety were lower in actors compared to non-actors. Unlike non-actors, subjects with experience in public speaking did not show stress-induced rise in the heart rate. Evaluation of personality traits revealed that actors scored significantly higher in extraversion than the subjects in the non-actor group. In conclusion, neuroendocrine responses to real-life stressors in actors can partially cross-adapt with responses to psychosocial stress under laboratory setting. The most evident adaptation was at the level of heart rate responses. The public speech tasks may be of help in evaluation of the ability to cope with stress in real life in artists by simple laboratory testing.
Clinical evaluation of music perception, appraisal and experience in cochlear implant users.
Drennan, Ward R; Oleson, Jacob J; Gfeller, Kate; Crosson, Jillian; Driscoll, Virginia D; Won, Jong Ho; Anderson, Elizabeth S; Rubinstein, Jay T
2015-02-01
The objectives were to evaluate the relationships among music perception, appraisal, and experience in cochlear implant users in multiple clinical settings and to examine the viability of two assessments designed for clinical use. Background questionnaires (IMBQ) were administered by audiologists in 14 clinics in the United States and Canada. The CAMP included tests of pitch-direction discrimination, and melody and timbre recognition. The IMBQ queried users on prior musical involvement, music listening habits pre and post implant, and music appraisals. One-hundred forty-five users of Advanced Bionics and Cochlear Ltd cochlear implants. Performance on pitch direction discrimination, melody recognition, and timbre recognition tests were consistent with previous studies with smaller cohorts, as well as with more extensive protocols conducted in other centers. Relationships between perceptual accuracy and music enjoyment were weak, suggesting that perception and appraisal are relatively independent for CI users. Perceptual abilities as measured by the CAMP had little to no relationship with music appraisals and little relationship with musical experience. The CAMP and IMBQ are feasible for routine clinical use, providing results consistent with previous thorough laboratory-based investigations.
Analysis of Precursor Properties of mixed Al/Alumel Cylindrical Wire Arrays*
NASA Astrophysics Data System (ADS)
Stafford, A.; Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Osborne, G. C.; Shlyaptseva, V. V.; Keim, S. F.; Coverdale, C. A.; Chuvatin, A. S.
2012-10-01
Previous studies of mid-Z (Cu and Ni) cylindrical wire arrays (CWAs) on Zebra have found precursors with high electron temperatures of >300 eV. However, past experiments with Al CWAs did not find the same high temperature precursors. New precursor experiments using mixed Al/Alumel (Ni 95%, Si 2%, and Al 2%) cylindrical wire arrays have been performed to understand how the properties of L-shell Ni precursor will change and whether Al precursor will be observed. Time gated spectra and pinholes are used to determine precursor plasma conditions for comparison with previous Alumel precursor experiments. A full diagnostic set which included more than ten different beam-lines was implemented. Future work in this direction is discussed. [4pt] *This work was supported by NNSA under DOE Cooperative Agreements DE-FC52-06NA27588, and in part by DE-FC52-06NA27586, and DE-FC52-06NA27616. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Warneke, C.; Schwarz, J. P.; Yokelson, R. J.; Roberts, J. M.; Koss, A.; Coggon, M.; Yuan, B.; Sekimoto, K.
2017-12-01
A combination of a warmer, drier climate with fire-control practices over the last century have produced a situation in which we can expect more frequent fires and fires of larger magnitude in the Western U.S. and Canada. There are urgent needs to better understand the impacts of wildfire and biomass burning (BB) on the atmosphere and climate system, and for policy-relevant science to aid in the process of managing fires. The FIREX (Fire Influence on Regional and Global Environment Experiment) research effort is a multi-year, multi-agency measurement campaign focused on the impact of BB on climate and air quality from western North American wild fires, where research takes place on scales ranging from the flame-front to the global atmosphere. FIREX includes methods development and small- and large-scale laboratory and field experiments. FIREX will include: emission factor measurements from typical North American fuels in the fire science laboratory in Missoula, Montana; mobile laboratory deployments; ground site measurements at sites influenced by BB from several western states. The main FIREX effort will be a large field study with multiple aircraft and mobile labs in the fire season of 2019. One of the main advances of FIREX is the availability of various new measurement techniques that allows for smoke evaluation in unprecedented detail. The first major effort of FIREX was the fire science laboratory measurements in October 2016, where a large number of previously understudied Nitrogen containing volatile organic compounds (NVOCs) were measured using H3O+CIMS and I-CIMS instruments. The contribution of NVOCs to the total reactive Nitrogen budget and the relationship to the Nitrogen content of the fuel are investigated.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1998-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments, entry probe radio signal absorption measurements, and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties taken under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. For example, laboratory measurements completed recently by Kolodner and Steffes (ICARUS 132, pp. 151-169, March 1998, attached as Appendix A) under this grant (NAGS-4190), have shown that the opacity from gaseous H2SO4 under simulated Venus conditions is best described by a different formalism than was previously used. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both spacecraft entry probe and orbiter radio occultation experiments and by radio astronomical observations, and over a range of frequencies which correspond to those used in such experiments, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.
Radiochemical Solar Neutrino Experiments - Successful and Otherwise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn,R.L.
2008-05-25
Over the years, several different radiochemical systems have been proposed as solar neutrino detectors. Of these, two achieved operating status and obtained important results that helped to define the current field of neutrino physics: the first solar-neutrino experiment, the Chlorine Detector ({sup 37}Cl) that was developed by chemist Raymond Davis and colleagues at the Homestake Mine, and the subsequent Gallium ({sup 71}Ga) Detectors that were operated by (a) the SAGE collaboration at the Baksan Laboratory and (b) the GALLEX/GNO collaborations at the Gran Sasso National Laboratory. These experiments have been extensively discussed in the literature and in many previous Internationalmore » Neutrino Conferences. In this paper, I present important updates to the results from SAGE and GALLEX/GNO. I also review the principles of the radiochemical detectors and briefly describe several different detectors that have been proposed. In light of the well-known successes that have been subsequently obtained by real-time neutrino detectors such as Kamiokande, Super-Kamiokande, SNO, and KamLAND, I do not anticipate that any new radiochemical neutrino detectors will be built. At present, only SAGE is still operating; the Chlorine and GNO radiochemical detectors have been decommissioned and dismantled.« less
Ito, Takeyasu M.; Adamek, E. R.; Callahan, N. B.; ...
2018-01-29
We report the ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN densitymore » measured at the exit of the biological shield was 184(32) UCN / cm 3, a fourfold increase from the highest previously reported. Finally, the polarized UCN density stored in an external chamber was measured to be 39(7) UCN / cm 3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(d n) = 3 × 10 -27 e cm.« less
Rocket and laboratory studies in astronomy
NASA Technical Reports Server (NTRS)
Feldman, Paul D.
1994-01-01
This report covers the period from September 1, 1993 to August 31, 1994. During the reporting period we launched the Faint Object Telescope to measure the absolute flux of a hot white dwarf star in the spectral range below 1200 A. This experiment was not successful due to a failure of an electronics unit in the onboard TV acquisition system. The source of the failure has been identified and corrected and is described in detail below. The payload was recovered in excellent condition and we are planning to refurbish it for flight during the November 1995 Australia campaign. We have continued our laboratory studies of the ultraviolet performance of charge-coupled-detector (CCD) arrays and plan to include a UV-sensitive CCD in a new payload that was assembled during the current period. The objective of the experiment is the ultraviolet imaging of Jupiter and we are scheduled to launch the payload, 36.115UG, in May-June 1995. We have also begun the design of a high-resolution FUV spectrograph for a future flight of the FOT and have just recently received a high line density grating fabricated by Jobin-Yvon, S.A. (France) for evaluation. Work has continued on the analysis of data from previous rocket experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Takeyasu M.; Adamek, E. R.; Callahan, N. B.
We report the ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN densitymore » measured at the exit of the biological shield was 184(32) UCN / cm 3, a fourfold increase from the highest previously reported. Finally, the polarized UCN density stored in an external chamber was measured to be 39(7) UCN / cm 3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(d n) = 3 × 10 -27 e cm.« less
Using the Computer as a Laboratory Instrument.
ERIC Educational Resources Information Center
Collings, Peter J.; Greenslade, Thomas B., Jr.
1989-01-01
Reports experiences during a two-year period in introducing the computer to the laboratory and students to the computer as a laboratory instrument. Describes a working philosophy, data acquisition system, and experiments. Summarizes the laboratory procedures of nine experiments, covering mechanics, heat, electromagnetism, and optics. (YP)
Point-of-care syndrome-based, rapid diagnosis of infections on commercial ships.
Bouricha, Mehdi; Samad, Marc Abdul; Levy, Pierre-Yves; Raoult, Didier; Drancourt, Michel
2014-01-01
Suspicion of contagious disease on commercial ships tends to be poorly managed, as there is little capacity to confirm a case on board except for malaria. Here we implemented a point-of-care (POC) laboratory on one container ship and one cruise ship for the rapid syndrome-based diagnosis of infectious diseases on board. In 2012 we implemented a POC laboratory on board a freight ship and on board a cruise ship. The POC laboratory ran a total of six different color-coded, syndrome-based kits incorporating 10 different commercially available immunochromatographic tests. The POC tests were taught within 1-hour as part of training to staff without any previous knowledge in microbiology. Compared with terrestrial POCs, specific constraints included the necessity to secure POC devices into the motile ship, to use robust devices, to overcome difficulties in communicating with the core laboratory, and to overcome limited intimacy of patients. However, a total of 36 POC tests were easily performed and yielded contributive negative results. This first experiment indicates that it is possible to run POC laboratories by nonexpert staff after providing rapid teaching course on board commercial ships. Generalization of on-board POC laboratories is expected to help in improving the medical management of staff and passengers. © 2013 International Society of Travel Medicine.
Development of guided inquiry-based laboratory worksheet on topic of heat of combustion
NASA Astrophysics Data System (ADS)
Sofiani, D.; Nurhayati; Sunarya, Y.; Suryatna, A.
2018-03-01
Chemistry curriculum reform shows an explicit shift from traditional approach to scientific inquiry. This study aims to develop a guided inquiry-based laboratory worksheet on topic of heat of combustion. Implementation of this topic in high school laboratory is new because previously some teachers only focused the experiment on determining the heat of neutralization. The method used in this study was development research consisted of three stages: define, design, and develop. In the define stage, curriculum analysis and material analysis were performed. In the design stage, laboratory optimization and product preparation were conducted. In the development stage, the product was evaluated by the experts and tested to a total of 20 eleventh-grade students. The instruments used in this study were assessment sheet and students’ response questionnaire. The assessment results showed that the guided inquiry-based laboratory worksheet has very good quality based on the aspects of content, linguistic, and graphics. The students reacted positively to the use of this guided inquiry-based worksheet as demonstrated by the results from questionnaire. The implications of this study is the laboratory activity should be directed to development of scientific inquiry skills in order to enhance students’ competences as well as the quality of science education.
Malhotra, Saurabh; Sobieraj, Diana M; Mann, April; Parker, Matthew W
2017-12-22
Background/Objectives: The specific credentials and continuing education (CME/CE) of nuclear cardiology laboratory medical and technical staff are important factors in the delivery of quality imaging services that have not been systematically evaluated. Methods: Nuclear cardiology accreditation application data from the Intersocietal Accreditation Commission (IAC) was used to characterize facilities performing myocardial perfusion imaging by setting, size, previous accreditation and credentials of the medical and technical staff. Credentials and CME/CE were compared against initial accreditation decisions (grant or delay) using multivariable logistic regression. Results: Complete data were available for 1913 nuclear cardiology laboratories from 2011-2014. Laboratories with initial positive accreditation decisions had a greater prevalence of Certification Board in Nuclear Cardiology (CBNC) certified medical directors and specialty credentialed technical directors. Certification and credentials of the medical and technical directors, respectively, staff CME/CE compliance, and assistance of a consultant with the application were positively associated with accreditation decisions. Conclusion: Nuclear cardiology laboratories directed by CBNC-certified physicians and NCT- or PET-credentialed technologists were less likely to receive delay decisions for MPI. CME/CE compliance of both the medical and technical directors was associated with accreditation decision. Medical and technical directors' years of experience were not associated with accreditation decision. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Exploratory study of the acceptance of two individual practical classes with remote labs
NASA Astrophysics Data System (ADS)
Tirado-Morueta, Ramón; Sánchez-Herrera, Reyes; Márquez-Sánchez, Marco A.; Mejías-Borrero, Andrés; Andujar-Márquez, José Manuel
2018-03-01
Remote lab experiences are proliferating in higher education, although there are still few studies that manage to build a theoretical framework for educational assessment and design of this technology. In order to explore to what extent the use of facilitators of proximity to the laboratory and the autonomy of the experiment makes remote laboratories a technology accepted by students, two remote labs different yet similar educational conditions in laboratories are used. A sample of 98 undergraduate students from a degree course in Energy Engineering was used for this study; 57 of these students ran experiments in a laboratory of electrical machines and 41 in a photovoltaic systems laboratory. The data suggest using conditions that facilitate the proximity of the laboratory and the autonomy in the realisation of the experiment; in both laboratories the experience was positively valued by the students. Also, data suggest that the types of laboratory and experiment have influences on usability - autonomy and lab proximity - perceived by students.
NASA Astrophysics Data System (ADS)
Kostadinova-Avramova, M.; Kovacheva, M.
2015-10-01
Archaeological baked clay remains provide valuable information about the geomagnetic field in historical past, but determination of the geomagnetic field characteristics, especially intensity, is often a difficult task. This study was undertaken to elucidate the reasons for unsuccessful intensity determination experiments obtained from two different Bulgarian archaeological sites (Nessebar - Early Byzantine period and Malenovo - Early Iron Age). With this aim, artificial clay samples were formed in the laboratory and investigated. The clay used for the artificial samples preparation differs according to its initial state. Nessebar clay was baked in the antiquity, but Malenovo clay was raw, taken from the clay deposit near the site. The obtained artificial samples were repeatedly heated eight times in known magnetic field to 700 °C. X-ray diffraction analyses and rock-magnetic experiments were performed to obtain information about the mineralogical content and magnetic properties of the initial and laboratory heated clays. Two different protocols were applied for the intensity determination-Coe version of Thellier and Thellier method and multispecimen parallel differential pTRM protocol. Various combinations of laboratory fields and mutual positions of the directions of laboratory field and carried thermoremanence were used in the performed Coe experiment. The obtained results indicate that the failure of this experiment is probably related to unfavourable grain sizes of the prevailing magnetic carriers combined with the chosen experimental conditions. The multispecimen parallel differential pTRM protocol in its original form gives excellent results for the artificial samples, but failed for the real samples (samples coming from previously studied kilns of Nessebar and Malenovo sites). Obviously the strong dependence of this method on the homogeneity of the used subsamples hinders its implementation in its original form for archaeomaterials. The latter are often heterogeneous due to variable heating conditions in the different parts of the archaeological structures. The study draws attention to the importance of multiple heating for the stabilization of grain size distribution in baked clay materials and the need of elucidation of this question.
Automation of Vapor-Diffusion Growth of Protein Crystals
NASA Technical Reports Server (NTRS)
Hamrick, David T.; Bray, Terry L.
2005-01-01
Some improvements have been made in a system of laboratory equipment developed previously for studying the crystallization of proteins from solution by use of dynamically controlled flows of dry gas. The improvements involve mainly (1) automation of dispensing of liquids for starting experiments, (2) automatic control of drying of protein solutions during the experiments, and (3) provision for automated acquisition of video images for monitoring experiments in progress and for post-experiment analysis. The automation of dispensing of liquids was effected by adding an automated liquid-handling robot that can aspirate source solutions and dispense them in either a hanging-drop or a sitting-drop configuration, whichever is specified, in each of 48 experiment chambers. A video camera of approximately the size and shape of a lipstick dispenser was added to a mobile stage that is part of the robot, in order to enable automated acquisition of images in each experiment chamber. The experiment chambers were redesigned to enable the use of sitting drops, enable backlighting of each specimen, and facilitate automation.
The role of tacit knowledge in the work context of nursing.
Herbig, B; Büssing, A; Ewert, T
2001-06-01
Previous research on the role of tacit knowledge is ambiguous. Some studies show the superiority of expertise, while other studies found experts would not be better than laymen. This paper aims at clarifying the contribution of tacit knowledge to expertise in the domain of nursing. Two important concepts for dealing with critical situations are outlined - tacit knowledge and experience-guided working. The framework of tacit knowledge and experience-guided working can contribute to an explanation of the ambiguous results. Tacit knowledge is acquired implicitly in the course of working and is therefore not subject to reflection. For this reason it can contain erroneous or problematic contents. A method for the explication of tacit knowledge was developed and a laboratory study with 16 experienced nurses conducted. In the laboratory study the nurses had to deal with a critical nursing situation that was developed in co-operation with nursing experts. The explicit knowledge of the nurses was tested before the laboratory study. No systematic differences in explicit knowledge could be observed, i.e. differences in performance could not be attributed to this knowledge mode. Results from multidimensional scaling procedures illustrate differences in the tacit knowledge of nurses who successfully accomplished the critical situation and those who did not. The findings are in line with the assumption that experience-guided working is of the utmost importance for dealing with critical situations. Consequences of these results for nursing and person-related services in general are discussed and the aim of future research is outlined.
Laboratory experiment on the 3D tide-induced Lagrangian residual current using the PIV technique
NASA Astrophysics Data System (ADS)
Chen, Yang; Jiang, Wensheng; Chen, Xu; Wang, Tao; Bian, Changwei
2017-12-01
The 3D structure of the tide-induced Lagrangian residual current was studied using the particle image velocimetry (PIV) technique in a long shallow narrow tank in the laboratory. At the mouth of the tank, a wave generator was used to make periodic wave which represents the tide movement, and at the head of the tank, a laterally sloping topography with the length of one fifth of the water tank was installed, above which the tide-induced Lagrangian residual current was studied. Under the weakly nonlinear condition in the present experiment setup, the results show that the Lagrangian residual velocity (LRV) field has a three-layer structure. The residual current flows inwards (towards the head) in the bottom layer and flows outwards in the middle layer, while in the surface layer, it flows inwards along the shallow side of the sloping topography and outwards along the deep side. The depth-averaged and breadth-averaged LRV are also analyzed based on the 3D LRV observations. Our results are in good agreement with the previous experiment studies, the analytical solutions with similar conditions and the observational results in real bays. Moreover, the volume flux comparison between the Lagrangian and Eulerian residual currents shows that the Eulerian residual velocity violates the mass conservation law while the LRV truly represents the inter-tidal water transport. This work enriches the laboratory studies of the LRV and offers valuable references for the LRV studies in real bays.
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Greco, E. V.
1973-01-01
The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.
The Gravity Recovery and Interior Laboratory mission
NASA Astrophysics Data System (ADS)
Lehman, D. H.; Hoffman, T. L.; Havens, G. G.
The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and Extended Mission in December 2012. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission used twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such as an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.
Madenijian, C.P.; David, S.R.; Krabbenhoft, D.P.
2012-01-01
Based on a laboratory experiment, we estimated the net trophic transfer efficiency of methylmercury to lake trout Salvelinus namaycush from its prey to be equal to 76.6 %. Under the assumption that gross trophic transfer efficiency of methylmercury to lake trout from its prey was equal to 80 %, we estimated that the rate at which lake trout eliminated methylmercury was 0.000244 day−1. Our laboratory estimate of methylmercury elimination rate was 5.5 times lower than the value predicted by a published regression equation developed from estimates of methylmercury elimination rates for fish available from the literature. Thus, our results, in conjunction with other recent findings, suggested that methylmercury elimination rates for fish have been overestimated in previous studies. In addition, based on our laboratory experiment, we estimated that the net trophic transfer efficiency of inorganic mercury to lake trout from its prey was 63.5 %. The lower net trophic transfer efficiency for inorganic mercury compared with that for methylmercury was partly attributable to the greater elimination rate for inorganic mercury. We also found that the efficiency with which lake trout retained either methylmercury or inorganic mercury from their food did not appear to be significantly affected by the degree of their swimming activity.
The Gravity Recovery and Interior Laboratory Mission
NASA Technical Reports Server (NTRS)
Lehman, David H.; Hoffman, Tom L.; Havens, Glen G.
2013-01-01
The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and is currently in Extended Mission operations. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission uses twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.
Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.
2014-01-01
Laboratory and in-stream enclosure experiments were used to determine whether rainbow trout Oncorhynchus mykiss influence survival of longnose dace Rhinichthys cataractae. In the laboratory, adult rainbow trout preyed on longnose dace in 42% of trials and juvenile rainbow trout did not prey on longnose dace during the first 6 h after rainbow trout introduction. Survival of longnose dace did not differ in the presence of adult rainbow trout previously exposed to active prey and those not previously exposed to active prey ( = 0.28, P = 0.60). In field enclosures, the number of longnose dace decreased at a faster rate in the presence of rainbow trout relative to controls within the first 72 h, but did not differ between moderate and high densities of rainbow trout (F2,258.9 = 3.73, P = 0.03). Additionally, longnose dace were found in 7% of rainbow trout stomachs after 72 h in enclosures. Rainbow trout acclimated to the stream for longer periods had a greater initial influence on the number of longnose dace remaining in enclosures relative to those acclimated for shorter periods regardless of rainbow trout density treatment (F4,148.5 = 2.50, P = 0.04). More research is needed to determine how predation rates will change in natural environments, under differing amounts of habitat and food resources and in the context of whole assemblages. However, if rainbow trout are introduced into the habitat of longnose dace, some predation on longnose dace is expected, even when rainbow trout have no previous experience with active prey.
Dickens, J C
1986-01-01
Behavioral responses of male and female boll weevils to the aggregation pheromone, grandlure, and the major volatile of cotton, β-bisabolol, were investigated using a new dual-choice olfactometer. Dosage-response experiments revealed both males and females to be attracted by the aggregation pheromone at the 1.0 μg dosage. However, only males were attracted to β-bisabolol (1.0 μg). Both sexes were repelled by the highest dosage ofβ-bisabolol tested (10 μg). In preference experiment, males chose grandlure over β-bisabolol, while both sexes chose the combination of grandlure + β-bisabolol over β-bisabolol alone. There was some evidence for synergism between pheromone and plant odor for the females. The results correlate well with previous electrophysiological and behavioral experiments.
NASA Technical Reports Server (NTRS)
1974-01-01
A number of general studies that were proposed for the PPEPL-SHUTTLE program are considered in qualitative detail from both the theoretical and practical points of view. The selection of experimental programs was restricted to those which may be considered active as opposed to refinements of the passive observational programs done previously. It is concluded that, while these new studies were scientifically worthwhile and could be performed in principle, in most cases insufficient attention was paid to the practical details of the experiments. Several specific areas of study, stressing in particular the practical feasibility of the proposed experiments, are recommended. In addition, recommendations are made for further theoretical study, where appropriate. For Vol. 1, see N74-28169; for Vol. 2, see N74-28170.
Commercialization of a DOE Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephenson, Barry A.
2008-01-15
On April 1, 1998, Materials and Chemistry Laboratory, Inc. (MCLinc) began business as an employee-owned, commercial, applied research laboratory offering services to both government and commercial clients. The laboratory had previously been a support laboratory to DoE's gaseous diffusion plant in Oak Ridge (K-25). When uranium enrichment was halted at the site, the laboratory was expanded to as an environmental demonstration center and served from 1992 until 1997 as a DOE Environmental User Facility. In 1997, after the laboratory was declared surplus, it was made available to the employee group who operated the laboratory for DOE as a government-owned, contractor-operatedmore » facility. This paper describes briefly the process of establishing the business. Attributes that contributed to the success of MCLinc are described. Some attention is given to lessons learned and to changes that could facilitate future attempts to make similar transitions. Lessons learnt: as with any business venture, operation over time has revealed that some actions taken by the laboratory founders have contributed to its successful operation while others were not so successful. Observations are offered in hopes that lessons learned may suggest actions that will facilitate future attempts to make similar transitions. First, the decision to vest significant ownership of the business in the core group of professionals operating the business is key to its success. Employee-owners of the laboratory have consistently provided a high level of service to its customers while conducting business in a cost-efficient manner. Secondly, an early decision to provide business support services in-house rather than purchasing them from support contractors on site have proven cost-effective. Laboratory employees do multiple tasks and perform overhead tasks in addition to their chargeable technical responsibilities. Thirdly, assessment of technical capabilities in view of market needs and a decision to offer these capabilities as a niche market play to success. The niche was further defined by preservation of the ability to handle samples contaminated with radiological materials and those with classification concerns. These decisions enabled early marketing plans to be built on existing clientele and provided an identifiable group to which future marketing could be expanded. Finally, recruitment of key players with commercial laboratory experience proved to be a key factor for success. This experience base was valuable in avoiding early mistakes in the laboratory startup phase and provided some connection to a commercial client base. As the business has grown, professionals with commercial laboratory experience have been recruited and offered ownership in the business as an incentive for joining the group. If the process were to be repeated, early involvement of an individual with commercial sales experience would be helpful in broadening the base of commercial clients. An increased emphasis on research funding such as funding received from Small Business Innovative Research (SBIR) sources would be used to form a portion of the economic base for the business. More partnerships with businesses whose services compliment those of the laboratory would expand available client base. More flexible staffing arrangements would be negotiated early on as a cost-control measure. In conclusion, the re-industrialization concept can be successful. Candidates for re-industrialization must be chosen by matching services to be offered to market needs. Implementation is best accomplished by entrepreneurs who personally profit from a successful operation of the business.« less
Effect of nacelle on wake meandering in a laboratory scale wind turbine using LES
NASA Astrophysics Data System (ADS)
Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis
2015-11-01
Wake meandering, large scale motion in the wind turbine wakes, has considerable effects on the velocity deficit and turbulence intensity in the turbine wake from the laboratory scale to utility scale wind turbines. In the dynamic wake meandering model, the wake meandering is assumed to be caused by large-scale atmospheric turbulence. On the other hand, Kang et al. (J. Fluid Mech., 2014) demonstrated that the nacelle geometry has a significant effect on the wake meandering of a hydrokinetic turbine, through the interaction of the inner wake of the nacelle vortex with the outer wake of the tip vortices. In this work, the significance of the nacelle on the wake meandering of a miniature wind turbine previously used in experiments (Howard et al., Phys. Fluid, 2015) is demonstrated with large eddy simulations (LES) using immersed boundary method with fine enough grids to resolve the turbine geometric characteristics. The three dimensionality of the wake meandering is analyzed in detail through turbulent spectra and meander reconstruction. The computed flow fields exhibit wake dynamics similar to those observed in the wind tunnel experiments and are analyzed to shed new light into the role of the energetic nacelle vortex on wake meandering. This work was supported by Department of Energy DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), and Sandia National Laboratories. Computational resources were provided by Sandia National Laboratories and the University of Minnesota Supercomputing.
2012-03-01
energy minimum as discussed in previous studies using latex particles (Franchi and O’Melia 2003) and carbon nanotubes (Jaisi et al. 2008). The fact...Walled Carbon Nanotubes in Porous Media: Filtration Mechanisms and Reversibility.” Environmental Science & Technology, 42, 8317-8323. Johnson, W. P...A similar observation was reported for carbonate -coated AgNP at acidic pH (Piccapietra et al. 2011). The concentration of total Ag in the effluent
2018-04-28
etc., should contain the following disclaimer statement for research involving animals , as required by AFMAN 40-401 IP : " The experiments reported...Laboratory Animals and the Animal Welfare Act of 1966, as amended.· 59 MOW FORM 3039, 20160628 Prescribed by 59 MDWI 41 -108 PREVIOUS EDITIONS ARE...HUMAN OR ANIMAL RESEARCH RELATED STUDIES WERE APPROVED AND PERFORMED IN STRICT ACCORDANCE WITH 32 CFR 219, AFMAN 40-401_1P, AND 59 MDWI 41-108. I
An Investigation of Nonuniform Dose Deposition From an Electron Beam
1994-08-01
to electron - beam pulse. Ceramic package HIPEC Lid Electron beam Die Bond wires TLD TLD Silver epoxy 6 package cavity die TLD’s 21 3 4 5 Figure 2...these apertures was documented in a previous experiment relating to HIFX electron -beam dosimetry .2 The hardware required for this setup was a 60-cm...impurity serves 2Gregory K. Ovrebo, Steven M. Blomquist, and Steven R. Murrill, A HIFX Electron -Beam Dosimetry System, Army Research Laboratory, ARL-TR
de Oca, Laura Montes; Pérez-Miles, Fernando
2013-01-01
We describe two new species of the nemesiid spider genus Chaco from Rocha Province, Uruguay. These new species are diagnosed based on genital morphology, male tibial apophysis spination, and burrow entrance. We test cospecificity of one species, Chaco costai,via laboratory mating experiments. The new species are diagnosed and illustrated and habitat characteristics, and capture behavior are described. We conduct a cladistic analysis based on a previously published morphological character matrix that now includes the newly described species.
Zalman, Cassandra A.; Meade, N.; Chanton, J.; Kostka, J. E.; Bridgham, S. D.; Keller, J. K.
2017-12-01
This study investigated the potential for methylotrophic methanogenesis in three Sphagnum-dominated peatland soils in northern Minnesota. Collected soils were amended with 13C-labeled traditional substrates (acetate and sodium bicarbonate/ H2) and methylated substrates (methanol, monomethylamine (“MMA”), dimethylsulfide (“DMS”)) and monitored for δ13C-CH4, δ 13C-CO2, and net CH4 and CO2 production in laboratory incubations. The peatlands included in the study were (1) the S1 Bog, home to the SPRUCE Experiment and located at the Marcell Experimental Forest (MEF, U.S. Forest Service), (2) Bog Lake Fen, also located at the MEF, and (3) Zim Bog. These sites have been described in detail previously (Medvedeff et al., 2015)
Results on the Performance of a Broad Band Focussing Cherenkov Counter
DOE R&D Accomplishments Database
Cester, R.; Fitch, V. L.; Montag, A.; Sherman, S.; Webb, R. C.; Witherell, M. S.
1980-01-01
The field of ring imaging (broad band differential) Cherenkov detectors has become a very active area of interest in detector development at several high energy physics laboratories. Our group has previously reported on a method of Cherenkov ring imaging for a counter with large momentum and angular acceptance using standard photo multipliers. Recently, we have applied this technique to the design of a set of Cherenkov counters for use in a particle search experiment at Fermi National Accelerator Laboratory (FNAL). This new detector operates over the range 0.998 < ..beta.. < 1.000 in velocity with a delta..beta.. approx. 2 x 10{sup -4}. The acceptance in angle is +- 14 mrad in the horizontal and +- 28 mrad in the vertical. We report here on the performance of this counter.
NASA Task Load Index (TLX). Volume 1.0; Paper and Pencil Package
NASA Technical Reports Server (NTRS)
Hart, Sandra G.
1986-01-01
This booklet contains the materials necessary to collect subjective workload assessments with the NASA Task Load Index. This procedure for collecting workload ratings was developed by the Human Performance Group at NASA Ames Research Center during a three year research effort that involved more than 40 laboratory. simulation. and inflight experiments. Although the technique is still undergoing evaluation. this booklet is being distributed to allow other researchers to use it in their own experiments. Comments or suggestions about the procedure would be greatly appreciated. This package is intended to fill a "nuts and bolts" function of describing the procedure. A bibliography provides background information about previous empirical findings and the logic that supports the procedure.
LUNA: Nuclear astrophysics underground
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, A.
Underground nuclear astrophysics with LUNA at the Laboratori Nazionali del Gran Sasso spans a history of 20 years. By using the rock overburden of the Gran Sasso mountain chain as a natural cosmic-ray shield very low signal rates compared to an experiment on the surface can be tolerated. The cross sectons of important astrophysical reactions directly in the stellar energy range have been successfully measured. In this proceeding we give an overview over the key accomplishments of the experiment and an outlook on its future with the expected addition of an additional accelerator to the underground facilities, enabling the coveragemore » of a wider energy range and the measurement of previously inaccessible reactions.« less
The NOL ballistic piston compressor 2: Operation up to 5,000 ATM
NASA Technical Reports Server (NTRS)
Hammond, G. L.; Lalos, G. T.
1971-01-01
Experiments are described which demonstrated the feasibility of rapidly compressing inert gases in a ballistic piston compressor to simultaneously high temperatures and densities previously unobtainable in the laboratory. With argon, temperatures of the order of 6000 K and accompanying densities of the order of 100 Amagats have been obtained; and with nitrogen, temperatures and densities of 3000 K and 400 Amagats have been approached. Details of the design, assembly, instrumentation, and operating procedures are presented, and the results of mechanical and thermal performance tests up to 5000 atmospheres pressure are described. Emphasis is placed on experiments which demonstrated the usefulness of this apparatus for spectral line broadening studies.
NASA Astrophysics Data System (ADS)
Bertrand, Marylène; Chabin, Annie; Colas, Cyril; Cadène, Martine; Chaput, Didier; Brack, Andre; Cottin, Herve
2015-01-01
In order to confirm the results of previous experiments concerning the chemical behaviour of organic molecules in the space environment, organic molecules (amino acids and a dipeptide) in pure form and embedded in meteorite powder were exposed in the AMINO experiment in the EXPOSE-R facility onboard the International Space Station. After exposure to space conditions for 24 months (2843 h of irradiation), the samples were returned to the Earth and analysed in the laboratory for reactions caused by solar ultraviolet (UV) and other electromagnetic radiation. Laboratory UV exposure was carried out in parallel in the Cologne DLR Center (Deutsches Zentrum für Luft und Raumfahrt). The molecules were extracted from the sample holder and then (1) derivatized by silylation and analysed by gas chromatography coupled to a mass spectrometer (GC-MS) in order to quantify the rate of degradation of the compounds and (2) analysed by high-resolution mass spectrometry (HRMS) in order to understand the chemical reactions that occurred. The GC-MS results confirm that resistance to irradiation is a function of the chemical nature of the exposed molecules and of the wavelengths of the UV light. They also confirm the protective effect of a coating of meteorite powder. The most altered compounds were the dipeptides and aspartic acid while the most robust were compounds with a hydrocarbon chain. The MS analyses document the products of reactions, such as decarboxylation and decarbonylation of aspartic acid, taking place after UV exposure. Given the universality of chemistry in space, our results have a broader implication for the fate of organic molecules that seeded the planets as soon as they became habitable as well as for the effects of UV radiation on exposed molecules at the surface of Mars, for example.
Characterizing potential water quality impacts from soils treated with dust suppressants.
Beighley, R Edward; He, Yiping; Valdes, Julio R
2009-01-01
Two separate laboratory experiment series, surface runoff and steady-state seepage, were performed to determine if dust suppressant products can be applied to soils with an expected minimal to no negative impact on water quality. The experiments were designed to mimic arid field conditions and used two soils (clayey and sandy) and six different dust suppressants. The two experiments consisted of: (i) simulated rainfall (intensities of 18, 33, or 61 mm h(-1)) and associated runoff from soil trays at a surface slope of 33%; and (ii) steady-state, constant head seepage through soil columns. Both experiment series involved two product application scenarios and three application ages (i.e., to account for degradation effects) for a total of 126 surface runoff and 80 column experiments. One composite effluent sample was collected from each experiment and analyzed for pH, electrical conductivity, total suspended solids (TSS), total dissolved solids, dissolved oxygen, total organic carbon, nitrate, nitrite, and phosphate. Paired t tests at 1 and 5% levels of significance and project specific data quality objectives are used to compare water quality parameters from treated and untreated soils. Overall, the results from this laboratory scale study suggest that the studied dust suppressants have minimal potential for adverse impacts to selected water quality parameters. The primary impacts were increased TSS for two synthetic products from the surface runoff experiments on both soils. The increase in TSS was not expected based on previous studies and may be attributed to this study's focus on simulating real-world soil agitation/movement at an active construction site subjected to rough grading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzoleni, Claudio; Subramanian, R.
2016-08-31
Over the course of this project, we have analyzed data and samples from the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the Clear air for London (ClearfLo) campaign, as well as conducted or participated in laboratory experiments designed to better understand black carbon mixing state and climate-relevant properties. The laboratory campaigns took place at the Pacific Northwest National Laboratory and Carnegie Mellon University to study various climate-relevant aerosol properties of different sources of soot mixing with secondary organic aerosol precursors. Results from some of these activities were summarized in the previous progress report. This final report presents the manuscriptsmore » that have been published (many in the period since the last progress report), lists presentations at different conferences based on grant-related activities, and presents some results that are likely to be submitted for publication in the near future.« less
History of the preanalytical phase: a personal view
Guder, Walter G.
2014-01-01
In the 70ies of the last century, ther term “preanalytical phase” was introduced in the literature. This term describes all actions and aspects of the “brain to brain circle” of the medical laboratory diagnostic procedure happening before the analytical phase. The author describes his personal experiences in the early seventies and the following history of increasing awareness of this phase as the main cause of “laboratory errors”. This includes the definitions of influence and interference factors as well as the first publications in book, internet, CD-Rom and recent App form over the past 40 years. In addition, a short summary of previous developments as prerequesits of laboratory diagnostic actions is described from the middle age matula for urine collection to the blood collection tubes, anticoagulants and centrifuges. The short review gives a personal view on the possible causes of missing awareness of preanalytical causes of error and future aspects of new techniques in regulation of requests to introduction of quality assurance programs for preanalytical factors. PMID:24627712
The chemistry teaching laboratory: The student perspective
NASA Astrophysics Data System (ADS)
Polles, John Steven
In this study, I investigated the Student/learner's experiences in the chemistry teaching laboratory and the meaning that she or he derived from these experiences. This study sought to answer these questions: (1) What was the students experience in the teaching laboratory?, (2) What aspects of the laboratory experience did the student value?, and (3) What beliefs did the student hold concerning the role of the laboratory experience in developing her or his understanding of chemistry? Students involved in an introductory chemistry course at Purdue University were asked to complete a two-part questionnaire consisting of 16 scaled response and 5 free response items, and 685 did so. Fourteen students also participated in a semi-structured individual interview. The questionnaire and interview were designed to probe the students' perceived experience and answer the above questions. I found that students possess strong conceptions of the laboratory experience: a pre-conception that colors their experience from the outset, and a post-conception that is a mix of positive and negative reflections. I also found that the learner deeply holds an implicit value in the laboratory experience. The other major finding was that the students' lived experience is dramatically shaped or influenced by external agencies, primarily the faculty (and by extension the teaching assistants). There is much debate in the extant literature over the learning value of the science teaching laboratory, but it is all from the perspective of faculty, curriculum designers, and administrators. This study adds the students' voice to the argument.
Perchlorate radiolysis on Mars and the origin of martian soil reactivity.
Quinn, Richard C; Martucci, Hana F H; Miller, Stephanie R; Bryson, Charles E; Grunthaner, Frank J; Grunthaner, Paula J
2013-06-01
Results from the Viking biology experiments indicate the presence of reactive oxidants in martian soils that have previously been attributed to peroxide and superoxide. Instruments on the Mars Phoenix Lander and the Mars Science Laboratory detected perchlorate in martian soil, which is nonreactive under the conditions of the Viking biology experiments. We show that calcium perchlorate exposed to gamma rays decomposes in a CO2 atmosphere to form hypochlorite (ClO(-)), trapped oxygen (O2), and chlorine dioxide (ClO2). Our results show that the release of trapped O2 (g) from radiation-damaged perchlorate salts and the reaction of ClO(-) with amino acids that were added to the martian soils can explain the results of the Viking biology experiments. We conclude that neither hydrogen peroxide nor superoxide is required to explain the results of the Viking biology experiments.
Signal processing of anthropometric data
NASA Astrophysics Data System (ADS)
Zimmermann, W. J.
1983-09-01
The Anthropometric Measurements Laboratory has accumulated a large body of data from a number of previous experiments. The data is very noisy, therefore it requires the application of some signal processing schemes. Moreover, it was not regarded as time series measurements but as positional information; hence, the data is stored as coordinate points as defined by the motion of the human body. The accumulated data defines two groups or classes. Some of the data was collected from an experiment designed to measure the flexibility of the limbs, referred to as radial movement. The remaining data was collected from experiments designed to determine the surface of the reach envelope. An interactive signal processing package was designed and implemented. Since the data does not include time this package does not include a time series element. Presently the results is restricted to processing data obtained from those experiments designed to measure flexibility.
Signal processing of anthropometric data
NASA Technical Reports Server (NTRS)
Zimmermann, W. J.
1983-01-01
The Anthropometric Measurements Laboratory has accumulated a large body of data from a number of previous experiments. The data is very noisy, therefore it requires the application of some signal processing schemes. Moreover, it was not regarded as time series measurements but as positional information; hence, the data is stored as coordinate points as defined by the motion of the human body. The accumulated data defines two groups or classes. Some of the data was collected from an experiment designed to measure the flexibility of the limbs, referred to as radial movement. The remaining data was collected from experiments designed to determine the surface of the reach envelope. An interactive signal processing package was designed and implemented. Since the data does not include time this package does not include a time series element. Presently the results is restricted to processing data obtained from those experiments designed to measure flexibility.
Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells
Akopian, Veronika; Beil, Stephen; Benvenisty, Nissim; Brehm, Jennifer; Christie, Megan; Ford, Angela; Fox, Victoria; Gokhale, Paul J.; Healy, Lyn; Holm, Frida; Hovatta, Outi; Knowles, Barbara B.; Ludwig, Tenneille E.; McKay, Ronald D. G.; Miyazaki, Takamichi; Nakatsuji, Norio; Oh, Steve K. W.; Pera, Martin F.; Rossant, Janet; Stacey, Glyn N.; Suemori, Hirofumi
2010-01-01
There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support, but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study, five separate laboratories, each with experience in human embryonic stem cell culture, used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods, with propagation in the presence of Knockout Serum Replacer, FGF-2, and mouse embryonic fibroblast feeder cell layers serving as a positive control. The cultures were assessed for up to ten passages for attachment, death, and differentiated morphology by phase contrast microscopy, for growth by serial cell counts, and for maintenance of stem cell surface marker expression by flow cytometry. Of the eight culture systems, only the control and those based on two commercial media, mTeSR1 and STEMPRO, supported maintenance of most cell lines for ten passages. Cultures grown in the remaining media failed before this point due to lack of attachment, cell death, or overt cell differentiation. Possible explanations for relative success of the commercial formulations in this study, and the lack of success with other formulations from academic groups compared to previously published results, include: the complex combination of growth factors present in the commercial preparations; improved development, manufacture, and quality control in the commercial products; differences in epigenetic adaptation to culture in vitro between different ES cell lines grown in different laboratories. PMID:20186512
NASA Astrophysics Data System (ADS)
Gatlin, Todd Adam
Graduate teaching assistants (GTAs) play a prominent role in chemistry laboratory instruction at research based universities. They teach almost all undergraduate chemistry laboratory courses. However, their role in laboratory instruction has often been overlooked in educational research. Interest in chemistry GTAs has been placed on training and their perceived expectations, but less attention has been paid to their experiences or their potential benefits from teaching. This work was designed to investigate GTAs' experiences in and benefits from laboratory instructional environments. This dissertation includes three related studies on GTAs' experiences teaching in general chemistry laboratories. Qualitative methods were used for each study. First, phenomenological analysis was used to explore GTAs' experiences in an expository laboratory program. Post-teaching interviews were the primary data source. GTAs experiences were described in three dimensions: doing, knowing, and transferring. Gains available to GTAs revolved around general teaching skills. However, no gains specifically related to scientific development were found in this laboratory format. Case-study methods were used to explore and illustrate ways GTAs develop a GTA self-image---the way they see themselves as instructors. Two general chemistry laboratory programs that represent two very different instructional frameworks were chosen for the context of this study. The first program used a cooperative project-based approach. The second program used weekly, verification-type activities. End of the semester interviews were collected and served as the primary data source. A follow-up case study of a new cohort of GTAs in the cooperative problem-based laboratory was undertaken to investigate changes in GTAs' self-images over the course of one semester. Pre-semester and post-semester interviews served as the primary data source. Findings suggest that GTAs' construction of their self-image is shaped through the interaction of 1) prior experiences, 2) training, 3) beliefs about the nature of knowledge, 4) beliefs about the nature of laboratory work, and 5) involvement in the laboratory setting. Further GTAs' self-images are malleable and susceptible to change through their laboratory teaching experiences. Overall, this dissertation contributes to chemistry education by providing a model useful for exploring GTAs' development of a self-image in laboratory teaching. This work may assist laboratory instructors and coordinators in reconsidering, when applicable, GTA training and support. This work also holds considerable implications for how teaching experiences are conceptualized as part of the chemistry graduate education experience. Findings suggest that appropriate teaching experiences may contribute towards better preparing graduate students for their journey in becoming scientists.
Feasibility Assessment of CO2 Sequestration and Enhanced Recovery in Gas Shale Reservoirs
NASA Astrophysics Data System (ADS)
Vermylen, J. P.; Hagin, P. N.; Zoback, M. D.
2008-12-01
CO2 sequestration and enhanced methane recovery may be feasible in unconventional, organic-rich, gas shale reservoirs in which the methane is stored as an adsorbed phase. Previous studies have shown that organic-rich, Appalachian Devonian shales adsorb approximately five times more carbon dioxide than methane at reservoir conditions. However, the enhanced recovery and sequestration concept has not yet been tested for gas shale reservoirs under realistic flow and production conditions. Using the lessons learned from previous studies on enhanced coalbed methane (ECBM) as a starting point, we are conducting laboratory experiments, reservoir modeling, and fluid flow simulations to test the feasibility of sequestration and enhanced recovery in gas shales. Our laboratory work investigates both adsorption and mechanical properties of shale samples to use as inputs for fluid flow simulation. Static and dynamic mechanical properties of shale samples are measured using a triaxial press under realistic reservoir conditions with varying gas saturations and compositions. Adsorption is simultaneously measured using standard, static, volumetric techniques. Permeability is measured using pulse decay methods calibrated to standard Darcy flow measurements. Fluid flow simulations are conducted using the reservoir simulator GEM that has successfully modeled enhanced recovery in coal. The results of the flow simulation are combined with the laboratory results to determine if enhanced recovery and CO2 sequestration is feasible in gas shale reservoirs.
Ettarh, Rajunor
2016-05-06
Significant changes have been implemented in the way undergraduate medical education is structured. One of the challenges for component courses such as histology in medical and dental curricula is to restructure and deliver training within new frameworks. This article describes the process of aligning the purpose and experience in histology laboratory to the goal of applying knowledge gained to team-based medical practice at Tulane University School of Medicine. Between 2011 and 2015, 711 medical students took either a traditional laboratory-based histology course (353 students) or a team-based hybrid histology course with active learning in laboratory (358 students). The key difference was in the laboratory component of the hybrid course - interactive table conferences in histology-during which students developed new competencies by working in teams, reviewing images, solving problems by applying histology concepts, and sharing learning. Content, faculty and online resources for microscopy were the same in both courses. More student-student and student-faculty interactions were evident during the hybrid course but student evaluation ratings and grades showed reductions following introduction of table conferences when compared to previous ratings. However, outcomes at National Board of Medical Examiners(®) (NBME(®) ) Subject Examination in Histology and Cell Biology showed significant improvement (72.4 ± 9.04 and 76.44 ± 9.36 for percent correct answers, traditional and hybrid courses, respectively, P < 0.0001). This model of table conferences to augment the traditional histology laboratory experience exemplifies the extent that restructuring enhancements can be used in currently taught courses in the undergraduate medical curriculum. Anat Sci Educ 9: 286-294. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.
Developing an online chemistry laboratory for non-chemistry majors
NASA Astrophysics Data System (ADS)
Poole, Jacqueline H.
Distance education, also known as online learning, is student-centered/self-directed educational opportunities. This style of learning is expanding in scope and is increasingly being accepted throughout the academic curriculum as a result of its flexibility for the student as well as the cost-effectiveness for the institution. Nevertheless, the introduction of online science courses including chemistry and physics have lagged behind due to the challenge of re-creation of the hands-on laboratory learning experience. This dissertation looks at the effectiveness of the design of a series of chemistry laboratory experiments for possible online delivery that provide students with simulated hands-on experiences. One class of college Chemistry 101 students conducted chemistry experiments inside and outside of the physical laboratory using instructions on Blackboard and Late Nite Labs(TM). Learning outcomes measured by (a) pretests, (b) written laboratory reports, (c) posttest assessments, (d) student reactions as determined by a questionnaire, and (e) a focus group interview were utilized to compare both types of laboratory experiences. The research findings indicated learning outcomes achieved by students outside of the traditional physical laboratory were statistically greater than the equivalent face-to-face instruction in the traditional laboratory. Evidence from student reactions comparing both types of laboratory formats (online and traditional face-to-face) indicated student preference for the online laboratory format. The results are an initial contribution to the design of a complete sequence of experiments that can be performed independently by online students outside of the traditional face-to-face laboratory that will satisfy the laboratory requirement for the two-semester college Chemistry 101 laboratory course.
Deep Atmosphere Ammonia Mixing Ratio at Jupiter from the Galileo Probe Mass Spectrometer
NASA Technical Reports Server (NTRS)
Mahaffy, P. R.; Niemann, H. B.; Demick, J. E.
1999-01-01
New laboratory studies employing the Engineering Unit (EU) of the Galileo Probe Mass Spectrometer (GPMS) have resulted in a substantial reduction in the previously reported upper limit on the ammonia mixing ratio derived from the GPMS experiment at Jupiter. This measurement is complicated by background ammonia contributions in the GPMS during direct atmospheric sampling produced from the preceding gas enrichment experiments. These backgrounds can be quantified with the data from the EU studies when they are carried out in a manner that duplicates the descent profile of pressure and enrichment cell loading. This background is due to the tendency of ammonia to interact strongly with the walls of the mass spectrometer and on release to contribute to the gas being directly directed into the ion source from the atmosphere through a capillary pressure reduction leak. It is evident from the GPMS and other observations that the mixing ratio of ammonia at Jupiter reaches the deep atmosphere value at substantially higher pressures than previously assumed. This is a likely explanation for the previously perceived discrepancy between ammonia values derived from ground based microwave observations and those obtained from attenuation of the Galileo Probe radio signal.
The Master level optics laboratory at the Institute of Optics
NASA Astrophysics Data System (ADS)
Adamson, Per
2017-08-01
The master level optics laboratory is a biannual, intensive laboratory course in the fields of geometrical, physical and modern optics. This course is intended for the master level student though Ph.D. advisors which often recommend it to their advisees. The students are required to complete five standard laboratory experiments and an independent project during a semester. The goals of the laboratory experiments are for the students to get hands-on experience setting up optical laboratory equipment, collecting and analyzing data, as well as to communicate key results. The experimental methods, analysis, and results of the standard experiments are submitted in a journal style report, while an oral presentation is given for the independent project.
Endovascular training with animals versus virtual reality systems: an economic analysis.
Berry, Max; Hellström, Mikael; Göthlin, Jan; Reznick, Richard; Lönn, Lars
2008-02-01
To assess the relative costs of a virtual reality (VR) laboratory and an animal laboratory for endovascular skills training. Cost data extracted from a previous experiment was used to perform a financial analysis according to the guidelines published by the National Institutes of Health. The analysis compared the purchase or rental of a Procedicus Vascular Interventional System Trainer to the rental of an animal laboratory. The VR laboratory course cost $3,434 per trainee versus $4,634 in the animal laboratory according to the purchase-versus-rental analysis. The cost ratio was 0.74 in favor of the VR laboratory. Cost ratio sensitivity analysis ranged from 0.25 in favor of the VR laboratory to 2.22 in favor of the animal laboratory. The first-year potential savings were $62,410 assuming exclusive use of the VR laboratory. The 5-year training savings totaled $390,376, excluding the $60,000 residual value of the simulator. Simulator rental reduced the course price to $1,076 per trainee and lowered the cost ratio to 0.23 in favor of the VR laboratory. Findings of sensitivity analysis ranged from 0.08 to 0.70 in favor of the VR laboratory. The first-year and 5-year potential national savings increased to $185,026 and $1,013,238, respectively. Although evidence remains sparse that the training of interventional skills in artificial environments translates to better performance in human procedures, there are good pedagogic grounds on which to believe that such training will become increasingly important. The present comparison of the direct costs of two such models suggests that VR training is less expensive than live animal training.
Development of Accessible Laboratory Experiments for Students with Visual Impairments
ERIC Educational Resources Information Center
Kroes, KC; Lefler, Daniel; Schmitt, Aaron; Supalo, Cary A.
2016-01-01
The hands-on laboratory experiments are frequently what spark students' interest in science. Students who are blind or have low vision (BLV) typically do not get the same experience while participating in hands-on activities due to accessibility. Over the course of approximately nine months, common chemistry laboratory experiments were adapted and…
Do-It-Yourself Experiments for the Instructional Laboratory
ERIC Educational Resources Information Center
Craig, Norman C.; Hill, Cortland S.
2012-01-01
A new design for experiments in the general chemistry laboratory incorporates a "do-it-yourself" component for students. In this design, students perform proven experiments to gain experience with techniques for about two-thirds of a laboratory session and then spend the last part in the do-it-yourself component, applying the techniques to an…
A teaching intervention for reading laboratory experiments in college-level introductory chemistry
NASA Astrophysics Data System (ADS)
Kirk, Maria Kristine
The purpose of this study was to determine the effects that a pre-laboratory guide, conceptualized as a "scientific story grammar," has on college chemistry students' learning when they read an introductory chemistry laboratory manual and perform the experiments in the chemistry laboratory. The participants (N = 56) were students enrolled in four existing general chemistry laboratory sections taught by two instructors at a women's liberal arts college. The pre-laboratory guide consisted of eight questions about the experiment, including the purpose, chemical species, variables, chemical method, procedure, and hypothesis. The effects of the intervention were compared with those of the traditional pre-laboratory assignment for the eight chemistry experiments. Measures included quizzes, tests, chemistry achievement test, science process skills test, laboratory reports, laboratory average, and semester grade. The covariates were mathematical aptitude and prior knowledge of chemistry and science processes, on which the groups differed significantly. The study captured students' perceptions of their experience in general chemistry through a survey and interviews with eight students. The only significant differences in the treatment group's performance were in some subscores on lecture items and laboratory items on the quizzes. An apparent induction period was noted, in that significant measures occurred in mid-semester. Voluntary study with the pre-laboratory guide by control students precluded significant differences on measures given later in the semester. The groups' responses to the survey were similar. Significant instructor effects on three survey items were corroborated by the interviews. The researcher's students were more positive about their pre-laboratory tasks, enjoyed the laboratory sessions more, and were more confident about doing chemistry experiments than the laboratory instructor's groups due to differences in scaffolding by the instructors.
Measuring meaningful learning in the undergraduate chemistry laboratory
NASA Astrophysics Data System (ADS)
Galloway, Kelli R.
The undergraduate chemistry laboratory has been an essential component in chemistry education for over a century. The literature includes reports on investigations of singular aspects laboratory learning and attempts to measure the efficacy of reformed laboratory curriculum as well as faculty goals for laboratory learning which found common goals among instructors for students to learn laboratory skills, techniques, experimental design, and to develop critical thinking skills. These findings are important for improving teaching and learning in the undergraduate chemistry laboratory, but research is needed to connect the faculty goals to student perceptions. This study was designed to explore students' ideas about learning in the undergraduate chemistry laboratory. Novak's Theory of Meaningful Learning was used as a guide for the data collection and analysis choices for this research. Novak's theory states that in order for meaningful learning to occur the cognitive, affective, and psychomotor domains must be integrated. The psychomotor domain is inherent in the chemistry laboratory, but the extent to which the cognitive and affective domains are integrated is unknown. For meaningful learning to occur in the laboratory, students must actively integrate both the cognitive domain and the affective domains into the "doing" of their laboratory work. The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective expectations and experiences within the context of conducting experiments in the undergraduate chemistry laboratory. Evidence for the validity and reliability of the data generated by the MLLI were collected from multiple quantitative studies: a one semester study at one university, a one semester study at 15 colleges and universities across the United States, and a longitudinal study where the MLLI was administered 6 times during two years of general and organic chemistry laboratory courses. Results from these studies revealed students' narrow cognitive expectations for learning that go largely unmet by their experiences and diverse affective expectations and experiences. Concurrently, a qualitative study was carried out to describe and characterize students' cognitive and affective experiences in the undergraduate chemistry laboratory. Students were video recorded while performing one of their regular laboratory experiments and then interviewed about their experiences. The students' descriptions of their learning experiences were characterized by their overreliance on following the experimental procedure correctly rather than developing process-oriented problem solving skills. Future research could use the MLLI to intentionally compare different types of laboratory curricula or environments.
ERIC Educational Resources Information Center
Ural, Evrim
2016-01-01
The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…
NASA Astrophysics Data System (ADS)
Chase, Anthony Michael
The Center for Authentic Science Practices in Education (CASPiE) pioneered a course-based research experience approach to teaching chemistry laboratory courses. The method had previously been studied in a variety of institutional settings. Recently, the United States Military Academy at West Point decided to develop CASPiE-style modules for the introductory honors chemistry course. This research setting presents clean experimental-control comparisons and a group of faculty who were completely new to the method. Equipping students with authentic research experiences early in their education is important regardless of the institution. However, cadets at a military academy must make decisions relatively early (the outset of their second year) as to what their career trajectory will be as eventual officers. In the new CASPiE-based experience, cadets are given the opportunity to select from one of three different modules (analytical chemistry, toxicology, and chemical engineering) in which to participate during the course. These three modules represent subsections of an overall Army waste-to-energy research project. Cadets generate unique hypotheses, real data, and research posters towards the advancement of the project. Posters are then presented in a session. that includes an audience of project stakeholders, course instructors, and other academy faculty and staff. Here, I will present my research methods, evaluative procedures, and findings in the affective domain, critical thinking, and laboratory content comprehension.
Dynamic Compression Experiments on Hydrogen and Deuterium in the Warm Dense Liquid.
NASA Astrophysics Data System (ADS)
Desjarlais, Michael; McCoy, Chad; Cochrane, Kyle; Mattsson, Thomas; Knudson, Marcus; Redmer, Ronald
2017-06-01
Recently a shock-ramp platform has been developed on the Z Accelerator to access off-Hugoniot states in liquids. The accelerator delivers a two-step current pulse; the first accelerates the electrode to a constant velocity, which upon impact with the sample cell creates a well-defined shock, the subsequent current rise produces ramp compression from the initially shocked state producing relatively cool (1-2 kK), high pressure (>300 GPa), high compression (10 to 15-fold compression) states. This technique allows experimental access to the region of phase space where hydrogen is predicted to undergo a first-order phase transition from an insulating molecular-like to a conducting atomic-like liquid. Here we discuss the experimental platform, survey various theoretical predictions for the liquid-liquid, insulator-to-metal transition in hydrogen, and present results of experiments on both deuterium and hydrogen that clearly show an abrupt transition to a metallic state. We also present results from recent experiments at higher temperatures (3-4 kK) and compare the observations to both first-principles theory and previous step-wise loading experiments that exhibited a minimum metallic conductivity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
The role of cooperative iceberg capsize during ice-shelf disintegration
NASA Astrophysics Data System (ADS)
Wilder, W. G.; Burton, J. C.; Amundson, J. M.; Cathles, L. M.; Zhang, W. W.
2011-12-01
The physical processes responsible for the sudden, rapid collapse of Antarctic ice-shelves (Larsen B, in 2002; Wilkins, in 2008) are poorly understood. Observations are limited to a handful of satellite images. Thus we have undertaken a series of laboratory-scale experiments using a water-filled tank and "ice" made from buoyant plastic blocks to investigate these processes. Previous experiments have quantified how gravitational potential energy of single-iceberg capsize is converted to other forms of energy [described in Burton et al., submitted], including hydrodynamic forms that may feed back on the ice shelf to cause additional calving. The new experiments reported here examine the energetics of hydrodynamically coupled icebergs that exhibit collective behaviors qualitatively similar to features observed in satellite imagery. Our results suggest that there is a critical proximity at which icebergs will capsize in the same direction an overwhelming majority of the time (cooperative capsize), and a significant part of the gravitational potential energy is converted into translational kinetic energy. We speculate that the residual translational energy observed in our experiments may explain the significant expansion rate (~1 meter/second) of collapsing Antarctic ice-shelves. Burton, J. C., J. M. Amundson, D. S. Abbot, A. Boghosian, L. M. Cathles, S. Correa-Legisos, K. N. Darnell, N. Guttenberg, D. M. Holland, and D. R. MacAyeal. submitted. Laboratory investigations of iceberg-capsize dynamics, energy dissipation and tsunamigenesis. J. Geophys. Res.
ERIC Educational Resources Information Center
Goldwasser, M. R.; Leal, O.
1979-01-01
Outlines an approach for instruction in a physical chemistry laboratory which combines traditional and project-like experiments. An outline of laboratory experiments and examples of project-like experiments are included. (BT)
NASA Astrophysics Data System (ADS)
Turpin, B. J.; Ramos, A.; Kirkland, J. R.; Lim, Y. B.; Seitzinger, S.
2011-12-01
There is considerable laboratory and field-based evidence that chemical processing in clouds and wet aerosols alters organic composition and contributes to the formation of secondary organic aerosol (SOA). Single-compound laboratory experiments have played an important role in developing aqueous-phase chemical mechanisms that aid prediction of SOA formation through multiphase chemistry. In this work we conduct similar experiments with cloud/fog water surrogates, to 1) evaluate to what extent the previously studied chemistry is observed in these more realistic atmospheric waters, and 2) to identify additional atmospherically-relevant precursors and products that require further study. We used filtered Camden and Pinelands, NJ rainwater as a surrogate for cloud water. OH radical (~10-12 M) was formed by photolysis of hydrogen peroxide and samples were analyzed in real-time by electrospray ionization mass spectroscopy (ESI-MS). Discrete samples were also analyzed by ion chromatography (IC) and ESI-MS after IC separation. All experiments were performed in duplicate. Standards of glyoxal, methylglyoxal and glycolaldehyde and their major aqueous oxidation products were also analyzed, and control experiments performed. Decreases in the ion abundance of many positive mode compounds and increases in the ion abundance of many negative mode compounds (e.g., organic acids) suggest that precursors are predominantly aldehydes, organic peroxides and/or alcohols. Real-time ESI mass spectra were consistent with the expected loss of methylglyoxal and subsequent formation of pyruvate, glyoxylate, and oxalate. New insights regarding other potential precursors and products will be provided.
George, D R; Smith, T J; Shiel, R S; Sparagano, O A E; Guy, J H
2009-05-12
This paper describes a series of experiments to examine the mode of action and toxicity of three plant essential oils (thyme, manuka and pennyroyal) to the poultry red mite, Dermanyssus gallinae (De Geer), a serious ectoparasitic pest of laying hens. All three oils were found to be toxic to D. gallinae in laboratory tests with LC(50), LC(90) and LC(99) values below 0.05, 0.20 and 0.30mg/cm(3), respectively, suggesting that these products may make for effective acaricides against this pest. Further experiments demonstrated that when mites were exposed to only the vapour phase of the essential oil without contact with the oil itself, mortality was consistently higher in closed arenas than in arenas open to the surrounding environment, or in control arenas. This suggests that all three essential oils were toxic to D. gallinae by fumigant action. In addition, in an experiment where mites were allowed contact with the essential oil in either open or closed arenas, mortality was always reduced in the open arenas where this was comparable to control mortality for thyme and pennyroyal essential oil treatments. This supports the findings of the previous experiment and also suggests that, with the possible exception of manuka, the selected essential oils were not toxic to D. gallinae on contact. Statistical comparisons were made between the toxicity of the selected essential oils to D. gallinae in the current work and in a previous study conducted in the same laboratory. The results demonstrated considerable variation in LC(50), LC(90) and LC(99) values. Since both the essential oils and the mites were obtained from identical sources in the two studies, it is hypothesized that this variation resulted from the use of different 'batches' of essential oil, which could have varied in chemistry and hence acaricidal activity.
Design and implementation of an online systemic human anatomy course with laboratory.
Attardi, Stefanie M; Rogers, Kem A
2015-01-01
Systemic Human Anatomy is a full credit, upper year undergraduate course with a (prosection) laboratory component at Western University Canada. To meet enrollment demands beyond the physical space of the laboratory facility, a fully online section was developed to run concurrently with the traditional face to face (F2F) course. Lectures given to F2F students are simultaneously broadcasted to online students using collaborative software (Blackboard Collaborate). The same collaborative software is used by a teaching assistant to deliver laboratory demonstrations in which three-dimensional (3D) virtual anatomical models are manipulated. Ten commercial software programs were reviewed to determine their suitability for demonstrating the virtual models, resulting in the selection of Netter's 3D Interactive Anatomy. Supplementary online materials for the central nervous system were developed by creating 360° images of plastinated prosected brain specimens and a website through which they could be accessed. This is the first description of a fully online undergraduate anatomy course with a live, interactive laboratory component. Preliminary data comparing the online and F2F student grades suggest that previous student academic performance, and not course delivery format, predicts performance in anatomy. Future qualitative studies will reveal student perceptions about their learning experiences in both of the course delivery formats. © 2014 American Association of Anatomists.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-30
... in physics, chemistry, mathematics, computer science, or engineering. Institutions should have a 4..., mathematics, computer science, or engineering with work experiences in laboratories or other settings...-0141-01] Professional Research Experience Program in Chemical Science and Technology Laboratory...
Brown, S L
Thirty male and thirty female adult subjects were divided equally into three groups on the basis of the Zung Self-Rating Depression Scale; mildly depressed (50-63), normal (40-49), and "low normal" (20-39). Observer ratings of positive affect were made during a one and one-half hour laboratory experiment, and self-ratings of pleasurable experience were collected at the end of the experiment. Results showed no significant differences between groups for self-report of experienced pleasure. However, a significant difference between groups was found for observer ratings of positive affect, with the mildly depressed and "low normal" subjects showing a shorter duration and a lower degree of positive affect than the normals. These results partially replicate and extended previous work. Implications for theory, research, and psychotherapy are discussed.
NASA Astrophysics Data System (ADS)
Sewell, Everest; Ferguson, Kevin; Jacobs, Jeffrey; Greenough, Jeff; Krivets, Vitaliy
2016-11-01
We describe experiments of single-shock Richtmyer-Meskhov Instability (RMI) performed on the shock tube apparatus at the University of Arizona in which the initial conditions are volumetrically imaged prior to shock wave arrival. Initial perturbations play a major role in the evolution of RMI, and previous experimental efforts only capture a single plane of the initial condition. The method presented uses a rastered laser sheet to capture additional images throughout the depth of the initial condition immediately before the shock arrival time. These images are then used to reconstruct a volumetric approximation of the experimental perturbation. Analysis of the initial perturbations is performed, and then used as initial conditions in simulations using the hydrodynamics code ARES, developed at Lawrence Livermore National Laboratory (LLNL). Experiments are presented and comparisons are made with simulation results.
Hydrodynamic parameters estimation from self-potential data in a controlled full scale site
NASA Astrophysics Data System (ADS)
Chidichimo, Francesco; De Biase, Michele; Rizzo, Enzo; Masi, Salvatore; Straface, Salvatore
2015-03-01
A multi-physical approach developed for the hydrodynamic characterization of porous media using hydrogeophysical information is presented. Several pumping tests were performed in the Hydrogeosite Laboratory, a controlled full-scale site designed and constructed at the CNR-IMAA (Consiglio Nazionale delle Ricerche - Istituto di Metodologia per l'Analisi Ambientale), in Marsico Nuovo (Basilicata Region, Southern Italy), in order to obtain an intermediate stage between laboratory experiments and field survey. The facility consists of a pool, used to study water infiltration processes, to simulate the space and time dynamics of subsurface contamination phenomena, to improve and to find new relationship between geophysical and hydrogeological parameters, to test and to calibrate new geophysical techniques and instruments. Therefore, the Hydrogeosite Laboratory has the advantage of carrying out controlled experiments, like in a flow cell or sandbox, but at field comparable scale. The data collected during the experiments have been used to estimate the saturated hydraulic conductivity ks [ms-1] using a coupled inversion model working in transient conditions, made up of the modified Richards equation describing the water flow in a variably saturated porous medium and the Poisson equation providing the self-potential ϕ [V], which naturally occurs at points of the soil surface owing to the presence of an electric field produced by the motion of underground electrolytic fluids through porous systems. The result obtained by this multi-physical numerical approach, which removes all the approximations adopted in previous works, makes a useful instrument for real heterogeneous aquifer characterization and for predictive analysis of its behavior.
Clinical evaluation of music perception, appraisal and experience in cochlear implant users
Drennan, Ward. R.; Oleson, Jacob J.; Gfeller, Kate; Crosson, Jillian; Driscoll, Virginia D.; Won, Jong Ho; Anderson, Elizabeth S.; Rubinstein, Jay T.
2014-01-01
Objectives The objectives were to evaluate the relationships among music perception, appraisal, and experience in cochlear implant users in multiple clinical settings and to examine the viability of two assessments designed for clinical use. Design Background questionnaires (IMBQ) were administered by audiologists in 14 clinics in the United States and Canada. The CAMP included tests of pitch-direction discrimination, and melody and timbre recognition. The IMBQ queried users on prior musical involvement, music listening habits pre and post implant, and music appraisals. Study sample One-hundred forty-five users of Advanced Bionics and Cochlear Ltd cochlear implants. Results Performance on pitch direction discrimination, melody recognition, and timbre recognition tests were consistent with previous studies with smaller cohorts, as well as with more extensive protocols conducted in other centers. Relationships between perceptual accuracy and music enjoyment were weak, suggesting that perception and appraisal are relatively independent for CI users. Conclusions Perceptual abilities as measured by the CAMP had little to no relationship with music appraisals and little relationship with musical experience. The CAMP and IMBQ are feasible for routine clinical use, providing results consistent with previous thorough laboratory-based investigations. PMID:25177899
Two-proton decay from Isobaric Analog States of light nuclei
NASA Astrophysics Data System (ADS)
Brown, Kyle
2014-03-01
Recent experiments at the National Superconducting Cyclotron Laboratory at Michigan State University using the charged-particle array HiRA and the gamma-ray array CAESAR have shed light on a new class of two-proton emitters associated with Isobaric Analog States (IAS). The two-proton decay is to the Isobaric Analog state of the daughter, which then gamma decays. These isospin-allowed transitions occur when one-proton decays are forbidden by either energy or isospin conservation, and when two-proton decay to the ground state is isospin forbidden. Three possible examples of this decay path will be discussed (8BIAS, 12NIAS, and 16FIAS) . The known IAS of 8C in 8B was confirmed to decay by two-proton emission to the 3.56 MeV IAS in 6Li. While the IAS in 8B was previously known, it was measured in this experiment with unbiased statistics and in coincidence with the 3.56 MeV gamma-ray. The IAS in 16F was investigated for the first time in this experiment and is still under investigation. Previous work on the IAS of 12O in 12N at the Cyclotron Institute at Texas A&M will also be presented.
Schroeder, Joseph A; Flannery-Schroeder, Ellen
2005-01-01
The Indian herb Gymnema sylvestre has been used in traditional Ayurvedic medicine for 2000 years, most recently for the treatment of diabetes. Loose leaf Gymnema sylvestre can be prepared as a tea and will impair the ability to taste sugar by blocking sweet receptors on the tongue. This report describes a laboratory exercise easily applied to an undergraduate neuroscience course that can be used to illustrate the principles of gustatory sensation. Combined with a preceding lecture on the primary taste sensations, students experience and appreciate how the primary tastes are combined to produce overall taste. In addition, the exercises outlined here expand upon previously published demonstrations employing Gymnema sylvestre to include illustrations of the different sensory transduction mechanisms associated with each of the four or five primary taste modalities. Students compare their qualitative primary taste experiences to salt, sugar, aspartame, chocolate, and sweet-sour candy prior to and following exposure to Gymnema sylvestre. The herb's impairment of sweet sensation is profound and dramatically alters the perception of sweetness in sugar, chocolate, and candy without altering the perception of the other primary tastes. The exercise has an indelible effect on students because the herb's intense effect compels students to rely on their unique personal experiences to highlight the principles of gustatory sensation.
Bradley, P.M.; Chapelle, F.H.; Wilson, J.T.
1998-01-01
Intrinsic bioremediation of chlorinated ethenes in anaerobic aquifers previously has not been considered feasible, due, in large part, to 1) the production of vinyl chloride during microbial reductive dechlorination of higher chlorinated contaminants and 2) the apparent poor biodegradability of vinyl chloride under anaerobic conditions. In this study, a combination of field geochemical analyses and laboratory radiotracer ([1,2-14C] vinyl chloride) experiments was utilized to assess the potential for intrinsic biodegradation of vinyl chloride contamination in an Fe(III)-reducing, anaerobic aquifer. Microcosm experiments conducted under Fe(III)-reducing conditions with material from the Fe(III)-reducing, chlorinated-ethene contaminated aquifer demonstrated significant oxidation of [1,2-14C] vinyl chloride to 14CO2 with no detectable production of ethene or other reductive dehalogenation products. Rates of degradation derived from the microcosm experiments (0.9-1.3% d-1) were consistent with field-estimated rates (0.03-0.2% d-1) of apparent vinyl chloride degradation. Field estimates of apparent vinyl chloride biodegradation were calculated using two distinct approaches; 1) a solute dispersion model and 2) a mass balance assessment. These findings demonstrate that degradation under Fe(III) reducing conditions can be an environmentally significant mechanism for intrinsic bioremediation of vinyl chloride in anaerobic ground-water systems.
Multidimensional Screening as a Pharmacology Laboratory Experience.
ERIC Educational Resources Information Center
Malone, Marvin H.; And Others
1979-01-01
A multidimensional pharmacodynamic screening experiment that addresses drug interaction is included in the pharmacology-toxicology laboratory experience of pharmacy students at the University of the Pacific. The student handout with directions for the procedure is reproduced, drug compounds tested are listed, and laboratory evaluation results are…
MDMA effects consistent across laboratories
Kirkpatrick, Matthew G.; Baggott, Matthew J.; Mendelson, John E.; Galloway, Gantt P.; Liechti, Matthias E.; Hysek, Cédric M.; de Wit, Harriet
2014-01-01
Rationale Several laboratories have conducted placebo-controlled drug challenge studies with MDMA, providing a unique source of data to examine the reliability of the acute effects of the drug across subject samples and settings. We examined the subjective and physiological responses to the drug across three different laboratories, and investigated the influence of prior MDMA use. Methods Overall, 220 healthy volunteers with varying levels of previous MDMA experience participated in laboratory-based studies in which they received placebo or oral MDMA (1.5 mg/kg or 125 mg fixed dose) under double blind conditions. Cardiovascular and subjective effects were assessed before and repeatedly after drug administration. The studies were conducted independently by investigators in Basel, San Francisco and Chicago. Results Despite methodological differences between the studies and differences in the subjects' drug use histories, MDMA produced very similar cardiovascular and subjective effects across the sites. The participants' prior use of MDMA was inversely related to feeling `Any Drug Effect' only at sites testing more experienced users. Conclusions These data indicate that the pharmacological effects of MDMA are robust and highly reproducible across settings. There was also modest evidence for tolerance to the effects of MDMA in regular users. PMID:24633447
Computational simulation of laboratory-scale volcanic jets
NASA Astrophysics Data System (ADS)
Solovitz, S.; Van Eaton, A. R.; Mastin, L. G.; Herzog, M.
2017-12-01
Volcanic eruptions produce ash clouds that may travel great distances, significantly impacting aviation and communities downwind. Atmospheric hazard forecasting relies partly on numerical models of the flow physics, which incorporate data from eruption observations and analogue laboratory tests. As numerical tools continue to increase in complexity, they must be validated to fine-tune their effectiveness. Since eruptions are relatively infrequent and challenging to observe in great detail, analogue experiments can provide important insights into expected behavior over a wide range of input conditions. Unfortunately, laboratory-scale jets cannot easily attain the high Reynolds numbers ( 109) of natural volcanic eruption columns. Comparisons between the computational models and analogue experiments can help bridge this gap. In this study, we investigate a 3-D volcanic plume model, the Active Tracer High-resolution Atmospheric Model (ATHAM), which has been used to simulate a variety of eruptions. However, it has not been previously validated using laboratory-scale data. We conducted numerical simulations of three flows that we have studied in the laboratory: a vertical jet in a quiescent environment, a vertical jet in horizontal cross flow, and a particle-laden jet. We considered Reynolds numbers from 10,000 to 50,000, jet-to-cross flow velocity ratios of 2 to 10, and particle mass loadings of up to 25% of the exit mass flow rate. Vertical jet simulations produce Gaussian velocity profiles in the near exit region by 3 diameters downstream, matching the mean experimental profiles. Simulations of air entrainment are of the correct order of magnitude, but they show decreasing entrainment with vertical distance from the vent. Cross flow simulations reproduce experimental trajectories for the jet centerline initially, although confinement appears to impact the response later. Particle-laden simulations display minimal variation in concentration profiles between cases with different mass loadings and size distributions, indicating that differences in particle behavior may not be evident at this laboratory scale.
Haldane's rule and heterogametic female and male sterility in the mouse.
Biddle, F G; Eales, B A; Dean, W L
1994-04-01
Failed genetic experiments or experiments designed for other purposes sometimes reveal novel genetic information. The interspecific cross between laboratory strain mice of the Mus musculus musculus/domesticus complex and the separate species M. spretus is known to produce fertile F1 females and sterile F1 males. Infertility of the interspecific F1 XY male is said to be an example of what has become known as Haldane's rule: "When in the F1 offspring of two different animal races one sex is absent, rare, or sterile, that sex is the heterozygous [heterogametic] sex." We attempted to use fertile single-X (or XO) female laboratory mice of the M. m. musculus/domesticus complex mated to M. spretus males to construct females with specific X chromosomes to study segregation distortion of X chromosome marker genes that we reported previously in crosses with the two species. We assumed that the interspecific F1 XO female would be fertile like the interspecific F1 XX female but, instead, we found that it is infertile. Haldane's rule is not specific to sex, but demonstration of this has required study of separate species pairs with heterogametic males or with heterogametic females. The fertile XO laboratory mouse is female, but it is also heterogametic, producing both X and nullo-X eggs. Infertility of both the interspecific and heterogametic F1 XO female and F1 XY male in the same cross between laboratory mice and M. spretus suggests that heterogamety is at the cause of the infertility.(ABSTRACT TRUNCATED AT 250 WORDS)
Mace, John H
2009-01-01
Recent studies have shown that conscious recollection of the past occurs spontaneously when subjects voluntarily recall their own past experiences or a list of previously studied words. Naturalistic diary studies and laboratory studies of this phenomenon, often called involuntary conscious memory (ICM), show that it occurs in 2 ways. One is direct ICM retrieval, which occurs when a cue spontaneously triggers a conscious memory; the other is chained ICM retrieval, which occurs when a retrieved conscious memory spontaneously triggers another. Laboratory studies investigating ICM show that chained ICM retrieval occurs on voluntary autobiographical memory tasks. The present results show that chained ICM retrieval also occurs on a voluntary word list memory task (cued recall). These results are among a handful suggesting that ICM retrieval routinely occurs during voluntary recall.
Introducing medical students to medical informatics.
Sancho, J J; González, J C; Patak, A; Sanz, F; Sitges-Serra, A
1993-11-01
Medical informatics (MI) has been introduced to medical students in several countries. Before outlining a course plan it was necessary to conduct a survey on students' computer literacy. A questionnaire was designed for students, focusing on knowledge and previous computer experience. The questions reproduced a similar questionnaire submitted to medical students from North Carolina University in Chapel Hill (NCU). From the results it is clear that although almost 80% of students used computers, less than 30% used general purpose applications, and utilization of computer-aided search of databases or use in the laboratory was exceptional. Men reported more computer experience than women in each area investigated by our questionnaire but this did not appear to be related to academic performance, age or course. Our main objectives when planning an MI course were to give students a general overview of the medical applications of computers and instruct them in the use of computers in future medical practice. As our medical school uses both Apple Macintosh and IBM compatibles, we decided to provide students with basic knowledge of both. The programme was structured with a mix of theoretico-practical lectures and personalized practical sessions in the computer laboratory. As well as providing a basic overview of medical informatics, the course and computer laboratory were intended to encourage other areas of medicine to incorporate the computer into their teaching programmes.
Pumping ions: rapid parallel evolution of ionic regulation following habitat invasions.
Lee, Carol Eunmi; Kiergaard, Michael; Gelembiuk, Gregory William; Eads, Brian Donovan; Posavi, Marijan
2011-08-01
Marine to freshwater colonizations constitute among the most dramatic evolutionary transitions in the history of life. This study examined evolution of ionic regulation following saline-to-freshwater transitions in an invasive species. In recent years, the copepod Eurytemora affinis has invaded freshwater habitats multiple times independently. We found parallel evolutionary shifts in ion-motive enzyme activity (V-type H(+) ATPase, Na(+) /K(+) -ATPase) across independent invasions and in replicate laboratory selection experiments. Freshwater populations exhibited increased V-type H(+) ATPase activity in fresh water (0 PSU) and declines at higher salinity (15 PSU) relative to saline populations. This shift represented marked evolutionary increases in plasticity. In contrast, freshwater populations displayed reduced Na(+) /K(+) -ATPase activity across all salinities. Most notably, modifying salinity alone during laboratory selection experiments recapitulated the evolutionary shifts in V-type H(+) ATPase activity observed in nature. Maternal and embryonic acclimation could not account for the observed shifts in enzyme activity. V-type H(+) ATPase function has been hypothesized to be critical for freshwater and terrestrial adaptations, but evolution of this enzyme function had not been previously demonstrated in the context of habitat transitions. Moreover, the speed of these evolutionary shifts was remarkable, within a few generations in the laboratory and a few decades in the wild. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Flexible End2End Workflow Automation of Hit-Discovery Research.
Holzmüller-Laue, Silke; Göde, Bernd; Thurow, Kerstin
2014-08-01
The article considers a new approach of more complex laboratory automation at the workflow layer. The authors purpose the automation of end2end workflows. The combination of all relevant subprocesses-whether automated or manually performed, independently, and in which organizational unit-results in end2end processes that include all result dependencies. The end2end approach focuses on not only the classical experiments in synthesis or screening, but also on auxiliary processes such as the production and storage of chemicals, cell culturing, and maintenance as well as preparatory activities and analyses of experiments. Furthermore, the connection of control flow and data flow in the same process model leads to reducing of effort of the data transfer between the involved systems, including the necessary data transformations. This end2end laboratory automation can be realized effectively with the modern methods of business process management (BPM). This approach is based on a new standardization of the process-modeling notation Business Process Model and Notation 2.0. In drug discovery, several scientific disciplines act together with manifold modern methods, technologies, and a wide range of automated instruments for the discovery and design of target-based drugs. The article discusses the novel BPM-based automation concept with an implemented example of a high-throughput screening of previously synthesized compound libraries. © 2014 Society for Laboratory Automation and Screening.
NASA Task Load Index (TLX). Volume 1.0; Computerized Version
NASA Technical Reports Server (NTRS)
Hart, Sandra G.
1986-01-01
This booklet and the accompanying diskette contain the materials necessary to collect subjective workload assessments with the NASA Task Load Index on IBM PC compatible microcomputers. This procedure for collecting workload ratings was developed by the Human Performance Group at NASA Ames Research Center during a three year research effort that involved more than 40 laboratory, simulation, and inflight experiments Although the technique is still undergoing evaluation, this package is being distributed to allow other researchers to use it in their own experiments Comments or suggestions about the procedure would be greatly appreciated This package is intended to fill a "nuts and bolts" function of describing the procedure. A bibliography provides background information about previous empirical findings and the logic that supports the procedure.
Analysis of Animal Research Ethics Committee Membership at American Institutions.
Hansen, Lawrence A; Goodman, Justin R; Chandna, Alka
2012-02-22
Institutional Animal Care and Use Committees (IACUCs) were created to review, approve and oversee animal experiments and to balance the interests of researchers, animals, institutions and the general public. This study analyzed the overall membership of IACUCs at leading U.S. research institutions. We found that these committees and their leadership are comprised of a preponderance of animal researchers, as well as other members who are affiliated with each institution; some of whom also work in animal laboratories. This overwhelming presence of animal research and institutional interests may dilute input from the few IACUC members representing animal welfare and the general public, contribute to previously-documented committee bias in favor of approving animal experiments and reduce the overall objectivity and effectiveness of the oversight system.
Laser-driven magnetic reconnection in the multi-plasmoid regime
NASA Astrophysics Data System (ADS)
Totorica, Samuel; Abel, Tom; Fiuza, Frederico
2017-10-01
Magnetic reconnection is a promising candidate mechanism for accelerating the nonthermal particles associated with explosive astrophysical phenomena. Laboratory experiments are starting to probe multi-plasmoid regimes of relevance for particle acceleration. We have performed two- and three-dimensional particle-in-cell (PIC) simulations to explore particle acceleration for parameters relevant to laser-driven reconnection experiments. We have extended our previous work to explore particle acceleration in larger system sizes. Our results show the transition to plasmoid-dominated acceleration associated with the merging and contraction of plasmoids that further extend the maximum energy of the power-law tail of the particle distribution. Furthermore, we have modeled Coulomb collisions and will discuss the influence of collisionality on the plasmoid formation, dynamics, and particle acceleration.
Reference earth orbital research and applications investigations (blue book). Volume 3: Physics
NASA Technical Reports Server (NTRS)
1971-01-01
The definition of physics experiments to be conducted aboard the space station is presented. The four functional program elements are: (1) space physics research laboratory, (2) plasma physics and environmental perturbation laboratory, (3) cosmic ray physics laboratory, and (4) physics and chemistry laboratory. The experiments to be conducted by each facility are defined and the crew member requirements to accomplish the experiments are presented.
Investigating the effect of adding an on-axis jet to Ar gas puff Z pinches on Z.
Harvey-Thompson, Adam James; Jennings, Christopher Ashley; Jones, Brent M.; ...
2016-10-20
Double-shell Ar gas puff implosions driven by 16.5±0.5 MA on the Z generator at Sandia National Laboratories are very effective emitters of Ar K-shell radiation (photon energy >3 keV), producing yields of 330 ± 9% kJ (B. Jones et al., Phys. Plasmas, 22, 020706, 2015). In addition, previous simulations and experiments have reported dramatic increases in K-shell yields when adding an on-axis jet to double shell gas puffs for some configurations.
Laboratory constraints on chameleon dark energy and power-law fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steffen, Jason H.; /Fermilab; Upadhye, Amol
2010-10-01
We report results from the GammeV Chameleon Afterglow Search - a search for chameleon particles created via photon/chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of chameleon power-law models and dark energy models not previously explored. These results exclude five orders of magnitude in the coupling of chameleons to photons covering a range of four orders of magnitude in chameleon effective mass and, for individual chameleon models, exclude between 4 and 12 orders of magnitude in chameleon couplings to matter.
de Oca, Laura Montes; Pérez-Miles, Fernando
2013-01-01
Abstract We describe two new species of the nemesiid spider genus Chaco from Rocha Province, Uruguay. These new species are diagnosed based on genital morphology, male tibial apophysis spination, and burrow entrance. We test cospecificity of one species, Chaco costai,via laboratory mating experiments. The new species are diagnosed and illustrated and habitat characteristics, and capture behavior are described. We conduct a cladistic analysis based on a previously published morphological character matrix that now includes the newly described species. PMID:24146579
High-pressure phase transitions - Examples of classical predictability
NASA Astrophysics Data System (ADS)
Celebonovic, Vladan
1992-09-01
The applicability of the Savic and Kasanin (1962-1967) classical theory of dense matter to laboratory experiments requiring estimates of high-pressure phase transitions was examined by determining phase transition pressures for a set of 19 chemical substances (including elements, hydrocarbons, metal oxides, and salts) for which experimental data were available. A comparison between experimental and transition points and those predicted by the Savic-Kasanin theory showed that the theory can be used for estimating values of transition pressures. The results also support conclusions obtained in previous astronomical applications of the Savic-Kasanin theory.
A Two-Week Guided Inquiry Protein Separation and Detection Experiment for Undergraduate Biochemistry
ERIC Educational Resources Information Center
Carolan, James P.; Nolta, Kathleen V.
2016-01-01
A laboratory experiment for teaching protein separation and detection in an undergraduate biochemistry laboratory course is described. This experiment, performed in two, 4 h laboratory periods, incorporates guided inquiry principles to introduce students to the concepts behind and difficulties of protein purification. After using size-exclusion…
ERIC Educational Resources Information Center
Simon, Nicole A.
2013-01-01
Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory…
ERIC Educational Resources Information Center
Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish
2016-01-01
Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual…
ERIC Educational Resources Information Center
Rowe, Laura
2017-01-01
An introductory bioinformatics laboratory experiment focused on protein analysis has been developed that is suitable for undergraduate students in introductory biochemistry courses. The laboratory experiment is designed to be potentially used as a "stand-alone" activity in which students are introduced to basic bioinformatics tools and…
An Example of a Laboratory Teaching Experience in a Professional Year (Plan B) Program
ERIC Educational Resources Information Center
Miller, P. J.; And Others
1978-01-01
A laboratory teaching experience (L.T.E.) was designed to focus on three teaching behaviors. It was recognized that a behavioral approach to teaching simplified its complexity by isolating specific teaching behaviors. Discusses the development and evaluation of the laboratory teaching experience. (Author/RK)
ERIC Educational Resources Information Center
Pursell, Christopher J.; Chandler, Bert; Bushey, Michelle M.
2004-01-01
Capillary electrophoresis is gradually working its way into the undergraduate laboratory curriculum. Typically, experiments utilizing this newer technology have been introduced into analytical or instrumental courses. The authors of this article have introduced an experiment into the introductory laboratory that utilizes capillary electrophoresis…
An Undergraduate Laboratory Experiment in Bioinorganic Chemistry: Ligation States of Myoglobin
ERIC Educational Resources Information Center
Bailey, James A.
2011-01-01
Although there are numerous inorganic model systems that are readily presented as undergraduate laboratory experiments in bioinorganic chemistry, there are few examples that explore the inorganic chemistry of actual biological molecules. We present a laboratory experiment using the oxygen-binding protein myoglobin that can be easily incorporated…
Consumer-Oriented Laboratory Activities: A Manual for Secondary Science Students.
ERIC Educational Resources Information Center
Anderson, Jacqueline; McDuffie, Thomas E., Jr.
This document provides a laboratory manual for use by secondary level students in performing consumer-oriented laboratory experiments. Each experiment includes an introductory question outlining the purpose of the investigation, a detailed discussion, detailed procedures, questions to be answered upon completing the experiment, and information for…
Lewis, Russell L; Seal, Erin L; Lorts, Aimee R; Stewart, Amanda L
2017-11-01
The undergraduate biochemistry laboratory curriculum is designed to provide students with experience in protein isolation and purification protocols as well as various data analysis techniques, which enhance the biochemistry lecture course and give students a broad range of tools upon which to build in graduate level laboratories or once they begin their careers. One of the most common biochemistry protein purification experiments is the isolation and characterization of cytochrome c. Students across the country purify cytochrome c, lysozyme, or some other well-known protein to learn these common purification techniques. What this series of experiments lacks is the use of sophisticated instrumentation that is rarely available to undergraduate students. To give students a broader background in biochemical spectroscopy techniques, a new circular dichroism (CD) laboratory experiment was introduced into the biochemistry laboratory curriculum. This CD experiment provides students with a means of conceptualizing the secondary structure of their purified protein, and assessments indicate that students' understanding of the technique increased significantly. Students conducted this experiment with ease and in a short time frame, so this laboratory is conducive to merging with other data analysis techniques within a single laboratory period. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):515-520, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
Lintunen, A; Lindfors, L; Kolari, P; Juurola, E; Nikinmaa, E; Hölttä, T
2014-12-01
Woody plants can suffer from winter embolism as gas bubbles are formed in the water-conducting conduits when freezing occurs: gases are not soluble in ice, and the bubbles may expand and fill the conduits with air during thawing. A major assumption usually made in studies of winter embolism formation is that all of the gas dissolved in the xylem sap is trapped within the conduits and forms bubbles during freezing. The current study tested whether this assumption is actually valid, or whether efflux of gases from the stem during freezing reduces the occurrence of embolism. CO2 efflux measurements were conducted during freezing experiments for saplings of three Scots pine (Pinus sylvestris) and three Norway spruce (Picea abies) trees under laboratory conditions, and the magnitudes of the freezing-related bursts of CO2 released from the stems were analysed using a previously published mechanistic model of CO2 production, storage, diffusion and efflux from a tree stem. The freezing-related bursts of CO2 released from a mature Scots pine tree growing in field conditions were also measured and analysed. Substantial freezing-related bursts of CO2 released from the stem were found to occur during both the laboratory experiments and under field conditions. In the laboratory, the fraction of CO2 released from the stem ranged between 27 and 96 % of the total CO2 content within the stem. All gases dissolved in the xylem sap are not trapped within the ice in the stem during freezing, as has previously been assumed, thus adding a new dimension to the understanding of winter embolism formation. The conduit water volume not only determines the volume of bubbles formed during freezing, but also the efficiency of gas efflux out of the conduit during the freezing process. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company.
Interactive virtual optical laboratories
NASA Astrophysics Data System (ADS)
Liu, Xuan; Yang, Yi
2017-08-01
Laboratory experiences are essential for optics education. However, college students have limited access to advanced optical equipment that is generally expensive and complicated. Hence there is a need for innovative solutions to expose students to advanced optics laboratories. Here we describe a novel approach, interactive virtual optical laboratory (IVOL) that allows unlimited number of students to participate the lab session remotely through internet, to improve laboratory education in photonics. Although students are not physically conducting the experiment, IVOL is designed to engage students, by actively involving students in the decision making process throughout the experiment.
Detection of target phonemes in spontaneous and read speech.
Mehta, G; Cutler, A
1988-01-01
Although spontaneous speech occurs more frequently in most listeners' experience than read speech, laboratory studies of human speech recognition typically use carefully controlled materials read from a script. The phonological and prosodic characteristics of spontaneous and read speech differ considerably, however, which suggests that laboratory results may not generalise to the recognition of spontaneous speech. In the present study listeners were presented with both spontaneous and read speech materials, and their response time to detect word-initial target phonemes was measured. Responses were, overall, equally fast in each speech mode. However, analysis of effects previously reported in phoneme detection studies revealed significant differences between speech modes. In read speech but not in spontaneous speech, later targets were detected more rapidly than targets preceded by short words. In contrast, in spontaneous speech but not in read speech, targets were detected more rapidly in accented than in unaccented words and in strong than in weak syllables. An explanation for this pattern is offered in terms of characteristic prosodic differences between spontaneous and read speech. The results support claims from previous work that listeners pay great attention to prosodic information in the process of recognising speech.
ERIC Educational Resources Information Center
Southam, Daniel C.; Shand, Bradley; Buntine, Mark A.; Kable, Scott H.; Read, Justin R.; Morris, Jonathan C.
2013-01-01
An assessment of the acylation of ferrocene laboratory exercise across three successive years resulted in a significant fluctuation in student perception of the experiment. This perception was measured by collecting student responses to an instrument immediately after the experiment, which includes Likert and open-ended responses from the student.…
NASA Astrophysics Data System (ADS)
Javidi, Giti
2005-07-01
This study was designed to investigate an alternative to the use of traditional physical laboratory activities in a communication systems course. Specifically, this study examined whether as an alternative, computer simulation is as effective as physical laboratory activities in teaching college-level electronics engineering education students about the concepts of signal transmission, modulation and demodulation. Eighty undergraduate engineering students participated in the study, which was conducted at a southeastern four-year university. The students were randomly assigned to two groups. The groups were compared on understanding the concepts, remembering the concepts, completion time of the lab experiments and perception toward the laboratory experiments. The physical group's (n = 40) treatment was to conduct laboratory experiments in a physical laboratory. The students in this group used equipment in a controlled electronics laboratory. The Simulation group's (n = 40) treatment was to conduct similar experiments in a PC laboratory. The students in this group used a simulation program in a controlled PC lab. At the completion of the treatment, scores on a validated conceptual test were collected once after the treatment and again three weeks after the treatment. Attitude surveys and qualitative study were administered at the completion of the treatment. The findings revealed significant differences, in favor of the simulation group, between the two groups on both the conceptual post-test and the follow-up test. The findings also revealed significant correlation between simulation groups' attitude toward the simulation program and their post-test scores. Moreover, there was a significant difference between the two groups on their attitude toward their laboratory experience in favor of the simulation group. In addition, there was significant difference between the two groups on their lab completion time in favor of the simulation group. At the same time, the qualitative research has uncovered several issues not explored by the quantitative research. It was concluded that incorporating the recommendations acquired from the qualitative research, especially elements of incorporating hardware experience to avoid lack of hands-on skills, into the laboratory pedagogy should help improve students' experience regardless of the environment in which the laboratory is conducted.
Rodríguez-González, Álvaro; Sánchez-Maíllo, Esteban; Peláez, Horacio J; González-Núñez, Manuel; Hall, David R; Casquero, Pedro A
2017-08-01
The beetle Xylotrechus arvicola (Coleoptera: Cerambycidae) is a serious pest of vineyards in the Iberian Peninsula. In previous work, the male beetles, but not females, were shown to produce (R)-3-hydroxy-2-hexanone, and female beetles were attracted to this compound in a laboratory bioassay. In this study, release rates of 3-hydroxy-2-hexanone from different dispensers were measured in the laboratory, and the attractiveness of these to X. arvicola adults was determined in trapping tests in three traditional wine-growing regions in Spain. As a result of laboratory experiments, for field experiments 3-hydroxy-2-hexanone was formulated as 100 μL in a polyethylene sachet (50 mm × 50 mm × 250 µm), and ethanol was formulated as 1 mL in a polyethylene press-seal bag (76 mm × 57 mm ×50 µm). Field catches were similar at all three study sites. Catches in traps baited with 3-hydroxy-2-hexanone alone were not significantly different from those in unbaited control traps, but catches in traps baited with 3-hydroxy-2-hexanone and ethanol in separate sachets, with 3-hydroxy-2-hexanone and ethanol in the same sachet or with ethanol alone were significantly greater than those in control traps. These results confirm that the beetles are attracted to ethanol, and the addition of 3-hydroxy-2-hexanone does not seem to make any difference. Attraction of females for the male-produced compound (R)-3-hydroxy-2-hexanone has been observed in laboratory but not in field experiments. Traps baited with ethanol are highly attractive to both sexes of adults of X. arvicola, and these can be used for improved monitoring of the adult emergence and for population control by mass trapping. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Berger, Spencer Granett
This dissertation explores student perceptions of the instructional chemistry laboratory and the approaches students take when learning in the laboratory environment. To measure student perceptions of the chemistry laboratory, a survey instrument was developed. 413 students responded to the survey during the Fall 2011 semester. Students' perception of the usefulness of the laboratory in helping them learn chemistry in high school was related to several factors regarding their experiences in high school chemistry. Students' perception of the usefulness of the laboratory in helping them learn chemistry in college was also measured. Reasons students provided for the usefulness of the laboratory were categorized. To characterize approaches to learning in the laboratory, students were interviewed midway through semester (N=18). The interviews were used to create a framework describing learning approaches that students use in the laboratory environment. Students were categorized into three levels: students who view the laboratory as a requirement, students who believe that the laboratory augments their understanding, and students who view the laboratory as an important part of science. These categories describe the types of strategies students used when conducting experiments. To further explore the relationship between students' perception of the laboratory and their approaches to learning, two case studies are described. These case studies involve interviews in the beginning and end of the semester. In the interviews, students reflect on what they have learned in the laboratory and describe their perceptions of the laboratory environment. In order to encourage students to adopt higher-level approaches to learning in the laboratory, a metacognitive intervention was created. The intervention involved supplementary questions that students would answer while completing laboratory experiments. The questions were designed to encourage students to think critically about the laboratory procedures. In order to test the effects of the intervention, an experimental group (N=87) completed these supplementary questions during two laboratory experiments while a control group (N=84) performed the same experiments without these additional questions. The effects of the intervention on laboratory exam performance were measured. Students in the experimental group had a higher average on the laboratory exam than students in the control group.
Castilla, Jesús; Navascués, Ana; Fernández-Alonso, Mirian; Reina, Gabriel; Albéniz, Esther; Pozo, Francisco; Álvarez, Nerea; Martínez-Baz, Iván; Guevara, Marcela; García-Cenoz, Manuel; Irisarri, Fátima; Casado, Itziar; Ezpeleta, Carmen
2016-06-02
We estimated whether previous episodes of influenza and trivalent influenza vaccination prevented laboratory-confirmed influenza in Navarre, Spain, in season 2013/14. Patients with medically-attended influenza-like illness (MA-ILI) in hospitals (n = 645) and primary healthcare (n = 525) were included. We compared 589 influenza cases and 581 negative controls. MA-ILI related to a specific virus subtype in the previous five seasons was defined as a laboratory-confirmed influenza infection with the same virus subtype or MA-ILI during weeks when more than 25% of swabs were positive for this subtype. Persons with previous MA-ILI had 30% (95% confidence interval (CI): -7 to 54) lower risk of MA-ILI, and those with previous MA-ILI related to A(H1N1)pdm09 or A(H3N2) virus, had a, respectively, 63% (95% CI: 16-84) and 65% (95% CI: 13-86) lower risk of new laboratory-confirmed influenza by the same subtype. Overall adjusted vaccine effectiveness in preventing laboratory-confirmed influenza was 31% (95% CI: 5-50): 45% (95% CI: 12-65) for A(H1N1)pdm09 and 20% (95% CI: -16 to 44) for A(H3N2). While a previous influenza episode induced high protection only against the same virus subtype, influenza vaccination provided low to moderate protection against all circulating subtypes. Influenza vaccine remains the main preventive option for high-risk populations.
ERIC Educational Resources Information Center
Dunnett, K.; Bartlett, P. A.
2018-01-01
It was planned to introduce online pre-laboratory session activities to a first-year undergraduate physics laboratory course to encourage a minimum level of student preparation for experiments outside the laboratory environment. A group of 16 and 17 year old laboratory work-experience students were tasked to define and design a pre-laboratory…
Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students
ERIC Educational Resources Information Center
Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.
2011-01-01
This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…
A Laboratory Experiment on the Statistical Theory of Nuclear Reactions
ERIC Educational Resources Information Center
Loveland, Walter
1971-01-01
Describes an undergraduate laboratory experiment on the statistical theory of nuclear reactions. The experiment involves measuring the relative cross sections for formation of a nucleus in its meta stable excited state and its ground state by applying gamma-ray spectroscopy to an irradiated sample. Involves 3-4 hours of laboratory time plus…
ERIC Educational Resources Information Center
Spell, Rachelle M.; Guinan, Judith A.; Miller, Kristen R.; Beck, Christopher W.
2014-01-01
Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are…
ERIC Educational Resources Information Center
Whitaker, Ragnhild D.; Truhlar, Laura M.; Yksel, Deniz; Walt, David R.; Williams, Mark D.
2010-01-01
The development and implementation of a research-based organic chemistry laboratory experiment is presented. The experiment was designed to simulate a scientific research environment, involve students in critical thinking, and develop the student's ability to analyze and present research-based data. In this experiment, a laboratory class…
A Laboratory Experiment for Rapid Determination of the Stability of Vitamin C
ERIC Educational Resources Information Center
Adem, Seid M.; Lueng, Sam H.; Elles, Lisa M. Sharpe; Shaver, Lee Alan
2016-01-01
Experiments in laboratory manuals intended for general, organic, and biological (GOB) chemistry laboratories include few opportunities for students to engage in instrumental methods of analysis. Many of these students seek careers in modern health-related fields where experience in spectroscopic techniques would be beneficial. A simple, rapid,…
NASA Astrophysics Data System (ADS)
Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra
2015-07-01
Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.
ERIC Educational Resources Information Center
Schmidt-McCormack, Jennifer A.; Muniz, Marc N.; Keuter, Ellie C.; Shaw, Scott K.; Cole, Renée S.
2017-01-01
Well-designed laboratories can help students master content and science practices by successfully completing the laboratory experiments. Upper-division chemistry laboratory courses often present special challenges for instruction due to the instrument intensive nature of the experiments. To address these challenges, particularly those associated…
A 13-Week Research-Based Biochemistry Laboratory Curriculum
ERIC Educational Resources Information Center
Lefurgy, Scott T.; Mundorff, Emily C.
2017-01-01
Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with…
Inducing Mutations in "Paramecium": An Inquiry-Based Approach
ERIC Educational Resources Information Center
Elwess, Nancy L.; Latourelle, Sandra L.
2004-01-01
A major challenge in teaching any college level general genetics course including a laboratory component is having the students actively understand the research part of an experiment as well as develop the necessary laboratory skills. This laboratory experience furthers the students' knowledge of genetics while improving their laboratory skills.…
Hydrology and radionuclide migration program 1987 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, K.V.
1991-03-01
This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program at the Nevada Test Site (NTS) during the fiscal year 1987. The report discussed initial data from a new well (UE20n-1) drilled at the Cheshire site; presents a description of a proposed laboratory study of migration of colloids in fractured media; lists data collected during the drilling and initial sampling of UE20n-1; and describes a tentative proposal for work to be performed in FY88 by Lamont-Doherty Geological Observatory. Groundwater sampled from the new well at the Cheshire site contains tritium concentrations comparablemore » to those measured in previous years from locations above and within the Cheshire cavity. This presence of tritium, as well as several other radionuclides, in a well 100 m away from the cavity region indicates transport of radionuclides, validates a proposed model of the flow path, and provides data on rates of groundwater flow. Previous work at the Cheshire site has shown that radionuclides are transported by colloids through fractured media. However, we have no data that can be used for predictive modeling, and existing theories are not applicable. While physical transport mechanisms of sub-micrometer colloids to defined mineral surfaces are well known, predictions based on well-defined conditions differ from experimental observations by orders of magnitude. The U.C. Berkeley group has designed a laboratory experiment to quantify colloid retention and permeability alteration by the retained colloids.« less
ERIC Educational Resources Information Center
Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra
2015-01-01
Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed…
NASA Astrophysics Data System (ADS)
Schill, Janna Marie
Professional socialization is a process that individuals experience as members of a profession and consists of the knowledge, attitudes, and experiences that influence and shape their professional identity. The process of professional socialization has not been studied in the clinical laboratory science profession. Clinical laboratory science is an allied health profession that is faced by a workforce shortage that has been caused by a decrease in new graduates, decreased retention of qualified professionals, and increased retirements. Other allied health professions such as nursing, athletic training, and pharmacy have studied professional socialization as a way to identify factors that may influence the retention of early career professionals. This mixed method study, which quantitatively used Hall's Professionalism Scale (1968) in addition to qualitative focus group interviews, sought to identify the professional attitudes and behaviors, sense of belonging, and professional socialization of early career clinical laboratory scientists. Early career clinical laboratory scientists were divided into two groups based upon the amount of work experience they had; new clinical laboratory science graduates have had less than one year of work experience and novice clinical laboratory scientists had between one and three years of work experience. This study found that early career clinical laboratory scientists have established professional identities and view themselves as members of the clinical laboratory science field within four proposed stages of professional socialization consisting of pre-arrival, encounter, adaptation, and commitment. New CLS graduates and novice clinical laboratory scientists were found to be at different stages of the professional stage process. New CLS graduates, who had less than one year of work experience, were found to be in the encounter stage. Novice clinical laboratory scientists, with one to three years of work experience, were found to be in the adaptation stage. In order for early career clinical laboratory scientists to successfully transition from student to committed professional, increased support from more experienced colleagues needs to be provided for this group of laboratory professionals. This study provided an initial examination of the professional socialization process in the CLS profession and adds to existing professional socialization studies in allied health.
Complexities in Ferret Influenza Virus Pathogenesis and Transmission Models
Eckert, Alissa M.; Tumpey, Terrence M.; Maines, Taronna R.
2016-01-01
SUMMARY Ferrets are widely employed to study the pathogenicity, transmissibility, and tropism of influenza viruses. However, inherent variations in inoculation methods, sampling schemes, and experimental designs are often overlooked when contextualizing or aggregating data between laboratories, leading to potential confusion or misinterpretation of results. Here, we provide a comprehensive overview of parameters to consider when planning an experiment using ferrets, collecting data from the experiment, and placing results in context with previously performed studies. This review offers information that is of particular importance for researchers in the field who rely on ferret data but do not perform the experiments themselves. Furthermore, this review highlights the breadth of experimental designs and techniques currently available to study influenza viruses in this model, underscoring the wide heterogeneity of protocols currently used for ferret studies while demonstrating the wealth of information which can benefit risk assessments of emerging influenza viruses. PMID:27412880
Complexities in Ferret Influenza Virus Pathogenesis and Transmission Models.
Belser, Jessica A; Eckert, Alissa M; Tumpey, Terrence M; Maines, Taronna R
2016-09-01
Ferrets are widely employed to study the pathogenicity, transmissibility, and tropism of influenza viruses. However, inherent variations in inoculation methods, sampling schemes, and experimental designs are often overlooked when contextualizing or aggregating data between laboratories, leading to potential confusion or misinterpretation of results. Here, we provide a comprehensive overview of parameters to consider when planning an experiment using ferrets, collecting data from the experiment, and placing results in context with previously performed studies. This review offers information that is of particular importance for researchers in the field who rely on ferret data but do not perform the experiments themselves. Furthermore, this review highlights the breadth of experimental designs and techniques currently available to study influenza viruses in this model, underscoring the wide heterogeneity of protocols currently used for ferret studies while demonstrating the wealth of information which can benefit risk assessments of emerging influenza viruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Menshikov, Ivan S; Shklover, Alexsandr V; Babkina, Tatiana S; Myagkov, Mikhail G
2017-01-01
In this research, the social behavior of the participants in a Prisoner's Dilemma laboratory game is explained on the basis of the quantal response equilibrium concept and the representation of the game in Markov strategies. In previous research, we demonstrated that social interaction during the experiment has a positive influence on cooperation, trust, and gratefulness. This research shows that the quantal response equilibrium concept agrees only with the results of experiments on cooperation in Prisoner's Dilemma prior to social interaction. However, quantal response equilibrium does not explain of participants' behavior after social interaction. As an alternative theoretical approach, an examination was conducted of iterated Prisoner's Dilemma game in Markov strategies. We built a totally mixed Nash equilibrium in this game; the equilibrium agrees with the results of the experiments both before and after social interaction.
Ion exchange of several radionuclides on the hydrous crystalline silicotitanate, UOP IONSIV IE-911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huckman, M.E.; Latheef, I.M.; Anthony, R.G.
1999-04-01
The crystalline silicotitanate, UOP IONSIV IE-911, is a proven material for removing radionuclides from a wide variety of waste streams. It is superior for removing several radionuclides from the highly alkaline solutions typical of DOE wastes. This laboratory previously developed an equilibrium model applicable to complex solutions for IE-910 (the power form of the granular IE-911), and more recently, the authors have developed several single component ion-exchange kinetic models for predicting column breakthrough curves and batch reactor concentration histories. In this paper, the authors model ion-exchange column performance using effective diffusivities determined from batch kinetic experiments. This technique is preferablemore » because the batch experiments are easier, faster, and cheaper to perform than column experiments. They also extend these ideas to multicomponent systems. Finally, they evaluate the ability of the equilibrium model to predict data for IE-911.« less
Experimental search for the violation of Pauli exclusion principle: VIP-2 Collaboration.
Shi, H; Milotti, E; Bartalucci, S; Bazzi, M; Bertolucci, S; Bragadireanu, A M; Cargnelli, M; Clozza, A; De Paolis, L; Di Matteo, S; Egger, J-P; Elnaggar, H; Guaraldo, C; Iliescu, M; Laubenstein, M; Marton, J; Miliucci, M; Pichler, A; Pietreanu, D; Piscicchia, K; Scordo, A; Sirghi, D L; Sirghi, F; Sperandio, L; Vazquez Doce, O; Widmann, E; Zmeskal, J; Curceanu, C
2018-01-01
The VIolation of Pauli exclusion principle -2 experiment, or VIP-2 experiment, at the Laboratori Nazionali del Gran Sasso searches for X-rays from copper atomic transitions that are prohibited by the Pauli exclusion principle. Candidate direct violation events come from the transition of a 2 p electron to the ground state that is already occupied by two electrons. From the first data taking campaign in 2016 of VIP-2 experiment, we determined a best upper limit of [Formula: see text] for the probability that such a violation exists. Significant improvement in the control of the experimental systematics was also achieved, although not explicitly reflected in the improved upper limit. By introducing a simultaneous spectral fit of the signal and background data in the analysis, we succeeded in taking into account systematic errors that could not be evaluated previously in this type of measurements.
Akpinar, Selçuk
2016-01-01
Previous research suggests that older persons show cognitive deficits in standardized laboratory tests, but not in more natural tests such as the Multiple Errands Task (MET). The absence of deficits in the latter tests has been attributed to the compensation of deficits by strategies based on life-long experience. To scrutinize this view, we primed older participants with positive or negative stereotypes about old age before administering MET. We found that compared to unprimed controls, priming with positive age stereotypes reduced the number of errors without changing response times, while priming with negative stereotypes changed neither errors not response times. We interpret our findings as evidence that positive age priming improved participants’ cognitive functions while leaving intact their experience-based compensation, and that negative age priming degraded participants’ cognitive functions which, however, was balanced by an even stronger experience-based compensation. PMID:27649296
Experimental search for the violation of Pauli exclusion principle. VIP-2 Collaboration
NASA Astrophysics Data System (ADS)
Shi, H.; Milotti, E.; Bartalucci, S.; Bazzi, M.; Bertolucci, S.; Bragadireanu, A. M.; Cargnelli, M.; Clozza, A.; De Paolis, L.; Di Matteo, S.; Egger, J.-P.; Elnaggar, H.; Guaraldo, C.; Iliescu, M.; Laubenstein, M.; Marton, J.; Miliucci, M.; Pichler, A.; Pietreanu, D.; Piscicchia, K.; Scordo, A.; Sirghi, D. L.; Sirghi, F.; Sperandio, L.; Vazquez Doce, O.; Widmann, E.; Zmeskal, J.; Curceanu, C.
2018-04-01
The VIolation of Pauli exclusion principle -2 experiment, or VIP-2 experiment, at the Laboratori Nazionali del Gran Sasso searches for X-rays from copper atomic transitions that are prohibited by the Pauli exclusion principle. Candidate direct violation events come from the transition of a 2 p electron to the ground state that is already occupied by two electrons. From the first data taking campaign in 2016 of VIP-2 experiment, we determined a best upper limit of 3.4 × 10^{-29} for the probability that such a violation exists. Significant improvement in the control of the experimental systematics was also achieved, although not explicitly reflected in the improved upper limit. By introducing a simultaneous spectral fit of the signal and background data in the analysis, we succeeded in taking into account systematic errors that could not be evaluated previously in this type of measurements.
Myagkov, Mikhail G.
2017-01-01
In this research, the social behavior of the participants in a Prisoner's Dilemma laboratory game is explained on the basis of the quantal response equilibrium concept and the representation of the game in Markov strategies. In previous research, we demonstrated that social interaction during the experiment has a positive influence on cooperation, trust, and gratefulness. This research shows that the quantal response equilibrium concept agrees only with the results of experiments on cooperation in Prisoner’s Dilemma prior to social interaction. However, quantal response equilibrium does not explain of participants’ behavior after social interaction. As an alternative theoretical approach, an examination was conducted of iterated Prisoner's Dilemma game in Markov strategies. We built a totally mixed Nash equilibrium in this game; the equilibrium agrees with the results of the experiments both before and after social interaction. PMID:29190280
NASA Astrophysics Data System (ADS)
Sewell, Everest; Ferguson, Kevin; Greenough, Jeffrey; Jacobs, Jeffrey
2014-11-01
We describe new experiments of single shock Richtmeyer-Meshkov Instability (RMI) performed on the shock tube apparatus at the University of Arizona in which the initial conditions are volumetrically imaged prior to shock wave arrival. Initial perturbation plays a major role in the evolution of RMI, and previous experimental efforts only capture a narrow slice of the initial condition. The method presented uses a rastered laser sheet to capture additional images in the depth of the initial condition shortly before the experimental start time. These images are then used to reconstruct a volumetric approximation of the experimental perturbation, which is simulated using the hydrodynamics code ARES, developed at Lawrence Livermore National Laboratory (LLNL). Comparison is made between the time evolution of the interface width and the mixedness ratio measured from the experiments against the predictions from the numerical simulations.
Bock, Otmar; Akpinar, Selçuk
2016-01-01
Previous research suggests that older persons show cognitive deficits in standardized laboratory tests, but not in more natural tests such as the Multiple Errands Task (MET). The absence of deficits in the latter tests has been attributed to the compensation of deficits by strategies based on life-long experience. To scrutinize this view, we primed older participants with positive or negative stereotypes about old age before administering MET. We found that compared to unprimed controls, priming with positive age stereotypes reduced the number of errors without changing response times, while priming with negative stereotypes changed neither errors not response times. We interpret our findings as evidence that positive age priming improved participants' cognitive functions while leaving intact their experience-based compensation, and that negative age priming degraded participants' cognitive functions which, however, was balanced by an even stronger experience-based compensation.
NASA Technical Reports Server (NTRS)
Vogl, J. L.
1973-01-01
Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.
Detour Behavior of Mice Trained with Transparent, Semitransparent and Opaque Barriers
Juszczak, Grzegorz R.; Miller, Michal
2016-01-01
Detour tasks are commonly used to study problem solving skills and inhibitory control in canids and primates. However, there is no comparable detour test designed for rodents despite its significance for studying the development of executive skills. Furthermore, mice offer research opportunities that are not currently possible to achieve when primates are used. Therefore, the aim of the study was to translate the classic detour task to mice and to compare obtained data with key findings obtained previously in other mammals. The experiment was performed with V-shaped barriers and was based on the water escape paradigm. The study showed that an apparently simple task requiring mice to move around a small barrier constituted in fact a challenge that was strongly affected by the visibility of the target. The most difficult task involved a completely transparent barrier, which forced the mice to resolve a conflict between vision and tactile perception. The performance depended both on the inhibitory skills and on previous experiences. Additionally, all mice displayed a preference for one side of the barrier and most of them relied on the egocentric strategy. Obtained results show for the first time that the behavior of mice subjected to the detour task is comparable to the behavior of other mammals tested previously with free-standing barriers. This detailed characterization of the detour behavior of mice constitutes the first step toward the substitution of rodents for primates in laboratory experiments employing the detour task. PMID:27588753
Hamburger, Joseph; Abbasi, Ibrahim; Kariuki, Curtis; Wanjala, Atsabina; Mzungu, Elton; Mungai, Peter; Muchiri, Eric; King, Charles H.
2013-01-01
We previously described loop-mediated isothermal amplification (LAMP) for detection of Schistosoma haematobium and S. mansoni DNA in infected snails. In the present study, we adapted the LAMP assay for application in field laboratories in schistosomiasis-endemic areas. Isolation of DNA was simplified by blotting snail tissue (extracted in NaOH/sodium dodecyl sulfate) onto treated membranes, which enabled preservation at ambient temperatures. A ready-mix of LAMP reagents, suitable for shipment at ambient temperature and storage in minimal refrigeration, was used. Local survey teams without experience in molecular biology acquired operational expertise with this test within a few hours. Fifty-four field-caught snails were tested locally by LAMP and 59 were tested at similar conditions in Jerusalem. The LAMP results were consistent with those of a polymerase chain reaction; only four samples showed false-negative results. Results indicate that LAMP assays are suitable for detection of S. haematobium and S. mansoni in low-technology parasitology laboratories in which schistosomiasis elimination activities are undertaken. PMID:23208875
Laboratory-Scale Evidence for Lightning-Mediated Gene Transfer in Soil
Demanèche, Sandrine; Bertolla, Franck; Buret, François; Nalin, Renaud; Sailland, Alain; Auriol, Philippe; Vogel, Timothy M.; Simonet, Pascal
2001-01-01
Electrical fields and current can permeabilize bacterial membranes, allowing for the penetration of naked DNA. Given that the environment is subjected to regular thunderstorms and lightning discharges that induce enormous electrical perturbations, the possibility of natural electrotransformation of bacteria was investigated. We demonstrated with soil microcosm experiments that the transformation of added bacteria could be increased locally via lightning-mediated current injection. The incorporation of three genes coding for antibiotic resistance (plasmid pBR328) into the Escherichia coli strain DH10B recipient previously added to soil was observed only after the soil had been subjected to laboratory-scale lightning. Laboratory-scale lightning had an electrical field gradient (700 versus 600 kV m−1) and current density (2.5 versus 12.6 kA m−2) similar to those of full-scale lightning. Controls handled identically except for not being subjected to lightning produced no detectable antibiotic-resistant clones. In addition, simulated storm cloud electrical fields (in the absence of current) did not produce detectable clones (transformation detection limit, 10−9). Natural electrotransformation might be a mechanism involved in bacterial evolution. PMID:11472916
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooke, Ilsa R.; Fayolle, Edith C.; Öberg, Karin I., E-mail: irc5zb@virginia.edu
CO{sub 2} ice is an important reservoir of carbon and oxygen in star- and planet-forming regions. Together with water and CO, CO{sub 2} sets the physical and chemical characteristics of interstellar icy grain mantles, including desorption and diffusion energies for other ice constituents. A detailed understanding of CO{sub 2} ice spectroscopy is a prerequisite to characterize CO{sub 2} interactions with other volatiles both in interstellar ices and in laboratory experiments of interstellar ice analogs. We report laboratory spectra of the CO{sub 2} longitudinal optical (LO) phonon mode in pure CO{sub 2} ice and in CO{sub 2} ice mixtures with H{submore » 2}O, CO, and O{sub 2} components. We show that the LO phonon mode position is sensitive to the mixing ratio of various ice components of astronomical interest. In the era of the James Webb Space Telescope , this characteristic could be used to constrain interstellar ice compositions and morphologies. More immediately, LO phonon mode spectroscopy provides a sensitive probe of ice mixing in the laboratory and should thus enable diffusion measurements with higher precision than has been previously possible.« less
An underwater robo-leader for collective motion studies
NASA Astrophysics Data System (ADS)
Sanchez, Yair; Wilhelmus, Monica M.
2016-11-01
A wide range of aquatic species, from bacteria to large tuna, exhibits collective behavior. It has long been hypothesized that the formation of complex configurations brings an energetic advantage to the members of a group as well as protection against larger predators or harmful agents. Lately, however, laboratory experiments have suggested that both the physics and the behavioral aspects of collective motion yield more complexity than previously attributed. With the goal to understand the fluid mechanical implications behind collective motion in a laboratory setting, we have developed a new device to induce this behavior on demand. Following recent studies of lab-induced vertical migration of Artemia salina, we have designed and constructed a remotely controlled underwater robotic swimmer that acts as a leader for groups of phototactic organisms. Preliminary quantitative flow visualizations done during vertical migration of brine shrimp show that this new instrument does induce collective motion in the laboratory. With this setup, we can address the hydrodynamic effect of having different swarm configurations, a variable that so far has been challenging to study in a controllable and reproducible manner.
ERIC Educational Resources Information Center
Goldman, Corey A., Ed.
The focus of the Association for Biology Laboratory Education (ABLE) is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceedings volume includes 13 papers: "Non-Radioactive DNA Hybridization Experiments for the…
NASA Astrophysics Data System (ADS)
Yamashita, F.; Fukuyama, E.; Xu, S.; Kawakata, H.; Mizoguchi, K.; Takizawa, S.
2017-12-01
We report two types of foreshock activities observed on meter-scale laboratory experiments: slow-slip-driven type and cascade-up type. We used two rectangular metagabbro blocks as experimental specimens, whose nominal contacting area was 1.5 m long and 0.1 m wide. To monitor stress changes and seismic activities on the fault, we installed dense arrays of 32 triaxial rosette strain gauges and 64 PZT seismic sensors along the fault. We repeatedly conducted experiments with the same pair of rock specimens, causing the evolution of damage on the fault. We focus on two experiments successively conducted under the same loading condition (normal stress of 6.7 MPa and loading rate of 0.01 mm/s) but different initial fault surface conditions; the first experiment preserved the gouge generated from the previous experiment while the second experiment started with all gouge removed. Note that the distribution of gouge was heterogeneous, because we did not make the gouge layer uniform. We observed many foreshocks in both experiments, but found that the b-value of foreshocks was smaller in the first experiment with pre-existing gouge (PEG). In the second experiment without PEG, we observed premonitory slow slip associated with nucleation process preceding most main events by the strain measurements. We also found that foreshocks were triggered by the slow slip at the end of the nucleation process. In the experiment with PEG, on the contrary, no clear premonitory slow slips were found. Instead, foreshock activity accelerated towards the main event, as confirmed by a decreasing b-value. Spatiotemporal distribution of foreshock hypocenters suggests that foreshocks migrated and cascaded up to the main event. We infer that heterogeneous gouge distribution caused stress-concentrated and unstable patches, which impeded stable slow slip but promoted foreshocks on the fault. Further, our results suggest that b-value is a useful parameter for characterizing these observations.
Study of Perturbations on High Mach Number Blast Waves in Various Gasses
NASA Astrophysics Data System (ADS)
Edens, A.; Adams, R.; Rambo, P.; Shores, J.; Smith, I.; Atherton, B.; Ditmire, T.
2006-10-01
We have performed a series of experiments examining the properties of high Mach number blast waves. Experiments were conducted on the Z-Beamlet^1 laser at Sandia National Laboratories. We created blast waves in the laboratory by using 10 J- 1000 J laser pulses to illuminate millimeter scale solid targets immersed in gas. Our experiments studied the validity of theories forwarded by Vishniac and Ryu^2-4 to explain the dynamics of perturbations on astrophysical blast waves. These experiments consisted of an examination of the evolution of perturbations of known primary mode number induced on the surface of blast waves by means of regularly spaced wire arrays. The temporal evolution of the amplitude of the induced perturbations relative to the mean radius of the blast wave was fit to a power law in time. Measurements were taken for a number of different mode numbers and background gasses and the results show qualitative agreement with previously published theories for the hydrodynamics of thin shell blast wave. The results for perturbations on nitrogen gas have been recently published^5. .^1 P. K. Rambo, I. C. Smith, J. L. Porter, et al., Applied Optics 44, 2421 (2005). ^2 D. Ryu and E. T. Vishniac, Astrophysical Journal 313, 820 (1987). ^3 D. Ryu and E. T. Vishniac, Astrophysical Journal 368, 411 (1991). ^4 E. T. Vishniac, Astrophysical Journal 274, 152 (1983). ^5 A. D. Edens, T. Ditmire, J. F. Hansen, et al., Physical Review Letters 95 (2005).
Extension of the simulated drinking game procedure to multiple drinking games.
Cameron, Jennifer M; Leon, Matthew R; Correia, Christopher J
2011-08-01
The present study extended the Simulated Drinking Game Procedure (SDGP) to obtain information about different types of drinking games. Phase I participants (N = 545) completed online screening questionnaires assessing substance use and drinking game participation. Participants who met the selection criteria for Phase II (N = 92) participated in laboratory sessions that consisted of three different periods of drinking game play. Sixty-two percent (N = 57) of the sample was female. Data from these sessions was used to estimate the peak Blood Alcohol Concentration (BAC) a participant would achieve if they consumed alcohol while participating in the SDGP. Total consumption and estimated BAC varied as a function of game type. The total consumption and estimated BAC obtained while playing Beer Pong and Memory varied significantly as a function of group. Total ounces consumed while playing Three Man varied significantly as a function of group; however, the variation in estimated BAC obtained while playing Three Man was not significant. Results indicated that estimated BACs were higher for female participants across game type. Previous experience playing the three drinking games had no impact on total drink consumption or estimated BAC obtained while participating in the SDGP. The present study demonstrated that the SDGP can be used to generate estimates of how much alcohol is consumed and the associated obtained BAC during multiple types of drinking games. In order to fully examine whether previous experience factors in to overall alcohol consumption and BAC, future research should extend the SDGP to incorporate laboratory administration of alcohol during drinking game participation. (c) 2011 APA, all rights reserved.
Aviator's night vision system (ANVIS) in Operation Enduring Freedom (OEF): user acceptability survey
NASA Astrophysics Data System (ADS)
Hiatt, Keith L.; Trollman, Christopher J.; Rash, Clarence E.
2010-04-01
In 1973, the U.S. Army adopted night vision devices for use in the aviation environment. These devices are based on the principle of image intensification (I2) and have become the mainstay for the aviator's capability to operate during periods of low illumination, i.e., at night. In the nearly four decades that have followed, a number of engineering advancements have significantly improved the performance of these devices. The current version, using 3rd generation I2 technology is known as the Aviator's Night Vision Imaging System (ANVIS). While considerable experience with performance has been gained during training and peacetime operations, no previous studies have looked at user acceptability and performance issues in a combat environment. This study was designed to compare Army Aircrew experiences in a combat environment to currently available information in the published literature (all peacetime laboratory and field training studies) and to determine if the latter is valid. The purpose of this study was to identify and assess aircrew satisfaction with the ANVIS and any visual performance issues or problems relating to its use in Operation Enduring Freedom (OEF). The study consisted of an anonymous survey (based on previous validated surveys used in the laboratory and training environments) of 86 Aircrew members (64% Rated and 36% Non-rated) of an Aviation Task Force approximately 6 months into their OEF deployment. This group represents an aggregate of >94,000 flight hours of which ~22,000 are ANVIS and ~16,000 during this deployment. Overall user acceptability of ANVIS in a combat environment will be discussed.
A comprehensive review of the SLMTA literature part 1: Content analysis and future priorities
Yao, Katy; Nkengasong, John N.
2014-01-01
Background Since its introduction in 2009, the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme has been implemented widely throughout Africa, as well as in the Caribbean, Central and South America, and Southeast Asia. Objective We compiled results from local, national and global studies to provide a broad view of the programme and identify directions for the future. The review consists of two companion papers; this paper focuses on content analysis, examining various thematic components of the SLMTA programme and future priorities. Methods A systematic literature search identified 28 published articles about implementing the SLMTA programme. Results for various components of the SLMTA programme were reviewed and summarised. Results Local and national studies provide substantial information on previous experiences with quality management systems; variations on SLMTA implementation; building human resource capacity for trainers, mentors and auditors; the benefits and effectiveness of various types of mentorship; the importance of management buy-in to ensure country ownership; the need to instill a culture of quality in the laboratory; success factors and challenges; and future directions for the programme. Conclusions Local, national and global results suggest that the SLMTA programme has been overwhelmingly successful in transforming laboratory quality management. There is an urgent need to move forward in four strategic directions: progression (continued improvement in SLMTA laboratories), saturation (additional laboratories within countries that have implemented SLMTA), expansion (implementation in additional countries), and extension (adapting SLMTA for implementation beyond the laboratory), to lead to transformation of overall health systems and patient care. PMID:29043200
ERIC Educational Resources Information Center
Abdel-Salam, Tarek; Kauffman, Paul J.; Crossman, Gary
2006-01-01
Educators question whether performing a laboratory experiment as an observer (non-hands-on), such as conducted in a distance education context, can be as effective a learning tool as personally performing the experiment in a laboratory environment. The present paper investigates this issue by comparing the performance of distance education…
ERIC Educational Resources Information Center
Willbur, Jaime F.; Vail, Justin D.; Mitchell, Lindsey N.; Jakeman, David L.; Timmons, Shannon C.
2016-01-01
The development and implementation of research-inspired, discovery-based experiences into science laboratory curricula is a proven strategy for increasing student engagement and ownership of experiments. In the novel laboratory module described herein, students learn to express, purify, and characterize a carbohydrate-active enzyme using modern…
ERIC Educational Resources Information Center
Cacciatore, Kristen L.; Sevian, Hannah
2009-01-01
Many institutions are responding to current research about how students learn science by transforming their general chemistry laboratory curricula to be inquiry-oriented. We present a comparison study of student performance after completing either a traditional or an inquiry stoichiometry experiment. This single laboratory experience was the only…
NASA Astrophysics Data System (ADS)
Dunnett, K.; Bartlett, P. A.
2018-01-01
It was planned to introduce online pre-laboratory session activities to a first-year undergraduate physics laboratory course to encourage a minimum level of student preparation for experiments outside the laboratory environment. A group of 16 and 17 year old laboratory work-experience students were tasked to define and design a pre-laboratory activity based on experiments that they had been undertaking. This informed the structure, content and aims of the activities introduced to a first year physics undergraduate laboratory course, with the particular focus on practising the data handling. An implementation study showed how students could try to optimise high grades, rather than gain efficiency-enhancing experience if careful controls were not put in place by assessors. However, the work demonstrated that pre-university and first-year physics students can take an active role in developing scaffolding activities that can help to improve the performance of those that follow their footsteps.
ERIC Educational Resources Information Center
Aydogdu, Cemil
2017-01-01
Chemistry lesson should be supported with experiments to understand the lecture effectively. For safety laboratory environment and to prevent laboratory accidents; chemical substances' properties, working principles for chemical substances' usage should be learnt. Aim of the present study was to analyze the effect of experiments which depend on…
Experiments with the low melting indium-bismuth alloy system
NASA Technical Reports Server (NTRS)
Krepski, Richard P.
1992-01-01
The following is a laboratory experiment designed to create an interest in and to further understanding of materials science. The primary audience for this material is the junior high school or middle school science student having no previous familiarity with the material, other than some knowledge of temperature and the concepts of atoms, elements, compounds, and chemical reactions. The objective of the experiment is to investigate the indium-bismuth alloy system. Near the eutectic composition, the liquidus is well below the boiling point of water, allowing simple, minimal hazard casting experiments. Such phenomena as metal oxidation, formation of intermetallic compound crystals, and an unusual volume increase during solidification could all be directly observed. A key concept for students to absorb is that properties of an alloy (melting point, mechanical behavior) may not correlate with simple interpolation of properties of the pure components. Discussion of other low melting metals and alloys leads to consideration of environmental and toxicity issues, as well as providing some historical context. Wetting behavior can also be explored.
Perchlorate Radiolysis on Mars and the Origin of Martian Soil Reactivity
Martucci, Hana F.H.; Miller, Stephanie R.; Bryson, Charles E.; Grunthaner, Frank J.; Grunthaner, Paula J.
2013-01-01
Abstract Results from the Viking biology experiments indicate the presence of reactive oxidants in martian soils that have previously been attributed to peroxide and superoxide. Instruments on the Mars Phoenix Lander and the Mars Science Laboratory detected perchlorate in martian soil, which is nonreactive under the conditions of the Viking biology experiments. We show that calcium perchlorate exposed to gamma rays decomposes in a CO2 atmosphere to form hypochlorite (ClO−), trapped oxygen (O2), and chlorine dioxide (ClO2). Our results show that the release of trapped O2 (g) from radiation-damaged perchlorate salts and the reaction of ClO− with amino acids that were added to the martian soils can explain the results of the Viking biology experiments. We conclude that neither hydrogen peroxide nor superoxide is required to explain the results of the Viking biology experiments. Key Words: Mars—Radiolysis—Organic degradation—in situ measurement—Planetary habitability and biosignatures. Astrobiology 13, 515–520. PMID:23746165
Compound facial expressions of emotion: from basic research to clinical applications
Du, Shichuan; Martinez, Aleix M.
2015-01-01
Emotions are sometimes revealed through facial expressions. When these natural facial articulations involve the contraction of the same muscle groups in people of distinct cultural upbringings, this is taken as evidence of a biological origin of these emotions. While past research had identified facial expressions associated with a single internally felt category (eg, the facial expression of happiness when we feel joyful), we have recently studied facial expressions observed when people experience compound emotions (eg, the facial expression of happy surprise when we feel joyful in a surprised way, as, for example, at a surprise birthday party). Our research has identified 17 compound expressions consistently produced across cultures, suggesting that the number of facial expressions of emotion of biological origin is much larger than previously believed. The present paper provides an overview of these findings and shows evidence supporting the view that spontaneous expressions are produced using the same facial articulations previously identified in laboratory experiments. We also discuss the implications of our results in the study of psychopathologies, and consider several open research questions. PMID:26869845
Lab experiments are a major source of knowledge in the social sciences.
Falk, Armin; Heckman, James J
2009-10-23
Laboratory experiments are a widely used methodology for advancing causal knowledge in the physical and life sciences. With the exception of psychology, the adoption of laboratory experiments has been much slower in the social sciences, although during the past two decades the use of lab experiments has accelerated. Nonetheless, there remains considerable resistance among social scientists who argue that lab experiments lack "realism" and generalizability. In this article, we discuss the advantages and limitations of laboratory social science experiments by comparing them to research based on nonexperimental data and to field experiments. We argue that many recent objections against lab experiments are misguided and that even more lab experiments should be conducted.
Soucek, David J; Mount, David R; Dickinson, Amy; Hockett, J Russell; McEwen, Abigail R
2015-10-01
The strain of Hyalella azteca (Saussure: Amphipoda) commonly used for aquatic toxicity testing in the United States has been shown to perform poorly in some standardized reconstituted waters frequently used for other test species. In 10-d and 42-d experiments, the growth and reproduction of the US laboratory strain of H. azteca was shown to vary strongly with chloride concentration in the test water, with declining performance observed below 15 mg/L to 20 mg/L. In contrast to the chloride-dependent performance of the US laboratory strain of H. azteca, growth of a genetically distinct strain of H. azteca obtained from an Environment Canada laboratory in Burlington, Ontario, Canada, was not influenced by chloride concentration. In acute toxicity tests with the US laboratory strain of H. azteca, the acute toxicity of sodium nitrate increased with decreasing chloride in a pattern similar not only to that observed for control growth, but also to previous acute toxicity testing with sodium sulfate. Subsequent testing with the Burlington strain showed no significant relationship between chloride concentration and the acute toxicity of sodium nitrate or sodium sulfate. These findings suggest that the chloride-dependent toxicity shown for the US laboratory strain may be an unusual feature of that strain and perhaps not broadly representative of aquatic organisms as a whole. © 2015 SETAC.
Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility
NASA Technical Reports Server (NTRS)
Williams, Jeffrey P.; Rallo, Rosemary A.
1987-01-01
A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for a laboratory experiment, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.
Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility
NASA Technical Reports Server (NTRS)
Williams, Jeffrey P.; Rallo, Rosemary A.
1987-01-01
A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for laboratory experiments, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.
Biotechnology Laboratory Methods.
ERIC Educational Resources Information Center
Davis, Robert H.; Kompala, Dhinakar S.
1989-01-01
Describes a course entitled "Biotechnology Laboratory" which introduces a variety of laboratory methods associated with biotechnology. Describes the history, content, and seven experiments of the course. The seven experiments are selected from microbiology and molecular biology, kinetics and fermentation, and downstream…
NASA Astrophysics Data System (ADS)
Schräpler, Rainer; Blum, Jürgen; Seizinger, Alexander; Kley, Wilhelm
2012-10-01
We performed micro-gravity collision experiments in our laboratory drop tower using 5 cm sized dust agglomerates with volume filling factors of 0.3 and 0.4, respectively. This work is an extension of our previous experiments reported in Beitz et al. to aggregates of more than one order of magnitude higher masses. The dust aggregates consisted of micrometer-sized silica particles and were macroscopically homogeneous. We measured the coefficient of restitution for collision velocities ranging from 1 cm s-1 to 0.5 m s-1, and determined the fragmentation velocity. For low velocities, the coefficient of restitution decreases with increasing impact velocity, in contrast to findings by Beitz et al. At higher velocities, the value of the coefficient of restitution becomes constant, before the aggregates break at the onset of fragmentation. We interpret the qualitative change in the coefficient of restitution as the transition from a solid-body-dominated to a granular-medium-dominated behavior. We complement our experiments by molecular-dynamics simulations of porous aggregates and obtain a reasonable match to the experimental data. We discuss the importance of our experiments for protoplanetary disks, debris disks, and planetary rings. This work is an extension to the previous work of our group and gives new insight into the velocity dependency of the coefficient of restitution due to improved measurements, better statistics, and a theoretical approach.
Astrophysically relevant radiatively cooled hypersonic bow shocks in nested wire arrays
NASA Astrophysics Data System (ADS)
Ampleford, David
2009-11-01
We have performed laboratory experiments which introduce obstructions into hypersonic plasma flows to study the formation of shocks. Astrophysical observations have demonstrated many examples of equivalent radiatively cooled bow shocks, for example the head of protostellar jets or supernova remnants passing through the interstellar medium or between discrete clumps in jets. Wire array z-pinches allow us to study quasi-planar radiatively cooled flows in the laboratory. The early stage of a wire array z-pinch implosion consists of a steady flow of the wire material towards the axis. Given a high rate of radiative cooling, these flows reach high sonic- Mach numbers, typically up to 5. The 2D nature of this configuration allows the insertion of obstacles into the flow, such as a concentric ``inner'' wire array, as has previously been studied for ICF research. Here we study the application of such a nested array to laboratory astrophysics where the inner wires act as obstructions perpendicular to the flow, and induce bow shocks. By varying the wire array material (W/Al), the significance of radiative cooling on these shocks can be controlled, and is shown to change the shock opening angle. As multiple obstructions are present, the experiments show the interaction of multiple bow shocks. It is also possible to introduce a magnetic field around the static object, increasing the opening angle of the shocks. Further experiments can be designed to control the flow density, magnetic field structure and obstruction locations. In collaboration with: S.V. Lebedev, M.E. Cuneo, C.A. Jennings, S.N. Bland, J.P. Chittenden, A. Ciardi, G.N. Hall, S.C. Bott, M. Sherlock, A. Frank, E. Blackman
Hares promote seed dispersal and seedling establishment after volcanic eruptions
NASA Astrophysics Data System (ADS)
Nomura, Nanae; Tsuyuzaki, Shiro
2015-02-01
Although seed dispersal through animal guts (endozoochory) is a process that determines plant establishment, the behaviour of carriers mean that the seeds are not always dispersed to suitable habitats for germination. The germinable seeds of Gaultheria miqueliana were stored in the pellets of a hare (Lepus timidus ainu) on Mount Koma in northern Japan. To clarify the roles of hares in seed dispersal and germination, field censuses and laboratory experiments were conducted. The field observations were conducted on pellets and seeds in four habitats (bare ground, G. miqueliana shrub patch, Salix reinii patch, and Larix kaempferi understory), and the laboratory experiments were conducted on seed germination with different light, water potential and cold stratification treatments. The laboratory experiments confirmed that seed germination began a few weeks after the sowing of seeds, independent of cold stratification, when light was sufficient and the water potential was low. The seeds did not germinate at high water potential. The pellets were gradually degraded in situ. More seeds germinated from crushed than from intact pellets. Therefore, over the long term, seeds germinated when exposed to light due to the degradation of pellets. The pellets were proportionally dispersed among the four studied habitats. More seeds sown in the field germinated more in shaded habitats, such as in the Gaultheria patch and the Larix understory, and seeds did not germinate on bare ground, where drought often occurred. Thus, the hares had two roles in the dispersal and germination of seeds: (1) the expansion of G. miqueliana populations through seed dispersal to various habitats and (2) the facilitation of delayed seed germination to avoid risks of hazards such as drought. The relationships between small mammals represented by the hare and the shrubs that produce berries are likely to be more mutually evolved than was previously thought.
NASA Astrophysics Data System (ADS)
Al-Shukri, H.; Eyuboglu, S.; Mahdi, H.
2005-12-01
Many geophysical techniques have been suggested as candidates for detecting water leakage in water distribution system, including ground penetrating radar (GPR), acoustic devices, and gas sampling devices. A series of laboratory experiments were conducted to determine the validity and effectiveness of GPR in detecting water leakage in metal and plastic PVC pipes. The goal was to derive a practical and robust procedure for detecting such leakage. Initially, prototype laboratory experiments were designed to simulate leaks in both PVC and metal pipe. The experiments were very well controlled and results obtained indicate that GPR is effective in detecting subsurface water leaks. This was followed by an outdoor life size experiments. 50 feet by 30 feet by 5 feet test bed was constructed using local soil and commercial water distribution pipes. A 400 MHz antenna was used to collect three-dimensional GPR data as a function of time for a number of experiments using different type of pipes. Advanced imaging and visualization technology was used to further analyze the data. The UALR Virtual Reality Center CAVE facilities were utilized to accomplish this test. Results obtained indicate that GPR is effective in detecting subsurface water leaks in both pipes. Synthetic models of the GPR signals based on Finite Difference Time Domain Method (FDTD) were built to help select an appropriate equipment configuration (frequency band, type of antenna, and real-time imaging software) prior to data acquisition. The simulation software was used to determine the near-field radiation characteristics of the GPR antenna. Different experimental models were adapted for which observational GPR data was previously collected. Matlab regression analysis was used to generate the incident waves for each model to ensure highly accurate and controlled experiments.
Long Duration Exposure Facility M0003-5 recent results on polymeric films
NASA Technical Reports Server (NTRS)
Hurley, Charles J.; Jones, Michele D.
1992-01-01
The M0003-5 polymeric film specimens orbited on the LDEF M0003 Space Environment Effects on Spacecraft Materials were a part of a Wright Laboratories Materials Directorate larger thermal control materials experiment. They were selected from new materials which emerged from development programs during the 1978-1982 time frame. Included were materials described in the technical literature which were being considered or had been applied to satellites. Materials that had been exposed on previous satellite materials experiments were also included to provide data correlation with earlier space flight experiments. The objective was to determine the effects of the LDEF environment on the physical and optical properties of polymeric thin film thermal control materials, the interaction of the LDEF environment with silvered spacecraft surfaces, and the performance of low outgassing adhesives. Sixteen combinations of various polymeric films, metallized and unmetallized, adhesively bonded and unbonded films were orbited on LDEF in the M0003-5 experiment. The films were exposed in two separate locations on the vehicle. One set was exposed on the direct leading edge of the satellite. The other set was exposed on the direct trailing edge of the vehicle. The purpose of the experiment was to understand the changes in the properties of materials before and after exposure to the space environment and to compare the changes with predictions based on laboratory experiments. The basic approach was to measure the optical and physical properties of materials before and after long-term exposure to a low earth orbital environment comprised of UV, VUV, electrons, protons, atomic oxygen, thermal cycling, vacuum, debris and micrometeoroids. Due to the unanticipated extended orbital flight of LDEF, the polymeric film materials were exposed for a full five years and ten months to the space environment.
The fascinating and secret wild life of the budding yeast S. cerevisiae
Liti, Gianni
2015-01-01
The budding yeast Saccharomyces cerevisiae has been used in laboratory experiments for over a century and has been instrumental in understanding virtually every aspect of molecular biology and genetics. However, it wasn't until a decade ago that the scientific community started to realise how little was known about this yeast's ecology and natural history, and how this information was vitally important for interpreting its biology. Recent large-scale population genomics studies coupled with intensive field surveys have revealed a previously unappreciated wild lifestyle of S. cerevisiae outside the restrictions of human environments and laboratories. The recent discovery that Chinese isolates harbour almost twice as much genetic variation as isolates from the rest of the world combined suggests that Asia is the likely origin of the modern budding yeast. DOI: http://dx.doi.org/10.7554/eLife.05835.001 PMID:25807086
Measurements of the ionization coefficient of simulated iron micrometeoroids
NASA Astrophysics Data System (ADS)
Thomas, Evan; Horányi, Mihály; Janches, Diego; Munsat, Tobin; Simolka, Jonas; Sternovsky, Zoltan
2016-04-01
The interpretation of meteor radar observations has remained an open problem for decades. One of the most critical parameters to establish the size of an incoming meteoroid from radar echoes is the ionization coefficient, β, which still remains poorly known. Here we report on new experiments to simulate micrometeoroid ablation in laboratory conditions to measure β for iron particles impacting N2, air, CO2, and He gases. This new data set is compared to previous laboratory data where we find agreement except for He and air impacts > 30 km/s. We calibrate the Jones model of β(v) and provide fit parameters to these gases and find agreement with all gases except CO2 and high-speed air impacts where we observe βair > 1 for velocities > 70 km/s. These data therefore demonstrate potential problems with using the Jones model for CO2 atmospheres as well as for high-speed meteors on Earth.
Incorporating learning goals about modeling into an upper-division physics laboratory experiment
NASA Astrophysics Data System (ADS)
Zwickl, Benjamin M.; Finkelstein, Noah; Lewandowski, H. J.
2014-09-01
Implementing a laboratory activity involves a complex interplay among learning goals, available resources, feedback about the existing course, best practices for teaching, and an overall philosophy about teaching labs. Building on our previous work, which described a process of transforming an entire lab course, we now turn our attention to how an individual lab activity on the polarization of light was redesigned to include a renewed emphasis on one broad learning goal: modeling. By using this common optics lab as a concrete case study of a broadly applicable approach, we highlight many aspects of the activity development and show how modeling is used to integrate sophisticated conceptual and quantitative reasoning into the experimental process through the various aspects of modeling: constructing models, making predictions, interpreting data, comparing measurements with predictions, and refining models. One significant outcome is a natural way to integrate an analysis and discussion of systematic error into a lab activity.
From Idea to Innovation: The Role of LDRD Investments in Sandia's Recent Successful B61 Experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arrowsmith, Marie Danielle
The Laboratory Directed Research and Development (LDRD) program, authorized by U.S. Congress in 1991, enables Department of Energy (DOE) laboratories to devote a small portion of their research funding to high-risk and potentially high-payoff research. Because it is high-risk, LDRD-supported research may not lead to immediate mission impacts; however, many successes at DOE labs can be traced back to investments in LDRD. LDRD investments have a history of enabling significant payoffs for long-running DOE and NNSA missions and for providing anticipatory new technologies that ultimately become critical to future missions. Many of Sandia National Laboratories’ successes can be traced backmore » to investments in LDRD. Capabilities from three LDRDs were critical to recent tests of the B61-12 gravity bomb—tests that would previously have only been performed experimentally.« less
2008-01-01
For the successful implementation of Distributed Drug Discovery (D3) (outlined in the accompanying Perspective), students, in the course of their educational laboratories, must be able to reproducibly make new, high quality, molecules with potential for biological activity. This article reports the successful achievement of this goal. Using previously rehearsed alkylating agents, students in a second semester organic chemistry laboratory performed a solid-phase combinatorial chemistry experiment in which they made 38 new analogs of the most potent member of a class of antimelanoma compounds. All compounds were made in duplicate, purified by silica gel chromatography, and characterized by NMR and LC/MS. As a continuing part of the Distributed Drug Discovery program, a virtual D3 catalog based on this work was then enumerated and is made freely available to the global scientific community. PMID:19105723
Experience, cortisol reactivity, and the coordination of emotional responses to skydiving
Meyer, Vanessa J.; Lee, Yoojin; Böttger, Christian; Leonbacher, Uwe; Allison, Amber L.; Shirtcliff, Elizabeth A.
2015-01-01
Physiological habituation to laboratory stressors has previously been demonstrated, although the literature remains equivocal. Previous studies have found skydiving to be a salient naturalistic stressor that elicits a robust subjective and physiological stress response. However, it is uncertain whether (or how) stress reactivity habituates to this stressor given that skydiving remains a risky, life-threatening challenge with every jump despite experience. While multiple components of the stress response have been documented, it is unclear whether an individual’s subjective emotions are related to their physiological responses. Documenting coordinated responsivity would lend insight into shared underlying mechanisms for the nature of habituation of both subjective (emotion) and objective (cortisol) stress responses. Therefore, we examined subjective emotion and cortisol responses in first-time compared to experienced skydivers in a predominantly male sample (total n = 44; males = 32, females = 12). Hierarchical linear modeling (HLM) revealed that experienced skydivers showed less reactivity and faster recovery compared to first-time skydivers. Subjective emotions were coordinated with physiological responses primarily within first-time skydivers. Pre-jump anxiety predicted cortisol reactivity within first-time, but not experienced, skydivers. Higher post-jump happiness predicted faster cortisol recovery after jumping although this effect overlapped somewhat with the effect of experience. Results suggest that experience may modulate the coordination of emotional response with cortisol reactivity to skydiving. Prior experience does not appear to extinguish the stress response but rather alters the individual’s engagement of the HPA axis. PMID:25859199
de Oliveira, Fabrício Singaretti
2014-07-01
Anatomical specimens used in human or veterinary anatomy laboratories are usually prepared with formaldehyde (a cancerous and teratogenic substance), glycerin (an expensive and viscous fluid), or ethanol (which is flammable). This research aimed to verify the viability of an aqueous 30% sodium chloride solution for preservation of anatomical specimens previously fixed with formaldehyde. Anatomical specimens of ruminant, carnivorous, equine, swine and birds were used. All were previously fixed with an aqueous 20% formaldehyde solution and held for 7 days in a 10% aqueous solution of the same active ingredient. During the first phase of the experiment, small specimens of animal tissue previously fixed in formaldehyde were distributed in vials with different concentrations of formaldehyde, with or without 30% sodium chloride solution, a group containing only 30% sodium chloride, and a control group containing only water. During this phase, no contamination was observed in any specimen containing 30% sodium chloride solution, whether alone or in combination with different concentrations of formaldehyde. In the second phase of the experiment, the 30% sodium chloride solution, found to be optimal in the first phase of the experiment, was tested for its long-term preservation properties. For a period of 5 years, the preserved specimens were evaluated three times a week for visual contamination, odors, and changes in color and texture. There was no visual contamination or decay found in any specimen. Furthermore, no strange odors, or changes in color or softness were noted. The 30% sodium chloride solution was determined to be effective in the preservation of anatomic specimens previously fixed in formaldehyde. © 2014 Anatomical Society.
de Oliveira, Fabrício Singaretti
2014-01-01
Anatomical specimens used in human or veterinary anatomy laboratories are usually prepared with formaldehyde (a cancerous and teratogenic substance), glycerin (an expensive and viscous fluid), or ethanol (which is flammable). This research aimed to verify the viability of an aqueous 30% sodium chloride solution for preservation of anatomical specimens previously fixed with formaldehyde. Anatomical specimens of ruminant, carnivorous, equine, swine and birds were used. All were previously fixed with an aqueous 20% formaldehyde solution and held for 7 days in a 10% aqueous solution of the same active ingredient. During the first phase of the experiment, small specimens of animal tissue previously fixed in formaldehyde were distributed in vials with different concentrations of formaldehyde, with or without 30% sodium chloride solution, a group containing only 30% sodium chloride, and a control group containing only water. During this phase, no contamination was observed in any specimen containing 30% sodium chloride solution, whether alone or in combination with different concentrations of formaldehyde. In the second phase of the experiment, the 30% sodium chloride solution, found to be optimal in the first phase of the experiment, was tested for its long-term preservation properties. For a period of 5 years, the preserved specimens were evaluated three times a week for visual contamination, odors, and changes in color and texture. There was no visual contamination or decay found in any specimen. Furthermore, no strange odors, or changes in color or softness were noted. The 30% sodium chloride solution was determined to be effective in the preservation of anatomic specimens previously fixed in formaldehyde. PMID:24762210
Professor Created On-line Biology Laboratory Course
NASA Technical Reports Server (NTRS)
Bowman, Arthur W.
2010-01-01
This paper will share the creation, implementation, and modification of an online college level general biology laboratory course offered for non-science majors as a part of a General Education Curriculum. The ability of professors to develop quality online laboratories will address a growing need in Higher Education as more institutions combine course sections and look for suitable alternative course delivery formats due to declining departmental budgets requiring reductions in staffing, equipment, and supplies. Also, there is an equal or greater need for more professors to develop the ability to create online laboratory experiences because many of the currently available online laboratory course packages from publishers do not always adequately parallel on-campus laboratory courses, or are not as aligned with the companion lecture sections. From a variety of scientific simulation and animation web sites, professors can easily identify material that closely fit the specific needs of their courses, instructional environment, and students that they serve. All too often, on-campus laboratory courses in the sciences provide what are termed confirmation experiences that do NOT allow students to experience science as would be carried out by scientists. Creatively developed online laboratory experiences can often provide the type of authentic investigative experiences that are not possible on-campus due to the time constraints of a typical two-hour, once-per-week-meeting laboratory course. In addition, online laboratory courses can address issues related to the need for students to more easily complete missing laboratory assignments, and to have opportunities to extend introductory exercises into more advanced undertakings where a greater sense of scientific discovery can be experienced. Professors are strongly encourages to begin creating online laboratory exercises for their courses, and to consider issues regarding assessment, copyrights, and Intellectual Property concerns.
NASA Astrophysics Data System (ADS)
Ghatty, Sundara L.
Over the past decade, there has been a dramatic rise in online delivery of higher education in the United States. Recent developments in web technology and access to the internet have led to a vast increase in online courses. For people who work during the day and whose complicated lives prevent them from taking courses on campus, online courses are the only alternatives by which they may achieve their goals in education. The laboratory courses are the major requirements for college and university students who want to pursue degree and certification programs in science. It is noted that there is a lack of laboratory courses in online physics courses. The present study addressed the effectiveness of a virtual science laboratory in physics instruction in terms of learning outcomes, attitudes, and self-efficacy of students in a Historically Black University College. The study included fifty-eight students (36 male and 22 female) of different science majors who were enrolled in a general physics laboratory course. They were divided into virtual and traditional groups. Three experiments were selected from the syllabus. The traditional group performed one experiment in a traditional laboratory, while the virtual group performed the same experiment in a virtual laboratory. For the second experiment, the use of laboratories by both groups was exchanged. Learner's Assessment Test (LAT), Attitudes Toward Physics Laboratories (ATPL), and Self-Efficacy Survey (SES) instruments were used. Additionally, quantitative methods such as an independent t-test, a paired t-test, and correlation statistics were used to analyze the data. The results of the first experiment indicated the learning outcomes were higher in the Virtual Laboratory than in the traditional laboratory, whereas there was no significant difference in learning outcomes with either type of lab instruction. However, significant self-efficacy gains were observed. Students expressed positive attitudes in terms of liking as well as interests in performing experiments in virtual laboratories. No gender differences were observed in learning outcomes or self-efficacy. The results of the study indicated that virtual laboratories may be a substitute for traditional laboratories to some extent, and may play a vital role in online science courses.
Artico, Marco; Riganò, Rachele; Buttari, Brigitta; Profumo, Elisabetta; Ionta, Brunella; Bosco, Sandro; Rasile, Manuela; Bianchi, Enrica; Bruno, Moira; Fumagalli, Lorenzo
2011-04-01
Atherosclerosis is a degenerative disease whose role in the onset and development of cardiovascular pathologies and complications is of importance. Due to its silent but progressive development, and considering the endothelial, immunological and inflammatory processes that are involved in its clinical course, this still relatively unknown pathological condition has been and continues to be a matter of investigation worldwide. Our experience with previous studies on atherosclerosis led us to investigate the possible influence of a low molecular weight heparin (LMWH) - Parnaparin® on the development and clinical course of atherosclerosis in double knock-out laboratory animals (ApoE-/- mice). Our experiments demonstrated a possible role of Parnaparin (PNP) in the control of atherogenic disease. In fact, in treated mice vs. untreated ones, PNP reduced the number and the size of atherosclerotic lesions in the aortic wall, as well as the development of liver steatosis, which was massive in untreated animals and moderate in treated ones. These preliminary observations require further clinical studies, but demonstrate a possible role of Parnaparin in the control of the development and clinical evolution of atherosclerosis and liver steatosis in laboratory animals.
NASA Astrophysics Data System (ADS)
Lee, Marcus J. C.; Bourke, Paul; Alderson, Jacqueline A.; Lloyd, David G.; Lay, Brendan
2010-02-01
Non-contact anterior cruciate ligament (ACL) injuries are serious and debilitating, often resulting from the performance of evasive sides-stepping (Ssg) by team sport athletes. Previous laboratory based investigations of evasive Ssg have used generic visual stimuli to simulate realistic time and space constraints that athletes experience in the preparation and execution of the manoeuvre. However, the use of unrealistic visual stimuli to impose these constraints may not be accurately identifying the relationship between the perceptual demands and ACL loading during Ssg in actual game environments. We propose that stereoscopically filmed footage featuring sport specific opposing defender/s simulating a tackle on the viewer, when used as visual stimuli, could improve the ecological validity of laboratory based investigations of evasive Ssg. Due to the need for precision and not just the experience of viewing depth in these scenarios, a rigorous filming process built on key geometric considerations and equipment development to enable a separation of 6.5 cm between two commodity cameras had to be undertaken. Within safety limits, this could be an invaluable tool in enabling more accurate investigations of the associations between evasive Ssg and ACL injury risk.
Fardell, Joanna E; Vardy, Janette; Johnston, Ian N
2013-10-17
Previous animal studies have examined the potential for cytostatic drugs to induce learning and memory deficits in laboratory animals but, to date, there is no pre-clinical evidence that taxanes have the potential to cause cognitive impairment. Therefore our aim was to explore the short- and long-term cognitive effects of different dosing schedules of the taxane docetaxel (DTX) on laboratory rodents. Healthy male hooded Wistar rats were treated with DTX (6 mg/kg, 10mg/kg) or physiological saline (control), once a week for 3 weeks (Experiment 1) or once only (10mg/kg; Experiment 2). Cognitive function was assessed using the novel object recognition (NOR) task and spatial water maze (WM) task 1 to 3 weeks after treatment and again 4 months after treatment. Shortly after DTX treatment, rats perform poorly on NOR regardless of treatment regimen. Treatment with a single injection of 10mg/kg DTX does not appear to induce sustained deficits in object recognition or peripheral neuropathy. Overall these findings show that treatment with the taxane DTX in the absence of cancer and other anti-cancer treatments causes cognitive impairment in healthy rodents. Copyright © 2013 Elsevier Inc. All rights reserved.
Filtration of Pathogenic Parasites Using Surfactant-Modified Zeolites
NASA Astrophysics Data System (ADS)
Lehner, T.; Schulze-Makuch, D.; Bowman, R.
2003-12-01
Migration of pathogenic microorganisms, specifically Cryptosporidium parvum and Giardia lamblia, in groundwater due to sewage effluent and mismanaged wastewater has become an increased concern for human health in many regions. Cryptosporididosis and Giardiasis produces moderate to severe intestinal illness for many weeks and is a serious threat for immunodeficient persons. Previous studies by Schulze-Makuch et al. (2002) indicated that surfactant-modified zeolites (SMZ) removed all of the bacteria and most viruses in laboratory experiments. This study focuses on the efficiency of the SMZ to prevent migration of the protozoan spores in groundwater. Adsorption of the spores involves interactions between the surface properties of the spores and the SMZ. The efficiency of removal is tested simulating natural conditions. Laboratory experiments are conducted in a plexiglass model aquifer and pathogen removal is measured by taking water samples from strategically placed piezometers in the model. Since C. parvum and G. lamblia are hazardous to humans and move primarily in spore state through groundwater, polystyrene microspheres of similar sizes and Bacillus subtilis, a sporulating bacterium, are used as analogues for the protozoa. Preliminary results show a significant decrease in concentration of the B. subtilis spores down-gradient of the barrier.
Laboratory simulations of cumulus cloud flows explain the entrainment anomaly
NASA Astrophysics Data System (ADS)
Narasimha, Roddam; Diwan, Sourabh S.; Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.
2010-11-01
In the present laboratory experiments, cumulus cloud flows are simulated by starting plumes and jets subjected to off-source heat addition in amounts that are dynamically similar to latent heat release due to condensation in real clouds. The setup permits incorporation of features like atmospheric inversion layers and the active control of off-source heat addition. Herein we report, for the first time, simulation of five different cumulus cloud types (and many shapes), including three genera and three species (WMO Atlas 1987), which show striking resemblance to real clouds. It is known that the rate of entrainment in cumulus cloud flows is much less than that in classical plumes - the main reason for the failure of early entrainment models. Some of the previous studies on steady-state jets and plumes (done in a similar setup) have attributed this anomaly to the disruption of the large-scale turbulent structures upon the addition of off-source heat. We present estimates of entrainment coefficients from these measurements which show a qualitatively consistent variation with height. We propose that this explains the observed entrainment anomaly in cumulus clouds; further experiments are planned to address this question in the context of starting jets and plumes.
NASA Astrophysics Data System (ADS)
Jeanloz, Raymond
2011-03-01
Thomas J. Ahrens, a leader in the study of high-pressure shock wave and planetary impact phenomena, died at his home in Pasadena, Calif., on 24 November 2010 at the age of 74. He was the California Institute of Technology's Fletcher Jones Professor of Geophysics, emeritus since 2005 but professionally active to the end. He had been president of AGU's Tectonophysics section, editor of Journal of Geophysical Research, founding member of both the Mineral and Rock Physics and Study of the Earth's Deep Interior focus groups, and editor—more like key driving force—for AGU's Handbook of Physical Constants. Tom was a pioneer in experimental and numerical studies of the effects of projectiles hitting a target at velocities exceeding the speed of sound (hypervelocity impact), arguably the most important geophysical process in the formation, growth, and, in many cases, surface evolution of planets. As a professor at Caltech, he established the foremost university laboratory for shock wave experiments, where students and research associates from around the world pursued basic research in geophysics, planetary science, and other disciplines. Previously, high-pressure shock experiments were conducted primarily in national laboratories, where they were initially associated with the development of nuclear weapons.
Final Report - Few-Body Studies Using Electromagnetic Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norum, Blaine
The work discussed here is an extension of work previously funded by U.S. Department of Energy Grant DE-FG02-97ER41025. Measurements of charged pion photoproduction from deuterium using the Laser Electron Gamma Source (LEGS) at the Brookhaven National Laboratory previously made by us, as members of the LEGS Collaboration, resulted in the most interesting result of two decades of work. By measuring the production of a charged pion (π +) in coincidence with an emitted photon we observed structures in the residual two-nucleon system. These indicated the existence of rare, long-lived states not explicable by standard nuclear theory; they suggested a setmore » of configurations not explicable in terms of a nucleon-nucleon pair. The existence of such “exotic” structures has formed the foundation for most of the work that has ensued. Several measurements at various laboratories have supported, but not proved, the existence of these exotic states. The rarity of these states made their existence undetectable in most previous measurements. Only by observing characteristic signatures of such states (i.e., decay photons), by using very specific kinematics which isolate certain reaction products, or by measuring polarization-dependent observables. During the period of this grant we pursued and made progress on the development of experiments to be performed at the High Intensity Gamma Source (HIGS) of the Tri Universities Nuclear Laboratory (TUNL). Our understanding of photon- and electron-induced nuclear reactions depends on understanding of the basic electron and photon interaction. Recently, the issue of two-photon contributions has arisen in the context of deeply inelastic electron scattering. One way to address this is to measure asymmetries in the Bethe-Heitler ee process. We also made progress in developing the detectors required to measure these asymmetries at HIGS. During the last several years the apparent discrepancy between the size of the proton as measured using electrons and that as measured using muons has received a great deal of attention. Working with colleagues at the Jefferson Laboratory (JLAB) we showed that the apparent discrepancy was almost surely the result of mistakes in the statistical analysis of electron scattering data, that there is almost surely no discrepancy.« less
NASA Technical Reports Server (NTRS)
1972-01-01
The selection and definition of candidate experiments and the associated experiment instrumentation requirements are described. Information is presented that addresses the following study objectives: (1) determine specific research and technology needs in the comm/nav field through a survey of the scientific/technical community; (2) develop manned low earth orbit space screening criteria and compile lists of potential candidate experiments; (3) in Blue Book format, define and describe selected candidate experiments in sufficient detail to develop laboratory configuration designs and layouts; and (4) develop experiment time phasing criteria and recommend a payload for sortie can/early laboratory missions.
Operational plans for life science payloads - From experiment selection through postflight reporting
NASA Technical Reports Server (NTRS)
Mccollum, G. W.; Nelson, W. G.; Wells, G. W.
1976-01-01
Key features of operational plans developed in a study of the Space Shuttle era life science payloads program are presented. The data describes the overall acquisition, staging, and integration of payload elements, as well as program implementation methods and mission support requirements. Five configurations were selected as representative payloads: (a) carry-on laboratories - medical emphasis experiments, (b) mini-laboratories - medical/biology experiments, (c) seven-day dedicated laboratories - medical/biology experiments, (d) 30-day dedicated laboratories - Regenerative Life Support Evaluation (RLSE) with selected life science experiments, and (e) Biomedical Experiments Scientific Satellite (BESS) - extended duration primate (Type I) and small vertebrate (Type II) missions. The recommended operational methods described in the paper are compared to the fundamental data which has been developed in the life science Spacelab Mission Simulation (SMS) test series. Areas assessed include crew training, experiment development and integration, testing, data-dissemination, organization interfaces, and principal investigator working relationships.
NASA Technical Reports Server (NTRS)
1972-01-01
This study was undertaken to develop conceptual designs for a manned, space shuttle sortie mission laboratory capable of supporting a wide variety of experiments in conjunction with communications and navigation research. This space/laboratory would be one in which man may effectively increase experiment efficiency by certain observations, modifications, setup, calibration, and limited maintenance steps. In addition, man may monitor experiment progress and perform preliminary data evaluation to verify proper equipment functioning and may terminate or redirect experiments to obtain the most desirable end results. The flexibility and unique capabilities of man as an experimenter in such a laboratory will add greatly to the simplification of space experiments and this provides the basis for commonality in many of the supportive subsystems, thus reaping the benefits of reusability and reduced experiment costs. For Vol. 4, see N73-19268.
Miranda, Ximena
2016-09-01
Treehoppers are known for their substrate-borne communication and some of them also for their subsocial behavior. Following a more general study of the natural history and substrate-borne signal repertoire of the treehopper Ennya chrysura, the objective of this paper was to explore in greater depth the signals and other behaviors associated specifically to egg-guarding. Theese were studied both in natural and laboratory conditions between July, 2000 and March, 2004. The spacial distribution of egg guarding females was studied in the natural population; recording equipment and playback experiments were used in the laboratory and then analyzed digitally. Under natural conditions (San Antonio de Escazú, Costa Rica), female E. chrysura guard their egg masses and egg-guarding was associated with lower parasitism of the eggs from the wasps Gonatocerus anomocerus and Schizophragma sp. (Mymaridae). Females tended to place their eggs close to other egg-guarding females and they produced substrate-borne vibrations when disturbed. An aggregated pattern under natural conditions was confirmed by calculating dispersion indices from egg-clutch data obtained from 66 leaves in the field. The disturbance signal was characterized from laboratory recordings of substrate-borne vibrations of 10 egg-guarding females. Experiments conducted in the laboratory with 18 egg-guarding females showed that those which were previously exposed to the disturbance signal of another female moved slightly or vibrated more during playbacks and that they reacted more quickly and exhibited more deffensive behaviors in response to a tactile stimulus. The signals produced while defending against egg parasites may therefore function as an alarm and favor aggregating behavior of egg-guarding females.
Dissolution Rates of Biogenic Carbonate Sediments from the Bermuda Platform
NASA Astrophysics Data System (ADS)
Finlay, A. J.; Andersson, A. J.
2016-02-01
The contribution of biogenic carbonate sediment dissolution rates to overall net reef accretion/erosion (under both present and future oceanic pCO2 levels) has been strikingly neglected, despite experimental results indicating that sediment dissolution might be more sensitive to ocean acidification (OA) than calcification. Dissolution of carbonate sediments could impact net reef accretion rates as well as the formation and preservation of valuable marine and terrestrial ecosystems. Bulk sediment dissolution rates of samples from the Bermuda carbonate platform were measured in natural seawater at pCO2 values ranging from approximately 3500 μatm to 9000 μatm. This range of pCO2 levels incorporates values currently observed in porewaters on the Bermuda carbonate platform as well as a potential future increase in porewater pCO2 levels due to OA. Sediment samples from two different stations on the reef platform were analyzed for grain size and mineralogy. Dissolution rates of sediments in the dominant grain size fraction of the platform (500-1000 μm) from both stations ranged between 16.25 and 47.19 (± 0.27 to 0.79) μmoles g-1 hr-1 and are comparable to rates previously obtained from laboratory experiments on other natural carbonate sediments. At a pCO2 of 3500 μatm, rates from both samples were similar, despite their differing mineralogy. However, at pCO2 levels above 3500 μatm, the sediment sample with a greater weight percent of Mg-calcite had slightly higher dissolution rates. Despite many laboratory studies on biogenic carbonate dissolution, a significant disparity still exists between laboratory measurements and field observations. Performing additional controlled, laboratory experiments on natural sediment may help to elucidate the reasons for this disparity.
Van Dongen, Hans P. A.; Natelson, Benjamin H.; Bender, Amy M.; Palombini, Luciana O.; Bittencourt, Lia; Tufik, Sergio; Ayappa, Indu; Rapoport, David M.
2017-01-01
Sleep duration varies widely across individuals and appears to be trait-like. Differences in the stability of underlying sleep processes may underlie this phenomenon. To investigate underlying mechanisms, we examined the relationship between sleep duration and sleep continuity in baseline polysomnography (PSG) recordings from three independently collected datasets: 1) 134 healthy controls (ages 37 ± 13 years) from the São Paulo Epidemiologic Sleep Study, who spent one night in a sleep laboratory, 2) 21 obstructive sleep apnea (OSA) patients who were treated with continuous positive airway pressure for at least 2 months (45 ± 12 years, respiratory disturbance index <15), who spent one night in a sleep laboratory with previous experience of multiple PSG studies, and 3) 62 healthy controls (28 ± 6 years) who, as part of larger experiments, spent 2 consecutive nights in a sleep laboratory. For each dataset, we used total sleep time (TST) to separate subjects into those with shorter sleep (S-TST) and those with longer sleep (L-TST). In all three datasets, survival curves of continuous sleep segments showed greater sleep continuity in L-TST than in S-TST. Correlation analyses with TST as a continuous variable corroborated the results; and the results also held true after controlling for age. There were no significant differences in baseline waking performance and sleepiness between S-TST and L-TST. In conclusion, in both healthy controls and treated OSA patients, sleep continuity was positively correlated with sleep duration. These findings suggest that S-TST may differ from L-TST in processes underlying sleep continuity, shedding new light on mechanisms underlying individual differences in sleep duration. PMID:28394943
Pagel, J F
2003-05-01
Assess incidence and clarify whether diagnostic correlates exist for sleep laboratory patients reporting a lack of dream recall. To awaken, during polysomnographically defined sleep including rapid eye movement (REM) sleep, individuals reporting never having experienced a dream, and determine whether they report dreaming. Study # 1 - Incidence and polysomnographic correlates of sleep lab patients responding on questionnaire that they had never experienced dreaming. Study # 2 - Phone interviews with those individuals reporting non-dreaming on questionnaire to reassess incidence. Study # 3 - After reassessment, individuals (non-dreamers - # 16) are awakened during polysomnographic defined sleep (including REM sleep) and queried about dream recall. This group is compared statistically to a group (rare-dreamers - # 12) that reported dreaming as an extremely rare occurrence (mean dream recall latency - 13.5 years). Study # 1: Incidence of questionnaire reported non-dreaming in this sleep laboratory population is 6.5% (N=534) and is associated with the diagnosis of obstructive sleep apnea (specificity 95.6% for respiratory disturbance index >15). Study # 2 - Individuals who report after interview to have never experienced dreaming are more unusual (0.38% of this sleep laboratory population). Study # 3 - None of the non-dreamers (# 16) reported dream recall after waking in the sleep laboratory (36 awakenings in total for this group). This group does not differ, based on polysomnographic, clinical, or demographic variables, from the rare-dreaming group that occasionally reported dreams when awakened (3/12 patients, 3/32 awakenings) - a finding consistent with the reports of previous studies. The experience of dreaming may not be as ubiquitous as generally accepted. The group of non-dreamers evaluated in this study reports never having recalled a dream and reports no dreams when awakened during polysomnographicly defined sleep. These individuals might not experience dreaming.
Nick, Ophelia; Bauer, Alexander; Küchenhoff, Helmut; Erhard, Michael H.
2017-01-01
When laboratory dogs are rehomed into private households, they experience an extreme change in their life situation. They leave their familiar, limited environment in the research facility and encounter a multitude of animate and inanimate stimuli in their new home. Although literature reports have described the experiences with rehoming as being mostly positive, scientific observations of the dogs in everyday situations have not been done. Hence, we conducted an observational test with 74 laboratory beagles 6 weeks after adoption in their new homes. This test included standardized tasks and elements; the dogs were observed during specific interactions with their new owners and during a walk. Furthermore, the owners of these 74 and of 71 additional dogs participated in standardized phone interviews 1 and 12 weeks after adoption, during which they answered questions about the dogs’ behavior in everyday situations. In the observational test, the dogs behaved mostly friendly towards humans and dogs, were tolerant during manipulations by the owner and were relaxed during the walk, even in traffic. Eighty percent (of n = 71) of the dogs walked well behaved on the leash without pulling. According to the interviews, the majority of the dogs showed desired, friendly and relaxed behavior, and the survey results reflected the bonding between dog and owner. The analysis of a possible influence of various factors (age, sex, origin, etc.) using mixed regression models confirmed the results from two previous behavior tests and interviews. Specifically, dogs that had been bred in the research facility scored significantly better than dogs that the research facility had purchased from commercial laboratory dog breeders (p = 0.0113). The results of this study demonstrate a successful adaptation of the rehomed beagles to their new life situation. PMID:28742824
Slow Impacts on Strong Targets Bring on the Heat
NASA Astrophysics Data System (ADS)
Melosh, H. J.; Ivanov, B. A.
2018-03-01
An important new paper by Kurosawa and Genda (2017, https://doi.org/10.1002/2017GL076285) reports a previously overlooked source of heating in low velocity meteorite impacts. Plastic deformation of the pressure-strengthened rocks behind the shock front dissipates energy, which appears as heat in addition to that generated across the shock wave itself. This heat source has surprisingly escaped explicit attention for decades: First, because it is minimized in the geometry typically chosen for laboratory experiments; and second because it is most important in rocks, and less so for the metals usually used in experiments. Nevertheless, modern numerical computer codes that include strength do compute this heating correctly. This raises the philosophical question of whether we can claim to understand some process just because our computer codes compute the results correctly.
NASA Technical Reports Server (NTRS)
Zipf, E. C.
1979-01-01
The rate coefficient for the quenching of metastable O(1S) atoms by O2 was measured as a function of temperature from 250 to 550 K. The resulting Arrhenius expression correlates well with previous laboratory work. It is suggested that the much larger value of the rate coefficient inferred from an analysis of artificial auroral experiment, Precede, may be explained by overestimation of the contribution of O(1S) production from O2(+) dissociative recombination. The possibility that O(1S) atoms are produced only by the dissociative recombination of vibrationally excited O2(+) ions is examined; such excited ions would not exist in the Precede experiment because of the rapid cooling of the ions by resonant charge transfer processes.
Growth and certain chemical constituents of tobacco plants exposed to air ions
NASA Astrophysics Data System (ADS)
Barthakur, N. N.; Arnold, N. P.
1988-06-01
Controlled experiments were performed in Faraday cages on the effects of positive and negative air ions on flue-cured tobacco plants. Continuous exposures for 15 days to air ions showed no significant differences in any plant growth characteristic between the treated and control plants. Standard errors in the measurement of the growth parameters for ion exposed plants were, however, consistently higher than those of control plants. Spatial variation in concentration gradients of air ions produced by corona discharge might have contributed to masking of the relatively small effects of air ions on biological organisms observed in previous experiments in this laboratory. No significant difference was observed between the experimental and control plants in nicotine, total alkaloid, and reducing sugar contents. Total nitrogen content was slightly higher for treated than control plants.
Limits on spin-dependent WIMP-nucleon cross sections from the XENON10 experiment.
Angle, J; Aprile, E; Arneodo, F; Baudis, L; Bernstein, A; Bolozdynya, A; Coelho, L C C; Dahl, C E; DeViveiros, L; Ferella, A D; Fernandes, L M P; Fiorucci, S; Gaitskell, R J; Giboni, K L; Gomez, R; Hasty, R; Kastens, L; Kwong, J; Lopes, J A M; Madden, N; Manalaysay, A; Manzur, A; McKinsey, D N; Monzani, M E; Ni, K; Oberlack, U; Orboeck, J; Plante, G; Santorelli, R; dos Santos, J M F; Shagin, P; Shutt, T; Sorensen, P; Schulte, S; Winant, C; Yamashita, M
2008-08-29
XENON10 is an experiment to directly detect weakly interacting massive particles (WIMPs), which may comprise the bulk of the nonbaryonic dark matter in our Universe. We report new results for spin-dependent WIMP-nucleon interactions with 129Xe and 131Xe from 58.6 live days of operation at the Laboratori Nazionali del Gran Sasso. Based on the nonobservation of a WIMP signal in 5.4 kg of fiducial liquid xenon mass, we exclude previously unexplored regions in the theoretically allowed parameter space for neutralinos. We also exclude a heavy Majorana neutrino with a mass in the range of approximately 10 GeV/c2-2 TeV/c2 as a dark matter candidate under standard assumptions for its density and distribution in the galactic halo.
Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations.
Lenski, Richard E
2017-10-01
Evolution is an on-going process, and it can be studied experimentally in organisms with rapid generations. My team has maintained 12 populations of Escherichia coli in a simple laboratory environment for >25 years and 60 000 generations. We have quantified the dynamics of adaptation by natural selection, seen some of the populations diverge into stably coexisting ecotypes, described changes in the bacteria's mutation rate, observed the new ability to exploit a previously untapped carbon source, characterized the dynamics of genome evolution and used parallel evolution to identify the genetic targets of selection. I discuss what the future might hold for this particular experiment, briefly highlight some other microbial evolution experiments and suggest how the fields of experimental evolution and microbial ecology might intersect going forward.
Low Cost Space Experiments. Study Report
1991-12-06
Air Force Phillips Laboratory with Johns Hopkins University Applied Physics Laboratory . The goals of ALTAIR...Cs<- &l. LOW COST SPACE EXPERIMENTS STUDY REPORT 6 December 1991 19980302 059 Phillips Laboratory /SXL Kirtland AFB, NM 87117-6008 TVPTT" OTT...Report Corporate Author or Publisher: Phillips Laboratory /SXL, Kirtland AFB,NM 87117-6008 Publication Date: Dec 06, 1991 Pages: 176 Comments
ERIC Educational Resources Information Center
Chaytor, Jennifer L.; Al Mughalaq, Mohammad; Butler, Hailee
2017-01-01
Online prelaboratory videos and quizzes were prepared for all experiments in CHEM 231, Organic Chemistry I Laboratory. It was anticipated that watching the videos would help students be better prepared for the laboratory, decrease their anxiety surrounding the laboratory, and increase their understanding of the theories and concepts presented.…
van Geldern, Robert; Nowak, Martin E; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A C; Jost, Hans-Jürg
2014-12-16
A newly developed isotope ratio laser spectrometer for CO2 analyses has been tested during a tracer experiment at the Ketzin pilot site (northern Germany) for CO2 storage. For the experiment, 500 tons of CO2 from a natural CO2 reservoir was injected in supercritical state into the reservoir. The carbon stable isotope value (δ(13)C) of injected CO2 was significantly different from background values. In order to observe the breakthrough of the isotope tracer continuously, the new instruments were connected to a stainless steel riser tube that was installed in an observation well. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10 day carbon stable isotope data set with 30 min resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within analytical precision. This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time stable isotope data directly in the field. The laser spectroscopy data revealed for the first time a prior to this experiment unknown, intensive dynamic with fast changing δ(13)C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The short-term variances as observed in this study might have been missed during previous works that applied laboratory-based IRMS analysis. The new technique could contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long-term integrity of the reservoir.
NASA Astrophysics Data System (ADS)
Ryan, K. L.; Marone, C.
2015-12-01
During the seismic cycle, faults repeatedly fail and regain strength. The gradual strength recovery is often referred to as frictional healing, and existing works suggest that healing can play an important role in determining the mode of fault slip ranging from dynamic rupture to slow earthquakes. Laboratory studies can play an important role in identifying the processes of frictional healing and their evolution with shear strain during the seismic cycle. These studies also provide data for laboratory-derived friction constitutive laws, which can improve dynamic earthquake models. Previous work shows that frictional healing varies with shear stress on a fault during the interseismic period. Unfortunately, the micromechanical processes that cause shear stress dependent frictional healing are not well understood and cannot be incorporated into current earthquake models. In fault gouge, frictional healing involves compaction and particle rearrangement within sheared granular layers. Therefore, to address these issues, we investigate the role grain size reduction plays in frictional re-strengthening processes at different levels of shear stress. Sample material was preserved from biaxial deformation experiments on granular Westerly granite. The normal stress was held constant at 25 MPa and we performed several 100 second slide-hold-slide tests in each experiment. We conducted a series of 5 experiments each with a different value of normalized shear stress (ranging from 0 to 1), defined as the ratio of the pre-hold shear stress to the shear stress during the hold. The particle size distribution for each sample was analyzed. In addition, acoustic measurements were recorded throughout our experiments to investigate variations in ultrasonic velocity and signal amplitude that reflect changes in the elastic moduli of the layer. Acoustic monitoring provides information about healing mechanisms and can provide a link between laboratory studies and tectonic fault zones.
Schroeder, Joseph A.; Flannery-Schroeder, Ellen
2005-01-01
The Indian herb Gymnema sylvestre has been used in traditional Ayurvedic medicine for 2000 years, most recently for the treatment of diabetes. Loose leaf Gymnema sylvestre can be prepared as a tea and will impair the ability to taste sugar by blocking sweet receptors on the tongue. This report describes a laboratory exercise easily applied to an undergraduate neuroscience course that can be used to illustrate the principles of gustatory sensation. Combined with a preceding lecture on the primary taste sensations, students experience and appreciate how the primary tastes are combined to produce overall taste. In addition, the exercises outlined here expand upon previously published demonstrations employing Gymnema sylvestre to include illustrations of the different sensory transduction mechanisms associated with each of the four or five primary taste modalities. Students compare their qualitative primary taste experiences to salt, sugar, aspartame, chocolate, and sweet-sour candy prior to and following exposure to Gymnema sylvestre. The herb’s impairment of sweet sensation is profound and dramatically alters the perception of sweetness in sugar, chocolate, and candy without altering the perception of the other primary tastes. The exercise has an indelible effect on students because the herb’s intense effect compels students to rely on their unique personal experiences to highlight the principles of gustatory sensation. PMID:23493970
Orrego, Rodrigo; Guchardi, John; Hernandez, Victor; Krause, Rachelle; Roti, Lucia; Armour, Jeffrey; Ganeshakumar, Mathumai; Holdway, Douglas
2009-01-01
Endocrine disruption (ED) effects due to pulp and paper mill effluents extracts involving different industrial procedures and effluent treatments (nontreated, primary, and secondary treated) were evaluated using immature triploid rainbow trout in a pulse-exposure toxicity experiment. The protocol involved the use of intraperitoneal injection of mill extracts (solid-phase extraction [SPE]) corrected for individual fish weight and included several laboratory standards (steroidal hormones and phytosterols). Biological endpoints at two different levels of biological organization were analyzed (molecular and individual organism). Results indicated that nonsignificant changes were observed in the individual physiological indices represented by condition factor, liver somatic index, and gonad somatic index during the experiment. Significant induction of liver ethoxyresorufin-O-deethylase activity was observed between different effluent treatments and experimental controls. Significant endocrine-disrupting effects at the reproductive level were observed in all effluent treatments involving significant increments in plasma vitellogenin (VTG) levels. Fish exposed to untreated effluent extracts had significantly higher VTG levels compared to fish exposed to primary and secondary treatment effluent extracts, indicating a decrease of the estrogenic effect due to the effluent treatment. The present study has shown that for the Chilean pulp and paper mill SPE extracts evaluated, an endocrine disruption effect was induced in immature triploid rainbow, reaffirming the significant estrogenic effects demonstrated previously in laboratory and field experiments.
Voss, S R; Shaffer, H B
2000-09-01
In many organisms metamorphosis allows for an ecologically important habitat-shift from water to land. However, in some salamanders an adaptive life cycle mode has evolved that is characterized by metamorphic failure (paedomorphosis); these species remain in the aquatic habitat throughout the life cycle. Perhaps the most famous example of metamorphic failure is the Mexican axolotl (Ambystoma mexicanum), which has become a focal species for developmental biology since it was introduced into laboratory culture in the 1800s. Our previous genetic linkage mapping analysis, using an interspecific crossing design, demonstrated that a major gene effect underlies the expression of metamorphic failure in laboratory stocks of the Mexican axolotl. Here, we repeated this experiment using A. mexicanum that were sampled directly from their natural habitat at Lake Xochimilco, Mexico. We found no significant association between the major gene and metamorphic failure when wild-caught axolotls were used in the experimental design, although there is evidence of a smaller genetic effect. Thus, there appears to be genetic variation among Mexican axolotls (and possibly A. tigrinum tigrinum) at loci that contribute to metamorphic failure. This result suggests a role for more than one mutation and possibly artificial selection in the evolution of the major gene effect in the laboratory Mexican axolotl.
Schroer, A F W; Belgers, J D M; Brock, T C M; Matser, A M; Maund, S J; Van den Brink, P J
2004-04-01
The toxicity of the pyrethroid insecticide lambda-cyhalothrin to freshwater invertebrates has been investigated using data from short-term laboratory toxicity tests and in situ bioassays and population-level effects in field microcosms. In laboratory tests, patterns of toxicity were consistent with previous data on pyrethroids. The midge Chaoborus obscuripes was most sensitive (48- and 96-h EC50 = 2.8 ng/L). Other insect larvae (Hemiptera, Ephemeroptera) and macrocrustacea (Amphipoda, Isopoda) were also relatively sensitive, with 48- and 96-h EC50 values between 10 and 100 ng/L. Generally, microcrustacea (Cladocera, Copepoda) and larvae of certain insect groups (Odonata and Chironomidae) were less sensitive, with 48-h EC50 values higher than 100 ng/L. Mollusca and Plathelminthes were insensitive and were unaffected at concentrations at and above the water solubility (5 microg/L). Generally, the EC50 values based on initial population responses in field enclosures were similar to values derived from laboratory tests with the same taxa. Also, the corresponding fifth and tenth percentile hazard concentrations (HC5 and HC10) were similar (laboratory HC5 = 2.7 ng/L and field HC5 = 4.1 ng/L; laboratory and field HC10 = 5.1 ng/L), at least when based on the same sensitive taxonomic groups (insects and crustaceans) and when a similar concentration range was taken into account. In the three field enclosure experiments and at a treatment level of 10 ng/L, consistent effects were observed for only one population (Chaoborus obscuripes), with recovery taking place within 3 to 6 weeks. The laboratory HC5 (2.7 ng/L) and HC10 (5.1 ng/L) based on acute EC50 values of all aquatic arthropod taxa were both lower than this 10 ng/L, a concentration that might represent the "regulatory acceptable concentration." The HC5 and HC10 values in this study in The Netherlands (based on static laboratory tests with freshwater arthropods) were very similar to those derived from a previous study in the United Kingdom (1.4 and 3.3 ng/L). This suggests that for pesticides like lambda-cyhalothrin, HC5 values based on static laboratory tests may provide a conservative estimate of the potential for community-level effects under field conditions. While these HC5 values are conservative for initial effects, they do not provide information on recovery potential, which may be important for regulatory decision-making.
Melloy, Patricia G
2015-01-01
A two-part laboratory exercise was developed to enhance classroom instruction on the significance of p53 mutations in cancer development. Students were asked to mine key information from an international database of p53 genetic changes related to cancer, the IARC TP53 database. Using this database, students designed several data mining activities to look at the changes in the p53 gene from a number of perspectives, including potential cancer-causing agents leading to particular changes and the prevalence of certain p53 variations in certain cancers. In addition, students gained a global perspective on cancer prevalence in different parts of the world. Students learned how to use the database in the first part of the exercise, and then used that knowledge to search particular cancers and cancer-causing agents of their choosing in the second part of the exercise. Students also connected the information gathered from the p53 exercise to a previous laboratory exercise looking at risk factors for cancer development. The goal of the experience was to increase student knowledge of the link between p53 genetic variation and cancer. Students also were able to walk a similar path through the website as a cancer researcher using the database to enhance bench work-based experiments with complementary large-scale database p53 variation information. © 2014 The International Union of Biochemistry and Molecular Biology.
Farooq, Muhammad; Sazonov, Edward
2017-11-01
Several methods have been proposed for automatic and objective monitoring of food intake, but their performance suffers in the presence of speech and motion artifacts. This paper presents a novel sensor system and algorithms for detection and characterization of chewing bouts from a piezoelectric strain sensor placed on the temporalis muscle. The proposed data acquisition device was incorporated into the temple of eyeglasses. The system was tested by ten participants in two part experiments, one under controlled laboratory conditions and the other in unrestricted free-living. The proposed food intake recognition method first performed an energy-based segmentation to isolate candidate chewing segments (instead of using epochs of fixed duration commonly reported in research literature), with the subsequent classification of the segments by linear support vector machine models. On participant level (combining data from both laboratory and free-living experiments), with ten-fold leave-one-out cross-validation, chewing were recognized with average F-score of 96.28% and the resultant area under the curve was 0.97, which are higher than any of the previously reported results. A multivariate regression model was used to estimate chew counts from segments classified as chewing with an average mean absolute error of 3.83% on participant level. These results suggest that the proposed system is able to identify chewing segments in the presence of speech and motion artifacts, as well as automatically and accurately quantify chewing behavior, both under controlled laboratory conditions and unrestricted free-living.
Adaptation to Antifaces and the Perception of Correct Famous Identity in an Average Face
Little, Anthony C.; Hancock, Peter J. B.; DeBruine, Lisa M.; Jones, Benedict C.
2011-01-01
Previous experiments have examined exposure to anti-identities (faces that possess traits opposite to an identity through a population average), finding that exposure to antifaces enhances recognition of the plus-identity images. Here we examine adaptation to antifaces using famous female celebrities. We demonstrate: that exposure to a color and shape transformed antiface of a celebrity increases the likelihood of perceiving the identity from which the antiface was manufactured in a composite face and that the effect shows size invariance (experiment 1), equivalent effects are seen in internet and laboratory-based studies (experiment 2), adaptation to shape-only antifaces has stronger effects on identity recognition than adaptation to color-only antifaces (experiment 3), and exposure to male versions of the antifaces does not influence the perception of female faces (experiment 4). Across these studies we found an effect of order where aftereffects were more pronounced in early than later trials. Overall, our studies delineate several aspects of identity aftereffects and support the proposal that identity is coded relative to other faces with special reference to a relatively sex-specific mean face representation. PMID:22363301
Efficient teleportation between remote single-atom quantum memories.
Nölleke, Christian; Neuzner, Andreas; Reiserer, Andreas; Hahn, Carolin; Rempe, Gerhard; Ritter, Stephan
2013-04-05
We demonstrate teleportation of quantum bits between two single atoms in distant laboratories. Using a time-resolved photonic Bell-state measurement, we achieve a teleportation fidelity of (88.0 ± 1.5)%, largely determined by our entanglement fidelity. The low photon collection efficiency in free space is overcome by trapping each atom in an optical cavity. The resulting success probability of 0.1% is almost 5 orders of magnitude larger than in previous experiments with remote material qubits. It is mainly limited by photon propagation and detection losses and can be enhanced with a cavity-based deterministic Bell-state measurement.
Methamphetamine Cured my Cocaine Addiction
Haile, Colin N.; De La Garza, Richard; Newton, Thomas F.
2011-01-01
Cocaine dependence is an enduring problem and years of research and drug development has yet to produce an efficacious pharmacotherapy. Recent clinical research suggests that chronic treatment with amphetamine-like medications produces tolerance to cocaine’s reinforcing effects and may offer a viable pharmacotherapy. Three methamphetamine-dependent participants that had been in our clinical laboratory experiments and previously addicted to cocaine are reviewed. Data obtained from initial screen and informal conversation suggested that all participants considered methamphetamine to have helped them stop using cocaine and eliminate cocaine craving. Methamphetamine also significantly decreased their alcohol consumption but did not alter cannabis or nicotine use. PMID:23066512
Improved formula for continuous-wave measurements of ultrasonic phase velocity
NASA Technical Reports Server (NTRS)
Chern, E. J.; Cantrell, J. H., Jr.; Heyman, J. S.
1981-01-01
An improved formula for continuous-wave ultrasonic phase velocity measurements using contact transducers is derived from the transmission line theory. The effect of transducer-sample coupling bonds is considered for measurements of solid samples even though it is often neglected because of the difficulty of accurately determining the bond thickness. Computer models show that the present formula is more accurate than previous expressions. Laboratory measurements using contacting transducers with the present formula are compared to measurements using noncontacting (hence effectively correction-free) capacitive transducers. The results of the experiments verify the validity and accuracy of the new formula.
NASA Astrophysics Data System (ADS)
Shekhovtsova, Anastasia P.; Karengin, Alexander G.
2016-08-01
This article describes the possibility of applying the low-temperature plasma for obtaining iron-containing pigments from water purification and flammable methanol production waste. In this paper were calculated combustion parameters of water-saltorganic compositions (WSOC) with different consists. Authors determined the modes of energy- efficient processing of the previously mentioned waste in an air plasma. Having considered the obtained results there were carried out experiments with flammable dispersed water-saltorganic compositions on laboratory plasma stand. All the experimental results are confirmed by calculations.
Alternatives to argon for gas stopping volumes in the B194 neutron imager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleuel, D. L.; Anderson, S.; Caggiano, J. A.
2017-05-17
In a recent experiment at Lawrence Berkeley National Laboratory, the 40Ar(d,p)41Ar excitation function between 3-7 MeV was measured, confirming a previous estimation that there may be an intolerable radiation dose from 41Ar production by slowing to rest 6.74 MeV deuterons in the gas cell of the neutron imaging facility being constructed in B194. Gas alternatives to argon are considered, including helium, nitrogen (N2), neon, sulfur hexafluoride (SF6), krypton, and xenon, as well as high atomic number solid backings such as tantalum.
The pitch of vibrato tones: a model based on instantaneous frequency decomposition.
Mesz, Bruno A; Eguia, Manuel C
2009-07-01
We study vibrato as the more ubiquitous manifestation of a nonstationary tone that can evoke a single overall pitch. Some recent results using nonsymmetrical vibrato tones suggest that the perceived pitch could be governed by some stability-sensitive mechanism. For nonstationary sounds the adequate tools are time-frequency representations (TFRs). We show that a recently proposed TFR could be the simplest framework to explain this hypothetical stability-sensitive mechanism. We propose a one-parameter model within this framework that is able to predict previously reported results and we present new results obtained from psychophysical experiments performed in our laboratory.
Conducting interactive experiments online.
Arechar, Antonio A; Gächter, Simon; Molleman, Lucas
2018-01-01
Online labor markets provide new opportunities for behavioral research, but conducting economic experiments online raises important methodological challenges. This particularly holds for interactive designs. In this paper, we provide a methodological discussion of the similarities and differences between interactive experiments conducted in the laboratory and online. To this end, we conduct a repeated public goods experiment with and without punishment using samples from the laboratory and the online platform Amazon Mechanical Turk. We chose to replicate this experiment because it is long and logistically complex. It therefore provides a good case study for discussing the methodological and practical challenges of online interactive experimentation. We find that basic behavioral patterns of cooperation and punishment in the laboratory are replicable online. The most important challenge of online interactive experiments is participant dropout. We discuss measures for reducing dropout and show that, for our case study, dropouts are exogenous to the experiment. We conclude that data quality for interactive experiments via the Internet is adequate and reliable, making online interactive experimentation a potentially valuable complement to laboratory studies.
ERIC Educational Resources Information Center
Lee, Shan-Hu; Mukherjee, Souptik; Brewer, Brittany; Ryan, Raphael; Yu, Huan; Gangoda, Mahinda
2013-01-01
An undergraduate laboratory experiment is described to measure Henry's law constants of organic compounds using a bubble column and gas chromatography flame ionization detector (GC-FID). This experiment is designed for upper-division undergraduate laboratory courses and can be implemented in conjunction with physical chemistry, analytical…
CSI flight experiment projects of the Naval Research Laboratory
NASA Technical Reports Server (NTRS)
Fisher, Shalom
1993-01-01
The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.
CSI flight experiment projects of the Naval Research Laboratory
NASA Astrophysics Data System (ADS)
Fisher, Shalom
1993-02-01
The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.
Fluid Flow Experiment for Undergraduate Laboratory.
ERIC Educational Resources Information Center
Vilimpochapornkul, Viroj; Obot, Nsima T.
1986-01-01
The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)
A Kinetic Experiment for the Biochemistry Laboratory.
ERIC Educational Resources Information Center
Palmer, Richard E.
1986-01-01
Discusses the use of specific reactions of metabolic pathways to make measurements in the laboratory. Describes an adaptation of an experiment used in undergraduate biochemistry laboratories involving the induction of an enzyme in E. coli, as well as its partial purification and characterization. (TW)
Immobilized alpha-Galactosidase in the Biochemistry Laboratory
ERIC Educational Resources Information Center
Mulimani, V. H.; Dhananjay, K.
2007-01-01
This laboratory experiment was designed to demonstrate the application of immobilized galactosidase in food industry to hydrolyze raffinose family oligosaccharides in soymilk. This laboratory experiment was conducted for postgraduate students of biochemistry and developed for graduate and undergraduate students of biochemistry, biotechnology,…
2005-06-01
AIR FORCE RESEARCH LABORATORY SPACE VEHICLES INTEGRATED EXPERMENTS DIVISION OFFICE SPACE AT KIRTLAND AIR FORCE ... Kirtland Air Force Base (KAFB). The office building would house the Air Force Research Laboratory Space Vehicles Integrated Experiments Division...ADDRESS(ES) Air Force Research Laboratory ,Space Vehicles Directorate,3550 Aberdeen Ave. SE, Kirtland
A GC-MS Analysis of an S[subscript N]2 Reaction for the Organic Laboratory
ERIC Educational Resources Information Center
Clennan, Malgorzata M.; Clennan, Edward L.
2005-01-01
The S[subscript N]2 reaction of 1-bromohexane and 1-bromobutane with potassium acetate is introduced to address the shortage of suitable laboratory experiments in organic laboratory. The experiment offers a review of some common laboratory techniques including the use of infrared spectroscopy to identify functional groups, the use of GC-MS…
ERIC Educational Resources Information Center
Gerczei, Timea
2017-01-01
A laboratory sequence is described that is suitable for upper-level biochemistry or molecular biology laboratories that combines project-based and traditional laboratory experiments. In the project-based sequence, the individual laboratory experiments are thematically linked and aim to show how a bacterial antibiotic sensing noncoding RNA (the…
NASA Astrophysics Data System (ADS)
Pence, Laura E.; Workman, Harry J.; Riecke, Pauline
2003-03-01
Two separate experiences with students whose disabilities significantly limited the number of laboratory activities they could accomplish independently has given us a general experience base for determining successful strategies for accommodating students facing these situatiuons. For a student who had substantially limited physical mobility and for a student who had no visual ability, employing a student laboratory assistant allowed the students with disabilities to have a productive and positive laboratory experience. One of the priorities in these situations should be to avoid depersonalizing the student with a disability. Interactions with the instructor and with other students should focus on the disabled student rather than the student laboratory assistant who may be carrying out specific tasks. One of the most crucial aspects of a successful project is the selection of a laboratory assistant who has excellent interpersonal skills and who will add his or her creativity to that of the student with a disability to meet unforeseen challenges. Other considerations are discussed, such as the importance of advance notification that a disabled student has enrolled in a course as well as factors that should contribute to choosing an optimum laboratory station for each situation.
Comparing field investigations with laboratory models to predict landfill leachate emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fellner, Johann; Doeberl, Gernot; Allgaier, Gerhard
2009-06-15
Investigations into laboratory reactors and landfills are used for simulating and predicting emissions from municipal solid waste landfills. We examined water flow and solute transport through the same waste body for different volumetric scales (laboratory experiment: 0.08 m{sup 3}, landfill: 80,000 m{sup 3}), and assessed the differences in water flow and leachate emissions of chloride, total organic carbon and Kjeldahl nitrogen. The results indicate that, due to preferential pathways, the flow of water in field-scale landfills is less uniform than in laboratory reactors. Based on tracer experiments, it can be discerned that in laboratory-scale experiments around 40% of pore watermore » participates in advective solute transport, whereas this fraction amounts to less than 0.2% in the investigated full-scale landfill. Consequences of the difference in water flow and moisture distribution are: (1) leachate emissions from full-scale landfills decrease faster than predicted by laboratory experiments, and (2) the stock of materials remaining in the landfill body, and thus the long-term emission potential, is likely to be underestimated by laboratory landfill simulations.« less
Laboratory space physics: Investigating the physics of space plasmas in the laboratory
NASA Astrophysics Data System (ADS)
Howes, Gregory G.
2018-05-01
Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.
Undergraduate Organic Chemistry Laboratory Safety
NASA Astrophysics Data System (ADS)
Luckenbaugh, Raymond W.
1996-11-01
Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.
Development of a Portable Motor Learning Laboratory (PoMLab)
Shinya, Masahiro
2016-01-01
Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves obtained in the follow-up experiments. Further, we investigated the influence of vibration function, weight, and screen size on learning curves. Finally, we compared the learning curves obtained in the PoMLab experiments to those obtained in the conventional reaching experiments. The results of the in-class experiments show that PoMLab can be used to conduct motor learning experiments at any time and place. PMID:27348223
Development of a Portable Motor Learning Laboratory (PoMLab).
Takiyama, Ken; Shinya, Masahiro
2016-01-01
Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves obtained in the follow-up experiments. Further, we investigated the influence of vibration function, weight, and screen size on learning curves. Finally, we compared the learning curves obtained in the PoMLab experiments to those obtained in the conventional reaching experiments. The results of the in-class experiments show that PoMLab can be used to conduct motor learning experiments at any time and place.
The student perspective of high school laboratory experiences
NASA Astrophysics Data System (ADS)
Lambert, R. Mitch
High school science laboratory experiences are an accepted teaching practice across the nation despite a lack of research evidence to support them. The purpose of this study was to examine the perspective of students---stakeholders often ignored---on these experiences. Insight into the students' perspective was explored progressively using a grounded theory methodology. Field observations of science classrooms led to an open-ended survey of high school science students, garnering 665 responses. Twelve student interviews then focused on the data and questions evolving from the survey. The student perspective on laboratory experiences revealed varied information based on individual experience. Concurrent analysis of the data revealed that although most students like (348/665) or sometimes like (270/665) these experiences, some consistent factors yielded negative experiences and prompted suggestions for improvement. The category of responses that emerged as the core idea focused on student understanding of the experience. Students desire to understand the why do, the how to, and the what it means of laboratory experiences. Lacking any one of these, the experience loses educational value for them. This single recurring theme crossed the boundaries of age, level in school, gender, and even the student view of lab experiences as positive or negative. This study suggests reflection on the current laboratory activities in which science teachers engage their students. Is the activity appropriate (as opposed to being merely a favorite), does it encourage learning, does it fit, does it operate at the appropriate level of inquiry, and finally what can science teachers do to integrate these activities into the classroom curriculum more effectively? Simply stated, what can teachers do so that students understand what to do, what's the point, and how that point fits into what they are learning outside the laboratory?
ERIC Educational Resources Information Center
Ozog, J. Z.; Morrison, J. A.
1983-01-01
Presents information, laboratory procedures, and results of an undergraduate experiment in which activity coefficients for a two-component liquid-vapor system are determined. Working in pairs, students can perform the experiment with 10 solutions in a given three-hour laboratory period. (Author/JN)
Organism support for life sciences spacelab experiments
NASA Technical Reports Server (NTRS)
Drake, G. L.; Heppner, D. B.
1976-01-01
This paper presents an overview of the U.S. life sciences laboratory concepts envisioned for the Shuttle/Spacelab era. The basic development approach is to provide a general laboratory facility supplemented by specific experiment hardware as required. The laboratory concepts range from small carry-on laboratories to fully dedicated laboratories in the Spacelab pressurized module. The laboratories will encompass a broad spectrum of research in biology and biomedicine requiring a variety of research organisms. The environmental control and life support of these organisms is a very important aspect of the success of the space research missions. Engineering prototype organism habitats have been designed and fabricated to be compatible with the Spacelab environment and the experiment requirements. These first-generation habitat designs and their subsystems have supported plants, cells/tissues, invertebrates, and small vertebrates in limited evaluation tests. Special handling and transport equipment required for the ground movement of the experiment organisms at the launch/landing site have been built and tested using these initial habitat prototypes.
NASA Technical Reports Server (NTRS)
Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.
1974-01-01
The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.
André, Viola; Gau, Christine; Scheideler, Angelika; Aguilar-Pimentel, Juan A; Amarie, Oana V; Becker, Lore; Garrett, Lillian; Hans, Wolfgang; Hölter, Sabine M; Janik, Dirk; Moreth, Kristin; Neff, Frauke; Östereicher, Manuela; Racz, Ildiko; Rathkolb, Birgit; Rozman, Jan; Bekeredjian, Raffi; Graw, Jochen; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Schmidt-Weber, Carsten; Wolf, Eckhard; Wurst, Wolfgang; Gailus-Durner, Valérie; Brielmeier, Markus; Fuchs, Helmut; Hrabé de Angelis, Martin
2018-04-01
Animal welfare requires the adequate housing of animals to ensure health and well-being. The application of environmental enrichment is a way to improve the well-being of laboratory animals. However, it is important to know whether these enrichment items can be incorporated in experimental mouse husbandry without creating a divide between past and future experimental results. Previous small-scale studies have been inconsistent throughout the literature, and it is not yet completely understood whether and how enrichment might endanger comparability of results of scientific experiments. Here, we measured the effect on means and variability of 164 physiological parameters in 3 conditions: with nesting material with or without a shelter, comparing these 2 conditions to a "barren" regime without any enrichments. We studied a total of 360 mice from each of 2 mouse strains (C57BL/6NTac and DBA/2NCrl) and both sexes for each of the 3 conditions. Our study indicates that enrichment affects the mean values of some of the 164 parameters with no consistent effects on variability. However, the influence of enrichment appears negligible compared to the effects of other influencing factors. Therefore, nesting material and shelters may be used to improve animal welfare without impairment of experimental outcome or loss of comparability to previous data collected under barren housing conditions.
Induced polarization for characterizing and monitoring soil stabilization processes
NASA Astrophysics Data System (ADS)
Saneiyan, S.; Ntarlagiannis, D.; Werkema, D. D., Jr.
2017-12-01
Soil stabilization is critical in addressing engineering problems related to building foundation support, road construction and soil erosion among others. To increase soil strength, the stiffness of the soil is enhanced through injection/precipitation of a chemical agents or minerals. Methods such as cement injection and microbial induced carbonate precipitation (MICP) are commonly applied. Verification of a successful soil stabilization project is often challenging as treatment areas are spatially extensive and invasive sampling is expensive, time consuming and limited to sporadic points at discrete times. The geophysical method, complex conductivity (CC), is sensitive to mineral surface properties, hence a promising method to monitor soil stabilization projects. Previous laboratory work has established the sensitivity of CC on MICP processes. We performed a MICP soil stabilization projects and collected CC data for the duration of the treatment (15 days). Subsurface images show small, but very clear changes, in the area of MICP treatment; the changes observed fully agree with the bio-geochemical monitoring, and previous laboratory experiments. Our results strongly suggest that CC is sensitive to field MICP treatments. Finally, our results show that good quality data alone are not adequate for the correct interpretation of field CC data, at least when the signals are low. Informed data processing routines and the inverse modeling parameters are required to produce optimal results.
ERIC Educational Resources Information Center
Zabzdyr, Jennifer L.; Lillard, Sheri J.
2001-01-01
Introduces a laboratory experiment for determining blood alcohol content using a combination of instrumental analysis and forensic science. Teaches the importance of careful laboratory technique and that experiments are conducted for a reason. Includes the procedure of the experiment. (Contains 17 references.) (YDS)
A Simple Photochemical Experiment for the Advanced Laboratory.
ERIC Educational Resources Information Center
Rosenfeld, Stuart M.
1986-01-01
Describes an experiment to provide students with: (1) an introduction to photochemical techniques and theory; (2) an experience with semimicro techniques; (3) an application of carbon-14 nuclear magnetic resonance; and (4) a laboratory with some qualities of a genuine experiment. These criteria are met in the photooxidation of 9,…
International Co-Operation in Control Engineering Education Using Online Experiments
ERIC Educational Resources Information Center
Henry, Jim; Schaedel, Herbert M.
2005-01-01
This paper describes the international co-operation experience in teaching control engineering with laboratories being conducted remotely by students via the Internet. This paper describes how the students ran the experiments and their personal experiences with the laboratory. A tool for process identification and controller tuning based on…
NASA Astrophysics Data System (ADS)
Simon, Nicole A.
Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory experience, linking with educational technologies (Pyatt & Sims, 2007; 2011; Trundle & Bell, 2010). A causal-comparative quantitative study was conducted with 150 learners enrolled at a two-year community college, to determine the effects of simulation laboratory experiments on Higher-Order Learning, Critical Thinking Skills, and Cognitive Load. The treatment population used simulated experiments, while the non-treatment sections performed traditional expository experiments. A comparison was made using the Revised Two-Factor Study Process survey, Motivated Strategies for Learning Questionnaire, and the Scientific Attitude Inventory survey, using a Repeated Measures ANOVA test for treatment or non-treatment. A main effect of simulated laboratory experiments was found for both Higher-Order Learning, [F (1, 148) = 30.32,p = 0.00, eta2 = 0.12] and Critical Thinking Skills, [F (1, 148) = 14.64,p = 0.00, eta 2 = 0.17] such that simulations showed greater increases than traditional experiments. Post-lab treatment group self-reports indicated increased marginal means (+4.86) in Higher-Order Learning and Critical Thinking Skills, compared to the non-treatment group (+4.71). Simulations also improved the scientific skills and mastery of basic scientific subject matter. It is recommended that additional research recognize that learners' Critical Thinking Skills change due to different instructional methodologies that occur throughout a semester.
2014-01-01
Introduction The Mediterranean sacoglossan Elysia timida is one of the few sea slug species with the ability to sequester chloroplasts from its food algae and to subsequently store them in a functional state in the digestive gland cells for more than a month, during which time the plastids retain high photosynthetic activity (= long-term retention). Adult E. timida have been described to feed on the unicellular alga Acetabularia acetabulum in their natural environment. The suitability of E. timida as a laboratory model culture system including its food source was studied. Results In contrast to the literature reporting that juvenile E. timida feed on Cladophora dalmatica first, and later on switch to the adult diet A. acetabulum, the juveniles in this study fed directly on A. acetabulum (young, non-calcified stalks); they did not feed on the various Cladophora spp. (collected from the sea or laboratory culture) offered. This could possibly hint to cryptic speciation with no clear morphological differences, but incipient ecological differentiation. Transmission electron microscopy of chloroplasts from A. acetabulum after initial intake by juvenile E. timida showed different states of degradation — in conglomerations or singularly — and fragments of phagosome membranes, but differed from kleptoplast images of C. dalmatica in juvenile E. timida from the literature. Based on the finding that the whole life cycle of E. timida can be completed with A. acetabulum as the sole food source, a laboratory culture system was established. An experiment with PAM-fluorometry showed that cultured E. timida are also able to store chloroplasts in long-term retention from Acetabularia peniculus, which stems from the Indo-Pacific and is not abundant in the natural environment of E. timida. Variations between three experiment groups indicated potential influences of temperature on photosynthetic capacities. Conclusions E. timida is a viable laboratory model system to study photosynthesis in incorporated chloroplasts (kleptoplasts). Capacities of chloroplast incorporation in E. timida were investigated in a closed laboratory culture system with two different chloroplast donors and over extended time periods about threefold longer than previously reported. PMID:24428892
An electron fixed target experiment to search for a new vector boson A' decaying to e +e -
Rouven Essig; Schuster, Philip; Toro, Natalia; ...
2011-02-02
We describe an experiment to search for a new vector boson A' with weak coupling alpha' > 6 x 10 –8 α to electrons (α' = e 2/4π) in the mass range 65 MeV < m A' < 550 MeV. New vector bosons with such small couplings arise naturally from a small kinetic mixing of the "dark photon" A' with the photon -- one of the very few ways in which new forces can couple to the Standard Model -- and have received considerable attention as an explanation of various dark matter related anomalies. A' bosons are produced by radiationmore » off an electron beam, and could appear as narrow resonances with small production cross-section in the trident e +e - spectrum. We summarize the experimental approach described in a proposal submitted to Jefferson Laboratory's PAC35, PR-10-009. This experiment, the A' Experiment (APEX), uses the electron beam of the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory (CEBAF) at energies of ~1-4 GeV incident on 0.5-10% radiation length Tungsten wire mesh targets, and measures the resulting e+e- pairs to search for the A' using the High Resolution Spectrometer and the septum magnet in Hall A. With a ~1 month run, APEX will achieve very good sensitivity because the statistics of e+e- pairs will be ~10,000 times larger in the explored mass range than any previous search for the A' boson. These statistics and the excellent mass resolution of the spectrometers allow sensitivity to α'/α one to three orders of magnitude below current limits, in a region of parameter space of great theoretical and phenomenological interest. Similar experiments could also be performed at other facilities, such as the Mainz Microtron.« less
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
1999-01-01
This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.
Solidification effects on sill formation: An experimental approach
NASA Astrophysics Data System (ADS)
Chanceaux, L.; Menand, T.
2014-10-01
Sills represent a major mechanism for constructing continental Earth's crust because these intrusions can amalgamate and form magma reservoirs and plutons. As a result, numerous field, laboratory and numerical studies have investigated the conditions that lead to sill emplacement. However, all previous studies have neglected the potential effect magma solidification could have on sill formation. The effects of solidification on the formation of sills are studied and quantified with scaled analogue laboratory experiments. The experiments presented here involved the injection of hot vegetable oil (a magma analogue) which solidified during its propagation as a dyke in a colder and layered solid of gelatine (a host rock analogue). The gelatine solid had two layers of different stiffness, to create a priori favourable conditions to form sills. Several behaviours were observed depending on the injection temperature and the injection rate: no intrusions (extreme solidification effects), dykes stopping at the interface (high solidification effects), sills (moderate solidification effects), and dykes passing through the interface (low solidification effects). All these results can be explained quantitatively as a function of a dimensionless temperature θ, which describes the experimental thermal conditions, and a dimensionless flux ϕ, which describes their dynamical conditions. The experiments reveal that sills can only form within a restricted domain of the (θ , ϕ) parameter space. These experiments demonstrate that contrary to isothermal experiments where cooling could not affect sill formation, the presence of an interface that would be a priori mechanically favourable is not a sufficient condition for sill formation; solidification effects restrict sill formation. The results are consistent with field observations and provide a means to explain why some dykes form sills when others do not under seemingly similar geological conditions.
Topić, E; Turek, S
2000-01-01
The basic criterion for the overall quality system in medical biochemistry laboratories concerning equipment, premises and laboratory staff in primary health care (PHC) (Regulations on quality systems and good laboratory practice of the Croatian Medical Biochemists Chamber, 1995, Regulations on categorization of medical biochemistry laboratories of the Croatian Medical Biochemists Chamber, 1996, EC4: Essential criteria for quality systems in medical laboratories. Eur J Clin Chem Clin Biochem 1997 in medical biochemical laboratories included in the First Croatia health project, Primary health care subproject, has been met by the marketing approach to the project. The equipment ensuring implementation of the complete laboratory program (NN/96), more accurate and precise analytical procedures, and higher reliability of laboratory test results compared with previous equipment, has been purchased by an international tender. Uniform technology and methods of analysis have ensured high standards of good laboratory services, yielding test results than can be transferred from primary to secondary health care level. The new equipment has improved organization between central and detached medical biochemistry laboratory units, while the high quality requirement has led to improvement in the staff structure, e.g., medical biochemists have been employed in laboratories that had previously worked without such a professional. Equipment renewal has been accompanied by proper education for all levels of PHC professionals.
Wiegers, Ann L
2003-07-01
Third-party accreditation is a valuable tool to demonstrate a laboratory's competence to conduct testing. Accreditation, internationally and in the United States, has been discussed previously. However, accreditation is only I part of establishing data credibility. A validated test method is the first component of a valid measurement system. Validation is defined as confirmation by examination and the provision of objective evidence that the particular requirements for a specific intended use are fulfilled. The international and national standard ISO/IEC 17025 recognizes the importance of validated methods and requires that laboratory-developed methods or methods adopted by the laboratory be appropriate for the intended use. Validated methods are therefore required and their use agreed to by the client (i.e., end users of the test results such as veterinarians, animal health programs, and owners). ISO/IEC 17025 also requires that the introduction of methods developed by the laboratory for its own use be a planned activity conducted by qualified personnel with adequate resources. This article discusses considerations and recommendations for the conduct of veterinary diagnostic test method development, validation, evaluation, approval, and transfer to the user laboratory in the ISO/IEC 17025 environment. These recommendations are based on those of nationally and internationally accepted standards and guidelines, as well as those of reputable and experienced technical bodies. They are also based on the author's experience in the evaluation of method development and transfer projects, validation data, and the implementation of quality management systems in the area of method development.
Tagliarolo, Morgana; McQuaid, Christopher D.
2016-01-01
Attempts to predict the response of species to long-term environmental change are generally based on extrapolations from laboratory experiments that inevitably simplify the complex interacting effects that occur in the field. We recorded heart rates of two genetic lineages of the brown mussel Perna perna over a full tidal cycle in-situ at two different sites in order to evaluate the cardiac responses of the two genetic lineages present on the South African coast to temperature and the immersion/emersion cycle. “Robomussel” temperature loggers were used to monitor thermal conditions at the two sites over one year. Comparison with live animals showed that robomussels provided a good estimate of mussel body temperatures. A significant difference in estimated body temperatures was observed between the sites and the results showed that, under natural conditions, temperatures regularly approach or exceed the thermal limits of P. perna identified in the laboratory. The two P. perna lineages showed similar tidal and diel patterns of heart rate, with higher cardiac activity during daytime immersion and minimal values during daytime emersion. Comparison of the heart rates measured in the field with data previously measured in the laboratory indicates that laboratory results seriously underestimate heart rate activity, by as much as 75%, especially during immersion. Unexpectedly, field estimates of body temperatures indicated an ability to tolerate temperatures considered lethal on the basis of laboratory measurements. This suggests that the interaction of abiotic conditions in the field does not necessarily raise vulnerability to high temperatures. PMID:26840775
Inexpensive Audio Activities: Earbud-based Sound Experiments
NASA Astrophysics Data System (ADS)
Allen, Joshua; Boucher, Alex; Meggison, Dean; Hruby, Kate; Vesenka, James
2016-11-01
Inexpensive alternatives to a number of classic introductory physics sound laboratories are presented including interference phenomena, resonance conditions, and frequency shifts. These can be created using earbuds, economical supplies such as Giant Pixie Stix® wrappers, and free software available for PCs and mobile devices. We describe two interference laboratories (beat frequency and two-speaker interference) and two resonance laboratories (quarter- and half-wavelength). Lastly, a Doppler laboratory using rotating earbuds is explained. The audio signal captured by all experiments is analyzed on free spectral analysis software and many of the experiments incorporate the unifying theme of measuring the speed of sound in air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finsterle, S.; Moridis, G.J.; Pruess, K.
1994-01-01
The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface.
Development of Laboratory Seismic Exploration Experiment for Education and Demonstration
NASA Astrophysics Data System (ADS)
Kuwano, O.; Nakanishi, A.
2016-12-01
We developed a laboratory experiment to simulate a seismic refraction survey for educational purposes. The experiment is tabletop scaled experiment using the soft hydrogel as an analogue material of a layered crust. So, we can conduct the seismic exploration experiment in a laboratory or a classroom. The softness and the transparency of the gel material enable us to observe the wave propagation with our naked eyes, using the photoelastic technique. By analyzing the waveforms obtained by the image analysis of the movie of the experiment, one can estimate the velocities and the structure of the gel specimen in the same way as an actual seismic survey. We report details of the practical course and the public outreach activities using the experiment.
Pedagogical Evaluation of Remote Laboratories in eMerge Project
ERIC Educational Resources Information Center
Lang, Daniela; Mengelkamp, Christoph; Jaeger, Reinhold S.; Geoffroy, Didier; Billaud, Michel; Zimmer, Thomas
2007-01-01
This study investigates opportunities for conducting electrical engineering experiments via the Internet rather than in an actual laboratory. Eighty-four French students of electrical engineering (semester 1, 2004) at Bordeaux University 1 participated in practical courses. Half of the students performed experiments in a laboratory while the other…
A Multistep Synthesis for an Advanced Undergraduate Organic Chemistry Laboratory
ERIC Educational Resources Information Center
Chang Ji; Peters, Dennis G.
2006-01-01
Multistep syntheses are often important components of the undergraduate organic laboratory experience and a three-step synthesis of 5-(2-sulfhydrylethyl) salicylaldehyde was described. The experiment is useful as a special project for an advanced undergraduate organic chemistry laboratory course and offers opportunities for students to master a…
Child Guidance for Child Caregivers: Student Laboratory Manual.
ERIC Educational Resources Information Center
Texas Tech Univ., Lubbock. Home Economics Curriculum Center.
Designed to enhance student knowledge of and skills in child guidance in group care settings, this manual provides 50 laboratory experiences for five units. Units cover foundations and assumptions (2 laboratory experiences), developmental factors (8), indirect guidance (14), direct guidance (14), and strategies (12). Each unit includes performance…
Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment
ERIC Educational Resources Information Center
Leung, Sam H.; Angel, Stephen A.
2004-01-01
Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.
ERIC Educational Resources Information Center
Vullo, Diana L.; Wachsman, Monica B.
2005-01-01
This laboratory experiment was designed for Chemistry, Food Technology, Biology, and Chemical Engineering undergraduate students. This laboratory experience shows the advantages of immobilized bakery yeasts in ethanol production by alcoholic fermentation. The students were able to compare the ethanol production yields by free or calcium alginate…
A Laboratory Course in Clinical Biochemistry Emphasizing Interest and Relevance
ERIC Educational Resources Information Center
Schwartz, Peter L.
1975-01-01
Ten laboratory experiments are described which are used in a successful clinical biochemistry laboratory course (e.g. blood alcohol, glucose tolerance, plasma triglycerides, coronary risk index, gastric analysis, vitamin C and E). Most of the experiments are performed on the students themselves using simple equipment with emphasis on useful…
Slip behaviour of carbonate-bearing faults subjected to fluid pressure stimulations
NASA Astrophysics Data System (ADS)
Collettini, Cristiano; Scuderi, Marco; Marone, Chris
2017-04-01
Earthquakes caused by fluid injection within reservoir have become an important topic of political and social discussion as new drilling and improved technologies enable the extraction of oil and gas from previously unproductive formations. During reservoir stimulation, the coupled interactions of frictional and fluid flow properties together with the stress state control both the onset of fault slip and fault slip behaviour. However, currently, there are no studies under controlled, laboratory conditions for which the effect of fluid pressure on fault slip behaviour can be deduced. To cover this gap, we have developed laboratory experiments where we monitor fault slip evolution at constant shear stress but with increasing fluid pressure, i.e. reducing the effective normal stress. Experiments have been conducted in the double direct shear configuration within a pressure vessel on carbonate fault gouge, characterized by a slightly velocity strengthening friction that is indicative of stable aseismic creep. In our experiments fault slip history can be divided in three main stages: 1) for high effective normal stress the fault is locked and undergoes compaction; 2) when the shear and effective normal stress reach the failure condition, accelerated creep is associated to fault dilation; 3) further pressurization leads to an exponential acceleration during fault compaction and slip localization. Our results indicate that fault weakening induced by fluid pressurization overcomes the velocity strengthening behaviour of calcite gouge, resulting in fast acceleration and earthquake slip. As applied to tectonic faults our results suggest that a larger number of crustal faults, including those slightly velocity strengthening, can experience earthquake slip due to fluid pressurization.
Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory
NASA Technical Reports Server (NTRS)
Hollinden, A. B.; Eaton, L. R.
1972-01-01
A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.
An Improved Experimental Method for Simulating Erosion Processes by Concentrated Channel Flow
Chen, Xiao-Yan; Zhao, Yu; Mo, Bin; Mi, Hong-Xing
2014-01-01
Rill erosion is an important process that occurs on hill slopes, including sloped farmland. Laboratory simulations have been vital to understanding rill erosion. Previous experiments obtained sediment yields using rills of various lengths to get the sedimentation process, which disrupted the continuity of the rill erosion process and was time-consuming. In this study, an improved experimental method was used to measure the rill erosion processes by concentrated channel flow. By using this method, a laboratory platform, 12 m long and 3 m wide, was used to construct rills of 0.1 m wide and 12 m long for experiments under five slope gradients (5, 10, 15, 20, and 25 degrees) and three flow rates (2, 4, and 8 L min−1). Sediment laden water was simultaneously sampled along the rill at locations 0.5 m, 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, 10 m, and 12 m from the water inlet to determine the sediment concentration distribution. The rill erosion process measured by the method used in this study and that by previous experimental methods are approximately the same. The experimental data indicated that sediment concentrations increase with slope gradient and flow rate, which highlights the hydraulic impact on rill erosion. Sediment concentration increased rapidly at the initial section of the rill, and the rate of increase in sediment concentration reduced with the rill length. Overall, both experimental methods are feasible and applicable. However, the method proposed in this study is more efficient and easier to operate. This improved method will be useful in related research. PMID:24949621
Rao, Sujaya; Cossé, Allard A; Zilkowski, Bruce W; Bartelt, Robert J
2003-09-01
The previously identified, male-specific compound of the cereal leaf beetle (CLB, Chrysomelidae; Oulema melanopus), (E)-8-hydroxy-6-methyl-6-octen-3-one, was studied further with respect to field activity and emission rate from male beetles. In a 5-week field experiment in Oregon, the compound was shown to function as an aggregation pheromone in attracting male and female CLBs migrating from overwintering sites in spring. Traps baited with the synthetic compound (500 microg per rubber septum) caught 3.3 times more CLBs than control traps. Lower doses of the pheromone (50 and 150 microg) were less attractive than the 500 microg dose. One relatively abundant, volatile compound from the host plant (oats), (Z)-3-hexenyl acetate, that elicited responses from beetle antennae was not attractive, either by itself or as a synergist of the pheromone. Both sexes were captured about equally for all treatments. We also measured daily pheromone emission by male beetles in the laboratory. Individual males feeding on oat seedlings under greenhouse conditions emitted as much as 6 microg per day, which is about 500 times higher than had been previously observed under incubator conditions. The pheromone emission rate was at least five times higher during the day than at night, and in one male, emission spanned a period of 28 d. The release rate of synthetic pheromone from the 500 microg septa was very similar to the maximum from single males; thus, future experiments should evaluate even higher doses. The field results indicate that the pheromone has potential as a monitoring tool for early detection of CLBs as they move from their overwintering sites into newly planted cereal crops in spring.
Case-Study Investigation of Equine Maternity via PCR-RFLP: A Biochemistry Laboratory Experiment
Millard, Julie T.; Chuang, Edward; Lucas, James S.; Nagy, Erzsebet E.; Davis, Griffin T.
2013-01-01
A simple and robust biochemistry laboratory experiment is described that uses restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR) products to verify the identity of a potentially valuable horse. During the first laboratory period, students purify DNA from equine samples and amplify two loci of mitochondrial DNA. During the second laboratory period, students digest PCR products with restriction enzymes and analyze the fragment sizes through agarose gel electrophoresis. An optional step of validating DNA extracts through realtime PCR can expand the experiment to three weeks. This experiment, which has an engaging and versatile scenario, provides students with exposure to key principles and techniques of molecular biology, bioinformatics, and evolution in a forensic context. PMID:24363455
Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K
2015-01-01
Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum. © 2014 The International Union of Biochemistry and Molecular Biology.
Personal Audiovisual Aptitude Influences the Interaction Between Landscape and Soundscape Appraisal.
Sun, Kang; Echevarria Sanchez, Gemma M; De Coensel, Bert; Van Renterghem, Timothy; Talsma, Durk; Botteldooren, Dick
2018-01-01
It has been established that there is an interaction between audition and vision in the appraisal of our living environment, and that this appraisal is influenced by personal factors. Here, we test the hypothesis that audiovisual aptitude influences appraisal of our sonic and visual environment. To measure audiovisual aptitude, an auditory deviant detection experiment was conducted in an ecologically valid and complex context. This experiment allows us to distinguish between accurate and less accurate listeners. Additionally, it allows to distinguish between participants that are easily visually distracted and those who are not. To do so, two previously conducted laboratory experiments were re-analyzed. The first experiment focuses on self-reported noise annoyance in a living room context, whereas the second experiment focuses on the perceived pleasantness of using outdoor public spaces. In the first experiment, the influence of visibility of vegetation on self-reported noise annoyance was modified by audiovisual aptitude. In the second one, it was found that the overall appraisal of walking across a bridge is influenced by audiovisual aptitude, in particular when a visually intrusive noise barrier is used to reduce highway traffic noise levels. We conclude that audiovisual aptitude may affect the appraisal of the living environment.
Personal Audiovisual Aptitude Influences the Interaction Between Landscape and Soundscape Appraisal
Sun, Kang; Echevarria Sanchez, Gemma M.; De Coensel, Bert; Van Renterghem, Timothy; Talsma, Durk; Botteldooren, Dick
2018-01-01
It has been established that there is an interaction between audition and vision in the appraisal of our living environment, and that this appraisal is influenced by personal factors. Here, we test the hypothesis that audiovisual aptitude influences appraisal of our sonic and visual environment. To measure audiovisual aptitude, an auditory deviant detection experiment was conducted in an ecologically valid and complex context. This experiment allows us to distinguish between accurate and less accurate listeners. Additionally, it allows to distinguish between participants that are easily visually distracted and those who are not. To do so, two previously conducted laboratory experiments were re-analyzed. The first experiment focuses on self-reported noise annoyance in a living room context, whereas the second experiment focuses on the perceived pleasantness of using outdoor public spaces. In the first experiment, the influence of visibility of vegetation on self-reported noise annoyance was modified by audiovisual aptitude. In the second one, it was found that the overall appraisal of walking across a bridge is influenced by audiovisual aptitude, in particular when a visually intrusive noise barrier is used to reduce highway traffic noise levels. We conclude that audiovisual aptitude may affect the appraisal of the living environment. PMID:29910750
International Space Station (ISS)
1999-01-01
The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.
International Space Station Assembly
NASA Technical Reports Server (NTRS)
1999-01-01
The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shull, H.E.
The objective of the project was to investigate the economic feasibility of converting potato waste to fuel alcohol. The source of potato starch was Troyer Farms Potato Chips. Experimental work was carried out at both the laboratory scale and the larger pilot scale batch operation at a decommissioned waste water treatment building on campus. The laboratory scale work was considerably more extensive than originally planned, resulting in a much improved scientific work. The pilot scale facility has been completed and operated successfully. In contrast, the analysis of the economic feasibility of commercial production has not yet been completed. The projectmore » was brought to a close with the successful demonstration of the fermentation and distillation using the large scale facilities described previously. Two batches of mash were cooked using the procedures established in support of the laboratory scale work. One of the batches was fermented using the optimum values of the seven controlled factors as predicted by the laboratory scale application of the Box-Wilson design. The other batch was fermented under conditions derived out of Mr. Rouse's interpretation of his long sequence of laboratory results. He was gratified to find that his commitment to the Box-Wilson experiments was justified. The productivity of the Box-Wilson design was greater. The difference between the performance of the two fermentors (one stirred, one not) has not been established yet. Both batches were then distilled together, demonstrating the satisfactory performance of the column still. 4 references.« less
ERIC Educational Resources Information Center
Reece, Amber J.; Butler, Malcolm B.
2017-01-01
Biology I is a required course for many science, technology, engineering, and mathematics (STEM) majors and is often their first college-level laboratory experience. The replacement of the traditional face-to-face laboratory experience with virtual laboratories could influence students' content knowledge, motivation to learn biology, and overall…
Protein Laboratories in Single Location | Poster
By Andrew Stephen, Timothy Veenstra, and Gordon Whiteley, Guest Writers, and Ken Michaels, Staff Writer The Laboratory of Proteomics and Analytical Technologies (LPAT), Antibody Characterization Laboratory (ACL), and Protein Chemistry Laboratory (PCL), previously located on different floors or in different buildings, are now together on the first floor of C wing in the ATRF.
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Greco, R. V.; Hollinden, A. B.
1973-01-01
The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.
Experimenting with Impacts in a Conceptual Physics or Descriptive Astronomy Laboratory
ERIC Educational Resources Information Center
LoPresto, Michael C.
2016-01-01
What follows is a description of the procedure for and results of a simple experiment on the formation of impact craters designed for the laboratory portions of lower mathematical-level general education science courses such as conceptual physics or descriptive astronomy. The experiment provides necessary experience with data collection and…
Millikan's Oil-Drop Experiment as a Remotely Controlled Laboratory
ERIC Educational Resources Information Center
Eckert, Bodo; Grober, Sebastian; Vetter, Martin; Jodl, Hans-Jorg
2012-01-01
The Millikan oil-drop experiment, to determine the elementary electrical charge e and the quantization of charge Q = n [middle dot] e, is an essential experiment in physics teaching but it is hardly performed in class for several reasons. Therefore, we offer this experiment as a remotely controlled laboratory (RCL). We describe the interactivity…
Responses to Anomalous Data Obtained from Repeatable Experiments in the Laboratory
ERIC Educational Resources Information Center
Lin, Jer-Yann
2007-01-01
The purpose of this study was to investigate the possible responses to anomalous data obtained from experiments that are repeatable by carrying out additional or alternative experiments in the laboratory. Based on an analysis of responses from scientists to anomalous data taken from identification experiments on the Vinland Map, it was assumed…
Agostini, M.; Allardt, M.; Bakalyarov, A. M.; ...
2015-09-09
A search for neutrinoless ββ decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN (Italy). Processes with spectral indices n = 1,2,3,7 were searched for. No signals were found and lower limits of the order of 10 23 yr on their half-lives were derived, yielding substantially improved results compared to previous experiments with 76Ge. A new result for the half-life of the neutrino-accompanied ββ decay of 76Ge with significantly reduced uncertainties is also given, resulting in T 2νmore » 1/2 = (1.926 ± 0.094) × 10 21 yr.« less
Suprathermal electrons associated with a plasma discharge on an active sounding rocket experiment
NASA Astrophysics Data System (ADS)
Bale, S. D.; Kellogg, P. J.; Monson, S. J.; Anderson, H. R.; Potter, D. W.
1995-12-01
Electrons with energies up to 600 eV are observed with the retarding potential analyzer (RPA) instrument aboard the Several Compatible Experiments (SCEX) III sounding rocket. The electrons are concomitant with high-energy (2-6 keV) electron gun injections and also evidence themselves by luminosity observed with 3805 Å and 3914 Å photometers. Both the collected electron flux and luminosity measurements are strongly nonlinear with gun injection current. For a typical event, the electron distribution is similar to laboratory beam-plasma discharge (BPD) distributions reported by Sharp (1982) and when backed by HF electric field observations (Goerke et al., 1992; Llobet et al., 1985), the BPD mechanism becomes a most likely explanation. Strong turbulence theories of BPD predict a power law tail in the electron distribution, and we compare our spectral index with some previous observations.
STS-42 Commander Grabe works with MWPE at IML-1 Rack 8 aboard OV-103
NASA Technical Reports Server (NTRS)
1992-01-01
STS-42 Commander Ronald J. Grabe works with the Mental Workload and Performance Evaluation Experiment (MWPE) (portable laptop computer, keyboard cursor keys, a two-axis joystick, and a track ball) at Rack 8 in the International Microgravity Laboratory 1 (IML-1) module. The test was designed as a result of difficulty experienced by crewmembers working at a computer station on a previous Space Shuttle mission. The problem was due to the workstation's design being based on Earth-bound conditions with the operator in a typical one-G standing position. For STS-42, the workstation was redesigned to evaluate the effects of microgravity on the ability of crewmembers to interact with a computer workstation. Information gained from this experiment will be used to design workstations for future Spacelab missions and Space Station Freedom (SSF).
Rocket-triggered lightning strikes and forest fire ignition
NASA Technical Reports Server (NTRS)
Fenner, James
1990-01-01
The following are presented: (1) background information on the rocket-triggered lightning project an Kennedy Space Center (KSC); (2) a summary of the forecasting problem; (3) the facilities and equipment available for undertaking field experiments at KSC; (4) previous research activity performed; (5) a description of the atmospheric science field laboratory near Mosquito Lagoon on the KSC complex; (6) methods of data acquisition; and (7) present results. New sources of data for the 1990 field experiment include measuring the electric field in the lower few thousand feet of the atmosphere by suspending field measuring devices below a tethered balloon, and measuring the electric field intensity in clouds and in the atmosphere with aircraft. The latter program began in July of 1990. Also, future prospects for both triggered lightning and forest fire research at KSC are listed.
Sist, Paola; Cescutti, Paola; Skerlavaj, Silvia; Urbani, Ranieri; Leitão, Jorge H; Sá-Correia, Isabel; Rizzo, Roberto
2003-09-01
Light scattering and viscosity measurements were carried out on the previously chemically characterised exopolysaccharide produced by a strain of Burkholderia cepacia isolated from a cystic fibrosis patient. The same exopolysaccharide was also produced by other clinical strains in different laboratories. Therefore, the name Cepacian is now proposed for this exopolysaccharide. Experiments performed as a function of the ionic strength on the native polymer revealed a change in the overall shape of the polymer at low ionic strength. This behaviour was absent in the de-acetylated sample. Potentiometric titrations and light scattering experiments carried out on the acidic form of the native polymer revealed the formation of macromolecular aggregates with a stoichiometry n and 2n stabilised by interactions involving the uronic acid residues.
The impact of supercomputers on experimentation: A view from a national laboratory
NASA Technical Reports Server (NTRS)
Peterson, V. L.; Arnold, J. O.
1985-01-01
The relative roles of large scale scientific computers and physical experiments in several science and engineering disciplines are discussed. Increasing dependence on computers is shown to be motivated both by the rapid growth in computer speed and memory, which permits accurate numerical simulation of complex physical phenomena, and by the rapid reduction in the cost of performing a calculation, which makes computation an increasingly attractive complement to experimentation. Computer speed and memory requirements are presented for selected areas of such disciplines as fluid dynamics, aerodynamics, aerothermodynamics, chemistry, atmospheric sciences, astronomy, and astrophysics, together with some examples of the complementary nature of computation and experiment. Finally, the impact of the emerging role of computers in the technical disciplines is discussed in terms of both the requirements for experimentation and the attainment of previously inaccessible information on physical processes.
Preservice Teachers' Images of Scientists: Do Prior Science Experiences Make a Difference?
NASA Astrophysics Data System (ADS)
Milford, Todd M.; Tippett, Christine D.
2013-06-01
This article presents the results of a mixed methods study that used the Draw-a-Scientist Test as a visual tool for exploring preservice teachers' beliefs about scientists. A questionnaire was also administered to 165 students who were enrolled in elementary (K-8) and secondary (8-12) science methods courses. Taken as a whole, the images drawn by preservice teachers reflected the stereotype of a scientist as a man with a wild hairdo who wears a lab coat and glasses while working in a laboratory setting. However, results indicated statistically significant differences in stereotypical components of representations of scientists depending on preservice teachers' program and previous science experiences. Post degree students in secondary science methods courses created images of scientists with fewer stereotypical elements than drawings created by students in the regular elementary program.
Atmospheric microphysical experiments on an orbital platform
NASA Technical Reports Server (NTRS)
Eaton, L. R.
1974-01-01
The Zero-Gravity Atmospheric Cloud Physics Laboratory is a Shuttle/Spacelab payload which will be capable of performing a large range of microphysics experiments. This facility will complement terrestrial cloud physics research by allowing many experiments to be performed which cannot be accomplished within the confines of a terrestrial laboratory. This paper reviews the general Cloud Physics Laboratory concept and the experiment scope. The experimental constraints are given along with details of the proposed equipment. Examples of appropriate experiments range from three-dimensional simulation of the earth and planetary atmosphere and of ocean circulation to cloud electrification processes and the effects of atmospheric pollution materials on microphysical processes.
NASA Astrophysics Data System (ADS)
Gärtner, S.; Gundlach, B.; Headen, T. F.; Ratte, J.; Oesert, J.; Gorb, S. N.; Youngs, T. G. A.; Bowron, D. T.; Blum, J.; Fraser, H. J.
2017-10-01
Models and observations suggest that ice-particle aggregation at and beyond the snowline dominates the earliest stages of planet formation, which therefore is subject to many laboratory studies. However, the pressure-temperature gradients in protoplanetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. Open questions remain as to whether the properties of the icy particles themselves dictate collision outcomes and therefore how effectively collision experiments reproduce conditions in protoplanetary environments. Previous experiments often yielded apparently contradictory results on collision outcomes, only agreeing in a temperature dependence setting in above ≈210 K. By exploiting the unique capabilities of the NIMROD neutron scattering instrument, we characterized the bulk and surface structure of icy particles used in collision experiments, and studied how these structures alter as a function of temperature at a constant pressure of around 30 mbar. Our icy grains, formed under liquid nitrogen, undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting as they are heated from 103 to 247 K. An increase in the thickness of the diffuse surface layer from ≈10 to ≈30 Å (≈2.5 to 12 bilayers) proves increased molecular mobility at temperatures above ≈210 K. Because none of the other changes tie-in with the temperature trends in collisional outcomes, we conclude that the surface pre-melting phenomenon plays a key role in collision experiments at these temperatures. Consequently, the pressure-temperature environment, may have a larger influence on collision outcomes than previously thought.
Evaluation of the Use of Remote Laboratories for Secondary School Science Education
NASA Astrophysics Data System (ADS)
Lowe, David; Newcombe, Peter; Stumpers, Ben
2013-06-01
Laboratory experimentation is generally considered central to science-based education. Allowing students to "experience" science through various forms of carefully designed practical work, including experimentation, is often claimed to support their learning and motivate their engagement while fulfilling specific curriculum requirements. However, logistical constraints (most especially related to funding) place significant limitations on the ability of schools to provide and maintain high-quality science laboratory experiences and equipment. One potential solution that has recently been the subject of growing interest is the use of remotely accessible laboratories to either supplant, or more commonly to supplement, conventional hands-on laboratories. Remote laboratories allow students and teachers to use high-speed networks, coupled with cameras, sensors, and controllers, to carry out experiments on real physical laboratory apparatus that is located remotely from the student. Research has shown that when used appropriately this can bring a range of potential benefits, including the ability to share resources across multiple institutions, support access to facilities that would otherwise be inaccessible for cost or technical reasons, and provide augmentation of the experimental experience. Whilst there has been considerable work on evaluating the use of remote laboratories within tertiary education, consideration of their role within secondary school science education is much more limited. This paper describes trials of the use of remote laboratories within secondary schools, reporting on the student and teacher reactions to their interactions with the laboratories. The paper concludes that remote laboratories can be highly beneficial, but considerable care must be taken to ensure that their design and delivery address a number of critical issues identified in this paper.
Modular space station phase B extension preliminary system design. Volume 3: Experiment analyses
NASA Technical Reports Server (NTRS)
Wengrow, G. L.; Lillenas, A. N.
1972-01-01
Experiment analysis tasks performed during program definition study are described. Experiment accommodation and scheduling, and defining and implementing the laboratory evolution are discussed. The general purpose laboratory requirements and concepts are defined, and supplemental studies are reported.
Freeze Drying of Fruits and Vegetables: A Laboratory Experiment.
ERIC Educational Resources Information Center
Noble, Richard D.
1979-01-01
Describes a laboratory experiment for freeze-drying fruits and vegetables which aims to expose college students to the principles of drying and simultaneous heat and mass transfer. The experimental apparatus, procedure of the experiment, and data analysis are also included. (HM)
NASA Astrophysics Data System (ADS)
Aur, K. A.; Poppeliers, C.; Preston, L. A.
2017-12-01
The Source Physics Experiment (SPE) consists of a series of underground chemical explosions at the Nevada National Security Site (NNSS) designed to gain an improved understanding of the generation and propagation of physical signals in the near and far field. Characterizing the acoustic and infrasound source mechanism from underground explosions is of great importance to underground explosion monitoring. To this end we perform full waveform source inversion of infrasound data collected from the SPE-6 experiment at distances from 300 m to 6 km and frequencies up to 20 Hz. Our method requires estimating the state of the atmosphere at the time of each experiment, computing Green's functions through these atmospheric models, and subsequently inverting the observed data in the frequency domain to obtain a source time function. To estimate the state of the atmosphere at the time of the experiment, we utilize the Weather Research and Forecasting - Data Assimilation (WRF-DA) modeling system to derive a unified atmospheric state model by combining Global Energy and Water Cycle Experiment (GEWEX) Continental-scale International Project (GCIP) data and locally obtained sonde and surface weather observations collected at the time of the experiment. We synthesize Green's functions through these atmospheric models using Sandia's moving media acoustic propagation simulation suite (TDAAPS). These models include 3-D variations in topography, temperature, pressure, and wind. We compare inversion results using the atmospheric models derived from the unified weather models versus previous modeling results and discuss how these differences affect computed source waveforms with respect to observed waveforms at various distances. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Transmission mode acoustic time-reversal imaging for nondestructive evaluation
NASA Astrophysics Data System (ADS)
Lehman, Sean K.; Devaney, Anthony J.
2002-11-01
In previous ASA meetings and JASA papers, the extended and formalized theory of transmission mode time reversal in which the transceivers are noncoincident was presented. When combined with the subspace concepts of a generalized MUltiple SIgnal Classification (MUSIC) algorithm, this theory is used to form super-resolution images of scatterers buried in a medium. These techniques are now applied to ultrasonic nondestructive evaluation (NDE) of parts, and shallow subsurface seismic imaging. Results are presented of NDE experiments on metal and epoxy blocks using data collected from an adaptive ultrasonic array, that is, a ''time-reversal machine,'' at Lawrence Livermore National Laboratory. Also presented are the results of seismo-acoustic subsurface probing of buried hazardous waste pits at the Idaho National Engineering and Environmental Laboratory. [Work performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.] [Work supported in part by CenSSIS, the Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the NSF (award number EEC-9986821) as well as from Air Force Contracts No. F41624-99-D6002 and No. F49620-99-C0013.
MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, A; Robert Kurzeja, R; Eliel Villa-Aleman, E
2009-01-20
The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper [1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology andmore » water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions.« less
NASA Astrophysics Data System (ADS)
White, Scott R.
This dissertation is a report of an attempt to critically evaluate a novel laboratory course from within the context of a chemical engineering curriculum. The research was done in a college classroom-laboratory setting, entrenched in the everydayness of classroom activities. All of the students, instructors, and educational researchers were knowing participants in this Action Research study. The students, a mixture of juniors, seniors, & graduate students, worked together on semester-long projects in groups that were mixed by age, gender and academic level. Qualitative techniques were used to gather different forms of representations of the students and instructors' experiences. Emergent patterns from the data gave strength to emergent knowledge claims that informed the instructors and the researcher about what the students were learning about performing experimental work and communicating results with their peers and instructor. The course challenged and in some cases changed the conceptions of instruction previously held by the students and the instructors. The course did not proceed without problems, yet the majority of these problems were overcome by the design of the course. Assertions and recommendations for improvement and application to other educational contexts are suggested.
NASA Technical Reports Server (NTRS)
Stone, Bradley M.
1998-01-01
The Astrochemistry Group at NASA Ames Research Center is interested in the identification of large organic molecules in the interstellar medium Many smaller organic species (e.g. hydrocarbons, alcohols, etc.) have been previously identified by their radiofrequency signature due to molecular rotations. However, this becomes increasingly difficult to observe as the size of the molecule increases. Our group in interested in the identification of the carriers of the Diffuse Interstellar Bands (absorption features observed throughout the visible and near-infrared in the spectra of stars, due to species in the interstellar medium). Polycyclic Aromatic Hydrocarbons (PAHs) and related molecules are thought to be good candidates for these carriers. Laboratory experiments am performed at Ames to simulate the interstellar environment, and to compare spectra obtained from molecules in the laboratory to those derived astronomically. We are also interested in PAHs with respect to their possible connection to the UIR (Unidentified infrared) and ERE (Extended Red Emission) bands - emission features found to emanate from particular regions of our galaxy (e.g. Orion nebula, Red Rectangle, etc.). An old, "tried and proven spectroscopic technique, matrix isolation spectroscopy creates molecular conditions ideal for performing laboratory astrophysics.
Hood-Degrenier, Jennifer K
2008-01-01
The movement of newly synthesized proteins through the endomembrane system of eukaryotic cells, often referred to generally as the secretory pathway, is a topic covered in most intermediate-level undergraduate cell biology courses. An article previously published in this journal described a laboratory exercise in which yeast mutants defective in two distinct steps of protein secretion were differentiated using a genetic reporter designed specifically to identify defects in the first step of the pathway, the insertion of proteins into the endoplasmic reticulum (Vallen, 2002). We have developed two versions of a Western blotting assay that serves as a second way of distinguishing the two secretory mutants, which we pair with the genetic assay in a 3-wk laboratory module. A quiz administered before and after students participated in the lab activities revealed significant postlab gains in their understanding of the secretory pathway and experimental techniques used to study it. A second survey administered at the end of the lab module assessed student perceptions of the efficacy of the lab activities; the results of this survey indicated that the experiments were successful in meeting a set of educational goals defined by the instructor.
Diverging effects of clean versus dirty money on attitudes, values, and interpersonal behavior.
Yang, Qing; Wu, Xiaochang; Zhou, Xinyue; Mead, Nicole L; Vohs, Kathleen D; Baumeister, Roy F
2013-03-01
Does the cue of money lead to selfish, greedy, exploitative behaviors or to fairness, exchange, and reciprocity? We found evidence for both, suggesting that people have both sets of meaningful associations, which can be differentially activated by exposure to clean versus dirty money. In a field experiment at a farmers' market, vendors who handled dirty money subsequently cheated customers, whereas those who handled clean money gave fair value (Experiment 1). In laboratory studies with economic games, participants who had previously handled and counted dirty money tended toward selfish, unfair practices-unlike those who had counted clean money or dirty paper, both of which led to fairness and reciprocity. These patterns were found with the trust game (Experiment 2), the prisoner's dilemma (Experiment 4), the ultimatum game (Experiment 5), and the dictator game (Experiment 6). Cognitive measures indicated that exposure to dirty money lowered moral standards (Experiment 3) and reduced positive attitudes toward fairness and reciprocity (Experiments 6-7), whereas exposure to clean money had the opposite effects. Thus, people apparently have 2 contradictory sets of associations (including behavioral tendencies) to money, which is a complex, powerful, and ubiquitous aspect of human social life and cultural organization. PsycINFO Database Record (c) 2013 APA, all rights reserved
Effects of shear load on frictional healing
NASA Astrophysics Data System (ADS)
Ryan, K. L.; Marone, C.
2014-12-01
During the seismic cycle of repeated earthquake failure, faults regain strength in a process known as frictional healing. Laboratory studies have played a central role in illuminating the processes of frictional healing and fault re-strengthening. These studies have also provided the foundation for laboratory-derived friction constitutive laws, which have been used extensively to model earthquake dynamics. We conducted laboratory experiments to assess the affect of shear load on frictional healing. Frictional healing is quantified during slide-hold-slide (SHS) tests, which serve as a simple laboratory analog for the seismic cycle in which earthquakes (slide) are followed by interseismic quiescence (hold). We studied bare surfaces of Westerly granite and layers of Westerly granite gouge (thickness of 3 mm) at normal stresses from 4-25 MPa, relative humidity of 40-60%, and loading and unloading velocities of 10-300 μm/s. During the hold period of SHS tests, shear stress on the sample was partially removed to investigate the effects of shear load on frictional healing and to isolate time- and slip-dependent effects on fault healing. Preliminary results are consistent with existing works and indicate that frictional healing increases with the logarithm of hold time and decreases with normalized shear stress τ/τf during the hold. During SHS tests with hold periods of 100 seconds, healing values ranged from (0.013-0.014) for τ/τf = 1 to (0.059-0.063) for τ/τf = 0, where τ is the shear stress during the hold period and τf is the shear stress during steady frictional sliding. Experiments on bare rock surfaces and with natural and synthetic fault gouge materials are in progress. Conventional SHS tests (i.e. τ/τf = 1) are adequately described by the rate and state friction laws. However, previous experiments in granular quartz suggest that zero-stress SHS tests are not well characterized by either the Dieterich or Ruina state evolution laws. We are investigating the processes that produce shear stress dependent frictional healing, alternate forms of the state evolution law, and comparing results for friction of bare rock surfaces and granular fault gouge.
NASA Technical Reports Server (NTRS)
Materese, Christopher K.; Cruikshank, Dale P.; Sanford, Scott A.; Imanaka, Hiroshi
2014-01-01
Much of Pluto's surface consists of N2 ice with smaller amounts of CH4 and CO ices. Despite the low temperature (approximately 45K), chemistry can be driven in the surface ices by radiation processing such as cosmic ray bombardment. When cosmic rays strike the surface, much of their energy is dispersed in the form of secondary electrons, which in turn drive much of the resulting chemical reactions. Laboratory experiments designed to simulate the conditions on these icy bodies may provide insight into this chemistry. Significant progress has been made in the laboratory toward understanding the smaller, simple compounds produced in the solid phase by radiation processing of (N2, CH4, CO) ices (Bohn et al. 1994; Moore & Hudson 2003; Hodyss et al. 2011; Kim and Kaiser 2012). Recently Materese et al. (2014) used a variety of techniques to better characterize the refractory materials produced from the UV photo-irradiation of N2:CH4:CO ices. However, because Pluto's atmosphere is optically thick to Lyman-alpha UV radiation it is important to re-examine the results using an alternate radiation source. Our latest work has consisted of the analysis of refractory materials produced from the electron bombardment of low temperature N2(-), CH4(-), and CO(-)containing ices (100:1:1). The ice mixture was chosen to be analogous to the known surface ices on Pluto and the radiation source was chosen to mimic the secondary electrons produced by cosmic rays bombardment. The residues were studied using multiple chemical techniques including, infrared (IR) spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). The organic residues produced in these experiments can be seen as an analog for the refractory component of the surface of Pluto, and are compared with the residues previously obtained from UV photo-irradiation. UV and near- IR spectroscopy of the surfaces of Pluto and Charon during the encounter with NASA's New Horizons spacecraft in 2015, will give the first close-up measurements of ices and their photoproducts. Laboratory measurements and experiments will provide a better context for the data returned by the spacecraft.
Low-energy Lorentz violation from high-energy modified dispersion in inertial and circular motion
NASA Astrophysics Data System (ADS)
Louko, Jorma; Upton, Samuel D.
2018-01-01
We consider an Unruh-DeWitt detector in inertial and circular motion in Minkowski spacetime of arbitrary dimension, coupled to a quantized scalar field with the Lorentz-violating dispersion relation ω =|k |f (|k |/M⋆) , where M⋆ is the Lorentz-breaking scale. Assuming that f dips below unity somewhere, we show that an inertial detector experiences large low-energy Lorentz violations in all spacetime dimensions greater than two, generalizing previous results in four dimensions. For a detector in circular motion, we show that a similar low-energy Lorentz violation occurs in three spacetime dimensions, and we lay the analytic groundwork for examining circular motion in all dimensions greater than three, generalizing previous work by Stargen, Kajuri and Sriramkumar in four dimensions. The circular motion results may be relevant for the prospects of observing the circular motion Unruh effect in analogue laboratory systems.
Experimental and evaluated photoneutron cross sections for 197Au
NASA Astrophysics Data System (ADS)
Varlamov, V.; Ishkhanov, B.; Orlin, V.
2017-10-01
There is a serious well-known problem of noticeable disagreements between the partial photoneutron cross sections obtained in various experiments. Such data were mainly determined using quasimonoenergetic annihilation photon beams and the method of neutron multiplicity sorting at Lawrence Livermore National Laboratory (USA) and Centre d'Etudes Nucleaires of Saclay (France). The analysis of experimental cross sections employing new objective physical data reliability criteria has shown that many of those are not reliable. The IAEA Coordinated Research Project (CRP) on photonuclear data evaluation was approved. The experimental and previously evaluated cross sections of the partial photoneutron reactions (γ ,1 n ) and (γ ,2 n ) on 197Au were analyzed using the new data reliability criteria. The data evaluated using the new experimental-theoretical method noticeably differ from both experimental data and data previously evaluated using nuclear modeling codes gnash, gunf, alice-f, and others. These discrepancies needed to be resolved.
ERIC Educational Resources Information Center
Lewis, Russell L.; Seal, Erin L.; Lorts, Aimee R.; Stewart, Amanda L.
2017-01-01
The undergraduate biochemistry laboratory curriculum is designed to provide students with experience in protein isolation and purification protocols as well as various data analysis techniques, which enhance the biochemistry lecture course and give students a broad range of tools upon which to build in graduate level laboratories or once they…
An Upper Level Laboratory Course of Integrated Experiments
ERIC Educational Resources Information Center
Rose, T. L.; Seyse, R. J.
1974-01-01
Discusses the development of a one-year laboratory course in an effort to provide a link between traditional laboratories devoted to a single area of chemistry and the total involvement of a single narrow research project. Included are outlines of 32-hour lectures and 11 experiments performed in the integrated course. (CC)
A General Chemistry Laboratory Course Designed for Student Discussion
ERIC Educational Resources Information Center
Obenland, Carrie A.; Kincaid, Kristi; Hutchinson, John S.
2014-01-01
We report a study of the general chemistry laboratory course at one university over four years. We found that when taught as a traditional laboratory course, lab experiences do not encourage students to deepen their understanding of chemical concepts. Although the lab instructor emphasized that the lab experiences were designed to enhance…
How Efficient is a Laboratory Burner in Heating Water?
ERIC Educational Resources Information Center
Jansen, Michael P.
1997-01-01
Describes an experiment in which chemistry students determine the efficiency of a laboratory burner used to heat water. The reaction is assumed to be the complete combustion of methane, CH4. The experiment is appropriate for secondary school chemistry students familiar with heats of reaction and simple calorimetry. Contains pre-laboratory and…
Measuring Stellar Temperatures: An Astrophysical Laboratory for Undergraduate Students
ERIC Educational Resources Information Center
Cenadelli, D.; Zeni, M.
2008-01-01
While astrophysics is a fascinating subject, it hardly lends itself to laboratory experiences accessible to undergraduate students. In this paper, we describe a feasible astrophysical laboratory experience in which the students are guided to take several stellar spectra, using a telescope, a spectrograph and a CCD camera, and perform a full data…
Microcomputers for Young Children: Procedures and Practices in the Laboratory Classroom.
ERIC Educational Resources Information Center
Baker, Betty Ruth
These guidelines are designed to give preservice teachers information to use in selecting techniques and planning learning experiences for young children in the microcomputer laboratory. The main purpose of this laboratory experience is for children to develop computer awareness/literacy and keyboard knowledge, and to improve skills in following…
Optical closure experiments for biomass smoke aerosols
L. A. Mack; E. J. T. Levin; S. M. Kreidenweis; D. Obrist; H. Moosmuller; K. A. Lewis; W. P. Arnott; G. R. McMeeking; A. P. Sullivan; C. E. Wold; W.-M. Hao; J. L. Collett; W. C. Malm
2010-01-01
A series of laboratory experiments at the Fire Laboratory at Missoula (FLAME) investigated chemical, physical, and optical properties of fresh smoke samples from combustion of wildland fuels that are burned annually in the western and southeastern US The burns were conducted in the combustion chamber of the US Forest Service Fire Sciences Laboratory in Missoula,...
ERIC Educational Resources Information Center
Barreto, Jose C.; Dubetz, Terry A.; Schmidt, Diane L.; Isern, Sharon; Beatty, Thomas; Brown, David W.; Gillman, Edward; Alberte, Randall S.; Egiebor, Nosa O.
2007-01-01
Core concepts can be integrated throughout lower-division science and engineering courses by using a series of related, cross-referenced laboratory experiments. Starting with butane combustion in chemistry, the authors expanded the underlying core concepts of energy transfer into laboratories designed for biology, physics, and engineering. This…